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Abstract

This paper gives an overview of the main ingredients neeal@itbrporate reconstruction op-
erators, as known from higher order finite volume (FV) ancspévolume (SV) schemes, into
the discontinuous Galerkin (DG) method. Such an operatastcacts higher order approxima-
tions from the lower order DG scheme, increasing the ordeoafergence, while leading to
a more efficient numerical scheme than the correspondirfiehigrder DG scheme itself. We
discuss theoretical, as well as implementational aspacdsamerical experiments.
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Introduction

During the last decades, the finite volume (FV) method haseghthe position of the stan-
dard method used by the engineering community for the digeten of equations governing
conservation laws and convection-dominated problemss Method has many advantages,
however one of its drawbacks is its low order accuracy. Thads#rd approach to overcome
this problem is the introduction of higher order recondinrcoperators into the FV scheme.
Although such an approach has not yet been theoreticalijigus it gives excellent results in
practice. However, one usually uses at most piecewise gtiadeconstructions, since higher
orders are impractical and cumbersome from the implementdtpoint of view.

A somewhat different approach to higher order schemes disitentinuous Galerkin (DG)
method, which combines concepts form the finite element anite fvolume methods. Again,
this method has many advantages, but one major drawbacke \Aftitrary orders of conver-
gence can be achieved, the number of degrees of freedomchgexes very fast.

In the presented paper, we give an overview of a relatively idea, originating in [2, 5],
to combine the DG method with reconstruction operators tainka numerical scheme of very
high orders of accuracy, which, we demonstrate, is comiouiaty more efficient than the DG
scheme itself. We introduce concepts needed to introdudeascheme, discuss implementa-
tion and numerical results, as well as some theoreticaliderstions.

1 Problem Formulation and Notation

For simplicity, we shall be concerned with a scalar hypedefuation, although the same
arguments basically hold for any time-dependent PDE. V& &raonlinear nonstationary scalar
hyperbolic equation in a bounded dom&n— R® with a Lipschitz-continuous boundadg.
We seeku: Q x [0, T] — R such that

%erivf(u) =0 inQx(0,T) 1)



along with an appropriate initial and boundary conditionereéif = (f1,---, fy) and fs,s =

.,d are Lipschitz continuous fluxes in the directiyps=1,...,d.

Let 7, be a partition (triangulation) of the closugeinto a finite number of closed simplices
K € ;. In general we do not require the standard conforming pt@seof .7, used in the
finite element method (i.e. we admit the so-called hangirdesp We shall use the following
notation. BydK we denote the boundary of an elem&t %, and sethk = diam(K), h =
ma>q<e%h|<.

LetK,K’ € 7. We say thaK andK’ areneighboursif they share a commdiacel” C dK.
By .1, we denote the system of all faces of all elemdfits 7. Further, we define the set of
all interior and boundary faces, tﬁy‘h and.7, respectively

For eacH € .%, we define a unit normal vector, such that folm € .%, the normahr has
the same orientation as the outer normad €.

Over a triangulatior;, we define thdroken Sobolev spaces

HX(Q, %) = {v; vk € HX(K), VK € F}.

For each facd € .7 there exist two neighbourlé}L), KéR) € Jh such that™ C KéL) N KéR).

We use the convention that is the outer normal tdz(éL). Forve HY(Q, %) andl € #/ we
introduce the following notation:

’(L)

V|r = trace ofv| yonl, v|(rR) = trace ofv|K§R) onl, [Vr=v|; —v|(rR).

On boundary edges we definéR) =[V|r:= v||(-L).
Letn > 0 be an integer. We define the space of discontinuous pieegmignomial func-
tions
1 ={v; vk € P"(K),VK € F},

whereP"(K) is the space of all polynomials df of degree< n. Specifically,

o Q: is the space of piecewise constant functions as known fhenfrv method,
e S, n>0: the DG solution lies in this space of piecewigk degree polynomials,

° S'\h‘, N > n: the higher order reconstructed DG solution will lie in tegace.

2 Discontinuous Galerkin

We multiply (1) by an arbitrary|! € S\, integrate over an elemeKt<c %, and apply Green’s
theorem. By summing over &l € %, and rearranging, we get

dt/ ¢hdx+r€Z}/f n[f] dS—KE7/f .DgPdx= 0. @

The boundary convective terms will be treated similarlyreihie finite volume method, i.e. with
the aid of a numerical flu (u,v,n):

nle"NdS~ L y® n
Jf@-nifias= [ HuO.u®,migrds ©

We assume thdd is Lipschitz continuous, consistesutdconservativect. [3].
Finally, we define theonvective form ﬁ;(- ) defined forv, ¢ € H1(Q, %):

Z/H n)[¢]dS— KGZ%/Kf(v)»mpdx

ey



Definition 1 (Standard DG scheme)We seek yi: [0, T| — S} such that

%(Uh(t), ¢lr11) + bh(Uh(t), ¢Ir1]) =0, v¢I’rl] € SL Vte (OaT) (4)

We note that if we take =0, i.e.u,: (0, T) — Sﬂ then from the definition oby,, we see that
the DG scheme (4) is equivalent to the standard FV method.

3 Reconstructed Discontinuous Galerkin
Forv € L2(Q), we denote by1flv theL?(Q)-projection ofv on

Mves, (Mv-v¢)=0,  VereS. (5)

Obviously, ifK € ., then the functiol{lv)|x is theL2(K)-projection ofv|x on P"(K). The
basis of the method lies in the observation that (2) can leades an equation for the evolution
of Mpu(t), whereu is the exact solution of (1). In other words, due to @Ju(t) € S satisfies
the following equation for al|} € S:

dt/ Pt ¢hdx+r;j/ n[¢f]dS— KEZ%/Kf(u)quQdX:O. ©)

Now, letN > n be an integer. We assume that there exists a piecewise poighfunction
UN(t) € §Y, which is an approximation af(t) of orderN+1, i.e.

U (x,t) = u(x,t) + Oy wxe Q, vt € [0, T]. (7)

This is possible, iiu is sufficiently regular in space, e.gt) € WN+t1>(Q), cf.[1]. Now we
incorporate the approximatidg\(t) into (6): the exact solution satisfies

C?t( hu( ) ¢h) +bh(Uh ( )7¢Ir1]) = E((IJR,'[), Vd)f? € S}? Vte (OvT)v (8)

whereE(¢/,t) is an error term defined as

E(95.1) = bn(UR'(1). 9) —bn(u(t). 7). 9
Lemma 1 The following estimate holds for alit [0, T|:
E(¢f.t) = O(h") (|97l L2(q)- (10)

Proof: Due to the consistency and Lipschitz continuityHbfwe have o™ € .%,
f(u) -n—HUNM UN® n) = Huun) —HUME UNR ) = o),
Furthermore, due to the Lipschitz-continuityfofve have on elemet € %,
f(u) —f(Up) = Oo(hN*Y).

Estimate (10) follows from these results and the applicatibtheinverseand multiplicative
trace inequalitiescf. [3]. O

It remains to construct a sufficiently accurate approxiovati, " ( N(t $‘ to u(t), such that
(7) is satisfied. This leads to the following problem.



Definition 2 (Reconstruction problem) Letv: Q — R be sufficiently regular. Giveijve S,
find \\ € S such that v- v} = O(hN*1) in Q. We define the corresponding reconstruction
operator R §! — S\ by RMfv:= v

By settingU\'(t) := RMMu(t) in (8), we obtain the following equation for the*(Q)-pro-
jections of the exact solutiomonto the spac&]:

d
gt (MU, 97) + b (RMRU(D), 81) = O(NY) |15l z(). 791 € S (12)

By neglecting the right-hand side and approximatifi) ~ Mpu(t), we arrive at the following
definition of thereconstructed discontinuous GalerKRDG) scheme.

Definition 3 (Reconstructed DG schemeWe seek {i: [0, T] — §) such that

S (Uh(1).08) +bn(RU1).0F) =0. VR e Sh vt e (OT). (12)

There are several points worth mentioning.
e Equation (11) indicates that the RDG scheme is formigtly order in space.

e The derivation of the RDG scheme follows the methodology ghlr order FV and SV
schemes, cf. [7]. The basis of these schemes is an equatitrefevolution of averages
of the exact solution on individual elements (i.e. an ecanatbrl‘lﬂu(t)). Equation (11)
is a direct generalization for the case of higher olld€Q)-projectionsiflu(t), n > 0.

e Bothul)(t) and¢! lie in §. Only RUl(t), lies in the higher dimensional spag®. Despite
this fact, equation (11) indicates that we may expeetRY = O(hN+1), althoughu —
ul = O(h™+1).

e Numerical quadrature must be employed to evaluate surfatte@ume integrals in (12).
Since test functions are i, as compared t6‘1'§I in the correspondingith order stan-
dard DG scheme, we may use lower order (i.e. more efficierdayiaiure formulae as
compared to the standard DG method.

e In practice, we must also discretize (12) with respect teetirAs in the case of higher
order FV methods, we use an explicit time stepping method dpper limit on stable
time steps, given by a CFL-like condition, is more restrietivith growingN. However,
in the RDG scheme, stability properties are essentiallyritdte from the lower order
scheme, therefore a larger time step is possible as compartbe correspondinglth
order standard DG scheme.

3.1 Explicit Time Discretization

For simplicity, we formulate the forward Euler method, whiis only the first order accurate,
however in Section 5, higher order Adams-Bashforth methoelsised.

Let us construct a partition8 tg < t; <t,... of the time interval0, T| and define the time
stepty =tk 1 —tx. We use the approximatiaﬂh“k ~ Up(ty), Whereuﬂ’k € §,. The forward Euler
scheme is given by:
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Fig. 1. 1) FV stencil for linear reconstruction, 2) FV stencil forapratic reconstruction, 3)
Control volumes in a spectral volume for linear reconstracti4) Analogy to the SV approach
for DG methods - partition of triangle into control volumesg. cubic reconstruction from
linear data

Source: Own

Definition 4 (Explicit RDG scheme) We seek ¥ € §!, k=0,1,... such that
ULk
Tk ’

¢2) Cba(RUF 40 =0, VP e, k=0.1..... (19)

where Lg,”?o = Un is an § approximation of the initial condition®

3.2 Construction of the Reconstruction Operator

In analogy to the construction of reconstruction operatorligher order FV schemes, we
propose two approaches.

3.2.1 "Standard” Approach

In the standard approacha stencil (a group of neighboring elements and the elemeaa¢ru
consideration) is used to build afth degree polynomial approximation toon the element
under consideration ([4, 6]). In the FV method, the von Neamaeighborhood of an element
Is used as a stencil to obtain a piecewise linear reconsiryatf. Figure 1, 1). However,
for higher order reconstructions, the size of the stendiaases dramatically, cf. Figure 1,
2), causing higher degrees than quadratic to be very timsurnimg. In the case of the RDG
scheme, we need not increase the stencil size to obtainrtogier accuracy, it suffices to take
the von Neumann neighborhood and increase the order of thexlymg DG scheme.

In analogy to the FV method, the reconstruction operBt@ constructed on each stencil
independently and satisfies tHiil} is in some senspolynomial preservingSpecifically, for
each elemeri and its corresponding stend| we require that for alp € PN(S)

((Rﬂﬂ)\spﬂK: Pl (14)

This requirement allows us to study approximation propsrtfR using the Bramble—Hilbert
technique as in the standard finite element method, [1]. T$eddantage of this approach is
that for unstructured meshes, the coefficients of the réngstgon operator must be stored for
each individual stencil.



In the FV method, different conditions dRthan (14) are often used, e.g. continuous or
discrete least squares. Special care must be taken in tihéyiaf steep gradients and disconti-
nuities, where the Gibbs phenomenon may occur. In this défeeaiht strategies are employed,
e.g. limiting, ENO and WENO schemes, TVD etc. The generatimatf these concepts to the
RDG method is left for future work.

3.2.2 Spectral Volume Approach

In the spectral volume approachve start with a partition of2 into so-calledspectral volumes
S, for example triangles in 2D. The triangulatia#, is formed by subdividing each spectral
volume S into sub-cellsK, calledcontrol volumescf. [7]. In the FV method, the order of
accuracy of the reconstruction determines the number afa@ovolumes to be generated in
each spectral volume. For example, for a linear reconstruan a triangle, the triangle is
divided into three control volumes, Figure 1, 3). Again,he RDG scheme, we may use only
the smallest available partition into control volumes, amtease the accuracy by increasing
the order of the underlying scheme, cf. Figure 1, 4).

The reconstruction operator is constructed on each spgotieme independently such that
it is in some sense polynomial preserving, i.e. for eachtspleeolumesS, we require that for
all pe PN(S)

(RIR)[sP=P. (15)

The advantage of this approach is that all spectral volumesiffine equivalent, we con-
struct the reconstruction operafonly on one reference spectral volume.

4 Relation between RDG and Standard DG

The only difference between the DG scheme (4) and RDG sche®es(the presence of the
reconstruction operatd in the first variable oby(-,-). While the error analysis of (4) is well
understood (at least for convection-diffusion problem3, [he analysis of (12) or (13) poses

a new challenge. The problem lies in the fact that we canrsat(ie2) with ¢ := RLﬂ’k or
something similar, sincELﬂ’k ¢ §\. Therefore, we need to establish a relation between (12) and
theNth order DG method, instead of only thth order DG method.

Definition 5 (Auxiliary problem) We seekiy™* € §\ such that

(Gr’:l k+1 GN"k

- ,¢#)4—Q(Rnhdfﬁ¢#)::o, Von €S\, k=0,1,...,  (16)
k

N,0 :

where(, " is an Eﬁ' approximation of the initial condition

Lemma 2 Let '° = MNiN°. Then §* € , the solution of (13) and the solutidl} * € S\ of
(16) satisfy
urk = otk vk=0,1,--.. (17)

Proof:We prove (17) by induction:
k=1: Sinceu?® = MNi\"°, we have for alp? € S

( haw 17¢h):(~N 17¢h) (~N0,¢h)—kah(RnRUEO,¢h)
(uh 7¢h) kah(RLﬂ 7¢h) (uh 7¢h)



hence(NPGN " — utt, ¢1) = 0 for all ! € §!. Thereforen NG = u.
k> 1: Assume (17) holds for some> 1. Then for allg € S

(MAE* ™, ) = (G 00) = (0, o) — Tidon (RN, &)

— (UM 80) — ibn (RY™X, o) = (U, o),
naNk+1 n.k-+1

thereforelMpG, "~ =u,~ ~. This completes the induction stkp- k4 1. O

As a corollary, error estimates for the auxiliary problenplynerror estimates for the RDG
scheme (12). Problem (16) is basically the standhitd order DG scheme with the operator
R in the first variable oby(-,-). Therefore, sufficient knowledge of the propertiesRbf})
(which is polynomial preserving) and standard DG methodreestimates would imply the
estimates for the RDG scheme.

5 Numerical Experiments

We present numerical experiments for the periodic adveatioa 1D sine wave on uniform
meshes. We use tt* RDG scheme withP® reconstruction and the> RDG scheme withP®
reconstruction. The reconstruction operators describegection 3.2.1 are used. Experimen-
tal orders of accuracy in various norms on meshes withh elements are given in Tables 1
and 2. Heres, = u—RU, att corresponding to ten periods. The increase in accuracyalue t
reconstruction is clearly visible.

Tab. 1. 1D advection of sine wave llRDG scheme with Preconstruction

[N [ lenll=) @ [llenllize @ |lenliosn o |
4 | 5.82E-03 — | 3.49E-03 — 3.65E-02 —
8 || 7.53E-05 6.27 4.43E-05 6,30 1.06E-03 5,11
16 | 9.07E-07 6.38 5.95E-07 6,22 3.58E-05 4,89
32| 1.82E-08 5.64 8.70E-09 6,10 1.16E-06 4,95
64 | 3.41E-10 5.74 1.33E-10 6,03 3.67E-08 4,98

Source: Own

Tab. 2. 1D advection of sine wave2RDG scheme with$reconstruction

N [ flenl[=@y o |llenllizey 0 |lenlyrios @
4 || 2.90E-03 — | 1.85E-03 — 1.63E-02 —
8 || 7.75E-06 8.55 3.56E-06 9.02 1.03E-04 7.30
16 | 2.10E-08 8.53 6.64E-09 9.07 4.34E-07 7.89
32| 7.21E-11 8.18 4.02E-11 7.37 1.76E-09 7.94

Source: Own

Conclusion

We have presented a possible generalization of higher oedenstruction operators as used in
the FV method to the DG method. Two constructions of the retantion operatoR are pre-
sented, the first analogous to the standard FV case (alrezated in [2]) and the construction
analogous to the SV method. The resulting scheme has maaptd)es over standard DG, FV
and SV schemes:



e To increase the order of the scheme, the reconstructiociktezed not be enlarged, we
may simply increase the order of the underlying DG scheme.

e Test functions are from the lower order space, hence moegftiquadratures may be
used than in the corresponding higher order DG scheme.

e Since the RDG scheme is basically a lower order DG scheme vgtiehorder recon-
struction, the CFL condition is less restrictive than for¢beresponding higher order DG
scheme.
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APLIKACE REKONSTRUKENICH OPERATORU V NESPOJITE GALERKINOVE
METODE

Tento ¢lanek Fedstavuje fehled akladrich koncept nutnych k zapojen rekonstruknich
opedtorll, zramych z metody konénych objenti (FV) a spektalnich objenti (SV) vySSiho
fadu, do nespojit Galerkinovy (DG) metody. Tak@to opeator konstruuje aproximace $§ch
fadl z DG metody riSiho fadu,&imz zvySujefad konvergence azoveh vede k efektivjSimu
numericlemu scematu né prislusre DG sclema vygSiho fadu samo o sab Probereme teo-
retické i implementani aspekty a numerigexperimenty.

DIE ANWENDUNG VON REKONSTRUKTIONSOPERATOREN IN DER
KONTINUIERLICHEN GALERKIN-METHODE

Dieser Artikel bietet einefberblickiiber die grundlegenden, zu Einbeziehung der Rekonstruk-
tionsoperatoren notwendigen Konzepte, die aus der Metteddiniten Inhalts (FV) und der
spektralen Inhalte (SV)dherer Ordnung bekannt sind, in die nicht kontinuierlichede®kin-
Methode (DG). Ein solcher Operator konstruiert eine &merung hherer Ordnungen aus der
DG-Methode niederer Ordnung, wodurch er die Ordnung dev&aenz erbiht. Gleichzeitig
fuhrt er zu einem effektiveren numerischen Schema als dashauge DG-Schemadherer
Ordnung selbst. Wir behandeln die theoretischen und imgidren Aspekte und die nu-
merischen Experimente.

ZASTOSOWANIE OPERATORW REKONSTRUKCYJNYCH W NIECAGLEJ
METODZIE GALERKINA

W niniejszym artykule przedstawiono podstawowe koncep@eledne do waczenia opera-
torbw rekonstrukcyjnych, znanych z metody etasci skarczonych (FV) oraz olgitcsci spek-
tralnych (SV) wyszego redu, do nieagtej metody Garlekina (DG). Taki operator konstruuje
aproksymacje wgszego redu z metody DG ziszego redu, co zweksza poziom konwergencji

| jednoczé&nie prowadzi do bardziej efektywnego schematu numergmzmepobwnaniu ze
schematem DG waszego redu. Ondwiono aspekty teoretyczne i implementacyjne oraz ekspe-
rymenty numeryczne.



