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Charles University in Prague
Faculty of Mathematics and Physics

Department of Numerical Mathematics
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Abstract

This paper gives an overview of the main ingredients needed to incorporate reconstruction op-
erators, as known from higher order finite volume (FV) and spectral volume (SV) schemes, into
the discontinuous Galerkin (DG) method. Such an operator constructs higher order approxima-
tions from the lower order DG scheme, increasing the order ofconvergence, while leading to
a more efficient numerical scheme than the corresponding higher order DG scheme itself. We
discuss theoretical, as well as implementational aspects and numerical experiments.
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Introduction

During the last decades, the finite volume (FV) method has gained the position of the stan-
dard method used by the engineering community for the discretization of equations governing
conservation laws and convection-dominated problems. This method has many advantages,
however one of its drawbacks is its low order accuracy. The standard approach to overcome
this problem is the introduction of higher order reconstruction operators into the FV scheme.
Although such an approach has not yet been theoretically justified, it gives excellent results in
practice. However, one usually uses at most piecewise quadratic reconstructions, since higher
orders are impractical and cumbersome from the implementational point of view.

A somewhat different approach to higher order schemes is thediscontinuous Galerkin (DG)
method, which combines concepts form the finite element and finite volume methods. Again,
this method has many advantages, but one major drawback. While arbitrary orders of conver-
gence can be achieved, the number of degrees of freedom needed grows very fast.

In the presented paper, we give an overview of a relatively new idea, originating in [2, 5],
to combine the DG method with reconstruction operators to obtain a numerical scheme of very
high orders of accuracy, which, we demonstrate, is computationally more efficient than the DG
scheme itself. We introduce concepts needed to introduce such a scheme, discuss implementa-
tion and numerical results, as well as some theoretical considerations.

1 Problem Formulation and Notation

For simplicity, we shall be concerned with a scalar hyperbolic equation, although the same
arguments basically hold for any time-dependent PDE. We treat a nonlinear nonstationary scalar
hyperbolic equation in a bounded domainΩ ⊂ IRd with a Lipschitz-continuous boundary∂Ω.
We seeku : Ω× [0,T] → IR such that

∂u
∂ t

+div f(u) = 0 in Ω× (0,T) (1)
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along with an appropriate initial and boundary condition. Here f = ( f1, · · · , fd) and fs,s =
1, . . . ,d are Lipschitz continuous fluxes in the directionxs,s= 1, . . . ,d.

Let Th be a partition (triangulation) of the closureΩ into a finite number of closed simplices
K ∈ Th. In general we do not require the standard conforming properties of Th used in the
finite element method (i.e. we admit the so-called hanging nodes). We shall use the following
notation. By∂K we denote the boundary of an elementK ∈ Th and sethK = diam(K), h =
maxK∈Th

hK.
Let K,K′ ∈ Th. We say thatK andK′ areneighbours, if they share a commonfaceΓ ⊂ ∂K.

By Fh we denote the system of all faces of all elementsK ∈ Th. Further, we define the set of
all interior and boundary faces, byF I

h andF B
h , respectively.

For eachΓ ∈Fh we define a unit normal vectornΓ, such that forΓ ∈F B
h the normalnΓ has

the same orientation as the outer normal to∂Ω.
Over a triangulationTh we define thebroken Sobolev spaces

Hk(Ω,Th) = {v; v|K ∈ Hk(K), ∀K ∈ Th}.

For each faceΓ ∈ F I
h there exist two neighboursK(L)

Γ , K(R)
Γ ∈ Th such thatΓ ⊂ K(L)

Γ ∩K(R)
Γ .

We use the convention thatnΓ is the outer normal toK(L)
Γ . For v∈ H1(Ω,Th) andΓ ∈ F I

h we
introduce the following notation:

v|(L)
Γ = trace ofv|

K(L)
Γ

on Γ, v|(R)
Γ = trace ofv|

K(R)
Γ

on Γ, [v]Γ = v|(L)
Γ −v|(R)

Γ .

On boundary edges we definev|(R)
Γ = [v]Γ := v|(L)

Γ .
Let n≥ 0 be an integer. We define the space of discontinuous piecewise polynomial func-

tions
Sn

h = {v; v|K ∈ Pn(K),∀K ∈ Th},

wherePn(K) is the space of all polynomials onK of degree≤ n. Specifically,

• S0
h: is the space of piecewise constant functions as known from the FV method,

• Sn
h, n≥ 0: the DG solution lies in this space of piecewisenth degree polynomials,

• SN
h , N > n: the higher order reconstructed DG solution will lie in thisspace.

2 Discontinuous Galerkin

We multiply (1) by an arbitraryϕn
h ∈ Sn

h, integrate over an elementK ∈ Th and apply Green’s
theorem. By summing over allK ∈ Th and rearranging, we get

d
dt

∫

Ω
u(t)ϕn

h dx+ ∑
Γ∈Fh

∫

Γ
f(u) ·n [ϕn

h]dS− ∑
K∈Th

∫

K
f(u) ·∇ϕn

h dx= 0. (2)

The boundary convective terms will be treated similarly as in the finite volume method, i.e. with
the aid of a numerical fluxH(u,v,n):

∫

Γ
f(u) ·n [ϕn

h]dS≈
∫

Γ
H(u(L),u(R),n)[ϕn

h]dS. (3)

We assume thatH is Lipschitz continuous, consistentandconservative, cf. [3].
Finally, we define theconvective form bh(·, ·) defined forv,ϕ ∈ H1(Ω,Th):

bh(v,ϕ) = ∑
Γ∈Fh

∫

Γ
H(v(L),v(R),n)[ϕ]dS− ∑

K∈Th

∫

K
f(v) ·∇ϕ dx.
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Definition 1 (Standard DG scheme)We seek uh : [0,T] → Sn
h such that

d
dt

(

uh(t),ϕn
h

)

+bh
(

uh(t),ϕn
h

)

= 0, ∀ϕn
h ∈ Sn

h, ∀t ∈ (0,T). (4)

We note that if we taken = 0, i.e. uh : (0,T) → S0
h, then from the definition ofbh, we see that

the DG scheme (4) is equivalent to the standard FV method.

3 Reconstructed Discontinuous Galerkin

Forv∈ L2(Ω), we denote byΠn
hv theL2(Ω)-projection ofv onSn

h:

Πn
hv∈ Sn

h, (Πn
hv−v, ϕn

h) = 0, ∀ϕn
h ∈ Sn

h. (5)

Obviously, ifK ∈ Th, then the function(Πn
hv)|K is theL2(K)-projection ofv|K on Pn(K). The

basis of the method lies in the observation that (2) can be viewed as an equation for the evolution
of Πn

hu(t), whereu is the exact solution of (1). In other words, due to (5),Πn
hu(t) ∈ Sn

h satisfies
the following equation for allϕn

h ∈ Sn
h:

d
dt

∫

Ω
Πn

hu(t)ϕn
h dx+ ∑

Γ∈Fh

∫

Γ
f(u) ·n [ϕn

h]dS− ∑
K∈Th

∫

K
f(u) ·∇ϕn

h dx= 0. (6)

Now, let N > n be an integer. We assume that there exists a piecewise polynomial function
UN

h (t) ∈ SN
h , which is an approximation ofu(t) of orderN+1, i.e.

UN
h (x, t) = u(x, t)+O(hN+1), ∀x∈ Ω, ∀t ∈ [0,T]. (7)

This is possible, ifu is sufficiently regular in space, e.g.u(t) ∈ WN+1,∞(Ω), cf.[1]. Now we
incorporate the approximationUN

h (t) into (6): the exact solutionu satisfies

d
dt

(

Πn
hu(t),ϕn

h

)

+bh
(

UN
h (t),ϕn

h

)

= E(ϕn
h, t), ∀ϕn

h ∈ Sn
h, ∀t ∈ (0,T), (8)

whereE(ϕn
h, t) is an error term defined as

E(ϕn
h, t) = bh

(

UN
h (t),ϕn

h

)

−bh
(

u(t),ϕn
h

)

. (9)

Lemma 1 The following estimate holds for all t∈ [0,T]:

E(ϕn
h, t) = O(hN)‖ϕn

h‖L2(Ω). (10)

Proof: Due to the consistency and Lipschitz continuity ofH, we have onΓ ∈ Fh

f(u) ·n−H(UN,(L)
h ,UN,(R)

h ,n) = H(u,u,n)−H(UN,(L)
h ,UN,(R)

h ,n) = O(hN+1).

Furthermore, due to the Lipschitz-continuity off, we have on elementK ∈ Th

f(u)− f(UN
h ) = O(hN+1).

Estimate (10) follows from these results and the application of the inverseandmultiplicative
trace inequalities, cf. [3]. �

It remains to construct a sufficiently accurate approximationUN
h (t) ∈ SN

h to u(t), such that
(7) is satisfied. This leads to the following problem.
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Definition 2 (Reconstruction problem) Let v: Ω → IR be sufficiently regular. GivenΠn
hv∈Sn

h,
find vN

h ∈ SN
h such that v− vN

h = O(hN+1) in Ω. We define the corresponding reconstruction
operator R: Sn

h → SN
h by RΠn

hv := vN
h .

By settingUN
h (t) := RΠn

hu(t) in (8), we obtain the following equation for theL2(Ω)-pro-
jections of the exact solutionu onto the spaceSn

h:

d
dt

(

Πn
hu(t),ϕn

h

)

+bh
(

RΠn
hu(t),ϕn

h

)

= O(hN)‖ϕn
h‖L2(Ω), ∀ϕn

h ∈ Sn
h. (11)

By neglecting the right-hand side and approximatingun
h(t) ≈ Πn

hu(t), we arrive at the following
definition of thereconstructed discontinuous Galerkin(RDG) scheme.

Definition 3 (Reconstructed DG scheme)We seek unh : [0,T] → Sn
h such that

d
dt

(

un
h(t),ϕ

n
h

)

+bh
(

Run
h(t),ϕ

n
h

)

= 0, ∀ϕn
h ∈ Sn

h, ∀t ∈ (0,T). (12)

There are several points worth mentioning.

• Equation (11) indicates that the RDG scheme is formallyNth order in space.

• The derivation of the RDG scheme follows the methodology of higher order FV and SV
schemes, cf. [7]. The basis of these schemes is an equation for the evolution of averages
of the exact solution on individual elements (i.e. an equation for Π0

hu(t)). Equation (11)
is a direct generalization for the case of higher orderL2(Ω)-projectionsΠn

hu(t), n≥ 0.

• Bothun
h(t) andϕn

h lie in Sn
h. OnlyRun

h(t), lies in the higher dimensional spaceSN
h . Despite

this fact, equation (11) indicates that we may expectu−Run
h = O(hN+1), althoughu−

un
h = O(hn+1).

• Numerical quadrature must be employed to evaluate surface and volume integrals in (12).
Since test functions are inSn

h, as compared toSN
h in the correspondingNth order stan-

dard DG scheme, we may use lower order (i.e. more efficient) quadrature formulae as
compared to the standard DG method.

• In practice, we must also discretize (12) with respect to time. As in the case of higher
order FV methods, we use an explicit time stepping method. The upper limit on stable
time steps, given by a CFL-like condition, is more restrictive with growingN. However,
in the RDG scheme, stability properties are essentially inherited from the lower order
scheme, therefore a larger time step is possible as comparedto the correspondingNth
order standard DG scheme.

3.1 Explicit Time Discretization

For simplicity, we formulate the forward Euler method, which is only the first order accurate,
however in Section 5, higher order Adams-Bashforth methods are used.

Let us construct a partition 0= t0 < t1 < t2 . . . of the time interval[0,T] and define the time
stepτk = tk+1− tk. We use the approximationun,k

h ≈ un
h(tk), whereun,k

h ∈ Sn
h. The forward Euler

scheme is given by:
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Source: Own

Fig. 1. 1) FV stencil for linear reconstruction, 2) FV stencil for quadratic reconstruction, 3)
Control volumes in a spectral volume for linear reconstruction, 4) Analogy to the SV approach
for DG methods - partition of triangle into control volumes,e.g. cubic reconstruction from
linear data

Definition 4 (Explicit RDG scheme) We seek un,k
h ∈ Sn

h, k = 0,1, . . . such that

(

un,k+1
h −un,k

h

τk
,ϕn

h

)

+bh
(

Run,k
h ,ϕn

h

)

= 0, ∀ϕn
h ∈ Sn

h, k = 0,1, . . . , (13)

where un,0
h = uh,0 is an Sn

h approximation of the initial condition u0.

3.2 Construction of the Reconstruction Operator

In analogy to the construction of reconstruction operatorsin higher order FV schemes, we
propose two approaches.

3.2.1 ”Standard” Approach

In the standard approach, a stencil (a group of neighboring elements and the element under
consideration) is used to build anNth degree polynomial approximation tou on the element
under consideration ([4, 6]). In the FV method, the von Neumann neighborhood of an element
is used as a stencil to obtain a piecewise linear reconstruction, cf. Figure 1, 1). However,
for higher order reconstructions, the size of the stencil increases dramatically, cf. Figure 1,
2), causing higher degrees than quadratic to be very time consuming. In the case of the RDG
scheme, we need not increase the stencil size to obtain higher order accuracy, it suffices to take
the von Neumann neighborhood and increase the order of the underlying DG scheme.

In analogy to the FV method, the reconstruction operatorR is constructed on each stencil
independently and satisfies thatRΠn

h is in some sensepolynomial preserving. Specifically, for
each elementK and its corresponding stencilS, we require that for allp∈ PN(S)

(

(

RΠn
h

)∣

∣

Sp
)∣

∣

∣

K
= p

∣

∣

K. (14)

This requirement allows us to study approximation properties ofR using the Bramble–Hilbert
technique as in the standard finite element method, [1]. The disadvantage of this approach is
that for unstructured meshes, the coefficients of the reconstruction operator must be stored for
each individual stencil.

115



In the FV method, different conditions onR than (14) are often used, e.g. continuous or
discrete least squares. Special care must be taken in the vicinity of steep gradients and disconti-
nuities, where the Gibbs phenomenon may occur. In this case different strategies are employed,
e.g. limiting, ENO and WENO schemes, TVD etc. The generalization of these concepts to the
RDG method is left for future work.

3.2.2 Spectral Volume Approach

In thespectral volume approach, we start with a partition ofΩ into so-calledspectral volumes
S, for example triangles in 2D. The triangulationTh is formed by subdividing each spectral
volumeS into sub-cellsK, calledcontrol volumes, cf. [7]. In the FV method, the order of
accuracy of the reconstruction determines the number of control volumes to be generated in
each spectral volume. For example, for a linear reconstruction on a triangle, the triangle is
divided into three control volumes, Figure 1, 3). Again, in the RDG scheme, we may use only
the smallest available partition into control volumes, andincrease the accuracy by increasing
the order of the underlying scheme, cf. Figure 1, 4).

The reconstruction operator is constructed on each spectral volume independently such that
it is in some sense polynomial preserving, i.e. for each spectral volumeS, we require that for
all p∈ PN(S)

(

RΠn
h

)∣

∣

Sp = p. (15)

The advantage of this approach is that all spectral volumes are affine equivalent, we con-
struct the reconstruction operatorRonly on one reference spectral volume.

4 Relation between RDG and Standard DG

The only difference between the DG scheme (4) and RDG scheme (12) is the presence of the
reconstruction operatorR in the first variable ofbh(·, ·). While the error analysis of (4) is well
understood (at least for convection-diffusion problems [3]), the analysis of (12) or (13) poses
a new challenge. The problem lies in the fact that we cannot test (12) with ϕn

h := Run,k
h or

something similar, sinceRun,k
h /∈Sn

h. Therefore, we need to establish a relation between (12) and
theNth order DG method, instead of only thenth order DG method.

Definition 5 (Auxiliary problem) We seek̃uN,k
h ∈ SN

h such that

(

ũN,k+1
h − ũN,k

h

τk
,ϕN

h

)

+bh
(

RΠn
hũN,k

h ,ϕN
h

)

= 0, ∀ϕN
h ∈ SN

h , k = 0,1, . . . , (16)

whereũN,0
h is an SN

h approximation of the initial condition u0.

Lemma 2 Let un,0
h = Πn

hũN,0
h . Then un,k

h ∈ Sn
h, the solution of (13) and the solutioñuN,k

h ∈ SN
h of

(16) satisfy
un,k

h = Πn
hũN,k

h , ∀k = 0,1, · · · . (17)

Proof: We prove (17) by induction:
k = 1 : Sinceun,0

h = Πn
hũN,0

h , we have for allϕn
h ∈ Sn

h

(Πn
hũN,1

h ,ϕn
h) = (ũN,1

h ,ϕn
h) = (ũN,0

h ,ϕn
h)− τkbh

(

RΠn
hũN,0

h ,ϕn
h

)

= (un,0
h ,ϕn

h)− τkbh
(

Run,0
h ,ϕn

h

)

= (un,1
h ,ϕn

h),
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hence(Πn
hũN,1

h −un,1
h ,ϕn

h) = 0 for all ϕn
h ∈ Sn

h. ThereforeΠn
hũN,1

h = un,1
h .

k > 1 : Assume (17) holds for somek > 1. Then for allϕn
h ∈ Sn

h

(

Πn
hũN,k+1

h ,ϕn
h

)

=
(

ũN,k+1
h ,ϕn

h

)

=
(

ũN,k
h ,ϕn

h

)

− τkbh
(

RΠn
hũN,k

h ,ϕn
h

)

=
(

un,k
h ,ϕn

h

)

− τkbh
(

Run,k
h ,ϕn

h

)

=
(

un,k+1
h ,ϕn

h

)

,

thereforeΠn
hũN,k+1

h = un,k+1
h . This completes the induction stepk→ k+1. �

As a corollary, error estimates for the auxiliary problem imply error estimates for the RDG
scheme (12). Problem (16) is basically the standardNth order DG scheme with the operator
RΠn

h in the first variable ofbh(·, ·). Therefore, sufficient knowledge of the properties ofRΠn
h

(which is polynomial preserving) and standard DG method error estimates would imply the
estimates for the RDG scheme.

5 Numerical Experiments

We present numerical experiments for the periodic advection of a 1D sine wave on uniform
meshes. We use theP1 RDG scheme withP5 reconstruction and theP2 RDG scheme withP8

reconstruction. The reconstruction operators described in Section 3.2.1 are used. Experimen-
tal orders of accuracyα in various norms on meshes withN elements are given in Tables 1
and 2. Hereeh = u−Run

h at t corresponding to ten periods. The increase in accuracy due to
reconstruction is clearly visible.

Tab. 1. 1D advection of sine wave, P1 RDG scheme with P5 reconstruction
N ||eh||L∞(Ω) α ||eh||L2(Ω) α |eh|H1(Ω,Th)

α
4 5.82E-03 – 3.49E-03 – 3.65E-02 –
8 7.53E-05 6.27 4.43E-05 6,30 1.06E-03 5,11
16 9.07E-07 6.38 5.95E-07 6,22 3.58E-05 4,89
32 1.82E-08 5.64 8.70E-09 6,10 1.16E-06 4,95
64 3.41E-10 5.74 1.33E-10 6,03 3.67E-08 4,98

Source: Own

Tab. 2. 1D advection of sine wave, P2 RDG scheme with P8 reconstruction
N ||eh||L∞(Ω) α ||eh||L2(Ω) α |eh|H1(Ω,Th)

α
4 2.90E-03 – 1.85E-03 – 1.63E-02 –
8 7.75E-06 8.55 3.56E-06 9.02 1.03E-04 7.30
16 2.10E-08 8.53 6.64E-09 9.07 4.34E-07 7.89
32 7.21E-11 8.18 4.02E-11 7.37 1.76E-09 7.94

Source: Own

Conclusion

We have presented a possible generalization of higher orderreconstruction operators as used in
the FV method to the DG method. Two constructions of the reconstruction operatorR are pre-
sented, the first analogous to the standard FV case (already treated in [2]) and the construction
analogous to the SV method. The resulting scheme has many advantages over standard DG, FV
and SV schemes:
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• To increase the order of the scheme, the reconstruction stencil need not be enlarged, we
may simply increase the order of the underlying DG scheme.

• Test functions are from the lower order space, hence more efficient quadratures may be
used than in the corresponding higher order DG scheme.

• Since the RDG scheme is basically a lower order DG scheme with higher order recon-
struction, the CFL condition is less restrictive than for thecorresponding higher order DG
scheme.
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APLIKACE REKONSTRUKČNÍCH OPERÁTORŮ V NESPOJIT́E GALERKINOV Ě

METODĚ

Tento článek p̌redstavuje p̌rehled źakladńıch koncept̊u nutńych k zapojeńı rekonstruǩcńıch
opeŕator̊u, zńamých z metody koněcných objem̊u (FV) a spektŕalńıch objem̊u (SV) vy̌šśıho
řádu, do nespojité Galerkinovy (DG) metody. Takovýto opeŕator konstruuje aproximace vyš̌śıch
řád̊u z DG metody nǐzš́ıho řádu,č́ımž zvy̌sujeřád konvergence, zárověn vede k efektivňejš́ımu
numericḱemu sch́ematu něz p̌rı́slǔsńe DG sch́ema vy̌šśıho řádu samo o sob̌e. Probereme teo-
retické i implementǎcńı aspekty a numericḱe experimenty.

DIE ANWENDUNG VON REKONSTRUKTIONSOPERATOREN IN DER

KONTINUIERLICHEN GALERKIN -METHODE

Dieser Artikel bietet einen̈Uberblicküber die grundlegenden, zu Einbeziehung der Rekonstruk-
tionsoperatoren notwendigen Konzepte, die aus der Methodedes finiten Inhalts (FV) und der
spektralen Inhalte (SV) ḧoherer Ordnung bekannt sind, in die nicht kontinuierliche Galerkin-
Methode (DG). Ein solcher Operator konstruiert eine Annäherung hherer Ordnungen aus der
DG-Methode niederer Ordnung, wodurch er die Ordnung der Konvergenz erḧoht. Gleichzeitig
führt er zu einem effektiveren numerischen Schema als das zugeḧorige DG-Schema ḧoherer
Ordnung selbst. Wir behandeln die theoretischen und implemenẗaren Aspekte und die nu-
merischen Experimente.

ZASTOSOWANIE OPERATOŔOW REKONSTRUKCYJNYCH W NIECIA֒GŁEJ

METODZIE GALERKINA

W niniejszym artykule przedstawiono podstawowe koncepcjeniezb֒edne do wł֒aczenia opera-
torów rekonstrukcyjnych, znanych z metody obje֒tósci skónczonych (FV) oraz obje֒tósci spek-
tralnych (SV) wẏzszego rz֒edu, do nieci֒agłej metody Garlekina (DG). Taki operator konstruuje
aproksymacje wẏzszego rz֒edu z metody DG niższego rz֒edu, co zwi֒eksza poziom konwergencji
i jednoczésnie prowadzi do bardziej efektywnego schematu numerycznego w poŕownaniu ze
schematem DG wẏzszego rz֒edu. Oḿowiono aspekty teoretyczne i implementacyjne oraz ekspe-
rymenty numeryczne.

119


