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Abstract

The main practical problems caused by multi-collinearity are reviewed. The biased estimators based on the
generalization of principal components for avoiding multi-collinearity problems are described. The mean quadratic
error of prediction criterion is used for the selection of suitable bias. Some advantages: of biased regression are
demonstrated on the problem of intercept estimation in a polynomial model.
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Multiple linear and non-linear chemical model
building is among the most complex problems to
be solved in chemometric practice. An interactive
approach to model building can be divided into
the following steps [1]: selection of provisional
models; analysis of assumptions about the model,
data and regression methods (regression diagnos-
tics); extension and modification of the model,
data and regression method; and testing the va-
lidity of the model, its predictive capability, etc.

An interactive strategy of multiple model
building based on the above steps has been de-
scribed [1]. Many problems in the realization of
the second step are caused by strong multi-collin-
earity. Multi-collinearity in multiple linear regres-
sion analyses is defined as approximate linear
dependences among the explanatory variables
(columns of design matrix X).

Correspondence to: J. Militky, Department of Textile Materi-
als, Technical University, Liberec (Czech Republic).

It is well known that under strong multi-collin-
earity the parameter estimates and hypotheses
test are affected more by linear “links” between
explanatory variables than by the regression
model itself. The classical ¢-test of significance is
highly inflated owing to large variances of regres-
sion coefficient estimates and the results of re-
gression are often unacceptable.

A number of alternatives to the least-squares
approach have been recommended to avoid
multi-collinearity. The resulting estimators are
biased, but may be preferable to classical least
squares. The most popular of these are the
ridge-type estimators proposed by Hoerl and
Kennard [2] and several others [3].

In this paper the estimators based on general-
ized principal components are adopted. For suit-
able bias selection the criterion based on the
mean quadratic error of prediction (MEP) is used.
The proposed procedure of biased estimator con-
struction is a part of the package CHEMSTAT
for data analysis in chemometric practice.
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SUMMARY OF LINEAR REGRESSION

The standard linear model with # observations
of m explanatory variables is assumed. For an
additive model of measurement errors the linear
regression model has the form

y=Xa+te (D)

In Eqn. 1 the n X m matrix X contains the values
of m explanatory (predictor) variables at each of
n observations, a is the m X 1 vector of regres-
sion parameters and € is an n X1 vector of
experimental errors; y is n X 1 vector of observed
values of the dependent variable.

The classical least-squares method is based on
the following assumptions: regression parameters
are not restricted; the regression model is linear
in parameters and the additive model of meas-
urements is valid (see Eqn. 1); design matrix X
has a rank equal to »; and errors ¢, are indepen-
dent identically distributed random variables with
zero mean E(e;) = 0 and diagonal covariance ma-
trix D(e) = o ’E, where o2 < . For testing pur-
poses it is assumed that errors €; have a normal
distribution N(0, o?). When these four assump-
tions are valid the parameter estimates b found
by minimization of the least-squares criterion

S(b)y=lly—Xxpll (2)
are best linear unbiased estimators (BLUE). In
Eqn. 2, || || is the symbol for Euclidean norm.

The conventional least-squares estimator b has
the form

b=(X"X) 'XxTy (3)
The corresponding covariance is
D(b) =o*(X"x) " (4)

From a geometrical point of view columns of
design matrix X define an m-dimensional hyper-
plane L in n-dimensional Euclidean space E”.
The vector XB and prediction vector

yp=Xb Q)

lie in plane L. The prediction vector is an orthog-
onal projection of vector y to the plane L.

ye=Hy =X(XTX) 'XTy (6)
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where H is the projection matrix. The residual
vector

€=y —JYp (7)

is orthogonal to plane L and has the minimum
length. Vector e is related to projection matrix
H:

e=(E—H)y (8)

E denotes a unit matrix of order n. The variance
matrix corresponding to prediction vector y, has
the form

D(yp)=0’H 9
and the variance matrix for residuals is
D(e)=0*(E-H) (10)

Statistical analysis related to least squares is
based on normality of estimates b.

MULTI-COLLINEARITY

Multi-collinearity does not mean a violation of
assumptions about least-squares methods. It con-
cerns an ill-conditioning of the matrix XTX which
has two consequences: the determinant of matrix
XTX is near zero and some eigenvalues of matrix
XTX are near zero. This problem arises in cases
when one of columns x; of matrix X is a near
linear combination of several other columns.

Multi-collinearity causes many difficulties in
the inverse of matrix (XTX), i.e., numerical diffi-
culties. In addition to numerical difficulties,
multi-collinearity also leads to the following sta-
tistical difficulties: non-stability of estimates b
caused by the great sensitivity of parameter esti-
mates to small changes in the data vector y, the
estimates b often having unacceptable signs and
magnitudes, which effects their chemometric in-
terpretation; large variances D(bj) of individual
estimates cause the t-test to indicate statistical
insignificance of parameters B;; and a strong cor-
relation between elements of estimates » means
that they cannot be interpreted separately.

On the other hand, in the case of multi-collin-
earity the determination coefficient (square of
multiple correlation coefficient) is often high and
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a regression model may fit the data fairly well.
For the case of data smoothing by regression
models, multi-collinearity does not cause any dif-
ficulties except numerical ones. Multi-collinearity
exhibits serious problems especially in regression
model building (selection of explanatory vari-
ables, etc.).

Sources of multi-collinearity can be catego-
rized into following major groups: the over-esti-
mated regression mode; inappropriate location of
experimental points; and physical constraints in
model or in data.

Techniques suitable for the detection of
multi-collinearity and sources of multi-collinear-
ity have been described previously [1].

GENERALIZED PRINCIPAL COMPONENT

For convenience it is assumed that the columns
of matrix X are properly scaled so that XTX is
equal to correlation matrix R. As the matrix R is
symmetrical it may be expressed as a sum of
eigenvalues 7, <7, < ... <7, and corresponding

eigenvectors P, j=1,...,m:
B .
R= Y 7,PP] (11)
j=1

The inverse matrix R~! can be then expressed in
the form
m
R '=Y 'r]-_ll"ijT (12)
j=1
The normalized estimates b, can be calcu-
lated by substituting Eqn. 12 into Eqn. 3:

m
by= Y [T;lg.PjT]r (13)
j=z

The vector r is the scaled version of the vector
XTy containing paired correlation coefficients be-
tween dependent and exploratory variables.

The corresponding covariance matrix has the
form

D(by) =o% X7 'BBT (14)

j=z
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In the case of the least squares in Eqns. 13 and
14, the constant z is taken as z= 1. For the
principal component regression the z can be equal
tol,2,3,...

From both Eqns. 13 and 14 it follows that
when the eigenvalues 7; are small the estimates
by and their variances are high. When some of 7;
are equal to zero the by and D(by) are infinite.
One way to avoid these difficulties is the use of
generalized principal component when the small
eigenvalues 7; (or its parts) are neglected [4].

Let us denote

4 m
W=Z7'j andE=ZT]-
j=1 j=1
The criterion for leaving out the parts with too
small eigenvalues then has the form

abs(W/E) =P (15)

where P is a selected parameter (often equal to
1073). Equality 15 cannot be generally valid for
an integral z and given P. In this instance the
minimum value of z for which the inequality

abs(W/E) > P

is valid is selected. The summation in Eqns. 13
and 14 is then made from z —1 and the term
corresponding to eigenvalue 7,_; is “weighted”
by the factor

U = [abs(W) — abs( E) P] /7, (16)

By using this procedure, the length of esti-
mates || by || with their variances may be continu-
ously decreased in dependence on increasing pa-
rameter P. Parameter P then corresponds to bias
caused by neglecting some terms in Eqns. 13 and
14.

A suitable magnitude of P can be determined
from the requirement for a minimum of the mean
quadratic error of prediction.

SELECTION OF SUITABLE P

One of the main properties of regression mod-
els is the good predictive ability. This predictive
ability can be adopted also for selection of, in
some sense optimum, parameter P.
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TABLE 1

Experimental data
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x 25 35 45 55 65
y 150 160 170 190 210

75 85 95 105 115
230 270 310 370 450

The predictive ability in a linear regression
model can be characterized by the mean quadratic
error of prediction (MEP), defined generally by

n
MEP = ¥ [y, —x](i)]"/n (17)
i=1
where b, is the estimate of regression model
parameters when all points except the ith (ith
row x; of matrix X) are used. The statistics MEP
uses a prediction yPl-=x,-Tb(i) which was con-
structed without information about the ith point.
The estimate b, can be calculated from the
least-squares estimate b:

biy=b— [(XTX)_lxiei]/[l_Hii] (18)

where Hj; is the diagonal element of the projec-
tion matrix H.

After substitution from Eqn. 18 into Eqn. 17,
the following simple relation results:

n
MEP=rn""} e?/(1-H,)’ (19)
i=1
For a selected P it is possible to calculate values
of H; from Eqn. 6 and then the MEP criterion
from Eqn. 19.
A suitable P corresponds to some minimum
value of MEP. For the selection of this value of P
a very simple strategy can be used: for P = 10~

TABLE 2

Results for principal component regression

the MEP, is calculated; for z =2, 3,... the MEP,
are calculated until MEP, < MEP,_,; and in the
interval W,_,/E <P < W,/E the optimum P is
selected by the interval halving method.

This procedure is very simple and requires
only one decomposition of matrix R. The calcu-
lated P do not correspond generally to a global
minimum but parameter estimates and the statis-
tical characteristics are greatly improved.

In the program package CHEMSTAT (Tri-
loByte) the generalized principal component is
used and the MEP criterion is computed. Then
the trial-and-error procedure can be adopted for
selecting a suitable P.

EXAMPLE

Many problems in chemometrics concern an
approximation of instrumental data of convex (or
concave) increasing (or decreasing) values by a
polynomial so that this polynomial fulfils the con-
dition of remaining the shape of the data. For
solution of these types of problems the general-
ized principal component with optimum P mini-
mizing the MEP can be used.

In connection with modelling a mechanical
problem the intercept term was important. The

z T, P MEP b, s

1 9.30x 10710 1.5x 10710 380.20 195.5 355.9
2 453%x1077 7.6x1078 15.60 1523 81.2
3 7.38x 1073 12X 1073 9.12 138.7 27.6
4 5.65x 1073 95%x 104 8.85 128.3 8.7
5 235x 1071 40x1072 7.63 131.2 3.8
6 5.76 1.0 10.29 136.1 2.4
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TABLE 3

Regression results for least-squares (LS) and generalized priﬁcipal component (GPC) regression

Method P MEP D? b, Sq

LS 107% 380.30 0.99960 195.5 355.9
GPC 0.28 6.436 0.99953 132.4 3.48
a Square of multiple correlation coefficient.

data are strictly convex (see Table 1) and the Conclusion

regression model was specified as a polynomial of
the sixth degree (based on some formal and theo-
retical assumptions) [5]:

6
E(y)= L bx'+b;

j=1
The parameter b is equal to the intercept. Table
2 gives results for the principal component re-
gression.

Table 3 gives estimates b, standard deviations
s, and determination coefficient D found by the
classical least-squares procedure (P =107"") and
generalized principal components P=0.28 for
which the MEP criterion was the smallest.

From Tables 1 and 3 it is obvious that the
intercepts from LS do not correspond to the
experimental data. The estimate b, is higher than
the values y,, ¥,, ¥3 and g, which indicates that
the proposed model has some minimum between
the origin and point (x;, y1). The corresponding
standard deviation s, is very high so that the
estimate b, is very imprecise. The parameter b,
calculated by generalized principal components is
acceptable and precise.

The method of generalized principal compo-
nents in combination with the MEP criterion is
very attractive for constructing biased models. It
can be also used for achieving such estimates
which keep the model course corresponding to
the data trend especially in polynomial-type mod-
els. This method is implemented in the software
package CHEMSTAT (TriloByte) [6].
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