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PYROMAGNETIC DOMAIN WALLS 
CONNECTING ANTIFERROMAGNETIC 

DOMAINS 
NON-FERROELASTIC MAGNETOELECTRIC 
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(Received inJinal form I5 May 1997) 

We describe a group-theoretical procedure that enables one to find necessary conditions for 
the appearance of spontaneous magnetization in domain walls. We illustrate the derivation 
of wall symmetries on example of and present a brief summary of a systematic 
analysis of domain walls in antiferromagnetic non-ferroelastic and magnetoelectric phases 
which shows that in more than 50% of possible domain walls a spontaneous magnetization 
may appear. 

Keywords: Non-ferroelastic domain structures; magnetoelectric domain structures; antiferro- 
magnetic domain structures; structural domain walls; magnetic domain walls; symmetry 
analysis of domain structures 

1. INTRODUCTION 

It is well known that a non-homogeneity can induce effects that are 
forbidden in a homogeneous systems. Thus, e.g. a non-homogeneous 
temperature or non-homogeneous deformation give rise to an electric 
polarization in solid or liquid crystals. The very existence of such effects 
follows from a simple consideration: a non-homogeneity usually decreases 
the symmetry and thus allows the existence of some properties that are 
forbidden in the homogeneous system by its higher symmetry. 

Domain walls represent a special kind of a non-homogeneity. The 
lowering of the translation symmetry to two dimensions confines the 
appearance of new effects to a certain layer the symmetry of which is 
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described by so called laver (or net) groups. These groups further exclude 
some symmetry elements that may exist in domain bulks, e.g. rotation and 
inversion axes that are not perpendicular or parallel to the wall (Further 
information on layer groups can be found, e.g. in Ref. [ I ] .  On the other 
hand, a planar domain wall (and corresponding three-dimensional twin as 
well) may be invariant under operations that interexchange domains on two 
sides of the wall. Since these operations cannot exist in the bulk of domains 
we encounter an enhancement of symmetry. Thus the symmetry difference 
between the domain bulks (domain states) and the wall is, in general, not a 
simple symmetry lowering and can thus induce not only an appearance of 
new effects in the domain wall that do not exist in the domain states of 
adhearing domains but also a disappearance of some properties existing in 
domain states. 

A special interest attracts situations where domain walls acquire 
properties that do not exist in domain bulks. Thus Baryakhatar et al. [21 

have studied theoretically the appearance of electric polarization in 
domain walls in magnetically ordered crystals. In this contribution we 
examine a complementary question of possible appearance of sponta- 
neously magnetized (pyromagnetic) domain walls joining antiferromag- 
netic domains with zero average magnetization. Since in this problem the 
interaction between the spin system and the crystal lattice plays a key role 
we shall confine ourselves to magnetoelectric crystals where this interaction 
is expected to be particularly strong. We shall further restrict our attention 
to non-ferroelastic domain walls which bridge domains with the same 
spontaneous deformation. 

For examining tensor properties, e.g. magnetization, polarization, etc., of 
domains and domain walls a continuum description of the medium is 
relevant. In this approach the symmetry properties are described by point 
groups. In what follows, continuum description and point groups are used. 
Similarly as the appearance of a non-zero magnetizaion M # 0 in domain 
states is conditioned by certain symmetries described by magnetic point 
groups,'31 a spontaneous magnetization can appear only in those domain 
walls the layer group symmetries of which are compatible with M # 0. In the 
next section we give an account of all possible layer symmetries of 
pyromagnetic (spontaneously magnetized) layers. Then we describe how the 
layer symmetry of a domain wall can be determined and demonstrate this 
procedure on an example of Cr203. Finally, we summarize results of a 
systematic search for pyromagnetic walls in all possible crystallographically 
different domain walls in antiferromagnetic non-ferroelastic magneto- 
electric phases. 
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2. POINT-GROUP SYMMETRY 
OF PYROMAGNETIC LAYERS 

Point group symmetry of domain walls in materials with magnetic structure 
is described by crystallographic magnetic layer groups. These groups are 
expressing possible symmetries of magnetic layers. Magnetic, layer groups 
comprise the 3 1 classical (without time inversion) point groups of two-sided 
plane ‘41 and the 63 non-trivial magnetic layer groups that can be derived 
from the halving subgroups of the 3 1 groups of two-sided plane. From these 
94 magnetic layer groups only 42 are pyromagnetic allowing a non-zero 
magnetization which can be in 20 cases accompanied by a simultaneous 
appearence of a non-zero spontaneous polarization. 

With a symmetry operation of a magnetic layer group one can associate 
two attributes: 

0) 

(ii) 

The first one, common to all layer groups, indicates whether the operation 
keeps unchanged the normal n to the plane or inverts it into-n. We shall 
underline those operations that invert n and, therefore, also the sides of the 
layer. If the symbol of the layer group contains underlined operation(s) 
then the layer has a non-trivial symmetry of a two-sided plane whereas in 
the opposite case the symmetry properties of the layer are described by an 
one-sided plane group. The underlining further specifies the orientation of 
the operataions 2 and m with respect to the layer (e.g., 2 and m are 
perpendicular to the layer, whereas 2 and 3 are parallel to the layer). 
The second attribute, specific to magnetic layer groups, indicates 
whether the operation includes time-inversion or not. We shall use a 
prime to indicate the presence of the time-inversion. If the symbol of a 
magnetic layer group contains primed operation(s) then the layer has a 
non-trivial magnetic symmetry. 

With exception of trivial triclinic symmetry 1 or 1, the magnetic layer 
group L predetermines (in most cases completely, in a few layer groups only 
partially) the orientation of the magnetization M and polarization P with 
respect to the normal n of the layer. We arrange, therefore, the list of 
pyromagnetic layer groups L according to these configurations: 

1. Pyromagnetic (M # 0) non-pyroelectric (P = 0) layers 

I .  1 .  Magnetization M is perpendicular to the layer, i.e. M 1 )  n. 
for the layer groups 

L = 2/13 2’2‘2 (me),m’m’rrz,4(me),4~’2’(me),42’m’(me),4/1?2, 
4/mm’m’, 32’(me), 5, jm‘, 6,613, 62’2’(me),5m12’, 6/3m!m‘ 
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1.2. Magnetization M is parallel to the layer, i.e. M i n, and its direction is 
specified by symmetry for the layer groups 

1.3. Magnetization M is parallel to the layer i.e. M I n and its direction is 
not specified by symmetry for the layer group 

1.4. Magnetization M is out of the layer and its direction is confined to a 
plane perpendicular to the layer for the layer group 

L = 2’/m’(2/ I Mllm’). 

1.5. Direction of M is not restricted by symmetry for the non-trivial tri- 
clinic layer group 

The symbol (me) indicates that the group L is magnetoelectric, 
nevertheless, the form of the magnetoelectric tensor is such that the 
polarization P equals zero. 

2. Pyromagnetic (M # 0) and pyroelectric (P  # 0) layers 

2.1. Magnetization M is perpendicular to the layer, Mlln, and 
2.1.1. polarization P is also perpendicular to the layer, Plln for the 

layer symmetries 

L = 2, m’m’2,4, 4m’m1, 3,3m‘, 6,6rn’rn’ 

(in all these layer groups both M and P are parallel to the unique 
polar axis), 

2.1.2. polarization P is parallel to the layer, P l n ,  and its direction is 
determined by symmetry for the layer group 

L = 2/mm’(P))2’), 

2.1.3. polarization P is parallel to the layer, P l n ,  but its direction is not 
determined by symmetry for the layer group 
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2.2. Magnetization M is parallel to the layer , M l n ,  its direction is specified 

2.2.1. polarization P is perpendicular to the layer, PJln, for the layer 

by symmetry, and 

group 

L = m’m2’(M I m, P(12’), 

2.2.2. polarization P is parallel to the layer and parallel to M, P ) \ M l n ,  
and the direction of P is specified by symmetry for the layer groups 

(in both layer groups MIJPII 2), 
2.2.3. polarization P is parallel to the layer, P l n ,  perpendicular to M, 

P I M  and its direction is determined by symmetry for the layer 
group 

L = 2’mm_’(M I m, P@), 

2.2.4. polarization P is confined to a plane perpendicular to the layer for 
the layer group 

2.3. Magnetization M is parallel to the layer, M I n its direction is not 
specified by symmetry, and 

2.3.1. polarization is perpendicular to the layer, Plln, for the layer group 

L = 2’(P112‘), 

2.3.2. polarization P is parallel to the layer, P I n but its direction is not 
determined by symmetry for the layer group 

2.4. Magnetization M is out of the layer but its direction is confined to a plane 
perpendicular to the layer, and 

2.4.1. polarization P is parallel to the layer, P l n ,  and perpendicular to 
M for the layer group 
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2.4.2. polarization P is in the same plane as M but there is no specific 
relation between directions of P and M for the layer group 

L = m’(M//m’, Pllm’). 

2.5. Direction of neither M nor P is determined by symmetry 
for the layer group of trivial triclinic symmetry 

L =  I .  

3. WALL SYMMETRY AND SECTIONAL LAYER GROUPS 

Let us consider a planar domain wall with orientation (hko  between two 
domains with domain states S1 and S2 (domain states are bulk structures of 
domains with no specification of the domain boundaries). We shall use for 
such a wall the symbol IS1 (hkl)S2/.  The orientation can be also expressed by 
the normal n to the plane, IS1 (hkl)SzI = ISl(n)S2(. If the orientation of the 
wall is not essential, or if it is known from the context, we shall use a short 
symbol ISlJS2/. 

Symmetry of the wall JSl(n)Sz/ is described by a layer group T12(n). 
An operation u of this group must fulfill two necessary conditons: 

(i) Being an operation of a layer group, u must either keep n unchanged or 
invert it into --n. Operations of the latter type are underline operations 
(according to the convention introduced in the preceding Part 2). 

(ii) An operation u~ TI2(n) either keeps both S1 and S2 unchanged or 
exchanges them, i.e. us1 = S,. We shall denote such state-exchanging 
operotions by an asterisk *. 

These two conditions can be fulfilled in four different ways each of which 
specifies how the operation transforms the normal n and the domain states 
S1S2: 

a) An operation f i2  that neither changes the normal n nor the states SI and 
S2 obviously keeps the wall ISllSzl unchanged. Such operations are 
called trivial symmetry operations of a domain wall. 

b) An operation sI2 that inverts the normal n exchanges half-spaces on the 
left and right sides of the wall. Since these half-spaces are occupied by 
domain states SI and S2 (say e.g., that S1 is on the left side and S2 on the 
right side of the wall) this exchange of half-spaces is accompanied by an 
exchange of domain states on both sides of the wall. If the opeartion zI2  
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changes directly (i.e. not via half-spaces exchange) neither S1 nor S2 then 
this operation results in a domain wall which has domain state S2 on the 
left side and the domain state S1 on the right side of the wall. We call 
such a wall IS~ISI I the reversed domain waif with respect to the initial wall 

c) An operation rT2 that exchanges domain states SI and S2 but does not 
invert the normal n (i.e. keeps the half-spaces on both sides of the wall in 
their positions) transforms the initial domain wall also into a reversed 
wall IS21SI I .  

d) An operation j y2  that exchanges half spaces (inverts n) and independenfly 
exchanges domain states S,, S2, transforms the wall into itself. This 
operation lY2 is, therefore, a symmetry operation of the wall. Such 
operations are called non-trivial symmetry operations of a domain wall. 

Table I summarizes the action of these four types of operations on the 
normal n, on both domain states S1, S2 and on the domain wall lSllS21. To 
make the effect of the operation more comprehensible, we add in the wall 
symbol to the lower end of the central vertical line a small horizontal “foot” 
which can be associated with the minus side of the normal n. The change in 
the direction of this small horizontal line indicates the exchange of the half- 
spaces. 

The layer group TI2(hkl) that describes the symmetry of the wall 
IS1(hkl)S21 consists of all trivial and non-trivial symmetry operations of that 
wall. We shortly recapitulate the procedure that enables one to find, for a 
given domain states S , ,  S2 and the orientation ( h k l ) ,  the group 
T12(hkl).[’ We restrict out considerations to non-ferroelastic domain 
walls that join domain states with equal deformation. Then the symmetry 
groups of both domain states S ,  and S2 are equal, FI  =F2.‘*] 

First, let us consider a trivial domain wall lSllSll with the same domain 
state S1 on both sides of the wall. Its symmetry consists of all operations of 
the group F,  that leave invariant a plane ( h k f )  transecting the domain state 
S1 with sytnmetry F 1 .  Such a layer group is called the sectional layer group of 
theplune (hkl)[4,91and will be denoted FI (hkl), or, shortly, PI. This sectional 
layer group contains all trivial symmetry operations f I 2  of the domain wall 
and the set of all these operations forms a one-sided layer group Fl which is 
a subgroup of the (generally two-sided) sectional layer group FI , FI L PI. If 
s12 is a side-reversing operation then the left coset sl2P;1 comprises all such 
side-reversing operations of Fl and 

IS1 ISsl. 
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Thus the trivial part Fl of the wall symmetry can be deduced from the 
sectional layer group Fl as its halving one-sided subgroup. 

If f f 2  is a side and state reversing operation then all operations of the set 
(left coset) $2$1 are side and state reversing operations as well. It can be 
shown that these are all non-trivial symmetry operations of the wall. 
Therefore, the symmetry group T12 of the wall equals 

To derive the side and state exchanging operations that appear in Eq. (2) 
it is useful to introduce the concept of a non-ordered domain pair {Sl, .S2} 

which is just a set consisting of two domain states S1, S2. The symmetry 
group J12 of this non-ordered non-ferroelastic domain pair equalsL8] 

where F,  is the symmetry of SI and S2, and jY2 exchanges SI and S2, 
jT2S1 = S2,jT2S2 = S1. Since for a non-ordered domain pair { S , ,  S2} = 

{S2,  S , } ,  the symmetry operations comprised in the left cosetjT,Fl are also 
symmetry operations of the domain pair { S , ,  S2} .  

It can be shown that the sectional layer group J12 of J12 along the plane 
(hkf) has the 

where the operations tf2,xI2 and rT2 are defined in Table I. Comparing 
Eq. (4) with Eq. (2) we see that the symmetry group T12  of the wall is a 
halving subgroup of the sectional layer group J l 2 .  Thus the task of finding 
the symmetry group TI2(hkl) of the wall lSl(hkf)S2/ consists in the 
determination of two sectional layer groups Fl(hkZ) and j12(hkl), and their 
halving subgroups $1 (hkl) and TI2(hkZ), resp. 

The last two left cosets in Eq. (4) assemble operations that transform the 
wall ISl(hkl)S21 into a reversed walllS2(hkl)Sl I with opposite order of 

TABLE I Action of  four types o f  operations u on a domain wall 

U un us, us2 UISIIS2I wall 

f i 2  n s1 s2 ISllS21 initial wall 
zl2 -n SI s2 IS21SII side-reversed wall 
1 7 2  n sz SI lSliS2l state-reversed wall 
2T2 -n S2 SI Islls2l initial wall 
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domain states. Accordingly, one can distinguish reversible walls for which 
j 1 2  > T12, and irreversible walls with 512 = T12. In the former case the wall 
IS1lSzl is symmetrically equivalent with the reversed wall IS21Sl 1, whereas in 
the latter case it is not. 

4. ANALYSIS OF DOMAIN WALLS IN ANTIFERROMAGNETIC 
MAGNETOELECTRIC PHASES 

As an illustrative example we shall first analyse the walls in Cr203 crystal 
with symmetries G =  3m.l' = 3'm'.l' and F= 3'm' of the high temperature 
paramagnetic and the low temperature antiferromagnetic phase, resp. Two 
domain states SI and S2 have the same symmetry F, = F2= F and the 
operation gf2 = 1' exchanges these domain states. The domain pair {S1, S2} 
has the symmetry 

J12 = F1 + gr2F1 = 3'm' + l'*{g'm'}. ( 5 )  

In Table I1 we present layer groups F I ,  the wall symmetry T12, j 1 2 ,  the 
spontaneous magnetization M( Wlz) and the spontaneous polarization 
P( Wi2) in the wall ISl(hkl)S21, and the spontaneous magnetization 
M( W21) and the spontaneous polarization P( W21) in the reversed wall 

From the Table I1 it follows that domain walls between two 
antiferromagnetic magnetoelectric domains in Cr203 can carry a non-zero 
spontaneous magnetization for any orientation of the wall. For any 
orientation the walls exhibit no magnetoelectric effect and carry no 
spontaneous polarization. All walls are reversible and the spontaneous 
magnetization in the initial and the reversed domain walls in antiparallel. 

Now, we present a short summary of a systematic study of domain walls 
in a broader class of materials. We have restricted our analysis to domain 

ISz(hkW1 I.  

TABLE I1 Layer group symmetries, spontaneous magnetization M and spontaneous 
polarization P of domain walls in Cr203 

(hkil) F 1 2  TI z J I  2 M(Wi3 M(W21) P(W12) VWzd 
(0001) 3m' j'm' 3m.l' Mlln -Ml/n P=O P=O 
(2110) 2 2/m* 2/rn.l' M/ln -Mlln P=O P=O 
(OhKO) m' 2/'/m' Z/m.1' MI' -MI) P=O P=O 
(hkil) 1 1 1 ' 1' M 2) _M2) P=O P=O 

')symmetry confines M to the plane rn ' perpendicular to the wall. 
2)direction of M is not restricted by symmetry. 
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walls that join two domain states with the same deformation (non- 
ferroelastic domain pairs) but with different magnetoelectric tensor 
components (in non-ferroelastic domain pairs components of the magneto- 
electric tensor differ only in sign or are equal). There exist 141 non- 
equivalent classes on non-ferroelastic magnetoelectric domain pairs."" 
From them we have chosen pairs with antiferromagnetic domain states, i.e. 
with zero average magnetization (M = 0). This condition requires that the 
group F,  of both domain states must belong to one of 58-19=39 
magnetetoelectric point groups. Six of these groups are pyroelectric, i.e. they 
allow the existence of a non-zero spontaneous polarization, P # 0. 

From each class of crystallographically equivalent domain pairs we have 
examined just one representative domain pair. For each such domain pair 
we have found the layer groups T,,(hkl) for all crystallographically non- 
equivalent orientations (hkl ) .  It has turned out that from the total of 141 
pairs only 83 domain pairs can generate walls that can carry, at least for 
some orientations (Izkl), a non-zero magnetic moment (M#O). For 41 
domain pairs the domain walls are for all possible orientations pyromag- 
netic, for 42 pairs are non-pyromagnetic only walls that are perpendicular to 
the axis of the order 3 ,  4 and 6. One exception of this rule appears in 
orhorhombic system where the non-pyromagnetic wall is perpendicular to 
one of the 2-fold axes. More detailed results and discussion will be published 
elsewhere. 

We can conclude with a brief summary: Our analysis has shown that more 
than 50% of domain walls in antiferromagnetic non-ferroelastic magneto- 
electric phases can carry spontaneous magnetization. We should add, 
however, that the symmetry analysis provides only necessary conditions for 
the existence of spontaneous magnetization and does not say anything 
about the magnitude of this effect. Deduced layer groups of domain walls 
represent the highest possible symmetries. A concrete topological structure 
of the wall may only decrease this symmetry and cannot, therefore, change 
our general conclusions. 
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