
Distributed application for cryptanalysis of
public–key cryptosystems

Master thesis

Study programme: N2612 – Electrical Engineering and Informatics
Study branch: 1802T007 – Information Technology

Author: Bc. David Salač
Supervisor: doc. RNDr. Miroslav Koucký, CSc.

Liberec 2017

Distribuovaná aplikace pro kryptoanalýzu
asymetrických kryptosystémů

Diplomová práce

Studijní program: N2612 – Elektrotechnika a informatika
Studijní obor: 1802T007 – Informační technologie

Autor práce: Bc. David Salač
Vedoucí práce: doc. RNDr. Miroslav Koucký, CSc.

Liberec 2017

Abstrakt

Práce zkoumá potenciál distribuované aplikace při kryptoanalýze
kryptosystémů s veřejným klíčem. V práci je uvedeno vysvětlení
vztahu mezi populárními kryptosystémy s veřejným klíčem, jako
je šifra RSA, Diffie–Hellmanova výměna klíčů a šifra ElGamal,
a řešení problému faktorizace celých čísel nebo diskrétního loga-
ritmu. Existují numerické metody na řešení těchto problémů, neje-
fektivnější z nich jsou popsány v této práci. V případě řešení prob-
lému diskrétního logaritmu, jsou zde popsány metody jako Shankův
baby–step giant–step algoritmus nebo metoda index calculus. Pro
účely řešení problému faktorizace celých čísel jsou zde popsány
metody jako Pollardova Rho metoda, Dixonova metoda náhodných
čtverců, kvadratické síto a obecné číselné síto. Téma práce bylo
řešeno vytvořením distribuované aplikace. Jedná se o kompozici
webové a desktopové aplikace. Webová aplikace představuje řídící
uzel distribuovaného systému. Pro uživatele je využitelná při správě
úloh v systému. Poskytuje také základní funkcionalitu pro dis-
tribuci úloh podřízeným uzlům. Podřízené uzly jsou reprezentovány
desktopovou aplikací. Jedná se o část, kde jsou implementovány
popsané numerické metody pro řešení problému faktorizace čísel či
diskrétního logaritmu. Nakonec je zde analýza použitelnosti dis-
tribuované aplikace pro reálné situace. Ta je složena z měření efek-
tivity metod a jejich potenciálu v distribuované aplikaci. Ukázalo
se, že distribuovaná aplikace představuje použitelný přístup pro
řešení těchto typů problémů. Nicméně se také prokázalo, že pokud
neudělá kryptograf žádnou chybu během implementace popsaných
systémů, je téměř nemožné být úspěšný při kryptoanalýze těchto
systémů. Práce analyzuje důležité téma související bezpečností
dnes používaných kryptosystémů s veřejným klíčem. Toto téma je
relevantní nejen pro vědecké účely, ale má také mnoho praktických
konsekvencí.

Klíčová slova:

Kryptoanalýza kryptosystémů s veřejným klíčem, Distribuovaná
aplikace, Problém faktorizace čísel, Problém diskrétního logaritmu,
Numerické metody

6

Abstract

The thesis studies the potential of distributed application in crypt-
analysis of public–key cryptosystems. There is an explanation of
the relation among a popular public–key cryptosystems, such as
RSA cypher, Diffie–Hellman key exchange and ElGamal cypher,
and solving of integer factorization or discrete logarithm problem.
There exists numerical methods for solving of these problems, the
most effective ones are described in this thesis. In the case of
solving discrete logarithm problems there are described method
such as Shank’s baby–step giant–step algorithm and Index calculus
method. For the purpose of solving integer factorization problem
there are described methods such as Pollard’s rho method, Dixon’s
random square method, Quadratic Sieve and General number field
sieve. The theme of the theses was solved by creating of distributed
application. It is the composition of the web application and the
desktop application. The web application represents master nod in
the distributed system. It is usable for managing of task in the sys-
tem for the users. It also provides basic functionality for distribut-
ing of the tasks to the slave nods. The slave nod is represented by
the desktop application. It is the part where there are implemented
described numerical methods for solving of integer factorization or
discrete logarithm problem. Finally there is an analysis of usability
of the distributed application for real situations. It consists of mea-
surements of efficiency of methods and its potentials in distributed
applications. It is shown that distributed application represents
usable approach for solving of this kind of problems. However it is
also shown that if cryptographers does not do any mistake during
implementation of described cryptosystems, it is almost impossi-
ble to be successful with cryptanalysis of such system. The thesis
analyzes important issue related with security of public–key cryp-
tosystems of nowadays. This issue is relevant not only for scientific
purposes but has also many practical consequences.

Key words:

Cryptoanalysis of public–key cryptosystems, Distributed applica-
tion, Integer factorization problem, Discrete logarithm problem,
Numerical methods

7

Acknowledgements

I would like to express my gratitude to my supervisor doc. Miroslav
Koucký for the useful comments, remarks and engagement through
the learning process of this master thesis.

8

Contents

List of abbreviations . 11

Introduction 12

1 Public–key cryptography 14
1.1 RSA cryptosystem . 14
1.2 Discrete logarithm . 15
1.3 Integer factorization . 15
1.4 Diffie–Hellman key exchange . 15
1.5 ElGamal encryption . 16
1.6 Summary . 16

2 Integer factorization problem 17
2.1 Factoring by trial division . 17
2.2 Pollard’s rho . 18

2.2.1 Realization in distributed application 18
2.3 Legender’s congruence . 18

2.3.1 Realization in distributed application 19
2.4 Dixon’s random squares method . 19

2.4.1 Realization in distributed application 21
2.5 Quadratic Sieve . 21

2.5.1 Tonelli–Shanks algorithm . 23
2.5.2 Realization in distributed application 23

2.6 General number field sieve . 24
2.6.1 Realization in distributed application 26

2.7 Summary . 26

3 Discrete logarithm problem 28
3.1 Brute force algorithm . 28
3.2 Baby-step giant-step algorithm . 29

3.2.1 Realization in distributed application 30
3.3 Index calculus . 30
3.4 Summary . 31

4 Realization of distributed application 32
4.1 Web server . 32

4.1.1 Realization of web application 33

9

4.1.2 Summary . 37
4.2 Workstations . 37

4.2.1 Receiving tasks and transmitting results 38
4.2.2 Processing of received tasks 38
4.2.3 Methods for integer factorization 40
4.2.4 Methods for solving of discrete logarithm 45
4.2.5 Summary . 50

5 Using of application in real situation 51
5.1 Integer factorization problem . 52

5.1.1 Real situations . 53
5.2 Discrete logarithm problem . 55

5.2.1 Real situations . 56
5.3 Summary . 58

Conclusion 59

Bibliography 62

List of all appendixes 64

10

List of abbreviations
CPU Central Processing Unit
DL Discrete Logarithm
GCD Greatest Common Civisor
GUI Graphical User Interface
GNFS General Number Field Sieve
MPQS Multiple Polynomial Quadratic Sieve
PDO PHP Data Objects
QS Quadratic Sieve
RDBMS Relational database management system
SSL Secure Sockets Layer

11

Introduction

Public–key cryptography and its security is crucial for large scales of nowadays
technologies, it is used almost everywhere. Not only banks during transactions but
also each user connected to the internet network sooner or latter uses some kind
of public–key cryptosystem. Not only because of this it is important to know how
secure such cryptosystems are. This question is also the subject of many research
studies of nowadays. This is also the motivation for writing of this thesis which
tends to analyze potential of distributed system in this kind of problem.

In the beginning of thesis there is a description of relation among public–key
cryptosystems and solving of discrete logarithm or integer factorization problem.
There are only most popular cryptosystems described in this part, which include
RSA cypher, Diffie–Hellman key exchange algorithm and ElGamal cypher. The
security RSA cypher is related with solving of integer factorization problem, which
could be described as finding prime factors 𝑝 and 𝑞 of number 𝑛 such that 𝑛 = 𝑝 ⋅ 𝑞.
The rest of cryptosystems are based on solving of discrete logarithm problem, which
could be described as finding integer 𝑥 of congruence 𝑔𝑥 ≡ 𝑎 (mod 𝑝) where 𝑔, 𝑎
and 𝑝 are known integers.

Solving of these kinds of problems is enormously time consuming process. By
using of brute force method it is almost impossible to be successful in finding solution
of relatively trivial task in some rational time – means for example less than one
year. There exists some algorithms how to solve these kinds of problems that are
much more effective than brute force – these are described in the following chapters.
There is also the theoretical conception of its realization in distributed application.
This part of theses is the research one. This is theoretical base of the following work
and there is also a summary of relevant discoveries of past years. These chapters
represents theoretical part of thesis, other chapters refer to the practical part.

The practical part of thesis consists chiefly of realization of distributed appli-
cation for cryptanalysis of public–key cryptosystems and at last measuring of its
efficiency and approximating of the time that is necessary for solving of real situ-
ations. The conception of distributed system is that there is one master nod (web
application) and many nods for solving of inserted tasks managed by master nod. It
means that the application consists of two parts, the first one is a web application
and the other one is desktop application. The web application provides interface
for users to standard operations with tasks, such as its inserting, modifying and
removing. The task represents cryptographic problem that should be solved – this
is represented by finding of encrypted message or shared key. The purpose of the
desktop application is finding solution of task by using of implemented cryptanalytic

12

methods and sending found results back to the server where they are accessible via
web application.

The last chapter tends to analyze a potential of distributed application in real
situations. Primary aim of this chapter is the approximation of time that would be
necessary to solve real cryptographic tasks. This is achieved by measuring of the
set of values and using of regression analysis. The most important relation that is
measured and analyzed is between the size of key and time that is necessary for
cryptanalysis of this key. This relation is usable for computation of time which is
necessary for solving of real tasks. The standard key size of such tasks is well known
or could be easily found. There is also discussion about some progress in this area
of past years.

13

1 Public–key cryptography

There are introduced the most popular public–key ciphers and protocols of nowadays
in this chapter including RSA, Diffie–Hellman key exchange protocol and ElGamal.
The integer factorization and discrete logarithm problems are also introduced as
same as the relation among this issues.

Public–key cryptography is based on simple idea that there are two different
keys without any trivial relation (mean in mathematical sense). One of this keys 𝑒
is used for encrypting the message and the other one 𝑑 is used for decrypting the
message 𝑚.

 key service�

c = Ee (m)� m = Dd (c)�
Alice Bob

insecure channel

malicious�
Mallory

Figure 1.1: Standard encryption schema

1.1 RSA cryptosystem
Let 𝑝, 𝑞 ∈ ℙ (where ℙ denotes to set of all prime numbers) be large prime numbers
(usually about 1000 bits lengths), 𝑛 = 𝑝 ⋅ 𝑞, 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1) is Euler totient
function of 𝑛, and 𝑒 ∈ ℕ, 2 ≤ 𝑒 < 𝜑(𝑛) ∧ GCD(𝑒, 𝜑(𝑛)) = 1, most often 𝑒 = 65537
[1, p. 58]. Then compute 𝑑 as the result of congruence 𝑑𝑒 ≡ 1 (mod 𝜑(𝑛)).

Plain–text 𝑚 (𝑚 ∈ ℕ, 𝑚 < 𝑛) is encrypted using public key set (𝑒, 𝑛):

𝑐 = 𝑚𝑒 mod 𝑛 (1.1)

and ciphertext 𝑐 is decrypted using private key set (𝑑, 𝑛):

𝑚 = 𝑐𝑑 mod 𝑛 (1.2)

14

1.2 Discrete logarithm
Let 𝑔 is a primitive root mod 𝑛, 𝑔 is primitive root mod 𝑛 if and only if:

𝑔 ∈ [0, 𝑛) ∩ ℤ ∧ GCD(𝑔, 𝑛) = 1 ∧ ∀𝑝 ∈ ℙ, 𝑝 ∣ 𝜑(𝑛) ⇒ 𝑔 𝜑(𝑛)
𝑝 ≢ 1 (mod 𝑛)

If gcd(𝑎, 𝑛) = 1, then the smallest positive integer 𝑘 such that 𝑎 ≡ 𝑔𝑘 (mod 𝑛)
is called index of 𝑎 to the base 𝑔 modulo 𝑛 and is denoted by ind𝑔,𝑛 𝑎 or simply by
ind𝑔 𝑎 [2, p. 137].

The function ind𝑔 𝑎 is called discrete logarithm (or just index) and is sometimes
denoted by log𝑔 𝑎.

In the case of RSA 𝑛, 𝑒 are public keys and 𝑐 is ciphertext, then:
𝑑 = ind𝑐 𝑚

if 𝑚 is chosen it is possible to get 𝑑:
𝑑 = ind(𝑚𝑒 mod 𝑛) 𝑚 (1.3)

It is obvious that it would be easy to break RSA if it exists effective algorithm
to compute discrete logarithm but no such algorithm has been found yet [2, p. 137].

1.3 Integer factorization
Suppose following task, for given integer 𝑛 ∈ ℕ find all 𝑝𝑖, 𝛼𝑖 where 𝑝𝑖 ∈ ℙ, 𝛼𝑖 ∈
ℕ, 𝑝𝑖 < 𝑝𝑖+1, 𝑖 = 1, 2, ..., 𝑁 where [2, p. 191]:

𝑛 =
𝑁

∏
𝑖=1

𝑝𝛼𝑖
𝑖

It is also evident that if it exists simple way for finding this factorization it would
be easy to break RSA cipher because if someone is able to find 𝑝, 𝑞 can easily find
private key 𝑑 by solving relation 𝑑𝑒 ≡ 1 (mod 𝜑(𝑛)) [1, p. 58].

1.4 Diffie–Hellman key exchange
Diffie–Hellman is protocol for exchanging key value that is later used in symmetric–
key algorithm. Let 𝑝 ∈ ℙ is a large prime and 𝑔 is a primitive root mod 𝑝. Numbers
𝑝 and 𝑔 are publicly known. To establish secret share key Alice and Bob execute
following protocol [1, p. 111]:

1. Alice choose randomly 𝑎 ∈ (1, 𝑝 − 2] ∩ ℕ, then sets 𝑐 ∶= 𝑔𝑎 mod 𝑝 and sends
𝑐 to Bob.

2. Bob choose randomly 𝑏 ∈ (1, 𝑝 − 2] ∩ ℕ then sets 𝑑 ∶= 𝑔𝑏 and sends 𝑑 to Alice.
3. Alice compute shared key 𝑘 = 𝑑𝑎 mod 𝑝 = (𝑔𝑏)𝑎 mod 𝑝.
4. Bob compute shared key 𝑘 = 𝑐𝑏 mod 𝑝 = (𝑔𝑎)𝑏 mod 𝑝.
Security level of Diffie–Hellman key exchange algorithm is based on difficulty

of solving discrete logarithm problem. Private numbers 𝑎 and 𝑏 can be found as
𝑎 = ind𝑔,𝑝 𝑐 and 𝑏 = ind𝑔,𝑝 𝑑 .

15

1.5 ElGamal encryption
ElGamal is based on discrete logarithm problem. ElGamal cryptosystem has no
problem with integer factorization unlike RSA has.

The recipient of message Bob proceeds follows [1, p. 77]:

1. Bob chooses large prime 𝑝 ∈ ℙ such that 𝑝 − 1 has a big prime factor and
primitive root 𝑔 mod 𝑝.

2. Bob randomly chooses an integer 𝑥 ∈ (1, 𝑝 −2]∩ℤ. The triple (𝑝,𝑔,𝑥) is Bob’s
secret key.

3. Bob compute 𝑦 ≡ 𝑔𝑥 (mod 𝑝). Bob’s public key is triple (𝑝, 𝑔, 𝑦). Only 𝑥 is
kept in secret. The 𝑦 value is sometimes denoted to be ℎ.

Generation of 𝑝 such that 𝑝 − 1 has large prime factor is done by algorithm:
𝑞 ∈ ℙ is large prime number and Bob is looking for primes of form 2𝑘𝑞 +1 [1, p. 77].

Alice encrypts message to Bob by using public key triple (𝑝, 𝑔, 𝑦) using follows
[1, p. 78]:

1. Alice has message 𝑚 ∈ ℤ𝑝 to Bob.
2. Alice chooses an integer 𝑘 ∈ (1, 𝑝 − 2] ∩ ℕ at random.
3. Alice computes (𝑐1, 𝑐2) ≡ (𝑔𝑘, 𝑦𝑘𝑚) (mod 𝑝) and send vector (𝑐1, 𝑐2) to Bob

(vector 𝑐 represents encrypted message).

Bob decrypts incoming message with private key triple (𝑝,𝑔,𝑥) [1, p. 78]. Since
of 𝑦𝑘 ≡𝑝 (𝑔𝑥)𝑘 ≡𝑝 (𝑔𝑘)𝑥 ≡𝑝 𝑐𝑥

1 . To obtain plaintext 𝑚:

𝑚 ≡𝑝 (𝑐𝑥
1)−1𝑐2 ≡𝑝 (𝑦𝑘)−1𝑦𝑘𝑚 ≡𝑝 𝑚

Relation of discrete logarithm problem and ElGamal is evident:

𝑥 = ind𝑔,𝑝 𝑦 (1.4)

If someone obtain private key 𝑥, decryption of messages is simple task.

1.6 Summary
There are introduced only the most popular public–key cryptosystems in this chap-
ter. Various extensions of these systems exist (for example elliptic curve cryptogra-
phy and so on).

It is evident that the security of public–key cryptosystems stays on the pillar
of difficulty of solving discrete logarithm problem or integer factorization problem
(especially RSA). It is recently common for every popular public–key cryptosystem
of nowadays.

There are of course a lot of rules to generate parameters of introduced crypto-
systems. If some developer ignores them, it could be easy to break concrete system
without using complex techniques for solving discrete logarithm (or integer factor-
ization) problem and this is also the most popular way for attacking these systems.

16

2 Integer factorization problem

Various methods for factoring integers exists. But apart from special cases none of
them are effective enough to be expressed in polynomial level of complexity. Most
effective modern integer factorization methods discussed below are Pollard’s rho
algorithm, Quadratic Sieve (QS) and currently fastest method (General / Special)
Number Field Sieve (GNFS).

Figure 2.1: Trial division flowchart

2.1 Factoring by trial division
Trial division algorithm is the most straightforward algorithm of all as it is shown
in figure 2.1. This algorithm has complexity 𝒪 (2⌊ 𝑚

2 ⌋) where 𝑚 is a bit length of
input (size of input, not specific number to be factoring).

Factoring by trial division is useful only for smaller integers (roughly smaller
than 109) because of algorithm’s simplicity (it is simple task to do in almost every
programming language).

Algorithm of trial division has a few benefits (except of it’s simplicity) in practice
– it is not probabilistic algorithm (if it finds a solution it is surely nontrivial factor),
and it is relatively fast algorithm for integers of size less than 20 bits

17

2.2 Pollard’s rho
Pollard’s rho (or 𝜚) method was proposed by John M. Pollard in 1975 as very efficient
Monte Carlo method [1, p. 198].

Method uses an iteration of the form:
𝑥0 = random(0, 𝑛 − 1)

𝑥𝑖 ≡ 𝑓(𝑥𝑖−1) (mod 𝑛), 𝑖 = 1, 2, 3... (2.1)

where 𝑥0 is random starting value, 𝑛 is integer to be factored and 𝑓 ∈ ℤ[𝑥] is a
polynomial with integer coefficient, usually 𝑓(𝑥) = 𝑥2 ±𝑎 with 𝑎 ≠ 0, −2 [1, p. 198].

Led 𝑑 is a nontrivial divisor of 𝑛 (𝑑 is small compared to 𝑛), since there are 𝑑
congruent classes mod 𝑑 (relatively few). There will probably exist integers 𝑥𝑗 and
𝑥𝑖 in the same congruent classes mod 𝑑 but different classes mod 𝑛 [1, p. 198]:

𝑥𝑖 ≡ 𝑥𝑗 (mod 𝑑)
𝑥𝑖 ≢ 𝑥𝑗 (mod 𝑛) (2.2)

since 𝑑 ∣ (𝑥𝑖 − 𝑥𝑗) and 𝑛 ∤ (𝑥𝑖 − 𝑥𝑗), it follows that GCD(𝑥𝑖 − 𝑥𝑗, 𝑛) is a nontrivial
factor of 𝑛. The value of 𝑑 is typically unknown but can be most likely found by
counting GCD(𝑥𝑖 −𝑥𝑗, 𝑛) (where 𝑥𝑗 is earlier 𝑥𝑖 ⇒ 𝑗 < 𝑖) until a nontrivial divider
occurs.

Estimation of time complexity of Pollard’s rho method:

𝒪(2𝑚
4)

where 𝑚 represents size of input (in bits).

2.2.1 Realization in distributed application
It exists many improvements of Pollard’s rho algorithm, such as Brent–Pollard’s
𝜚 method or Pollard’s 𝑝 − 1 method. But none of them is relevant in practical
applications.

Pollard’s rho method is useful for factoring numbers with less than 30 bits.
Method is useless for larger numbers and so it is less significant in distributed ap-
plication. But method could be useful for solving some subtasks of more complex
methods such as searching of factor base in Dixon’s method which is a part of all
other effective methods.

2.3 Legender’s congruence
Every subsequent method for integer factorization is based on simple observation
based on Legendre’s congruence introduced by Adrien-Marie Legendre (1752 – 1833).
If we want to factorize number 𝑛 composed of factors 𝑝, 𝑞 ∈ ℙ there exists congru-
ences of form [3, p. 234]

𝑥2 ≡ 𝑦2 (mod 𝑛) ∧ 𝑥 ≢ 𝑦 (mod 𝑛) (2.3)

18

where 𝑥, 𝑦 ∈ [2, 𝑛) ∩ ℕ are some integers.
Congruence (2.3) could be written as:

𝑥2 − 𝑦2 ≡ (𝑥 − 𝑦)(𝑥 + 𝑦) ≡ 0 (mod 𝑛) ⇔ 𝑝𝑞 ∣ (𝑥 − 𝑦)(𝑥 + 𝑦)

which is the same as:

𝑝 ∣ (𝑥 − 𝑦)(𝑥 + 𝑦) ∧ 𝑞 ∣ (𝑥 − 𝑦)(𝑥 + 𝑦)

because of condition 𝑥 ≢ 𝑦 (mod 𝑛) there are only three options for each condition,
consider situation if condition 𝑝 ∣ (𝑥 − 𝑦)(𝑥 + 𝑦) is chosen:

1. 𝑝 ∣ (𝑥 − 𝑦) ∧ 𝑝 ∤ (𝑥 + 𝑦) ⇒ GCD(𝑥 − 𝑦, 𝑛) = 𝑝 ∧ GCD(𝑥 + 𝑦, 𝑛) = 𝑞
2. 𝑝 ∤ (𝑥 − 𝑦) ∧ 𝑝 ∣ (𝑥 + 𝑦) ⇒ GCD(𝑥 − 𝑦, 𝑛) = 𝑞 ∧ GCD(𝑥 + 𝑦, 𝑛) = 𝑝
3. 𝑝 ∣ (𝑥 − 𝑦) ∧ 𝑝 ∣ (𝑥 + 𝑦) where GCD(𝑥 ± 𝑦, 𝑛) equals 1 or 𝑛

two options leads to nontrivial divisor of 𝑛, only third does not. It implies there is
probability equals to 2

3 to obtain nontrivial divisor of 𝑛 for random 𝑥, 𝑦 matches to
congruence (2.3).

2.3.1 Realization in distributed application
Principle of factorization based on Legender’s is behind all modern method. Algo-
rithms try to find integers 𝑥 and 𝑦 matches (2.3) in different ways. This effort is
obvious in Dixon’s method and Quadratic Sieve described bellow.

Application for integer factorization needs only effective algorithm for finding
GCD(𝑥 ± 𝑦, 𝑛) values – Euclidean algorithm is usable for this purpose. The pro-
cessing of Euclidean algorithm is not a task for parallel computing.

2.4 Dixon’s random squares method
Dixon’s factorization method was proposed by John D. Dixon in 1981 [5]. It was
the first usable algorithm based on Legender’s congruence (2.3).

Algorithm consists of following steps ([5], modified):

1. Find Factor Base 𝐹 which consists of prime numbers that occurs most
frequently in prime factorization of (𝑥2 mod 𝑛) for random numbers 𝑥 ∈
(√𝑛, 𝑛) ∩ ℕ.

2. Find at least |𝐹 | + 1 (|𝐹 | is cardinality of set 𝐹) numbers 𝑥𝑖 ∈ (√𝑛, 𝑛) ∩ ℕ
such that (𝑥2

𝑖 mod 𝑛) is smooth over a set 𝐹 .

3. Construct matrix 𝐸 that represents an exponents of each prime number of
𝐹 in prime factorization of (𝑥2

𝑖 mod 𝑛) – find exponent 𝛼𝑘 such that (𝑥𝑖
mod 𝑛) = ∏𝑝∈𝐹 𝑝𝛼𝑘, 𝑘 ∈ [1, |𝐹 |] ∩ ℕ. In this situation it is obvious that null
space of matrix 𝐸 is not empty set (matrix has more columns than rows).

19

Aim of these algorithm is to find numbers that fits the conditions defined
in congruences (2.3). Only the parity of exponents is relevant to follow this
purpose. Major task of algorithm is computation of null space of matrix 𝐸
defined as 𝐸 = 𝐸 mod 2.

𝐸 =

𝑥1 𝑥2 ⋯ 𝑥|𝐹 | 𝑥|𝐹 |+1

⎡
⎢⎢⎢
⎣

⎤
⎥⎥⎥
⎦

7 2 ⋯ 0 1 𝑝1
0 3 ⋯ 0 2 𝑝2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 1 ⋯ 2 1 𝑝|𝐹 |−1
1 0 ⋯ 0 3 𝑝|𝐹 |

4. In case Dixon’s algorithm succeeds in finding null space of 𝐸 (over ℤ2 field)
Legendre’s congruence is constructed in following way):

𝑛 = (𝛽1, 𝛽2, ⋯ , 𝛽|𝐹 |+1)𝑇 ∈ nullspace (𝐸) , 𝛽𝑖 ∈ {0, 1}, 𝑖 ∈ [1, |𝐹 | + 1] ∩ ℕ

𝑥 =
|𝐹 |+1
∏
𝑖=1

𝑥𝛽𝑖
𝑖

𝑦 =
|𝐹 |
∏
𝑖=1

𝑝(∑|𝐹|+1
𝑗=1 𝛼𝑗⋅𝛽𝑗)⋅0.5

𝑖

In this situation we have congruence that fits (2.3).

5. Compute GCD(𝑥 ± 𝑦, 𝑛) and if it equals to nontrivial factor of 𝑛, algorithm
is over (probability of this situation equals to 2

3). Otherwise (GCD(𝑥 ± 𝑦, 𝑛)
equals 1 or 𝑛) go back to step one (probability equals to 1

3).

Time complexity (number of operations which will be required) of Dixon’s
method is estimated to [5]

𝒪 (exp (𝛼 ⋅ (ln 𝑛 ⋅ ln(ln 𝑛))1
2)) , 𝛼 ≥ 2

√
2

The idea of Dixon’s algorithm is introduced in step number 3 of algorithm. If
there is an aim to find the number with even exponents, it is possible to transform
this problem via matrix of exponents to standard linear algebra task. First two
steps of algorithm are called Data collection, third and fourth steps are both called
Matrix processing.

There exist many improvements in each step of Dixon’s algorithm such as
Quadratic Sieve method or General Number Field Sieve (both described bellow).

20

2.4.1 Realization in distributed application
The easiest way for realization of the first step of algorithm (finding of the factor
base) is to choose some random 𝑥 ∈ (√𝑛, 𝑛) ∩ ℕ and try to factorize result of
𝑦(𝑥) = (𝑥2 mod 𝑛). In practice the factorization itself could be done by brute force
method or Pollard’s rho method – if the 𝑦(𝑥) has larger prime factor (and selected
method is not effective) it should be just put away. Number of random selections
and ideal factor base size depends on many factors (especially on input size). In the
second step algorithm only computes exponents of each primes in Factor Base 𝐹 for
some random 𝑥 and at the same time checks if 𝑦(𝑥) is smooth over a set 𝐹 . Data
collection part of algorithm (step one and two) could easily become an object of
parallelization (hypothetical thread of algorithm just takes random 𝑥 and computes
it’s prime factorization with less complex algorithm and saves the result).

Data processing part of algorithm (consists of step three and four) takes much
less time to process than Data collecting part. Algorithm almost could not become
an object of parallelization. Naive method to obtain null space of matrix is Gaussian
elimination which is also less effective one – it could be useful just for demonstration
of algorithm logic. The complexity of Gaussian elimination is 𝒪(|𝐹 |3) [6]. There
are some optimization of this algorithm over finite field (for example [6]).

Matrix 𝐸 is significantly sparse (it means that almost all of its element equals
zero). Null space of matrix 𝐸 could be most effectively found by block Lanczos
algorithm which is not parallel or by partially parallel algorithm called block Wiede-
mann algorithm with time complexity 𝒪 (|𝐹 |(𝑤 + |𝐹 | ln(|𝐹 |) ln ln(|𝐹 |))) where 𝑤 is
approximately the number of operations required to multiply the matrix to a vector
[7, p. 8]. Both algorithms are useful for spare linear systems over finite field. But in
practice both of them are relatively difficult to implement.

2.5 Quadratic Sieve
Quadratic Sieve is the improvement of Dixon’s algorithm. Originally Quadratic
Sieve algorithm was proposed by Carl Pomerance in 1982 [2, p. 214]. Quadratic
Sieve is the fastest algorithm for factoring numbers up to 110 digit [7]. Before the
method will be introduced, few definitions are necessary.
Quadratic residue modulo p: Let 𝑎 is any integer and 𝑛 a natural number, and

suppose that GCD(𝑎, 𝑛) = 1. Then 𝑎 is called a quadratic residue modulo 𝑛
if the congruence:

𝑥2 ≡ 𝑎 (mod 𝑛)
is soluble. Otherwise, it is called a quadratic non-residue modulo 𝑛 [2, p. 114].

Legendre symbol definition: Let 𝑝 be an odd prime and 𝑎 an integer. Suppose
that GCD(𝑎, 𝑝) = 1. Then the Legendre symbol (𝑎

𝑝), is defined by [2, p. 117]:

(𝑎
𝑝) =

⎧{
⎨{⎩

1 if 𝑎 is quadratic residue modulo 𝑝
−1 if 𝑎 is quadratic non-residue modulo 𝑝
0 if 𝑝 ∣ 𝑎

(2.4)

21

Quadratic Sieve algorithm consists of following steps [7]:

1. Algorithm works with factor base 𝐹 consists of small prime numbers. The
size of the factor base depends on the size of input 𝑛. Each 𝑓 ∈ 𝐹 has upper
bound 𝐵 that depends on the current task.

2. Unlike Dixon’s algorithm that works with random 𝑥2, Quadratic Sieve method
works with:

𝑄(𝑥) = (𝑥 + ⌊√𝑛⌋)2 − 𝑛 (2.5)
such that 𝑄(𝑥) ≡ (𝑥 + ⌊√𝑛⌋)2 (mod 𝑛). Algorithm tries to find congruence:

𝑟
∏
𝑖=1

(𝑄(𝑥𝑗𝑖
) + 𝑛) ≡

𝑟
∏
𝑖=1

((𝑥𝑗𝑖
+ ⌊√𝑛⌋)2 mod 𝑛) (mod 𝑛)

that has a form of Legender’s congruence (2.3).

3. Sieving is solved on interval 𝑥 ∈ [−𝑀, 𝑀] ∩ ℤ (sieving interval). It is much
more effective to compute value of 𝑥 from factor base than using just a random
generator for integers. Consider situation 𝑝 ∈ 𝐹 ∧ 𝑝 ∣ 𝑄(𝑥) together with
(2.5) it implies:

(𝑥 + ⌊√𝑛⌋)2 ≡ 𝑛 (mod 𝑝) (2.6)
which means that 𝑛 is quadratic residue mod 𝑝 and also:

∀𝑝 ∈ 𝐹 ∶ (𝑛
𝑝) = 1

4. Congruence (2.6) could be written in form (for some 𝑠 ∈ ℕ and 𝑥 ∈ 𝑍𝑝):

𝑄(𝑥) = 𝑠2 − 𝑛 ≡ 0 (mod 𝑝)

this congruence could be solved by Tonelli–Shanks algorithm which returns
two solutions 𝑠1𝑝 and 𝑠2𝑝 = 𝑝 − 𝑠1𝑝.
Value of 𝑄(𝑥𝑖) is computed using 𝑠1𝑝𝑖

or 𝑠2𝑝𝑖
using 𝑥𝑖 = 𝑠1𝑝𝑖

+ 𝑘𝑝 or 𝑥𝑖 =
𝑠2𝑝𝑖

+ 𝑘𝑝 for 𝑘 ∈ ℤ such that 𝑥𝑖 is in sieving interval.

The rest of algorithm is the same as Dixon’s method – especially constructing and
processing matrix of exponent’s parity.

Quadratic Sieve algorithm works with estimated time complexity (the number
of steps which are needed to find the solution for given 𝑛) [2, p. 217]:

𝒪 (exp ((1 + 𝑜(1))
√

ln 𝑛 ln ln 𝑛))

There are also many improvements of Quadratic sieve algorithm such as Multiple
Polynomial Quadratic Sieve. Some of them has better time complexity in some
specific situations.

22

2.5.1 Tonelli–Shanks algorithm
Algorithm is procedure to solve congruence of form

𝑥2 ≡ 𝑛 (mod 𝑝)
where 𝑝 is defined prime number greater than 2 and 𝑛 is quadratic residue mod 𝑝,
which is equivalent to condition (𝑛

𝑝) = 1, Legender’s symbol for prime 𝑝 could be
found by [10]:

(𝑛
𝑝) = 𝑛𝑝−1

2 mod 𝑝

Algorithm consists of the following steps (from [8] and [9]):

1. Find integers 𝑄 and 𝑆 such that 𝑝 − 1 = 2𝑆𝑄 where 𝑄 is odd number. If
𝑆 = 1 solution equals:

𝑥 ≡ ±𝑛𝑝+1
4 (mod 𝑝)

2. Find quadratic non-residue 𝑊 of 𝑝 (it means that (𝑊
𝑝) = −1) and compute

𝑉 ≡ 𝑊 𝑄 (mod 𝑝)

3. Find multiplicative inverse 𝑛′ of 𝑛 (mod 𝑝)
4. Compute

𝑅 ≡ 𝑛𝑄+1
2 (mod 𝑝)

and find the smallest integer 𝑖 ≥ 0 that satisfy:

(𝑅2𝑛′)2𝑖 ≡ 1 (mod 𝑝)

5. If 𝑖 = 0 algorithm stops and 𝑥 = 𝑅, if it does not compute 𝑅′:

𝑅′ ≡ 𝑅𝑉 2𝑆−𝑖−1 (mod 𝑝)
and go to step one with argument 𝑅 = 𝑅′.

2.5.2 Realization in distributed application
Data collection part of quadratic sieve method could be divided to specific subtasks.
The easier way how to do it is to split the sieving interval to subintervals and
distribute it to each thread or process. Tonelli–Shanks algorithm itself is strictly
sequential algorithm.

There is also a problem with the memory requirements of algorithm – practical
size of factor base for integers of length above 400 bits is about hundreds of thousands
primes. It means that algorithm has to save matrix of size at least (105)2 bits and
also the array of real exponents values of the same size. For example, factoring of 426
bits challenge integer (called RSA-129) in 1994 uses a factor base of 524 339 prime
numbers [7, p. 9]. It could be useful to use some relatively low-level programming
languages such as C where it is simple to work with each bits separately.

23

2.6 General number field sieve
GNFS was first proposed by John Pollard in 1988. It is the fastest known algorithm
for factorization of large integers. There are also a few necessary definitions needed
before method could be presented.

Algebraic number definition: A complex number 𝛼 ∈ ℂ is an algebraic number
if it is a root of some polynomial [2, p. 220]:

𝑎0𝑥𝑘 + 𝑎1𝑥𝑘−1 + ⋯ + 𝑎𝑘 = 0, 𝑎0, 𝑎1, 𝑎2, ⋯ 𝑎𝑘 ∈ ℚ (2.7)

Algebraic integer definition: A complex number 𝛽 ∈ ℂ is an algebraic integer if
it is a root of some monic polynomial [2, p. 220]:

𝑥𝑘 + 𝑏1𝑥𝑘−1 + ⋯ + 𝑏𝑘 = 0, 𝑏0 = 1, 𝑏1, 𝑏2, ⋯ 𝑏𝑘 ∈ ℤ (2.8)

Theorem: The set of algebraic numbers forms a field, and the set of algebraic
integers forms a ring [2, p. 221].
Let 𝜃 ∈ ℂ is the complex root of polynomial (2.8). Than the set ℤ[𝜃]:

ℤ[𝜃] = {
𝑘

∑
𝑖=0

𝜃𝑖𝑏𝑖, 𝑏0, ⋯ , 𝑏𝑘 ∈ ℤ} (2.9)

forms a ring called polynomial ring.

Lemma: Let polynomial 𝑓(𝑥) has a form (2.8) and 𝑚 is and integer such as 𝑓(𝑚) ≡
0 (mod 𝑛) and 𝛼 is a complex root of 𝑓(𝑥). There exists a unique (surjective)
mapping Φ ∶ ℤ[𝛼] → ℤ𝑛 satisfying (2.8) [2, p. 222]:

1. Φ(𝑎𝑏) = Φ(𝑎)Φ(𝑏), ∀𝑎, 𝑏 ∈ ℤ[𝛼]
2. Φ(𝑎 + 𝑏) = Φ(𝑎) + Φ(𝑏), ∀𝑎, 𝑏 ∈ ℤ[𝛼]
3. Φ(𝑧𝑎) = 𝑧Φ(𝑎), ∀𝑎 ∈ ℤ[𝛼], 𝑧 ∈ ℤ
4. Φ(1) = 1
5. Φ(𝛼) = 𝑚 (mod 𝑛)

Let 𝑛 ∈ ℕ is positive odd integer to be factorized. The GNFS algorithm consists
of following steps [2, p. 223 – 224]:

1. The first step consists of selecting of two irreducible polynomials 𝑓(𝑥) and
𝑔(𝑥) with small integers coefficients for which exists integer 𝑚 such that:

𝑓(𝑚) ≡ 𝑔(𝑚) ≡ 0 (mod 𝑛) (2.10)

And let 𝛼 be a complex root of 𝑓(𝑥) and 𝛽 of 𝑔(𝑥).

24

2. Algorithm searching for pairs (𝑎, 𝑏) (where GCD(𝑎, 𝑏) = 1) with smoothed
integral norms over a chosen factor base 𝐹 . Integral norm is defined:

𝑁(𝑎 − 𝑏𝛼) = 𝑏deg(𝑓)𝑓(𝑎/𝑏) 𝑁(𝑎 − 𝑏𝛽) = 𝑏deg(𝑔)𝑔(𝑎/𝑏) (2.11)

3. Find a set 𝑈 = {𝑎𝑖, 𝑏𝑖} of indexes such that:

∏
𝑈

(𝑎𝑖 − 𝑏𝑖𝛼) ∏
𝑈

(𝑎𝑖 − 𝑏𝑖𝛽) (2.12)

both product are square of the product of prime ideals.

4. Let (2.12) defines set 𝑆. This will be used for finding of an algebraic numbers
𝛼′ ∈ ℚ(𝛼) and 𝛽′ ∈ ℚ(𝛽) such that:

(𝛼′)2 = ∏
𝑈

(𝑎𝑖 − 𝑏𝑖𝛼) (𝛽′)2 = ∏
𝑈

(𝑎𝑖 − 𝑏𝑖𝛽) (2.13)

Define Φ𝛼 ∶ ℚ(𝛼) → ℤ𝑛 and Φ𝛽 ∶ ℚ(𝛽) → ℤ𝑛 via Φ𝛼(𝛼) = Φ𝛽(𝛽) = 𝑚 where
𝑚 ∈ ℤ is root of 𝑔 and 𝑓 . Then:

𝑥2 ≡ Φ𝛼(𝛼′)Φ𝛼(𝛼′) ≡ Φ𝛼 ((𝛼′)2) ≡ Φ𝛼 (∏
𝑈

(𝑎𝑖 − 𝑏𝑖𝛼)) ≡ ∏
𝑈

Φ𝛼(𝑎𝑖−𝑏𝑖𝛼) ≡

≡ ∏
𝑈

(𝑎𝑖 − 𝑏𝑖𝑚) ≡ Φ𝛽(𝛽′)2 ≡ 𝑦2 (mod 𝑛)

This expression has a form of Legendre’s congruence (2.3).

General number field sieve has time complexity (based on heuristic assumptions)
for integer 𝑛 [2, p. 229]:

𝒪 (exp ((𝑐 + 𝑜(1)) 3√ln 𝑛 ⋅ (ln ln 𝑛)2))

with 𝑐 ≈ 3√64
9 .

In practice there are two similar variants of number field sieve method. The first
is GNFS and the second is called Special number field sieve which is usable just for
one value of input integer 𝑛 (it works with slightly better complexity).

GNFS algorithm is the best for factoring integers of size hundreds (or thousands)
of bits – in this case it is the fastest known algorithm of all. The greatest disad-
vantage of GNFS is its complexity itself which causes many problems in practical
realization.

25

2.6.1 Realization in distributed application
Almost everything is the same as it was in Dixon’s algorithm or Quadratic Sieve
method – it especially works with a large spare matrix. The biggest difference be-
tween QS a GNFS algorithm consists in a difference of sieving process that decreases
the complexity of algorithm. There is a possibility of distribution sieving process by
the splitting of interval for 𝑏 values between processors.

There exists a lot of academical papers about improving of each step of algo-
rithm. For example, one of the latest academical works interested in possibilities
of integrating parallel block Wiedemann algorithm to GNFS [11] for efficiency of
work with spare matrix. Another way of its achievement is presented in paper [12]
where authors tends to use Montgomery variation of block Lanczos method which
is implemented in Linbox math library.

Although there are lots of papers about improving complexity of each algorithm’s
step, the leading way how to increase efficiency of algorithm is still in distributing
problem to as many independent nods as possible. Many improvements of algorithm
was motivated by RSA Factoring Challenge – where there was successfully factorized
integers of size 768 bits at 2009.

2.7 Summary
This chapter tends to describe only the most popular methods for integer factoriza-
tion. There are other effective methods (in some cases especially useful for special
purposes) such as Lenstra’s Elliptic Curve Method or Continued Fraction method.
Each were superseded by Quadratic Sieve that is currently the fastest method for
factoring of integers in range 20-110 bits. For integers of size less than 20 bits it is
especially useful to use non probabilistic brute force algorithm. Pollard rho method
is usable for factoring of integers with a lot of small factors. Fastest algorithm of
year 2017 is still General Number Field Sieve that is about 30 years old.

There are some ways how to improve time complexity of each algorithm step.
Parameters of each method such as optimal factor base length is set up heuristi-
cally. Finding of usable factor base and sieving process is potential task for parallel
computing. Especially important are methods for working with sparse matrix over
ℤ2 (for computing of matrix null space), such as Lanczos or block Wiedemann algo-
rithm which is parallel. There exists also straightforward way how to find null space
of matrix using Gaussian elimination. This process resulting in finding numbers of
Legendre’s congruence that could resulting in finding of nontrivial divisor of input
with probability equals of 2/3.

Memory requirements of each algorithm depends exponentially on size of input.
It is possible to work on bit level in case of large input because of working on ℤ2
field in crucial part of algorithm. This is especially suitable task for relatively low
level programming languages such as C / C++.

Despite significant research in this branch, most of successful attacks against
RSA (and other cryptosystems based on integer factorization problem) are based on
mistakes that developers have done during practical realization of system. It should

26

be mentioned that there is an algorithm with polynomial complexity solving integer
factorization problem called Shor’s algorithm, but it is designed just for quantum
computers that currently does not exist.

27

3 Discrete logarithm problem

In the contrary to integer factorization problem there are no methods of solving
discrete logarithm problem with comparable complexity. There are some methods
that rely on errors in realization of special cryptographic application. The only
practical usable method suitable for general purpose is called Baby-step giant-step
discussed bellow.

Figure 3.1: Discrete logarithm – brute force solver flowchart

3.1 Brute force algorithm
The most straightforward algorithm is solving discrete logarithm problem using
brute force as it is shown in figure 1.1. The complexity of this method is:

𝒪 (2𝑁)

where 𝑁 represents length of 𝑛 in bits.

28

The only advantage of this method is its simplicity and the fact that it could be
relatively easily written in most of programming languages. In fact, first condition
of algorithm could be skipped in some occasions. Because there could exists 𝑘 ∈ ℕ
solving equation 𝑔𝑘 ≡ 𝑎 (mod 𝑛) also in situation where 𝑔 is not primitive root
modulo 𝑛. For example 12𝑥 ≡ 24 (mod 30) has solution 𝑥 = 2 and obviously 12 is
not primitive root mod 30 (just because of GCD(12, 30) ≠ 1).

3.2 Baby-step giant-step algorithm
The method is meet-in-the-middle algorithm described in 1968. Algorithm presup-
pose situation that equation

𝑔𝑘 ≡ 𝑎 (mod 𝑛) (3.1)

for 𝑔, 𝑎, 𝑛, 𝑘 ∈ ℕ has at least one solution.
Algorithm consists of following steps [2, p. 237–238]:

1. Compute 𝑠 = ⌊𝑛⌋.

2. Compute pairs:
𝑆 = {(𝑎𝑔𝑖, 𝑖), 𝑖 ∈ [0, 𝑠) ∩ ℤ}

and save them in list. This step is called baby-step.

3. Compute the second sequence 𝑇 of the following pairs:

𝑇 = {(𝑔𝑖𝑠, 𝑖), 𝑖 ∈ [1, 𝑠] ∩ ℤ}

This step is called a giant step.

4. Search lists 𝑆 and 𝑇 for match 𝑎𝑔𝑟 = 𝑔𝑡𝑠 where 𝑎𝑔𝑟 in 𝑆 and 𝑔𝑡𝑠 in 𝑇 . If
algorithm find such numbers than 𝑘 = 𝑡𝑠 − 𝑟 solving congruence (3.1).

Algorithm above is also called Shanks’ Baby-step giant step method. Time
complexity of algorithm is:

𝒪 (exp (√𝑛 log 𝑛))
Algorithm is a type of Square Root Method. There exist another similar algo-

rithms such as 𝜌 Method or 𝜆 Method (also called Kangaroo method) [2, p. 239].
Baby-step giant-step advantage is relatively straightforward way of realization in
almost all programming language. Algorithm efficiency is comparable with other
algorithms usable for solving of discrete logarithm problem. There also exists im-
provement of this method called Silver–Pohlig–Hellman algorithm which could find
solution in √𝑞𝑘 steps (𝑞𝑘 = max{𝑞 ∈ ℙ, 𝑞 ∣ (𝑝 − 1)}).

29

3.2.1 Realization in distributed application
Baby-step part of algorithm could be distributed to many processors, where each
could operate with assigned interval of 𝑖 values. The rest of algorithm could not use
any advantages of parallel computing.

Another issue is memory requirements of an algorithm which fully depends on
the length of input. If the algorithm should not be only probabilistic it is necessary
to initialize array of

√𝑛 values. That is possible only for relatively small values of 𝑛
in the context of cryptography. For larger integers algorithm has to be probabilistic
which means algorithm could fail.

Probabilistic version of algorithm generates only random baby-step pairs in set
𝑆 to be compared with integers of set 𝑇 , the rest of algorithm is the same.

3.3 Index calculus
Index calculus was proposed in 1979 by Adleman. Algorithm itself is a wide range
of methods including Continued fraction method, QS, GNFS.

Algorithm consists of following steps [2, p. 255]:

1. Precomputation

(a) For some 𝑚 ∈ ℕ create factor base 𝐹 consisting of the first 𝑚 prime
numbers.

(b) Choose randomly 𝑒 ∈ ℕ, 𝑒 < 𝑝 − 1 and compute 𝑔𝑒 mod 𝑛. If 𝑔𝑒 mod 𝑛
is smooth over 𝐹 then:

𝑒 ≡
𝑚

∑
𝑗=1

𝑒𝑗 ind𝑔 𝑝𝑗 (mod 𝑝 − 1) (3.2)

(c) Repeat this process until algorithm has at least 𝑚 congruences of form
(3.2).

2. Compute 𝑘 ≡ ind𝑔 𝑎 (mod 𝑛):

(a) For each 𝑒 in (3.2) determine the value of ind𝑔 𝑝𝑗 , 𝑗 = 1, 2, ⋯ , 𝑚 by
solving 𝑚 modular linear equations.

(b) Choose randomly exponent 𝑟 ≤ 𝑝 − 2 and compute 𝑎𝑔𝑟 mod 𝑛
(c) Factor 𝑎𝑔𝑟 mod 𝑝 over 𝐹 , if it is impossible go to step (2b) if not:

ind𝑔 𝑎 ≡ −𝑟
𝑚

∑
𝑗=1

𝑟𝑗 ind𝑔 𝑝𝑗 (mod 𝑝 − 1) (3.3)

Index calculus algorithm has time complexity estimated:

𝒪 (exp (𝑐√log 𝑛 log log 𝑛))

30

Although index calculus has theoretically the best time complexity, it is not
simple to realized it in practice. There are a few exceptions, such as [14] that has
shown that this could be usable way of solving discrete logarithm problem but it
is still a topic of academical discussion rather than practice. The problem of the
algorithm is especially its complexity (for example working with matrices over ℤ𝑛
for some composed number 𝑛 is difficult) and hardware requirements.

There also exist some improvements of index calculus algorithm such as Gordon’s
number field sieve and others [2, p. 258]. But despite of complexity decrease, any
improvements nor index calculus itself is not widely used way for solving discrete
logarithm problem.

3.4 Summary
Solving of discrete logarithm problem is done by match less effective algorithm than
as it is in integer factoring problem. The most effective algorithm for DL problem is
called index calculus which is the composite of many methods of number theory but
is not widely used. The only algorithms that are usable in distributed application
are Shrank’s baby-step giant-step method and Silver–Pohlig–Hellman method.

In this chapter there is no mention about the problem of elliptic curve cryp-
tography that is based on DL problem. There are some methods specialized for
cryptoanalysing of this problem. One of the most effective algorithms in this branch
is called Xedni calculus [2, p. 253].

Most of the reported successful attacks against DL based cryptosystems were
based on mistakes of developers of such systems. There exists algorithm with poly-
nomial complexity for quantum computers that was introduced by Peter Shor (to-
gether with algorithm for solving of integer factorization problem). The existence
of algorithm with polynomial level of complexity for Turing machine has not been
proven nor disproven yet (which is common fact for both discussed problems).

31

4 Realization of distributed application

The conception of the application is that there would be one web-server (master
nod) where users (apps operators) would be submitting their tasks and finding
corresponding results. There would also be a lot of work-stations (slave nods) for
computing of inserted problems.

Figure 4.1: Conception of distributed application

Conception details of each part of the system (such as communication protocol)
is discussed below including the details of realization.

4.1 Web server
The purpose of web-server is storing of task’s list and providing interface for standard
operations on this data set (inserting, updating and deleting of data). Server also
shows results of solved tasks with other information about computing process and
provides application interface for each station. Technically web server is standard
database web application.

The list of all web application major features and fundamental parts of web
application follows:

1. Inserting, modifying and removing users of the system. Each user has his own
privilege levels. Admin of the system could create new users (and deleting or
modifying existing users).

2. Inserting, modifying and removing tasks of the system that are later dis-
tributed for solving. Tasks of system are later converted to solving discrete
logarithm or integer factorization problem. Each task has its priority level.

32

There are three kinds of task in the system:

• cryptanalysis of RSA cypher (finding message 𝑚 and private key 𝑑 using
values 𝑐, 𝑒 and 𝑛),

• cryptanalysis of ElGamal cypher (finding message 𝑚 and private key 𝑥
using values 𝑐1, 𝑐2, 𝑝, 𝑔 and ℎ)

• cryptanalysis of Diffie-Hellman key exchange protocol (finding shared key
using values 𝑝, 𝑔, 𝑔𝑎 and 𝑔𝑏).

3. Inserting, modifying and removing stations of system. Station is one nod of
the system that computes submitted tasks and returns results. Web appli-
cation has to manage identification information of each station and provide
functionality for assignment of station and task (this is done automatically by
system with respect to task’s priority level or by user).

4. Providing detail information about each task and station and showing results
of computation.
These details consist of answers for the following questions:

• how much time does the solving of task taken,
• when the station was last active,
• what is the solution of some task if it has been already found.

5. Web application also should provide manual pages (user guide). This should
inform how to perform each step above.

4.1.1 Realization of web application
Some basic information about technical realization of each web server (and applica-
tion running on it) part follows:

User interface: consists of control panel that is usable for inserting and modifying
of tasks and also for fetching information about found results. Web application
is available only for registered users (requires login and password for successful
sign-in).
Navigation bar (menu) of sites is on the left side and contains reference for all
major features of application.
The graphical user interface is designed as responsible web-site for large scale
of resolutions. It is based on HTML5 and CSS3 technologies. Interface is
designed only for relatively new browsers.

Application interface provides fundamental functionality for exchange of data
between web server and workstations. All data are transferred via HTTP
protocol and in JSON format (in the way from server to workstation) or using
POST request method (in the way from workstation to server).
The task that goes from server to workstation contains definition of the task
that follows this format (in case of RSA cypher):

33

{"taskId":"(int)","type":"RSA",
"n":"(hex)","c":"(hex)","e":"(hex)"}

Figure 4.2: Screen of user’s control panel

And the similar format is used in the case of other kind of problems. Difference
is in the key value "type" and composition of task that fits to task selected
task type. For ElGamal data has following format:

{"taskId":"(int)","type":"ElGamal","p":"(hex)","g":"(hex)"
,"h":"(hex)", "c1":"(hex)", "c2":"(hex)"}

For Diffie-Hellman key exchange problem task has following format:

{"taskId":"(int)","type":"DH","p":"(hex)",
"g":"(hex)","gPowA":"(hex)", "gPowB":"(hex)"}

where (hex) represents the number in hexadecimal form and (int) represent
integer (decimal system).

Figure 4.3: Processing of station requirement scheme

Workstations return results using POST request method to script
solution.php. And also sends positive acknowledgement (also using POST

34

method) right after receiving data from the server. Each request send by
POST method has the following format:

type=(type)&stationId=(int)&taskId=(int)&par1=(hex)...

where concrete form of par values depends on task type.
Request for data is sent to script task.php with identification of station (it is
send using GET method).

Database solution Web application has to save at least the following information:

1. Users of system with login, privilege level, description, password (as
HASH).

2. Logs that contain which user in which time was singed-up in the system.
3. Tasks inserted to system with the time of insertion, priority, type (RSA,

ElGamal or Diffie-Hellman cryptosystem) and parameters of task such as
𝑛, 𝑔 and 𝑝.

4. Solution of task with the time of computation, decrypted message or
shared key.

5. The stations of system with the station identification, time of creation,
last activity of station and optionally task to be solved.

Figure 4.4: Entity-relationship model of database

Database of the system is created in MySQL RDBMS which is the low-coast
solution with specific disadvantages (in compare to professional RDBMS, at

35

least PostgreSQL). It is, for example, impossible to create primary key of
relation consisting larger data type – this is especially problematic in the case
of this application. Installation file of database also contains insertion sequence
for the first user of the system. Communication of PHP scripts with MySQL
is managed by PDO.
Previously mentioned problem with the size of data type contained in primary
key leads to bit more complex scheme of application database which is shown
in figure 4.4 above.

Technical details Web application is written for PHP language of version 7.0 that
provides some improvements of type checking which is relevant for security of
application. The MySQL database is designed to version 5.5 and only InnoDB
engine is used. Both technologies has significant level of portability and they
were backward compatible historically.
Specific technical features are determined by popularity and license agreements
of each technology. At this point of view both PHP and MySQL are selected
in the top level (both are open-source, free, cross platform and widespread
technologies). It practically means that web-application could run on almost
every available web-hosting (in year 2017).

Figure 4.5: Block diagram of web application

36

Block diagram of application Web application was designed in the way that has
been mentioned previously. For the purposes of making clear how application
really works and the illustration of functionality – block diagram is included
in figure 4.5.
There are only most important functional blocks of web application included
in figure 4.5. The rest of important application’s features are mentioned above
in the list of application major features.

4.1.2 Summary
There are two main purposes for existence of web application in the form as it is
designed before. The first is to provide fundamental interface for users to editing of
inserted problems and for inserting new ones. Other reason is to provide applica-
tion interface for workstations that are designed to solve inserted problems and to
distribute inserted problems to stations and manage of the synchronization.

Just for making the work with the system easier there is also implemented gen-
erator of random tasks in the system. This is done in class RandomTaskGenerator.
Application access this file through its API using AJAX.

Chosen way of web application’s realization is determined by popularity and
openness of selected technologies. The PHP is the most popular language for pro-
gramming of web application which is available for free and under open license. The
same situation is in the case of chosen RDBMS which is MySQL (on InnoDB engine)
that is the most popular database solution for web applications under GNU license.

4.2 Workstations
Workstation (or just station) represents one nod of distributed system. The function
of station is straightforward: to obtain a task (and send acknowledgement), to
compute it and to return the results back to the server.

Application is called SaFaDl (motivated by Solve a Factorization and Discrete
logarithm problem) and it is composition of three main packages and one external
application. It is written in Java SE language and external application called msieve
[13, modified] is written in C++ language.

Technically workstation is standard console application. The biggest advan-
tage of this approach is in portability of the output. Application could run almost
on every machine where Java Virtual Machine does (mentioned external applica-
tion written in C++ is also portable). Environment for running of application is
not restricted only for desktop computers (meaning systems with operation system
Windows or some distribution of Linux).

Application consists of four packages. The first package with main class
is called bid.mythesis. There is some fundamental functionality of appli-
cation contained in this package. This package contains the main class of
application including infinity application loop. The second package is called
bid.mythesis.cryptanalysis. This package is useful for transforming of input

37

to concrete cryptanalytic problem and provides basic functionality for final compu-
tation. At least there are two packages, first to solving of discrete logarithm problem
called bid.mythesis.logarithm and other one to solving of integer factorization
problem called bid.mythesis.factorization. These packages contains numerical
methods for solving of each problem type.

Figure 4.6: Screen of application

4.2.1 Receiving tasks and transmitting results
Tasks are received in the main package of application bid.mythesis in class
ReceiveData. Data set is downloaded from selected URL defined in class
Configuration. After downloading of data they are used for creating instance
of class CryptanalysisTask. In the case that application succeed in creating of
such instance, positive acknowledgement is sent back to server.

Sending of data set to server is done by using class SendData. Data are converted
to string usable for POST request method and they are send to selected URL defined
in configuration file. Whether transmitting of results were successful is checked using
response code. Transmitting is done in independent thread and using infinite loop,
data tries to be sent until it is not successful (with period equals to three seconds).
The same method is used for sending of acknowledgement.

4.2.2 Processing of received tasks
After the receiving of task there is a package called bid.mythesis.cryptanalysis
for handling of the problem. Major purpose of this package is converting of task to

38

discrete logarithm or integer factorization problem (depending on what kind of task
is fetched).

The package contains abstract class CryptanalysisTask that encapsulate single
system task. It also contains functionality such as simple JSON parser (task is re-
ceived in JSON format). Static method CryptanalysisTask returns proper instance
for the problem solving. Solution of the problem is found using abstract method
analyse that returns map which is sent to server. Class implements Runnable in-
terface because run method is called in independent thread. Method run called
method analyse and send the found solution to the server asynchronously using
class SendData. Data that are sent to server consist not only of found solution
but also with time that finding of solution have taken, station ID, task ID and
specification of task type.

There are three classes that extend CryptanalysisTask, each for one task type:

DHCryptoanalysis represents the class for cryptanalysis of Diffie-Hellman key ex-
change protocol. The purpose of this class is computation of shared key from
known values 𝑝, 𝑔, 𝑔𝑎 mod 𝑝 and 𝑔𝑏 mod 𝑝. Computation began in finding
private key 𝑎 by solving of discrete logarithm:

𝑎 = ind𝑔 (𝑔𝑎 mod 𝑝) (mod 𝑝)

using class DiscreteLogarithm in package bid.mythesis.logarithm. After
finding of solution shared key is computed using as (𝑔𝑏)𝑎 mod 𝑝.
The following code shows how analyse function is implemented. Implemen-
tation of this function is similar in each situation.

@Override
public Map<String, String> analyse() {

long startTime = System.currentTimeMillis() / 1000L;
DiscreteLogarithm solver = DiscreteLogarithm.initInstance(g,

gPowA, p);
this.a = solver.commitMethod();
Map<String, String> res = new HashMap<>();
if(a != null && g.modPow(a, p).compareTo(gPowA) == 0) {

long totalTime = (System.currentTimeMillis() / 1000L)
- startTime;

this.sharedKey = gPowB.modPow(a, p);
res.put("type", "DH");
res.put("stationId", STATION_ID);
res.put("taskId", this.getTaskId());
res.put("a", this.a.toString(16));
res.put("sharedKey", this.sharedKey.toString(16));
res.put("time", Long.toString(totalTime));
return res;

}

39

return null;
}

ElGamalCryptoanalysis represents the class for cryptanalysis of ElGamal cypher.
It has a similar conception like there is in Diffie-Hellman case. Class tries
to look for values of private key 𝑥 and encrypted message 𝑚. Input of class
consists of values 𝑐1, 𝑐2, 𝑝, 𝑔 and ℎ. Solution is also found by calculation of
discrete logarithm value:

𝑥 = ind𝑔 ℎ (mod 𝑝)
There is also used class DiscreteLogarithm in package
bid.mythesis.logarithm to do so. Finding of value 𝑚 is simple:

𝑚 = (𝑐𝑥
1)−1𝑐2 (mod 𝑝)

RSACryptoanalysis represents the class for cryptanalysis of RSA cypher. The
purpose of this class is converting the task to integer factorization problem.
The input is represented by values of 𝑐, 𝑒 and 𝑛. The output is represented by
private key 𝑑 and decrypted message 𝑚. Relation among this and factorization
problem is well described in the first chapter.
Factorization of 𝑛 is computed using class Factorization in package
bid.mythesis.factorization. This is the common situation for 𝑛 of size
less than 70 bits. Larger numbers are factorized using msieve application.
Msieve is open source application with implemented general number field sieve
method. It is under public domain license since the end of year 2016. It is
mainly written in C++ language and it is portable for large scale of platforms
(especially Linux, BSD like and Windows).
The application uses slightly modified version of native msieve that differs in
output format. Application is called using ProcessBuilder class (native class
in java).

Each class prepares pairs in format Map<String, String> that will be sent to
server using POST method. Such pairs are prepared in override method analyse in
each case.

There could be a problem with a situation that incoming task does pass the
lexical analysis but it is mathematically wrong. This could cause two situation. The
first is that application does not do anything and stops its activity (no numerical
method compute anything) and the second is that application falls to infinity loop
of numerical method. In real situations it is not always simple to check whether the
task has any solution (application could do only elementary tests in each task type).

4.2.3 Methods for integer factorization
Selected methods of integer factorization are implemented in package
bid.mythesis.factorization. There is also functionality necessary for pro-
cess of factorization. The most important class of this kind is MatrixGF2 that is

40

usable for computing with matrix of parity (necessary for methods like the Dixon’s
one).

The effective work with parity matrix is important during the last step of algo-
rithm (finding of null space of this matrix). The Gaussian elimination method is
used in this class for this purpose. Technically parities in matrix are saved in byte
array (two dimensional). Class also provides basic interface for working with matrix
(such as transposing, inserting row or columns and so on).

Another important issue is working with relatively long numbers (meaning the
number of decimal digit). Java has class BigInteger in standard library usable for
this purposes. There are also a lot of other solutions usable for this purpose but none
of them is not complex enough. Application use especially methods for arithmetic
operations, comparing of integers and computing greatest common divider of two
numbers (in this case using Euclidean algorithm). There also arise questions about
real efficiency of methods in this class for numerical methods. The application
also uses class BigDecimal in some cases for computing of square roots of number.
Efficiency of methods in this class is not so relevant because it is only seldom used.

The conception of application is based on abstract class Factorization that
encapsulate a lot of basic arithmetic functions necessary later. It also contains a
method called commitMethod that returns desired factors of the number.

There are classes that extends class Factorization by implementation of each
method:

BruteForce represents class for brute force factorization. It is most straightforward
way how to achieve results. Method begins with with number two and tries
to find factors of 𝑛 computing modulus for each number which is less or equal
than square root of 𝑛. Method is useful because of it’s simplicity. It could be
used for small numbers.

PollardRho is encapsulation of Pollard’s Rho algorithm (for integer factorization).
There are two methods for this purpose. The first represents one iteration
of Pollard’s Rho method. Another one pass all composite factors to the first
method in cycle till it does not find relevant results. This method also sieves
small factors by using brute force to some bound.
The method also checks number of iterations in each step, because there ex-
ists possibility that algorithm does not find any solution algorithm for given
parameters.
Parameter 𝑥 of the method is set up randomly in interval [2, 35]∩ℕ. Example
of source code for one iteration of Pollard’s Rho algorithm is shown bellow
this paragraph.

private BigInteger polardRhoEngine(BigInteger nr) {
BigInteger n = new BigInteger(nr.toString());
Random randomGenerator = new SecureRandom();
BigInteger x = new BigInteger(Integer.toString(

randomGenerator.nextInt(33) + 2));

41

BigInteger y = new BigInteger("2");
BigInteger d = new BigInteger("1");

long freeze = 0;
while (d.compareTo(BigInteger.ONE) == 0 && freeze++ <

maxIterations) {
x = polyVal(x, new BigInteger[]
{ BigInteger.ONE, BigInteger.ZERO, BigInteger.ONE } ,n);
y = polyVal(polyVal(y, new BigInteger[] { BigInteger.ONE,
BigInteger.ZERO, BigInteger.ONE } ,n),
new BigInteger[] { BigInteger.ONE, BigInteger.ZERO,
BigInteger.ONE }, n);
d = n.gcd(x.subtract(y).abs());

}
if(d.compareTo(n) == 0) {

return null;
}
return d;

}

Pollard’s Rho method is the first complex algorithm. It is useful for special
purposes (such as factoring number with lot of small factors) and for numbers
of size approximately less than 230.

Dixon represents Dixon’s factorization method. It is the first complex method work-
ing with factor base. Dixon’s method has more than one parameter (the num-
ber to be factorized and factor base). Composition of the factor base and
size of the factor base is crucial for successful factorization of selected integer.
In this case factor base is composed trivially by the first 𝑘 prime numbers.
Choosing of the right value of 𝑘 is crucial, but there is no flexible manual how
to choose it. It’s value is chosen heuristically by polynomial:

|𝐹𝐵| = 10 + |𝑛|4
192

where |𝐹𝐵| is size of factor base and |𝑛| is bit size of 𝑛 (𝑛 is number to be
factored).
Dixon’s method is the first method that operates with parity matrix. Size of
matrix is |𝐹𝐵| × |𝐹𝐵| + 𝑂, where 𝑂 is defined offset (equal at least one). The
method is implemented in while cycle that is shown bellow this paragraph.

while (index < (factorBaseSize + parityMatrixOffset)) {
if(++iteration > this.maxIterations) return null;
BigInteger x = new BigInteger(this.getN().bitLength()*2,

randomGenerator).mod(randomUpperBound);

42

x = x.add(sqrtN);
if(x.mod(Factorization.BIGINTEGER_TWO)
.compareTo(BigInteger.ZERO) == 0)

x = x.add(BigInteger.ONE);
BigInteger x2 = x.modPow(Factorization.BIGINTEGER_TWO,

this.getN());
exponentsOverFB[index] = Factorization.

getFactorBaseCoeficients(x2, fb);
if(exponentsOverFB[index] == null) continue;
if(xOverview.contains(x)) {

exponentsOverFB[index] = null;
continue;

}
parityMatrix.insertRow(exponentsOverFB[index], index);
xList[index] = x;
xOverview.add(x); //Set of all x
index++;

}

After method succeed in finding enough vectors over factor base there is
computation of null space of such matrix (transposed variant of matrix
parityMatrix shown in the source code above). Vectors of null space are
used for selecting proper vectors consist of exponents of integer over chosen
factor base. The result is Legendre’s congruence usable for finding of nontrivial
factors.
There is a possibility of choosing factor base differently (by statistical analysis
of situation) which could be useful in some special situations.

QuadraticSieve is the class of Quadratic Sieve algorithm. Although QS is one of
the most effective algorithm, it is also method that is sensitive for proper value
of the method’s parameters. There are three parameters at all. The first is
number 𝑛 to be factorized, the second is factor base and the third is interval
for value of 𝑥. In application there is only simple polynomial of form:

𝑄(𝑥) = (𝑥 + ⌈𝑛⌉)2 − 𝑛
used in application. The value of 𝑥 is found using Tonelli-Shanks algorithm
for found 𝑠𝑖1,𝑖2

values and then 𝑥𝑖1,𝑖2
= 𝑠𝑖1,𝑖2

+ 𝑘𝑝𝑖 for some integer 𝑘 for such
𝑥 is lower than some selected upper bound. There is also the biggest difference
between Dixon’s method and QS. Values of 𝑄(𝑥) is factorized over factor base
usable in Dixon’s method but prime factors 𝑝𝑖 used for computing of 𝑥 value
is element of QS factor base which is subset of the Dixon’s one. It is because
of equation 𝑠2

𝑖 ≡ 𝑛 (mod 𝑝𝑖) does not have solution for each prime number 𝑝𝑖.
Whether 𝑝𝑖 is suitable for Tonelli-Shanks algorithm could be easily checked by
computing of Legendre symbol (𝑛 mod 𝑝𝑖𝑝𝑖). If the symbol equals to value 1
then the solution of equation exists.

43

Selecting of method’s parameters is also done heuristically. There exists a lot
of strategies how to do it. Application uses parameters of following form:

int fbMinimalSize = 384;
BigInteger xIntervalDivisor = new BigInteger("16384");
if(n.bitLength() <= 55) {

fbMinimalSize = 256;
xIntervalDivisor = new BigInteger("256");

}
else if(n.bitLength() <= 65) {

fbMinimalSize = 512;
xIntervalDivisor = new BigInteger("256");

}
this.factorBaseSize = fbMinimalSize +
(n.toString().length() * n.toString().length() *
n.toString().length() * n.toString().length())

/ 1024;
this.parityMatrixOffset = 5;
this.xInterval = new BigInteger("512")
.add(Factorization.bigIntegerSqrt(
this.getN()).divide(xIntervalDivisor));
this.sqrtN = bigIntegerSqrt(this.getN());

parameters are modified in the situation when algorithm does not find any
solution (it means return null value). In such case there is suitable to enlarge
the size of factor base.
Rest of algorithm is similar to Dixon’s method. Especially finding of null space
of parity matrix and Legendre congruence. Implementation of QS method in
application is usable for integers of size less than 270.

There is also some functionality in package bid.mythesis.factorization that
could be latter used for implementing of General Number Field Sieve method. Most
of this functionality is available in class NumberFieldSieve. The class, for example,
contains functionality for finding of sieving polynomial of GNFS method and other
useful functionality. GNFS itself is quite difficult to implementation. It requires a
lot of other mathematical functionality. Instead of this class, the application uses
external program called msieve, which seems to be ideal for this purpose. This
program also contains implementation of some advanced techniques such as MPQS
(Multiple Polynomial Quadratic Sieve) that are usable for factoring of some larger
integers. This method represents straightforward improvement of Quadratic Sieve
method which differs only in selected polynomial.

The most difficult task for each method is to choose the right parameters that are
suitable for selected problem. It is necessary to try maximal number of values and
choose the right value. Parameters depends not only on the size of input number but
also one to each other. This is in fact searching of minimal value (that represents the

44

running time of method with selected parameters) in some multidimensional space
in which problem could not be easily described by some simple function.

There of course exists a potential for parallelism for each step of these algorithms
and also there exists some concepts for increasing efficiency of these algorithms
by using some specific hardware. But the leading issue is to analyze potential of
distributed application.

4.2.4 Methods for solving of discrete logarithm
Numerical methods for solving of discrete logarithm problem are in a
package bid.mythesis.logarithm. The package consists of abstract class
DiscreteLogarithm that is extended by classes with numerical methods. Abstract
class contains functionality necessary for computation (for example computing of
square root of integer). Class also contains static method returning instance with
chosen proper numerical method. The only abstract method is commitMethod.

In each method there is used Java native class BigInteger to working with
large integers. Conception is similar to integer factorization problem. The biggest
difference between interface discrete logarithm and integer factorization solver is that
method return just one integer. This integer represents exponent 𝑥 in equation:

𝑔𝑥 ≡ 𝑎 (mod 𝑝)

for some given integer values 𝑔 (group generator), 𝑎 and prime 𝑝 (group order).
There are some effective methods for solving of discrete logarithm problem in

application. Classes with implemented method are mentioned in the following list:

BruteForce represents the class for solving of discrete logarithm problem using
brute force. It is most straightforward method of all. It could be useful for
some relatively small numbers. The biggest disadvantage of this method is
its time complexity. Otherwise the biggest advantage of this method is its
simplicity for programming that is shown in the code below this paragraph.
Another advantage is in relatively small amount of required memory (no map
for any values is needed). Application use brute force method for solving of
discrete logarithm problem for groups of order less than 220 (it means that
prime number 𝑝 < 220).

private BigInteger bruteForceMethod() {
for(BigInteger x = BigInteger.ZERO; x.compareTo(n) <= 1 &&
!Thread.currentThread().isInterrupted();
x = x.add(BigInteger.ONE)) {

if((g.modPow(x, n)).compareTo(a) == 0)
return x;

}
return null;

}

45

The method also checks whether the current thread is not interrupted in each
iteration. This is important feature for conception of this application (number
of iterations of cycle could be great). The thread is usually interrupted in the
situation when a new task is fetched to the system. It is not simple to stop
the thread in Java (method stop is deprecated in current version of Java).
Currently the only suitable way how to stop the thread is to use interrupt
method in Thread class.

PollardsRhoDL represents method called Pollard’s rho algorithm for logarithms. It
has similar conception like method Pollard’s rho for integer factorization. The
realization of this method is straightforward. The core of method is in the
following code:

do {
pollardStepLittle();
pollardStepLarge();
pollardStepLarge();
currentIteration++;

} while(x1.compareTo(X1) != 0 &&
iterationLimit >= currentIteration);

Methods pollardStepLittle and pollardStepLarge operate with state vari-
ables of method (with variables 𝑥1, 𝑎1, 𝑏1 in first case and with variables
𝑋1, 𝐴1, 𝐵1 in other one). Methods later compute probable value of unknown
integer value 𝑥.
This method is useful only in some special cases (it is not general purpose
method). The biggest advantage of the method is its simplicity and run time
(that is relatively short). Otherwise the biggest disadvantage of this method
is that it does not return suitable results in each case. Another advantage of
algorithm is its low memory requirement (which is common feature with brute
force method).
Although Pollard’s rho algorithm for logarithms could be used as the first time
method, which could run before some other method (because of its fastness),
application does not use it. It is because of presumption of fine implementation
of inserted tasks which make using of this algorithm almost impossible.

BabyStepGiantStep represents Shank’s baby-step giant-step algorithm for solving
of discrete logarithm problem. This method is useful for a large scale of discrete
logarithm problem. The biggest disadvantage of this method are memory
requirements. In default version of algorithm it has to save √𝑝 (where 𝑝 is
order of group) values which makes it unusable for practical applications. It
is possible to save only some subset instead of full set of √𝑝 integers and use
algorithm as probabilistic one. The application use both versions (probabilistic
for larger integers) of algorithm.
The algorithm consists of two steps. The first (called baby step) creates a map
of values of following form:

46

for(BigInteger j = new BigInteger("0"); j.compareTo(m) < 0
&& !Thread.currentThread().isInterrupted();
j = j.add(BigInteger.ONE)) {

BigInteger tuple = g.modPow(j , n);
gjA.put(tuple, j);

}

in this step the algorithm saves keys consists of values 𝑔𝑗 mod 𝑝 for all 𝑗 < 𝑝,
where 𝑗 is saved as value in map. Probabilistic version of algorithm saves only
some values of 𝑗 in interval [0, √𝑝) ∩ ℤ.
This map is used in the second step of algorithm (called giant step):

for(BigInteger i = new BigInteger("0"); i.compareTo(m) <= 0 &&
!Thread.currentThread().isInterrupted();
i = i.add(BigInteger.ONE)) {

BigInteger j = gjA.get(J);
if(j != null) {

BigInteger res = i.multiply(m);
return new BigInteger(res.add(j).toString());

}
J = J.multiply(gInvPowerToM).mod(n);

}

variable gjA represents hash map used by algorithm (which is mentioned
above) and n is modulus 𝑝 also mentioned above. In this step algorithm
tries to find matches of values 𝐽 and the key in map which is found in
baby step. There is also visible condition for checking of thread interruption
!Thread.currentThread().isInterrupted().
The only parameter of the method is maximal size of map structure which is
defined by memory limits of application. This value is selected as 10 000 000,
but could be easily changed. Probabilistic version of algorithm also uses in-
finity while loop in which it calls method in each iteration till it does not find
relevant result (it means does not return null value).
The advantage of this algorithm is its time complexity which makes it usable
especially in its original version. The disadvantage is that only relatively small
values of 𝑥 could be found which could be problematic in practical application.
The method itself represents one of the meet-in-the-middle algorithm (this is
special class of algorithms). The infinity loop is shown in following code:

BigInteger solution = babyStepGiantStep();
while(solution == null &&
!Thread.currentThread().isInterrupted()) {

solution = this.commitMethod();
}
return solution;

47

in this code example, variable solution represents seeking exponent 𝑥. The
application uses Shank’s baby-step giant-step algorithm for solving of discrete
logarithm problem for all integers 𝑝 ≥ 220 (where 𝑝 represents order of group).
It is crucial algorithm for solving of discrete logarithm problem not only in
this application. Also some other algorithms use this one in some special part
of its computation process.

SilverPohligHellman is the realization of Silver-Pohlig-Hellman method. It repre-
sents straightforward improvement of Shank’s baby-step giant-step algorithm
[2, p. 240]. This method could find solution at least √𝑝𝑖 steps where 𝑝𝑖 is
maximal prime factor of (𝑝 − 1) term factorization. It is one of the popular
method that is especially useful for insecure implementation of some method
based on discrete logarithm problem. In standard situation, this method has
comparable complexity like the Shank’s baby-step giant-step algorithm and it
is also unusable for complex problems. The application uses this method for
numbers that has modulus of size more than 35 bits.
Algorithm itself consists of two steps. The first is finding factorization of
(𝑝 − 1) = ∏∀𝑖 𝑝𝛼𝑖

𝑖 and setting up the congruences to be solved in the next
step:

private BigInteger silverPohligHellmanMethod() {
//-------- Finding set of congruences --------
BigInteger [][] congruences =
new BigInteger[prime.length][2];
for(int i = 0; i < this.prime.length; i++) {

BigInteger x = new BigInteger("0");
BigInteger pi = this.prime[i];
int exponent = this.exp[i];
BigInteger bi = this.b;
BigInteger aInv = a.modInverse(q);
for(int e = 1; e <= exponent; e++) {

BigInteger val = bi.modPow(
qSubractOne.divide(pi.pow(e)), q);
BigInteger j = findJ(pi, val);
x = x.add(j.multiply(pi.pow(e-1)));
bi = this.b.multiply(aInv.modPow(x, q)).mod(q);

}
congruences[i][0] = x;
congruences[i][1] = pi.pow(exponent);

}
//---

//Use the congruence for computation
return this.chineseRemainderTheorem(congruences);

}

48

and the last step is solving of set of congruence using Chinese remainder the-
orem that also represents the result of discrete logarithm problem. This part
of algorithm is much faster one.

IndexCalculus is implementation of Index calculus method for discrete logarithm.
Although it is one of the most effective method for this purpose (means in time
complexity way), application does not use it. It is because of many problems
that arise of working with matrix over ℤ𝑛 for some integer 𝑛 which is not
prime number. There exists a lot of algorithm for this purpose but none of
them is effective enough and relative simple for implementation. This is also
the reason why this method is not used in application. On the other hand,
implementation of this method works correctly for most of inputs (and it could
be especially useful for larger modulus).
The method consists of two blocks. The first is represented by class MatrixGFn
that could work with matrix over ℤ𝑛 for some composed integer 𝑛. The
rest of algorithm is written in method indexCalculusIteration in class
IndexCalculus. This method consists of two steps. The first one is the siev-
ing process over chosen factor base (similar principle to Dixon’s algorithm)
together with construction of matrix. The other one is finding solution of
linear system that leads to final solution (shown in while cycle bellow).

while(iteration < maximalNumberOfIteration) {
//Obtain random exponent in [0,p-2);
BigInteger e = new BigInteger(p.bitLength(),
randomGenerator).modPow(BIG_INTEGER_TWO,
p.subtract(BIG_INTEGER_TWO));
BigInteger gPowE = g.modPow(e, p);
BigInteger[] factorsOverFB = factorOverFB((gPowE.multiply(a)).
mod(p));
if(factorsOverFB != null) {

BigInteger res = e.multiply(BIG_INTEGER_MINUS_ONE);
for(int j = 0; j < factorBaseSize; j++) {
res = res.add(factorsOverFB[j].multiply(solution[j]));

}
BigInteger result = (res.mod(p.subtract(BigInteger.ONE)));
if(g.modPow(result, p).equals(a)) {

return result;
}

}
iteration++;

}

The advantage of methods for solving of discrete logarithm problem is that they
do not require so many parameters (instead of method for solving of integer fac-
torization problem). Other advantage lies in relative simplicity of its programming

49

code. The disadvantage is that some effective method for discrete logarithm problem
require relatively a lot of memory for successful running (in comparison to integer
factorization methods).

4.2.5 Summary
The application conception follows a block diagram that is shown in figure 4.7. This
block diagram is only conceptual and it is only for illustration of situation (and data
flow) in distributed application.

Figure 4.7: Block scheme of application

Web application is useful for providing of GUI, otherwise application that runs
on workstation is primary target for computing of tasks. It could cryptanalyse most
of popular cryptsystems, especially RSA and ElGamal cyphers or Diffie-Hellman
key exchange problem. The application also contains methods for solving of integer
factorization problem such as Pollard’s rho, Dixon’s method and Quadratic Sieve.
It also uses external application that has implemented general number field sieve
method. This methods represents most effective algorithms for solving of integer
factorization problem of nowadays.

Tasks which are converted to discrete logarithm problem are solved with rela-
tively less effective methods (in comparison to methods for integer factorization).
But they also represents fundamental methods for this purposes and also most ef-
fective ones. These methods are Pollard’s rho method for discrete logarithm and
baby-step giant-step method (and also Silver–Pohlig-0.-Hellman method).

Application represents standard terminal program. It is especially useful because
of portability of outputs and the possibility to be running as the background one.
Application could run on all most popular operating systems.

Application is written in widely available Java language in way that allows its
further extending. This could be especially useful for implementing new methods
(or other functionality) in the future.

50

5 Using of application in real situation

Usability of application is determined by the running time of tasks. There are at
last only two kinds of task. The first is to solve discrete logarithm problem and the
other one is to solve integer factorization problem. Rest of algorithms, especially
fetching and sending the tasks and decrypting messages from already found values,
does not consume relevant amount of time (in situation that they are written in
some standard usable way).

To measure the real effectiveness of application there are few presumptions. The
first is that we suppose exponential characteristic of time 𝑡 [𝑠] (in seconds) to size of
input 𝑁 [𝑏] (in bits) with number of nods in distributed system 𝑆 [−] (the number
without unit). The result of this measurement should be some quantification of
running time improvement for great amount of nods 𝑆 in system.

There are also practical limits of this approach. Only few nods are available
in real situation and no nod is exactly the same one as the others (in this case
there three different computers with different CPU). This could have negative con-
sequences for tolerance of measurement and its extrapolation. There are also prob-
lems with parameters of each methods that are changing based on size of input 𝑁
and also changing of methods itself. This could lead seemingly to paradox situation
where there is smaller time of running for greater 𝑁 .

Measurement was proceeded on at most three stations, three slightly different
computers, last two differs only in hardware composition:

1. CPU information: Intel(R) Core(TM) i7-5557U CPU @ 3.10GHz
RAM capacity: 8 GB
Operating system: Linux 4.4.0-72-generic #93-Ubuntu x86_64 GNU/Linux

2. CPU information: Intel(R) Core(TM) i7-2620M CPU @ 2.70GHz
RAM capacity: 8 GB
Operating system: Linux 4.4.0-59-generic #80-Ubuntu x86_64 GNU/Linux

3. CPU information: Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz
RAM capacity: 8 GB
Operating system: Linux 4.4.0-72-generic #93-Ubuntu x86_64 GNU/Linux

The application were running only in console level with minimal number of other
process, such as desktop environment. This is because each other application could
negatively affected the running process.

51

This chapter refers on distribution of one task to multiple station. Not distri-
bution set of task to multiple station. The efficiency increase of second approach is
obvious but it has nothing to do with conception of this application.

5.1 Integer factorization problem
The conception of the measurement was to measure ten tasks for each task type.
This type is determined by the number of connected nod in the system 𝑆, input size
𝑁[𝑏𝑖𝑡] and generator of random tasks (the web application random task generator
is used).

Table 5.1: Measurement of integer factorization, for S=1

𝑁 [bit] 𝑛 (hex) 𝑒 (hex) 𝑐 (hex) time 𝑡 [s]
64 692dfddb16527fb7 c5d7 5b34edfcac39d363 31
64 9dbff433e6f0911f 14ddd 9c08c7ada239d957 141
64 611a9238e637c67b e705 0d7e3e1ee1ce899b 27
64 6f2b4db3493377ab 1d4b9 6b3bcdc63e505f02 56
64 a17873be393db4cf 293f a1471952c0b12f21 101
64 c97c848ed56e2d01 187d 60708401df31349c 72
64 ae08933fd639ad8d 127c9 3fd73d0e06db6d12 193
64 88c2184154e4ec1f 1db07 1cf1f238308ee5df 143
64 825aca7cab1fc313 15df7 18b41a792dd43edf 110
64 7c1b2d9abb1e934f eb63 306525c5f7bc6041 52

For illustration of the situation, there is a table 5.1 appended. It is obvious that
variance of data set is wide in this case. There is also a measurement tolerance caused
by time measuring. It is done by measuring the time at the start of the algorithm
and ended after algorithm finishes its work. It could be done with accuracy equals to
±2 s (worst case analysis, not considered in the following measurement processing).
This is common feature for all following measurements (in each case).

Table 5.2: Measurement of integer factorization for multiple stations

𝑆 (nods) 𝑁 [bit] ⊘𝑡 [s] Δ𝑡 [s] method
1 64 92 54 QS
2 64 90 48 QS
3 64 88 51 QS
1 128 0,2 0,4 MPQS (msieve)
2 128 0,2 0,4 MPQS (msieve)
3 128 0,1 0,3 MPQS (msieve)
1 256 140 21 GNFS (msieve)
2 256 137 17 GNFS (msieve)
3 256 133 19 GNFS (msieve)

52

50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

S = 1
S = 2
S = 3

N [bit]

t [
s]

Table 5.2 shows the result of measurement in complex way. The first column
represents number of stations (nods) connected to server. The second represents
complexity of integer factorization problem 𝑁 by bit size of input word (𝑛). The
third column represents average time ⊘𝑡 for each task type. The fourth column is
standard deviation of measured time for each task type. Last column represents
method (and external application) that was used to solving of problem.

Figure 5.1: Graph of relation between time 𝑡 and input size 𝑁 for 𝑆 stations (RSA)

For illustration of situation graph 5.1 of average measured values (without error
bars) is included. The graph shows described problem where relatively easier task
takes much more time to be solved (because of selected numerical methods and its
parameters).

5.1.1 Real situations
The problem of integer factorization is crucial to security of RSA cryptosystem.
Most of nowadays certificates that use RSA are based on 1024 bit version (or some-
times 2048 bit one). For example Google’s SSL certificate has 2048 bit modulus
since 2013, before this enlargements it has 1024 bits [15]. This is also a common
feature of almost all X.509 certificates (used for digital signature and SSL), that do
not define exactly, whether RSA has to be used, but it still is a frequent variant.

Estimation of the time that is necessary to solve some practical problem could
be done by measuring of large set values and finding some relation. There are
some problems with measurement because they are enormously time consuming.
We consider to have exponential relation. That is also the way how to fit measured
data (and find relation).

53

50 100 150 200 250 300 350
0,1

1

10

100

1000

10000

S = 1
Exp approx.
S = 3

N [bit]

lo
g(

t)

The data set that was measured is shown on a figure 5.2. The figure has loga-
rithmic scale on vertical axis (log(𝑡), 𝑡 [ms]) and there a is size of input on horizontal
axis (𝑁). Data set for three station are fitted with the following function:

𝑡(𝑁) = 0.3091422
1000 ⋅ exp (0.1018556

2 𝑁) (5.1)

that is also the function used for the following time approximations.

Figure 5.2: Graph of relation between time 𝑡 and input size 𝑁 (integer factorization)

If we consider equation (5.1) together with most popular sizes of input 𝑁 we
obtain approximation shown in table 5.3.

Table 5.3: Approximation of time for solving N bits RSA tasks

𝑁 [bit] 𝑡 [s] 𝑡 [year] S

1024 1.37⋅1019 4.36⋅1011 3

2048 6.12⋅1041 1.94⋅1034 3

4096 1.21⋅1087 3.84⋅1079 3

8192 4.76⋅10177 1.51⋅10170 3

Table 5.3 represents only rough approximation of this problem. The number
of station could be much height than 𝑆 = 3 in real situation. The best known

54

20 25 30 35 40 45 50 55 60
0

200

400

600

800

1000

1200

1400

1600

1800

S = 1
Exp reg.
S = 3

N [bit]

t [
s]

results of integer factorization process is 𝑁 = 768 [16] in 2010. Authors of this
paper however presume (based on research) that in 10 years it could be possible to
factorize 𝑁 = 1024 problem.

5.2 Discrete logarithm problem
There is the same approach to measure the discrete logarithm problem tasks as it
was in integer factorization. The measurement shows the relation among input size
𝑁 (in bits) which represents bit size of modulus 𝑝, number of stations (nods) in
system 𝑆 and time 𝑡.

Figure 5.3: Graph of relation between time 𝑡 and input size 𝑁 (discrete logarithm)

For illustration of the situation, there is 5.3 included (only error bar of 𝑆 = 1
are included in graph). It is obvious that relation between time 𝑡 and input size 𝑁
is exponential. Relation is emphasized by using exponential regression (that would
be lately used for analysis).

Discrete logarithm problem has much smoother characteristic than integer fac-
torization one. But there are special situations that increase level of variance. This
happen in case that number 𝜑(𝑝) = 𝑝−1 is 𝐵-smooth for some small value of 𝐵, be-
cause Silver-Pohlig-Hellman algorithm is much more effective in this case. It means
that modulus for which 𝑝 − 1 could be factored to large number of relatively small
factors is the best one to this method. This is shown in Figure 5.4 bellow. In this
graph, there are measurements of time for one station and random data set of size
𝑁 = 40 bits. There are obviously some values, such as 9, 12 and 15 that were solved
in much shorter time. The Silver-Pohlig-Hellman algorithm requires √𝑞𝑘 steps where
𝑞𝑘 = max{𝑞 ∈ ℙ, 𝑞 ∣ 𝜑(𝑝)} (and could be faster in some situations). This is the

55

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0,5

1

1,5

2

2,5

3

3,5

measurement

t [
s]

reason why there are so strict conditions to generating key pairs of Diffie-Hellman
key exchange algorithm (or ElGamal cypher) where there is required to have 𝜑(𝑝)
composed of large prime numbers. The implementation of Silver-Pohlig-Hellman
that is used in this application is the combination of this method with Baby-step
giant-step method. This combination decrease time complexity of the method.

Figure 5.4: Graph of time for 𝑁 = 40 and 𝑆 = 1 (discrete logarithm)

There is a problem with memory requirements of Baby-step giant-step method
that is crucial to time complexity. In native version of algorithm it requires √𝑝
values to be saved in memory. It is possible to relatively small values of 𝑝. Algorithm
solve this problem by mapping only relatively tiny set of random values in interval
(0, √𝑝) ∩ ℤ. This otherwise increases time complexity of algorithm and variance of
time necessary to solve of the task.

5.2.1 Real situations
Hardness of solving discrete logarithm problem is fundamental thing in modern
cryptography. Based on The Internet Engineering Task Force standard paper the
minimal size of modulus 𝑝 should be at least 512 bits (this is secure minimum till
the year 1999), it is binding norm of The Internet Society [17]. Number 𝑝 should be
in format 𝑝 = 𝑗𝑞 + 1 where 𝑞 ∈ ℙ is large prime number and 𝑗 ≥ 2. Recommended
modulus size is however 1024 bits (since the year 1999). The reason why number
𝑝 has format 𝑝 = 𝑗𝑞 + 1 is that this makes Silver-Pohlig-Hellman method almost
useless.

ElGamal is not so widely used cypher. But it is based on same idea like Diffie-
Hellman key exchange method. So it is reasonable to presume that minimal modulus

56

20 25 30 35 40 45 50 55 60
0,01

0,1

1

10

100

1000

10000

S = 1
Exp reg.
S = 3

N [bit]

lo
g(

t)

size recommendation and also the algorithm for generating of modulus is the same
as above.

The following approximations of time that is necessary to cryptanalysis of each
cryptosystems are based on presumption that there is no mistake in implementation
of methods (these are worst case analysis).

Figure 5.5: Graph of relation between time 𝑡 and input size 𝑁 (discrete logarithm)

The measured values are presented on graph 5.5, there is logarithmic scale of
time 𝑡 in seconds on vertical axis and there is size of input 𝑁 (number of bits) on
horizontal axes. Exponential regression that is used in graph 5.5 has equation:

𝑡 = 8.859638 ⋅ 10−7 exp(0.382359 ⋅ 𝑁) (5.2)

This equation is used in table 5.4 bellow.

Table 5.4: Approximation of time for solving N bits DL tasks

𝑁 [bit] 𝑡 [s] 𝑡 [year] S

512 9.29⋅1078 2.95⋅1071 3

1024 9.75⋅10163 3.09⋅10156 3

2048 1.07⋅10334 3.41⋅10326 3

4096 1.30⋅10674 4.13⋅10666 3

57

Table 5.4 shows that time which is necessary to successful solving of discrete
logarithm problem in real situation is enormous. There are no effective methods
in 2017 that could reduce this time to some acceptable form. However, it is not
impossible that there could be some discoveries in this area in the following years.
For example, some usable improvements of cryptanalytic algorithm called Index
calculus are shown in this [18] article. This could be the way how to achieve usable
time complexity for algorithms for solving of discrete logarithm problem.

5.3 Summary
Although there is some improvement in numerical methods for cryptanalysis of
public key cryptosystems, there is no method effective enough to be usable in real
situation. It means that if someone uses public key cryptosystems in the recom-
mended way (especially use of large keys generated by recommended pattern) it
is still impossible to attack such cryptosystems nowadays. Using of complex dis-
tributed application does not change these facts at all. It is improvement in contrast
to sequential approach but it is still limited in many ways.

The biggest improvement of past years is noticeable at methods for solving inte-
ger factorization problem (especially RSA). This is also the area where distributed
application is fastest in cryptanalysis of given tasks. Although there are no such ef-
fective methods for the discrete logarithm problem, there is also some improvement
over past years. The distributed application causes improvement also in this case.

58

Conclusion

The relation between public–key cryptography and solving of discrete logarithm
or integer factorization problem is straightforward. The RSA cypher is based on
integer factorization problem. On the other hand Diffie–Hellman key exchange or
ElGamal cypher are based on discrete logarithm problem. The integer factorization
problem could be defined in the following way: there is no effective algorithm for
finding of all prime factors of given number in polynomial time. On the other hand
discrete logarithm problem could be defined in the following way: there is no effective
algorithm for solving congruence of form 𝑔𝑥 ≡ 𝑎 (mod 𝑝) for given values 𝑔, 𝑎 and
𝑝. If there would be any algorithm for solving these problems, each cryptosystem
based on these problems would be useless.

There are no effective algorithm for solving of integer factorization in the way
that solution could be found in polynomial time. However, there are algorithms that
could find solution in subexponential time. The first algorithm that is described is
called Pollard’s rho, this algorithm does not works with usable level complexity
but could be useful in some special situations (especially for numbers with great
number of relatively small factors). Other described algorithms work with special
pair of numbers such that 𝑥2 ≡ 𝑦2 (mod 𝑛) and 𝑥 ≢ 𝑦 (mod 𝑛) (so called Legendre’s
congruence). If such numbers are found there is probability which equals to 2/3 that
GCD(𝑥 ± 𝑦, 𝑛) is nontrivial divisor of 𝑛. First method that is based on Legendre’s
congruence is called Dixon’s random squares method. It works with with fixed factor
base composed of given prime numbers (this is the only parameter of method). The
principle of this method is fundamental for all other methods. The straightforward
improvement of Dixon’s method is called Quadratic Sieve method. This is the
fastest method for factorization of numbers upto approximately 100 digits. The
most effective method for factoring of larger numbers is called General Number
Field Sieve, this is rather complex method that uses many advanced issues of number
theory.

There is similar situation in discrete logarithm problem. Methods for solving
of this problem are less effective than the ones used for integer factorization. The
most important method for solving of this problem is called Baby–step giant–step (or
Shank’s Baby–step giant–step) method. The biggest disadvantage of this method
is that in native version it requires to save √𝑝 values (where 𝑝 is modulus). Other
method that partially improve Baby–step giant–step method is called Silver–Pohlig–
Hellman algorithm. This algorithm is especially useful in situation where (𝑝 − 1) is
composed of many relatively small factors. The last algorithm (and the most effec-
tive one) is called Index calculus. This algorithm theoretically has subexponential

59

level of complexity. But it has also many disadvantages that makes it almost useless
in practical situations.

Distributed application that was created as practical part of thesis consists of
two parts. The first is web application that represents master nod of distributed
system and the other part is a desktop (terminal) application that represents slave
node of system. The web application is created in PHP in version 7.0 together
with MySQL database management system. Both technologies represents the most
popular ones for this purpose. The only purpose of web application is providing
graphical interface for users of the system (especially for modifying of tasks in the
system) and providing API for slave nods, that have to obtain task to be solved and
also send found solution. Both tasks and solutions are sent using HTTP protocol.
Just for testing purposes there is also included random task generator in the web
application.

The desktop application (slave node) is the part of application where there are
implemented numerical methods for solving of integer factorization and discrete
logarithm problem. It is written partially in Java SE programming language and it
also used in some cases of integer factorization external application called msieve in
slightly modified version that is written in C/C++ programming language. The ap-
plication is designed to transform cryptographic task to solve of discrete logarithm
or integer factorization problem. After the solving of this problem application de-
crypt the message or finds the shared secret key. The value of the key (or decrypted
message) is afterward sent back to the server, where there is accessible via web
application.

There is implementation of almost all relevant method for integer factorization in
the application. There is also the functionality for working with matrices over ℤ2 in
the application that includes operation such as finding reduce echelon form of matrix
or the null space. This is necessary functionality for all complex methods. There is
also implementation of Pollard’s Rho method, Dixon’s method and Quadratic Sieve
method. Both Dixon’s method and Quadratic Sieve method use the functionality
for working with matrices over ℤ2. Quadratic Sieve method needs also another
functionality for working, such as Tonelli–Shanks algorithm that is also included
in the application. Functionality for generating of method’s parameters is also the
part of the application. There is also some functionality that would be necessary for
successful implementation of General Number Field Sieve method in the application.

The discrete logarithm problem is solved by all fundamental methods in the
application. There is implementation of brute force method that could be useful for
some simple tasks. The most important method is Shank’s Baby–step giant–step
method which is implemented in two variants. The first is native version that saves√𝑝 (where 𝑝 is modulus of given congruence) values in memory during the running.
This variant is not usable for real situations where the value of 𝑝 is much bigger than
the memory limits of the system. This problem is solved by using the probabilistic
version of method that does not save all values, but only the random selection.
Application also uses Silver–Pohlig–Hellman method for decrease the number of
steps which are necessary to solve of discrete logarithm problem. There is also the
implementation of Index calculus method in the application. This method requires

60

some advanced functionality such as working with matrix over ℤ𝑛 for some composed
number 𝑛. This functionality for working with such matrices is also included in the
application (together with methods for finding of reduce echelon form of given matrix
and other functionality). There is also example of implementation of Pollard’s rho
method for discrete logarithm in the application (this method is useful during the
pre-processing of task).

The analysis of using application in real situations shows that in case that cryp-
tosystem is implemented without mistakes, it is almost impossible to be successful
in cryptanalysis process. In the case of RSA there is requirement for the public key
(modulus 𝑛) to be larger than 1024 bits and to be composed of two factor of size
at least 512 bit. The only mistake in implementation of RSA that could happen
is using predictable generator of pseudorandom prime numbers. Another potential
mistake exists in the case of cryptosystems based on discrete logarithm problem.
The modulus 𝑝 using during the computation of discrete exponential has to be in
the format in which (𝑝 − 1) is composed of at least one large prime number. Other-
wise there is a possibility of successful attack using Silver–Pohlig–Hellman method.
The time which is necessary for computing of any real problem is still enormous.

The conception of application is that there is possibility of its expansion in the
future. It is predicable that it is a question of time when the new effective methods
will be discovered. Especially in the case of solving discrete logarithm problem
there is visible progress during past few years. It could be also useful to analyze the
potential of application on some embedded devices created for special purpose.

61

Bibliography

[1] DELFS, Hans and Helmut KNEBL, 2015. Introduction to Cryptography:
Principles and Applications. Third edition. Berlin: Springer.

[2] Y. YAN, Song, Moti YUNG and John RIEF, 2013. COMPUTATIONAL
NUMBER THEORY AND MODERN CRYPTOGRAPHY. Higher Edu-
cation Press: Singapore. ISBN 9781118188583.

[3] YAN, Song Y. Number theory for computing. 2nd ed. New York: Springer,
2002. ISBN 35-404-3072-5.

[4] BRIGGS, Matthew E., 1998. An Introduction to General Number Field
Sieve. Virginia Polytechnic Institute and State University. Online at:
https://vtechworks.lib.vt.edu/bitstream/handle/10919/36618/etd.pdf

[5] Dixon, J. D. (1981). DIXON, John D. Asymptotically fast factorization of
integers. Mathematics of Computation [online]. 1981, 36(153), 255-255 [cit.
2017-02-12]. DOI: 10.1090/S0025-5718-1981-0595059-1. ISSN 0025-5718.

[6] ANDRÉN, Daniel, Lars HELLSTRÖM and Klas MARKSTRÖM. On
the complexity of matrix reduction over finite fields. Advances in Ap-
plied Mathematics [online]. 2007, 39(4), 428-452 [cit. 2017-02-12]. DOI:
10.1016/j.aam.2006.08.008. ISSN 01968858.

[7] LANDQUIST, Eric. The Quadratic Sieve Factoring Algorithm [on-
line]. 2001, 12 [cit. 2017-02-14]. Online at: https://www.math.unl.edu/
∼mbrittenham2/classwk/445f08/dropbox/landquist.quadratic.sieve.pdf

[8] Shanks-Tonelli algorithm. Planetmath.org [online]. 2013 [cit. 2017-02-16].
Online at: http://planetmath.org/sites/default/files/texpdf/30621.pdf

[9] SCHOOF, René. The Tonelli-Shanks algorithm [online]. Roma: Università
degli Studi di Roma Tor Vergata, 2008, , 1 [cit. 2017-02-18]. Online at:
http://www.mat.uniroma2.it/∼geo2/Shanks_Tonelli.pdf

[10] Kvadratická rezidua. Štěpán Holub [online]. Prague: De-
partment of Algebra, 2013 [cit. 2017-02-25]. Online at:
http://www.karlin.mff.cuni.cz/∼holub/soubory/Rezidua.pdf

62

https://vtechworks.lib.vt.edu/bitstream/handle/10919/36618/etd.pdf
https://www.math.unl.edu/~mbrittenham2/classwk/445f08/dropbox/landquist.quadratic.sieve.pdf
https://www.math.unl.edu/~mbrittenham2/classwk/445f08/dropbox/landquist.quadratic.sieve.pdf
http://planetmath.org/sites/default/files/texpdf/30621.pdf
http://www.mat.uniroma2.it/~geo2/Shanks_Tonelli.pdf
http://www.karlin.mff.cuni.cz/~holub/soubory/Rezidua.pdf

[11] YANG, Laurence T., Gaoyuan HUANG, Jun FENG and Li XU. Par-
allel GNFS algorithm integrated with parallel block Wiedemann algo-
rithm for RSA security in cloud computing. Information Sciences [online].
2017, 387, 254-265 [cit. 2017-03-13]. DOI: 10.1016/j.ins.2016.10.017. ISSN
00200255.

[12] YANG, Laurence T., Li XU, Sang-Soo YEO and Sajid HUSSAIN.
An integrated parallel GNFS algorithm for integer factorization based
on Linbox Montgomery block Lanczos method over GF(2): note
II. Computers [online]. 2010, 60(2), 338-346 [cit. 2017-03-14]. DOI:
10.1016/j.camwa.2010.01.020. ISSN 08981221.

[13] Msieve. SourceForge.net [online]. Cryptography, Mathematics: ja-
sonp_sf, 2016 [cit. 2017-04-11]. Online at: https://sourceforge.net/
projects/msieve/

[14] VIVEK, Srinivas and C.E. VENI MADHAVAN. Cubic Sieve Congruence
of the Discrete Logarithm Problem, and fractional part sequences. Journal
of Symbolic Computation [online]. 2014, 64, 22-34 [cit. 2017-03-15]. DOI:
10.1016/j.jsc.2013.12.004. ISSN 07477171.

[15] Changes to our SSL Certificates. Google Security Blog
[online]. Google, 2013 [cit. 2017-04-29]. Online at:
https://security.googleblog.com/2013/05/changes-to-our-ssl-
certificates.html

[16] KLEINJUNG, Thorsten. Factorization of a 768-bit RSA modulus: version
1.4, February 18, 2010 [online]. Netherlands, 2010 [cit. 2017-04-29]. Online
at: http://eprint.iacr.org/2010/006.pdf

[17] RESCORLA, Eric. Diffie-Hellman Key Agreement Method [online]. The
Internet Engineering Task Force, 1999 [cit. 2017-04-30]. Online at:
https://www.ietf.org/rfc/rfc2631.txt

[18] PADMAVATHY, R. and Chakravarthy BHAGVATI. Discrete loga-
rithm problem using index calculus method. Mathematical and Com-
puter Modelling [online]. 2012, 55(1-2), 161-169 [cit. 2017-04-30]. DOI:
10.1016/j.mcm.2011.02.022. ISSN 08957177.

63

https://sourceforge.net/projects/msieve/
https://sourceforge.net/projects/msieve/
https://security.googleblog.com/2013/05/changes-to-our-ssl-certificates.html
https://security.googleblog.com/2013/05/changes-to-our-ssl-certificates.html
http://eprint.iacr.org/2010/006.pdf
https://www.ietf.org/rfc/rfc2631.txt

List of all appendixes

There are following appendixes in the thesis:

1. Appendix A: Web application details

2. Appendix B: Desktop application details

3. Appendix C: List of files on appended CD

The CD is also appended to the thesis.

64

Appendix A: Web application details

The web application is available at the following URL:

http://www.mythesis.bid/

with the following sign-in information:

login: admin
password: a1b456

User’s guide
The User guide for web application is available after successful sign-in to system in
left menu bar (item User guide).

Installation instruction
Instruction for installation of web application are available in file installGuide.txt
that is located in folder with installation files.

Documentation of program source
Each used method and class in method is documented in source files.

65

Appendix B: Desktop application details

Desktop application files are available in directory SaFaDl of appended CD.

Installation instruction
The manual of how to install desktop application and how to run it is available in
file installSaFaDl.txt which is in directory SaFaDl/dist.

The program msieve (which has modofied outputs) is available in directory
SaFaDl/dist/modmsieve.

Documentation of program source
The source files of application are available in directory SaFaDl/src.

The javadoc file (documentation of written source code) is available in directory
SaFaDl/dist/javadoc.

66

Appendix C: List of files on appended CD

There are following relevant directories and files on CD:

• SALACdipl.pdf – diploma thesis

• mythesis.bid – directory of web application

– installGuide.txt – installation guide of web application

• SaFaDl – directory of desktop application

– dist – directory with executable file
* modmsieve – modified msieve application
* javadoc – documentation of application
* installSaFaDl.txt – installation guide of desktop application

– src – source codes of application

67

	List of abbreviations
	Introduction
	Public–key cryptography
	RSA cryptosystem
	Discrete logarithm
	Integer factorization
	Diffie–Hellman key exchange
	ElGamal encryption
	Summary

	Integer factorization problem
	Factoring by trial division
	Pollard's rho
	Realization in distributed application

	Legender's congruence
	Realization in distributed application

	Dixon's random squares method
	Realization in distributed application

	Quadratic Sieve
	Tonelli–Shanks algorithm
	Realization in distributed application

	General number field sieve
	Realization in distributed application

	Summary

	Discrete logarithm problem
	Brute force algorithm
	Baby-step giant-step algorithm
	Realization in distributed application

	Index calculus
	Summary

	Realization of distributed application
	Web server
	Realization of web application
	Summary

	Workstations
	Receiving tasks and transmitting results
	Processing of received tasks
	Methods for integer factorization
	Methods for solving of discrete logarithm
	Summary

	Using of application in real situation
	Integer factorization problem
	Real situations

	Discrete logarithm problem
	Real situations

	Summary

	Conclusion
	Bibliography
	List of all appendixes

