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Abstract

Increasing the share of renewable electricity generation is a characteristic feature
of modern energy systems. Renewable electricity generation has important envi-
ronmental benefits, however, it is also marked by significant stochasticity and its
large scale integration into power grid is not possible without new methods for con-
trol of electricity consumption, new energy storage technologies and communication
infrastructure. Thermostatically controlled loads represent a significant share of to-
tal electricity consumption and they are often tightly connected with large thermal
storage capacities. For these reasons they can be used for controlling electricity con-
sumption and cost effective energy storage. This motivates the focus of this thesis
on advanced control algorithms for thermostatically controlled loads.

Any control requires a suitable control signal. In this thesis, an indirect control
signal is used — the role of the control signal is played by variable electricity price.
This concept is considered in many pilot projects both in the USA and in the
EU. It has certain advantages: the customers can choose the preferred strategy
for responding to the needs of the grid, so their comfort is not compromised; also
there is no need to install significantly more complex interfaces for direct control
of the loads and monitoring of their states. However, the design of suitable control
algorithms for responding to variable prices is still a largely open problem. The
thesis focuses on two aspects of this problem.

The first part of the thesis considers the control of a single large thermostatically
controlled load that responds to the price signal. This load is described by a linear
time varying system and a local economic model predictive controller is designed
for it. This controller must account for the time varying dynamics of the controlled
load. By performing local economic optimization this controller helps to balance
supply and demand in the electricity grid. This part of the thesis was created
within the framework of H2020 SmartNet project and it considers one of the project

pilot demonstrations: heated swimming pool. The time varying character of the



model of this pool is due to the changes of the heat transfer coefficient between
water and air depending on the wind speed.

The second part of the thesis focuses on smaller thermostatically controlled loads.
They are negligible individually, but they can play an important role if a larger pop-
ulation is aggregated. The structure of the proposed control system is hierarchical.
Economic model predictive controller in the upper level responds to varying elec-
tricity price and changes the temperature setpoints of the thermostats in the lower
level. The objective of the control system is the same as in the first part of the thesis:
the cost of the operation of this population is minimized and this helps to keep the
balance in the grid. However, the high number of the loads does not allow individual
modelling of each load in the model predictive controller and an aggregate model
had to be developed and tested. This model is non-linear and economic model pre-
dictive controller has to solve mixed integer non-linear optimization problem. The
effectiveness of the proposed control strategy was demonstrated by simulation.

Keywords: Smart Grids, Demand Response, Real Time Pricing, Economic
model predictive control, Non-linear model predictive control, Modelling of aggre-

gated thermostatically controlled loads, Linear parameter-varying systems



Abstrakt

Charakteristickym rysem moderni energetiky je nartistajici podil vyroby elektfiny
z obnovitelnych zdroji. To prinasi fadu vyhod z pohledu kvality zivotniho prostredi.
Vyroba elektiiny z obnovitelnych zdroji m&a vsak vyrazné stochasticky charak-
ter a integrace vétstho mnozstvi takto vyrobené elektriny do elektrizac¢ni sité neni
mozna, pokud nebudou vytvoreny nové metody Tizeni spotieby elektiiny, nové tech-
nologie pro skladovani elektrické energie a vyspéla fidici a komunikacni infrastruk-
tura. Na strané spotieby elektrické energie pripadd vyznamny podil termostaticky
fizenym spotiebicim. Ty jsou navic obvykle tésné propojeny s velkymi tepelné
akumulacnimi kapacitami. Jsou proto zvlasté vhodné pro tizeni spotieby elektiiny
a nakladové efektivni akumulaci energie. 7 této motivace vychazi zaméreni této
disertacni prace na pokrocilé algoritmy pro fizeni termostatickych spotiebicii.

Jakékoliv tizeni nutné predpokldda, ze existuje vhodny fidici signal, kterym
muzeme chovani fizené soustavy ovliviiovat. V této praci pracujeme s nepiimym
fidicim signalem: cenou elektfiny proménnou v realném case. Tento koncept je
pouzivan v radé pilotnich projekti v USA i v EU. Z fady hledisek je tento koncept
vyhodny: zakaznici si mohou sami rozhodnout, jak na proménnou cenu budou reago-
vat bez toho, ze by jejich komfort byl ohrozen. Rovnéz tak neni nutné instalovat
slozita rozhrani pro primé ovladani spotiebic¢ii a monitorovani jejich stavu. Navrh
vhodnych algoritmt pro to, jak reagovat na proménné ceny vsSak ziistava stale do
znacné miry otevienym problémem. Tato prace je zamérena na dva aspekty tohoto
problému.

Prvni cast prace se zabyva problematikou fizeni jednotlivych velkych termo-
statickych spotrebici, které reaguje na proménnou cenu elektiiny. Tyto spotrebice
jsou zde popsany obecné jako linearni casové proménné systémy a jejich Tizeni je
navrzeno jako lokalni ekonomické prediktivni tizeni. Tento ekonomicky predik-
tivni regulator musi vzit v tvahu casové proménny charakter tizené soustavy.

Tim, ze provadi lokalni ekonomickou optimalizaci, napomaha tento regulator udrzet



rovnovahu vyroby a spotteby v elektrizacni soustave. Tato ¢ast prace vznikla v rdmci
projektu H2020 SmartNet a jako pripadovou studii pouziva jedno z pilotnich experi-
mentalnich zafizeni tohoto projektu: vyhifvany plavecky bazén. Casova proménnost
matematického modelu tohoto bazénu prameni ze zmén soucinitele prestupu tepla
mezi vodou a vzduchem v zavislosti na rychlosti vétru.

Druhé ¢ast prace je zamérena na mensi termostatické spotiebice, které sice maji
jednotlivé zanedbatelny prikon, mohou vsak hrat vyznamnou roli, pokud je jejich
vétst pocet sdruzen dohromady. Struktura navrhovaného fidiciho systému je hierar-
chickd. Ekonomicky prediktivni regulator na vyssi roviné rizeni reaguje na promeén-
nou cenu elektfiny a méni zddané hodnoty termostat na nizsi roviné. Cil Tizeni
je stejny jako v prvni ¢asti prace: cena provozu celé skupiny spotfebict je mini-
malizovana a to napomahd udrzeni rovnovahy v siti. Vzhledem k velkému poctu
spotfebicti vSak neni mozné, aby prediktivni regulator pracoval s modely vsSech jed-
notlivych spotrebicii, ale bylo nutné vyvinout a ovérit sdruzeny model dynamiky
celé skupiny. Tento model je nelinearni a ekonomicky prediktivni regulator musi
resit tlohu nelinearniho smiseného celociselného programovani. Efektivita navrzené
strategie Tizeni byla prokazana pomoci simulac¢nich experiment.

Klicova slova: Inteligentni elektrické sité, Odezva strany spotieby, Ceny
elektfiny proménné v realném case, Ekonomické prediktivni fizeni, Nelinearni
prediktivni rizeni, Modelovani skupin termostatickych spotiebicii, Linedrni v case

proménné systémy
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1 Future energy systems

Conventionally, the energy systems were operated in a "supply follows demand”
way, which allowed the customer to demand any amount of energy at a constant
price. Such strategy has many disadvantages that were first mentioned in the ’80s

including [1]:
o inefficient use of fuel in order to always follow the load;

o extra capacity of the distribution and transmission systems in order to operate

during peak demand periods;

 isolation of customers from the supply system discourages them from energy

conservation and generation.

Current national energy policies tend to replace fossil fuelled power plants with
energy production from Renewable Energy Sources (RESs) in order to create more
efficient and economic energy system as well as to deal with existing environmental
problems [2-6].

In the European Union, the share of renewable energy production has been
growing considerably in the past years (see Figure 1.1) [7]. In particular, Germany
and Spain make significant efforts in integrating renewable energy sources into their
energy systems and aim to cover as much as possible energy production with it [8].
The Nordic countries aim to develop a fossil fuel free energy system by 2035 [9, 10].
For example, Sweden already crossed 50% border and exceeded their 2020 target in
2016 (see Figure 1.2). Energy union, which aims to ensure that Europe has secure,
affordable, and climate-friendly energy, is one of the 10 priorities of the European

Commission [11].
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There are several features specific to utilizing RES related to harvesting, trans-
mitting, storing and consuming renewable energy. Firstly, RES are distributed, e.g.
wind turbines, photovoltaic solar panels, and solar thermal units of different sizes
that can be located almost anywhere and belong to anyone from government to an
individual person. On one hand, it allows to reduce the transmitting capacity of
the grid because the energy source can be located closer to the consumers. On the
other hand, it requires redesigning the energy system because conventionally most
of the energy systems are centralized. Secondly, renewable energy production has
intermittent and uncontrollable nature.

The major difficulties in the energy systems with stochastic energy production
is to ensure power balance and grid stability [4]. To address these issues the concept
of energy system should be modified: new methods for control of electricity con-
sumption side, new energy storage and transmission technologies (e.g. Flexible AC
Transmissions Systems (FACTSs) [12]), as well as new communicating infrastructure
(e.g. smart communication and metering devices) must be developed.

Smart Grid (SG) aims to improve conventional energy grids to ensure high levels
of security, quality, reliability, and availability of electric power [13]. Virtual Power
Plant (VPP) is a concept that combines Distributed Energy Resources (DERs),
including RESs, to make it appear in market as a single power plant. Together
with SG, they help to deal with mentioned above problems and to utilize advanced
control and optimization methods in Demand Side Management (DSM).

This chapter is organized as follows. The first section contains a brief intro-
duction to Smart Grid (SG). The second section presents different types of Virtual
Power Plant (VPP). The third section discusses the role of Demand Side Manage-
ment (DSM) and Demand Response (DR) in future energy systems. The fourth
section introduces the idea of energy system with variable electricity tariffs. The
fifth section gives a brief background of Model Predictive Control (MPC) and Eco-
nomic Model Predictive Control (E-MPC) as well as their utilization in Smart Grid
(SG) and future energy systems. The sixth section discusses the potential of Ther-
mostatically Controlled Load (TCL) in future energy systems, including modelling
of TCLs.
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1.1 Smart energy grids

Smart grid is a developing concept focused on enhancing and optimization of deliv-
ery of electrical energy from suppliers to consumers involving usage of modern in-
formation and communication technology. Advanced power electronic devices such
as smart meters and energy controllers provide possibility to gather information
about producers and consumers of electrical energy, which can be used for this
purpose.

Conceptual model of smart grid, proposed by National Institute of Standards
and Technology, is presented in Figure 1.3 [14]. Each domain and its sub-domains
encompass smart grid actors and applications. Actors include devices, systems, or
programs that make decisions and exchange information necessary for performing
applications: smart meters, Distributed Generation (DG), and control systems rep-
resent examples of devices and systems. Applications, on the other hand, are tasks
performed by one or more actors within a domain. The accordance between the

domains and the actors is presented in Table 1.1.

— Secure Communication Flows

- e Flectrical Flows

— Service
' MarkEts nperatinns \H\_Pruvi:ler

&

Bulk P’ =
Generation ST |
~ O — — —
5 » ==+ _ Customer
T Transmission ===« Distribution ==~ | /
"4 \.\" i

NIST Smarnt Grid Framework 1.0 January 2010

Figure 1.3: Conceptual model of smart grids
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Table 1.1: Smart grids domains and actors

Domains Actors in the domain

Customers The end users of electricity that may also generate,
store, and manage the usage of energy. Traditionally,
there are three customer types, each with its own do-
main: residential, commercial, and industrial.

Markets The operators and participants in electricity markets.
Service providers The organizations providing services to electrical cus-
tomers and utilities.

Operations The managers of the movement of electricity.

Bulk generation The generators of electricity in bulk quantities, which
may also store energy for later distribution.
Transmission The carriers of bulk electricity over long distances, which
may also store and generate electricity.

Distribution The distributors of electricity to and from customers,

which may store and generate electricity.

Smart grids provide the following features which are focused on the goals men-

tioned above [15]:

» self-healing: the grid is able to monitor itself in order to maintain reliability,

security, affordability, power quality, and efficiency;

e motivating and including the consumers: the individual consumers be-
come active members of the grid that benefits both consumers and overall

system reliability;
e resisting attacks: there are strict requirements that ensure proper security;

o providing power quality: with increasing number of sensitive to power
quality loads, the quality of delivered electricity must be improved to meet

the requirements;

o accommodating all generation: the modern grid will be able to accommo-
date distributed energy generators (sources). In the ideal case, it should be

analogous to plug-and-play in today’s computer environment;
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o enabling electricity market: the electricity market optimizes energy gen-
eration (lack of energy can be bought and abundance can be sold); it also pro-

vides fairer electricity pricing since the consumers can choose their providers;

» optimizing assets and improving efficiency: considering the whole pro-
cess (generation, transmission and consumption of the electricity) as a single

system provides possibility to minimize the costs.

There are several techniques and requirements which provide the features de-
scribed above [15,16]. At first the communication system should be standardized
and uniform. Hence, it provides possibility to detect and even predict faults in the
operation system. In order to restore the faults as fast as possible, the system should

meet the following requirements:
o the data and discrete computing should be open and standardized;
o great compatibility to other physical media communications;

o communication devices should be integrated with intelligent devices as an

entity.

Secondly, smart grids should help in keeping the balance between production
and consumption of the electricity that is a key point in maintaining the constant
frequency in the electrical grid. In order to perform it, the advanced metering system

should provide the following functions:

« remote control of power quality and voltage;

available continuous real-time measurement information for consumers;

support of flexible price for electric power;

self-control of the electric load based on the real-time price.

It is very important for the smart grids to include advanced power electronics
devices such as multifunction solid-state switches, integrated multifunctional devices
with logical control, intelligent electronic devices and power distribution devices. All
these devices are used to maximize the transmitting ability. In addition to that, the
grid should posses intelligent control, self-healing, and advanced transmitting and

distributing automation in order to maintain its stability.
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1.2 Virtual power plant

As Renewable Energy Sources (RESs) are rapidly penetrating into energy systems,
distributed energy generation becomes a major trend in many countries [17]. Virtual
Power Plant (VPP) is a new concept dealing with generation and management of
energy based on centralized control structure, which connects, controls, and visu-
alizes work of DERs, such as Combined Heat and Power (CHP) units, wind farms,
solar parks, and etc. as well as flexible power consumers and batteries [18,19]. It
is defined as "Aggregated control of a number of distributed generation units, grid
connected and installed near the loads. The aggregated control can be centralized or
decentralized system supported by advanced control algorithms and communication
infrastructure, then treated as a single large power plant” that can act as a conven-
tional one and capable of being visible or manageable on an individual basis [17,19].

There are three main parts of VPP: generation technology, energy storage tech-
nologies, and Information Communication Technology (ICT) [17]. DG (generation
technology) is divided into Domestic Distributed Generation (DDG) and Public Dis-
tributed Generation (PDG) [20]. DDG combines relatively small generation units
from residential, commercial, or industrial sectors. DDG can never participate in
the power market independently due to low capacity, VPP will allow DDG to do it
as an individual participant. On the other hand, PDG already has enough capacity
to take its chance in the power market.

Energy storage technologies is a new mean of helping to match varying demand
with stochastic and uncontrollable production due to high level of RES. The follow-

ing energy storage systems are considered for integration in VPP:
o Hydraulic Pumped Energy Storage (HPES),
o Compressed Air Energy Storage (CAES),
o Flywheel Energy Storage (FWES),
« Super Conductor Magnetic Energy Storage (SMES),
« Battery Energy Storage System (BESS),
 Supercapacitor Energy Storage (SCES),

 hydrogen along with Fuel Cell (FC).
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ICT is the important requirement for VPP that is used in Energy Management
Systems (EMS), Supervisory Control and Data Acquisition (SCADA), and Distri-
bution Dispatching Center (DCC) [17].

The main purpose of VPP is to combine all these components so they operate
as a single power plant that can be integrated in the energy system.

From the scope point of view, VPP can be classified as technical VPP and com-
mercial VPP. Technical VPP aggregates DERs from the same geographic location
and provides such services as local system management for Distribution System Op-
erator (DSO), Transmission System Operator (T'SO) system balancing, and ancillary

services. It enables [21]:
« visibility of DER units to the system operator(s);
« contribution of DER units to system management;

« optimal use of the capacity of DER units to provide ancillary services incor-

porating local network constraints.

Commercial VPP doesn’t consider the impact of the distribution network, it
is focused on aggregating profile and output to represent the cost and operating
characteristics for the DER portfolio. It enables [21]:

o visibility of DER units in energy markets;
» participation of DER units in the energy markets;
» maximization of value from participation of DER units in the energy markets.

From the structure point of view, VPP can be classified as [22]:

o Centralized Controlled Virtual Power Plant (CCVPP) is the simplest struc-
ture where all knowledge about the market and the planning of production
is separated from the DER (Figure 1.4);

« Distributed Controlled Virtual Power Plant (DCVPP) is a hierarchical struc-
ture defining VPPs on different levels. A local VPP supervises and coordi-

nates a limited number of DERs while delegating certain decisions upwards
to a higher level VPP (Figure 1.5);

27



« Fully Distributed Controlled Virtual Power Plant (FDCVPP) is a fully dis-
tributed structure where each DER acts as an independent and intelligent
agent which participates in and reacts to the state of the power system and

market (Figure 1.6).
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Summing it up, introducing VPP will allow more power to be generated locally
and shared by participants without needs to transmit it over long distances at high
voltage. Consumers will not be passive members of electrical grid anymore. They
will be able to influence the power network [22], in other words, they will become
prosumers: consumers that are capable of producing electrical energy [23]. Using
distributed generators will allow them to decide whether it is more profitable to buy
or to produce the electrical energy. Moreover, it will increase the stability of the
power network in the regions where blackouts are usual or possible to occur.

It is important to note that all these features imply utilizing advanced control
and optimization algorithms in DSM (which can be a part of VPP) for scheduling
fossil-fuel electricity production, managing energy storage, predicting the overall
energy consumption, and coordinating flexible portion of the loads (e.g. TCLs).
Thus, a variety of related problems arise: developing prediction models for the
system components (renewable production units, flexible loads, and storage units)
as well as models predicting overall production and consumption; defining the control
hierarchy and algorithms that would coordinate all the components at different

scales.
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1.3 Demand side management

Demand Side Management (DSM) aims to increase flexibility and efficiency of
already existing power distribution infrastructure, which is conventionally over-
designed to cope with maximum expected load peaks [24, 25].

For the past thirty years, DSM or load management programs have been used
as an alternative solution for system operation [26,27]. With increasing penetration
of DER and SG technology in power networks, the impact of Demand Response
(DR) has become significant. In general, DSM provides the following functions:

e energy saving;
o peak-load shaving;
» load shifting.

There are two control methods applied by DSM [28]. The first method is the
indirect load control. The power consumption is controlled from the customer side
taking into account the real-time pricing or frequency deviation in power system.
The second method is the Direct Load Control (DLC). In this case, the power
consumption is controlled directly by a system operator. This method provides
more precise adjusting of the consumption, but the customer’s needs and preferences
might be violated.

The load management programs are divided into economic-based programs and
stability-based programs [29]. The economic-based programs are focused on min-
imizing electricity price spikes during load peak periods. The stability based pro-
grams are focused on optimizing power system stability margin without involving
additional facilities. As a result, it causes reducing power system operating costs

and capacity investment costs.

1.3.1 Demand response

Demand Response (DR) plays an important role in DSM. It is defined as “changes
in electric usage by end-use customers from their normal consumption patterns in
response to changes in the price of electricity over time, or to incentive payments
designed to induce lower electricity use at times of high wholesale market prices or

when system reliability is jeopardized” [30,31]. The main goal is to shift electricity
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consumption from on-peak to off-peak periods [32]. In order to motivate customers,
DR programs should increase customers’ understanding of the benefits deriving from
DR and improve their capability to take part in DR programs using control tech-
nologies, such as smart thermostats and energy information. There are three types

of DR programs [16]:

« rate-based or price DR programs: these programs are based on varying of
the electricity price in order to motivate customers to adjust their consumption
pattern. The price of electricity may be different at pre-set times or may vary
dynamically according to the day, week and year and the existing reserve
margin. The price would be higher for on-peak periods and lower for off-peak
periods. Hence, it is profitable for consumers to move the energy consumption

to off-peak periods;

o incentive or event-based DR programs: these programs involve cus-
tomers to provide the possibility to adjust their demand remotely. Aggregate
control of remotely controlled loads can be used for reducing energy consump-
tion. For instance, dimming lighting levels or changing the setpoint for heating

(cooling) systems;

e demand reduction bids: customers participating in this category of pro-
grams initiate and send demand reduction bids to the utility or the demand
response service provider. The bids would normally include the available de-
mand reduction capacity and the price asked for. This program encourages
mainly large customers to provide load reductions at prices for which they are
willing to be curtailed, or to identify how much load they would be willing to
curtail at the posted price [33].

1.3.2 Energy system with varying electricity price signal

A promising approach to controlling the demand side is price-based control. If this
approach is used, consumer price of electricity varies dynamically in the real time.
This varying price signal can either follow the prices of the short-term wholesale
electricity markets or it can be constructed by the electricity retailer in any other
suitable way [34-37].

Although Direct Load Control (DLC) generally provides better ability to con-

trol the consumption, the price-based —basically indirect—method has some ad-
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vantages: there is no need to develop bi-directional communication interface and
share knowledge about the end-user’s environment; it is a decentralized structure
with common control signal (electricity price) where each customer decides how
to respond, so the customer’s preferences are not compromised and the system it-
self is simpler; it clearly motivates customers to participate in DSM by providing
economical benefits.

Figure 1.7 contains an example of an energy system with varying electricity price,
which is seen as a potential energy system in Denmark [10,38]. Price Generator
is used in the position of consumption controller and generates the optimal electricity
price profile to meet the reference consumption taking into account the estimated

response.

Model parameters

Price-response
estimator

A

Consumption
reference Price Generator Price Price-responsive
—> » »
(controller) consumption q
Aggregate
4 consumption

Figure 1.7: Energy system with varying electricity price signal

It is expected that the consumers will adjust their consumption to variable price
in order to reduce payments for the electricity, whereas it will positively influence
the grid stability (the consumption reference is generated taking into account the
grid’s needs).

Practical realization of such energy system requires many open questions to be
answered. For instance, defining algorithms for generating consumption reference
and price generator signals, developing the models for aggregate demand response
approximation (price-response estimator), and etc.

In this thesis the main attention is to the flexible consumption side (price-
responsive consumption). It is important to propose such optimal control strategies

that will motivate the consumers to become members of the presented energy sys-
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tem. Ideally, the electricity payments should decrease whereas the customer comfort
should not be violated. It is widely accepted in the literature that Model Predictive
Control (MPC) is a well-suited method for this class of control problems [39-44].

There are certain types of loads that can be considered as flexible loads. Their
common characteristic is that the electrical consumption can be shifted in time
without compromising the user comfort. For example, when one is charging an
electrical vehicle the exact consumption profile doesn’t matter and can be manip-
ulated according to the grid needs as long as the car is fully charged by specified
time. Another example is Thermostatically Controlled Loads (TCLs), as long as the
controlled temperature remains within comfort boundaries, the consumption profile
can be shifted. This thesis focuses on managing TCL due to their ability to perform
load shifting and widely-spread usage [28,45-49].

1.4 Model Predictive Control in Smart grids

MPC is an advanced control technique (more advanced than classical PID controller)
that has had a great success in many application in the recent decades. There are
several advantages that led to that [50,51]. Firstly, MPC allows operation near
equipment and safety constraints, in the most cases it provides the most efficient
or the most profitable regimes. Secondly, the method takes into account internal
interaction within the controlled process using a model. In general, it is preferable
to use a linear model; however, there are modifications with non-linear models [52,
53]. Thirdly, the basic formulation can easily be extended to multivariable plants
with almost no modifications. Moreover, the modern processors allow to solve such
optimization problems in real time.

The dynamics models of common energy system components such as electrical
vehicles, heating or refrigerating systems, wind farms, solar collectors and heat stor-
age tanks, which are a part of smart grid, are known [54-58]. Therefore, MPC

is a very attractive method for coordinating these units in the power network.

1.4.1 MPC basics

Figure 1.8 demonstrates the basic principle of MPC [59, p. 7]. At each iteration
the controller solves Optimal Control Problem (OCP) in order to get a sequence of

optimum manipulated variables (u). Classical MPC minimizes the distance between
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desired output (z) and predicted output (output), which is represented as a weighted

least squares objective function [50].
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Figure 1.8: Basic principle of MPC

The discussed above tracking control problem implies solving the following op-

timization problem, which represents the general idea of classical MPC [51,54]:

N—-1
. 1 - _

min @req = 52 e — Gellg + Nl — (1.1a)

k=0
s.it. Tpy1 = Axy + Buy (1.1b)
Yx = Cay + Duy (1.1c)
Umin S Ug S Umazx (11d)
Ymin S Yk S Ymax (118)

Here, cost function (1.1a) consists of two terms: the first term is the regulation
error between the actual output (y) and the setpoint (7); the second term penalizes
difference between manipulated variable (u) and target manipulated variable (u).
The impact of each term can be adjusted by corresponding weights (@ and R).
Mathematical model (1.1b, 1.1c) defines the dynamics of the plant. Inequalities
(1.1d, 1.1e) are the input and output constraints respectively.

Many modifications and variations of MPC exist:
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« the cost function may include additional term (||Auy||?) penalizing manipu-
lated variable change, in order to avoid undesirable oscillation of the manipu-

lated variable;

o the output constraints might be softened in order to guarantee that the opti-

mization problem always has a feasible solution;
o the plant can be represented by either linear or non-linear model.

In case when an MPC is based on a linear model, the resulting optimization
problem is either a Linear Program (LP) or a Convex Quadratic Program (QP).
These problems can be solved relatively easy and fast thanks to the algorithms
developed in past decades [60,61].

In case when an MPC is based on a non-linear model, the resulting optimiza-
tion problem is a Non-linear Program (NP), which requires more effort to solve.
An example of a Non-linear Model Predictive Control (NMPC) and solving the

corresponding NP are discussed further in this work.

1.4.2 EMPC basics

Economic Model Predictive Control (E-MPC) is a modification of MPC that includes
some economical aspects of the process into optimization problem. Such approach
is becoming more and more popular in power management, especially in the systems
with variable electricity prices, as it provides the most efficient supply and demand
plans while observing the plant dynamics and limits [39,40,62].

All the basic principles of MPC discussed in Section 1.4.1 apply to Economic
Model Predictive Control (E-MPC). The key idea of this modification is that a new

economical term of the cost function is introduced:

N-1
(beco - Z CTuk (12)
k=0

Here, c¢ is the price of applying manipulated variable 1.
If needed, both cost functions (1.1a) and (1.2) can be combined:

¢ = aqbreg + (1 - a)qbecm o€ [0, 1] (13)

Here, a helps to adjust the trade-off between desired dynamics and economical

benefits of the process.
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1.5 Potential of TCLs in future energy systems

Thermostatically Controlled Loads (T'CLs) is a common class of energy loads that
maintain temperature regulation [63]. Thermostat is a device that senses the con-
trolled temperature and manipulates the load [64]. In most residential applications
thermostats are hysteresis (ON/OFF) controllers: the load is turned OFF/ON when
one of the temperature limits is achieved. There are many different type of TCLs
including Air Conditioners (ACs), heat pumps, electrical space heaters, boilers, and
refrigerators.

It is widely accepted that TCLs have enormous potential for regulation services
provision due to its inherent thermal capacitance, ability of being turned OFF/ON
for some period of time without compromising customer’s comfort, and widely-
spread usage [28,45-49]. For example, TCLs represent about 20% of total electrical
consumption in the United States [65,66]. Moreover, it has been shown that aggre-
gate control of TCLs is more cost-effective than other energy storage technologies
such as flywheels, Li-ion, advanced lead acid, and Zinc Bromide batteries [67]. These
facts make TCLs an attractive target for DSM.

1.5.1 Physical modelling of TCLs

Modelling systems with TCLs (e.g. building climate system, commercial refriger-
ators, swimming pool heating systems, and etc.) is essential for predicting and
optimizing the demand response when using MPC.

Thermal dynamics of such systems is often modelled by so-called Equivalent
Thermal Parameter (ETP) model, which is presented and used in many other works
[28,39,66,68-71]. The model describes the energy balances from the heating/cooling
perspective of the TCL and its environment (e.g. a building).

Figure 1.9 contains an example of second-order ETP model of a building heat-
ing/cooling system. Here, Ty, is the ambient temperature [°C|; T, is the air
temperature [°CJ; Ty,qss is the mass temperature [°C]; U, is the total heat loss co-
efficient [kW /°C]; H,, is the total interior mass surface conductance [kW /°C]; Coir
is the air thermal mass [kWh/°C]; Cass is the thermal mass of the buildings ma-
terial and other equipment [EWh/°C]; Qu is the heat gain to the air kW], which
depends on the state of the TCL; Q45 is the heat gain to the mass [EWV].

The following state equations describe the dynamics of air and mass tempera-
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Figure 1.9: Second order ETP model of a building heating/cooling system

tures. Note that the resulting time constant of the mass temperature change is slower

than the time constant of the air temperature change:

AT, (t 1

( ) == [Ua(Tamb - Tair) + Hm(Tmass - Tair) + Qair] (14&)
dt Cair

dTmass (t) 1

- . = — Hm Tair - Tmass mass 1.4b
dt Cmass [ ( ) + Q ] ( )

This model can be simplified by assuming that both air and mass temperatures
are equal to the temperature controlled by the TCL (T = Tgi = Thnass) and that
air and mass thermal capacitances are lumped to the total thermal capacitance
(C = Cuir + Chnass). The resulting first order model is more general and can be used
for describing a wider class of TCLs [72-75]:

T L [8) = () — () RP) (15

dt CR
where T is the temperature controlled by the TCL [°C]; C' is the thermal capaci-
tance [kWh/°C] and R is the thermal resistance [°C'/kW]; P is the electrical power

[EW]; Tump is the ambient temperature [°C|. Parameter m defines the amount of
heating/cooling energy produced by the TCL. As discussed above, in the most resi-

dential application, TCLs are controlled according to the hysteretic control rule for
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a heating device:

0 if T>T,+H
mtT)=4q 1 if T<T,—H (1.6)
m(t) otherwise

or for a cooling device:

-1 if T>T,+H
m(tT)=< 0 if T<T,—-H (1.7)

m(t) otherwise

m € {0,%1} is the state of the TCL (OFF anf ON respectively), the sign depends
on whether the TCL is a cooling (minus) or a heating (plus) device; T, is the
temperature setpoint [°C|; H is the hysteresis band of the thermostat [°C].

The temperature controlled by the TCL is kept within the hysteresis dead-band

Ty, — H; Ty, + H|. Figure 1.10 demonstrates the dynamics of a system with heating
TCL.
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Figure 1.10: Example of temperature evolution in a heating TCL
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1.5.2 Thermostatically controlled loads in demand side manage-

ment

Using TCLs in DSM implies that they can be externally controlled either directly
or indirectly. In case of direct control, the system operator has a full control on
the loads. This way, of course, provides more precise adjustment of the electricity
consumption, but the customer’s needs and preferences might be violated: it is more
difficult to respect desired temperature boundaries, especially in case of aggregate
control. Moreover, it requires an additional interface to manipulate the loads that
is usually done by the local thermostat.

Another way is to change the temperature setpoint of the TCLs [55,76-78] which
results in either immediate change of the TCL’s state or extending the current
state (see Figure 1.11); thus, changing the temperature setpoint allows to shift
the ON-OFF cycle of the TCL. Usually, the temperature setpoint is linked to the
electricity price [76,79]. Therefore, the price change indirectly influences the total
power consumed by the loads. The advantage of this indirect method is that the
customers are able to choose how to react to the electricity price change according

to their preferences.
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Figure 1.11: Effect of temperature setpoint change of TCL
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The price response mechanism that is usually proposed for this class of TCLs
is based on linear change of the thermostat setpoint in response to price changes.
This mechanism was used in the celebrated Olympic Peninsula project [79] and more
recently it has been proposed in a modified form in [80]. Heating setpoint is linearly
decreased if the electricity price increases and vice versa. Such static mechanism
does not take into account the complex dynamic response of the large groups of
TCLs nor can it make use of the prediction of weather or other factors affecting the
future consumption of TCLs.

Therefore the recent studies are focused more on using E-MPC [39, 76, 81] for
deriving optimal setpoint change profile, so it can make direct use of the dynamic
model of the response of the TCLs in order to foresee their responses during the
whole prediction horizon (e.g. one day). Utilization of the weather forecast as well

as of other predictions is also possible.

1.5.3 Aggregate modelling and control of TCLs

There are many proposed MPC-based control systems for utilizing TCLs in DSM
[39-44]. However, in these examples the scope of optimization is limited either
to a single building, to relatively small groups of buildings, or to microgrids with
quite modest set of power generation and consumption devices. Consequently, the
appliances, generators etc. could be described by individual simplified dynamic
models (e.g. second-order ETP presented in Section 1.5.1). MPC is then formulated
as a relatively simple linear or linear mixed integer program.

Another approach is to focus on a large population of TCLs. Consequently it
is no longer possible to model each appliance by its individual model, but suitable
aggregate population model must be developed and used instead. Various models
describing aggregate demand of a population of TCLs have been presented in the
literature. These models can be classified with respect to the control strategy.

The first class of models proposed in [58,77, 78] implies control strategies based
on changing temperature setpoints of the TCLs in the population. Usually the
temperature setpoint change is the same for all TCLs. These models are attractive
by their simplicity (second order transfer function with complex poles). However,
they are based on many simplifying assumptions (constant outdoor temperature,
specific probability distribution of TCLs parameters etc.). Consequently, it is not

possible to use them in more realistic situations and for the relatively long-term
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predictions needed by E-MPC.

The second class of the models implies controlling the TCLs ON/OFF-states
directly by generating a switching signal and include probability density model [82,
83], generalized battery model [65,84], and bin state transition model [55,66,85,86].

In probability density model, the duty cycles of TCLs are treated as a random
variable, so the model derives an expression for the probability density function of
the duty cycles that accounts for the effects of the driving process noise. Such model
provide relatively accurate but short-term load predictions of a population of TCLs.

In generalized battery model and its analog called leaky storage model [87],
a population of TCLs is considered as an energy storage that losses the stored energy
with an intrinsic rate and it is replenished by the variable power consumption. In this
model the minimum and maximum energy levels represent the aggregate flexibility
of a large population of TCLs and the goal of the control strategy is to keep the
stored energy within these limits.

In bin state transition model, the temperature dead-band is divided in equally-
spaced (uniform model) or non-equally-spaced (non-uniform model) bins. Each bin
state represents the number of TCLs in a particular temperature bin with a par-
ticular state (ON or OFF). The model describes distribution and evolution of the
TCLs among the bins. The resulting demand is calculated from the number of units
in ON state.

The last two models provide highly accurate long-term demand predictions.
However, the practical implementation of direct control strategies is more difficult,

because it implies direct control of the loads bypassing local thermostats.
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2 Objectives of the thesis

This thesis deals with developing advanced control algorithms for utilizing the po-
tential of Thermostatically Controlled Loads (TCLs) in smart energy grid. It is as-
sumed that the energy system employs the concept presented in Section 1.3.2, i.e.
the electricity price is changing according to the system needs taking into account
current and predicted renewable energy production. The control algorithms design
is based on Model Predictive Control (MPC), specifically its economic modification
(Economic Model Predictive Control (E-MPC)); this method naturally takes into
account the loads dynamics and allows to optimize its behavior over some period of
time in the future (predictive horizon).

The focus of the work is on the price-responsive consumer’s side, in particular on
the optimal control algorithms that can be applied on the consumer’s side, whereas
the price generation algorithms are out of the thesis scope. The main objective
of the control algorithms is to minimize the operational cost of the flexible loads,
in particular TCLs, taking into account the current electricity price and future
electricity price profile provided by the energy system, environmental conditions
(weather forecast), and customer comfort. Such Demand Response (DR) program
will motivate consumers to participate because it will reduce their payments for
electrical energy. It will also provide regulation services to the grid because the
price signal is generated taking into account the grid’s needs.

The rest of the thesis is divided into two parts. The first part deals with optimiz-
ing energy consumption of a system with a single relatively large TCL, which can
be described by a Linear Parameter-Varying (LPV) model. An example of such sys-
tem is presented in the Danish Pilot, Task 5.3 of the H2020 SmartNet project [88].
A part of this project is to optimize energy consumption of swimming pool heating
systems selected for verifying the concept of energy system with varying electricity
price. It is expected that environmental conditions will have significant impact on

the system dynamics (e.g. ambient temperature, wind speed, and/or occupancy
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status). Classical MPC requires a Linear Time Invariant (LTI) model describing
plant dynamics, thus possible variation of the model parameters cannot be taken
into account, therefore the MPC based on the LPV model was developed.

The objectives related to the first part of the thesis can be summarized as follows:

o formulate an LPV model of a swimming pool heating system for E-MPC con-

troller design;

o modify the E-MPC optimization problem to account variation of the model

parameters;

 verify the E-MPC control strategy.

The second part deals with aggregate control of a population of TCLs using
E-MPC. These TCLs have smaller thermal capacitance and power consumption,
therefore they might be negligible individually. However, these loads can play an
important role if a larger population is aggregated. This task doesn’t only require
developing an appropriate optimal control algorithm, but also an aggregate model
describing demand response of the whole population. The structure of the proposed
control system is hierarchical. E-MPC in the upper level responds to varying elec-
tricity price and changes the temperature setpoints of the thermostats in the lower
level.

Section 1.5.3 presents existing aggregate models, however they either assume
direct load control or don’t provide accurate and long-term approximation of the
population demand response. Thus, a new model is needed to be designed in order

to meet the following requirements:

 the model should provide accurate and long-term (e.g. 12-24 hours) predic-

tions of electrical energy consumption by the whole population;
o the model should imply indirect load control;

o the complexity of the model should not depend on the number of units in the

population.

The proposed model is a non-linear modification of bin state transition that
meets these requirements and described further in the thesis.

The objective of the control strategy is the same as in the first part: to minimize
the overall operational cost of the population assuming that it belongs to a sin-

gle owner (e.g. research facility, office building, factory etc.). Since the proposed
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model is non-linear, the E-MPC should solve non-linear mixed integer optimization
problem.
The objectives related to the second part of the thesis can be summarized as fol-

lows:

o design a simulation model for verification of the aggregate model and vali-
dation of Economic Non-linear Model Predictive Control (E-NMPC) control
strategy;

o develop a non-linear modification of bin state transition model for aggregate

modelling of the TCLs population;
o design and verify the E-NMPC control strategy.

The rest of the thesis is organized as follows. Chapter 3 briefly introduces the
Danish Pilot and SmartNet project as well as presents the main results: the LPV
model of the system; the modification of classical MPC that allows to take into
account parameter variation of the model; the control algorithm verification results.
Chapter 4 presents the simulation model of the large population of TCLs based on
the hybrid model used for validation of the aggregate model and the control strategy.
Chapter 5 proposes a novel approach for aggregate modelling of a large population
of TCLs. The proposed model is a non-linear modification of bin state transition
model. Chapter 6 develops the economic control strategy applying the means of E-
MPC based on the proposed aggregate model. The last chapter contains summary

of the obtained results and conclusions.
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3 E-MPC based on linear parameter-varying

model

Some systems with TCLs are better described by Linear Parameter-Varying (LPV)
rather than Linear Time Invariant (LTT) model because the model parameters might
depend on the environmental conditions. For example, Coefficient of Performance
(COP) usually depends on the ambient temperature; thermal conductivity and heat
transfer coefficients may depend on the wind speed; and some other parameters may
depend on the occupancy status in case of residential applications [89-91].

An example of such system is studied in the Danish Pilot, which is also a part
of the SmartNet and the CITIES [92] projects. SmartNet is a big European project
that involves 9 European countries and has 22 partners from academia, research
organizations and industry [88]. The main goal of the project is to propose new
practical solutions to the increasing integration of Renewable Energy Source (RES)
in the existing electricity transmission network. The focus is on grid operators at
national and local levels (respectively the TSOs and DSOs) and the exchange of
information for monitoring and for the acquisition of ancillary services (reserve and
balancing, voltage balancing control, congestion management) from subjects located
in the distribution segment (flexible load and distributed generation). As a part of
the project three Pilots were developed: in Italy, in Denmark, and in Spain.

The aim of the Danish Pilot is to explore the potential of aggregate control of
summer houses with swimming pools to be a flexible consumer and store energy
harnessed from renewable energy sources. These summer houses consume relatively
high amount of energy for the swimming pool temperature and humidity control.
At the same time the swimming pools, filled with water, have large thermal mass,
which allows to shift and to schedule the heating profile without compromising the
occupants comfort in order to optimize the energy consumption. Moreover, booking

or occupancy information can be taken into account to prevent unnecessary waste
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of energy: performing the temperature control when nobody is using the swimming
pool.

Classical MPC requires an LTI model describing plant dynamics. In order to
take into account possible variation of the plant model parameters, an MPC based
on an LPV model should be developed. This task was divided into the following
steps addressed in this chapter:

o formulate an LPV model of the swimming pool heating system for the control

strategy verification purpose;
o formulate an optimal control strategy based on the LPV model;
o verify the control algorithm (simulations).

Note that in this chapter the swimming pool heating system is considered
as a case study, the obtained results can be applied to other kinds of TCLs with

similar properties. The presented results were already published in [93].

3.1 Model of swimming pool heating system

Figure 3.1 contains the structure of the swimming pool heating system. The pump
circulates the water in the system. The heat pump and the heat exchanger provide

hot water to the system. The heat pump is assumed to be controlled externally.

Swimming pool

C—3 >
Valve
Pump Heat exchanger Heat pump

Figure 3.1: Structure of swimming pool heating system
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Figure 3.2: Heat and mass flows of the pool

Figure 3.2 contains heat and mass flows of the swimming pool: heat flow rate by
evaporation (Qemp); mass flow rate out of the pool due to evaporation (7iteyqp); heat
flow rate by convection (an); heat flow rate by long-wave radiation (de); heat
flow rate by short-wave radiation (Qsoz); thermal conduction to the ground (Qcond);
heat gain by the heat pump (Qheat). Long-waves represent radiation exchange with
the environment, e.g. walls for indoor pools or the sky for outdoor pools; short-

waves represent thermal gain from total solar radiation on a horizontal surface [94].

Note that further in this section the thermal conduction to the ground (Qc,md)
is neglected. In case of indoor swimming pool, the pool is usually surrounded by
engineering rooms with relatively high ambient temperatures; in case of outdoor
swimming pool, it has insignificant influence (<1 %) [94].

According to the first law of thermodynamics:

Pw * C’w : ‘/p : Tp = Qm - Qevap - Qcon - Qrad + Qsola (31)
where T, is the swimming pool temperature [°C]; p,, is the water density [kg/m?];
C,, is the specific heat of water [kWh/(kg -° C)]; V, is the pool volume [m?].

The corresponding heat flows are derived in [89,94] as follows:
Qevap = Apaevap (Psat(Tp) - Pstream (Tamb)) ) (323)
Qevap = 50.58 + 66.9v,,°, (3.2b)

where A, is the pool area [m?]; Qleygp 1s the modified evaporation coefficient; Py
is the pressure saturation [Pal; Psyeam is the stream pressure [Pal; v, is the wind

speed [m/s]; Tamp is the ambient temperature [°C.
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Qcon = aAp (Tp - Tamb) s (33&)
a = 3.1+ 4.1v,, (3.3b)

where « is the heat transfer coefficient.

Qrad = Apelyo (T, — Tums) (3.4a)

e =09, (3.4D)
s W

o =5.67-10 Bm, (340)

where £f is the emissivity coefficient; o is the Stefan-Boltzmann constant [W /(m? -
K*).

Qsol = Aper Egion (3.5)

where 0, 1 is the total solar radiation on a horizontal surface.
As the dynamics of the heating system (the heat pump, the heat exchanger, and
water supply pipes) is significantly faster than thermodynamics of the water mass

in the pool, its model can be assumed to be static:
Qheat =V + Py, - COP (3.6)

Here, V€ {0, 1} is the state of the heating system, which can be either OFF or
ON respectively; P, is the nominal electric power of the heat pump [kW]; COP
is the coefficient of performance.

As mentioned earlier, the main purpose of the swimming pool model is to verify

the control strategy. The following assumptions were made in order to simplify it:

» evaporation is neglected, thus the volume of the water in the pool is constant;

o all heat losses are lumped to a single heat loss, which depends on the ambient

temperature and the wind speed, similar to equations (3.3);

o relationship between COP and T, is linear [95] within the considered range:

COP = 0.0952 - Ty + 3.1. (3.7)
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The resulting model is defined as follows:
pw-Co V- Ty = A, (Tuy — T,)) + V - Poom - COP, (3.8a)
Q= L+ 1]+ Uy, (3.8b)

where p and 7 are the coefficients defining the relationship between the wind speed

and the heat transfer coefficient o.

3.2 E-MPC based on LPV model

This section presents economic MPC based on a Linear Parameter-Varying (LPV)
model and describes its transformation to a standard linear program. Note that
these results were published in 2017 and presented in [93].

Model (3.8) can be generalized as follows:

Tl = Ad(Qk)xk -+ Bd(ek)uk + Ed(9k>dk (39&)

Here, y;. is the output vector; x; is the state vector; uy is the control vector; dj,
is the measured disturbance; A,, By, E4 and C,; are the state matrices; 6, is the

vector of parameters influencing the state matrices.

3.2.1 Optimization problem

The objective of the economic MPC is to minimize operational cost of the system

taking into account input and output constraints [39]:

Hbin NX:I CrUE + PuUks1 (3.10a)
k=0

st.  xpy1 = Aa(Or)xr + Ba(Ok)ug + Eq(0r)dy (3.10Db)
Yr = Ca(Ok) s, (3.10¢)
Ymink — Uk < Yk < Ymaz,k + Vk (3.10d)
Umink < Uk < Umaz,k (3.10e)

Here, N is the prediction horizon; ¢ is the cost coefficients (e.g. electricity
price); vy is the slack variables relaxing the output constraints with corresponding
penalty cost py; Ymink and Ymaerr are the output constraints; wpn k and Upeq i, are

the input constraints.
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3.2.2 Corresponding linear program

Problem (3.10) can be converted to a standard linear optimization problem of the

following form:

min  fTx (3.11a)
5.t Aineg® < bineg (3.11b)
Tmin S T S Tmax (311C>

Here, f is the vector of cost coefficients; = is the vector of variables to be de-
termined; Ajneq and bipe, define the inequality constraints; @, and ., are the
minimum and maximum boundaries of x respectively.

The transformation from optimal problem (3.10) to optimal problem (3.11)
is presented below. Table 3.1 contains corresponding notations. The transformation

is based on similar transformation for the case of the LTI model presented in [51,96]

Table 3.1: MPC for LPV model notations

Parameter

Description

U= [UO u ... U,N_l]T

Y =[y v yn]"
Unin = [Umino - Umin.n—1)"
Unaz = [Umax,o Umaz,N—l]T
Yoin = [Zymm,l ymm,N]T
Yias = [ymax,l ymax,N]T

D - [do dl del]T

O = [0 0y ... |7

C= [Co Cc1 ... CN_l]T

V= [UQ U1 ... UNfl]T

P = [pv Pov - pv]T

Vector of future inputs

Vector of predicted outputs
Vector of min. input constraints
Vector of max. input constraints
Vector of min. output constraints
Vector of max. output constraints
Vector of measured disturbances
Vector of parameters

Vector of cost coefficients

Vector of slack variables

Vector of penalty cost coefficients

Equations (3.12) and (3.13) demonstrate calculation of state and output vec-

tors predictions with given initial states z(, future control inputs U, and measured

20



disturbances D. Where Ay = Aq(0r), Br = By(0y), Ex = Eq(0;) and Cy = Cy(0y).

T = ono + B()Uo + E(]do

Ty = All’l + Blul + E1d1
= Ay (Aoxo + Boug + Eody) + Biuy + Erdy
= A1 Agzg + A1 Boug + Biuy + A1 Eody + Frdy

r3 = Aoxg + Bous + Fody
= Ay(A1Agzg + A1 Boug + Biuy + A1 Eody + Evdy)+
+ Baug + Eods
= Ay A1 Agxg + Ay A1 Boug + AsBiuy + Bous+
+ Ay A1 Eody + As B dy + Fads

Ty = (Hf_ol A,-) To+ S0, (H;‘—jc—l Aj) Bjui+
+35 (H;qu Aj) Eid;
pe= Ci (15 A) oo + G 4 (T A)) Bt
+Ce i, (Hj'i}c—l Aj) Lid;

U1 01 Hu,l,O 0 0 U
Y2 O Hu,Q,o Hu,2,1 0 U1
= :CO
YN On Hu,N,O Hu,N,l Hu,N,N—l UN-1
—— —— ~ ~ N —

Y o I U

Hgiip 0 0 do

Hyoo Hg2n . 0 dy

Hono Hani .. Hoinn-1| |dn—

S ~~ AV/
Ty D

Output vector predictions (3.13) can be rewritten in a shorter form:

k—1 k—1
Yr = Orxo + Z Hy g u; + Z Hgpid;

1=0 i=0

(3.12a)

(3.12b)

(3.12¢)

(3.12d)

(3.13)

(3.14)

(3.15)
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Here Oy, is the extended observability matrix:

k—1
O = Ci (H A,»)
=0

(3.16)

Here H, and H, are the Markov parameters with respect to manipulated variable

and measured disturbance:

i+1
Hypi=Ch ( H Aj) B;

j=k—1

i+1
Hypi = Ci ( 11 Aj> E

j=k—1

The predicted output vector Y is calculated using (3.15):

Y =020+ 1,U+1yD

see equation (3.14) for detailed structures of matrices ®, I, and T'y.

The input constraints are:

Umin S U S Umam

The output constraints are:

szn_VSngma:c—i_V

Using (3.18), (3.20) can be rewritten as:

Ymin -V S (I)QJO+FUU+FdD S Ymax +V

U -V <Y, —Pxg—1;D

(3.17a)

(3.17b)

(3.18)

(3.19)

(3.20)

(3.21a)

(3.21D)

(3.21¢)

Finally, the parameters of linear optimization problem (3.11) can be found as fol-

lows:

(3.22a)
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C
= 3.22b
=1 (3220
I, I
Aineq = _Fu -1 (322(3)
0o -1
Yiae — Pxg — T'yD
bineq - _Ymin + (D[L'O + FdD (322(1)
0
_Umin
_—OO
_Umaz
Tmaz = (322f)
- _’_m

In this section the E-MPC based on an LPV model and its transformation into
an LP optimization problem is presented. Note that in some systems, including the
swimming pool heating system considered in Section 3.1, the manipulated variables
can only have two states ("OFF”/”ON”). The proposed technique can still be
applied for E-MPC design by adding the following constrain: U € {0,1}. Then
(3.11) becomes a Mixed-Integer Linear Program (MILP) optimization problem.

3.3 Simulation results

This section contains simulation results that verify the proposed E-MPC based on
the LPV model. The control strategy is able to take into account the influence of the
environmental conditions (wind speed and ambient temperature) on the swimming
pool water mass thermodynamics. Also the occupancy status is taken into account
by adjusting the temperature constraints: when the swimming pool is not used,
the minimum swimming pool temperature is lowered (16 °C') in order to reduce the
energy consumption; when the swimming pool is occupied, the minimum swimming
pool temperature is equal to comfort temperature (22 °C'). Since the controller
has information about the occupancy status, it can start heating the swimming
pool in advance; therefore, when the swimming pool is assumed to be occupied, its

temperature is already comfortable.

93



Table 3.2: Simulation parameters for swimming pool heating system

Value | Units

v, 27 m?® | pool volume

A, 18 m? | pool area
Poom 1 EW | nominal electric power of the heat pump
COP 5 Coefficient of Performance at 20°C’

ts 1 hour | controller sampling time

t 216 | hours | simulation time

N 48 hours | predictive horizon

Do 10* softening constraints coefficient

Table 3.2 contains simulation and system parameters: ¢, is the sampling time, ¢
is the simulation time.

Figure 3.3 demonstrates the obtained simulation results. The figure consists of
three parts: the first part contains water temperature of the swimming pool and
the minimum comfort constraint; the second part contains normalized price signal
and the optimal profile of heat pump state; the third part contains weather forecast
(outdoor temperature 7,,,, and wind speed v,,).

The first graph demonstrates that the system consumes the least amount of
energy possible: the controlled temperature is kept as close as possible to the lower
limit, thus the main objective of the optimal control strategy is met. The slight
violation of the comfort constraint (at 55 hours of simulation time) is due to slow
heating dynamics: the controller started heating 48 hours (predictive horizon) in
advance, but the heating system couldn’t provide enough power (the heating system
was in ON state all the time until the lower temperature limit change).

The second graph demonstrates that the system operates in economic regime,
which also corresponds to the main objective of the control strategy. The heating
system is ON, which means that it consumes electrical energy, during the periods
of time with lowest electricity prices.

The third graph contains information about weather conditions that have sig-

nificant impact on the swimming pool heating dynamics as described earlier.
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Figure 3.3: Simulation results: swimming pool heating system

State

[m/s]

V

95



4 Simulation model of TCLs population

As discussed previously, one of the main objectives of the thesis is to develop an
economically optimal control system for a population of Thermostatically Controlled
Loads (TCLs) in energy system with variable and predictable electricity price. The
simulation model is developed to verify the control system and control algorithm.
The main requirement for the simulation model is to provide accurate and realistic
dynamics of the population, which is achieved by simulating each unit individually.
A population of electrical space heaters is considered as a case study.

This chapter is organized as follows. The first section describes the model of an
individual electrical space heater based on a modified model presented in Subsec-
tion 1.5.1. The second section describe the simulation model of the whole popula-
tion. The third section presents simulation results and analyze the influence of the

population parameters on the demand response.

4.1 Model of an individual system with an electrical

space heater

An electrical space heater is a Thermostatically Controlled Load (TCL) with hys-
teresis control law: the load is turned ON when the controlled temperature is below
the lower hysteresis boundary and turned OFF when the controlled temperature
is above the higher hysteresis boundary. When turned ON, the unit consumes elec-
trical power, whereas in OFF state the consumption is equal to zero.

It is assumed that the temperature setpoint can be externally changed in order
to conform with the control system. This feature provides an interface for the higher
level E-MPC to indirectly influence the state of the unit.

The resulting model is a modified model presented in Subsection 1.5.1:

T — 00~ Tualt) — m()RP], (4.1a)
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0 if T>T,+AT,+H
m(t*)=4¢ 1 if T<T,+AT,—H (4.1b)

m(t) otherwise

Here, T is the temperature controlled by the TCL [°C]; C' is the thermal capac-
itance [kWh/°C] and R the is thermal resistance [°C'/kW] of the heated area (e.g.
room); P is the electrical power [kW]; T, is the ambient temperature [°C|; m
€ {0,1} is the state of the TCL (OFF anf ON respectively); T}, is the temperature
setpoint [°C]; ATy, is the temperature setpoint change [°C|; H is the hysteresis band
of the thermostat [°C].

Separated Ty, and ATy, signals allow to have a single manipulated variable
(ATy,) to control all the units in the population, whereas each unit can have an

individual T, specified by the customer.

4.2 Model of population of electrical space heaters

The simulation model provides demand response of the whole population to
the temperature setpoint change (ATj,) and the ambient temperature (Tpmp).
The population consist of n heating systems with electrical space heaters, each
unit of the population is described by an individual set of parameters 6, =
Ci, Ri, Py, Tepi, H, To,;, mp,| and simulated according to (4.1). Therefore
the model is highly accurate, but the complexity of the model depends on the num-
ber of units in the population, that is why this model is not suitable for model based
control system design.

Figure 4.1 contains the corresponding Simulink model. The wide lines are vectors
of size equal to the number of units in the population. All blocks perform element-
wise operations, thus elements with particular index are the signals corresponding
to the particular unit from the population with the same index. Such structure of
the model provides possibility to simulate a population of any size.

The "Thermostats” block applies equation (4.1b) for each element of T, the
vector of the temperatures controlled by the population units, and generates m, the
vector of the states of the population units. This block also generates state vector
X, which is used in control algorithm and described further in the thesis.

The thermal capacitances (C;), the thermal resistances (R;), and the electrical

powers (P;) of units are log-normally distributed with the corresponding means
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Figure 4.1: Simulink model of TCLs population

(Cpny Rm, and P,,) and relative standard deviation (0,). Log-normal distribution
guaranties that these parameters never take negative value, which corresponds to
the realistic scenario. It is shown in [97] that the type of distribution doesn’t have
a significant impact on the demand response.

The hysteresis band of the thermostats (H) is the same for all units; the tem-
perature setpoints (7s,;) are evenly distributed within [T}, + H, Ty, — H], here
[Tiow, Tup| corresponds to the working temperature range of the population; the
initial temperatures (7p,;) are randomly chosen from [Ty, ; — H, Ty, ; + H|.

The output of the model, the aggregate normalized demand of the whole popu-

lation, is given by the following ratio:

Pu(t) = % (4.2)

The initial state of the TCLs (mg,) are chosen taking into account the duty
cycles of the loads: the probability of each unit to be turned "ON” in the beginning
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of simulation is equal to its duty cycle D;. Thus the output of the model in the
beginning of simulation is equal to the steady state electrical power of the population

(Pst): N
Pst - Zl DZPl

— (4.3)
Zl P
Here, D is the duty cycle of the TCL and calculated as follows:
ton 7
D= ——"— (4.4a)
ton,i + toff,i
Tyi — H —Toymp — PiR;
tonz‘ — —RZCZ]_ Sp,t am 7 (2 4‘4b
| ! (Tw + H — Toms - PZRZ») ap)
Ts i+ H — Tamb
to i — —RlCZl e 4.4
15 N (Tsp,i - H - Tamb) ( C)

Equations (4.4b) and (4.4c) are derived in [74].

4.3 Simulation results

This section presents analysis of the influence of temperature setpoint change on
electricity consumption of a single unit and the population of TCLs. Additionally,
the influence of the heterogeneity level on the electricity consumption is presented.

Table 4.1 contains values of the population parameters used for simulation and
derived from typical building stock in the Czech Republic [98]. The ambient tem-

perature (7,,,,) is constant.

Table 4.1: Population parameters

Par. Value Units Description

R, 3.4 °C'/kW | mean thermal resistance of the TCLs

Cm 7 EWh/°C' | mean thermal capacitance of the TCLs

P, 13.4 EW mean electrical power of the TCLs

orer | 0.05-0.5 relative standard deviation

H 0.5 °C hysteresis band of the thermostat

Tiow 20 °C lower boundary of the working temp. range

Toup 24 °C upper boundary of the working temp. range
Tomb -5 °C ambient temperature
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Figure 4.2 contains simulation results for the case of a single unit (n = 1).
Evolution of the temperature controlled by the TCL (T') is a periodic process. The
normalized electrical power of the population (P,) basically demonstrates whether
the load is ON or OFF. Changing the temperature setpoint (7,) indirectly influence
the state of the TCL (m): it can either extend/shorten the current state (shift the
load cycle) or force immediate change of the state (reverse the load cycle). In the
figure, increasing the temperature setpoint change (ATj,) leads to extending the ON
state and decreasing the temperature setpoint change (AT},) leads to changing the
ON state to the OFF state. Similarly, decreasing the temperature setpoint change
(AT;,) when the unit is OFF will lead to extending the OFF state; increasing the
temperature setpoint change (ATy,) when the unit is ON will lead to shortening or
changing the ON state.

Temperatures
231
-
22 i Tsp
[5) | _———-Tsp+ATSp+H_
- ! A . T_+AT_-H
21 ] sp sp
I V. N_N JAVAA v a0 Va7
20 1 1 1 1 ]
0 5 10 15 20 25
1 Temperature set-point change
o
205
|_
<
O L 1 L L |
0 5 10 15 20 25
1 Normalized consumption
T T
o~ 05 4
O 1
0 5 10 15 20 25

Time Thoursl

Figure 4.2: Single unit: temperature setpoint change test
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Figure 4.3 contains simulation results for the case of a relatively large popu-
lation of TCLs (n = 10 000). The population can either be balanced (constant
consumption) or imbalanced (changing consumption). When the population is bal-
anced the temperature controlled by the TCLs (7' ;) are distributed such that ratio
between ON and OFF units is a constant. This is possible due to heterogeneity
of the population and relatively high number of units. Increasing/decreasing the
temperature setpoint change (AT},) leads to changing the ON/OFF cycles of the
units as described above: at 5-th hour of the simulation time some of the units
immediately changed their state from OFF to ON, consequently the consumption
immediately increased; the following oscillations can be explained by the fact that
the ON/OFF cycles of the units shifted. The opposite situation occurred at 15-th
hour: the consumption immediately decreased due to decrease of the temperature
setpoint change (ATj,).

Figures 4.3 - 4.6 demonstrate that the dynamics of demand response to the
temperature setpoint change (AT,) significantly depends on the relative standard
deviation (o, ), which represents the level of heterogeneity of the population. Lower
0,1 corresponds to lower variability of the parameters and therefore leads to more
oscillatory transitions: the units with smaller deviation of the parameters are more
synchronized. In the extreme case (when all the units are identical) the population
will behave similar to the case of a single unit (Figure 4.2). Higher o, corresponds
to higher variability of the parameters, the population with higher o,.; lose coherence
faster, therefore leads to less oscillatory and faster transitions.

Figure 4.7 demonstrates that the dynamics of demand response is non-linear.
The experiment is similar to Figure 4.5, but the temperature setpoint change (ATy,)
is two times higher. When AT, is high enough (more or equal to the hysteresis band
of the thermostats (H)) all units turn ON (or OFF in case of decreasing ATy,) and

remain in this state for some time (depending on value of AT,).
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Figure 4.3: Population: temperature setpoint change test, o, = 0.05
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5 Aggregate model of the population

The simulation model presented in Chapter 4 is computationally too intensive to
be utilized for model-based control of a large population of TCLs. As discussed in
Subsection 1.5.3, the existing aggregate models cannot provide relatively accurate
demand response of the population of TCLs to a temperature setpoint change.

The aggregate model presented in this chapter is based on the bin state tran-
sition model presented in [85,86,99]. The original model describes evolution of
the units states and implies direct control of the population: the input signal of the
model allows to manipulate the loads states; such approach have some disadvantages
discussed in Subsection 1.3.1.

The proposed aggregate model is a non-linear modification of the bin state tran-
sition model which allows to control the population by changing the temperature
setpoint (indirectly influencing the load states).

This chapter is organized as follows. The first section contains description of bin
state transition model. The second section introduces the non-linear modification of
bin state transition model for homogeneous population. The third section extends
the modified model to heterogeneous population applying clustering technique. The
forth section contains simulation results demonstrating that the model can accu-
rately capture the demand response of a population of TCLs and robust to the level

of heterogeneity.

5.1 Bin state transition model

The original bin state transition model is used for approximating demand response of
a large population of TCLs assuming that their states can be directly controlled. In
the original formulation it is assumed that the population is homogeneous: the loads
are defined by identical set of parameters § = [C, R, P, T, H]|. The operating

temperature range [T}, Ty is evenly divided into 2V, state bins, see Figure 5.1.
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The idea of the model is to describe distribution and natural transition of the unis
over these bins. Each bin is characterized by the corresponding state, temperature
range, and transitions rate to the next bin. The solid lines demonstrate transition of
the unis under normal operational conditions: when the loads are turned OFF the
controlled temperature decreases and vice versa; when the controlled temperature
reaches one of the temperature limits [T}, T, the corresponding loads change their
state according to the hysteresis control law. Direct manipulation of the loads states
is shown by the dashed lines. More detailed description of bin state transition model
can be found in [85,86,99].

Although Sanandaji et al. claim in [85] that the non-uniform structure pro-
vides better prediction and better deals with heterogeneity, however the proposed
modification requires conformity between ON and OFF bins, therefore the uniform

structure is considered.

oFF | Nm“%\ m m 2 m !

ON:< fm«/\«/\«m /\“ >

Nb|n+1 Nbln'}'2 2Nb|n 1 2Nb|n
— >
Tlow Tup T [oc]
Figure 5.1: Uniform bin state transition model
The model is given in state-space form as:
&(t) = Apinx(t) + Bpinu(t) (5.1a)
y(t) = Chinz(t) (5.1b)

Here Ay, € R2Voinx2Noin s the state matrix of the bin state transition model,
Bpin, € R2Voinx2Nbin i5 the control matrix of the bin state transition model, Cy;, €
R2Noin is the output matrix of the bin state transition model, x € R?Mein*1 ig the
state vector of the bin state transition model, u € R™2?Min is the manipulated
variable of the bin state transition model, y is the output of the bin state transition

model, which is normalized power consumption of the population. The following
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derivation of the state matrices structures and parameters is presented in [85] in

greater details.

The state vector x defines the current distribution of the population over the

bins: ~ _
NorF,1
NorF2

NoFrFr3

NOFF, Ny,

ON,Npin+1

NON 2Ny

(5.2)

Here, norrjon, is the number of the OFF or ON units respectively belonging

to the i-th bin, i € [1...2 Ny, ].

The state matrix Ay;, defines transition of the units over the bins and has the

following structure:

—T 0
1
0 . T Ny;n—1 0
Apin = TNyin—1  — TNy 0
0 "Noin T Npin+1
0 e 0

ToONpn—1

T2Nyin

0

_TQNbin_

(5.3)

The matrix consists of the transition rates r; which are the inverse of the times

t; it takes for a unit defined by the set of parameters 6 to cool/heat the controlled

temperature within the corresponding (i-th) bin temperature range. In other words,

the time it takes for the units to transfer from the ¢-th bin to the 7 + 1 bin.

r, = —
t;

The times for the OFF-bins (i € [1...N;,]) are calculated as:

Tamb

T
t; = —RCIn (L

E,low - Tamb
7j’i,low - Tup - (Z - 1>Aszn
E,up - Tup — - Airbm

)
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The times for the ON-bins (i € [Ny, + 1 ... 2Ny;,,]) are calculated as:

ﬂlow _Tamb — PR
t; = —RCI : 5.6
n(ﬂ,up_Tamb_PR) ( a>
E,low - ﬂow - (Z - Nbin - 1)Aszn (56b)
E,up = ,I}ow - (Z - Nbin)ATbin (56C)

Here, [T} 0w T;up) defines the temperature range of the i-th bin, T, is the

ambient temperature, ATy, is the temperature range corresponding to one bin:

Tup — 10
ATy = —2 2 5.7
’ Nbin ( )

The control vector w has a similar to the state vector structure:

UOFF,1
UOFF2

UOFF,3

uOFFaNbin

uONszin+1

i UON,2Ny;,, i
Here, uopr/on, is the number of OFF/ON units considered for manipulation.
The control matrix By, contains the fraction of the units belonging to one bin

that are transported to the corresponding bin (with the same temperature range) of

the opposite state as shown in Figure 5.1 by the dashed lines and has the following

structure: ) )
-1 0 0 0 0 1
0 -1 0
0 -1 1 0 0

Byin, = (5.9)
1 -1

0 1 -+ 0 o --- =1 0

i 1 O --- 0 O --- 0 —1_

The output matrix Cy,;, is defined as follows:

1
Crin=—100...011...1 (5.10)
n | N——
Nyin Nyin
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5.2 Homogeneous model

The proposed non-linear modification of bin state transition model, unlike the stan-
dard approach, approximates the demand response of the population to temperature
set-point change. The advantages of controlling the setpoint rather than loads states
were discussed earlier in this work. Firstly the homogeneous model is developed,
then it is extended to heterogeneous model.

The aggregate homogeneous model implies extended operating temperature
range which does not only include the dead-band of the units (defined by the
hysteresis width), but also some low- and high-temperature margins as shown in
Figure 5.2. This modification allows to influence the units states indirectly, by
changing the temperature setpoint. Note that the temperature axis is shifted by
T, in order to demonstrate the influence of the setpoint change on the model struc-
ture. Consequently, the operating range of the modified model defines the acceptable
temperature setpoint change. Note that the results with non-linear aggregate model

were published in 2018 an presented in [100].

Nbin+1 Nbin+2
1 [ [
L] ] ] ]
ATow AT,H AT, AT.p+H ATy

Figure 5.2: Homogeneous aggregate model

The operating range [AT},,,, AT,,| is divided into three parts: low, normal, and
high temperatures. The normal temperature range [ATy, — H, AT, + H| (marked
by green colour) contains N, OFF and N, ON bins. The units corresponding
to these bins behave according to the original bin state transition model: the solid
thin lines correspond to heating or cooling process depending on the units states
according to (4.1a), the dashed thin lines correspond to changing the state when

a unit reachs one of the hysteresis boundaries according to (4.1b).
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The low temperature range [AT},,, ATy, — H| contains N, OFF and N;,, ON
bins. The units corresponding to the low OFF bins behave differently: they should
immediately change their states which means to be transferred to the corresponding
ON bins (shown by thick solid lines). Such situation occurs after the setpoint has
been increased and some heaters are instantly switched ON by the thermostats with
accordance to (4.1b).

The high temperature range [ATy, + H, Tjo,) contains Nyg, OFF and Np,g, ON
bins and implies the opposite situation: the temperature setpoint has been decreased
and some heaters are instantly switched OFF.

Homogeneous model (5.11) is given in a state-space form, however, the state
matrix Ap., is no longer static: its structure depends on the temperature setpoint
change. In addition the model takes into account the ambient temperature according
to equations (5.5) and (5.6). The control matrix By, and manipulated variable u
are omitted because the model does not impliy direct manipulation of the units

states.

(1) = Apom(ATup(t), T (1)) () (5.11a)
y(t) = Coin(t) (5.11b)

The modification introduces a new transition rate called forced switching rate
(shown by the thick solid lines), which is the same for all bins and should meet the

following requirement:
Tsw > max (r;), @ € [1...2Np,] (5.12)

Structure of the state matrix depends on the number of bins in the low and high
temperature ranges. Elements corresponding to the natural transition (thin solid

lines, 1 E [1 Nhigh + Nnorm — 1, Nbin + 1... me —+ Nlow + Nnorm]):

Ahom,ii = —Ti (5.13a)
Anomit1i =Ti (5.13b)

Switching (thin dashed lines, i € {Nnigh + Nnorms Noin + Niow + Npopm }

Anom,ii = —Ti (5.14a)
Ahom 2Ny +1-ii = Ti (5.14b)
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Forced switching (thick solid lines, ¢ € [Npigh + Nuorm + 1 .. Npin, Npin +
Nlow + Nnorm + 1. 2Nb7,n]

Ahom,i,i = —Tsw (515&)
Ahom 2Ny +1—isi = Tsw (5.15Db)

The number of bins corresponding to the normal temperature (2N,,y.,) range
does not depend on the temperature setpoint change:

2H
Ajjbin

Noorm = (5.16)

Whereas the number of bins corresponding to the low/high temperature ranges

(2Njow and 2Nyq, respectively) depends on the temperature setpoint change:

AT‘low - Ajjsp + H

Nigw = (5.17a)

(5.17b)

5.3 Heterogeneous model

In real population there are no identical units, each of them is defined by the unique
set of parameters ), i € [1...n]. The heterogeneous model deals with this variation
of the parameters applying the k-means clustering method [55,66,101]. The popu-
lation of n units is divided into into n. clusters, each cluster is associated with the
corresponding set of parameters ; and the number of units belonging to this cluster
n;, such that n = sum(n;), ¢ € [1...n.].

The heterogeneous model is a combination of n. homogeneous models defined in

the previous section:

X(8) = A(AT(8), Tuns (1)) X (2) (5.180)
Y (t) = Cogy X (1) (5.18b)

Here, A € R#meMNvinx2neNin jg the state matrix of the aggregate model, C, 4y €
R1X2neNoin i the output matrix of the aggregate model, X; € R27<Minx1 ig the state
vector of the aggregate model, Y; is the output of the aggregate model, which is ap-
proximation of the normalized aggregate response of the heterogeneous population
(4.2).
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The state vector X is given as:

Ty
x=|" (5.19)
Tn,
The state matrix A is given as:
Anoma Oang,, oo+ Oany,,
. Oonysw Anrom2 - Oany,, (5.20)
O2n,y, O2ny 0 Ahomone

The output matrix C,4, weighs the outputs of the homogeneous models in order

to normalize the output of the aggregate model to the maximum power consumption:

Ca!]g: [wlcbin,l wQCbinQ wnccbin,nci| (521)

wi= Y P/ zn: P; (5.22)

jEcluster i jel
Here, Apom i, Ti, and Ch;, ; are the corresponding to the i-th cluster parameters of
homogeneous model, w; is the weight of the output of the homogeneous model of the
i-th cluster, Oqp,, is the zero matrix of the corresponding dimension, sum(x;) = n;,

iell..ng.

5.4 Simulation results

In this section the performance of the aggregate model (agg) presented in Section 5.3
was compared to the simulation model (sim) presented in Section 4.2. Additionally,
the influence of the model parameters ( Ny, and n.) and the population heterogeneity
defined by the relative standard deviation of the loads parameters (o,.) on the
approximation quality was studied.

The population consists of n electrical space heaters; the parameters are log-
normally distributed with the corresponding means C,,, R,,, P,, and standard devi-
ation o0,¢; hysteresis width H; is the same for all units; temperature setpoints 7T, ;

and initial values of the controlled temperatures 7j; are evenly distributed over
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Tiow + H, Ty — HJ, i € [1...n]. The temperature setpoint change ATy, may vary
within [AT;,, AT,,|, which is related to the customer comfort boundaries. Table 5.1
contains values of these parameters used for simulation (typical building stock in

the Czech Republic [98]), the parameters are the same as in Chapter 4.

Table 5.1: Simulation parameters for aggregate model verification

Par. Value Units | Description
R, 3.4 °C/kW | Mean thermal resistance
Cm 7 kWh/°C | Mean thermal capacitance
P, 13.4 kW Mean thermal power
Orer | 0.05-0.5 Relative standard deviation
H 0.5 °C Hysteresis width
Tiow 19.5 °C Lower limit of the working temp. range
Tup 24.5 °C Upper limit of the working temp. range
AT -2.5 °C Lower limit on temp. setpoint change
AT, 2.5 °C Upper limit on temp. setpoint change
n 10000 Number of units in the population

The first results demonstrate that the aggregate model is able to deal with het-
erogeneity. The test scenario is following: at 1 hour all units are instructed to
increase the temperature setpoint by 0.5°C (ATy, = 0.5). The test was repeated
for different values of 0,.. Figures 5.3-5.6 contain the obtained simulation results.
Since the complexity of the model depends significantly on the number of clusters
(n.) and the number of bins (N, ), these values were chosen as a trade-off between
complexity and accuracy of the aggregate model. Note, that higher variance of the
population parameters or higher o, requires higher number of clusters and less
sensitive to the number of bins and vice versa.

The second results present the influence of the number of clusters and the number
of bins on the aggregate model performance using the same test scenario. Figures 5.7
and 5.8 contain the corresponding results and demonstrate that the both parameters
affect the accuracy: increasing any of these parameters leads to better approximation
of the demand response.

The third results show how the aggregate model captures the demand response
to a sequence of setpoint changes. This is the most important property of the model

that is used for model-based control system design. Figure 5.9 contains the obtained
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Figure 5.3: Simulation results: o, = 0.05, n. = 2, Ny;, = 360

simulation results. n. =4 and Ny;, = 80 is the empirically found trade-off between
the complexity and the accuracy of the model.

In the last, it is shown how the aggregate model reflects the ambient temperature
change. This property allows us to take into account weather forecast in model-based
control system design. Figure 5.10 contains the obtained simulation results.

The complexity of the model depends on the number of bins ( Ny, ), which is also
mentioned in other works, e.g. [65]. Nevertheless, the further results demonstrate
that for this particular problem it is possible to form a mixed integer optimization

problem and solve it in real time.
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Figure 5.4: Simulation results: 0, = 0.1, n. = 3, Ny, = 200
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Figure 5.6: Simulation results: o, = 0.5, n. = 12, Ny;,, = 60
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Figure 5.8: Simulation results: influence of Ny;,
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Figure 5.9: Approximated response to the sequence of setpoint changes
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Figure 5.10: Approximated response to the sequence of ambient temperatures
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6 E-NMPC for the population of TCLs

This chapter develops a price-responsive control strategy for the population of TCLs
using the aggregate model developed in Chapter 5. Figure 6.1 contains structure of
the control system. The controller design is based on the idea of E-NMPC [53,102,
103]. It is assumed that electricity price regularly changes and the electricity price
forecast is available at least one day ahead. The main objective of the controller
is to minimize operational cost of the whole population by shifting the electricity

consumption of the population to the low-price periods.

Y
Aggregate P Weather forecast
model -
l < Electricity price forecast
Population state
E-NMPC <
e
AT,
\ 4 Y Y
Local Local Local
thermostat thermostat thermostat

Figure 6.1: E-NMPC control system structure
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The TCLs ON/OFF states (which are directly linked to the electrical energy
consumption) are manipulated indirectly by changing temperature setpoints of the
units. The optimal temperature setpoint change signal generated by the controller
is constrained taking into account the customers comfort boundaries. Information
about the population (current values of the controlled temperature, the units states,
and total electrical power consumption) is used as a feedback signal.

This chapter is organized as follows. The first section formulates the optimal
control problem. The second section presents the numerical algorithm for solving
the control problem in real time. The third section contains the simulation results
demonstrating the economical benefits of applying the proposed control system.

Note that the results presented in this chapter were published in 2018 and pre-
sented in [100].

6.1 Optimal control problem formulation

The control problem (6.1) is formulated as a constrained continuous-time opti-
mization problem, because the developed non-linear aggregate model in Chapter 5
is also presented in continuous-time domain. Moreover, Non-linear Model Predic-
tive Control (NMPC) is often formulated as a continuous-time optimization prob-
lem [53,102,103].

win v = /t oy (i (6.1)

st X(t) = A(ATy(t), Tums(t) X (t) (6.1b)
V() = Cagg X (1) (6.1c)
X(to) = Xo (6.1d)
ATy < ATy (t) < AT, (6.1¢)
Tep(t)
AT, €7 (6.1f)
t € [to ty] (6.1g)

Here, t, is the current time; t; is the predictive horizon; p is the normalized
electricity price forecast; Y is the predicted normalized electrical consumption by
the whole population; ATj,,,, AT,, correspond to the comfort constraints; X, is the

initial state vector of the aggregate model.
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Algorithm 1 Calculation of initial state vector

1: function CALCSTATEVECTOR([T, T3, - - -
{017 827 U Jenc])
2: define X, as an empty array
3: for j=1:1:n.do
4: l‘j = 01X2me
5: for i € cluster j do
6: k = GetBinNumber(6,;,7;, m;)
7 Tjkp = Tjp+1
8: end for
Xo
9: Xop =
Tjk
10: end for
11: return X,

12: end function

13: function GETBINNUM(6, T, m)

14:
15:
16:
17:
18:

ATyin
if m = 1 then

k = 2Ny;,,-1+k
end if

return k

k = floor (T_T“’”)

19: end function

, ),

My, 1Mo, -, My,

> bin number of the unit

> k-th entry of z;

> round towards zero

Cost function (6.1a) represents predicted normalized operational cost of the pop-

ulation for given ATy, profile. Aggregate model described by (6.1b) and (6.1c) is the

model defined in Section 5.3 used for calculating the normalized demand predictions.

It is assumed that the controller has information about current controlled tem-

peratures and states of each electrical space heater, thus X can be calculated using

Algorithm 1.

The proposed aggregate model implies that the temperature setpoint change can

only take a finite number of values defined by (5.7). This limitation also makes sense

from practical point of view: usually the temperature setpoint can be changed with

a fixed step-size (ATy;,). This requirement corresponds to condition (6.1f).
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6.2 Numerical solution of optimal control problem

6.2.1 Continuous-discrete-time optimal control problem

The solution of optimization problem (6.1) is infinite-dimensional. Therefore, it
is needed to be converted into a finite-dimensional continuous-discrete-time problem
by approximating the input and disturbance profiles by corresponding piece-wise

constant profiles:

ATsp’k = ATsp(t> tk S t S tk+1 (62&)
Tamb,k - Tamb<t> ty <t < tk+1 (62b)
pe=p) te <t <tpn (6.2¢)

Consequently the resulting continuous-discrete-time optimization problem

is given as:
N tret1
win v = ; /}t oy (6.3a)
st Xi(t) = A(ATspx, Tampr) X (1) (6.3b)
V(1) = Cagg X (1) (6.3¢)
X(ty) = X, (6.3d)
ATipw < ATy i < AT, (6.3¢)
AAI;:: € (6.3f)
t € [toty] (6.3g)
ke[0N] (6.3h)

The predictive horizon [ty tf] is divided into N steps with sampling time ¢,.
The solution of problem (6.3) is the optimal profile of temperature setpoint
changes:

uopt(t()) = [Uo7 Uty very U,N_l]T, uopt(tO) € RV (64)

At each step the first entry of the profile is implemented on the process and kept

during the following sampling time.
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6.2.2 Adjoint sensitivity computation

Gradient (Var,,?) evaluation is necessary to solve optimization problem (6.3). The
adjoint method for sensitivity computation is particularly efficient, when number of
parameters is large, e.g. predictive and optimal control [52,104-106].

Control problem (6.3) can be converted into discrete-time optimal control prob-

lem in the following form:

N
min ¢ = > Gy(a, ux) + h(zy) (6.5a)
k=1
s.t. L1 = Fk(xk,uk) (65b)
Umnin, S Uk § Umaz (65C)
ke [0 N] (6.5d)

Here the manipulated variable is the temperature setpoint change:
up, = ATy (6.6)
state vector is the state vector of the aggregate model:
xp = X(ty) (6.7)

G and F}, are computed by:

C(p, up) = {/t @) w)dt < = (), w), 2(t) = xk} (6.82)

Fk(l’k, uk) =T+ /tk+1 f(x(t), uk)dt (68b)

ty
(g, ur) = {xpn = (e 0 @ = f(2(t), ur), x(te) = 1} (6.8¢)
Here g(x(t),ux) and f(x(t),ux) represent the cost function (6.3a) and aggregate
model (6.3b) respectively:

9(X(t), AT 1) = prCagy X (t) (6.92)
F(X(t), ATsp 1) = A(ATsp iy Tormw 1) X (2) (6.9b)
h(zy) =0 (6.9¢)
Computation of (Var,, 1) requires the following gradients: g—f’;, g%:, %, and
%. The sensitivities equations of (6.3a)-(6.3d):
Sy, (1) = 8—1:(:15(15), ug) Sz, (1) Se, (te) =1 (6.10a)
: of of
Su(t) = 57 (@), uk) Sy (8) + 7 (@(t), un) - Sy (te) =0 (6.10b)
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Algorithm 2 Gradient computation

1: function COMPGRAD(zg, {us}p ')
fork=0:1:N—-1do
compute Ty 1 = Fi(@k, ur), Ge(zp, ug), and {A, By, qr, 7}
end for
fork=N-1:-1:1do
Vu, ¥ = 1 + B
Ak = Qr + ApAigt
end for
Vi = 1o+ Boh
10: return V,¢;

11: end function

with S, (t) = {8%(15) cx(ty) = a:k} and Sy, (1) = {a%(t) x(ty) = xk} can be used

to calculate these gradients:

OF,
Ay = a—k(xk,uk) = Sy, (tre1) (6.11a)
Tk
B, = OF, (21, uk) = Suy (trs1) (6.11b)
auk
oG tht1
T _ k _ 99
q = _(%’k (g, ug) /tk ax(m(t), Uy ) Sy, (t)dt (6.11c¢)
0Gy, k1 9g dg
T _ _ el )
= Gt ) /t 2 (a0) ue) S, () + 52 el0) )t (6.114)

Gradient (V,1) can be computed using Algorithm 2. Note that for computation
of Fi(xg, ug), Gr(xy, ux), and { Ay, By, qx, 11} some numerical method, e.g. forward
Euler method, should be used.

6.2.3 Solver of the optimization problem

The solver for the mixed integer non-linear optimization problem (6.3) presented in
this section takes into account some physical limitations of the units of the popula-
tion. For instance, it ensures that the provided solution is a set of feasible setpoints.

The solver is based on the gradient descent method (see Algorithm 3). It uses
the current distribution of the heaters over the state bins (zy) and the optimal

manipulated variables defined at the previous step (ug(t—1), t—1 = to —t5) as an
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Algorithm 3 Solver
1: function SOLVEMINLP (29, wep(t-1))
2 define u, (o)
3: repeat
4
)

calculate V,_, )%

. V“o t(to)w
v“opt(to)ynOme - (max(abs(%uwt(to)w)))
Au = —round (Vuopt(to),norm¢) ATy,

Au(uept (to) + At < Uppip) =0
Au(top(to) + AU > Upgz) =0
Uopt (o) = Uept(to) + Au

10: until sum(Au)! =0

11: return .y (t);

12: end function

initial guess (line 2). The previous solution contains initial guess for all elements of
the current solution except the last one, which is replaced by 0.

Calculation of the gradient (line 4) is presented in Section 6.2.2.

The descent direction (lines 5, 6) is a normalized to the maximum gradient
multiplied by the minimum temperature setpoint change (ATy;,).

The constraints are taken into account such that if the following changing the
manipulated variable leads to violating the constraints (lines 7 and 8); the step size
for this particular element is set equal to 0.

The algorithm stops (line 10) when all entries of Au are equal to 0. It means that
further minimization requires reducing the step size (AT}, ), which is not supported
by the algorithm (it may lead to unimplementable solution), or that the solution

has reached the constraints.

6.3 Simulation results

Two different scenarios were simulated in order to verify the aggregate model and
E-NMPC algorithm. First, 24 hours scenario was simulated: the algorithm aims
to minimize the operational cost of the whole population for the given electricity
price and ambient temperature profiles. The same parameters of the population
(Table 5.1) were used as in Chapter 5. Table 6.1 contains parameters of the aggregate

model and the controller. Figure 6.2 contains the obtained simulation results: higher
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Table 6.1: Aggregate model and controller parameters

Par. | Value | Units | Description
Orel 0.2 Relative standard deviation
AV -2 °C | Lower limit on temperature setpoint change
AT, 2 °C | Upper limit on temperature setpoint change
Ne 4 Number of clusters
Nyin, 80 Number of bins
ts 1 hour | Sampling time of the controller
N 12 Predictive horizon
ATy, | 0.5 °C Minimum increment of setpoint change

electricity price corresponds to the lower energy consumption and vice versa; the
setpoint change tends to the lower limit which corresponds to the economically
optimal operating regime. Moreover, the algorithm overheats the population during
low-price periods in order to reduce the consumption during high-price periods.

Secondly, two energy saving strategies and zero temperature setpoint change
strategy (ATy, = 0, which basically means that there is no external influence on
the population) were compared in order to demonstrate the performance of the
designed E-NMPC control system. The first strategy is the smart energy saving
(smart) which implies that the optimal temperature setpoint change is provided by
the E-NMPC. The second is the thrifty energy saving (thrifty) which implies that
the temperature setpoint change is set equal to the lower limit (AT, = ATj,,).
This strategy demands less power to perform the temperature control compared to
the zero temperature setpoint change strategy, however it doesn’t take into account
the price and weather forecasts as well as the population dynamics unlike the smart
strategy.

Figures 6.3-6.6 contain the comparison results for different ATj,, and AT,,:
the normalized operational cost of the smart and thrifty strategies are always less
than the operational cost of the zero temperature setpoint change strategy. More-
over, after sometime the operational cost of the smart strategy is always less than
the operational cost of the thrifty strategy. Whereas the temperature deviation of
the smart strategy is closer to zero which means that the customer comfort is less
compromised.

There are two main factors influencing the reduction of the population oper-
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Table 6.2: Operational cost reduction

[AT o AT,,] | smart | thrifty

[-0.5°C 0.5°C] | 6.5% | 2%
[—1°C 1°C] | 9.5% | 4.5%
[—2°C 2°C] | 13.5% | 9%
[—4°C 4°C) | 19% | 16.5%

ational cost: fluctuation of the electricity prices and acceptable range of setpoint
changes. The electricity price forecast depends on the current and predicted re-
newable energy production, whereas the customer comfort limits can be changed.
Table 6.2 illustrates relationship between the variation of this limits and the opera-

tional cost reductions (percentage), which is calculated as follows:

. Cze'ro - gsmart/thrifty . 100% (612)

here, Cgpmart/thrifty 15 the simulated normalized operational cost of the smart or
thrifty strategies respectively; C..,, is the simulated normalized operational cost of
the zero temperature setpoint change strategy.

Although the smart strategy is always economically more efficient, increasing
the temperature setpoint change limits reduces the difference between smart and
thrifty strategies. However, these limits should not exceed some reasonable value
(e.g. £2°C) because they are directly connected to the customer comfort.

The computation time mainly depends on the initial guess of the solution. Using
the solution from the previous step helps to speed up the process. The simulations
were run in MATLAB 2015a using a PC with the following parameters: Intel Core
i5-3570 3.4 GHz CPU; 8GB RAM. Figure 6.7 contains the computation times of
obtaining the optimal temperature setpoint change at each sampling time for simu-
lations presented in Figure 6.5. The average computation time is around 30 seconds

which is fast enough compared to the sampling time of 1 hour.
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Summary and conclusions

This thesis presents a study about utilizing high potential of Thermostatically Con-
trolled Loads (TCLs) for providing regulation reserve in Smart Energy Grids using
advanced control techniques. There are two main questions addressed in the work.
First, developing a Model Predictive Control (MPC) based on a Linear Parameter-
Varying (LPV) model for optimizing energy consumption of a system with TCL.
Second, indirect control of a large population of systems with TCLs in energy grid
with variable electricity price. According to the concept of energy system with vari-
able electricity price, the proposed economic control strategies are assumed to be
applied on the customer side, so-called price responsive consumers. The main objec-
tive of the control strategies is to minimize operational cost of either a single unit or
the whole population, taking into account forecasted electricity price change which
consequently stabilizes the energy system.

The rest of this chapter summarizes the obtained results and demonstrates that

the defined objectives were met:

o related to developing MPC based on LPV model (Chapter 3):

— formulate an LPV model of the considered system;

— modify the Economic Model Predictive Control (E-MPC) optimization

problem to account variation of the model parameters;

— verify the E-MPC control strategy.
« related to the aggregate control of a population of TCLs:

— design a simulation model for verification of the aggregate model and
validation of Economic Non-linear Model Predictive Control (E-NMPC)
control strategy (Chapter 4);

— develop a non-linear modification of bin state transition model for aggre-

gate modelling of the TCLs population (Chapter 5);
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— design and verify the E-NMPC control strategy (Chapter 6).

Chapter 1 presents overview of the future energy systems with renewable energy
production share up to 100%. Demand Side Management (DSM) is an essential part
of such energy systems that allows to utilize some of the electrical loads, including
TCLs, for balancing electrical energy production and consumption. TCLs is one of
the most common type of electrical loads and therefore have very high potential for
regulation service provision. Energy system with variable electricity price is a kind
of system that is very likely to be used in the future. Electricity price signal enables
indirect load control. There are a few key advantages of indirect load control com-
pared to direct load control. Firstly, the customers’ comfort and preferences are less
compromised because they can choose the exact strategy of responding to the price
changes. Secondly, it provides a generic interface suitable for any kind of load, thus
there is no need in any additional devices for monitoring and controlling the loads.

Chapter 3 presents detailed description of E-MPC based on an LPV model. The
control objective is to minimize operational cost of a system with TCL. The method
requires the variables influencing the model parameters to be known for prediction
horizon at each sampling time. Thus, it is able to predict the influence of the
parameters variation on the system dynamics.

A simplified model of swimming pool heating system was considered as a case
study. The model is LPV due to influence of wind speed and ambient tempera-
ture. The simulation results demonstrate that the presented method can handle
the parameters variation model and that the energy consumption is shifted to the
low-price periods, which corresponds to the economically optimal regime.

Chapter 4 presents the simulation model of a population of TCLs that is used
for verification of the aggregate model and the economic control strategy. High
accuracy of the model is achieved by simulating each unit individually. The model
provides possibility to simulate a population of any size with various types of loads
parameters distribution.

Chapter 5 contains description of the proposed aggregate model that is a non-
linear modification of bin state transition model and aimed to be used in model-based
control system design. The original model provides accurate aggregate response of
a population of TCLs to switching signal, which directly instructs the loads to
change their states. The proposed non-linear modification provides accurate ag-

gregate response of the population of TCLs to temperature setpoint change signal,
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which indirectly influences the states of the loads. In the first case, control strategy
generating the switching signal should ensure that the customer comfort is not com-
promised besides optimizing the aggregate consumption. Whereas, the proposed
approach lets the local thermostats to deal with the customers comfort, which can
be easily managed by limiting the temperature setpoint change, thus reducing the
complexity of the control system. Additionally, the model takes into account the
influence of the ambient temperature on the loads dynamics.

The proposed aggregate model was developed in two stages: the first stage deals
with the model of homogeneous population, then it is extended to heterogeneous
population applying clustering technique. There are several key advantages of the
proposed aggregate model that are important for model-based control system design.
Firstly, the model is relatively accurate compared to the other models providing ag-
gregate response to the temperature setpoint change. High accuracy is achieved by
reusing the idea of original bin state transition model, which implicitly tracks the
state of each load in the population. Secondly, the model deals with different levels
of heterogeneity of the population, which is verified through simulations. Thirdly,
the complexity of the model does not depend on the number of units in the popu-
lation because it does not influence the structure or order of the model. In general,
the order of the model is proportional to the number bins and clusters. The optimal
values for these parameters vary with different levels of heterogeneity of the popu-
lation in contrary way: higher heterogeneity leads to higher number of clusters and
lower number of bins and vice versa; thus, the level of heterogeneity also does not
influence the complexity of the model. Lastly, the model provides long-term demand
forecast (e.g. one day), which is a reasonable predictive horizon for a model-based
control strategy, because the price signal is expected to be changing every hour and
be broadcasted one day ahead.

Chapter 6 presents the proposed price-responsive control strategy aiming to co-
ordinate a population of TCLs. It is assumed that the electricity price is changing
every hour, electricity price and weather forecasts are available for the following
24 hours, and that the population belongs to a single owner. The control strategy
is based on the means of E-MPC. The main objective is to minimize the operational
cost of the whole population, which consequently helps to provide ancillary services
to the energy system. The controller employs the developed aggregate model for
predicting demand response of the population. Taking into account the dynamics

of the population allows to better schedule the temperature setpoints for the loads
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compared to the earlier proposed strategies where the temperature setpoint is de-
fined as a linear function of the electricity price. Since the model is non-linear, the
optimization problem is non-linear as well and solved using gradient and adjoint sen-
sitivity analysis methods. One of the main requirements is to respect the customer
comfort, which is met by limiting the temperature setpoint change.

Simulation results demonstrate effectiveness of the proposed control strategy.
Firstly, it allows to reduce the operational cost of the whole population up to 20%.
The reduction depends on the specified temperature setpoint change limits; in other
words, it allows the customer to find a compromise between reducing the electricity
payments and compromising their comfort. Secondly, the proposed optimal regime
is more efficient than setting the temperature setpoint equal to the lower limit:
the operational cost is lower, the customer comfort is less compromised. Thirdly,
the computation time analysis demonstrates that on average the optimal problem
is solved during 30-40 seconds (on a regular PC), whereas the sampling time is 1
hour. Thus the algorithm can run in real time, moreover there is a margin that
allows to increase the population size and/or run the algorithms on a machine with
less computational power (e.g. on microcontroller unit or programmable logical

controller).
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The attached CD contains the Matlab scripts, Simulink models, and R-scripts used
to obtain the presented results as well as the electronic version of this document.

The content of the CD is organized as follows:
e Doctoral_thesis_ Zemtsov.pdf is the electronic version of this document;

o the folder EMPC-LPV contains the R-Script that was used to obtain the
simulation results presented in Chapter 3 as well as the Matlab script for
plotting the results. The R-Script allows to change the simulation and model

parameters; for more details refer to the script comments;

o the folder ENMPC contains the Simulink models and supporting Matlab
scripts used to obtain the results presented in Chapters 4-6. The key items

are:

— the script Run.m was used to perform the simulations. This scripts con-
trols the whole simulation process and allows to change some simulation

parameters, for more details refer to the script comments;
— the model model_ BIN.slx is the Simulink model of the whole system;

— the folder results contains the obtained simulation results with different

simulation parameters and Matlab scrips for plotting them.
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