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Annotation

Robustness of control systems to disturbances and uncertainties has always been the central
issue in feedback control. Feedback would not be needed for most control systems if there
were no disturbances and uncertainties.

A constant gain feedback controller may be designed to cope with parameter changes
provided that such changes are within certain bounds. This motivated many researchers to
study and accomplish several kinds of control system, requiring mathematical theory.

H . optimal control theory is one of the off-line modern feedback control method that make
possible to design a constant gain feedback controller which is able to stabilize the real plant
in each of its modes.

| must emphasize that //_ Control is an extended topics which involves the study of various
fields of mathematics, and control. In this thesis I have tried to present a brief discussion of
H , control theory and its applications.
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1 Introduction

The purpose of thesis is to present modern feedback control method based on #, optimal

control theory in a concise way, requiring only a moderate mathematical background. We
consider a control system with possibly multiple sources of uncertainties, noises, and
disturbances as show in Figure 1.1.

Many industrial systems may work in several different modes of operation. Each of the modes
is naturally described by a different transfer function. In such a case, it is highly desirable to
find a single fixed and off-line designed controller that is able to stabilize the real plant in
each of its modes. If it exists, such a controller is definitely robust.

This thesis is divided into several chapters, which each chapter includes following subjects:
Chapter 2 provides a summary of the continuous-time and discrete-time linear state models
along with their general solutions in a MIMO using state space models. The transfer function
and and general models of feedback control system are discussed. Internal stability of linear
feedback systems is examined in depth. Controllability and observability are defined, and
tests for these properties are given.

An overview of control system performance analysis is given in Chapter 3. This chapter
begins by defining norms for signals and systems. A more detailed presentation is given of the
singular values and principal gains. A number of cost functions that are useful in control
system design are also presented. This chapter concludes with a discussion of methods for
computing the various performance criteria and costs.

Control system robustness analysis is presented in Chapter 4. Two general types of
perturbations are presented: transfer functions (unstructured uncertainty) and multiple transfer
functions and/or parameters (structured uncertainty). The stability and performance
robustness of general systems subject to these perturbations is then addressed.

H , full information control is developed along with H _estimation in Chapter 5. The chapter
begins with a brief summary of the mathematics of differential games. These results are then
used to develop suboptimal solutions to the A full information control problem. The H _full
information control problem is defined: Find a feedback controller that yields a given bound
on the closed-loop system co-norm from the disturbance input to the reference output. The
measurements available to the controller are assumed to be the entire plant state and the
disturbance input (hence the term full information).

The suboptimal H  estimation problem is defined: Find an estimator that yields a given
bound on the gain from the plant disturbance inputs (including measurement error) to the
estimation error. The / estimation results are developed using the full information results
and duality.

The H , output feedback controller is developed in Chapter 6. The application of H _ control is
also discussed in detail. Tracking system design, integral control, and designing for
robustness are all addressed. Performance limitations are also presented, since these
limitations frequently affect the specification of H_control problems. A very general

procedure for the development of robust controllers, known as p -synthesis, is also presented
in Chapter 6. This chapter concludes with a design case study of p-synthesis methodologies.
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2 Fundamental Issues of Control and Important Application

Control system design requires a mathematical model of the plant. Mathematical models of
plants come in many forms, including differential equation models, transfer function models,
block diagrams, and state models. The state model is a collection of first-order, quear
differential equations placed in vector-matrix form. The state model is particularly convenient
for control system design and analysis because of the powerful mathematical results available
and because the same basic equations can be used to describe low-order systems, high-order
systems, signal-input/signal-output (SISO) systems, and multi-input/multi-output (MIMO)
systems. The state model forms an ideal setting when using computer-aided design software.
In addition, many powerful results from linear algebra can be applied when using state
models.

This chapter provides a summary of the some fundamentals of analysing MIMO linear
systems using state models. Continuous-time and discrete-time linear state equations are
presented. The transfer function and general models of feedback control system are defined
and discussed. The general models of feedback control system includes the desired outputs
and disturbance inputs. Internal stability of linear feedback systems is examined. The chapter
concludes with a definitions of controllability and observability along with a practical means
of testing a state model for controllability and observability.

2.1 The Continuous-Time State Model

A continuous-time linear system is a transformation between the input (and the initial
conditions) and the output, both being vector functions of time in general. A mathematical
model of a continuous-time linear system is typically in the form of one or more ordinary
differential equations involving the input, the output, and possibly some additional variables
that are intermediary between the input and output. The mathematical model can be put into a
standard form known as the stale model:

xX(1) = A(1) x(t) +B(7) u(z) (2.1a)

V(1) =C(1) x(1) +D(1) u(r) (2.1b)
The variable x(7) € R™ is called the stale of the system, x(7) € R™ is the input to the system,
and y(1)eR™ is the output of the system. The matrix A(f)e R™™ is the stale matrix,
B(7) € R*™ is the input matrix, C(¢) € R™™ is the output matrix, and D(7) e R™™ is the
input-to-output coupling matrix. Equation (2.1a) is called the stale equation, and (2.1b) is the
measurement or output equation.
The state model and its solution can be simplified when the system is time-invariant (i.e.. the

system matrixes in the state model do not depend on time):
(1) = Ax() + Bu(r)

y(1)=Cx(1)+ Du(t)

n*n,

— —
(NS
B b2
S

[Kuo-1991]

2.2 The Discrete-Time State Model and Simulation

Computer simulation is frequently used to evaluate control system performance. Computer
simulation can be used to solve for outputs when the system is of high order or is subject to
complicated inputs that are not easily amenable to analytic solutions. In addition, the effects
of time-variations, delays, and nonlinearities can be easily evaluated using simulation,
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Computer simulation is also typically used to verify analytic results prior to hardware
implementation.

Computer simulation requires that the continuous-time plant and controller models be
approximated by discrete-time systems, That is, by difference equations. Digital controllers
also utilize difference equation models when operating. One method of generating a digital
controller is to design a continuous-time controller and then approximate this controller .in
discrete time. The generation of discrete-time approximations of continuous-time systems is,
therefore, of fundamental importance in simulation and control system design.

A number of methods ran be used to form a discrete-time approximation of a continuous-time
system: Euler's method, the zero-order hold approximation, the bilinear transformation, the
impulse invariant approximation, and so on. Two of these approximation methods are
considered here: Euler's method and the zero-order Hold approximation. Euler's method
provides a means of generating discrete-time state equations for a wide range of applications,
including systems that are time-varying and nonlinear. The zero-order hold approximation is
also presented because this method tends to provide better results for linear, time-invariant
systems.

A discrete-time state equation can be obtained from the stale equation (2.2a) using Euler's
method of approximating the derivative:

x(kT +1 '1)' =~ X&T) _ (kT = Ax(kT)+ Bu(kT) 2.3)
A difference equation for the stale can then be obtained:
X(kT +T)=x(kT)+ T{Ax(kT) + Bu(kT)}. (2.4)

A discrete-time state equation can also be obtained from (2.2a) using the zero-order hold
approximation. In this cane, the stale difference equation is obtained by solving the state
equation (2.2a) while assuming the input is constant over the sampling time:

u(t) =u(0)for all 1[0, 7).

The stale at the sampling time 7'is then

¥(T) = e x(0)+fe"”"”3u(0)dr (2.5)

The input can be taken out of the integral:
T AT T A(T-1) AT 4 Ar
x(T') = [ ]x(0) +[J‘“ AT OBz Iu(0) =[e* 1x(0) +[ J‘ A Bdru(0), (2.6)

where the second integral in this equation is generated from the first by performing a change
of variables. This equation can be written as follows:

x(T) = ®(T)x(0) + T(T)u(0), 2.7)
where

®(7)=e*", T(T)=| e*Bdr

Note that @(7) is the state-transition matrix evaluated at one sampling time. The matrix I'(7)
is the discrete-time input matrix, which is often referred to as simply the input matrix when
the system can be implicitly assumed to be discrete-time. The state at any time (k + /)7 can
be found given the initial conditions on the state at time k7 because the system (2.2) is time-
invariant:

x(kT'+ 1) = ®x(kT)+ Tu(kT) (2.8a)

The output equation in the continuous-time state model is an algebraic equation. A discrete-
time version of this equation is obtained by simply evaluating (2.2b) at the sample times:
V(kT) = Cx(kT)+ Du(kT) (2.8b)




The response of a continuous-time system can be approximated by implementing the discrete-
time system on a digital computer, a process known as simulation. The system is simulated by
recursively implementing either (2.4) or (2.8a) to generate a time history, or trajectory, of the
stale. The output trajectory is then generated from the state trajectory by applying (2.8b)
[Franklin , Powell, Workman-1998].

2.3 Transfer Functions

The Laplace transform is a useful tool for the analysis and solution of time-invariant
differential equations. Taking The Laplace transform of the stale and output equations (2.2)
yields
sX (s) - x(0) = AX (s) + BU(s) (2.9)
Y(s)=CX(s5)+DU(s) (2.10)

where Y(s), U(s), and Y(s) are the Laplace transforms of x(7), u(), and y(7), respectively. Note
that x(0) is the initial condition on the state. Solving for ¥(s) as a function of U(s) and x(0)
yields

Y(s)=C(sI-A) ' x(0) + {C(sT- A) "B+ D}U(s) 2.11)

The Laplace transfer function (or simply the transfer function) of the linear system is the
matrix of gains between the Laplace transform of the input vector and the Laplace transform
of the output vector:

G(s)=C(I-A)'B+D. (2.12)
Assuming the initial conditions are zero
Y(s)=G(s)lUU(s). (2:12)

Note that this equation is often used to define the transfer function.
The transfer function can be written as a matrix of ratios of polynomials in s:

" num, (s) num,,, (s) |
G (8) = Gy (S) den,, (s) den,, (s)
G(s) = : : = : : ; (2.14)
G G s )
y i den, ,(s) den, , (s)

Note that each term in G(s) is a proper ratio of polynomials; that is, the order of the
numerator is less than or equal to the order of the denominator. When there is no input-to-
output coupling (D = 0), each term in G(s) is a strictly proper ratio of polynomials; that is, the
order of the numerator is less than the order of the denominator. [Kuo-1991]

2.4 General Models of Feedback Control Systems

A block diagram of a general feedback control system is shown in Figure 2.1. The disturbance
input w,(1) is the vector of inputs to the plant that are not generated by the control system.
Measurement noise is included as a disturbance input since the measurement process is
included as part of the plant in this model. The reference input 7(7) is an input to the control
system that specifies the desired behavior of some or all of the plant outputs, and is equal to
the desired value of these outputs. Note that reference inputs are only included for those
outputs that have nonzero desired values. The reference input and the disturbance input are
both external inputs to the plant and can be combined into a single input:

16




W)= oo , (2.15)
w, (1)

where w(/) is called a generalized disturbance input [or simply a disturbance input when this
does not lead to confusion with wy(r)]. The control input u(7) is the vector of inputs to the
plant that are generated by the control system. The reference output (7) is the vector of plant
outputs that are of interest. These outputs include the errors between plant states and the
desired values of these states (or linear combinations of the plant states), which are termed the
output, errors. Additionally, the control input can be incorporated into the reference output
when desired. The measured output m(7) is the vector of plant outputs that are directly
measured and, therefore, available for feedback to the controller. In general, the measured
output is distinct from the reference output, although they may be identical in some
applications.

The fundamental objective of the control system is to keep the reference output close to the
desired value, that is, the reference input. Tracking performance, or steady state performance,
is used to describe the control system's ability to meet this objective during normal operation
when the reference input is slowly varying. Abrupt changes in the reference input generate
transients in the system, since physical systems cannot react instantaneously. The controller
should force these transients to decay out in a reasonable period of time. 7ransient
performance is the term used to describe the decay of transients in the control system. Note
that the feedback system is required to be stable in order to guarantee this decay. The
disturbance inputs tend to force the plant to exhibit undesirable behavior. The ability of the
control system to mitigate the effects of disturbance inputs is called disturbance rejection.

A well-designed control system should keep the output errors small in the presence of both
changing reference inputs and disturbance inputs. Intuitively, disturbances are inputs that tend
to generate undesirable behavior in the plant. The reference input, on the other band, 1s an
input that tends to generate desirable behavior in the plant. These

wolt)

1(t) | ’ ¥(t)

“ wil
Controller ) Plant

mit) | u(t)

\l

e

FIGURE 2.1 A general closed-loop control system

inputs are lumped together as generalized disturbances since they both tend to generate
nonzero output errors: the disturbances by changing the plant state, and the reference input by
changing the desired behavior of the plant state. Further, a well-designed control system
should use a reasonable amount of control, that is, maintain the control inputs at sufficiently
small levels That the actuators are not saturated and do not utilize excessive amounts of
energy, fuel, and so on. Therefore, it may be desirable to include the control input as part of
the reference output in some applications. The reference output can then be used exclusively
to evaluate control system performance. ¥




The state model and the transfer function model for the closed-loop system in Figure 2.1 are
developed below. The state model of the plant is

u(r)
x(t)=Ax(0)+[B, i B,]---- ; (2.16)
w(t)
m(1) C. 0 D, [ u@)
""" = eee IX(X)+| oo | 2.17)
0 C., D, X )

In general, w(f) = [#(f) wi(7)]" includes disturbance inputs to the plant that enter through B,,
errors in the measurement that enter through D, and reference inputs that enter through D,,.
Note that any number of these disturbances may be absent. The term D,, results in input-to-
output coupling between the control input and the reference output. This coupling is typically
used to incorporate the control input into the reference output. It is assumed that, there is no
input-to-output coupling between the control input and the measured output. This assumption
is valid in almost and applications and simplifies the algebra in deriving future results. The
transfer function model of the plant is

M((s) U] [6.0) @ 6.6 |[UE)
...... =G = (2.18)
Y(s) W(s) G.() 0 G (B5) [ W(s)
Where
Gou(s) = Cp(s - A)'By; (2.19a)
G5 —C.L-AY'B, "D (2.19b)
Gyu(s) = Cofs1 - A) "By + Dy; (2.19¢)
Gyu(s) = C(SI - A)'B, + Dyy; (2.19d)
The stale model of the controller in Figure 2.1 is
r(1)
%, ()= Ax.({)+[B, B, ]+ : (2=
m(t)
r(t)
u(t)=C.x (t)+[D,:D_, ] : (2.20b)
m(1)
The transfer function model of the controller is
R(s) R(s)
U(s)=G (s)) ++ro =[G (5):6 . (5)] e (2.21)
M((s) M (s)
Where
GA5) = CAT-A)' B+ D, (2.22a)
Gen(s) = Co(S1 = Ac) "Bom + Dom; (2.22b)

The difference, [#(7) - m(1)], is the only input to the controller in many applications. This is an
error feedback system and is a special case of the controller described above with

B{:m;'Bn'r; D{.‘}}}:-D('?‘ g (;('m(-\'):'cgr(.\').
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A state model of the closed-loop system is obtained by combining the model of the plant with

the model of the controller. Appending (2.20a)

to (2.16) yields

0 | A 0 x®] [B, B,
...... = ceeenn || e ()| oo w(t)
x'(7) 0 Ac,__ x, (1) 0 0 (2.23)
0 0
+| e @)+ - m(2),
Be a8l g

where all of the inputs are displayed as individual terms. The control input is the output of the

controller (2.20b):

0] [A 0 [x»] [B,
------ = coven | 4| e fC x, () + D r(t)+D_,m(t)}
x (1) 0 A [ x () 0 (2.24)
B 0 0
+ w(t)+| - r@)+| -+ |m(7).
0 gi B
Combining like terms yields
] [A ¢ BCTx®] [B,
...... = ity B et w(t)
x. (1) 0 A [[x@) 0
B.D._ 'B.D_ (2.25)
o L P(E) | “heess m(1)
B, i B
The measured output is given by (2.17):
)] [A BCTx@)] [B, B.D
...... - Ssateull b w(t)+ r(1)
x, (1) 0 A, [[x. (D) 0 B,
B.D._ (2.26)
o EEREEREEE [C x()+D_ w(1)].
B
Again, combining like terms,
x(1) A+BD_C. B,C_ | x(¥) B,+B D D,
...... E + w(r)
X (1) B_C. A, | x.(1) B_D_
o (2.27)
H| eeeee r(r).
B
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Noting that the reference input forms the first part of the generalized disturbance input, the
state equation of the closed-loop system is
%] [A+BD_C, i B.C [ x0

X0 B C. A e ) o)
B,+B.D_D_ +[B,D,:0] x(1)
. w(t)=A | +B_ w(t)
B.,D,, +[B, 0] x, (1)

where A and B,; are defined above, and the partitioning of the matrices within B, is defined
by the partitioning of the generalized disturbance input (2.15).

The output of the closed-loop system is the reference output as given in (2.17):

Y1) = Cx(t) + Dyu(f) + D,w(2). (2.29)
Nothing that the control input is the output of the controller (2.20b):
W) = Cx(f) + Dy {Coxo(t) + Do (f) + Dewm(t)} + Dypw(2). (2.30)

Rearranging and substituting for m(?) using (2.17) gives:
}"(f) i Cyr(’) ! D}‘ncr_\xc([) f D)'chrr(!) f D}vtD(.‘m{C:nx(I) 1 men,(!)} T D}'H"“’,U)' (23 l)
Combining terms yields the measurement equation for the closed-loop system:

x(7)
@) =[C, +D_D_C_ : D, C.]
%) (2.32)
x(1)
+{D. +D D _D_ D D 0w(E)=C ;| - D )
X (1)

where C.; and D, are defined above, and the partitioning of the matrix within D, is defined
by the partitioning of the generalized disturbance input (2.15). Equations (2.28) and (2.32)
form the state model of the closed-loop system. The input to this system is the generalized
disturbance input, which consists of both the disturbance inputs and the reference inputs. The
output of this system is the reference output of the plant, which may contain the output errors,
the control input, and other linear combinations of the plant states [Burel-1999].

2.5 Stability

An important property of feedback control systems (indeed, one that is absolutely essential) is
stability. Stability guarantees that the system output remains finite if the input is finite.

DEFINITION: A system is bounded input/bounded output-stable (or simply stable) if for
every bounded input,

lu, ()| = M, forall rand all
the output 1s bounded:
ly(t) | -~ M> forall t and all j,

provided that the initial conditions are zero.




The stability of a causal, linear, time-invariant system depends on the system impulse
response. The jth element of the output is a function of the input and the impulse response:

v, ()| = Y {Egﬂ(r)u‘(t - r)dr} : (2.33)
i=1
Each element of the output is bounded by the expression
ol | _
‘y;(I)JEMlz{Jﬂ‘gﬂr)'d:], (2.34)
i=1

if and only if each element of the impulse response matrix is absolutely integrable:

fegi (2.35)

This equation provides a test for stability and demonstrates that the impulse response of a
stable system most approach zero as time approaches infinity; that is, the output of a stable
system returns to zero after being subjected to a temporary disturbance.

The elements of the impulse response matrix can be expanded as a linear combination of the
natural modes and the impulse function:

el p 0 Re| ] .
gﬁ(f):a]eR [hlfeﬂml;]l! Sta e elp, fejlmlP,If +DJ,§(3) Bt (2.36)

The term involving the delta function is absolutely integrable. The &, terms are constants, and
the exponential of an imaginary number has a magnitude of 1 for all time. Therefore, the
terms involving each pole are absolutely integrable if and only if the real part of the pole is
negative, and

A causal, linear, time-invariant system is stable if and only if all of its poles have negative
real parts.

This test for stability is used extensively for linear, time-invariant systems [Burel-1999].

2.5.1 Internal Stability

The definitions of stability are based on the input/output behavior of the system. A system
may be input/output stable and still have internal signals that are unbounded. This situation is
typically catastrophic to a real-world system, since these unbounded signals cause loss of
linearity, damage to the system, or both. Unbounded internal signals in stable, linear, time-
invariant systems are the result of internal, unstable pole-zero cancellations.

A linear feedback system is termed internally stable if all internal signals and all possible
outputs remain bounded given that all possible inputs are bounded. Interval stability is
evaluated by considering all of the possible transfer functions associated with the feedback
system. A general feedback system is shown in Figure 2.2. The inputs u; and u. are applied at
each of the two possible locations between blocks. The four possible outputs y;, y-, e, and e
are the output of each block and the output of each summing junction. The inputs can
represent input disturbances, output disturbances, reference inputs, and measurement noise.
The outputs represent the plant output, the controller output, the plant input, and the controller
input, respectively. The eight possible transfer functions are

I-U.-J ](HGK)'G 04 GRGK [ G S u,
S S e L SEE s s {337

‘» |0+KG)'KG | (I+KG)'K |u,




e, I+KG)' ! -(I+KG)'K | u#, G, s G, lIx
i N1 R R 1

el (EGKYIGE | (I GK) v n, Giu s Sty
The concept of interval stability is formally defined as follows.

DEFINITION: The feedback system consisting of the plant G(s) and the controller K(s)
(either in the feedback path or the forward path) is internally stable if each of the eight
transfer functions in (2.37) and (2.38) are stable.

Internal stability is a stronger condition than stability and will be required when designing
feedback systems.

Yl

K(s)

Ya(s) | Exfs) T Ua(s)
=F W

FIGURE 2.2 Block diagram for evaluating internal stability of a feedback system

The determination of interval stability is simplified by considering:

e ", —y, I - 0\la 0 : Iy
I R 8 R T el odlenin i (2.39)
e u, | ¥, L INEHEES 8T B 0y
Solving for the vector y yields:
o B - DN e
it e I o e (2.40)
¥ = ol e i e
The transfer functions from  to y are then related to the transfer functions from u to e:
G s e UG el S I 0
(ol e e § S sl (2.41)
G, E G e Gos P B R

Since all of the transformation matrices relating G,  to G, are constants and therefore

u

stable, the following result is obtained:

The feedback system consisting of the plant G(s) and the controller K(s) (either in the feed-
back path or in the forward path) is internally stable if and only if each of the four transfer
functions, G,, , G,, , G,, and G, are stable.

e N e u €
£1% 12 1°1

The feedback system is also internally stable if and only if the four transfer functions from the
inputs #; and > to the outputs y, and y are stable. As a matter of convention, however. the
transfer functions from the inputs to the outputs e¢; and e, are typically used to evaluate
interval stability [Burel-1999].
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2.6 Controllability and Observability

The present section addresses the following questions: Under what conditions can a system be
controlled from the input, and under what conditions can the state of a system be estimated
from the knowledge of the input and output? The answers to these questions depend on the
system being controlled/estimated and the actuators/sensors that are employed. The theory
developed in answering these questions provides a guide to the selection of actuators and
sensors, and also proves useful in generating controllers and estimators.

2.6.1 Controllability

The question of controllability arises in a number of applications. Controllability is formally
defined as follows:

DEFINITION: A system is said to be controllable if and only if it is possible, by means of the
input, to transfer the system from any initial state x(Z,) = X, to any other state x(#) — Xy 1n a
finite time 0 <tr-1, ~

Controllability is defined in terms of the ability to drive the state to a given value, but the
implications of controllability extend far beyond this simple definition. The concept of
controllability is frequently encountered in linear system theory and controller design. An
example of particular importance to controller design is the fact that the closed-loop poles can
be placed at any desired location using state feedback if and only if the plant is controllable.
Other applications of controllability will be encountered tater in this text.

A simple test for controllability exists when the system is linear and time-invariant. A linear,
time-invariant system is controllable if and only if the controllability matrix,

which is defined as

L:[BE AB: - A" ”B] (2.42)
has full rank, that is, a rank equal to the system order n,. The controllability matrix

L € R™ ™"is square when the system has a single input (i.e., 7, = 1). In this case, the system
is controllable if and only if det(L) is not equal to zero [Leondes-1996].

2.6.2 Observability

The question of observability arises in a number of applications. Observability is formally
defined as follows:

DEFINITION: A system is said to be observable if and only if its state x(z,), at any time /,,
can be determined from knowledge of the input and output over a finite period of time, that is,
u(t) and (1), where 1, < < Iy

Observability is defined in terms of the ability to estimate the state, but the implications of
observability extend far beyond this simple definition. The concept of observability is
frequently encountered in linear system theory, estimator design, and controller design. An
example of particular importance occurs in the design of Luenberger observers. The observer
poles, which control the rate of convergence of the estimates, can be placed at any location if
and only if the plant is observable. Other applications of observability will be encountered
later in this text.

A simple test for observability exists for the case where the system is linear and time-

invariant. A linear, time-invariant system is observable if and only if the observability matrix,
which is defined as




CA
N = (2.43)

CA="

has full rank. The observability matrix N e R™”™is square when the system has a single
output (i.e, n, = 1). In this case, the system is observable if and only if det(N)is not equal to
zero [Leondes-1996].

2.7 Examples

Example 2.1
The block diagram of a control system for a field-controlled dc motor is given in Figure 2.3.
Disturbance inputs are included, and a distinction is made between the actual position of the
motor shaft and the measured position of the motor shaft. The plant (the motor) has four
inputs: The control input, which is the field voltage #(7); two true disturbance inputs, which
are the load torque d(7) and the measurement noise v(7); and the reference input 7(f), which
specifies the desired motor-shaft angle. The measured output is the measured angular position
of the motor shaft. This output is available for feedback to the controller and is denoted m(7).
The reference output consists of both the error e(f) between the actual position of the motor
shaft and the desired position of the motor shaft, and the control input. A state model of this
plant is

fu(t) |
x, (1) -p, 0 0fx() NG e T

1

L@i=l &k —p, Ofx@i+l0 : 0k 0lz() ¢
| %;(0) 0 I 0ie@) 0 : 0 0 0|d®

J
(0|
) Cu(t) |
m(t) 4 {0 FE i OFR A 1]___
o e ey e PR N r) |
£ (0 : d(1)

u(r) o Jel s R ) g agit e g
V() |

where the matrices are partitioned as in (2.16). The controller is a lead network with the
following state model:
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Figure 2.3 Block diagram for a control system for a field-controlled DC motor (a) plant model; (b) control
system
r(1)
i) =-bx () +[k,(a-3) : -k (a-0)]-
m(t)
r(r)
II(I):XC(f)+[f(4 : —k4]
m(t)
The state model of the closed-loop system is given by (2.28) and (2.32):
X,(1) (——p] 0 - kk, k, 1R kk, 0 - k.k,
X, (1) b 0 o [ x@®]| |0 kk D r(1)
x(ryi=| 0 I 0 0 (| x()|+]|0 0 0 d(r) .
’... . e see e e “es . _v(t)
Lxc_(r)J L0 0 Klb-a) -blx ()| |ka-8) 0 &b ~a)|
[x, (1) ]
: X, (1
20 | ED R 8 1 0 0 :j()
= ! Xo(2) | 1) |
gyl a0 =k 1 AR )
“e p(’)
Lx.(1)]




Note that the closed-loop output is composed of both the output error and the control input.
Including the control input as a reference output allows the designer to use this model to
analyse the effects of the disturbances on the control. For example, this model can be used to
identify and correct a control system design that results in excessive field voltages when
subject to expected disturbances.

The plant transfer function is

|- kk, kyk,
s g g -
ST e U(s
M (s) s(s+p Xs+p,) .s‘(.s' +p,) ( )
e kk kk R |
o B : g . D(s)
U(s) 2 V(s)
s(._v + P, )(s + pz) 5(3 + pz) R S
L I ) 0 O
The controller transfer function is
k(s+a) i —k,(s+a)]R(s)
U(s)=
s+b : s+b M (s)
The transfer function model of the closed-loop system is:
[ s(s+p Ns+p, Ns+b)  —kky(s+p Ns+b) kk,k, (s +a) i
o 'R
‘ .‘J! % a(s) a(s) al(s) D
U | |ks(s+p Xs+p,Xs+a) —kkk(s+pNs+a) —ks(s+p Ns+p,Ns+a) l
| als) al(s) a(s) 4

Where the denominator is

a(s)=s"+(p, +p, +b)s’ +(p,p, + pb+ p,b)s* +(p,pb +k ke k,)s + kk,k,a
The determination of the transfer function matrix is quite tedious in this example. Fortunately,
the transfer function matrix can be generated using a computer. Symbolic math software can
be used to find the transfer function matrix; alternatively, the state model (2.28) and (2.32)
can be generated and used to find this matrix.

Example 2.2
We are given the system described by the following state model:

[.f(r(!)]:l:—l z‘rx](:)]{l o]{ul(:)]
L@ [0 31x,@) o 4lu @)l
ORISR 6y
L» m} e ILUJ

1 0 -1 8
L: 3
{o 4 0 —IZ}

The controllability text matrix is




which has full rank (a rank of 2). The system is therefore controllable. The observabillity
test matrix is

1 1

1 -1

-1 -1

ke
which has full rank (a rank of 2). The system is therefore observable.

Table 2.1 MATLAB commands to generate closed loop state model and transfer functions for Example 2.1

% Define the plant model.
Ap=[-t1 0 0

k2 -2 0

OSS1E 0]
Bu=[k1 00]"
Bw=[0 0 0

0 kK2*k3 0

0 0 0]
Cm=[00 1];
Cy=[00 -1

00 0]
Dmw=[0 0 1];
Dyu=[0 1]
Dyw=[100

000l
% Define the controller model.
Ac=-b;
Ber=k4*(a-b);
Bcm=-k4*(a-b);
Cc=1;
Der=k4;
Decm=-k4;
% Generate the closed loop state model.
Acl=[Ap+Bu*Dcm*Cm Bu*Cc

Bem*Cm  Ac |
templ=[Bu*Dcr zeros(3.2)],
temp2=|Bcr zeros(1,2)];
Bel=[Bw+Bu*Dem*Dmw-+Hemp |
Bem*Dmw-+temp2|

Cel=[Cy+Dyu*Dem*Cm Dyu*Cc|
Dcl=Dyw+Dyu*Dcm*Dmw+[Dyu*Dcr zeros(2)]
% Generate the closed loop transfer fucntion.
[nul.de]=ss2tf(Acl.Bcl,Ccl.Dcl. 1)
[nu2.de]=ss2tf( Acl.Bel.Cel.Dcl.2)
[nu3.de]=ss2tf(Acl.Bcl,Ccl.Dcl.3)
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3 Introduction to Basic Concepts

This chapter begins by defining a vector norms and matrix norms. Singular value
decomposition and principal gain are then discussed. A number of cost functions, which find
application in control system design, are also presented and discussed, along with methods for
computing the various performance criteria and cost.

3.1 Norms for Signals and Systems

One way to describe the performance of a control system is in terms of the size of certain
signals of interest. A quantitative treatment of the performance and robustness of control
systems requires the introduction of appropriate signal and system norms, which give
measures of the magnitudes of the involved signals and system operators. In this chapter we
give a brief description of the most important norms for signals and systems.

3.1.1 Norms for Signals
We consider signals mapping (—0,%) to R. They are assumed to be piecewise continuous.

Of course, a signal may be zero for <0 (i.e., it may start at time 7/=0).
The norm, denoted ”'H, is a real-valued function of the elements of a linear space R. A
linear space is a set where any linear combination of elements is also an element of the set,

and can be composed of vectors, signals, systems, or other possible collections of elements. A
norm has the following properties:

I, = 0: (3.1a)

Hx”p ={ o and \oply if x=0: (3.1b)
Jece], = lexlc, : (3.10)

e+, <[, + 151, - (3.1d)

where x, y € R, and « s a scalar.

3.1.2 Vector Norms
A familiar example of a norm is the Euclidean vector norm, or the vector 2-norm, which
appears in elementary geometry and vector analysis. The Euclidean norm is defined as

follows:
b, =v¥x = [T (3:2)
k=1

on the space of real vectors. This norm can be generalized to operate on the space of complex
vectors:

W, =vele =23l i (3.3)
k=1
Note that this definition is identical to the previous definition over the space of real vectors.

A modification of the Euclidean vector norm can be obtained by adding a positive definite
weighting matrix W:

I, =W G4)




Note that the weighting matrix in this expression must be positive definite to ensure that this
function satisfies (3.1a) and (3.1b).
The vector co-norm is defined as follows:

HrH = max!xI : (3:5)

Additional vector norms can be defined as required in applications. Note that the gbove norms
all specify the length of a vector (in some sense), and satisfy the properties given in (3. 1).

3.1.3 Signal Norms

The Euclidean norm can be generalized to operate on signals:

@, =[x @x(tyat . (3.6)

This norm is referred to as the signal 2-norm. Note that all signals do not have finite 2-norms.
When using norms, the signal will be assumed to be an element of the linear space over which
the norm is defined (in this case, the space /, ) unless otherwise specified.

Weighted signal 2-norms are defined as follows:

@), = \/J'_:_x*(: YW (0)x()d (3.7)

where W(7) is positive definite at all times. An additional generalization of the signal 2-norm
is obtained by defining this norm over a finite time interval:

(Ol g, = [ ¥ Oxer. (8

The signal «o-norm is defined as follows:
[x()],, = supmax|x, ()] (3.9)

The supremum is used in this expression since the set of times is infinite. In this case, x,(7)
may asymptotically approach a value but never actually achieve the maximum. The signal co-
norm can also be defined on a finite time interval:

HX(’)H-!-.[r.‘-rfI: max mrax|x;(!)‘, (3.10)
The same notation 1s used for the vector, signal, and system (after defining this norm) 2-

norms (and «o-norms). The distinction between the given norms is provided by the set over
which they operate. This should be apparent when these norms are used.

3.1.4 The Singular Value Decomposition
The singular value decomposition (SVD) is a matrix factorization that has found a number of
applications to engineering problems. The SVD of a matrix M e ™™ is defined as follows:

P
M=USV' =Y ol (3.11)
i=]

where Ue /™ ™and Ve /™™ are unitary matrices, p equals the minimum of », and n,,
superscript T denotes the conjugate transpose, and {/; and }J; are the ith columns of U and V,

respectively. A unitary matrix V is a matrix which has the property

Viv=vv'=l, (3.12a)
or equivalently, a matrix whose columns are orthonormal:
rtrr e T
I‘ I..F :(SU_ {“ 121 ! (312[1)
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The expression d, denotes the Kronecker delta function, which is defined by (3.12b). The
vectors {{/;} and {V;} are called the left and right singular vectors of M, respectively. The

matrix S R™ ™ is diagonal:

i 2 50or S= ors s =0 o (3.13)

0 o, : 0 a,

0 J
when n, < m,, n, = n,, ann, - n, respectively. The parameters {o;} are called the singular
values of M. These singular values are ordered (by convention):
g/20;,=2=0. =0.

The singular value decomposition provides a detailed picture of how the matrix operates on a
vector (termed the input):

P
Mx— > o L1 lx. (3.14)
j=1

The term J'x gives the length of the input in the direction defined by the given right singular

vector. This length is then multiplied by the associated singular value. This product is the
length of the output vector in the direction defined by the left singular vector. The matrix-
vector product is then the sum of these terms over the various input directions specified by the
right singular vectors. Note that the gain for an input in the direction of a right singular vector
1s given by the associated singular value.

The gains for a complete orthonormal basis for the input are useful in generating the range of
matrix gains. The p singular values (given above) provide this information when the number
of inputs is less than or equal to the number of outputs. When the number of inputs is greater
than the number of outputs, there are input basis vectors that do not appear in the summation
in (3.11). In this case, the gain for these additional input basis vectors is zero. To simplify
future expressions, additional zero singular values are defined for these input directions. The
complete set of singular values (numbering n,) is then defined as the positive square roots of
the diagonal elements of S’S, where the superscript 7' denotes the transpose.

The singular vectors and singular values can be computed by solving the following pair of
eigenvalue problems:

MM'U, =c'U,; (3.15a)
MMV, =V, (3.15b)
The nonzero singular values are the non-negative square roots of these eigenvalues, and they
can be found from either (3.15a) or (3.15b). The complete set of singular values, including all
zero singular values, consists of the non-negative square roots of the eigenvalues in (3.15b).
The eigenvectors in (3.15) are the singular vectors, provided they are normalized as given in
(3.12). Note that a sign ambiguity exists for the normalized eigenvectors since multiplication
by -1 yields a distinct normalized eigenvector. For the SVD, the sign of the product U/ V' is
constrained by (3.11) for singular vectors associated with nonzero singular values. Therefore,
the sign of one of these vectors can be chosen arbitrarily, while the sign of the other is
specified by the following constraint equation:
MV.‘ :Ux(ff- (316)
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This constraint equation car also be used to simplify the computation of the SVD, For
example, the right singular vectors can be computed using (3.15b), and then the left singular
vectors (associated with nonzero singular values) can be found:

UMy (317
o

There is no sign constraint on singular vectors associated with zero singular values, and any
of the associated eigenvectors can be used. Other numerically reliable and computationally
efficient algorithms exist for finding the SVD, but a discussion of these algorithms is beyond
the scope of this text.
The singular value decomposition has the property that the matrix gain for all inputs is less
than the largest singular value (denoted o ):
M|
=

<l
The gain bound (3.18) can be intuitively understood by noting that o, is the largest gain over
the orthogonal set of input directions defined by the right singular vectors. As such, the
maximum gain of the matrix is achieved when the input x is proportional to V;. The direct
calculation of matrix gain with the input (aV,) yields

P
'ZO‘EUEKT(QVI)

1=1

M (al)) | B

A = N A I

g, =0 - (3.18)

_NaoU\| _ lafo, (3.19)

where the orthonormality of the singular vectors (3.12b) is used in generating this result.
The minimum matrix gain can also be determined from the singular value decomposition:

'JP if n,2n,

v g _ , (3.20)
x| g 0 if n, <n,

The minimum gain equals zero whenever the rank of M is less than the number of inputs. A
gain of zero indicates that there is an input that yields a zero output; that is, the null space of
M is not empty. The dimension of this null space is greater than or equal to (1, - n,), by the
fundamental theorem of linear algebra. Therefore, the minimum gain is always zero whenever
n, - n, The minimum matrix gain is achieved when the input x is proportional to V.
Further, the output for this input is proportional to {/,, whenever n, >n,, or the output is zero
(as discussed previously) when n, -~ n,.

An additional property of the singular value decomposition will prove useful in deriving
subsequent results. The maximum singular value of a product of matrices is bounded by the
maximum singular values of the individual matrices:

o(MA) < a(M)o(A) . (3.21)
This fact is derived by noting that the maximum gain of (MA) occurs when the input vector is

the first right singular vector of (MA), which is the singular vector associated with the largest
singular value:

= MAV] _ [MAP)AV] _— =
a(MA) = == , - <o(M)o(A). o)
Vi~ Al gl
[ntuitively, this inequality results from the fact that the vector J; maximizes the gain of the

product (MA) but may not maximize the gain of the individual matrices A and M [Watkins-
1991].
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3.1.5 The Principal Gains
The steady-state output resulting from a pure tone input u(f) = u,¢" is given in terms of the
transfer function matrix:

W(O)=G(jw)ue™" (3.23)
The matrix-vector product G(jw)u, defines the output amplitude and, therefore, the system
gain at a particular frequency and input direction. For a given frequency, the range of gains
over input direction can be found from the singular value decomposition of the transfer
function matrix.
The SVD of the transfer function matrix 1s

G(jw)= ia,(m)(a (@) (w), (3.24)
i=l1

where p equals the minimum of », and n,. The frequency-dependent singular values of the
transfer function matrix are called the principal gains of the system. A plot of the principal
gains (which are continuous functions of frequency) provides frequency-dependent
information on the maximum and minimum system gain. The principal gains also provide an
indication of the likelihood of observing a particular gain for a system with many inputs and
many outputs. When many of the principal gains are clustered together, this indicates that
many inputs yield a similar gain and that this gain is more likely to occur.

The right singular vectors of the transfer function matrix define which inputs yield the
maximum and minimum gains. The left singular vectors of the transfer function matrix define
what outputs result when the maximum and minimum gains are achieved [Burel-1999].

3.2 Cost Functions

The performance of a control system can be quantified in many applications by a cost
function. A cost function is, in general, a real-valued, non-negative function of the system, or
of the time histories of the states, reference output, and control input, subject to a given set of
initial conditions and inputs. The cost can be used to evaluate the performance of a system,
where superior performance is indicated by a smaller cost. The cost can also be used to
compare the performance of multiple controller designs; that is, the decision on which of
several alternative designs is superior can be made by comparing their respective costs. The
controller that minimizes the cost, over all possible designs or a set of possible candidate
designs, is know as an optimal controller. The selection of a cost function for particular
application is a useful art in control system design. The cost functions given are all based on
mathematical objects called norms.

3.2.1 Quadratic Cost Functions

The goals of the control system are to drive the output errors to zero, and to do this while
using a reasonable amount of control. These goals are typically at odds. The tighter the
control of the output errors, the more control is required. The more reasonable the control
used (i.e, the less control used), the larger the output errors. A typical control design
represents a compromise between keeping the output errors small and keeping the controls
small. The cost function should, therefore, include a measure of both the size of the output
errors and the size of the control. One such cost function is

Yit) ?

J = [y Y @)y)de = |y(0)|

where the reference output is assumed to include both the output errors and the control inputs.




The cost function (3.25) is called quadratic since it is a quadratic function of the reference
output. The weighting function Y() is a positive definite matrix, selected to quantify the
relative importance of the various output errors and control inputs. This weighting function 1s
also time-dependent which allows this relative importance to change with time. The
parameter #;is the final time, which can be infinity if the control system is intended to operate
indefinitely. The norm in (3.25) operates on the set of real signals, and is a finite-time,
weighted signal 2-norm.
The cost function (3.25) can be expanded to yield a more detailed description of the cost:
t, Z(t) : 0 le() t
J= [T @i @) - o | o e = [ (OZ@e + uT (OR@u(dr, (3.26)
0 0 : R@ |[ul g

where the weighting functions Z(7) and R(r) are positive definite matrix functions of time.
Note that this form of the cost function is not as general as the one given in (3.25), but is
sufficiently general to be useful in an abundance of applications. The output error can be
written

e(t)=r(t)-C,x(1), (3.27)

where C. is the portion of C, that generates the output error, and the parts of the D matrices
that contribute to the error are assumed to be zero. The cost (3.26) can then be written in
terms of the system state:

J = [~ Cxn)f Z0lr () - € x(0)}+u” (OR@Ou()dr (3.28)

This version of the quadratic cost function can be readily simplified in a number of special
cases.

The state can often be defined in such a manner that good control is synonymous with linear
combinations of the states being close to zero. For example, the state of a servomotor may
include the angular displacement of the shaft from the desired position. The goal of the
control system is then to drive this element of the state to zero while using a small amount of
control. A control system designed to drive the state, or linear combinations of the state, to
zero 1s termed a regulator. The quadratic cost function for a regulator is

= j X ()Q)x(t) + u” (HR()u(t)dt , (3.29)
where Q(7) is a positive semidefinite matrix,
Q) =-C Z(HE,, (3.30)

selected to weight the appropriate states. The weighting on the control R(7) is used to impose
a penalty on the use of excessive amounts of control. Note that in many applications, the cost
function i1s generated by directly selecting Q as opposed to both defining C. and defining the
weighting matrix on the output Z(7).

The weighting matrices in (3.28) or (3.29) are constant in many applications. Constant
weighting matrices are used whenever output errors (and nonzero control inputs) at any point
in time are equally undesirable. For example, an autopilot for an airplane is required to
maintain a heading during the entire flight, and the suppression of heading errors is equally
important at all times. Constant weighting matrices are also typically used when the control
system is designed to operate indefinitely or for extended periods of time.

The output error may be important only at the final time in some applications. For example, a
missile autopilot is designed to position the missile as close as possible to a desired target at
impact (the final time). The cost function (3.28) then simplifies to

J={ra,)-cx)) v{re,)-Cxt )+ ["u" (OR() u(t)dr (3.31)
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Note that excessive control is undesirable at all times, so the term involving the control input
is still integrated over all time.

The cost functions given above all represent compromises between the output and the control
input. Performance can also be evaluated using only one of these vectors while the other is
subject to a constraint. For example, a satellite may be required to change from one orbit to
another orbit while using the minimum amount of fuel. The performance of a candidate
system can be evaluated with the following cost function:

I j' u” (1)Ru(1)dt (3.32)
as long as this system yields the desired final state:
) =x., (3.33)

As a second example, consider the missile that is designed to hit a target. A reasonable cost
function is the square of the miss distance (the nearest approach of the missile to the target):

= [x(!_f.)— xd]T[x(tf)—xd], (3.34)
subject to the constraints that each of the control inputs are bounded:
u, (1) < @, (3.35)

These constraints on the control inputs quantify the limitations of the control actuators.

The quadratic cost is dependent on the reference input applied, the disturbance input applied,
the initial conditions, the final conditions, and/or constraints on the state and control.
Collectively these inputs, conditions, and constraints are known as the test conditions. The
performance of a system can be quantified by the cost when the system is subject to worst-
case test conditions or nominal test conditions. Nominal refers to test conditions that are
representative of normal operating conditions, and worst-case is self explanatory. The test
conditions may be simplified to yield information on the effects of one initial condition or the
effects of one disturbance input. Performance is also often evaluated for simple test
conditions, which include step inputs, impulse inputs, initial conditions, and so on. Quadratic
cost functions can be used in a wide range of engineering design applications due to the
flexibility provided by the specification of weighting matrices and test conditions.

3.2.2 The System 2-Norm Cost Function

The computation of the cost functions presented above requires that the excitation (initial
conditions, final conditions, reference inputs, and disturbance inputs) be known. In many
applications, neither the inputs, the initial conditions, not the final conditions are known a
priori. An alternative type of cost function focuses on the gain between the inputs and the
outputs, as defined by the Fourier transfer function of the closed-loop system.

The system 2-norm is proportional to the root mean square gain of the system, and can be
thought of as an average gain for the system. This average is performed both over all the
elements of the matrix transfer function and over all frequencies:

= \/-21;1:'rr{GT(_;'(U)G(j(u)}dw : (3.36)

Note that the tr{G+(j(r;)G(j(u)} is the sum of the magnitudes squared of all of the elements of
G(jw). The system 2-norm is actually only proportional to the true average since it is not
normalized to either the number of elements in the transfer function matrix or to the
frequency range. The system 2-norm can also be written in terms of the impulse response
matrix by using Parseval's theorem:

\/J' (gt }dr | (3.37)

G|,
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The indefinite integral in (3.37) only exists when the system is stable. In fact, the whole
concept of gain is not very useful for an unstable system whose transient persists indefinitely.

Therefore, the system 2-norm is only defined for stable systems.
Computation of the system 2-Norm

The 2-norm of generic stable system is a function of the impulse response:

g(r)= {Ce’“B+D§(I)} 1(7) . (3.38)
Substituting his expression into(3.37) yields

61, = \/ [ir{ [CeB+ DT [CeVB+ DO =
(3.39)

\/ jn-{ B’e*"'C"Ce*B + B e* 'C'DS(f) + D'CeBS(t) + D' DS’ (z)} dr.

This expression includes an integral of the square of the Dirac delta function. This integral is
infinite, and the system 2-norm is therefore not defined, expect when the input-to-output
coupling matrix is zero.

For the close-loop system of (2.28) and (2.32), the input-to-output coupling matrix is

D,=D,+D.D D, +[D,D, : o] (3.40)

The term Dy, in this matrix is typically zero when the reference input is zero and can be
deleted from the general control system model. Note that the reference input is part of the
generalized disturbance w(7). The second term in this input-to-output coupling matrix is zero
when at least one of the matrices Dy, , D, or D,,, are zero, that is when the reference output
does not contain a control term, the controller is strictly proper, or there is no measurement
noise. The final term in the input-to-output coupling matrix is zero when either D,, or D., are
zero, that is, when either the reference output does not contain a control term, there is no
reference input, or the controller is strictly proper. Therefore, the close-loop system 2-norm is
defined when this system is stable, there is no reference input, and either the reference output
dose not contain a control term, the controller is strictly proper, or there is no measurement
noise.

The 2-norm of a generic system reduces to

UG“: = \/j‘l‘(r{ BT‘-’AT"CTCL’MB} gl = \/jfr{ CEAT’BBT(’,AF:CT}CH (3.41)

When the input-to-output coupling matrix equals zero. Interchanging the order of the trace
and the integration operators yields

n-J B’ [¢*"'C7 Ce Mt B} = \Mc [e*" BB Mt c’*’} (3.42

l

Defining the observability grammian,

o

L, = j A 'CICe N 't
0 (3.43)

and the controllability grammian
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L, = [eBB"e""dr
(3.44)

The 2-norm can be computed using either expression:

6], =r{ B'L,B} =Jr{ cL.C"} (3.45)

The observability and controllability grammian can be found by solving the following
Lyapunov equations:

AL, +L,A=-C'C;
AL, +L,A" =-BB’. (3.46)

3.2.3 The System co-Norm Cost Function
The maximum gain of a generic system over all frequencies is given by the system x-norm:

|G|, =supo[G(jm)] (3.47)

The fact that this cost function is a norm, that is, possesses the properties given in (3.1), can
be easily verified. This cost function is particularly applicable to the design of systems where
the performance is specified by bounds on the output error and the control, and reasonable
bounds can be generated for sinusoidal disturbance inputs. This is a very intuitive way of
specifying the cost, since most specifications for control systems take the form of bounds on
the errors and controls. The co-norm also finds application in robustness analysis, as will be
seen in the next chapter.

The w-norm of a system provides a bound on the maximum system gain, where the gain is
defined in terms of the signal 2-norm:

lsy@w], <|G

w(r)|, (3.48)

an

where g(7) @ w(#) 1s the input convolved with the impulse response matrix, which yields the
time-domain system output. This result is surprising at first glance, since the gain used in the
definition of the wo-norm is based on the transfer function gain. This transfer function gain, in
turn, is based on the gain of the system with a sinusoidal input, but the signal 2-norm (over an
infinite time interval) of a sinusoidal input does not exist. The bound (3.48) can be intuitively
justified by noting that the gain of the system with a sinusoidal input is defined by the signal
2-norm gain when the norm is evaluated over a finite time period. The bound then makes
sense for truncated sinusoids, which can be used to construct more complex functions with
finite signal 2-norms via the Fourier series.

The bound (3.48) is a tight bound, that is, the equality is nearly achieved for some input
signal. In fact, the «o-norm equals

ol le() @ w()],

o, e

Equation (3.49) is often used as a definition of the system «-norm. This definition can be
generalized to finite time intervals:

Hg(!) ® w(r)H, i
IG1..j,..,1 = sup e (3.50)

w0 H“‘U)Hl.["u-'rl
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This car be co-norm is interpreted as the maximum system gain over the given time interval.

The w-norm (both finite time and infinite time) of a series combination of subsystems is
bounded:

GG, (3.51)

<|G,
on

G,

on an

This result is reasonable since the maximum overall gain of a series combination of sub-
systems cannot exceed the product of the maximum gains of each subsystem. More formally,
(3.54) can be demonstrated by noting that for any nonzero input,

g, () @ g, (N ®w(@)|, < |G|, [e. () ®w(®)|, < |G,

(3.52)

G, [w@

(4] 2 o 2

Dividing by the 2-norm of the input and taking the supremum of the result yields (3.51):
g, () ® 8. ()@ W), _

<G,

G,G,[| =su
[G\G.|, = sup W],

e (3.53)

o0 o0

This property, known as the submultiplicative property, will prove very useful in subsequent
chapters.

Computation of the System o - Norm
The o - Norm of a system described by a state model is

sup E[G(j(u)]:supE[C(_,ia)l—A)"B+D], (3.54)

The « - Norm can be computed by iterating over frequency to find the maximum [Burel-
1999].

3.3 Examples

Example 3.1

A field-controlled dc motor is being used to position an antenna that is required to track a
satellite in low earth orbit. A lead compensator being used to control is motor. Models of this
motor and controller are given in Example 2.1. The closed-loop state model of this
combination also given in Example 2.1 is:
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MO =p e 0 g k Tx, ] [ kk 04 iy
X, (1) K 0 0 |l x,(1) 0 Kk 0 r(1)
X, ()= O 1 0 0 |[x,@) |+ 0 0 0 d(1t)
x| [0 0 k@-a) @ -b|x@®]| |ka-8) 0 k(b-a)
Eaen
Blcs (i r(!
[e(;) 0 0=l 1 x;g; _{1 0 0 }d((:)
u(@® | [0 0 -k, 0 ~ k, 0 —k, o)
Lx.(f)

Where (1) is the reference input, (1) is the disturbance torque, ¥(7) is the measurement noise,
e(t) is the difference between the motor shaft angle and the reference input, and u(7) is the
field voltage, which is the control input. Further, the parameters are defined as follows:
D, =%p,=0Lk =10k, =001k, =10k, =150:a=04:p=4
It is desirable to keep the output error less than 1 degree, while using an input of less than 15
volts. A reasonable cost function is then
150 l
J= 0 j e+ __ u*(dt

300 ° 5
Note that a factor of 1/150 is used to normalize the cost with respect to the integration time, a
factor of 2 is used to normalize the cost with respect to the number of terms within the
integral, and a factor of 1/15% is used to normalize the desired size of the control to 1
( which equals the desired size of the error ). The test conditions consist of a nominal path for
the satellite:

h

r(t)=tan
562.5 vt

where # = 320 km and v = 7.5km/s are the height of the satellite and the velocity of the
satellite, respectively. The initial conditions of the closed-loop plant are

T
x(0)=[0 0 25 0]
The initial elevation angle of the antenna is 25 degrees, which is selected by estimating the
initial satellite elevation angle. The true initial elevation angle of the satellite ( the angle when
the satellite is first detected ) is 30 degrees. This yields a S degree error in the initial angle
estimate. The disturbance torque is generated by gravity, and is due to imperfect balancing of
the antenna. This torque depends on the elevation angle, but can be approximated by the
following time-varying function:
h
d(1) = cos| tan '
562.5—vt

The measurement noise is small enough that it can be ignored, that is, set equal to zero. These
test conditions represent normal operating conditions. The resulting error trajectory and
control trajectory are plotted in Figure 3.1. The cost is

J.=1.74,
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which is greater than 1, indicating that the specifications are not achieved with this controller.
Looking at the plots, the control input is seen to exceed the specifications during the initilal
transient, but meets that specification after this transient decays to zero. Care must be used in
interpreting the meaning of the cost when the test conditions include both initial conditions
and inputs.
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FIGURE 3.1 The reference output for example 2.2

Example 3.2

An autopilot is used to control the altitude of a helicopter while hovering. The altitude
dynamics of the helicopter are

u(r)
}l(:)J{o Ix,(:)}{o S o} e |
e 0 Ol @l [1 L ol

V(1)
[ m(1) R 0 ()
caali) | x, ()
e (Tl o L(r)]+ 0 : 0 odw@
L u(r) 0.0 1 0 0 )

where e(7) is the altitude error (the zero on the coordinate system is set at the desired altitude.
so the reference input is zero) and u(r) is the vertical acceleration, which is proportional to the
throttle setting. The disturbance w(7) is a vertical acceleration caused by wind gusts and v(1)
is the measurement noise. Note that the delay due to engine spin-up is ignored in this

example. An observer feedback controller for this plant is described by the following state
model:
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EARER A
%] |-068 -04|x,()] |0.64

=[-004 -04 5l

u(t)=[-0.04 - ']fg(t)'

where X(7) is an estimate of x(7). The close-loop system is then described by the following
state model:

A T o e | 0 0 Tx@] o o
X, (1) @0 =00 - 0dlix () 1 0 e 1)
XA1) L6 0 s aln e 2 () g 16
%, ()] |064 0 i -068 —0_4_@(:)_ |0 0.64]
(@]
{e(f)}_{l O e 0 | xf.(_’) J{o 0}[“»[,(:)}
u(@®)| |0 0 : -004 —04] _ 0 0f w)
7 %(1)
| X, (1)

The two disturbance inputs, wo(7) and v(7), are assumed to be independent and are modelled as
white noise with the following spectral density:

m:
: I o 9§
¢ li‘g w 0 } —iisee — 4l |
L 0 400

-
o

The control input should remain +10 m/sec’, and desired altitude should be maintained to
within £20 m on average during steady-state operation. The 2-norm of the closed-loop system
in this example is

IG.ll, =11.2.

This number provides an indication of the average system gain. Note that this average gain is
dominated by the largest gain, that is, the gain from the disturbance input to the control input.
Weighting matrices and weighting functions will be subsequently incorporated within the
framework of the system 2-norm to allow greater control over the definition of this average.

Example 3.3
The w-norm of the closed-loop system in Example 3.1 is computed by plotting the principal
gains of the system, as shown in Figure 3.2. The maximum in Figure 3.2 is

IG .|, =212

This number provides an indication of the maximum system gain. Note that this maximum
gain is dominated by the gain from the disturbance input to the control input. Weighting
matrices and weighting functions are subsequently incorporated within the plant to allow
control over which inputs and outputs are most significant.
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FIGURE 3.2 The principal gains for example 3.3

Table 3.1 MATLAB commands to compute Infinity-norm for Example 3.3

% Define the closed loop system:
pl=4: p2=0.1; k1=10; k2=0.01; k3=10; k4=150; a=0.4; b=4,
Acl=[-p] 0 -k1*k4 kI
ORE I
DT O ()
0 0 kd*(b-a)-b];
Bel=| k1*k4 0 -kl*k4
0= k2*k3 ()
0 (ko ]
kd4*(a-b) 0 kd4*(b-a)];
Ccl=[00-1 0
00-k4 1]:
Dcl=[1 0 0
k4 0 -k4]:
% Compute the principal gains of the closed loop system.
w=logspace(-2,3.200);
Gel=pck(Acl.Bcl.Ccl.Dcl);
fr=frsp(Gcl.w),
pgains=vsvd(fr);
% Plot the principle gains.
figure(1)
set(0,'DefaultAxesFontName', 'times')
set(0.'DefaultAxesFontSize', 16)
set(0,'DefaultTextFontName','times')
clf
vplot('liv,lm',pgains)
xlabel('Frequency (rad/sec)’)
ylabel('Magnitude')
axis(].01 1000 .1 1000])
grid
% The infinity-norm is the maximum over frequency of the maximum
% principal gain.
[nr.nc]=size(pgains);
Hinf=max(pgains(1:nr-1.1))
% An alternative algorithm for computing upper and lower bounds on
% the infinity-norm is given in the Mu-Synthesis and Analysis Toolbox.
temp=hinfnorm(Gcl);
% The infinity-norm is given as the average of the bounds.

Hinf=(temp(1)+temp(2))/2
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4 Robustness

The analysis of robustness requires that the discrepancy between the mathematical model qf
the plant and the actual plant be quantified. Since a perfect mathematical model of the planfc is
not available, this discrepancy cannot be uniquely defined. Instead, a set of mathemat_tcal
model is defined which includes the actual plant dynamics. This set is specified by a nominal
plant and a set of perturbations termed admissible perturbations. The admissible perturbz_ittons
are typically assumed to be bounded, where the bound is dependent on the uncertainty in the
model.

A controller that function adequately for all admissible perturbations is termed robust. A
control system is said to be robustly stable if it is stable for all admissible perturbations. A
control system is said to perform robustly if it satisfies the performance specification for all
admissible perturbations.

4.1 Internal Stability of Feedback Systems

The internal stability of the feedback systems shown in Figure 4.1a and 4.1b is determined by
considering the closed-loop system in Figure 4.1c. This feedback system is internally stable
provided that all four of the transfer functions between each input and each error,

iEo G o) M+K$)G6)! 0 -I+K($)GE) 'K(s)
G.( i G, | [I+GoHK®}'G(s) 1+G(K(s))
G(s) -
)
K(s) -
@
—o—{ = {1

(b)

Uy(s) - 1\ { G(s)

K(s) Eafs) i ; ; Us(s)

(c)
FIGURE 4.1 Feedback system block diagrams: (a) standard feedback; (b) unity feedback: (c) general feedback
used to evaluate internal stability

are stable. Expanding the matrix inverses in these transfer functions yields




. [ adifl +K(9)G()) . adifl + K(5)G(s)} K(s) |
G, ® 1 G, () detfl t K(s)G(s)] det{l + K()G(s)}
i (4.2)
G..(s) ! G, (5] |dI+CEOKEIGE) . adifl + G(s)K(s)}
4 4 det{l + G(s)K(s)} det{l + G(s)K(s)}

where adj(+) denotes the adjugate and det(+) denotes the determinant. Note that the division
above is valid since det{I + K(s)G(s)} is a scalar quantity. The poles of these four transfer
functions (denoted simply as the poles of the feedback system) must satisfy one of the
following conditions:

det{1+ G(s)K(s)} =0, (4.2a)
det{1+ K(s)G(s)} = 0, (4.2b)

s is a pole of adj{I + G(s)K(s) ], (4.2¢)
(4.2d)

s 1s a pole of adj{I + K(s)G(s)},
s is a pole of G(s), (4.2¢)
s is a pole of K(s). (4.29)
These conditions for the poles of the feedback system can be condensed by utilizing some
properties of the adjugate and the determinant operations. The adjugate of a matrix takes sums
of the products of individual terms in the matrix. This is equivalent to taking series and
parallel combinations of these transfer functions, operations that do not create new poles. The
poles of the adj{I + G(s)K(s)} are therefore a subset of the poles of {I + G(s)K(s)}. Each pole
of adj {1 + G(s)K(s)} must be a pole of the plant G(s) or a pole of the controller K(s) since the
identity matrix has no poles, and all the poles of G(s)K(s) are either plant poles or controller
poles. Similarly, each pole of adj{I + K(s)G(s)} is a plant pole or a controller pole. The
conditions (4.2¢) and (4.2d) for the poles of the feedback system are therefore superfluous.
det{1+ G(s)K(s)} = det{1 + K(5)G(s)}. (4.3)
Thus, the poles of the four transfer functions in (4.1) must satisfy one of the following three
conditions:

det{I + G(s)K(s)} = 0, (4.3a)
s 1s a pole of G(s), (4.3b)
s 1s a pole of K(s). (4.3¢)

The feedback system is then internally stable provided that the solutions of (4.3a), the plant
poles, and the controller poles, all have negative real parts.

These conditions for the poles of a feedback system can be further simplified for the care of
SISO systems where there are no pole-zero cancellations between the plant and the controller.
In this case, the det{I + G(s)K(s)} is equal to {1 + G(s)K(s)}. Additionally, the poles of G(s)
and K(s) are canceled by the denominator of {1 + (:(s)K(s) } and do not appear as poles of
any of the four transfer functions in (4.1).

For SISO systems with no pole-zero cancellations between (i(s) and K(s), the poles of all four
of the transfer functions in (4.1) are the solutions of

1 + G(s)K(s) = 0. (4.4)
Further, the systems in Figure 4.1a, b, and ¢ are internally stable if and only if all the solutions
of (4.4) have negative real parts.

This result states that internal stability of a SISO system with no pole-zero cancellations
between the plant and the controller depends only on the solution of (4.4).
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An important special case for MIMO systems is when both the plant and the cqnt’roller are
stable. The MIMO feedback system, with a stable plant and a stable controller is lnu?r'nall'y
stable if all the solutions of (4.3a) have negative real parts. This test for internal stability 1s
both necessary and sufficient, as demonstrated below. If the system is internally stable, then
e 1
det|G, , () =|det/fl + G(s)K(s)} " [= (4.5)
[ ‘:”3( ) ] [{ (IK()} ] det I +G(.s')K(s)}
is bounded for all s with non-negative real parts. Therefore, the determinant in this equation is
nonzero for all non-negative values of s.

A MIMO feedback system, as in Figure 4.1a, b, or ¢ with both G(s) and K(s) stable, is inter-
nally stable if and only if all of the solutions of

det{I+ G(s)K(s)} =0 (4.6)

have negative real parts.
This result provides a convenient test for stability of a MIMO feedback system with a stable
plant and a stable controller [Burel-1999].

4.2 Unstructured Uncertainty

In this section, uncertainty is modeled as a perturbation to the nominal plant. This
perturbation is a bounded transfer function, where hounded is defined in terms of the system
w-norm. This type of plant uncertainty is termed unstructured since no detailed model of the
perturbation (the unknown transfer function) is employed.

4.2.1 Unstructured Uncertainty Models

An unstructured perturbation can be connected to the plant in a number of ways, each
generating a unique set of possible plant models. Five Basic connections of the perturbation to
the nominal plant model are presented: additive perturbation, input-multiplicative
perturbation, output-multiplicative perturbation, input feedback perturbation, and output
feedback perturbation. An additive unstructured uncertainty models the actual plant as equal
to the nominal plant plus a perturbation:

G(s) = Go(s) + Au(s) 4.7)

where A,(s) denotes the additive perturbation. An input-multiplicative uncertainty models the
actual plant as the nominal plant plus a series combination of the perturbation and the nominal
plant (the perturbation appears on the input to the nominal plant):

G(s) = Go(s)[1 + A(s)), (4.8)

where A,(s) denotes the input-multiplicative perturbation. An output-multiplicative
uncertainty models the actual plant as the nominal plant plus a series combination of the
nominal plant and the perturbation (the perturbation appears on the output to the nominal
plant):

G(5) = [1 + Ay(5)]Go(s), (4.9

where A,(s) denotes the output-multiplicative perturbation. An input feedback uncertainty
models the actual plant as the nominal plant in series with the perturbation in a feedback loop
(the feedback loop appears on the input to the nominal plant):

G(s) = Go(s)[1 + Ag(s)]" (4.10)
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where Aj(s) denotes the input feedback perturbation. An output feedback uncertainty models
the actual plant as the nominal plant in series with the perturbation in a feedback loop (the
feedback loop appears on the output to the nominal plant):

G(s) = [1+ Au(s)] " Go(s),

where Ag(s) denotes the output feedback perturbation. Block diagrams of these five
uncertainty models, appearing in a feedback system, are given in Figure 4.2. Note that for
SISO systems, blocks can be interchanged without affecting the system response, and there is
no difference between the input and output uncertainty models, but these models can yield
substantially different results for MIMO systems. The actual plant equals the nominal plant in
all cases when the perturbation equals zero.

The uncertainty models are used to represent various types of uncertainty in the

(4.11)

Aa(s)
i Gu("} —
K(s)
(a)
Bl
Aa(ﬁ)']"
eyl
UU(S) - } :""“GO(S):‘ -l -
T | |
== { K(S):"
(b) (c)

Ads) Aﬁ(s)}"—

Gi(s) T G.(s) B
K(s) K(s)

(d) (e)

FIGURE 4.2 Unstructured uncertainties in the plant model: (a) additive uncertainty; (b) input-multiplicative
uncertainty; (¢) output-multiplicative uncertainty: (d) input feedback uncertainty: (e)output feedback uncertainty;

plant. The additive perturbation represents unknown dynamics operating in parallel with the
plant. The multiplicative perturbations represent unknown dynamics operating in series with
the plant. The feedback perturbations are used primarily to represent uncertainty in the gain
and phase of the plant (or the control loop if a feedback control is applied to the plant).

Stability robustness or performance robustness can be evaluated when the perturbations in
these models are bounded:

a{A'(jw)} <A, (jo) (4.12)

where & (e)is the maximum singular value, and A' can be any of the perturbations described
above. The bound given for the perturbation is in general frequency-dependent, allowing the
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specification of plant uncertainty to vary over frequency. In many applications the plant
model is accurate at low frequencies but less accurate at high frequencies. The frequency-
dependent bound allows this information to be incorporated into robustness analysis. Note
that the perturbation transfer function is always stable since it possesses a bounded gain.

The unstructured uncertainty models presented above can all be analyzed in a similar manner
by placing them within a common framework (called the standard form for robustness
analysis or simply the standard form). This common framework has the perturbation
normalized and in a feedback loop, as shown in Figure 4.3. The plant P(s) has three inputs
and three outputs (in general, each of these inputs and outputs can be a vector):

(2GR (8) e SNP (8 P (SYIH(s)] (W, (s)]
F(s) 1= PR aS) P S e (8 s Y =P () (s ) (4.13)
M@)| | P, (S) P _(S5) P,.(S) || U(s) Ul(s)
A(s) -
Wals) < Yals)
Wi(s) = P(s} Y{(s)
U(s) - M(s)
K(s)

FIGURE 4.3 Standard form of a general feedback system with uncertainty

The inputs consist of the perturbation input W, (the output of the feedback perturbation), the
disturbance input W, and the control input {/. The outputs consist of the perturbation output ¥y
(the input to the feedback perturbation), the reference output ¥, and the measured output M.
The perturbation is normalized by incorporating the actual perturbation bound into the plant
transfer function. The perturbation bound (4.12) can be written as

|

— s A(jm)i=1] (4.14)
Am:u’. (.;w) { }
and the normalized perturbation defined as follows:
1
A(jo)=———A(jo 4.15
(Jw) AR (jw) (4.15)

The maximum singular value of the normalized perturbation is then

4 | 2

ofA(jo)}= ———cf{A'(jw)}<1 (4.16)

An'l:m (}'(U)

Taking the maximum over all frequencies, the set of perturbations A(jm) that satisfies this
bound is defined by

fAG@) H <1 (4.17)
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The normalized perturbation is incorporated into the system model by making the following
substitution:

&(]ajj & 6me\:{ (}a))A(;(t)) (4 18)

The use of the normalized perturbation simplifies robustness analysis by both normalizing the
perturbation's magnitude and, more important, removing the frequency dependence of the
bound. To simplify the notation, the term perturbation may be used to refer to either a
normalized or an unnormalized perturbation. This practice is followed when the normalization
of the perturbation is unimportant, or when the normalization of the perturbation is specified
by the bound.

The perturbation bound A..«(jw) is, in general, a scalar transfer function that i1s not
necessarily rational (a ratio of polynomials in jw). The normalized plant may then be
nonrational. Many design methods and analysis tools (especially computer-aided design tools)
require that the plant be modeled as a rational transfer function. This can be accomplished by
using a rational transfer function approximation of the perturbation bound. The rational
approximation should have a magnitude that closely matches the perturbation bound [Zhou ,
Dolye, Glover-1995], [Dolye, Francis, Tannenbaum-1990].

4.2.2 Stability Robustness Analysis

The stability robustness of systems with unstructured uncertainty is addressed by analysis of
the standard model.

Als) -
Wals) o Yals)
N(s)
Wis) | Y(s)
(a)
Als)
A Dot ) St R U
d(hl) N (s) 0 i Ya(s)
I |
| N, .(s) |
W(s) I N (s) l | Y(s)
[ W2
EEeiais S [OUS sip o
(b)

FIGURE 4.4 The unstructured uncertainty model for robustness analysis: (a) the basic model; (b) expanded to
show the subsystems of N(s)

Combining the nominal plant P(s) with the feedback K(s) results in a system consisting of the
nominal closed-loop system N(s) with the perturbation A(s) in a feedback loop, as shown in
Figure 4 4a. The transfer function N(s) is found from (4.13) by noting that
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U(s) = K(S)M (5) = K(5)P,, ()W, (s) + K(s)P,, (s)W (s) + K(5)P,, ()U(s)  (4.19)

and solving for U(s):

W

U(s) ={ 1-K()P,, ()} 'K(5)P,, (), (s) (4.20)
H{ 1-K($)P,, ()} ' K(s)P,,, (5)W ().

Substituting {/(s) into the equations for ¥(s) and Y(s) in (4.13) yields the following closed-
loop system:

}"J P."d“’d 0 P_l'd“ {I iy Kpmu } IKmed P,V.:w 25 P_l'du{l N7 Kpmu }_] Kme Wd’

iy | A 2T)
B P, tP I-KP VKPP P (1-KP JKFH

w mu

where all Laplace variables s have been dropped to simplify the notation. The nominal closed-
loop transfer function N(s) is then

Ya%d N-"d“
N
N}'u' N Vu
d
(4.22)
B . P AI-KP | 1 KP,, B, P (I KPP ' KP,,
P_m‘_. A P_w {l 55 KPmu } i KPmud P_rw + P_m {1 =5 KPmu } IKme

A considerable amount of time can be saved in practice by using a computer to evaluate this
rather complex expression for the nominal closed-loop transfer function.

The nominal closed-loop system is assumed to be stable since the controller has been
designed for the nominal system. The perturbation is also stable since it has a bounded gain.
The combined system in Figure 4.4b is then internally stable provided that the feedback loop
containing the perturbation is internally stable, this feedback loop being the only possible
source of instability.

The internal stability of this feedback loop (shown in Figure 4.5) is evaluated by considering
the following system:

B ( AN, ) S (I-AN
o '

A)’ i, G G )

- LU (’2112 “

' 1’—J |\(l i N.‘»'nr""rrA)- | N-"d“'d (l =B

A condition for internal stability of this system is generated by finding a bound on the signal
2-norm for the output of each of the four transfer functions in (4.23). Consider one of these

transfer functions, for example G, , (s) which describes the relationship between {/;(s) and
1",‘;(.\')_

YaWa

E, (s) = [I — A(S)N ok (\)] lA(S)U: (5= i (U, () (4.24)
This transfer function implies that
E,(5) = AS)N, . ()E,(s)+ A(S)U,(s) (4.25)
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Converting this expression into the time domain yields
e()=8(H®n, (e (t)+8(t)®u,(t) (4.26)

where n, () and d() are the impulse responses of N, ., (s) and A(s), respectively, and ®

denotes convolution. Taking the signal 2-norm of both sides of this expression and employing
the triangle inequality yields

Eils) o Us)
DU

FIGURE 4.5 Internal stability of the uncertain system

e )], =[s@@n,,,, ®e+8)Ou, ), <

(4.27)
pyen,,, e @), +[B@)®u, @),
The co-norm can be used to bound the terms on the right side of this inequality:
les @], = |AN,.. | e, @), + ]l Jee> @], - (4.28)
Further, the oo-norm of a product is less than or equal to the product of the co-norms:
e\, < AL N, o, |l O, + AL s O, (429
Solving for the signal 2-norm of e,(7) yields
1
e Ol < (LN, L) LI, G

The system described by the transfer function G,, has a bounded gain and is therefore
/. stable and BIBO stable provided the inverse above is finite. Noting that ”A‘L <1, this

inverse is finite if

=1 (4.31)

‘ ‘ YaWd ||eg

A similar analysis can be applied to the other three transfer functions in (4.23). All of these
transfer functions are stable provided condition (4.31) is satisfied. The following result is then
obtained:

A general feedback system, as given in Figure 4.4, where the perturbation is bounded,

is internally stable for all possible perturbations provided the nominal closed-loop system is
stable and

= supi J[N_],dwd(j(u)] } =] (4.33)

N, v

This result is known as the small-gain theorem and provides a test for robust stability with
respect to bounded perturbations. An alternative way of presenting the above results is to state

o0
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that the system is internally stable if the s-norm of the loop dition for internal stability. In
fact, this condition is also necessary for robust stability wtransfer function is less than 1.

The robust stability condition (4.33) is presented as a sufficient conith respect to unstructured
perturbations; that is, a destabilizing perturbation can be found that satisfies the bound (4.32)
whenever (4.33) does not hold. A necessary and sufficient stability robustness condition is
subsequently derived for structured perturbations. The robustness condition (4.33) is a special
case of this more general result, since an unstructured perturbation is a special case of a
structured perturbation. The fact that (4.33) is necessary for interval stability follows
immediately from the necessity results presented for structured perturbations [Zhou, Dolye-
1998], [Dolye, Francis, Tannenbaum-1990].

4.3 Structured Uncertainty

Unstructured uncertainty is modeled by connecting an unknown but bounded perturbation to
the plant. This type of uncertainty model requires very little information, that is, only the
bound and how the perturbation is connected. In many applications, additional constraints on
the set of admissible perturbations are available. These constraints add "structure" to the set of
admissible perturbations, and the uncertainty is termed structured. Structured uncertainty is
therefore a more general form of uncertainty than unstructured uncertainty.

Structured uncertainty arises when the plant is subject to multiple perturbations. Multiple
perturbations occur when the plant contains a number of uncertain parameters, or when the
plant contains multiple unstructured uncertainties. For example, the plant model may be well
specified except for two uncertain time constants, which are modeled as a nominal value plus
a perturbation. Another example of structured uncertainty is when the plant contains both an
input multiplicative perturbation and an additive perturbation. Clearly, structured uncertainty
1s a very general way of modeling uncertainty.

4.3.1 The Structured Uncertainty Model

A plant subject to structured uncertainty can be placed in a standard form analogous to that
used for unstructured uncertainty. The standard form of the structured uncertainty model has
the individual perturbations normalized to 1 and placed in a feedback loop around the nominal
plant. The standard form of the structured uncertainty model is shown in Figure 4.6. The
structured perturbation A(s) is a block diagonal transfer function:

PR alea e

A(S) = sevver e e e 8 (434)

0F L e e AR (|

where # is the number of perturbations and the blocks A, (s) € (""" represent the individual

perturbations applied to the plant. An individual block can represent an uncertainty in a
parameter (a scalar perturbation) or an unstructured uncertainty. The set of all transfer

function matrices with this block diagonal form 1s denoted A. The structured perturbation is
normalized so that its infinity norm is bounded by 1:

A, <1, (4.35)
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FIGURE 4.6 standard form of the structured uncertainty model

Additionally, all the blocks in the perturbation are scaled so that their infinity norms are
bounded by 1:

IA, = (4.36)

o0

<1 ’
o

A

L

AE

<] ’
,_{._‘_ 2 k]

Note that the bounds in (4.36) imply the bound in (4.35). The perturbation is normalized by
incorporating the actual bound (which may be frequency-dependent) into the plant, as

discussed in Section 4.2.1. The subset of A that satisfies the bounds in (4.34) is termed the set
of admissible perturbations.

4.3.2 The Structured Singular Value and Stability Robustness

The stability of a system subject to a structured uncertainty is determined by analyzing the
feedback system in Figure 4.6. The nominal closed-loop system is assumed to be stable. Any
unstable poles of this system are therefore caused by closing the loop through the perturbation
and are the solutions of

det{ T+N, , (s)A(s) } =0. (4.37)

Stability robustness may be evaluated by determining the "size" of the smallest perturbation
that results in a pole-a solution of (4.37)-with a non-negative real part. A perturbation that
results in such a pole is termed a destabilizing perturbation.

The locus of the solutions of (4.37) is a continuous function of A(s). Therefore, the smallest
destabilizing perturbation has one or more poles on the imaginary axis. The "size" of the
smallest destabilizing perturbation is defined as follows:

inf}{ \min\{ o[AG®)] such  that det{ 1+N,  (j@)A(jw) }=0 }} (4.38)
@ (ja)el

Note that A(jw)in (4.38) is any perturbation (with the appropriate block structure) that places
a pole at a specific point jo on the imaginary axis. The maximum singular value is a measure
of the size of this perturbation. The minimization over all appropriate perturbations results in
the size of the smallest perturbation that places a pole at jo. The minimization over frequency
then yields the size of the smallest perturbation that places a pole anywhere on the imaginary
axis, that is. the size of the smallest destabilizing perturbation. A system in standard form is
robustly stable if and only if the smallest destabilizing perturbation is greater than 1 (the

infinity norm of the largest admissible perturbation):

ian min { ;[A(.jw)] such  that det{ Ed R0 (_j(u)A(j(u)}: 0}} >1. (4.39)

l *\[j””r A
Unfortunately, finding the size of the smallest destabilizing perturbation using (4.38) is not a
trivial matter. In fact, this problem is intractable in all but the simplest of cases. Therefore,
bounds on the size of the smallest destabilizing perturbation are developed. Before generating
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these bounds, the stability robustness condition (4.39) is put in a form that is more useful for
both application and computation.

The stability robustness condition is placed in an alternate form by inverting (4.39):

sup} — 1
B IE min {J[A(ja))] such  that det{ I+ N},dwd(ja))A(ja))}= 0}

Al ja)eA

<l (4.40)

Note that the supremum of the ratio in this equation equals the inverse of the infimum of the
denominator. This alternate stability robustness condition is very similar in form to the result
obtained for unstructured uncertainty in (4.33). In addition, this form of the stability
robustness condition can be simply generalized to include performance robustness.

The term within the brackets in (4.40) is called the structured singular value (SSV) and is
formally defined as follows:

Hz(N) = - .
minfo(A) such that  det(l + NA)=0]

(4.41)

p (N)=0 if det(I+NA)#0 for all AcA. (4.42)

The structured singular value is, in general, a real-valued function of a complex matrix N,
which depends on the structure of the perturbations as defined by A .

The stability robustness criteria for a system with unstructured uncertainty is summarized
below.

A general feedback system, as given in Figure 4.6, is internally stable for all possible
perturbations:

A(jw) e A and HA(_;'(U)‘L <l. (4.43)
if and only if the nominal closed-loop system is internally stable and
sup{ 1[N, Ga] } <1. (4.44)

Note that satisfying this condition is both necessary and sufficient for robust stability. This
test for stability robustness is very general and can be used in a wide range of applications,
provided the structured singular value can be computed.

4.3.3 Bounds on the Structured Singular Value

The determination of robust stability is dependent on the computation of the structured
singular value. The direct computation of the SSV by a search over all A is impractical since
this set has an infinite number of elements. Quantized searches over A may yield unreliable

results and are often hindered by the high dimensionality of A. Therefore, bounds on the
SSV, which can be generated using a moderate amount of computation, are presented. These
bounds are often tight; that is, they provide good estimates of the SSV.

Upper Bounds The structured singular value is bounded from above by the maximum
singular value:

. (N) < a(N). (4.45)



To demonstrate this bound, first note that if 4. (N) =0, the bound is valid since &(N) > 5
Now, when 4 (N) # 0, the definition of 4 (N) states that
1 -
PRSI = 4.46
1, (N) TR_IE[(T(A) such that det(I+NA)_0], (4.46)

Let A be the value of A € A that yields the minimum in (4.46). The fact that the determinant
in (4.46) equals zero implies that for some nonzero vector v,

(I+NAy =0 (4.47)
v=—NAv
Taking the vector 2-norm of this equation, we have
b, = ], 44)
The gain of the matrix in this expression can be bounded by the maximum singular value:
I, <N, (]
M, < Mo, G

Dividing by [v|,and o(A) yields the result given in (4.45):

i L 451
1 (N) = o(N). (4.51)
In summary, the structured singular value of a matrix is bounded from above by the maximum
singular value.

The bound in (4.45) is easy to compute but tends to be overly conservative; that is, the
structured singular value can be appreciably less than the maximum singular value.
Additional bounds can be generated by returning to the system interpretation of the SSV and
considering the block diagrams in Figure 4.7.

The SSV of a transfer function N(s) is the inverse of the smallest perturbation that, when
placed in the feedback loop, yields a closed-loop pole located at s. The closed-loop poles of
this system are not changed by the inclusion (as shown in Figure 4.7b) of the diagonal scaling
matrices D;(s) and Dx(s) and their inverses:

[d, ()1, 0 SRR 0
0 d,(s)I, : 0
D,(s)= et S T S R (452)
0 0 d, (s)I,
[d, ()1, 0 0
0 ;. del, ; 0

0 i 0 A )
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The uncertainty blocks have the dimensions A, (s)e £ and the identity matrices have the

dimensions T, (s) € R™™ . These dimensions match up with the perturbation blocks to yield

D, ()AD, '(s)

| _ -
1 (5)A, (s : : g
d,(s) Aﬂd](l‘) 0 : s 0
. |
0 : dy(s)A, (s SR
A d,(s) '(‘)a’:(.s') 0 i (4.54)
S| PRSI RSN SRS SR e ) S S T TN IEET SERIE T = s).
0 : 0 T tod (A (s) .
i P i

Therefore, the system in Figure 4.7¢ is equivalent to the system in Figure 4.7a and

1[N = 2, [Do(s)N(s)D, ()] (4.55)
An additional bound on the structured singular value,

1[N = p; [DR(S)N(S)DL'](S)] < J[DR(S)N(S)DL'](S)] : (4.56)
is then obtained, since the maximum singular value is changed by inclusion of the diagonal
scaling matrices. Since this result is valid for all diagonal scaling matrices (with the given
block structure) and for all s, then

u;(N)<  min o(D,ND, "), (4.57)

djel

The parameters d, are called D-scales. The bound (4.57) is valid for all complex D -scales,
and as a special case, for all real D -scales. For the case of complex perturbations, the phase
shift of the perturbation is arbitrary, and any phase shift (including sign changes) imparted by
the D —scales has no effect on the bound. Therefore, the minimization in (4.57) can be
performed over the set of positive real D -scales without loss of generality:

5 T 1
Hz(N) < (JIT:z_nd"‘a(foND,_ ). (4.58)
The expression o= (DxND, ") is a convex function of {d), d>, . . ., dy.1} for d;e(0,00). In this

care, o = (DxND;") has a single global minimum, no local minima, and the minimum value
can be computed reliably using any good gradient-decent algorithm.

Computing the upper bound for the SSV using a brute forte gradient-decent algorithm is often
computationally quite intensive. This computational intensity is compounded by the fact that
robustness analysis requires that the SSV be computed over a range of frequencies. These
computational difficulties have led to the development of a number of algorithms for
optimizing the upper bound for the SSV that exploit the structure inherent in this problem.
The upper bound in (4.58) has been found to lie Close to the true SSV in a number of
applications. This bound is an equality for perturbations consisting of three or fewer complex
blocks, typically within 5% of the true SSV for larger numbers of complex blocks, and rarely
worse than within 15% of the true SSV. The exception is when some of the perturbations are
real.
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Figure 4.7 Diagonal scaling of the plant: (a) the feedback perturbation: (b) diagonal scaling added to the plant
and perturbation: (c) diagonal scaling leaves the diagonal perturbation unchanged

The bound in (4.58) may be overly conservative for mixed real and complex perturbations,
although even for these mixed perturbations, (4.58) often yields acceptable results.

A bound similar to (4.58) can be developed for the case where repeated perturbations are
present. Repeated perturbations occur when multiple system parameters are dependent on a
single external factor. For example, the Mach number (speed) of an aircraft influences both
the lift produced by a given angle of attack and the torque produced by a given angle of
attack. Therefore, the two parameters in the model relating lift and moment to angle of attack
are related. These parameters can be modeled as nominal values plus scaled versions of the

same perturbation.
Lower Bounds The structured singular value is bounded from below by the spectral radius
of N,:

#;(N) = p(N,). (4.59)

where N, is generated from N by the addition of zero columns and/or rows. These zero
columns and rows are added to make N; square and to make the perturbation blocks square,
and have no effect on the structured singular value. The spectral radius of a matrix is defined

as the largest of the eigenvalue magnitudes:

p(N) = max|4,(N))]. (4.60)
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The following example is used to illustrate how N, is generated and to demonstrate that

Hz(N) = uz-(N,). (4.61)

Note that A, is the set of block diagonal perturbations with appropriately sized square blocks.
To show that the SSV is bounded as in (4.59), the equivalent bound

K, NGl = p(N). (4.62)
is demonstrated by considering (4.46):

1 e
————=min |o(A,) such that det(I+N.A)=0]|. 4.63
/u,l,(Nv) "'\.rf-ﬂ![ ; ( = '9) ] ( )

A particular perturbation matrix is

5

A= gy % (4.64)
P

where A, is the eigenvalue of N, with the largest absolute value. For this perturbation, the
matrix within the determinant in (4.63) becomes

B, . e (4.65)
7

This matrix is singular since
1 1
(I+N,A)g =(1-—N)p=(I-—4)¢ =0. (4.66)
P P

where ¢, is the eigenvector of N, associated with the eigenvalue 4,.

Therefore, the det(I + N, A;) = 0 for the given perturbation, and the SSV is bounded:

1 1
o (N = — = =[1]=p(N ). (4.67)
min [O‘(A_‘_) such that det(I+N A )= 0] o(- /11 I
Ayels
The bound in (4.59) is easy to compute, but tends to be overly conservative; that is, the SSV
can be appreciably greater than the spectral radius. Additional bounds can be generated by

noting that

55 [N.v U]: Hy [N.s-]: My [N] (4.68)

where U € A., and U is a unitary matrix; that is,

Uu=1r (4.69)

Combining (4.68) with the bound (4.59) yields a lower bound for the SSV:
5, [N]= max p[N, U],

vhtu=1

(4.70)

The lower bound in (4.70) is identically equal to the SSV. Unfortunately, the expression
PIN.U] is not a convex function of the elements of U, and may have multiple local maxima.
Numerical optimization algorithms may fail to find the true maximum in (4.70). Therefore, it
is best to treat (4.70) as a lower bound and not as an equality, since numerical algorithms may

not yield the equality.
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4.3.4 Additional Properties of the Structured Singular Value

The structured singular value is central to the analysis of robustness. A number of properties
of the SSV have been generated in the literature. In this section, two of these properties are
developed. These properties are selected because they add insight into the meaning of the
SSV. and they are used in subsequent developments.

A consequence of the definition of the structured singular value is that

u[N]<1. (4.71)
if and only if
det(I-NA)> 0. (4.72)
for all admissible perturbations:
AcA and Al <1. (4.73)

The condition (4.72) results from the fact that the determinant is a continuous function of the
perturbation. The determinant is positive (indeed, equal to 1) for the admissible perturbation
A=0. If for some other admissible perturbation the determinant is non-positive, the
determinant must equal zero for an admissible perturbation. The singular value of this
perturbation is less than 1, implying that, s (N)is greater than 1.

The SSV is bounded by the maximum singular value (4.45), in general. When the set of

perturbations is the set of all complex matrices (i.e, A is the set of unstructured
uncertainties), this bound becomes an equality. In addition, the bound is achieved when the
perturbation is

A S (4.74)
o
where o1, J1, and UJ; are from the singular value decomposition of N:
P
N=Y GUr" (4.75)
i=1

To demonstrate that the SSV equals the maximum singular value, note that

P
(I+NAU, = {I —% o U7 ll{U,* }Ul =0. (4.76)
i=1 J]
Therefore, this matrix must be singular:
det(I+NA)=0. (4.77)

The bound (4.45) on the SSV is then achieved for the given perturbation, and
p:(N)=o(N). (4.78)
when the perturbations are unstructured.

The result (4.78) shows that the maximum singular value of a matrix can be defined in a
manner analogous to the structured singular value:

o(N)=——
min[a(A) such that det(I+NA)=0
At fJ'n

] : (4.79)
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The structured singular value is then a generalization of the maximum singular value. This
generalization 1s accomplished by placing restrictions on the set over which the minimization

is performed in (4.79). This relationship explains the similarity between the robust stability
conditions for unstructured and structured uncertainty.

4.4 Performance Robustness Analysis Using the SSV

The stabilit‘y of systems subject to gain, phase, unstructured, and structured perturbations was
addressed in the previous sections of this chapter. Stability is typically required of feedback
control systems, but stability alone does not insure suitability of the system. Suitability of the
controller is dependent on both stability and the meeting of certain performance
specifications.

Performance can be described in a number of ways. A particular method of specifying
performance is to bound the w-norm of the closed loop transfer function. This form of

performance specification is quite general and can be simply incorporated in SSV robustness
analysis. The performance specification is given as

‘ﬂl(sﬂL_< | . (4.80)

where H(s) is the perturbed closed-loop transfer function. This transfer function is obtained
by closing the loop containing the perturbation in Figure 4.8a:

H(s)=N,, (-AG)N, , ()] "AGN, ,(s)+N,,(s). (4.81)
A bound of 1 can be used to specify any frequency-dependent bound on this gain by
incorporating weighting functions into the plant. A system is said to possess robust per-
formance if the system remains internally stable and the specification in (4.80) is satisfied for
all admissible perturbations. Robust performance can also be defined using other performance
criteria or cost functions. The co-norm cost function is typically used to specify performance
robustness because fit yields a robustness test that is easily applied in practice.
The perturbed closed-loop transfer function is dependent on both the nominal closed-loop
transfer function and the perturbation. The conditions for performance robustness can be
precisely stated in terms of these transfer functions:

sup {,uf_i [N_‘,_J“d (‘s‘)] }41 1L (4.82)

hH('Y)H.f = ”le (-\')[l ~ AN, .. (5,-)] ]A(_s,)N_‘_dw(_g-) + N, (s) . Il (4.83)

for all admissible A.

This robust performance problem can be converted into an equivalent robust stability problem
by appending an uncertainty block to the system. This uncertainty block (known as a
performance block) connects the performance output with the disturbance input, as shown in
Figure 4.8. The system in Figure 4.8a meets the performance robustness objectives if and only
if the system in Figure 4.8c is robustly stable. This fact can be intuitively understood by
noting that for robust stability, the gain must be less than 1. This r_eguirement is the same as
the performance requirement. Therefore, requiring robust stability with respect to the
pernurbation Afs), as shown in Figure 4.8b, s equi\_zalent to the performapce rquirement.
Adding this new perturbation to the original perturbations yields the block diagram in Figure
48¢ A more mathematical demonstration of the connection between robust performance of
the system in Figure 4.8a and robust stability of the system in Figure 4 8c¢ is presented below.
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Wis) N(Q) Y(s)
(c)

FIGURE 4.8 performance robustness analysis using the SSV: (a) the system with uncertainty; (b) adding a
performance block; (c) structured uncertainty incorporating the performance block

Robust stability of the system with the performance block (Figure 4.8c) implies that the
system is stable for all perturbations of the following kind:

A(s) 0
A (S)=| e s such that HAP(S)‘L. <1, (4.84)
0 o Ay(s)
The system is also stable for all perturbations of the following kind:
AGs) i 0
A=liiltiese | aiewens ‘ 4.85
A (8)=|[-eeeeree such that |A(s)| <1, (4.85)
0 0

since this is a subset of the perturbations in (4.84). The feedback loop of the system in Figure
4.8¢c, with this set of perturbations, is identical to the feedback loop of the system in Figure
4.8a. This can be seen either from the block diagram or by looking at the closed-loop poles,

which are the solutions of

Aot iyl nisvovans i s gosnnsraril trsvas e de s
) ' i 0
N, () | N, | 0 o
J N, (5)A(s) 0
o e e —det{ I-N, , (s)A(s)}=0.
N, ()AGs) PO
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The system is robustly stable when subject to the perturbations in (4.85) if and only if

sup o [N o]} <1, ¢

which satisfies the first condition for robust performance (4.82).
The system with the performance block is robustly stable provided that

suplus, NG} <1, (4.88)

A consequence of the definition of the structured singular value [see (4.72)] is that (4.88) is
true if and only if

det[1 - N(jo)A, (jo)] >0, (4.89)
for all frequencies and all admissible perturbations:
A,(j@)eA, such that |A,(jo)| <1, (4.90)

The determinant in (4.89) can be expanded:

det[l £ N(jw)Ap(_jw)]: det] «ouss A T i =

=N A s T-N_ A (4.91)
—detli-N,, Aket{ [-N, A, ]-N,, All-N,  A]'N, A}
—idet(l- N A)de [1 _h_w NG AN A N} A ]> 0,

where the frequency designation has been dropped to simplify this expression. Since the
system is robustly stable,

det(I-N, , A)>0, (4.92)
Equation (4.91) is then satisfied if and only if

det[I- {N,, (jo)+ N, (jo)A(jo) e
(=N, (jo)AG®) N, (jo)} A,(j@)]>0

for all frequencies and all admissible perturbations. The condition (4.93) holds both for all

admissible A and all A,, such that

A, G, <1, e

Equation (4.93) is satisfied for all unstructured perturbations A,, that satisfy (4.94) if and anly
if (by the small-gain theorem)

HN 5%(.‘) 35 N YWy (‘\)A(S)[l ne N VaWd (S)A(S)]-I N"“"“I(.Y)Hm i I ‘ (495)

Applying the push-through theorem [see Appendix A3] to this result yields the condition for

robust performance (4.83). _ .
In summary, the structured singular value can be applied to evaluate robust performance. The

only limitation on the applicability of this result is that the performance must be specified in
terms of a bound on the closed-loop system oo-norm. The following examples demonstrate the
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use of performance blocks and the SSV to evaluate robust performance [Zhou, Dolye-1998],
[Zhou , Dolye, Glover-1995], [Burel-1999].

2.1 Examples

Example 4.1

Consider the input multiplicative uncertainty model given in Figure 4.2b. The nominal plant
model is fairly accurate (within about 0.5%) at frequencies below 10 rad/sec, but fairly
inaccurate (within about 50%) at frequencies above 1000 rad/sec. The accuracy of the model
should transition between these two extremes at intermediate frequencies. The frequency-
dependent uncertainty bound is given in Figure 4.9a. This bound can be approximated by a
first-order transfer function with a zero at 10 rad/sec and a pole at 1000 rad/sec:

(Jo+10)

(jo +1000)

Note that the zero at 10 rad/sec generates an increase in the magnitude response with a slope
of 20 dB/decade. This generates the desired rise in the uncertainty over the two-decade
frequency range. The rise is then canceled by the pole at 1000 rad/sec. The transfer function
gain is found by matching the bound at zero frequency:

(0+1000)

(0+10)
The magnitude response of the rational approximation to the uncertainty bound is plotted in
Figure 4 9a. Assuming that this approximation is sufficiently accurate, the system can be
placed in standard form by normalizing the perturbation and placing it in a feedback loop, as
shown in Figure 4.9b.

Awn (jo) = g

g =0.005 =0.5.

s : 102 10
Frequency (rad/sec)

(a)
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10(5+10) B 1Vy(s)

5+1000 |

[ |

1S

Gls) t )
EM{:)

__________________ =
Ii_—

(b)

FIGURE 2.3 The uncertainty model for example 4.1: (a) the bound on the perturbation; (b) the uncertainty
model in standard form

Example 4.2
We are given the nominal plant
()= sl
s—1
with an unstructured additive uncertainty,
[Acs)]. <1
and a controller,
1
K(s)=—
(s5) 5

The block diagram of this system in standard form is shown in Figure 4.10. Note that
reference inputs and outputs are not specified for this example since they have no effect on
robust stability analyses. From the block diagram, the transfer function from Wy to Yy is
computed with the loop closed through the controller:

1
N. (s)= =i/ A _E(S_I)
g 1+ K(s)G,(s) s+4
Note that the nominal system is stable. The maximum singular value of the scalar transfer
function Ny4y4(jw) equals the magnitude of this transfer function:

5{N.vﬂ.“}; (fw)} = |N.'r‘d“'d (‘;WX = %%

The infinity norm is then

1 Jo? +1

j u
”N_vr,wd (.lwmm = St]:p Em - 5

Which implies the system is robustly stable.



A(s) =
W =
I |
U(s) : L 10 ,L liM(S)
! sl T R
| |
Hgmbent o 4GS R g
b
2

FIGURE 4.10 standard form for the system in Example 4.2

Example 4.3

The hover mode pitch and yaw dynamics of a vertical-takeoff-and-landing remotely piloted
vehicle are given by the following state equations, Where these equations are partitioned as in
(2.16) and (2.17). The control inputs are elevator deflection 8, The measured outputs are
pitch angle p, yaw angle ¢, pitch rate, and yaw rate. For completeness, the disturbance inputs
(commanded pitch angle p. and commanded yaw angle g.) and the reference outputs (pitch

error and yaw error) are included in the model.

- (5 ]
fpl fo 1 6 0 jip| |8 0 0(f5P
u
p 0 0 0 -16|¢f 110 0 O .
{ = p + e :Ar+[Bu . 0] sasa |
q 0 0 O 1 lq 0 O 0 0
; : D. w
q 0 18 0 0 Jg 0 12 g 0
_I_ch
T plri @ o a]  Jo o.,:i000]
R il e R g 1 J, ]
p : g
{m q o 0 1 O0f, B 2 0 0]9
) .
10 R e RO R
q
y e sen s “ne e X s I aas aew I)C
19 :
e,l -1 0 0 O g S OL([C
5 | 0 U0 0o i 0 1]
L 0 0 ||u
. x+ .
(89, g B W
The plant is subject to an unstructured input multiplicative uncertainty on the control:
1
A(s)| £—
a5

The controller is specified by the following equation:
(1) =—KC, (v~ K, w)

Where
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(ﬁ') Kr C—,— £ Y(S)
U(s) -
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(a)

10-2 oS e I N B O e

10" 10" 10' 10
Frequency (rad/sec)
(a)

FIGURE. 4.11 Stability robustness analysis: (a) block diagram in standard form; (b) principal gains

Note that C,, is the identity matrix, so this is state feedback plus a feedforward control from

the reference input. This controller is designed to place the poles at
{-5+10/,~5-10,~6+12,/,~6-12,)

And drive the pitch and yaw errors to zero. A block diagram of this system in standard form

appears in Figure 4.11a. The transfer function from W, to Yy is found to be

N.r..«h;; (S) s -——;—K(:m (‘l = Bu KCm)_] Bu :
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The principal gains of this transfer function are computed numerically and plotted in Figure
4 11b. The infinity norm is the maximum value of the maximum principal gain,

“N-"’d“'d (S)”rn 5 084
Which implies that the system is robustly stable.

Example 4.4
Consider the transfer function below:

G(s) = G, ()1 + A, (5)] = ﬁh +A,(9)]

where Ao(s) 1s an unstructured uncertainty. The perturbations Ao(s) and & are bounded:
S 10(jw +10)
alA, (jw)] < |2
12,()] Jjw+1000

where 0 is assumed to be real, and the frequency-dependent bound on Ao(s) is given as a
rational transfer function of j @ (see section 4.2.1).

;|§[SS

W(S) _i s }‘(f}
4+0 = A(5)
(a)
N(s) —}
Iy
1 (s)
s \:}'_"l
|
|
4 5 t
|
[
|
|
10(s +10) [
5+ 1000 |
|
____________________ =|
o R
T AI(S) I
| |
| :
Wd[h‘] : A%(.‘i‘) | }d{S)
| : ) |
L_AG) ——
(b)

FIGURE 4.12 An example of modeling uncertainties as feedback pcnurb_ntions: (a) the model with
uncertainties; (b) the model with feedback perturbations

These perturbations can be placed in a feedback loop around the nominal plant, as shown in

Figure 4.12, where ( )
10(s +10 . :
52 10410) (. 5= 5A,(s)
A, (5) +1000 X
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The resulting perturbation has the property that
| A, - <LJA,), < LJA], <1
Ay(s) 1s a complex perturbation, and Ax(s) is a real perturbation

Example 4.5
Consider a motor with the following transfer function:

G(s)= &
. s(s+7, Xs+ )
where the forward path gain and each of the time constants are uncertain:

gel7x10° | 334100, refs0 . 60]; 7, €[00 , 400]

Ws) A D 0
0 0 A -
10
—-{ 5
™ 50
Y(s)
Wi(s) 1 3¢10° 1 Xs(s) : i X5(s) 1| Xu(s)
4 d s ! s s
Sfa TR B 350
(a)

10— 0 I 8 05 i :
10" 10' 10 10
Frequency (rad/sec)

(b)

FIGURE 4.13 Stability robustness (a) block diagram; (b) The structured singular value

These parameters can be modelled as nominal values plus perturbations:
g=3x10° +3x10°A;7, =55+5A,;7, =350+ 504,
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where &1“/.\2, ?}ﬂd Az are real perturbations bounded by 1. A unity feedback controller is
designed for this plant:

K(\) =1

A block diagram of the closed-loop system is given in Figure 4.13a. The closed-loop state
model for this system is

0 I 0 0 0 0 -3x10° 0 O
xX(1) = 0 =350 1 x(@®+|0 0 1|w,()y,()=| © 0 S |x(1),
—3%10° 0 —55 151 0 0 50 0
and the closed-loop transfer function from W, to ¥, is
—3%10° 0 0 0 | o \'fo o o
N ()~ 0 0 S5{s1] o -350 1 0.0 1
0 50 0 -3x10° 0 -55 1 10

The bounds on the SSV for this system are computed numerically. The diagonal scales used
in optimising the upper bound and the unitary matrix used in optimising the lower bound must
be computer at every frequency. The SSV is plotted in Figure 4.13b. Note that the lower
bound and the upper bound coincide, indicating that the true SSV is computed exactly. The

supremum of A [Nyawa(j@)] is 0.88, which indicates that the system is robustly stable.

Example 4.6

We are given the vertical-takeoff-and-landing remotely piloted vehicle of Example 4.3. A
block diagram of the pitch and yaw control system for this vehicle is given in Figure 4.11a. A
reasonable performance goal is that the pitch and yaw errors be smaller than 1, or about 5 of
the largest commanded values. Note that the gain requirement is derived by comparing the
allowable error to the largest commanded input expected (about 20). The commanded values
are assumed to be slowly varying; specifically, they are band-limited to less than 1 rad/sec.
These specifications can be translated to a bound on the perturbed closed-loop transfer
function:

005 w<l

&lﬂ(m}s{
o w>]

Note that the infinity in this bound indicates that the performance above 1 rad/sec is
unimportant. The performance goal is normalized to 1 by the use of the following weighting
function:

20 w<l

Qe =1

W(jw) ={

A rational approximation of this weighting function is
N UPS
e (s+1) Nt
The magnitude of the weighting function and its rational apprpximation are shown in Figlljre
414a. A second-order weighting function is used tq achieve a rapid lroll-oftf at high
frequencies (the specifications call for an infinitely rapid 'roll-oft). Append_mg thls_ trapsfer
function to the system and adding the performance block yields tl}e block diagram in Figure
4.14b. Note that the feedback gains are given in Example 4.3. This system was shown to be
robustly stable in Example 4.3, but no information was generatfad on pt_:rformance. Non}Inal
performance is evaluated by numerically computing the maximum singular value of the

nominal closed-loop transfer function:
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N (5= W(s){l ~C,(sI-A+B,KC,)'B,KK, }
The principle gains for this transfer function are plotted in Figure 4.15.

A(s) 0 o
WiA(s) YAs)
0 P AL(S)
o | SN
2
=) Wt Y(s)
Wi
(s)] K; Cy
|
1 - :
K - B, z §X(s5) lll X(s) C, M(s)
Us) :
A |-

FIGURE 4.14 Robust performance analysis: block diagram of the system with weighting functions and the
performance block

010 10' 10
Frequency (rad/sec)
FIGURE 4.15 Robust performance analysis: The structured singular value of N(s)

The infinity norm of the nominal system is 0.81, which indicates that the nominal system
achieves the performance specifications. The total nominal closed-loop transfer function is

1 ;
[—ch (I—A+BKC |'B, : —%KC”,(xl—AJrBuKCm)]BuKKr+§K](r

2 m u m
N{.S'):

o . . i 3 —
- W(ﬁ)c y (‘\'l TE A -+ Bu KCm) : Bi.‘ : W(S){l _(1}, (l\bl - A i3 B“Kcm) B"kkr}
Robust performance is evaluated by computing and plotting (see Figure 4.15) the structure
singular value of N(s). The maximum structured singular value is 0.99, which indicates that
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the system is stable and meets the performance specifications for all admissible perturbations.

For completeness, the maximum singular value of N, ., (s), which indicates robust stability,
is also included in figure 4.15.

Table 4.1 MATLAB commands to compute Robust stability evaluation using the structured singular value for
Example 4.5

clear.clc,
% Define the state model for the transfer function Mydwd.
A=[0 1 0 5
0-350 1
-3e6 0 -55]:
B=[000
001
110];
C=[-3e50 0
005
0500];
D=zeros(3).
% Generate the frequency response for this system.
w=logspace(0.3,100);
M11=pck(A,B.C,D);
fr=frsp(M11.w);
% Compute the structured singular value from the frequency response.
% Define the block structure.
blk=ones(3.2);
% Compute the SSV.
muM=mu(fr.blk):
% Plot the results.
set(0.'DefaultAxesFontName'.'times')
set(0.'DefaultAxesFontSize'. 16)
set(0.'DefaultTextFontName','times')
figure(l)
clf
vplot('liv.Im'. muM.'b.")
xlabel('Frequency (rad/sec)')
ylabel('Magnitude')
Yogrid
% Compute the maximum of the SSV.
maxmu=max(muM(:, 1))
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5 Controller Parameterization and Performance Specification

The optimization problems can also be posed using the system oo-norm as a cost function. The

co-norm is the worst-case gain of the system and therefore provides a good match to
engineering specifications, which are typically given in terms of bounds on errors and
controls.

The small-gain theorem states that, for unstructured perturbations, robust stability depends on
the co-norm of the closed-lop system from the perturbation input to the perturbation output.
The minimization of the closed-loop w-norm can, therefore also be used as a means of
maximizing robustness.

Robust stability in the presence of structured perturbations and robust performance both
depend on the supremum (over frequency) of the structured singular value from the
perturbation input to the perturbation output. Note that a performance block is added to the
perturbation (forming a structured perturbation) for robust performance analysis. The
supremum of the SSV is bounded by the w-norm of the diagonal-scaled, closed-loop system.
In fact, this bound is typically used in place of the SSV in robustness analysis. Therefore, it is
reasonable to assume that minimization of the system co-norm plays a role in maximizing both
robust stability (for structured perturbations) and robust performance (in general).

In summary, the optimization of the oo-norm has applications in both maximizing
performance and robustness. Control and estimation problems, with the goal of minimizing of
the system oo-norm, are termed A, optimizations problems.! This chapter develops some
basic results on the design of systems that minimize the system oco-norm, in particular, full
information control.

5.1 Differential Games

An H, optimal controller minimizes the worst-case gain of the system. This problem can be
thought of as a game with two participants: the designer, who is seeking a control that
minimizes the gain; and nature, which is seeking a disturbance that maximizes the gain (the
worst-case input). Games of this type are termed differential games when the dynamics of the
game are described by differential equations. Some fundamental results from the field of
differential game theory are presented in this section for application to H _ optimization
problems.

A differential game is described by the game dynamics and the objective function.” The game
dynamics are modeled by a generic state equation:

(1) = Ax(t)+ B u(t)+ B, w(1), (5.1)
where u(/) is the control input, which is selected by the designer, and w(r) is the disturbance
input. which is selected by nature. The objective function is a real function (not necessarily
positive definite) of the stéle, the control. and the disturbance:

J{x(0),u(t),w(1)}, {3.4)

The solution of the deferential game consists of the optima_l control trajec.:tory ‘”*(’) 3_"d 'fhe

worst-case disturbance input w*(#). This solution is_ rllecessanly a saddle point of the objective
function, which is defined by the following inequalities:

Jix(u* w), u* (1), w (1) } <J{x(u*, w¥), u* (), w* (1)} <J{x (u, w*), u (), w*(0}.  (53)
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The state 1S ShO\fVFn as a func_tlon of the ipputs in this expression to emphasize that the state is
completely specified by the inputs (provided the state initial condition is zero). A saddle point
can also be defined as the argument of the mini-max problem:

mjn[maf S, v),u(t),w(t)}) (5.4)

Lagrange multipliers can be used to convert a constrained mini-max problem into an

uncon_strai_ned mini-ma{c problem of higher order. Appending the constraint equation (9.1) to
the objective function yields the augmented objective function:

J,(x,u,w, p) =J(x,u,w)+ j{:’r P (O{Ax(1) + B u(t)+ B w(t)— x(1)}dt (3.5)

A necessary condition for a saddle point is that the variation of this augmented objective
function must be zero [Burel-1999].

5.2 Full Information Control

An optimal full information controller minimizes the infinity norm of the closed-loop system
from the disturbance input to the reference output, assuming that all of the plant states and all
of the disturbance inputs are available for feedback. In the stochastic regulator and in LQG
control, the disturbance input is white noise. This disturbance input has an infinite variance, is
totally unpredictable, and is not measurable. Using this input for feedback is then not
practical. In H _ optimization problems, the disturbance input may be measured or predicted
and is included as a possible feedback input. The term full information is used to reflect this
change with respect to the state feedback controller, which is the solution of the linear
quadratic regulator problem.

The A full information control problem is formally stated below. Let the plant be described
by the following state model:

x(1) = Ax(1) + B u(t) + B w(t) (5.6a)
y(@)=C x(1)+ D, u(r) (5.6b)
where
D,C, =0 (5.7a)
) 50 | (5.7b)

yus yu

The plant is assumed to be observable from the reference output »(7) and controllable from the
control input u(7). The zero in condition (5.7a) specifies that the output consists of two distinct
components: linear combinations of the state and linear combinations of the control. This
separation between the state and control is equivalent to the absence of cross terms between
the state and control in the LQR cost function. The identity matrix in (5.7b) indicates that the
coupling matrix between the control and the output is normalized:; tha_t is, the control is
normalized so that all controls are equally weighted in the cost. This normalization is
performed to simplify subsequent derivations, and so that the final results matc_:h those in. the
current literature. Normalization of this coupling matrix can always be accomplished provided

D, has full rank. L
The H, full information control problem is to find a feedback controller, utilizing the state

and the disturbance, that minimizes the closed-loop system co-norm.
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A block diagram of the full information control system is given in Figure 9.1 where the

C'Ontm“e,r IS el es system ("O_t necessarily time-invariant) denoted K(*). Note that defining
the cost in terms of the co-norm implies that the initial state is zero:

x(0) =0. (5.9)
w(t) Wiy
X(t
Controller [*
K(e) |o

FIGURE 5.1 Full information control

The «o-norm can be defined on either a finite or infinite (z = «) time interval. When the time
interval is infinite, the controller must also internally stabilize the closed-loop system.

A suitable objective function is required in order to apply differential game theory to the
solution of the full information control problem. The w-norm cost function (5.8) is not
acceptable as an objective function, since this cost only depends on the controller; that is, the
supremum makes this function independent of a particular disturbance input. Dropping the
supremum from the cost function (5.8) yields a suitable objective function. While
theoretically acceptable, the solution of the differential game with this objective function is
intractable, in general.

A quadratic objective function, which yields tractable solutions of the deferential game, can
be obtained by considering the bound on the closed-loop sc-norm:

HG |LV(I)”2,|U,:I]
w(o)

where 7 is called the performance bound. A controller that satisfies this bound is called a
suboptimal solution to the A _ full information control problem, or simply a suboptimal
controller. The suboptimal controller must also satisfy the bound obtained by squaring (5.10):

2 “y(’) ;-If’-frl ,
G, I sup W— <y (5.11)
' N2go.47) 2(0.4,]

For the supremum to satisfy this strict inequality, the term within the curly brackets must be
bounded away from y’; that is, for some &,

*———“Hy(!)uiln‘ I gy g ey

WO 0, )
Multiplying both sides by the denominator, and grouping the resulting terms yields

“}’(!)H;”.,f| o yl"“"(’)‘}i.|c1_11| < &*|w()|,

Note that satisfaction of this inequality for all disturbance inputs and some e is equivalent to
(5.10). The expression on the left of (5.13) can be used

= (5.10)

-r-_[l],l'f|

Pk 0.1 %0 20.t,]

(5.13)

|2,||!,;‘_r ]

the bound on the closed-loop «-norm
as an objective function:

-

w(!)”i (5.14)
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Difterc_emlat} game theory can then be applied to generate a control that minimizes this
sl sy the presence of the worst-case disturbance. If the minimum of the
objective tunc.tlon satisfies (5.13), then the bound on the closed-loop c-norm is achieved.

This d:ffgrentlal game 1s posed as an open-loop mini-max problem; that is, the control input is
not required to }’Je generated by a feedback controller. Therefore, this problem allows more
general control inputs than those allowed in the H ., suboptimal control problem. As will be
seen, the solution of the deferential game does yield a full information feedback control,
making it a valid candidate solution of the 4, suboptimal control problem. In fact, the saddle
point of the differential game is an H, suboptimal full information controller. This fact is
demonstrated after first deriving the solution of the differential game, which is referred to as
an f, suboptimal full information controller in anticipation of demonstrating this
equivalence.

General conditions can be given for the existence of H, suboptimal controllers. The #

optimal controller can then be approximated by decreasing the performance bound until a
suboptimal controller no longer exists [Zhou, Dolye-1998], [Burel-1999].

5.2.1 The Hamiltonian Equations

The differential game specified by the objective function (5.14) and the game dynamics (5.7)
yields a constrained mini-max problem. An unconstrained mini-max problem of higher
dimension can be obtained by appending the constraint to the objective function:

Sy wp)= [y Oy -y'w ()

+2p" (O Ax(1) + B u(t) + B, w(t) - %(1)}dt

where the Lagrange multiplier term p(7) is referred to as the costate. The factor of 2
multiplying the constraint equation is used to simplify the final results. Note that 2 times a
constraint equation is also a constraint equation.
A necessary condition for a saddle point is that the variation of the augmented objective
function equal zero. The increment of the augmented cost function is

aJ . (uw,p,é,w,w,0, )=

ay

(5.15)

AJ,, (u+ouw+owp +op)—J,, (uwp)

¢/ i = ) = - 5 : 5
a3 I (x+0x) C_i,CI‘_(x +0x) + (u +0u) (u+ou)—y* (w+ow) (w+ow) (5.16)
+2(p+ f)‘p)r {A(x+0x)+ B, (u+ou)+B (w+ow)—(x +0x) }dt

t S = .
= I "X"CTC x+u"u- y’w'w+2p" {Ax+B u+B w—x}dl

where (5.6b) has been used to substitute for y(7), the fact that DI, D, =1 has been used, and
the time indexes have been omitted to simplify the notation. Expanding this expression and
grouping terms, we have

aJ,, = _r( oxCTC ox +ou' ou — y ow’ ow

1 - ~ ~ > . T ¢
+20p" {Adx + B, ou +B 0w —0x} +2u" ou e
T nl . :JT‘J_ ST |,_'
+2x"CIC dx—2y'w 0w +20p {Ax+ B,u+B, w-x}
1 2p" {Adx + B, du+ B, ow —ox}dl
A necessary condition for the trajectory x(?), p(1), u(1), and w(7) to be a saddle point is that the
variation of the objective function equal zero:
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al, , (u,w,p,éu,éw,ép) = J:f 2x"CTC 0x + 2u” 6u - 2y*w” ow
+2p" {(Ax+Bu+B_w - ¥) (5.18)

+2p" {Adc+ B,ou+B, ow—dldt =0
Integration by parts yields

J\/ 7 @%@t = p' 1,0t~ pT )80 - [ 57 307 (49

which can be used to eliminate the variation of the state derivative in (5.18). Further, the state

initial condition is fixed, so dx(0) = 0. Substituting this result and (5.19) into (5.18), and
regrouping terms yields the necessary condition for a saddle point:

o/, (u,w,p,ou,ow,dp)=-2p’ (1) x(t,)+ _[:f 2xTC_T,C_V5 x+2u' S u-2y'w'Sw
+26 p"{Ax+Bu+B,w— ¥} (5.20)
+2p"{AS x+B, S u+B S w-3 %)dt =0.

Since the variations 0x(fy), dx, du, and dp are all arbitrary, this expression is only equal to zero
if

plte =0 (5.21a)
p()=-C|C x(1)- A" p(t) (5.21b)
u(t)=-B’ p(1) (5.21¢)

w(t)=y "B, p(t) (5.21d)

X(1) = Ax(1)+ B, u(t)+ B w(t) (5.21e)

Eliminating #(f) and w(7) from (5.21b) and (5.21¢), and combining the resulting equations into

a single state equation yields
x(1) A : -B,B’ +y B B’ [ x() x(1)

u u

...... _—_‘f}f’w (522)
p | -Cc, AL p() p(1)
This is the Hamiltonian system for the full information H control problem, and the matrix

.. is called the Hamiltonian.
The H, suboptimal control can be found by solving the Hamiltonian system subject to the

final condition
plt) = 0. (5.23)

The solution of the Hamiltonian system (5.22), at the final time, given an initial condition at
time 1, is
x(t,) xt)] [®@,@, -0 i ®,¢,-0|[x0)
:e,'ff'.,”f A e o o e e (524)
plt,) 20 @, (1, 1) P@,(t, -0 | | pO)

Substituting the final condition (5.21a) into this equation yields
x(1,) @, - PDL, - || X
R ey e | e (5.235)

0 q)ll“_.l‘ ‘_!) (Dgg("_; -!) )U(()
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The lower block of this matrix equation can be solved for the costate in terms of the following
state:.

PO =@y, (1, —1)} ' B, (t, - 1)x(t) = P(1)x() (5.26)

where l_)(‘) 'q th? n}atrix of proportionality between the costate and the state. This matrix of
PFOP?“‘OHE‘“FY IS fU]_I)’ Spef_llﬁed by the state-transition matrix of the Hamiltonian system,
provided the inverse in (5.26) exists at all times between the initial time and the final time.

The H, suboptimal control is then found from (5.21¢):
u(t) = =B PO)xX() = BU{®,, (1, ~ 1)} ®,, (¢, —1)x(r) = —K(1)x(1) (5.27)

where K(7) is termed the H_ suboptimal feedback gain matrix. While this control is
generated from the necessary conditions for the solution of the differential game, it in fact
specifies a solution of the deferential game (provided the inverse exists at all times). Further,
this control is given by a linear, time-varying, state feedback law, making it a candidate
solution of the #, full information suboptimal control problem. Indeed, this feedback law is
a solution of this suboptimal control problem, which will be showed that the matrix P() can
be found as the solution of a Riccati equation.

An H, suboptimal contrller fails over long time intervals, This gives a general property of
H , suboptimal control:

The feedback gain exists for arbitrary time intervals, and there is a solution to the H
suboptimal control problem, only if the Hamiltonian matrix has no purely imaginary
eigenvalues.

Note that this is an “only if” statement. The fact that the Hamiltonian matrix has no purely
imaginary is not sufficient to guarantee existence of a solution to the steady-state H
suboptimal control problem. Additional conditions for the existence of this steady-state
control are presented in subsection 5.2.4 [Zhou , Dolye, Glover-1995], [Burel-1999].

§.2.2 The Riccati Equation

The Hamiltonian system for the H_ suboptimal control problem can also be related to a
Riccati equation. This Riccati equation has only final conditions and can be solved backward
In time using any numerical integration package.

The solution of the H_ suboptimal control problem can be reduced to finding the matrix P(7),
since the feedback gain (5.27) only depends on this matrix and B.. A differential equation for
P(1) can be generated by taking the derivative of (5.26):

p(1) = P(1)x(1) + P(1)x(0) (5.28)
Substituting for P(7) and x(f), using the Hamiltonian system (5.22) yields
—C'C x(t)- A’ p(t) = P(1)x(0) + P(1){Ax(1) - (B,B; 7 *B,B,)p(1)} (5.29)
Then, suhstituﬁng for p(1) using (5.26) and rearranging yields
(P(1)+ P()A + ATP(1)+C'C, — P()B,B] —7 B B)P()}x(1) =0 (5.30)

This equation is valid for any state x(#), therefore, the matrix in curly brackets must equal
ZETO

P(1) = -P()A - A" P(1)-CC, +P(1)(B,B, —7 ‘B,B.)P(1) (5.31)
This equation is the Riccati differential equation for the H , suboptimal control problem.

The Riccati solution P(7) is a symmetric matrix (if it exists), which can be found by solving

(5.31) backward in time from the final condition:
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P(,)=0 (5.32)

This final condition is obtained by letting p() = 0 in (5.26) and recognizing that the result is
valid for . f'!nal_ state. The_fact that the Riccati solution is symmetric is shown by noting
that the derivative is symmetric whenever the Riccati solution is symmetric:

P' (1)) ={-P()A-ATP())-CC, + P(t\(B,B” - *B_B')P(1)}
=—A"P(t)-P()A ~CC, +P(1)(B,B’ —y *B_B")P(r) = P(1)

Thereforg, ir?tegr'fiting l.this derivative backward in time from the final condition yields a
symmetric Riccati solution [Burel-1999].

(5.33)

5.2.3 The Value of the Objective Function

A feedback controller and a worst-case disturbance result when applying Lagrange multipliers
and variation theory to the differential game with dynamics and objective function. The
feedback gain is found from the solution of either a Hamiltonian or a Riccati equation. All of
these results are based on the variation of the objective function, which only specifies
necessary conditions for the existence of a saddle point. In fact, the given control and worst-
case disturbance form a saddle point of the differential game, and this control is an H
suboptimal controller. These two results can be verified by cleverly rewriting the objective
function.

To begin note that

f dx" (1)P(1)x(1)
g dt

Since P(7)=0 and x(0)=0. This integral can be added to the objective function (to complete the
square) without changing the value of this function:

dt =x"(t,)P(t,)x(t,)~ x" (0)P(0)x(0) =0, (5.34)

A g dx" (H)P(t)x(t
J :J" ¥’ (;)C_"_C_‘,x(!)+11T(f)u(t)—y“wT(I)W(?‘)+ ( )dt( )X( )dt
Yo . : Lo 3,30
J"r X (r)C_{,C_‘,x(r) +u” (Ou(t)—y*w' ()w(t) Ca
+ X" ()Px(t) + X" ()P()x (1) + X" (1)P(1)x(t)dt.
Substituting for the derivative of the state using (9,2a) and regrouping terms yields
J, = I” X' (P+CC,+A'P+PA)x+ u'u—y'w'w+(B,u+B, w) Px (5.36)
+x P(Bu+B w)d,
where the time argument has been dropped to simplify the notation.
Substituting for (P +C’C, + A" P+ PA) Using the Riccati equation (5.31) gives
T T _y B B )Px+uu—yw'w
I, =[P BBRE i
+(B,u+B,w) Px+x P(Bu+B,wdt.
Regrouping again yields
i J".( (u + B! Px)’ (u + BLPx) - y}(w-y’'B,Px)’ (w-y'B,Px)dt
e 639

. 2 Il Bl
= ”H +B] Pwam A5 y uw el B“'PxH:.w,l'
ey r’ # 5 . ~ .
Where the norms in the final expression are signal norms. The objective function has a value

of zero when the control and disturbance inputs are given by the necessary conditions:
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u(t) = —B] P(1)x (1), (5.39)
w(t) =y *B" P(1)x(1). (5.40)

This point is a saddle point since any other disturbance input, with control (5.39), yields a

decrease in the ob_Ject'we value, and any other control input, with disturbance (5.40), yields an
increase in the objective value.

To verify that the controller is an /_ suboptimal controller, it must be shown (5.13), that

J, =u@®+BPx(0)|. - 2wty — 2B : :
=@+ BIx@, -y ) -y BLPx)f,, <-&wo)L,, (5.41)
for some positive €. When using the controller reduees to

J, =y w(r)~y'2B£Px(!.)H:[} <—&*|w()[ (5.42)

2[0t] 2[0t,]
Or equivalently,
2 )/2 = 2
[w,,.,, < ?Hw(t) =y BPx(), (5.43)

The fact that a positive e exists that satisfies this equation can be developed by noting that the
disturbance 1nput can be generated by a time-varying state model from the input

[w()—y “BLP(OX(D) ]:
x(1)=[A-B,B]P(1)+y B, B.P(t)]x(t)+ B [w(t)— y *B! P(1)x(1)] (5.44a)
w(t)=—y "BLP(0)x(1) +[w(t) -y *B.P(t)x(1)] (5.44b)

Since all matrices in this state model are finite, the output is bounded:
WO, <16 sl W0 - ¥ *BLR@x()
Where G, denotes the state model (5.44). Comparing this result with (5.43), a positive ¢
that satisfies (5.43) is & = y/HG

(5.45)

2
b ]
0.t 7] 2,[0,/]

and the control law (5.39) is therefore a solution of

wAw

rr.-,[ll.ff|
the suboptimal / _ control problem.

The suboptimal control exists provided the Riccati equation (5.31) has a solution over the
entire time interval from O to t;. This control depends on the performance bound selected.
Note that the Riccati equation (5.31) reduces to the LQR Riccati equation (5.44) when the
performance bound approaches infinity. The LQR Riccati equation is guaranteed to have a
solution, indicating that the H Riccati equation has a solution for sufficiently large
performance bounds.

The control law (5.39) has been shown to satisfy the infinity norm bound (5.14), and to exist
whenever the Riccati equation (5.31) has a solution. The folowing question immediately
comes to mind: If this Riccati equation has no solution, is it possible to find a full information
controller that satisfies the bound (5.14)? The answer to this question is no! The existence of a
solution to the Riccati equation (5.31) is both necessary and sufficient f‘or the existence of a
solution to the A, suboptimal control problem. Therefore, the H_ optimal solution can be
approximated to an arbitrary degree of closeness by decreasing the bound until a Riccati
solution no longer exists. _ .

The H, suboptimal controller presented is not unique. A fan.uly Of‘ controllers can be
generated that all satisfy the bound (5.14), whenever_al solution exists. The controller
presented above is often referred to as the central, or minimum entropy, controller [Burel-
1999
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5.2.4 Steady-State Full Information Control

The feedback gain in Example 5.1 approaches a steady-state value far from the final time.
When operating over infinite time intervals, all finite times are infinitely far from the final
time. The time-invariant controller that utilizes the steady-state gain is therefore a solution to
the /, suboptimal control problem when the time interval is infinite (provided this gain
internally stabilizes the system). This time-invariant, full information control can also be
utilized to simplify controller implementation when operating over finite time intervals. In
this case, the steady-state controller may not satisfy the oo-norm bound, but is probably
reasonably close provided the time interval is long compared to the gain settling time. These

observations, made concerning Example 5.1, can be applied to general H_ suboptimal
control problems.

The existence of a steady-state solution to the H_ suboptimal control problem is not
guaranteed for all values of the oo-norm bound. A solution does exists for «o-norm bounds
sufficiently large, given that the plant is controllable from the control input and observable
from the reference output (conditions included in the H, suboptimal control problem
specification). This fact can be deduced by noting that the /_ Riccati equation approaches
the LOR Riccati equation as the performance bound approaches infinity. The above
observability and controllability conditions are sufficient to guarantee the existence of a
steady-state solution to the LQR and therefore also to guarantee the existence of a steady-state
H , suboptimal control for sufficiently large performance bounds.

For smaller bounds, the question immediately arises: Under what conditions does a steady-
state solution to the # suboptimal control problem exist? The answer follows:

A suboptimal solution that internally stabilizes the closed-loop system and bounds the closed-
loop o-norm (5.10) exists if and only if there exists a positive semidefinite solution of the
algebraic Riccati equation,
PA+A"P-P(B,B] -y’B B,)P+C;C, =0 (5.46)
such that
A-(B,B] -y BB )P (5.47)
is stable, that is, all of the eigenvalues of this matrix have negative real parts. The suboptimal

controller is then given as
u(t) =B Px(1) = —Kx(1) (5.48)

Note that condition (5.47) is included to guarantee the internal stability of the feedback
system.

Equation (5.38) was used to show that the infinity norm is bounded as in (5.10), in the finite
time case. The derivation of (5.38) requires the existence of the Riccati solution at all times
during the interval of operation. While the above conditions are sufﬁcif:nt to guarantee the
existence of the Riccati solution at all times, this fact is certainly not obvious. Simply talking
the limit of (5.38) as the final time approaches infinity is therefore not suf‘ﬁcier_n to verify that
the performance bound is achieved. An alternative method of demonstrating that (5.48)

represents a solution of the A, suboptimal control problem is presented below.

The fact that (5.48) is a solution of the H suboptimal control problem can be verified by
verifying that the closed-loop system is stable, and

forming the closed-loop state model,
L ; that the gain satisfies the performance bound. The

applying the bounded real lemma to verify
closed-loop state model is
(1) = (A —B, B! P)x(1)+ B w(1) = A x(0) + B, w() (5.49)
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C

i

YO =] e (@) +0w(1) = Cx(1) + D_w(1) (5.50)
—DR'P

To show that this system is internally stable, add and subtract (PB,B.P)to the algebraic
Riccati equation (5.46) and rearrange to give

P(A-B,B,P)+(A-B,B’P) P

+y'PB B.P+PB,B'P+C’C, =0 22t
Note that this is a Lyapunov equation:
» S BTR]
PAd+AZ,P+[}/"‘PBWEPBHEC1]- BIP =0 (5.52)
sz
The existence of a positive semidefinite solution P for this equation implies that
7y 'BP
lim| B;P |e* =0 (5.53)
35

Since the plant is observable from y(f) (the output associated with C,), and the controller
contains no states, the closed-loop system is observable from y(7). Therefore, the closed-loop
system is internally stable, since any unstable modes, modes that do not decay to zero, will
appear in the output.

The bounded real lemma is used to demonstrate that the closed-loop system oo-norm satisfies
the bound (5.10). This lemma states,

The infinity norm of the generic stable system (2.4) is bounded,
|G, <7 (5.54)
if and only if
(D) <y (5.55)
and there exists a symmetric matrix P that satisfies the algebraic Riccati equation
P(A +BR 'D'C)+(A+BR" )l 95 5

| (5.56)
+PBR 'B'P+C " (I+DR'D")C=0

such that
A+BR'D'C+BR 'B'P (5.57)
is stable, that is, has all eigenvalues with negative real parts, where R = }’jl_ +D'D.
To apply this result, it must be shown that the closed-loop state model satisfies the conditions
given in (5.55) and (5.56) and (5.57). _
Condition (5.55) requires that the input-to-output coupling matrix be bounded:
F(D,)=6(0)=0<y (5.58)
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Further, conditions (5.46) and (5.47) are e
e 10 the closed-loop system. To see t
state model into (5.56):

P(A-B,B,P)+(A-B,B'P) p

q_uivalent to conditions (5.56) and (5.57) when
his, substitute the matrices from the closed-loop

C
+y°PB BTP+[CT:< PRI 1ol (i

~DB’P

Expanding the last term in this equation and remembering that D'D=1 yields (5.51), which is
equivalent to (5.46), as demonstrated above. For the closed-loop system, the matrix in (5.57)
reduces to (5.47):

A,+B,R"D,C,+B,R'BP=A_ -B,B P+y B _B'P (5.60)

which is required to be stable. Summarizing, for the closed-loop system, (5.55) is satisfied,
and there exists a solution to (5.56) such that (5.57) is stable. Together these results imply that
the closed-loop system oc-norm is bounded as given in (5.54) and equivalently in (5.10). Since
the closed-loop system is stable, this implies that the control (5.48) is an /_ suboptimal
controller.

The above presentation does not demonstrate that the conditions relating to (5.46) and (5.47)
are necessary for the existence of an /_ suboptimal controller. But in fact, these conditions

are both necessary and sufficient for the existence of such a controller. [Zhou, Dolye-1998],
[Burel-1999].

(5.59)

5.2.5 Computation of the Steady-State // Full Information Control

The steady-state solution of the algebraic Riccati equation can be found from the eigensystem
decomposition of the Hamiltonian matrix:

Py () (5.61)
Where
'P‘Il
...... (5.62)
‘P:l

is a matrix whose columns are the eigenvectors of the Hamiltonian associated with the stable
eigenvalues. The derivation of this result is analogous to that presented for the LQR and is
therefore omitted. The steady-state Riccati solution is then used to generate the steady-state

full information controller as given in (5.48).

5.2.6 Existence Results in Terms of the Hamiltonian

The existence of an H_ suboptimal control can also be specified in terms of the Hamiltonian
matrix:

em and bounds the co-norm of the closed-loop

A suboptimal solution that stabilizes the_§yst d bo :
transfer function (5.10) exists if and only if the Hamiltonian matrix,

& : -B,B'+y’BB,
- A SRR o e (5.63)
- C'ﬂ’:C S —A
. ertible, and

has no eigenvalues on the imaginary axis, ¥, 15 1nv
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P=W 00, e (5.64)
The suboptimal controller is then given as

u(t)=-B, ¥, (¥,,)" x(r) = —Kx(r) (5.65)

| : SUbO.ptm?zfl control exists when the Hamiltonian has eigenvalues on the
Rk et A be intuitively understood by considering (5.27). Purely imaginary
eigenvalues give rise to undamped oscillations in the state-transition matrix of the

Ham?ltonian. These oscillations, in turn, yield oscillations in the time-varying Riccati
solution, thus guaranteeing that a limit does not exist

The above result is simply a restatement of the previous existence result for the A
suboptimal control problem based on the relationship between the Hamiltonian and the

steady-state Riccati solution. This formulation of the existence result is presented for

completeness and to aid in understanding related results in the literature [Dolye, Francis,
Tannenbaum-1990],[Burel-1999].

The fact that no H

5.2.7 Generalizations

Several assumptions have been made in the development of the full information control to
simplify the mathematics. Specifically, the control was assumed to be normalized so that the
input-to-output coupling matrix between the control and the reference output satisfied

ol S (5.66)

This condition can be achieved by proper definition (normalization) of the control input.
Alternatively, the H _ suboptimal controller formulas could be modified to incorporate the
use of a non-normalized control input. Most computer-aided design packages that allow the
generation of A _ suboptimal controllers do not require normalization of the control. In

particular, normalization is not required when using the #-Analysis and Synthesis Toolbox of
MATLAB.

The assumption that
D,.C,=0 (5.67)

is also made in the derivation of the H_, suboptimal controller formulas. This assumption

specifies that there are no cross terms between the control and the state in the cost function.
These cross terms can be incorporated into the problem statement, yielding an increase in the

complexity of the A, suboptimal controller formulas. A software for finding the associated
controllers can be found in the p-Analysis and Synthesis Toolbox of MATLAB.
Terminal state weighting can be employed in the differential game used to generate the H
full information control:

S (x W)= HV” —72|

w|} +x7 (1, )Hx(t,) (5.68)

H . full information suboptimal controller. This

The resulting controller (if it exists) is still an v
controller can be found by solving the Riccati equation with the final condition

P(/,)=H (5.69)

and using this Riccati solution to find the feedback gain. Note that the final condition can

‘ ion solution, in general. The use of final state

influence the existence of a Riccati equati ’ tat
weighting has a similar effect on the H . full information controller as on the LQR; that is, it

forces the final state closer to zero. :
The /7, suboptimal full information controller is not unique. The set of all controllers that

satisfy the bound can be constructed by adding terms to the given state feedback controller. A
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second OPFimlza“Un LR th‘en be performed, if desired, over this set to yield controllers that
have additional properties, for example, robustness. [Zhou, Dolye-1998], [Burel-1999].

5.3 H, Estimation

The liljear quadr'atlc Gaussian control is generated by an optimal state feedback control law
operating on estimates of the state. The states, in this case, are estimated using the Kalman

filter. A similar structure exists for the output feedback controller, as presented in the

next chapter. Before discussing this structure in detail, the H , estimation problem is posed
and solved.

Two fundamental differences exist between the Kalman filter and the A , optimal estimator

(or filter). First, the H_filter is optimal in terms of minimizing the co-norm of the gain
between a set of disturbance inputs, and the estimation error. This performance criteria
specifies that the worst-case gain be minimized. In contrast, the Kalman filter minimizes the

mean square estimation error, or equivalently, minimizes the mean square gain between the
disturbances and the estimation error.

The second difference stems from the fact that minimum mean square estimation commutes
with linear operations; that is, the minimum mean square estimate of any linear combination
of the state is simply the same linear combination of the optimal state estimate. The Kalman
filter, which provides optimal estimates of the state, can therefore also be used to estimate any
linear combination of the state. Minimal oo-norm estimation does not possess this property,
and the optimal / _ estimator depends on the plant output being estimated.
The specification of the H, estimation problem requires a model of the plant and a cost
function. The plant is modeled as follows:
X(1)= Ax(t) + B u(t)+ B, w(r) (5.70a)
m(t)=C x(1)+ D, w(t) (5.70b)
where u(1) is a known input, and w() is an unknown (but not necessarily random) disturbance
input. The plant is assumed to be observable from the measurement and controllable from the
disturbance input. The matrices B,, and D, are assumed to satisfy the following conditions:
B8 =% (5.71a)

Dm-Biw =1 (5:118H)

Condition (5.71a) specifies that the disturbances entering the plant via the state equation
(similar to plant noise) and the disturbances entering the plant via the measurement equation
(similar to measurement noise) must be distinct. This condition is _akin to r_ec_luiring the
measurement and plant noises be independent in the Kalman‘ﬁlter setting. Condition (5.7.lb)
specifies that the output equation must be scaled to normal_lze the input-to-output coupling
matrix between the disturbance and the measurement. This normalization can always be
accomplished provided D, has full rank. Assuming that the output equation is normalized is
not necessary to the theory, but simplifies the subsequent derivations.

The D, filter estimates linear combinations of the state

y(t)=C,x(1) (5.72)
given the measured output of the plant. An optimal /, estimator generates estimates that
minimize the worst-case gain between the disturbance input and the estimation error

e(t) = y(t) - y(t)
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©[0,t,] = sup '”;y_:i)ﬂz_lﬂ_r—d
w0 ”wnz.lﬂ-ff]

n i - spen :

\::{ﬁ over elther a finite or an infinite time interval. The
- enh()peratlng over an infinite time interval. The plant and
-«, Where the estimator is a linear system (not necessarily

Ji= “Gewu (5.73)
This infinity norm can be defi
estimator is required to be stable
estimator are shown in Figure 5
time-invariant) denoted (s).

Thel.H:, estm;‘ahton P SOlved.by utilizing the duality between estimation and control.
Duijn}t. Wf‘es llrs.t pres:;:nted to explain the similarity between the equations for the linear
quadratic regulator and the Kalman filter. The following section provides a more detailed

tlrggf)Tem of duality based on the adjoint system[Dolye, Francis, Tannenbaum-1990],[Burel-

53.1 The Adjoint System

The duality between the control and estimation problems can be explained by noting that
these problems are related via the adjoint operation. The adjoint system is a modification of
another system that has the same s-norm and 2-norm as the original system

u(t)

B..

; x(t
wit) | g ; ) j'd" | x(1) d = y(t) e(1)
! ¥

) o8 e ? m(t)
Daw
bz

ult)
|-

vi?)

Estimator

C (o) -

FIGURE 5.2 The estimator problem in standard form

A time-varying linear system (referred to below as the original system) is given:

(1) = A(0)x(1) + B(tyu(t) (5.74a)
y(1) = C)x(1) + D()u(r) (5.74b)
The adjoint system (associated with the original system) is defined as
i‘(r):Ar(!_f ~7)X(@)C" (t, - 7)Y (%) (5.75a)
ii(r)=B" (1, -0)x(0)D" (1, ~7)y(7) (5.75b)

Note that the input, output, and state of the adjoint system are distinct from the input, output,
and state of the original system. Block diagrams of the original system and the adjoint system
are shown in Figure 5.3. Comparing these block diagrams, note that the adjoint system is the
reverse" of the original system. In general, the adjoint of a collection of subsystems is the

adjoint of each subsystem connected in reverse or der.
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Two important properties of the adjoint system are that it has the same 2-norm and the same

w-norm as the original system. A sim;?ler demonstration of the equivalence between the o-
norms of the original system and the adjoint system is given below

y(t)

- B(l) I.df X(t) - C{l)

A(l) |

(a)

D(te- 1)

u(r) x(r y
B(t,- 1) (7) j'df i y(7)

AT(t- 1)

(b)
FIGURE 5.3 Relationship between the adjoint system and the original system: (a) the original system; (b) the
adjoint system

For this demonstration, the systems are assumed to be time-invariant, and the co-norm is

defined over an infinite time interval.
The transfer function of a time-invariant system can be related to the transfer function of the

adjoint system. The transfer function of the original system is

G(s)=C(s[-A)"' +D (5.76)
Taking the transpose of this transfer function yields the transfer function of the adjoint
system:

G (s)=B'(sI-A")"'C" +D" =G(s) (5.77)
The infinity norm of the adjoint system is then given:
G| =suplalG(jm)]}=suptalG’ (o)} =suplol G} =[Gl (5.78)

The fact that the maximum singular value of a matrix equals the maximum singular value of
the matrix transposed can be easily understood by noting that the nonzero §mgular values c;f a
matrix M are the nonzero eigenvalues of MM’ . which equal the nonzero eigenvalues of M'M

[Zhou , Dolye, Glover-1995],[Burel-1999].

53.2 Finite-Time Estimation
The #, estimation problem is solved by using the adjoint to convert the estimation problem

into an equivalent control problem. The full information results generated in the previous

section can be used to solve this equivalent control problem. The A estimator is then

obtained by taking the adjoint of the resulting controller.
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paralleling the full information results. subo
pound on the infinity norm from the dis
conditions can be given for the existenc
estimator can then be approximated to an
bound until a solution no longer exists.

The equations for the plant and estimator (see Figure 5.2) are summarized as follows:

ptimal estimators are generated that yield a given
turbance input to the estimation error. General
e of these suboptimal estimators. The optimal
arbitrary degree of closeness by decreasing the

x(1) = Ax(1)+ B_w(1) (5.79a)
m(t)=C x(t)+D, w(r) (5.79b)
e(1)=C x(t)- y(1) (5.79%)
§(t) = Lm()} (5.79d)

where C(*) denotes a linear (not necessarily time-invariant) estimator. The input to the model
(5.79) is w(r), and the output is e(f). The known input u(f) has been removed from this
formulation of the estimation problem to simplify the subsequent derivations. The known
input can be ignored without loss of generality, since the effects of this input on the output are
easily computed. Superposition can then be invoked to add the effects of the known input into
the estimator.

The adjoint of this system is obtained by taking the adjoint of the plant (5.79a) through
(5.79¢), taking the adjoint of the estimator (5.79d), and combining the results:

¥(7)=ATE()+C. +Ce(x); (5.80a)
W(r) =B X(7)+ D], m(z); (5.80b)
y(1)=—%(1); (5.80¢)

mi(r) = {3 (7)}. (5.80d)

A block diagram of the adjoint system is shown in Figure 5 4.
The system in Figure 5.4 is a control system. For this system, the controller {{+} can be
selected to bound the cost:

Hw”;[n,:f ]

e

J =[G

(4

(5.81)

,[0,t ]

=1
I|"||:qu_f|=” 2,[0.t ]

This suboptimal control problem is very similar to the full information control problem. Note
that the plant model (5.80a) and (5.80b) has exactly the form of (5.6a) and (5.6b) when m (1)
is the "control input." Further, the conditions (5.65) and (5.65) are equivalent to (5.7a) and
(5.7b) for the adjoint plant:

(D,.) B, =0 (5.82)

(D" ) B =1 (5.83)

mw mw

Lastly, the initial condition for the adjoint system can be assumed to equal zero, since the oo-
norm only depends on the forced response. . _

The control problem (5.80) and (5.81) differs from the full information cqntrol probl_em only
in the fact that the measurement available for feedback (5.80c) is the disturbance input. In
contrast, both the disturbance input and the state are assume(_i to be avgllablg in the full
information control problem. A controller that utilizes only the disturbance input is referred to
as a disturbance feedforward controller. :

The existence of an H . full information suboptimal control for the plant (5.80) is necessary
for the existence of a solution to the disturbance feedforward control problem. This

observation is based on the fact that a disturbance feedforward co_ntroller is a special case of a
is the fact that the full information control problem

full information ¢ . bvious
rmation controller. Less obviou i
dforward control problem.

IS mathematically equivalent to the disturbance fee
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FIGURE 5.4 The adjoint of the estimator problem in standard form

y(1)

The equivalence of the full information and disturbance feedforward control problems is
demonstrated by noting that the state of a plant can be perfectly reconstructed from the initial
condition and the inputs. Since the initial condition for the plant (5.80) is zero, the state can be
perfectly reconstructed from the disturbance input and the control input. Since the controller
always has knowledge of the control input, knowledge of the disturbance input is equivalent
to full information.

The full information control results can be used to generate a suboptimal solution to the
control problem in Figure 5.4. The estimator {(¢) can then be recovered from the resulting
controller {(+) by taking the adjoint. The resulting estimator is a suboptimal solution of the
H , estimation problem, since the «o-norm of the closed-loop adjoint system equals the -
norm of the original system.

The Riccati Equation The disturbance feedforward controller is found by utilizing the full
information results to yield a state feedback controller. The state used in this controller is
reconstructed by applying the control and disturbance inputs to the adjoint model. The
resulting controller is given:

¥(r)=AT%(r)+C,(r)+C,e(7) (5.84a)
i(r) = -G(1)x(7) (5.84b)
or, equivalently, i
¥(r) =[AT - C.G(r)x(z) + C 2 (7) (5.85a)
(7)) = -G(1)%(7) (5.85b)
The state feedback gain in (5.85b) is equal to the full information control:
G(r)=-C,Q(7) (5.86)
The matrix Q (1) is found by so[vmg the following Riccati differential equat:on:
Q(r)=-Q(r)A” ~AQ(r)-B,B. +Q()(CC, -7 *CIC,)QA) (5.87)
backward in time from the final COﬂdl[LDﬂ
Q(t,)=0 (5.88)

The H, suboptimal estimator is the adjoint of the controller (5.85):
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¥(®)=[A-G"(t, -nC, () +G (1, - tym(r) (5.89a)
e(1)=C x(1) (5.89b)
Defining,

G(t)=G’ (t, 1) (5.90)
adding the known input into the estimator equation, and rearranging yields the H_ sub-
optimal estimator:,

xX(1) = Ax(t) + Bu?l(!)+G(t){m(t)—C_v)?(I)} (5.91a)
y(t)=C x(t) (5.91b)
A block diagram of this estimator is shown in Figure 5.5. Note that this estimator has the
structure of the Kalman filter, but the estimator gain is selected to minimize the so-norm
criterion.
The Riccati equation (5.87) can be placed in a more convenient form by performing the
change of variables T =7 /- 7, and defining

Q()=Q(t, —7) (5.92)
A Riccati equation for this new matrix is then
Q(1) = QA" +AQ(1) + BB, ~Q()(C,C, ~y *C}C,)Q(). (5.93)
This Riccati equation is solved forward in time from the initial condition
Q0)=0 (5.94)
The estimator gain can be written in terms of this new Riccati solution:
G(1)=Q(1)C], (5.95)

Equations (5.91) through (5.95) completely specify the suboptimal #H, estimator. Note that
the Riccati equation and therefore the estimator gain depend on the output being estimated,
since this equation contains C,.

The Riccati equation (5.93) and (5.94) approaches the Kalman Riccati equation as the
performance bound y approaches infinity. A solution is therefore guaranteed to exist for
sufficiently large performance bounds. For finite performance bounds, this equation may or
may not have a solution. In general, solutions exist for performance bounds above a limiting
value equal to the optimal value, where optimal is defined in terms o: minimizing the norm
(5.73).

y(t)

Cl|'|

FIGURE 5.5 The /H , optimal estimator

The Hamiltonian Equations The suboptimal full information controller, and therefore the
suboptimal estimator, can be generated by solving a Riccati equation or by solving the
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Hamillor_liaﬂ ?quations‘ The Hamiltonian equations for the estimator can be combined to form
the Hamiltonian system:
f“ 1 T AT = o 5
‘o [ A el e Ten | e
W T e e Sl (5.96)
p(f) _B,‘Bw . —A )‘5(:) ﬁ(t)
where the matrix y ., is called the Hamiltonian.
The H , suboptimal estimator gain can be found by solving the Hamiltonian system subject to
the final condition
p(t;)=0 (5.97)
This gain is then given as
G(1)=-Q()C,, = -] (N{D,, (1)} " C. =@, (1)} '@, ()C" (5.98)
where the terms @j; are blocks in the state-transition matrix of the Hamiltonian system:
®,(0) : @)
eyfr-{ | s ma et B Al i s (5‘99)
®,(1) : D,
[Dolye, Francis, Tannenbaum-1990],[Burel-1999].

5.3.3 Steady-State Estimation

The H, suboptimal estimator becomes time-invariant far from the initial time provided the
bound is chosen sufficiently large that a steady-state solution to the Riccati equation exists.
When operating over long time intervals, it is often desirable to use the steady-state estimator
to simplify implementation. Mathematically, the steady-state estimator must be stable for the
w-norm (5.73) to be defined over infinite time intervals. In practice, stable estimators are also
desirable for operation over moderate to long time intervals, especially when initial errors and
unmodeled dynamics are present. Thus the steady-state /, suboptimal estimator problem is
to find a stable, time-invariant estimator that satisfies an co-norm (defined over an infinite
time interval) bound on the transfer function from the disturbance input to the estimation
error.

Conditions for the existence of an H_ suboptimal estimator are summarized below. When
these conditions are satisfied, the steady-state estimator is given by (5.91), with the gain
found by using the steady-state Riccati solution in (5.93) and (5.94). These existence results
and estimator equations are given without proof, since they can be related to the full
information results via duality.

An estimator that is stable and bounds the «o-norm of the closed-loop transfer function (5.73)
exists if and only if there exists a positive semidefinite solution of the algebraic Riccati

equation

AQ+QA” -Q(C.C,-77C]C,)Q+B,B, =0 (5.100)
such that the matrix 1
A=Q(C.C,-77CC,) (5.101)
1s stable. _ : Sy
The steady-state Riccati solution can be found from the eigensolution of the Hamiltonian:
' 0=9.%.,)" (5.102)
where
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...... (5.103)

LA whose columns are the eigenvectors of the Hamiltonian associated with the stable
eigenvalues. As observed previously, the H, optimal estimator can be approximated to an

arbitrary degrt?e of closeness by iteration of the bound and testing for the existence of
suboptimal estimators [Burel-1999].

5.4 Examples

Example 5.1
Let the plant be modeled as follows:

X(1)=x(t)+u(t)+2w(r)

e 10 0
y() = 5 x(r)+Hu(r)

2

and the objective function be

T, 0., w)}= |y 7 o)
Note that state and control weightings are incorporated into the output equation, which is
scaled to yield a unity weight on the control. The Hamiltonian system is

xX@ | | 1 =144y [ x(2)
p@®| |-100 -1 p(1)
which has the state-transition matrix

"’(f)Zei’f’v-‘:éff’"{(sl-ﬂf’m)"}df"]{1 : «-[H] L ﬂ
s°—101+400y | -100 5—1

A saddle point of this differential game exists (and an/ _full information suboptimal

controller exists) for a given performance bound provided ®2:(7) has an inverse throughout
the time interval, that is, the scalar @ ,(#,7) # 0. This element of the state transition matrix can

be computed:

a-1

a+l _, 400
e S
2a 2a 101

_ 5—1 e ~ [a00

D, =L~ — = 1-1 i e
= s> —101+400y 101
\/;+Isin((ot+9) y < ﬁ@
@ 101

Wherea = 101- 400y * , @ =+/~101+400y * , and 0 = -tan” (). Note that as y gets smaller,

a gets smaller, @ gets bigger, and 0 gets more negative, When y <+/400/101, the eigenvalues
of the Hamiltonian matrix are imaginary, and the gain does not exist for long time intervals,
since @ ,,(7) periodically crosses zero. Further, the fact that the feedback gain does not exist
implies that there is no solution of the differential game (and no solution of the H
suboptimal control problem) for the given bound. Less obvious from these expressions is that

the time interval over which a feedback gain exists becomes monotonically larger as s

increased, reaching infinity for » 22,

)ul’
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For the bound y =2.03 (a = 2), and the final time Ir=3, the H  suboptimal feedback gain is

)2{3"” -2{3-
K(1)= 100(,2[3_ } —100e .(3 t)
. A g =t 4200
which is plotted in Figure 5.6. Note that the gain exhibi i
its
steady-state value far from the final fimo a transient and then approaches a

S i : €. In situations where the time interval is long
compared 1o the settling time of this transient, it may be reasonable to use only the steady-
state gain.

]
(=]
:

1

| Pl

F i i : i

0 0.5 1 1.5 2 ¥l 3
Time (sec)

FIGURE 5.6 The feedback gain

The Riccati equation associated with the differential game (and H_ suboptimal control
problem) in this example is:
P(t)=-2P(t) +(1- 4y P*(1)-100
The final condition for this differential equation is P(3) = 0. The solution to this final value
problem is
1002 —100e72%-)

e:(_w,..,'; +38_{3--r)

This solution can be verified by substitution into the Riccati equation and by evaluating the
solution at the final time. Note that the feedback gain equals the Riccati solution, in this
example, since B, = 1.

P()=K()=

Example 5.2 e _
An antenna is required to remain pointed at a satellite in the presence of disturbance torques
caused by gravity, wind, squirrels climbing on the dish, and so on. A state model for this

antenna 1s
0 0
x(t) = B ‘llj[x(t) -{:] }f(!) +[l }w(:);

e()=[1 (1),
where u(f)is the control torque, w(#)is the disturbance torque, and e(?)is the tracking error of
the antenna. The tracking error of less than 0.1 ra_ld 1S .desned, even in the presence of
disturbance torques of up to 2 N-m. The control magnitude is also required to be less than 10
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N-m. These specifications can be a

ppended to the pl P > :
model in standard form: ¢ plant as weighting functions to yield the

g Q] 0
x(t):[o ~1}“”[10}“'(I)J{ﬂwr(’);

100 0
()= { 5 O]x(t)+L]u, (1),

where wl(t)_and (1) are the normalized disturbance and control inputs, respectively. In this
form, w_l(t) is less than 1 and both elements of y(7) are required to be less than 1. The original
control input can be recovered from the normalized control:
u(t)=10u, (1)

A full information controller is generated for y=1:

u,()=-[102 136}(t) > u()=-102 13.6}x(1)
The magnitude of the closed-loop system frequency response with this control is given in
Figure 5.7. This frequency response is for the unnormalized system. Note that the maximum
gain from the disturbance input to the error is 0.01, which is less than the gain of 0.05
required to meet the tracking error specification (provided the input is sinusoidal). In addition,
the maximum gain from the disturbance input to the control is 1.26, which is less than the
gain of 5 required to maintain a control less than 10 (again, for sinusoidal disturbance inputs).
Based on these results, it is expected that the tracking error and control magnitude will meet
the specified bounds even in the presence of reasonable nonsinusoidal disturbance inputs, but
this is not guaranteed.
The given controller is designed solely to achieve the specified bounds on the closed-loop
system gains. No specifications were included on the transient response of the control system.
Therefore, the transient response should be checked to determine if it is acceptable. The
closed-loop poles are —7.3 + 7.0/, which should yield a reasonably good transient response.
Smaller values of the performance bound (with y > 0.2) can be used to generate additional
controllers that meet the specifications. This limit on the performance bound can be obtained
by decreasing the bound, solving (5.46), and checking to see if this solution is positive
definite and (5.47) is stable. Alternatively, this bound can be generated by noting that the
control and the disturbance enter the system at the same point. A full information controller,

u(t) =-w(r)

would then yield perfect tracking and satisfy the bound on the control input only for values of
0.2,
Another H _ suboptimal controller is generated for y =0.21:

u(t)=-[32.8 739K =>u(®)=-[328 73.9}(0).
The closed-loop frequency response when using this controller is also shown i_n Figure 5.7.
Comparing the two controllers, the use of the smaller perfc?rmance bound increases the
feedback gains, significantly decreases the maximum tracking error, and increases the
bandwidth of the transfer function from the disturbance input to the control. This increase in
bandwidth is also reflected in the closed-loop poles {-4.7, -70}. These poles are indicative of
an overdamped, but probably acceptable, transient response. o
The weights on the control and tracking errors can be adjusted individually to trade off
tracking accuracy and control magnitude. The results of these changes are analogous to the

results obtained when changing the weighting matrices in the LQR.
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FIGURE 5.7 Frequency responses: (a) tracking error; (b) control

Example 5.3
An H  estimator can be applie : :
the actual range r(f) and radial velocity of an aircraft is

Fy] _[0 ITUJ}[O}W(O_
F@)| |0 o F(H] L1
The range measurements are given,

(1)
m([) - [] 0] {:‘(l)}-k v(l),

and the output to be estimated is the entire state:

d to the radar range tracking of an aircraft. A state equation for
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y(t):{l 0}[{*0)}
0 1{7@

The plant input and measurement error are assumed to be bounded:

|w(’)l _|4m/sec’

\v(t]l | oom |
A stitc equUALQR of the fo_rm in (5.70a) can be generated by including the measurement error
as part of the disturbance input:

r(r)}{o L r() L0 0w

O] [0 0/ |4 of v |

The ipputs are ngrmalized, and the plant input bound is included as a weight in this state
equation. Appending the measurement error bound to the measurement equation yields

1 Tro (1)
m(t){zo OJL@)}L[O 20]{\;1(:)}

Normalizing this equation so that the input-to output coupling matrix satisfies the constraint

(5.71b) gives
fa r(1) w, (1)
m‘(”_[zo O}[f(z)}[o ‘]L,m]’

where m(7) = 20 m (7). This measurement equation and the state equation (including the input
bound) are in a form appropriate for applying (5.91) through (5.95) for H_ estimator
synthesis.

The resulting H _ estimator is given as

X(1)= Ax(1)+ G, (t){m] (1) _Bﬁ 0}?(:)};

V(1) =C,x(1)
The state equation for this estimator can be written in terms of the original measurement:

; 3 ] 1 i
X(t) = AX(t) + 2—0G,(!){2Om, (1) 20{% O]x(r‘)}

— AX() +G()m) -1 O},
where G(7) = G,(f) /20.
The plant and the H_ estimator are simulated. The disturbance input and the measurement
error are both assumed to be discrete-time white noise, uniformly distributed within the given
bounds. An initial estimation error is included in the simulation to display the transient
performance of the estimator, even though this initial error is assumed to be zero during

estimator development. A T
The estimator gains and the estimated outputs (the states in this case) are shown in Figure 5.8,

where the estimator performance bound is: y = 225 ThiS particular perfonpance bound is
selected because it is roughly 10% larger than the optimal bound. The gains converge to
steady-state values. Also, the estimates converge in slightly over 10 seconds for both position

and velocity, and the estimator tracks the actual state.
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FIGURE 5.8 Baseline results for example 5.3

Example 5.4
An ac motor is described by the following state equation:

(1) = —x(t) +100u(1) + 100w(1),
where x(7) is the rotational velocity of the shaft, u(7) is the nominal input of 10 volts rms, and
w(f) is the error between the actual applied voltage and the nominal value. This error is
assumed to be caused by modulation of the ac envelope due to harmonics on the power line.
This modulation is assumed to be less than 1%, implying the disturbance input can be
bounded:

‘w(!}‘ <0.1 volts rms.

An H_ estimator is used to estimate the true rotational velocity of the shaft from the noisy

tachometer measurements:
m(t) = x(t)+v(1),

where v(7) is the measurement error. This error consists of a possible dc bias and sinusoidal

interference, and is bounded:
()| <1 volts rms.

The output of interest is simply the state.
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The Hamiltonian for this estimation
appended to the plant as a weight, is

-1 -1+
ym = }/ ;
—100 1
Letting ¥ = 1.1, the eigenvalues and eigenvectors of the Hamiltonian are

f=s4gs s e NlE Bl 0
~0.9986 /% 7| ~0.9995 |

The resulting normalized estimator gain is
G, -18.92,

problem, with the bound on the disturbance input

yielding the estimator

X(1) = ~x(1) +100u(r) +1.892{m(r) - x(1)}

=—2.892x(7) +100u(t) +1.892m(t).

The output of interest is the state in this example, so no output equation is required.
The plant and the A, estimator are simulated. The disturbance input is a 2 Hz sinusoid of
amplitude 0.1. The measurement error is a dc bias with an amplitude of 1. The initial state and
initial estimate are both set equal to 1000 rad/sec, which is the nominal motor shaft velocity,
since only steady-state performance is of interest. The plant state and the estimated state are
shown in Figure 5.9. Note that the maximum error exceeds the performance bound. This is
reasonable since the performance bound assumes that both inputs have the same frequency
and the sum of the squares of their amplitudes is bounded by 1 (for the normalized state
equation). In reality, the inputs have distinct frequencies and each achieves the maximum
amplitude. Still, the performance bound provides a good indication of the observed estimation
error.

1002 -+

1001 "". , . . I. t,|

Motor shaft velocity

[y
(=]
(=]
=

99 i 2 3 4 5
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FIGURE 5.9 / _ estimation of motor shaft velocity
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Table 5.1 MATLAB commands to compute H
clear
v, Define the plant model.

A=[0 1, 0-1];
Bu=[ 0.10];

Bw=10. 2]

Cy=[10 0.0 0]

Dyu=[0.1]:

Dyw=]0, 0]

plant=pck(A.[Bw Bul,Cy.[Dyw Dyu]);
% Generate the full information control gain with gamma = |
K=hinffi(Plant,1.1,1,0.01);

K=-K(1:2)

9, Generate the closed loop model.

Acl=A-Bu*K;

Bel=[0:1];

Cclew=[1 0];

Ccluw=-10*K:

% Generate the poles of the closed loop system.
poles=eig(Acl)

% Generate the frequency response from w to e.
w=logspace(0.2):

mage=bode(Acl.Bcl.Cclew.0.1,w);

% Generate the frequency response from w to u.
magu=bode(Acl.Bcl,Ccluw.0.1,w);

% Generate a full information controller with gamma = 0.21
K02 1=hinffi(Plant,1,0.21,0.21,0.01);
K021=-K021(1:2)

% Generate closed loop model.

Acl021=A-Bu*K021;

Ccluw021=-10*K021;
% Generate the poles of the closed loop system.
poles02 I=eig(Acl021)

% Generate the frequency response from w o e.
mage02 1=bode(Acl021.Bcl,Cclew,0.1,w);
% Generate the frequency response from w to u.
magu02 I=bode(Acl021,Bcl.Ccluw021.0,1,w);
% Plot the frequency response from w to €.
set(0,'DefaultAxesFontName', 'times')
set(0.'Default AxesFontSize', 16)
set(0.'DefaultTextFontName','times')
plot(w.20*log 10(mage).'r-',w,20*log 10(mage021),'r--)
xlabel('Frequency (rad/sec)’)
vlabel('Gain (dB)")
grid
legend('{\it{\gamma}} = 1''{\it{\gamma} } = 0.2)
set(gca,'xscale','log')
% Plot the frequency response from w (o u.
plot(w,20*log10(magu).'r-.w.20*log10(magu021).'r--")
xlabel('Frequency (rad/sec)')
ylabel('Gain (dB)')
gnd
legend('{\it{\gamma}} = 1'{\it{\gamma} } = 0.2")
Sel(gca, 'xscale','log")

-infinity full information control of a DC motor for Example 5.2
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¢ H. Controller

The H, output feedback controller (or simply the H_ controller) utilizes partial state
measurements, corrupted by disturbances, to generate the control. This controller can be
synthesized by combining an H_ full information controller with an H  estimator. At first
glance it_ appSals approp_riate to estimate the state from the measurements and apply the full
information feedback gain, as was done in the case of the LQG optimal controller. This turns
out to be not exactly correct, since unlike the Kalman filter, the H_ estimator gain depends
on what linear combination of the states is being estimated. Instead of estimating the state, it

is more appropriate to estimate the desired control input. In addition, the worst-case
disturbance input that appears in the full information mini-max problem must be included in
the H,, estimator equations. The /_ output feedback controller therefore has a structure like
that of the LQG controller, which consists of an estimator and a full information controller.
But this structure technically violates the separation principle as presented for the LQG
controller, since the estimator now depends on the full information controller design.

The suboptimal #_ control problem is defined by the plant and the cost function. The plant is

given by the following state model:

u(t) |
%(1) = Ax(r) +[B,iB,]-| -~ ‘ 615)
w(?) |
m(t) . 0 D, || u®)
...... S T b () T seinde il (6.1b)
(1) <, | ol il N
The matrices B,, and D,,,, are assumed to satisfy the following conditions:
D_B.=0, (6.2a)
DB, =1 (6.2b)

These conditions require that the disturbances entering the plant and ‘the measurement be
distinct and that the output equation of the plant be scaled to normal,z_e the measurement
noise. The matrices C, and D,, are assumed to satisfy the following conditions:

B/,D, =0, (6.3a)

B,D, =1 Lt

These conditions require that the reference output consist of an output dependent qnly on the
state and a distinct output dependent only on the control input. Fl{l’ther, the portion of the
output that depends on the control is simply equal to the control input or an orthogonally
transformed version of this input. The plant is assumed to I?e controllable from the control
input and observable from the measured output. These condltlgns guarantee ‘that .the plant can
be stabilized using output feedback, a necessity when operating over infinite time intervals
and always desirable. Further, the plant is assumed to be f:gntrollable from the filsturbance
input and observable from the reference output. These conditions guarantee the existence of a

steady-state //, suboptimal output feedback for sufficiently large performance bounds.

The suboptimal H _ , control problem is to find a feedback controller for the above plant such

that the w-norm of the closed-loop system 18 bounded:
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The closefi-loop system is also required to be internally stable when the final time is infinite.
The solution of the optimal H_ control problem (minimizing the closed-loop c-norm) is
discussed after first presenting a suboptimal solution [Scherer-2001],[Burel-1999].

(6.4)

o [0,¢ i
s1 ||""("J||2.[u,:,.—|T['.I

6.1 Controller Structure

The suboptimal 77, controller can be synthesized by combining a full information controller
and an output estimator. This structure for the suboptimal H, controller is derived in this
subsection, assuming that the suboptimal full information controller exists.

The so-norm bound (6.4), that defines the suboptimal /A controller, is equivalent to requiring
that the inequality

2

2
2,[0,t /] =7

J, =|y@) “’(’)”i-.wm < —&’|w(t) (6.5)

be satisfied for some positive s and for all disturbance inputs. The expression on the left in
this inequality is the objective function for the differential game used when solving the full
information control problem. A general expression for this objective function with arbitrary
inputs was derived in Subsection, 5.2.3. This expression is derived assuming that a solution of
the Riccati equation (5.31) exists (i.e., that a suboptimal H_ full information controller
exists).

A suboptimal full information controller exists whenever a suboptimal output feedback
controller exists, since all possible outputs can be generated from the state and disturbance
input. Therefore, the inequality (6.5) can be written in terms of the full information Riccati
solution by substituting (5.38) into (6.5):

J, = u()+B; P(z)x(t)H;%] e 0 |

2
2[0¢,]

10.1,]

: (6.6)
<=&'wol,.,,
This inequality is equivalent to the bound on the so-norm:
”u(!)+ B. P(1)x(1) s
HGxH = sup 2,[0,t, it

w(t)—y *BIP()x(1)20

w(t)—y 'BLP(1)x(1)

2[0.t]
This bound can be used in formulating a suboptimal /_ output estimation problem. The
solution of this problem leads directly to a suboptimal A controller.
This output estimation problem is stated as follows: Estimate the full information control
imnput,

u(t) = —B! P(1)x(1) (6.8)
given the measurement m(7), such that the co-norm of the transfer function between the
disturbance input Aw(t) =w(t)—y B’ P(1)x(1), and the estimation error is bounded:
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y(©)-y@)|,
G, . = sup H ’ e
Aw(t)=0 “W(f) = ythi.P(!‘)x(f)i

2.0,t /]
9
|- BLP()x(t) - ()], !

= sup
Aw(t)=0 “w(,) L y-EBZP(t)x(r)ﬂz

0t
el

[0.t,]
Note that this equation is equivalent to (6.7), since |- x| = |x] .

The state model of the "plant" in this estimation problem has Aw(f) as the disturbance input
and m(7) as the measured output. The state equation for this model can be generated by adding

plus and minus y'EBwBZP(t)x(r) to the original state equation (6.1a):
x(t) = Ax(t)+ B u(t)+ B w(t)+ 7 *B_B.P(t)x(t)—y "B, BLP()x(1)

=[A+y B, B P()x(1)+ B, u(t) + B, Aw(1) (6.10)

The measurement equation for this model can be generated by subtracting v=D B Px.
which equals zero because D, B!, = 0, from the original measurement equation (6.1b):
m(t)=C,x(1)+ D, w(t)—y B, BLP{O)x()
=C,x({)+D, Aw(f)
The plant model (6.10) and (6.11) has the form of the plant model (5.70), which appears in
the H_ estimation problem statement.

The suboptimal H _, estimator for the problem specified by (6.7) through (6.10) and (6.11)
generates estimates of the full information control. The inequality (6.7), which is equivalent to
(6.4), is satisfied when applying these estimates as control inputs to the original plant. In this
case. the estimator becomes an output feedback controller, since it generates control inputs
from the measurements. Therefore, the estimator is a suboptimal A, controller.

(6.11)

In summary, the suboptimal (or optimal) H_, output feedback control law is the H
suboptimal (or optimal) estimate of the full information control. The controller is therefore
designed in two stages: a full information controller is synthesized, and an output estimator is
synthesized. The final output feedback controller is generated by combining these two
components. This controller has a structure similar to the LQG controller, but technically
violates the separation principle, since the estimator design depends on the full information
controller design[Scherer-2001], [Dolye, Francis, Tannenbaum-1990],[Burel-1999].

6.2 Finite-Time Control
The suboptimal #, output estimation problem specified by (6.7) through (6.10) and (6.11)

has a solution if the Riccati equation .
Q. (1)=-Q, A +y BBPOY ~[A +7 B, BLP(NIQ, ()

3 i (6.12)
_B B’ +Q,(IC,C, -7 P®B,B, P(n1Q, (1)
has a solution, given the initial condition Qy, (0) = 0. The suboptimal estimator is
%(1)=[A+7 B BLP(O)X(1) +Bu(t)+ G(H)[m(t)-C,x(1)] (6.13)
u(t) =B, P(0)x(1) (6.14)
and the gain 1s |
G =0Q,0C, (6.15)
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This estimator contains two known inputs: u(f) which enters through B,; and y “B P(f)x(¢)

which enters through B,. The second input is the worst-case disturbance encountered during
full information controller optimization. This estimator can then be described as estimating
the full i‘nformation control in the presence of the worst case disturbance.

This estimator can be used as a feedback controller. Substituting for the gain (6.15) in the
estimator and setting u(¢) =u(f) yields the controller:

x(t)=[A+y B, B P(t)- B, B’ P(1) - Q,(HC,C, 1x(1)+Q, ()C. m(1), (6.16a)
u(t) = -B! P()x(1) (6.16b)

Solutions to the Riccati equation (6.12) and the full information Riccati equation (5.31) are

sufficient to guarantee the existence of this suboptimal A controller [Zhou , Dolye, Glover-
1995],[Burel-1999].

6.2.1 An Alternative Estimator Riccati Equation

The generation of the H_ output feedback controller (as given above) proceeds by
synthesizing the full information control and then estimating this control. This process results
in solving the full information Riccati equation for the plant. In addition, an estimator Riccati
equation for a modified plant is solved. This Riccati solution can be related to the Riccati
solution associated with reference output estimation for the original plant. Developing this
correspondence produces a symmetric (the symmetry is between the control and estimation
Riccati equations) pair of Riccati equations that can be solved to generate the H_ output
feedback controller. The resulting equations are in the form most frequently encountered in
the research literature.
The solution of the estimator Riccati equation (6.12) for the modified plant (if it exists) can be
related to the solution of the output estimation Riccati equation (5.93) and (5.94) with Q(0) =
0:
Q, (1 =Q)[1-y "P()Q()]" (6.17)
This fact is demonstrated after first presenting an additional condition that is necessary: to
guarantee the existence of Q,,(7).
The existence of Q,,(7) in (6.17) hinges on the existence of the matrix inverse in this equation
on the interval from 0 to 7 This matrix is invertible if it is positive definite, that is, all the
eigenvalues of [I - y2P(1)Q(#)] are positive. The eigenvalues of this matrix can be related to
the eigenvalues of P(1)Q(/). If & is an eigenvalue of P(1)Q(7), then
I0 (6.18)
Is an eigenvalue of [I - y?P(1)Q(1)). Therefore, the inverse in (6.17) exists, and Q,,,=gr) exists,
provided P(7) exists, Q(7) exists, and all of the eigenvalues of P(1)Q(?) are less than y; that is,
PP < 1 (6.19)
where p(*) is the spectral radius. i
It remains to show that Q,, (7) is a solution of the Riccati equation (6.12), with the initial
condition Q,,(0) = 0. The initial condition on Q,() is easily verified:

Q,,(0)=Q(O)[1-y "P(0)Q(0)] " =0 (6.20)
since Q(0) = 0. The fact that Q,,(7) is a solution of the Riccati equation (6.12) can be verified
by considering the Hamiltonian system for the estimator (5.96):

AT b=CC + G,
BB, =

W H
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The generi'c state. x(7) is used in this equation to simplify the notation. Using the
transformation matrix

I : -¥*P)
T®@)=|--- S (6.22)
(| B I
a time-varying similarity transformation can be per formed on the Hamiltonian system:
| gy T AT : —C'ﬁ,Cm+y'2Cin i< 8 =
:‘:(r) Bl R e b e e R e e ) L .....
0 1 -B B’ -A 0 I
I A 0 —-y7°P
) e AU N T Y IOV STy S ¥
0 1 0 0 G
(A+y7’B,B'PY i yP4+PA +A"P+y’PB B P+C)C )-C.C,
e s e e Sl il o e R R

-B,B], : -(A+y’B B’ P)
:yﬂff

where time index has been deleted to simplify the notation. Adding and subtracting
y 'PB,B_P in the (1, 2) block of the transformed Hamiltonian matrix yields

— "y

Y.=7>{P+PA+A"P(BB] -y B B)P+C|C,}

+yPB,BIP-C!C, (6.24)
=5 PB B P-CC..
This expression has been simplified by noting that the term in curly brackets is the difference

between the two sides of the full information Riccati equation (5.31) and is therefore equal to
zero. The transformed Hamiltonian system is then

(A+y°B B’P) : y7PBB!P-C.C,
-B_B/, i =(A+rTB B P)

This equation is the Hamiltonian system associated with the Riccati equation (6.12). The
solution of this Riccati equation can be given in terms of the state-transition matrix ®,,(7) of

the Hamiltonian system (6.25):

Q,)=[®,,"O]'®,., ) (6.26)
where
® (1 i @0
Qm(;)_—_ ............ (6_2?)
(Dm.".l (’) (pmll (!)

Further, this state-transition matrix of (6.25) can be related to the state-transition matrix of
(6.17):
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®..@ : D,.,(1) E _?’_EP O (D). e D()

q’m?l(") . (Dm.‘.?. ('{) 0 ‘ l q)m.?](l) q)m22 (I)

B s : , (6.28)
(D“ = -P‘D:l : q)lz _y_‘Pd)zz

L @, . P,

since these systems are related by a time-varying similarity transform. Note that the time
indexes have again been dropped to simplify the notation. The solution of the Riccati equation
(6.12) 1s then

Q, =0,(®, - Y_EP"D:] )
i (DEI ((DEZ) ][(l 5 y_zpq’ll ((DEE)_1 ]_I o Q(l = 7 -EP‘DZ! ) ]
as given in (6.17) [Toivonen-2001],[Dolye, Francis, Tannenbaum-1990],[Burel-1999].

(6.29)

6.2.2 Summary

The solution of the finite-time, suboptimal /_ output feedback control problem can be given
in terms of the Riccati solutions P and Q: A suboptimal H , controller exists if and only if the
following conditions are satisfied:
I. There 1s a solution of the Riccati equation
P(t)=P()A +A"P(1)-P(1)(B,B] -y *B B )P(1)+C.C, (6.30)
on the interval from O to #; given P(#) = 0.
2. There is a solution of the Riccati equation
Q() = AQ( +Q()A” -Q([C,,C, -7 *C;C,1Q()+B, B, (6.31)
on the interval from 0 to #; given Q(0) = 0
3. On the interval from 0 to

pPIPNOQD] < y* (6.32)
Note that the Hamiltonian formulations of the first two conditions are given in the sections on
H ., full information control and A, estimation, respectively.
A suboptimal controller that satisfies this bound is given:
X (1)=A_()x,(1)+B_()m(1) (6.33a)
u(t) = C,(1)x, (1) (6.33b)
where the matrices A.(7), B.(7), and C.(#) are found using the solutions of the above; algebraic

Riccati equations: :
A ()=A+y "B ,B.P(1)-B,B,P(1)

i ; (6.33¢)
~[1-7Q(nP(1)] ' Q(1C,C,

B.(1)=[1-7 "Q()P(1)] 'Q(1C, (6.33d)

C.(1)=-B,P(1) (6.33e)

The existence conditions for the suboptimal H, controller imply the existence of both a
suboptimal 4, full information controller and a suboptimal H, filter for estimating the
reference output. The implied existence of the full information controller can be understood
by noting that full information includes information on all possible outputs. Therefore, ogtput
feedback is a special case of full information control. The existence of the H_ suboptimal
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filter for estimating the reference output can be understood by noting that the reference output
cannot be controlled to a greater degree of accuracy than that at which the reference output
can be estimated.

The optimal controller can be approximated to an arbitrary degree of accuracy by decreasing
the performz_mce bound until the conditions (6.30) through (6.32) are no longer satisfied. Note
that a solution always exists for a sufficiently large performance bound, since the above

Riccati equgtions reduce to those for the LQR, and the Kalman filter in the limit as this bound
approaches infinity.

6.3 Steady-State Control

The estimator gains and the state feedback gains of the H, controller typically approach
steady-state values far from the initial time and the final time, respectively. In applications
where the control system is designed to operate for time periods that are long, compared to
the transient times of these gains, it is reasonable to ignore the transients and use the steady-
state gains, exclusively. The use of the steady-state gains simplifies controller implementation
and results in a time-invariant, closed-loop system. Time invariance of the closed-loop system
allows the use of many robustness and performance analysis techniques that are not
applicable to time-varying systems.
The steady-state /, controller is the solution of the following suboptimal control problem:
Find a linear, time-invariant controller system, described in the Laplace domain as follows:
u(s) =K(s)m(s) (6.34)
that internally stabilizes the closed-loop system and bounds the co-norm of the closed-loop
system.

G, <7 (6.35)

The steady-state H _suboptimal control can be obtained by combining the steady-state He, full

information controller and the steady-state H estimator of this control. The existence of this

steady-state controller is predicated on the existence of both the full information controller
and the estimator. As in the finite-time case, the existence of an estimator of the full
information control can be related to the existence of an estimator of the reference output.
Combining the existence results for the full information controller and the output estimator,

we find as follows: A solution exists for the suboptimal / , control problem if and only if the
following conditions are satisfied:

I. There is a positive semidefinite solution of the algebraic Riccati equation

PA+A’P-P(B,B’ -»*B,B.)P+C|C, =0 (6.36)
such that {A — (B, B’ —y BB’ )P} is stable (i.e., has only eigenvalues with negative real
parts). S : .

2. There is a positive semidefinite solution of the algebraic Riccati equation
AQ+QA” -Q(C.C, -7BC|C,)Q+B B, =0 (6.37)

such that {A —Q(C’C,, —y *C;C,)}is stable.
3. The spectral radius of the product of these Riccati solutions is bounded:
p(PQ) <y’ (6.38)
Note that Hamiltonian formulations for the first two conditions are given in Chapter S for H

full information control and /, estimation. A state model for the steady-state H
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subopltimal controller is obtained by using the algebraic Riccati solutions in (6.33)[Dolye,
Francis, Tannenbaum-1990],[Burel-1999].

6.4 Application of //__ Control

H_ control can be used as an alternative to LQG optimal control. Both cost functions are
reasonable for a wide range of problems, and in many applications the choice of a quadratic
Versus an co-norm cost function is arbitrary. In these applications, the LQG controller is
typically selected, since controller optimization is simpler and yields a unique solution. But
the LQG control system may have undesirable properties; that is, it may not be robust, it may
have an undesirable frequency response, and so on. In these cases, it is reasonable to try an
H ., optimal (or suboptimal) controller. The results obtained with the A ., controller may be
better or worse than those obtained with the LQG controller, since the H ., controller has no
magic robustness or frequency-domain properties. Still, it is worth trying when the LQG
controller is not performing adequately.

H . control is a natural for applications where the specifications are given in terms of bounds
on the outputs (both output errors and controls). Requiring the outputs to remain below
prescribed levels is typical of engineering design specifications. Output bounds are given by
the closed-loop system oo-norm provided the disturbance inputs are sinusoidal (or constant),
all inputs are at the same frequency, the inputs are normalized, and the outputs are
normalized.

The inputs should be normalized so that

W, (!)‘ = l

J# of inputs Lo

when designing to achieve a given output bound. This normalization assures that the sum of
the squares of the contributions from all inputs remains below the specification. The outputs
should also be normalized so that the specifications require a bound of 1 for each output. The
desired output bounds are then achieved provided the closed-loop -norm is less than 1. Note
that these bounds are only guaranteed for sinusoidal disturbance inputs.

H , control can be used to generate systems that meet output bound specifications when the
inputs are sinusoidal, but with different frequencies. In this case, the w-norm provides a
worst-case gain from each input to each output. The output is then bounded by the sum, over
all inputs, of the output amplitude bounds. In this case, the inputs should be normalized as in
(6.39), except the number of inputs is replaced by the number of inputs at a given frequency.
The resulting bound is typically conservative since, at each frequency, the input "direction"” is
constrained. whereas the oo-norm gives the bound on the gain for unconstrained input
directions. H_ control can also be used when the inputs are not sinusoidal. For nonsinusoidal
inputs, the closed-loop system oo-norm provides an indication of the maximum size of the
outputs, but does not provide a formal bound on the outputs.

The existence conditions for the suboptimal H , controller are very useful when performing

trade-offs between competing control objectives. These existence conditions can be used to
determine when a given set of specifications are consistent with a reasonable design and when

the system is overspecified [Zhou, Dolye-1998],[Burel-1999].
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FIGURE 6.1 Unity feedback system with measurement noise

6.4.1 Performance Limitations

The specification of performance using the w-norm can easily result in unobtainable

requirements. As‘an example, consider the generic SISO unity feedback system shown Figure
6.1. A controller is desired for this system so that

G ], = max{a(G,, (jw)]} <011, (6.40)
where
A L I G($)K (s) _
G.; = (J’w A (J(,‘, §)] = . :
a(9) =[G (5) Ga()] [1+(}(S)K(s) 1+(}(5)K(s)} ey

While this specification seems quite reasonable, it is not achievable with any plant and
controller unless the inputs are separated in frequency.

These two transfer functions are often called the sensitivity and complimentary sensitivity in
classical control.

The minimum closed-loop system cc-norm that can be achieved for this system is 0.707. This
bound 1s a consequence of the relationship between the elements in the closed-loop transfer
function:

1 " G(s)K(s)
1+ G()K(s) 1+G(s)K(s)
To derive the «o-norm bound, note that the singular value (there is only one) of the closed-
loop transfer function is

G, (jo) = Gy )T, o) = |
Minimizing this singular value with respect to the constraint (6.42) yields

: e . e g p ot S ]
u,f‘l‘{f;.“[(’d(-"”)]:r.,,u';’,‘,-_.\/‘(""(-’“’)' +|(;j;,(_;w)\ =35 (6.44)

G, (5)+G,,(s) = (6.42)

GL(jo)| (6.43)

G, (o) +

Since this is the minimum possible singular value, the closed-loop system co-norm is
bounded:

] _
|Gl = max{aTGa ()= = (6.45)

The constraint (6.42) imposes a fundamental limitation on tracking performance in the
presence of measurement error. This is also true for MIMO control systems, where (6.42)

becomes
G, (5)+G_(s)=[1+G)K($)] " +[I+G()KES)] G()K(s) =1 (6.46)

This performance limitation can be intuitively understood by noting that large loop gain is

required for good tracking performance. But large loop gain results in the plant trgckmg the
measurement noise. Therefore, the controller cannot simultaneously reduce tracking errors
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due to both reference inputs and measurement errors unless these signals are separated in
frequency.

" F ]
LONFPRLC : (s)
Ri(s : &

i1(s) Wr(s) R(s) [K(s) ——=1G(s) _]

FIGURE 6.2 Weighting function for the unity feedback system with measurement noise

The specifications can be made more reasonable by separating the reference inputs and the
measurement noise in frequency. For example, the reference input may be assumed to be
slowly varying or, equivalently, to be a lowpass signal. The measurement error may be
assumed to be rapidly varying (typical of noise signals) or, equivalently, to be a highpass
signal. The transfer function from the reference input to the tracking error can then be made
small over the frequency range allotted to the reference input. In addition, the transfer
function from the measurement noise to the tackling error can be made small over the separate
frequency band allotted to the measurement noise.

The wo-norm can be used to specify performance over frequency bands by appending
weighting functions to the plant inputs, as shown in Figure 6.2. A controller that yields an oo-
norm less than 0.1 is then possible, at least in theory, provided the weighting functions Wr(jw)
and W,(jw) are appropriately selected; that is, these weighting functions cannot contain
significant overlap.

V(s) W(s) D(s)

2 Y
R(s) E(s) K(s) U(s) Ges) (}52_'

FIGURE 6.3 A generic unity feedback control system

A number of control system trade-offs can be described by considering the generic feedback
system shown in Figure 6.3. The inputs to this system are the reference input r(1),
measurement error w(f), actuator error w(r), and output disturbance d(r). The output
disturbance is typically used to describe plant modeling errors. The various transfer functions

in this block diagram are given:

E(s)=[1+GK]'[R(s)— D(5)]+[1+GK] 'GKV (5)-[1+GK] 'GW (s) (6.47a)
Y (s)=[I + GK]'GK[R(s) - V()] +[1 + GK] 'GKW (s)+[1+GK] ' D(s) (6.47b)
U(s)=[1+GK] 'K[R(s) - D(s) - V(s)]-[1+GK] 'KGW(s) (6.47c¢)

Note, for example, that

G,,(5)-G,(5)=1 (6.48)
ade-off between making the system tolerant of output
obustness to plant modeling errors), and making the
ise. Other trade-offs can be obtained by looking for
ious transfer functions and by looking at the effects of

Therefore, there is an inherent tr
disturbances (i.e., providing good r
system tolerant of measurement no
additional constraints between the var
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large and/or small loop gains, controller
functions.

Careﬁ.ll coqsideration of the trade-offs inherent in a control system design is also beneficial
when iteration of the design is required. For example, changing the control bound in Example
6.2 had little effect of the controller because the control gains were being constrained by the
mea%lsltllrement error gain. Therefore, using this parameter for design iteration is not very
useful.

In summary, H_ specifications should be selected after careful consideration of the desired

control objectives. Constraints among the various closed-loop transfer functions should be
identified before defining the specifications. In addition, trade-offs between the various
control objectives should be defined, and redundant control objectives should be identified.
Using this information, the specifications should be frequency weighted to avoid conflicts
caused b_y competing control objectives. It is typically a good idea to avoid allpass
specifications when multiple disturbance inputs are included in the model. In addition, it is
often a good idea to avoid redundant specifications whenever possible. Note that these
redundant specifications can be added back into the model when evaluating performance, if
desired. A good deal of art is involved in setting specifications for H_, controller design.

This art is facilitated by a thorough understanding of the plant and by experience [Zhou ,
Dolye, Glover-1995].

gains, and plant gains on the various transfer

6.4.2 Integral Control

Integral control is used to remove steady-state errors due to constant reference inputs and
disturbances. Unfortunately, controllers with integral terms cannot be generated directly using
the H_ synthesis theory presented. This limitation is typically not a problem since "nearly"
integral controllers can be generated. In practice, these controllers can usually be replaced by
controllers with true integral terms, if desired.

A reasonable approach to designing integral controllers is to append an integral to the plant
before controller synthesis. This approach fails (as it also did in the LQG case) because the
integral state is uncontrollable if the integral is on the plant input, and the integral state is
unobservable if the integral is on the plant output. Since the integral is unstable, the closed-

loop system is not stabilizable, implying that no suboptimal H_ controller exists. This
limitation was already applied in LQG design by using a separate model for synthesizing the
state feedback controller and for synthesizing the Kalman filter. This approach is not valid in
this case, since the general separation principle is technically not valid in the H setting.
Instead, integral controllers are synthesized in an ad hoc manner. This ad hoc approach to
integral controller design can also be applied in LQG design.
A nearly integral controller can be generated by appending filters of the form

i) B (6.49)

s+¢e

to the plant inputs (either reference or disturbance) where dc signals are to be rfejected, For
small &, this filter has a large dc gain and approximates an integrator‘. The loop gain. The loop
gain feedback system must therefore also be large in order to avoid a large de closed-loop

gain. This large dc loop gain is obtained by placing a pole of the controller near the origin in
the complex plane. When true integral action is desired, this controller pole can be replaced

by a pole at the origin. This replacement typically has very little impact on the clos‘ed-loo'p
poles and stability of the feedback system. But caution must be used when making this
substitution sinée there is no mathematical guarantee of performance or even

stability[Scherer-2001],[Zhou, Dolye-1998].
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6.4.3 Designing for Robustness

Stability robu§tness to an unstructured perturbation is guaranteed when the so-norm of the
transfer functlon from perturbation input to the perturbation output is bounded by 1 (the
pem_lrbatlon bound is assumed to be normalized to 1). This transfer function can be include
within the clpsed-loop transfer function by appending the perturbation input and output to the
disturbance input and reference output, respectively (see Figure 6.4). Adding weights at the
input and output of the perturbation (as in Figure 6.4) allows the designer to generate a family
of controllers that trade off performance with robustness. Note that the original plant results
when both of these weights equal zero,[Burel-1999],[D01ye, Francis, Tannenbaum-1990].

l_ ——————— A(S) [ T e e j

| S |

|

W (s Y(s)!

e w1 W, (s) il

W(s) Y(s)
P(s)

U(s) M(s)
K(s)

FIGURE 6.4 Block diagram for robust performance design

6.5 u-Synthesis

Robust performance can be analysed using the structured singular value for systems
containing both structured and unstructured perturbations. A system in standard form, with
normalized performance criteria and perturbations (see Figure 6.5a), performs robustly if and
only if

sup{ 5 [N(jo)]} <1 (6.50)
where N(s) is the nominal closed-loop system formed by combining P(s) and K(s) and the
block structure is implied by Figure 6.5b. Minimization of the cost function

J = sup{p;[N(jo)]; (6.51)

[}

provides a means of obtaining robust performance, or demonstrating that robust performance
is not possible, for the given specifications. The u-synthesis controller design procedure
addresses the minimization of the cost function (6.51).

[“1(-") [ [F f,gl{.g) 0 4

: 4,(5)] Lo o Aq(s)
W(s) 4 \J,p{sl Wd('.‘i) el Yd(g)
Wi(s) P(s) —_..-..HS] W(s) P(S) Y(s)
U(s) & | M(s) U(s) A M(s)
R
R — Kis) K(S) Sap
(a) (b)

FIGURE 6.5 Robust performance analysis: (a) standard form for robust performance analysis; (b) robust
performance as a robust stability problem
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6.5.1 D-Scaling and the Structured Singular Value

The direct computation of the structured singular value is intractable in all but the simplest

cases. Therefore, bounds on the SSV are typically used in place of the actual SSV during
robust performance analysis. In particular,

#S(N)z{ min Ic?(l)HI\u),;‘)

T (6.52a)
provides a tight upper bound on the SSV and can be reliably computed. The matrices
a1 e d v ST [7-2 VSR (R e e
God1 0 0 - dil 0
D= . : . [ De=| A : (6.52b)
RO dl, ] dr.

are referred to as D-scaling matrices. Note that the identity matrices in (6.52b) are
appropriately dimensioned to match the block structure of the perturbations. The scalar terms
{d;} are referred to as D -scales.

Robust performance is evaluated by calculating the SSV bound for the nominal closed-loop
transfer function N(jw). Frequency sampling is necessitated when generating this bound
because the minimization of (6.52) is performed numerically. The resulting data are samples
of the frequency-dependent SSV and the frequency-dependent D-scales.

The D-K iteration algorithm, discussed in detail in the next subsection, attempts to minimize
the upper bound (6.52). This algorithm utilizes 4, optimization operating on the augmented

plant D, (s)N(s)D,'(s). A state model for the augmented plant is required to apply the H
optimization results given earlier in this chapter. Such a model can be obtained by appending
Dx(s) and D,'(s) to the nominal closed-loop transfer function N(s). This approach requires

that the numerical D-scales, obtained when computing the SSV bound, be approximated by
finite-order Laplace transfer functions.

Fitting Transfer Functions to the D-Scales Weighted least squares can be used to generate
stable, minimum-phase transfer functions that approximate sampled, complex, frequency
response data. Frequency response data can be approximated by either stable or unstable
transfer functions. Stable transfer functions are preferred because instability of the D-scales
needlessly complicates the controller design. In addition, the frequency response of an
unstable system should always be viewed with caution because persistent transients typically
overwhelm the sinusoidal response.

The D-scales and the D-scale inverses are appended to the nominal closed-loop system. The
D-scale inverses should also be stable for the given reasons. Stable D-scale inverses are
obtained provided the transfer functions are minimum-phase and the numerator and
denominator orders are equal. Note that the zeros of a minimum-phase transfer function are
all in the left half-plane. :
The numerical D-scale data contains only magnitude information, but the bound (6.52) is
unaffected by the inclusion of phase shifts into the D-scales. Therefore, phase information can
be added to the magnitude D-scale data to yield the complex D-scale data used for least
squares parameter identification. . toh)
The phase of a stable, minimum-phase transfer function (normalized sugh that _the dc gain is
positive) is uniquely determined by the magnitudelofthe transfer function. This fact can be
used to generate phase information from the magnitude-only D-scale data. The phase of the

complex D-scale d y(jo), at a sample frequency @, 15

109



d (j 20, = In{d, (0)} - In{d, (o,)
Zd (_}a)r): ! k P\, }1')’
3 " f o — o’ @ (6.53)

where di(®) is the magnitude of the D-scale. This integral can be evaluated numerically using
the samples di(@;). The complex D-scale is then given as

dk (j(Uf) :dk (w)e.a‘,-d;(}w) (6.54)
[east squares can now be used to generate a transfer function model of order n,,

: b s™ +... -
G = S +bs+b,

o (1) ‘ (6.55)
s tag, S +otadsSt+a,

that approximates each complex D-scale. The order is assumed to be fixed during the
subsequent least squares development. A discussion of order selection is provided at the end
of this subsection.

The frequency response of the transfer function model should approximate the complex D-
scale. At each sample frequency, this implies that

b, (jo,)" +..+b,(jw,)+b,

Jk (w,) =

(o)™ +ag, ,(jo)" " +. . +a(jo) +a, (6.56)
The error is then
€. (@) = 5" (0,)(jw,)"™ +§k (@), (jo, )
+"'+3k (o, )a,(j(o,)+¢7k(w‘, )a, (6.57)

_bnn (}w! )ﬂn T bl (J‘.(uf ) _‘bu
The errors at all sample frequencies can be combined into a vector:
E, =[e,(0,) e(0,) ..&(,)] (6.58)

where n,,. is the number of frequencies. This error vector can be computed for a given transfer
function model,

L % (6.59)
where
Y, =[d,(@)(o,)" d.(0,)jo,)"..d (0, )i, )" T (6.60a)
d (@)jo)" - d(@) o) - 1
M, = :' 5 : : (6.60b)
i (@ )o, )" - dl@,) (o) ]
8, =[a, 1y % b, b (6.60c)

The transfer function parameters, the elements of @. are selected to minimize the weighted
square error:

Jy = walei (a).‘)r =E}WE, = (Y, -M,6, )'W(, -M,6,) (6.61)
=1

where W is a diagonal matrix with the elements W, € [0, ). The weights ¥, can be used to

emphasize or deemphasize the fit at a given frequency or frequencies.
The transfer function parameters that minimize the weighted square error can be found by

expanding the cost function:
J =¥, -M,6,)' W, -M,6,) : (6.62)
- VWY, -O/M]WY, VWM, 0, +6;M, WM, 6,
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Taking the derivative of this scalar with respect to the
al.(6,) g
ab,)
Setting this derivative equal to zero and solvin
minimizes the weighted square error-:

‘ | 0 =(M{WM,) ' M[WY, (6.64)
provided the inverse exists. This inverse typically exists when the number of frequencies is
large compared to the number of parameters that are being identified (i.e., the model order is
small compared to the number of sample frequencies used in computing the SSV).

Frequency weighting is included in the squared error criterion. The frequency weights can be
selected to provide an accurate match at frequencies where the bound (6.52) is particularly
sensitive to the D-scale. The sensitivity of the bound (6.52) to the D-scale can be computed by
perturbing the D-scale and finding the change in the bound. The frequency weighting should
then be set equal to this change. Applying this frequency weighting results in an
approximation that is most accurate at frequencies where the sensitivity of the bound to the D-
scale is high.

The order of the transfer function approximation is selected so that the weighted frequency
error is small. This can be accomplished by plotting the magnitude frequency response of the
approximations for several orders along with the numerical D-scale data. The user is then free
to make a decision. Alternatively, an automated algorithm can be used that increases the order
of the transfer function until the weighted frequency error is less than a given bound at all
frequencies. Regardless of the method used to select order, the order should be maintained as
small as is reasonable because high-order D-scales increase computation time and result in
higher-order controllers when applying the D-K iteration algorithm[Matlab-1992-
20011],[Zhou, Dolye-1998].

parameter vector ¢ yields

—2Y/'WM, +26/M!WM, (6.63)

g for @ yields the parameter vector that

6.5.2 D-K Iteration

The u-synthesis design methodology attempts to minimize the supremum of the closed-loop
system's structured singular value as given by the cost function (6.51). Direct minimization of
this cost function is typically not tractable. As an alternative, it is reasonable to minimize the
upper bound on the SSV:

o = Stl,p m..T?n.dm E[DR(_,r'ru)N(jw)DLl(_,'(o)], (6.65)
where the D-scales are frequency-dependent. Note that robust performance is achieved when
the supremum of the SSV is appropriately bounded. Therefore, achieving this bound
guarantees robust performance, but the design may be conservative if the D-scaled bound
(6.66) 1s not tight.

The optimization of the cost function (6.65) is still intractable in'most cases, but an ad hqc
algorithm known as D-K iteration has been found to work well in many appllcatl_ons. This
algorithm s based on the observation that for a given set of D-scales, the cost function (6.65)
Is simply an %0-norm optimization problem:

Jp, =sup o_'[DR(_j(o)N(_,im)D;](jm)]: ”DRNDLle‘ (6.66)

lier in this chapter is valid provided that D,ND," is

the conditions (6.2). Unfortunately, the D-scales in
p model which, in turn, depends on

The solution to this problem given ear

described by a state model that satisfies
(6.65) are not fixed, since they depend on the closed-loo _ AFpATES §
the controller. D-K iteration seeks to overcome this problem by alternatively performing oo-

norm optimization and D-scale optimization.



The D-K iteration algorithm is summarized as follows.

|. Model the plant. The plant model should include disturbance inputs, control inputs,

reference outputs, measured outputs, and perturbations. Append the performance block to
the uncertainty matrix.

(S

Generate a control system to minimize the oc-norm of the transfer function from the
augmented perturbation input to the augmented perturbation output.

Compute the structured singular values for the closed-loop system (with both uncertainty
anii performance blocks). Save the D-scales used in computing the structured singular
value.

4. Fit a lmfv-order transfer function to each frequency-dependent D-scale, as discussed in
the previous subsection.

5. Append these transfer functions to the plant. The rational transfer function ap-
proximations for the D-scales and the inverse D-scales are appended to the nominal
closed-loop system. This is typically accomplished by generating state models for the D-
scales and the inverse D-scales, and appending these state models to the nominal closed-
loop system.

6. For this augmented plant, generate a controller to minimize the co-norm of the transfer
function from the augmented perturbation input to the augmented perturbation output.

7. Return to step 4, until the structured singular value of the closed-loop system fails to
improve.

(FS]

This algorithm has typically been found to converge to a minimum cost in a few iterations.
Caution must be exercised in interpreting the meaning of this minimum, since the D-K
iteration algorithm is not guaranteed to converge to the global minimum of the cost function
(6.65). Further, this global minimum is not guaranteed to equal the global minimum of the
cost function (6.51), except when the number of performance and perturbation blocks is less
than or equal to 3[Matlab-1992-2001],[Zhou, Dolye-1998].

6.6 Examples

Example 6.1 : :
A satellite tracking antenna, containing measurement errors and subject to wind torques, can

be modelled as follows:

oy] [o 1 Jew] [ o 3 }Jr
L‘)’UJ B {0 -0, 1}{9(1)} {0.001}"(’){0,001% w, (1),

where (1) is the pointing error of the antenna in degrees, u(/) is the control torque, w(?) is the
normalized wind torque (disturbance input), and Wh is the bound on the \ymd torque. The
normalized wind torque is assumed to be sinusoidal with a bounded amplltudfz !w;(r)| < l
implying that the true wind torque is bounded: |w(#)| = |[Wyw:(#)| < Wy. The pointing error is

measured as
A(1)
- 0l| . (1),
m(1) [I ][()UJH( )

where the measurement error is assumed to be sinusoidal with a boqnded amplitude: [v(7)| < 1
degree. The outputs of interest are the pointing error and the control input

Y WH 0 9(1) +|:0j|"(x)
YO= 0 olén! 1]
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The. welght.on the ‘control input is selected to be 1 in order to satisfy condition (6.3b). A
variable weight Wq 1s added to the pointing error to allow running of the controller. Note that
the bound on the disturbance torque can also be used as a tuning parameter for this controller.
The steady—st?.te controller is synthesized for W, = 70 and W, = 13. A performance bound
=90 (approx!mately 10% over the optimal) is used in this design. The system is simulated
with a true disturbance input w(f)= 70. The measurement error is sampled white noise (the
saénplmg time 1s 0.1), uniformly distributed between —1 to 1. The results are shown in Figure
6.6.
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FIGURE 6.6 Baseline results for example 6.1

Example 6.2
An ac motor is described by the following state equation:
x(1)=—x(t)+u(t)

where x(f) is the rotational velocity of the shaft, and u(f) is the control input. Noisy
measurements of the rotational velocity error are available:

m(t)=r(t)—x(t)—v(1)
where r(1) is the reference input.
The measurement noise and referenc
normalized reference output is then defined as

. : ‘(1 v u(r)
N = O_XUH oV 0001 [
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The coliltroll]‘lshmcluded as a r-eference output to keep the control finite. But the control weight
is small, which means that this term should not significantly affect the performance.

Performing /7 optimisation, we find that the minimum achievable co-norm for this system is

|. This bound is achievable in this example by using the controller u(f)= 0. Obviously, this
bound on the error and this controller are not acceptable. ’
A mor? appropriate controller can be generated by H_ optimization, after adding frequency
weighting to the reference input and measurement error, as shown in Figure 6.2. Specifying
that t.he reference input has a bandwidth of 0.1 rad/sec yields the following weighting
function:

0.1

s+0.1

Specifying that t_he measurement error is highpass with a stop band below 10 rad/sec, yields
the following weighting function:

. (5)=

s
s+10
Note that both of these weighting functions gave a nearly unity gain in the band of interest. As
required, the gain at the crossover frequency of the weighting functions is small. This
crossover gain limits the achievable closed-loop c-norm due to the constraint (6.42).
Appending the weighting functions to the plant yields

W, (s) =

f#y] =1 0 [x()] [1 0

@)= 0 —01 o |x@|+on+ o1 o [W‘(’)}

| %, () 0 A=k ()"0 9 10 #2()

s Fo o] e 0 17 u()

NS o . |
~Yw JaiD) 04200 00 e

YO 1o o o %Y lo001 i 0 o]w

This model can be placed in the form [see (6.1) and (6.2)] appropriate for A suboptimal
controller synthesis by normalizing the control input.

An H_ suboptimal controller is generated for this plant using the performance bound y = 0.1
(approximately 10% over the optimal). The closed-loop system is then simulated with the
reference input equal to 1. The measurement error is formed by passing discrete-time white
noise (uniformly distributed from —1 to 1 and with a sampling time of 0.01) through the
highpass filter Wy (s). The results are plotted in Figure 6.7. Observe that the steady-state
tracking error due to the reference input is less than 0.1 as guaranteed by the performance
bound. Also. the random tracking error due to measurement error is less than 0.1. This error is
not guaranteed by the theory to be less than 0.1, since the measurement error is not sinusoidal.
Still, the closed-loop o-norm provides a reasonable gauge of the output size.

The control input is considerably less than the guaranteed bound of 100, because thp c_on‘trol
input is not limited by the specified bound on the control. Instead, the control input is limited
by the bound on the gain from the measurement error to the tracking error. ThlS bound limits
the control input, since large feedback gains result in a large coupling between the

measurement noise and the tracking error.
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FIGURE 6.7 Results for example 6.2

Example 6.3
A valve is constructed with a spring on the “flapper” so that if power is removed the valve
closes . The control input is a torque applied to the flapper. The state equation for this valve is

S footie ol o
[ e "()+[o O}L(r)]‘

where 7(7) 1s the reference input and v(7) is measurement error. The reference input is assumed
to be generated by application of a normalized input to the filter (6.49). The measurement
consists of the difference between the position of the valve and the desired position, plus a
measurement error. The measurement noise is assumed to be the output of a highpass filter:

Lo s+10
appending this filter and (6.49) to the plant yields the following state model:
[ 0.1 .0, O x] |0 i 0 Dud)

10 =1 0 o [&@®]. |1 i0 8
(1) = O+ :
0 0 —-¢ 0 | 7@ 0 1 Bt
0 0 0 10w | [0 i 0 10]v(n)
S [-1 0 1 -1x® 0 0 1] u@)
mt)| | n|,
TI-1 @ 1 0]z 0 0 ofrn®f
YD Lo 0 0 ollwnl o001 ¢ 0 ofv®

A suboptimal H, controller is generated with & = 0.01 and y = 1100 (approximately 10%
over optimal). This controller is described by the following transfer function:

99(s + 10)(.\'2 +85+ 10)
(5+0.03)s+4.4)s* +13.65+112)

G,(s)=
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Integral action is then added by replacing the pole at 0.03 with a pole at the origin:
G (s)= 99(_.5‘+10XS2 +S+10)
o s(s+4aa)s’ +13.65+112)
The. feeldba((i:k system f_c;rmed using this lcontroller and the original plant is stable. This system
is simu ate wnth a unit step referer_lce input. The measurement error is generated by putting
discrete-time wf}lte noise into the highpass filter given above. This measurement noise has a
maximum amplitude approximately equal to 1. The results of this simulation are plotted in

Figure 6.8 and show that zero st?ady-§tate error is achieved. Note that this controller inverts
the stable plant dynamics, which is typical when the measurement errors are small.
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g e ::-"T:‘"i:r-w-'“‘a%t;v-’“‘““‘;“w ""5._'""'““"'“
= / :
Z
£0.5 .h-f,* .................................................................. .
0 ; ; : i
0 2 4 6 8 10
Time (sec)

0.2 ;

 C T Wtk e
Poo e 2

00 2 4 6 8 10
Time (sec)

FIGURE 6.8 Integral control for example 6.3

Table 6.1 MATLAB commands to compute Hinf controller design and simulation for Example 6.1
clear.clc,
% Define the wind torque bound.
Wb=70:
% Define the output weighting.
Wag=13;
% Define the plant model (with normalized inputs).
A=[0 1
0-0.1].
Bu=[0 0.001]";
Bw=[ 0 0
0.001*Wb 0],
Cy=[Wq 0
0 0]
Cm=[1 0],
Dyw=zeros(2);
Dyu=[0 1]",
Dmw=[0 1];
Dmu=0),
Plant=pck(A, [Bw Bu],[Cy:Cm].[Dyw Dyu:Dmw Dmu]):
% Define the performance bound.
gamma=90;
gm2=1/gamma/gamma;
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% Generate the steady-state H-infinity suboptimal controller
[Kss.Gel]=hinfsyn(Plant. 1, I.gamma,gamma,0. 1), '
% Define the time vector for simulation.

=0:0.1:100;

% Define the inputs for simulating the closed loop system.
infun="[1: randn(1)]'; 2
wy=siggen(infun,t);

% Simulate the closed loop system.

y=trsp(Gel.wv);

% Generate the unweighted output.
yscaled=mmult([1/Wq 0;0 11,y);

% Plot the simulation results.
set(0.'DefaultAxesFontName', 'times')
set(0,'DefaultAxesFontSize', 16)
set(0,'DefaultTextFontName','times')

figure(1)

clf

subplot(211).vplot(sel(yscaled.1.1).'r-")

grid

xlabel("Time (sec)')

ylabel('Angle error (deg)')
subplot(212).vplot(sel(v.2.1).'r-"

grid

xlabel("Time (sec)")

ylabel('Control torque (N-m)')
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7  Conclusions

This is the final (l:hapter of the thesis. It will summarize the contribution of the thesis both
theory and practice.

7.1 What has been done....

Several important results of this thesis are knowledge about robust control, analysis of this
control system and behaviour of some plant by this kind of control system. Iiobust stability is
one of th.e most important subject which during this thesis was widely discussed. Furthermore
this thesis has been focused on a H_ linear optimal control method. According to our
knowledge, the solution, presented in the thesis, represents the first attempt to the basic
concepts and fundamental issues of control using state model of system, mathematically well-
defined methods to improve unstructured and structured uncertainty, robust stability and full
information control and estimation.

The contribution of this thesis may be summarized into the following items:

. Basic concepts and fundamental issues of control using state model of system

The state equations in both continuous-time and discrete-time were presented. The state-space
and transfer function models of general feedback control system were discussed. In this part
of thesis we defined the concepts of controllability and observability and practical tests for
determining if a system is controllable and/or observable. Principal gains, which define a
range of frequency-dependent gains for the system with application of the singular value
decomposition were mentioned. Tracking performance was defined as the ability of the
control system to match the output to a desired value. Cost function provided a means of
comparing the performance of competing control system design.

. Robustness

A number of uncertainty models are presented: single transfer function perturbations, termed
unstructured uncertainty; and multiple transfer function perturbations, termed structured
uncertainty. Parametric perturbations, which arise frequently in applications, are special case
of transfer function perturbations where the transfer function is a scalar. A feedback system is
termed robustly stable if the resulting system is internally stable for all admissible
perturbations. The analysis of stability robustness of systems with structure uncertainty leads
to the defined of structure singular value. The D-scaling method for computing bounds on the
SSV was presented. A feedback system is said to possess robust performance if the resulting
system is internally stable and meets certain performance objectives for all admissible

perturbations.

. Controller parameterization
The H, optimal full information control problem is to find a feedback controller that utilizes

the plant state and the disturbance input, and minimizes the closed-loop system o-norm. This
feedback controller is also required to internally stabilize the system in the infinite-time case.
Differential game theory is used to generate a solution to the full information problem. A
suboptimal controller is generated that satisfies a bound on the f:losecli-loop system co-norm.
This suboptimal controller is state feedback with a gain that is given in terms of the solution
of Hamiltonian equation or, equivalently, in terms of solution of a riccati equation. The H
estimation problem is to estimate a linear combination of the plant state, given measurements

and know plants inputs . The resulting estimator should minimize the co-norm of the transfer

function between the disturbance inputand the estimation error.
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. H _ Controller

The H_, optimal control problem is to find a feedback controller that minimizes the closed-

loop system c-norm. The solution of this control problem can be divided into the synthesis of
full information controller and the synthesis of an output estimator. This structure for the A,

controller design is similar to LQG controller, but technically violates the separation
principal. The estimator in this design depends on the full information control and also
incorporates the worst-case disturbance. H, control is often desirable when the specification
are given in terms of bounds on the output.

The structured singular value of the closed-loop plants can be used to specify robust
performance. The maximum of this SSV can be used as a cost function for an optimal control
problem. Minimizing this cost function then maximizes the robust performance of he system.
. Matlab

Efficient design and development of control systems requires availability of a programming
environment offering high-level support for matrix manipulations and simulations as well as
easy-to-use user interface including graphing capabilities. Multiple tools satisfying these
requirements were developed for PC applications, most of them taking inspiration in Matlab
computing environment by MathWork, Inc.No similar support, however, is available for the
parallel computing systems.
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Appendix

Al L, Stability

An a]ternati\{e _deﬁnition of input-output stability can be given in terms of the system gain,
where the gain is defined in terms of the signal 2-norm.

DEFI_NITION‘. A system is L, stable if for all inputs with finite signal 2-norm, the system
gain 1s bounded:

@),
)],

THEOREM: A causal, linear time-invariant system is L, stable if and only if all of its poles
have negative real parts.

PROQFt The proof begins by showing that the system is L, stable if all of the poles have
negative real parts. The 2-norm of the output can be written in terms of the impulse response:

=

o

ol = | { [z ut -, )dr,} {I a(r,Jult ~7,)dr, }dr

% rr{ j I IgT (r)e(@, u(t—7,)u’ (t -7, )drqudt}

The fact that the trace is invariant under cyclic permutations (A2.3) has been used in
generating the expression containing the triple integral. An integral is bounded from above by
the integral of the absolute value:

H_y(t)uj < (r{ J‘ I _”gT (r))|g(z)|ult —z,)|u" (¢ 7, )tdrzdr]dt}
Interchanging the order of integration yields |
”y(r)Hi < !r{ J.lgif(z-1 )‘ J'|g(r2 ){ ﬂu(f -7, )”uT (e )‘dtdz‘zdr] }drldr, }

The final integral is a correlation that is maximized when 7,= 7, , implying that

o) o

o <] o e e fow ofa

o o

Given that the system is BIBO stable (i.e., all poles have negative real parts), every element in
the impulse response is absolutely integrable:

Hy(!)“i < tr{MTM hu(f)HuT(f)‘df} = ]|NT (!)WTMP:(I)‘dI

< ﬁu’ (;)p—(MTM)\u(r)\dr =5(M"M) j u' (Ou(tydt

= E(MTM)HN(!)”";,

A(1.1)

Where
M= e

Taking the square root of (Al.1), we hav



p0), <M Muco),.

Which §hows the system is L; stable when all poles have negative real parts.

[t remains to show that L, stability implies that all poles have negative real parts. Let
u(t) =u,o(t).

Then

Hy(r)”j - J:n ug g’ (H)g(tyu,dt.

If system has an unstable pole, then the impulse response contains an unstable mode (it is
assumed that thel_’e are no pole-zero cancellations), and some element of g(f) does not
approach zero as time goes to infinity. Therefore, the above integral is infinite for some ug,

A2 Controllability and Observability Grammians

Given the stable system

x(1) = Ax(1)+Bu(1), y(t) = Cx(1) (A2.1)
The controllability grammian is

L, = [e"BB"e*"dt. (A2.2)

THEOREM: The controllability grammian can be computed by solving the following
Lyapunov equation:

AL_+L,A" =-BB’. (A2.3)
PROOF: Differentiating the integral yields
de*BB "
dit
Integrating both sides of this equation yields

T S y T ATE R
= Ae”BB e*' +eBR " A’

s

SAT T ).\Tr w© = = #
J'ﬂ—%d" E:iB “—dr=A[e"BB e "dr + [¢NBB'e" "drAT
0 T 0 0
=AL_+L_A";

t.’t\rBBTL’Arr :ALC_'_L‘;ATI

7=0
The expression on the left equals zero at the upper limit, since (A2.1) is stable. Evaluating at
the lower limit then yields

—-BB" =AL_+L_A".
The observability grammian of the system (A2.1) is defined as

L, = [e*"C"CeMdl. (A24)

0

THEOREM: This observability grammian can be computed by solving the following

Lyapunov equation: £
AL LA C0 o

PROOF: The proof is similar to that presented for the controllability grammian and is

therefore omitted. : " S
THEOREM: If there exists a solution to (A2.3) such that L. is positive semidefinite, then

lime*B=0. (A2.6)

1 =ponr
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PROOF: The positive semidefinite solution of (A2.3) is given by (A2.2), which can be written

g:!

The existence of this integral requires that the inte
infinity, which implies (A2.6).

THEOREM: If there exists a solution to (A2.5) such that L is positive semidefinite, then

lim Ce* =0, (A2.7)

f—3p00

e"’B”h dr.
E

grand approach zero as time goes to

PROOF: The proof is similar to that presented for (A2.6) and is therefore omitted.

THEOREM: We are given a system with the state matrix A and the output matrix C. If the
system is observable and

I]I’TI Ce"’ =] (Azg)

=0

Then the system is stable.

PROOF: Assume that A has an eigenvalue A with a non-negative real part, and an associated
eigenvector ¢ :
Ag=A1¢.
The spectral theory of matrices, states that
erg=e"gp.
Premultiplying by C and taking the limit as time approaches infinity yields
0=lim(Ce™ Jp =lim e* (C¢).

t—0

This implies that C¢ = 0, since

lime* #0.

If C¢ = 0, the homogeneous (no input) system response with the initial condition x(0) = ¢ is
y(t)=Ce*p=e"(Cgp)=0
Further, the homogeneous system response with the initial condition x(0) = 2¢ is identical to

the above response:

y(t) = Ce* 2¢ = 2¢* (Cp) =0.
Therefore, the state cannot be found from a record of the output, and the system unobservable.
This contradiction indicates that A has no eigenvalues with non-negative real parts; that is, the
system is stable.

A3  The Push-Through Theorem
THEOREM:
(I1+GK)'G=G(I+KG)™". (A8.2)

PROOF:
G +GKG =G +GKG.

(1+GK)G = G(I1+KG);
(I1+GK)'(1+GK)G(I+KG)'
- (1+GK)'G(1+GK)1+KG) ',

G+GK)’ =(I+KG) ~1G.

A4  Properties of the System co-Norm

The system owo-norm is defined in terms of the transfer function matrix of the system:
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[G].. = sup & (G(j@)). (A4.1)

The co-norm represents the maximum gain of the system over all possible sinusoidal inputs.

THEOREM: The 2-norm of the output can be bounded by the product of the system co-norm
and the 2-norm of the input:

. =1Gul, <Gl - (A4.2)
PROOF: The signal 2-norm of the output is given as

1 il . L 2
. = \/;Jm y (jo)y(joydo = Jﬁ [ Go),de,.

where ||+ || is the Euclidean norm. The Euclidean norm of the output is bounded:

o), = F(o)ujo), .
The signal 2-norm of the output can then be bounded:

1 € Al
bl L[ sGomGo)do

The maximum singular value at a specific frequency is bounded by the supremum over all
frequencies:

]|, < \/2—175I_:IE(_;‘(u)“u(‘,im)uzd(o < Jz_l;;-[-“ tsup 5(.:"(9)}""(%))“25‘1“’

1 o : 2 1 @ ; 2
2 \{EI ¥ HG u(‘;(u)“Ed(u = HG“ch \/—2;1. : “u(ﬂo)ugda) = HG u”z

The bound of the preceding proof is nearly achieved for some input. In fact, the co-norm is
given by the supremum:

-
o

o0

|G|,
= e (A4.3)
6], = sup w
THEOREM:
G
“GHU = SUp ” u”ﬁ
u=0 H"”:

PROOF: Using (A9.2),

HGN > MVH #0

e,
which implies
IG|, = supM
23]

The input direction and frequency that yield the maximums in the co-norm are defined as

follows: ‘
o o Gl (@) _ GU,
6], =supT(G(jw) =T (GU@)) = TN iy ) u,

where o is a unit vector. Note that uo is the right singular vector associated with the largest

singular value. For the input



u(jo) =u,6(w - w,),

HGUH: g IG(jw,)u,d(w - “’n)H2 e G(jo)u,||6(w - w,) . G(jw,)u,
”u|L b, (@ — o, )||2 |6 (@ — (oﬂ)”2 Ty

The above proof is not rigor(')us.l, since the supremum gas been treated as a maximum. The
IZupre}r]r_mm c?ays only that the lmlm can be approached arbitrarily closely, not that the value can

e achieved. Thfe tht_eorem remains unchanged when using the actual supremum, but the proof
must include a limiting argument that has been omitted.

[n addition to the ordinary properties of norms, the infini m :
5 t t !
THEOREM: y norm gas the following property:

=G,

i]

|GH|, <|G|,|n], (A4.4)
PROOF: By equation (A9.3), for any u # 0,
|GHu|, <|G], [Hul, < |G| ], |u],

Rearranging and taking the supremum of both sides of this equation concludes the proof:

GH
jeh], = suplSB: g

o Jul,

o0 o0

The infinity norm can be generalized to operate over finite time intervals:
|G|
o 2,[tg.ty]
sup——L-, (A4.5)

HGH olto.ty] 0 “ﬂ

THEOREM: The finite-time co-norm of the time-varying system described by the state model
(1) = A1) x(1) +B@)u(r); y(1) =C@t) x(t) + D) u(t)

2,[t0.,ty]

1s finite:
|Gl ., <

provided all matrices are continuous.
PROOF: The solution of this state model (assuming zero initial conditions) is

Gu = y(t) = [ g(t, 0 u(z)dz + D(O)u(0)
where
g(1,7)= C(n)®(1,7)B(1)
is the impulse response of the system without the input-to-output coupling term D(7). The
signal 2-norm of the output is

[Guly, =]

ftgutr)

[ o (t, Dyu(r)dr + D(t)u(t)

3.“0.4’; '

Using the triangle inequality, and noting that the integral is simply a sum, we have
Gl <[ leou)],  dr+|peuo)

t 2 r 2
- [l o) deaz + \/ [ Do
Where the norms in the final expression are Euclidean vector norms. The maximum singular
value provides a bound on the gain of a matrix, which implies

Ga,, , <[ & gt.0)] |u(o)dedr + \/ /@] Juo)],

[tosty]
Noting that D(7) and g(#,7) are continuous and therefore bounded over a finite time interval, a

1 value for the maximum singular values in this expression exists.

2r0.tr)

maximurn
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NG"H:\“,]J!] Sv[ff\/ max {0‘ e, r)}”u(r)ﬂ d!dr+\/f:!$§?(i{52[p(t)]} (o) at

!f?‘

Since these maximums are both independent of 7 and 7, they can be removed from the

integrals:
\[max {a [D(r)] I \u(!)“ dr.

HGu“ i) J(T ru) max {_

Now, the integral of the norm can be bounded using the Cauchy-Schwarz inequality

E u(@)|,d7 = f: o (@), .1 < 1, ~1, ff T

Substituting this result into the above inequality yields

Eir ,—[(t ![,]\[ max [g(f ‘f)]} ‘[n}af(l{ 2[D(Jf)]} Juu”z-lro-r,l'

Dividing by the signal 2-norm ofthe input yields

HG H 4 2l <(r —rq)\fmax o', T)]} \/max { E[D(t)]} :

e o

Which shows that the finite time system co-norm is bounded.

A5 A Bound on the System oo-Norm

A bound on the system wo-norm can be given based on the eigenvalues of a Hamiltonian
matrix. A related bound can be given in terms of the solution of an algebraic Riccati equation.
These theorems are both versions of the bounded real lemma.

THEOREM: The infinity norm of the generic stable system,

x(t)=A(t) x(1) +B()u(?) (A5.1a)
y(t) =C(t) x(t) +D(1)u(r) (AS.1b)
is bounded:
|G|, = sup&[G(je)]=sup slcGo-Ay'B+D] <y (A52)
if and only if
a(D) <y, (A5 .3a)
and the Hamiltonian matrix
A+B('I-D'Dy'D'C B(y'I-D'D) 'B’
H o~ PR S e (A5.3b)
_C"A+DF1-D'D)'D')C CTD(;VI p'D)'B’

has no eigenvalues on the imaginary axis. '
PROOF: Condition (AS5.3a) is obtained by noting that D is the high-frequency limit of the

transfer function:
lim G(jw)= llm (C(;a)l A)'B+ D): D

iy —» oo

Taking the maximum singular value y:elds
lim 5[G(jw)]=a(D) (A5 .4)

and the infinity norm is bounded from helow

Gl 25D
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Therefore, the infinity norm may be less than y only if the maximum singular value of D is
less than y.

Condition (A5.3b) is then derived assuming that (A5.3a) is satisfied. The maximum singular
value of the transfer function is bounded:

_ 7lG(jw) <7,
if and only if
e;’g[G'f(ja))G( ;‘a))] <y?
where eig[e] mdlcates the eigenvalues, and the inequality implies that all of the eigenvalues

are less than y°. Note that the eigenvalues of this product are strictly real, and the singular
values of G(jw) are the posmve square roots of these eigenvalues. Further, the eigenvalues of
this product are less than y* if and only if :

e:g[,v l—G*(‘;(u)G(jw)] > 0. (A5.5)
This bound is satisfied in the limit as @ approaches infinity (A5.4) provided (A5.3a) is
assumed. Further, the eigenvalues in (A5.5) are continuous function of @. Therefore, the

bound (AS.S) is satisfied for all frequencies if and only if the eigenvalues in (AS.S) do not
cross the origin; that is

det[;vzl —GT(_;'(U)G(_;'(U)] #0.
for all w. This statement is equivalent to the condition that [}/31 ~GT(_,ia))G(jw)] has no
zeros on the imaginary axis.
The system zeros can be found from the state model. The state model of G'(jw) is
X()=-AT%(1) +C u(®)
y(t) =B'¥(1) + D u(r),
which can be verified by computing the transfer function of this system and comparing it to

G(jo). The state model of [y*I-G' (jw)G(jw)] is then
X(1) A iR -8
...... - ot | ommen [ vn v HEHCE:
x(®)| [-C'C ~AT | ¥ | |C'D
x(1)
yo=p’c i B|.een +(7*1- D' Du(t)
z(1) |
The zeros of this system are the solutions of
B ST 487
ol o 3 Lty
-C'Cc : -A7 Cc'D
T T by =0
b'c: ®] : y1-D'D

The determinant of this t;lock matrix can be expanded , which yields



| _ A -B
det(y*1 - D" D)det| sT-| ... O R ¢'1-0'p)'[p'C : B’]|=0.
SC Ao

The first determinant is not equal to zero due to the bound on D, so the second determinant
must equal zero:

A y 0 -B
det| sI — A ] [ (et (}/EI—DTD)"[DTC : BT] =0.
=1 € A Cc’'p

Note that this is an eigenequation, and the system [yzl - GT(_;‘w)G(ja))] has no zeros on the
imaginary axis if and only if the matrix
A x 0 -B
Je=| .. g ey 7 1-p'D)'[p’C i B]

-C'C : -A"| [CD
has no eigenvalues on the imaginary axis.
The eigensolution of a Hamiltonian matrix is related to the solution of an algebraic Riccati
equation in the previous chapters. This is also the case for the Hamiltonian matrix appearing
in the bound on the infinity norm. The second condition for this bound can be given in terms

of this Riccati equation.
THEOREM: The infinity norm of the generic stable system (A5.1) is bounded:

IG(s)|, <7, (A5.6)
if and only if
D)<y (AS.7a)
and there exists a symmetric matrix P that satisfies the following algebraic Riccati equation:
P(A+BR 'D'C)+(A+BR'D'C)P+PBR 'B'P+C' (I+DR 'D")C=0 (AS5.7b)
such that
A+BR 'D'C+BR 'B'P (AS5.7¢)

is stable (i.e., has all eigenvalues with negative real parts). Note that R=y’1+D'D.
PROOF OF IF: Suppose a matrix P exists that satisfies (A5.7b). Performing a similarity
transformation on the Hamiltonian matrix (A5.3b) yields

= win I 0
| H ..
= P : 1
A+BR'D'C+BR'B'P : BR 'B’
), . —(A+BR'D'C+BR'B'P)’

where

X =PA+A’P +C’C+PBR'D’C+C'DR'B'P+PBR'B'P+C'DR'D'C.
Note that X equals the left side of (A5.7b) and is therefore equal to zero, making the above
matrix block triangular. The eigenvalues of this block trian’gular matrix egual the_sum of the
eigenvalues of the block on the diagonal, none of which lie on the imaginary axis. Furt‘her,
since the eigenvalues of a matrix are invariant under similarity transformation, none of the

eigenvalues of J€ lie on the imaginary axis, which implies ”G(.v)H' <y.
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A6  Hilbert Space

A Hilbert space is vector space H with an inner product (f ,g) such that the norm defined by

| = V{£.1)
turns H into a complete metric space. If the inner product does not so define a norm, it is
instead known as an inner product space.

Examples of Finite-dimensional Hilbert spaces include
I. The real numbers R" with (v,u) the vector dot product of v and u.

2. The complex numbers C" with <v,u> the vector dot product of v and the complex
conjugate of u.

An example of an Infinite-dimensional Hilbert space is L’, the set of all functions f:R — R
such that the integral of f° over the whole real Line is finite. In this case, the Inner Product is

(f.8)= [ F(x)g(x)dx.

A Hilbert space is always a Banach space, but the converse need not hold.

A7 L;- Space

A Hilbert space in which a Bracket Product is defined by
(4.0) = [ o' ddx
and which satisfies the following conditions
(b.0) = (p.0)e
(B 4o+ Ap)= 481 9)+ (] 92)
(o + 4, |4) =24 (81 9)+ 2 (8. | 9)
(plp)e R=0
(2 10.)|= (01 10)p: | 2:).

The last of these is Schwarz's Inequality.
To get more information about L, and Hilbert spaces please
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