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Abstract

In the paper, an algorithm for finding an optimal or almost optimal permutation for an
ordering of elements of a matrix, which is sparse, asymmetric and reducible, is suggested.
Using this algorithm we can solve large sparse systems of linear equations more efficiently.
The algorithm is a modification of the algorithm presented in [6], therefore the same
indications and symbols are use.
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Introduction

A matrix can be considered as sparse if the number of its zero elements is much greater than
the number of nonzero ones. Sparse matrices occur in many fields of applied mathematics, for
example at partial differential equations solving, but also in many other fields of science, like
structural analysis, management analysis, power system analysis, surveying etc. Solving
a practical problem we obtain large systems of linear equations with sparse matrices. Hand in
hand with a development of a parallel programming for large quantity data, the importance of
an optimization of sparse matrices increases. There exist lots of ways how to do it. Some of
them go out from graph structures of associated matrices. In the paper, one such algorithm is
suggested. It is a modification of the algorithm presented in [6], where symmetric sparse
irreducible matrices were discussed, for generally Boolean asymmetric reducible sparse
matrices. Using such algorithm we are able to solve large sparse systems of linear equations
by some direct method. Indications and symbols are kept from the paper [6].

1. Basic Theory and Assumptions
Let A=(a ) be a sparse matrix of order n, V=(v,;), W=(w,,) be matrices of order n,
where

vi; €01}, Vi j=1--nvy, ,=1ca,#0

w,, e{0;1}, Vi, j=L-n w, :1<:>(a”. £0 v a; #0).

The matrix A is called Boolean symmetric if V =W. In the opposite case, it is said
Boolean asymmetric.

The graph |: G(A)=(X,E) iscalled |: the non-oriented graph associated to the matrix A,

G%(A) = (X, E% oriented



if X:{xl, - } is a set of nodes of the graph |: G(A) such that the node X; corresponds

G(A)
to the row i of A, and the set |: E isaset of all |: non-oriented edges of the graph — G(A),
E° oriented GY(A)

17 ]

i.e. |: E=1{{x; x},xieXijeX/\wi'jzl,kj}.
{[x,, J] X; eX/\XjeX/\Vi’jzl,i;tj}

If G is a connected graph associated to the matrix A, it implies the matrix A is irreducible. Let
us denote:

N ={y e X;{x; y}€E JU{x]
N, () =1y e X;[x y]E® jux)
N, () = {y e X;[y; x] e E® juix)

{
D) ={{y; z}2¢E; yeN(x)AzeN(X) Ay =2}
D,(X) = { z|¢ E°; yeN(x)/\ZGN(x)/\y;tz}
D,(x) = { 7] E°; yeN(x)/\ZEN(x)/\y;tz}
Evidently,

N is the set of all successors (neighbours) of the node x including x in the graph G,
N1 (x) is the set of all |: heads (ended nodes) of all oriented edges |: from x in G® including x.
N2(x) tails (starting nodes) to

The sets D(x), D1(x), Do(x) describe relations of successors in the graph G° each other, in
relation to the fill in of matrices L and U in the LU-decomposition of the matrix A (and/or to
the fill in of matrices L, D in the LDL "-decomposition). The numbers of elements of the sets

N(x), N;(%), N,(x), D(x), D;(x), D,(x) are denoted by the symbols n,(G), n(G°),
n’(G°), d.(G), d'(G°), d?(G°), respectively. The number di(G) (called “fill in”)
determines a number of new edges after elimination of the node x;.

The graph |: G, =(X={x} E(X-{x}) v D(x)) is called the graph
Ggi = (X_{Xi }, EO(X_{Xi }) o Dl(xi)u DZ(Xi ))
produced from the graph G by an elimination of the node x;.
|: G°
With respect to the found algorithm, let us denote Go= G, G =G°,
|: G, be a graph produced from |: G, _, by an elimination of the node x;, k =1, 2, - -1.
GO
k-1

k



2. Algorithms

Our goal is to find an optimal, respective almost optimal, permutation to change the given
ordering of rows and columns of the matrix A so that the elimination of a system with the
matrix A is as efficient as possible. In [6], two algorithms are presented. They are defined for
irreducible sparse symmetric systems. The following algorithms are determined for reducible
sparse generally asymmetric systems. The Algorithm 1 deals with matrices as if symmetric,
Algorithm 2 deals with asymmetric matrices.

Algorithm 1

Step 0:

Put S°=9, G, =G.

Step k=1,---,n-1:
1. Put R* =S** for S** = Jelse R* :{xj; X eG,,}.
2. sf:{xj eRk;dj(Gk_l):erlideq(Gk_l)}.

3. i, = min {j}.

XjESl
4. Eliminate the node Xi from the graph G, , (i.e. the index i, constructed in the
permutation p is equal to the integer k).
k
5. SK=1{x, eN(X )G,/

Algorithm 2
Step O:
Put S° =0, GJ =G°.
Step k=1,---,n-1:
1. Put R*=S"" for "' = & else R* :{xj; X; €Gy, }.
2. S¥ :{xj eR¥; dj(Gﬁl):Xmideq(Gﬁl)}.
qe

3. i, = min {j}.
Xj€S¥

4. Eliminate the node Xi from the graph G|_, (i.e. the index i, constructed in the
permutation p is equal to the integer k).
5. SK=1{x, (N, (x ) UN,(x,))"GS}

Sometimes, Boolean symmetric matrices of linear systems contain a row or column, of which
the number of non-zero elements approximates to n.



Then it is suitable to define a maximal permissible number of elements dmax of the set D(X,),

and transport nodes x;, for them d.(G) > dpax, resp. di(GO) > dmax, 1N the desired permutation

to the last positions. We will eliminate these nodes from the graph G, resp. G°, and Algorithm
1, resp. Algorithm 2, deals with remaining nodes.

Example 1:
Let
1 2 3 4 5] 1 -1 20 3
21 00 2 -4 1 0 0 O
A=3 0 -1 0 1|,B=f 0 0 3 0 4
4 0 0 20 2 0010
52 1 0 3| i 1 00 4]

be matrices. Applying the Algorithm 1 above, we have got the permutation matrix
P=(2,5,3,1,4)and then

01000 00010
00001 10000
P=|0 01 0 0|,PT={0 0 1 0 0f,

10000 00001

0 0 0 1 0] 0100 0

1 2 0 2 0] 1 0 0 -4 O]

2 3 150 40 0 O
PAP'=|0 1 -1 3 0f,PBP"= 4 3 0 0f.

2 5 31 4 -1 32 1 0

0 0 0 4 2 | 000 2 1]

The products PA and PB exchange rows of the matrix A and B, AP and BP' exchange
columns of A and B. Algorithms 1 manipulate with matrices as they are Boolean symmetric.
It removes (almost all) non-zero elements of diagonals and produces (almost all) non-zero
vectors perpendicular to it. Let us look at the structures of the matrices A and B (non-zero
elements are indicated by the symbol x, the symbol e denotes non-zero elements which we
must fill in B to obtain the symmetric matrix B):

X X X X X| X X X o X

X X X X X .
A=|X X X|{, B=|e X X

X X X X

X X X X o X o X

Then the matrix B has the same structure as A.



Using the algorithms 1, we have got

X X X e X
X X X o o
PAP"=| x x x |, PBPT=| x X e
X X X X X X °
L X X] i X |

Example 2:

In the Table 1, we see how the almost optimal permutation is changing depending on the
choice of the number dpax.

Tab. 1. The dependance of the permutation on dmax

Matrices A, B Jmax =0 Omax =1 Omax =2

i D(i) | inv; | per; D(i) inv; | per; D(i) inv; | per;

[2,3], [24],

1] 12345 |[231] 5 | 2 |[23L,[231| 5 | 2 | 34 [451 | 5 | 2

2 125 g | 1] 3 %] 1 | 5 % 1 |5
3 135 g | 2| 4 %] 3 | 3 % 3 | 3
4 14 g | 3]s %] 4 | 4 % 4 | 4
5/ 1235 |[23]] 4 | 1 [2,3] 2 | 1 [2,3] 2 | 1

Source: Own based on computations

The highlighted node i is the node, for that the number of elements of the set D(i) is greater
than the chosen number dma.x and that is transport to last free positions in the permutation P.

If dmax = 2 then the permutation matrix P is of the form P =(2,5,3,4,1) and

1 2 00 2 1 000 -4
23 1065 1 400 O

PAP"=|0 1 -1 0 3|,PBP'=| 0 4 3 0 0
00 02 4 0001 2
2 5 3 4 1) -1 320 1]




The structures of non-zero elements are:

PAPT = ) PBPT=| x x ..

X X X X X

X
X X X X X|] (X X X o X|
The advantage of these algorithms is a less number of computing operations for a solving of

systems of linear equations since we calculate with almost all non-zero elements of given
matrices of systems.

Conclusion

In a science papers and books, there exist lots of algorithms and methods, how to solve large
linear systems with a sparse matrix. Principles of computations are different. Some of them
use graphic structures of matrices. The algorithm above is one of them. The other ways could
be found, for example in [2] -[6].
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ALGORITMUS PRO ELIMINACI SOUSTAV S RIDKYMI NESYMETRICKY MI
ROZLOZITELNYMI MATICEMI

V c¢lanku je uveden algoritmus urceny k nalezeni optimalniho ¢i skoro optimalniho
usporadani prvki matice, kterd je tidka, nesymetrickd a rozlozitelna (reducibilni). Pomoci
tohoto algoritmu miizeme efektivnéji fesit velké fidké soustavy linearnich rovnic. Uvedeny
algoritmus je modifikaci zndmého algoritmu pro symetrické nerozlozitelné matice.

EIN ALGORITHMUS FUR DIE ELIMINIERUNG DER SYSTEME MIT SELTENEN
ASYMMETRISCHEN ZERLEGBAREN MATRIXEN

Im Artikel wird ein Algorithmus vorgestellt, der zu einer optimalen oder fast optimalen
Anordnung der Matrixelemente fithren soll. Diese Matrix ist selten, asymmetrisch und
zerlegbar (reduzierbar). Mit Hilfe dieses Algorithmus konnen wir grofle seltene Systeme
linearer Gleichungen effektiver 16sen. Der angefiihrte Algorithmus ist eine Modifikation eines
bekannten Algorithmus fiir eine symmetrische, nicht zerlegbare Matrix.

ALGORYTM DO ELIMINACJI UKEADOW Z RZADKIMI NIESYMETRYCZNYMI
MACIERZAMI ROZKEADALNYMI

W artykule przedstawiono algorytm przeznaczony do znalezienia optymalnego lub prawie
optymalnego ukladu elementéw macierzy, ktora jest rzadka, niesymetryczna i rozktadalna.
Przy pomocy tego algorytmu mozna bardziej efektywnie rozwigzywa¢ duze rzadkie uktady
réwnan liniowych. Podany algorytm stanowi modyfikacj¢ znanego algorytmu dla
symetrycznych macierzy nierozktadalnych.



