
Java Server Pages

JSP Life Cycle

JSP Elements

JSP Directives

JSP Implicit Objects

Techniques:

MVC Design Pattern

Dynamic DB Connection

Review
• Security Mechanisms

– Authentication (BASIC, DIGEST, FORM)

– Authorization

– Data Integrity

– Confidentiality (CLIENT-CERT or HTTPS CLIENT)

– Applied JAAS and ACLs file

– 2 types: Declarative or Programmatic, or Mixing

– How to implement Security on Web application with

supporting Web/Servlet container

Objectives
• Java Server Pages

• JSP Life Cycle

– JSP Translation and Execution

– The JSP Translation Phase

– The JSP Request/Execution Phase

• JSP Elements

– Anatomy of a JSP Page

– Template Data

– Elements of a JSP Page

• JSP Directives

– Directives

• JSP Implicit Objects

– JSP Implicit Objects

• Techniques: MVC Design Pattern & Dynamic DB Con

Java Server Pages
JSP

• Java Server Page (JSP) is a server side script language
running web (application) server (Tomcat, Sun, JBoss …)

• Saved with .jsp extension

• A simple, yet powerful Java technology for creating and
maintaining dynamic-content webs pages (embedded)

• JSP page are converted by the web container into a Servlet
instance

• It focus on the presentation logic of the web application

• JSP page contains HTML tags

• JSP page contains tags (standard & custom), which are used
to generate dynamic content and invoke the operations on
Javabeans components and processing requests.

• A combination of HTML, XML, Servlet (extends from
Servlet), and Java Code to create dynamic Web content.

Java Server Pages
JSP• Benefits

– Segregation of the work profiles of a Web designer and a Web
developer (separating presentation logic and
content/business/processing logic)

– Emphasizing Reusable Components (JavaBeans)

– Simplified Page Development (easy to use JSP through tag,
flexibility, scalability)

– Access & instantiate JavaBeans component (support tag element
with get/set functions)

– High secure

• Choosing Servlet or JSP
– Servlet are well suited for handling binary data dynamically, for

example, for uploading files or for creating dynamic images, since
they need not contain any display logic

– JSP is easy to create the presentation logic with dynamic
generated data combine template and do not compile before
executing or running time

Java Server Pages
JSP – Example

• Simple JSP page displays current date.

<html>

<head>

<title>A simple date</title>

</head>

<body>

The time on the server is <%= new java.util.Date() %>

</body>

</html>

• Server processes JSP components converting static data on
HTML which can be displayed by Web browser

• To testing JSP page, the JSP page should be copied to the
ROOT of web server – Tomcat

View Source

Java Server Pages
JSP – In Nature

• When the JSP page is requested to server, the JSP page is
converted to java file as filename_jsp.java (filename.jsp)

• The filename_jsp.java file is complied if it is correct syntax

• Ex:
– Omit the “)” of Date function in the simpleDate.jsp

– Correct above mistake, run the file, then checking the result at
• C:\Documents and Settings\LoggedUser\.netbeans\6.9\

apache-tomcat-6.0.26_base\work\Catalina\localhost

• C:\Users\LoggedUser\.netbeans\6.9\
apache-tomcat-6.0.26_base\work\Catalina\localhost

Java Server Pages
JSP – In Nature

public void

_jspService(HttpServletRe

quest request,

HttpServletResponse

response)

throws

java.io.IOException,

ServletException {

Applying the compile function on file to check JSP file

Java Server Pages
JSP Life Cycle

WEB
SERVER

JSP
ENGINE DatabaseClient

JSP Files

HTTP

JSPs are
processed here

Java Server Pages
JSP Life Cycle

Java Server Pages
JSP Life Cycle

• Translation

– A servlet code to implement JSP tags is

automatically generated, complied and loaded

into the servlet container.

– jspInit() method is invoked when the JSP page is

initialized and requested

– The _jspService() method corresponds to the

body of the JSP page and is defined

automatically by the JSP container and never be

defined by the JSP page

– The jspDestroy() method is invoke when the JSP

page is going to be destroyed (requested again)

– Notes: the servlet must implement the

javax.servlet.jsp.HttpJspPage interface

Java Server Pages
JSP Life Cycle

jspInit()

jspDestroy()

_jspService()

Servlet from JSP

Init Event

Request
Response

Destroy Event

Java Server Pages
JSP Life Cycle

• Complication

– The JSP page is automatically compiled and

executed again by JSP/ Servlet Engine

• Execution

– Is carried out with the help of page directives

controlling various execution parameters and

are used for buffering output and handling

errors

JSP Elements
Overview

• Enables to create dynamic JSP pages

• The JSP server translates and executes JSP elements

Elements Description

Root Classifies standard elements and attributes of namespaces in

tag library

Comment Used in JSP file documentation

Declaration Declares variables and methods in a scripting language page.

Expression Includes expression in a scripting language page

Scriptlet Includes code fragment in a scripting language page

Text Includes data and text

include Directive Includes content of one JSP page into the current JSP page

JSP Elements
Overview

Elements Description

page Directive Defines attribute of JSP page and passes processing

information about JSP page to JSP container

taglib Directive Defines custom tags in JSP page

<jsp:param> Adds value of parameter to a request sent to another JSP

page using <jsp:include> or <jsp:forward>

<jsp:forward> Forwards request from a client to the Web server

<jsp:include> Includes the output from one file into the other

<tagPrefix:name> Accesses the functions of custom tags

<jsp:setProperty> Sets the value of a Java Bean

<jsp:getProperty> Includes the bean property and value into the result set

<jsp:plugin> Uses a plugin to execute an applet or Bean

<jsp:useBean> Sets the location and initializes the bean with a specific

name and scope

JSP Elements
JSP Tags

• Tags

– Interface

– Functional

– Encapsulation

– A tag starts with “<” and ends with “>”.

– The tags contain body and attributes.

• The 4 types of JSP tags

– Comments

– Directives

– Scripting elements

– Standard actions

JSP Elements
Comments

• Are used for documenting JSP code

• Should not be visible to the client

• Explains the functioning of the code

• Comments are ignored by the servlet during compilation

• A JSP page contains 03 types comments as JSP, HTML, and
scripting

– HTML comments
• Are passed to resulting HTML documents

• Are not visible in the output but the end user can view them.

– JSP comments
• The browser cannot view these comments as a part of the source code

• Are ignored by the JSP to scriptlet translator.

– Scripting language comments
• Are written scriptlets in a JSP page.

• The comment should be in the same comment syntax used for scripting
language.

• Are not visible in the output of the JSP page

JSP Elements
Comments

• Syntax

– JSP comments: <%-- comments --%>

– Ex: <%-- a JSP comment --%>

– HTML comments: <!-- comments -->

– Ex: <!-- a HTML comment -->

– Scripting language comment

– <%/* comments */%>

– <%// comments %>

– Ex: <%//It’s is a variable declaration %>

JSP Elements
Scripting Elements

• A way of performing server-side operations in a JSP page

• Enable the code to be directly embedded in a JSP page

• Insert Java code into the JSP page

• Declarations:

– Defines the variables and methods for a JSP page

– Are inserted into the servlet, outside the _jspservice() method

– Are used in combination with scriptlets and expressions to display

an output.

– A single declaration tag can be used to define multiple variables

– Syntax: <%! Declaration; %>

– Ex: <%! String s = “Aptech”; %>

JSP Elements
Scripting Elements• Scriptlets

– Is used to embed Java code, which is inserted into the _jspService() method of
the servlet within an HTML code

– Refers to code blocks executed for every request (a fragment codes)

– Are used to add complex data to an HTML form

– Syntax: <% scriptlet %>

– Ex: <% for (int i =0 ; i<n; i++){

System.out.println(i + “.This is scriptlets.”); } %>

• Expressions
– Can be used to display individual variables or the result of some calculation

– Contains a Java statement whose value will be evaluated and inserted into the
generated web page

– Refers to single line codes executed for every request.

– Provides dynamic output generation and the result is converted into a string

– Evaluates at HTTP request

– A declaration block is enclosed between delimiters.

– Syntax: <%= expression %>

– Ex: <%= i %>

JSP Directives
Directives

• Controls the structure of the servlet by sending messages from the
JSP page to the JSP container.

• The scope of directives is the entire JSP file

• JSP uses directives for controlling the processing of JSP pages.

• Do not produce any output and inform the JSP engine about the
actions to be performed on the JSP page

• Specify scripting language used
– Ex: <%@ page language = “java” ...%>

• Denote the use of custom tags library (taglib)
– Ex: <%@ taglib uri = “c:\...” prefix = “abc” %>

• Include the contents of another JSP page into the current page
– Ex: <%@ include file = “c:\...” %>

• Include Java file to Java packages list.
– Ex: <%@ page …. import = “java.util.*, java.lang.*” %>

• Error handle in JSP page and JSP page is catched errors (isErrorPage).
– Ex: handle error <%@ page … errorpage = “/error.jsp” … %>

process error <%@ page isErrorPage = “true” %>

Page Directives
• Is used to define and manipulate a number of important attributes that affect the entire JSP page

• Is written at the beginning of a JSP page

• A JSP page can contain any number of page directives. All directives in the page are processed together
during translation and result is applied together to the JSP page

• Syntax: <%@ page attributes %>

Attributes Descriptions

language Define the scripting language used in the page. Default value is Java

extends Change the content of the servlet that is generated

import Include Java files to the Java package import list. Separating uses commas

session Specify if the JSP page takes part in a HTTP session. Default value is true

buffer Specify the size of the page buffer. Default value is 8KB

autoflush Flush the page buffer is filled. Default value is true

isThreadSafe
Define the safety level of threads in the page. The JSP engine queues the requests

sent for processing when the value is set to false. Default value is true

info Describe the page

errorPage Define the page to display errors ocurring in the JSP page

isErrorPage Indicate the current JSP page if contains the path another error page of JSP

contentType
Set the content type or MIME type and character encoding for JSP. Default value

is text/html

JSP Directives

Include & Tablib Directives• Include

– Is used to physically include the contents of another file sending
to the server. The included file can be a HTML or JSP

– Identify the file through the local URL

– A single JSP file can include multiple include directives

– Syntax: <%@ include file = “URL” %>

• Taglib

– Enables the use of custom tags in the JSP page

– Access to all the objects that are available for a JSP page

– Extend the functionality of a JSP page one after the other

– The TLD – Tag Library Descriptor is identified through the URI –
Uniform Resource Identifier and prefix describes the prefix string
used to define the custom tag

– Syntax: <%@ taglib uri = “URL” prefix = “name” %>

Example

<%@ page import="java.util.Date" %>

<html>

<head>

<title>First JSP program</title>

</head>

<body>

<!-- myFirstProgram.jsp -->

<% out.println("Hello there!"); %>

<%= "Current date is " + new Date() %>

<%-- end Program --%>

</body>

</html>

Directives - page

HTML Comments

Scriptlet

Expression

JSP Comments

JSP Elements
Example

JSP Elements
Example• Main (main.jsp) file

<html>

<head>

<title>Directive Includes JSP program</title>

</head>

<body>

<%-- include use directives --%>

Current date is

<%@ include file = "myDate.jsp" %>

</body>

</html>

• Include (myDate.jsp) file

<%@ page import="java.util.Date" %>

<html>

<head>

<title>Date JSP program</title>

</head>

<body>

<%= new Date().toLocaleString() %>

</body>

</html>

Directives - include

JSP Comments

Expression

Directives - page

JSP Elements Example

JSP Elements
Exampleout.write('\n');

…

out.write("<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\"\n");

out.write(" \"http://www.w3.org/TR/html4/loose.dtd\">\n");

out.write("\n");

out.write("<html>\n");

out.write(" <head>\n");

out.write(" <title>Directive Includes JSP program</title>\n");

out.write(" </head>\n");

out.write(" <body>\n");

out.write(" \t");

out.write("\n");

out.write(" \tCurrent date is\n");

out.write(" \t");

out.write('\n');

…

out.write("<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\"\n");

out.write(" \"http://www.w3.org/TR/html4/loose.dtd\">\n");

out.write("\n");

out.write("\n");

out.write("<html>\n");

out.write(" <head>\n");

out.write(" <title>Date JSP program</title>\n");

out.write(" </head>\n");

out.write(" <body>\n");

out.write(" \t");

out.print(new Date().toLocaleString());

out.write("\n");

out.write(" </body>\n");

out.write("</html>");

out.write("\n");

out.write(" </body>\n");

out.write("</html>");

JSP Elements Example

JSP Elements Example

Declarations

jspInit

jspDestroy

JSP Elements Example

JSP Elements
Example

Clean and Build Application

JSP Elements Example

Expression!!!

• Run jsp page without parameters

• Run with parameters as yellow, blue, red ...

JSP Elements Example

Additional
Create the JSP Page on NetBeans

• Click Next Button

Additional

Create the JSP Page on NetBeans

Fill your file

name without .jsp

Locate the

directory store

jsp file in current

project

Using JSP File

• Click Finish Button

Additional

Create the JSP Page on NetBeans

JSP Elements
Example – Exception

JSP Elements
Example – Exception

JSP Implicit Objects
Implicit Objects

• Does not initialize or declare

• Are loaded by the Web Container automatically and maintains them in a
JSP page (Available for scriptlets or expressions)

• Created using directives and accessible according to the specified scopes

• The names of the implicit objects are reserved words of JSP

• The scopes for the IB in JSP page including page, request, session, and
application

• Access dynamic content using JavaBeans

• Syntax: ImplicitObject.method(params)

• Types of Implicit Objects
– Input & Output Objects

• The objects control page input and output

• Are request, response and out

– Scope Communication Objects: provide access to all objects available in the
given scope

– Servlet Objects
• Provides information about the page context

• Processes request objects from a client and sends the response objects back to the
client

JSP Implicit Objects
• Types of Implicit Objects (cont)

– The Error Objects

• The object handles errors in a JSP page (exception)

• Can access this object by declaring your JSP page as an error page

<%@page isErrorPage=“true” %>

Object Class / Interface

page javax.servlet.jsp.HttpJspPage – variable synonym for this object

config javax.servlet.ServletConfig

request javax.servlet.http.HttpServletRequest

response javax.servlet.http.HttpServletResponse

out javax.servlet.jsp.JspWriter

session javax.servlet.http.HttpSession

application javax.servlet.ServletContext

pageContext javax.servlet.jsp.PageContext

exception java.lang.Throwable

JSP Implicit Objects
Input & Output Objects

Objects Descriptions

request

- Refer to the current request made by the client that is being processed by JSP

container. The container passed the request IB to JSP page as a parameter to the

_jspservice().

- Implement the javax.servlet.http.HttpServletRequest interface

- Syntax: request.method(params)

- Scope: request

-Ex: request.getParameter(“username”);

response

- Refers the result that is returned to the user after a JSP processed

- Implement the javax.servlet.http.HttpServletResponse interface

- Syntax: response.method(params)

- Scope: page

- Ex : response.addCookie(cookie)

out

- Represent the output stream for the JSP page (send to client)

- Implement the javax.servlet.jsp.JspWriter interface (the buffer size is

supported by Servlet)

- Syntax: out.method(params)

- Scope: page

- Ex: out.println(“output stream”)

JSP Implicit Objects

Input & Output Objects – Example

JSP Implicit Objects

Input & Output Objects – Example

JSP Implicit Objects
Scope Communication Objects

Objects Descriptions

session

- Specify data and store information in the current session.

- Implement the javax.servlet.http.HttpSession interface

- Syntax: session.method(params)

- Scope: session

- Ex: session.setAttribute(“username”, “Aptech”);

application

- Represent the application of the required JSP page and represent the

servlet context about Web Application in which it is running.

- Implement the javax.servlet.ServletContext interface

- Syntax: application.method(params)

- Scope: application

- Ex: application.setAttribute(“username”, “Aptech”);

pageContext

- An instance of Pages (javax.jsp.PageContext)

- Enable access to the JSP page and the attributes associated with that page

- provides following fields to find the scope or specify the scope of the

objects (PAGE, REQUEST, SESSION, and APPLICATION)

- Syntax: pageContext.method(params)

- Ex: pageContext.getAttributes(“username”);

JSP Implicit Objects

Scope Communication Objects – Example

JSP Implicit Objects

Scope Communication Objects – Example

JSP Implicit Objects
Servlet Objects

Objects Descriptions

page

- Represents the servlets and the initialization parameters

of the servlet are stored in the config IB

- Use “this” reference and the page IB represents it.

- Implements the javax.lang.object interface

- Syntax: <%@ page info = “information” %>

- Scope: page

config

- Represent the configuration of the servlet data

- Implement the javax.Servlet.ServletConfig interface

- Access objects through config.getInitParameter(“par”)

- Scope: page

JSP Implicit Objects

Servlet Objects – Example

JSP Implicit Objects

Error Objects
Objects Descriptions

exception

- Refer to the runtime exception in an error page

- Is available only on pages that are assigned as error

page using the isErrorPage attribute of the page

directive.

- Implement the javax.lang.Throwable interface

- Exception methods are supported

+ getMessage() : return the error message associated

with the exception

+ toString() : Return a string with the class name of

the exception within the error message.

+ printStackTrace(): prints the execution stack in

effect when the exception was thrown to the

designated output stream

JSP Implicit Objects

Error Objects – Example

JSP Implicit Objects

Error Objects – Example

MVC Design Pattern

Model – View – Controller
• Main concern of MVC is to separate the data

(model) and the user interface (view)

– Helps the developer changing to the user interface can
be made without affecting the underlying data
handling logic.

– The data can be reorganized without changing the user
interface.

• Separation is achieved by introducing an
controller component

– Controller is an intermediate component

– Controller defines as how the user interface should
react to a user input

MVC Design Pattern

Model – View – Controller

User

Controller

Model

View

This is a MVC Model

MVC Design Pattern

Model – View – Controller
• Relationships between components

– View and Controller: Controller is responsible for creating or
selecting view

– Model and View

• View depends on Model

• If a change is made to the model then there might be required to make
parallel changes in the view

– Model and Controller

• Controller depends on model

• If a change is made to the model then there might be required to make
parallel changes in the Controller

• Logical Layers in Web application

– Model [Business Process Layer]

– View [Presentation Layer]

– Controller [Control Layer]

MVC Design Pattern

Model – View – Controller • Model
– Models data and behavior behind business process

– Manages information (access, modify, and represent application’s
data) and notifies observers whenever the information changes

– Contains data and related functionality that are related by a common
purpose

– Maps Real-World Entities (implement business logic, workflow)

– Performing DB Queries

– Calculating Business Process

– Encapsulates Domain Logic (a Java Object – Java Bean) which are
independent of Presentation

• View
– Obtains data from model & presents to the user

– Represents Output/Input of the application (GUI – JSP & HTML …)

– Display results of Business Logic

– Free Access to Model, but should not change the state of the model.

– Reads Data from Model – Using Query Methods

MVC Design Pattern

Model – View – Controller • Controller
– Serves logical connection between user’s interaction and the

business process

– It receives and translates input to request on model or view

– Input from user and instructs the model and view to perform action

– Responsible for making decision among multiple presentation

– Maps the end-user action to the application response

– Is responsible for calling methods on the model that changes the
state of the model

– Updates the state of the Model and generates one or more
views (servlets)

• Evolution of MVC Architecture
– NO MVC

– MVC Model 1 [Page-centric] – JSP Model 1

– MVC Model 2 [Servlet-centric] – JSP Model 2

MVC Design Pattern

No MVC

NO MVC Model 1 Architecture

MVC Design Pattern

MVC Model 1

Web Server

MVC Design Pattern

MVC Model 1
• Composed of a series of interrelated JSP pages

• JSP page handles the entire request processing mechanism
– Extract the HTTP request parameters

– Invoke the business logic (through Java Beans)

– Process the business logic

– Handle the HTTP session

• JSP page responsible for displaying the output to the client

• There is no extra Servlet involved in the process.

• A page centric architecture (Business process logic and
control decisions are hard coded inside JSP pages)

• Next page selection is determined by hyperlink or action of
submitting a form. Ex:
– Search

– <form action=“find.jsp”> … </form>

MVC Design Pattern

MVC Model 1

Page-centric application

MVC Design Pattern

MVC Model 1 – Example

MVC Design Pattern

MVC Model 1 – Example
• menu.jsp

Find

Show

• find.jsp
<form method="post" action="result.jsp">

Username <input type="text" name="username" value=""
/>

<input type="submit" value="Find" />

</form>

• result.jsp
Processing to DB using JSTL

Back to menu

MVC Design Pattern

MVC Model 1 – Generalization

Page-centric Scenario

MVC Design Pattern

MVC Model 1 – Example
• Display product’s information (name, categories)

• Bean class

public class Products

{

Define the properties,

the get/set methods

}

• JSP

<jsp:useBean id="prod" class="Mod1.Products" scope="session"/>

<jsp:setProperty name="prod" property="*"/>

Product Name:<jsp:getProperty name="prod" property="name"/>

Product Type:<jsp:getProperty name="prod" property="type"/>

MVC Design Pattern

MVC Model 1 – Generalization
• Purpose

– Separate “business logic” from “presentation logic”

– Need for centralized security control or logging, changes little over time.

– Apply to applications that have very simple page flow.

• Advantages

– Lightweight design – for small, static application

– Suitable for small application having very simple page flow, little need for
centralized security control/logging

– Separation of presentation from content

• Limitations

– Navigation Problem – Changing name of JSP file must change in many location

– Difficult to maintain an application – large java code being embedded in JSP
page

– Inflexible

– Performance is not high

– Not scale up over a period time

– Not Suitable for large and complex application

MVC Design Pattern

MVC Model 2

MVC Design Pattern

MVC Model 2
• Separates the “Business Logic” from the “Presentation Logic” and

has an additional component – a Controller

• Use Servlet and JSP together

• JSP pages

– Are used only for presentation

– Retrieve the objects created by the Servlet

– Extract dynamic content for insertion within a template for display

• Servlet

– Handles initial request, partially process the data, set up beans, select suitable
business logic to handle request , then forward the results to one of a number of
different JSP pages

– Serves as a gatekeeper provides common services, such as authentication
authorization, login, error handling, and etc

– Servlet serves as a central controller that act as a state machine or an event
dispatcher to decide upon the appropriate logic to handle the request

– Act as a Controller that controls the way Model and View layer interacts

MVC Design Pattern

MVC Model 2 – Generalization

Servlet-centric Scenario

MVC Design Pattern

MVC Model 2 – Example

MVC Design Pattern

MVC Model 2 – Example

MVC Design Pattern

MVC Model 2 – Example

MVC Design Pattern

MVC Model 2 – Example

MVC Design Pattern

MVC Model 2 – Example

MVC Design Pattern

MVC Model 2 – Example

MVC Design Pattern

MVC Model 2 – Example

MVC Design Pattern

MVC Model 2 – Example

MVC Design Pattern

MVC Model 2 – Example

MVC Design Pattern

MVC Model 2 – Example

MVC Design Pattern

MVC Model 2 – Generalization • Purpose
– Separation of presentation logic and business logic

– A Model represents information specific to a particular domain on
which the application operates

– A View is typically a user interface element. A single Model may
be presented as multiple views

– A controller component responds to events and processes request
and may invoked changes on the Model

• Advantages
– Easier to build, maintain and extend

– Provide single point of control (Servlet) for security & logging

– Encapsulate incoming data into a form usable by the backend

– Can reusable code

• Limitations
– Increase Design Complexity

MVC Design Pattern

MVC Model 1 & Model 2 Comparison

Criteria Model 1 Model 2

JSP page responsibility

Processing requests

and sending back

replies to clients

Are used for the

presentation layer

Servlets responsibility N/A
Are used for processing

task

Type of Web application Simple Complex

Nature of Developer’s Task Quick prototyping

Developing an application

that can be modified and

maintained

Who is doing the work?

View and Controller is

developed by the same

team

View and Controller is

developed by the different

teams

Additional
Dynamic DB Connection

• Adding and modify the web.xml as following

Additional
Dynamic DB Connection

• Adding and modify the context.xml in the META-INF
directory as following

• Implement code to use

Summary

• Introduction to JSP

• JSP Life Cycle

• JSP Elements

• JSP Directives

• JSP Implicit Objects

• Techniques: MVC Design Pattern

Q&A

Next Lecture
• JSP Standard Actions

– JavaBeans

– Standard Actions

• Dispatcher Mechanism

– Including, Forwarding, and Parameters

– Vs. Dispatcher in Servlets

• EL – Expression Languages

– What is EL?

– How to use EL in JSP?

