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Abstract

A viscoelastic simply supported rotationally symmetric body, fixed on a base, is considered.
The body is loaded by a flat plunger, which moves in the direction of thez axis by a constant
velocity v. In this work the reaction force is computed. This allows us to compare numerical
results with data from rheological experiment (see [6], [7]). The variational formulation of
the problem is derived and transformed to cylindrical coordinates. Some results of numerical
calculations are presented.
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Introduction

Mathematical modeling of technological processes has beenalready regarded as a powerful tool
for an optimization of technological processes also in glass industry. The fundamental issue of
virtual modelling of silica glass forming is an accuracy of numerical outputs. Critical factor
is not only definition of boundary conditions, mainly thermal ones, but also specification of
material properties. Number of methods for an identification of rheological properties exists
[1]. The disadvantage of the most of published models is independent description of the both
stages - the stage with the dominant influence of an elastic component of deformation and
that one with a dominant viscous flow [8]. One of the most effective methods is isothermal
compression method which is based on the evaluation of the force response on compression
loading of cylindrical samples [4], [6], [7].

The advantage of this method is its relatively simplicity and possibility to evaluate both
elastic and viscous properties of glass melt simultaneously during one experiment. However
the critical issue of this method is an accuracy of evaluation of experimental outputs. Several
methods were suggested.

In this contribution we introduce the variational formulation of the rheological experiment
model, which includes viscoelastic deformations. This problem will be used as a state problem
in formulations of various identification problems for various model parameters, that are planed
as next step of our research. Nevertheless recent numericalresults are roughly in conformity
with results of experiments (see [6]).
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1 Formulation of the Problem

Forming of glass is quite complicated process which contains both elastic and plastic responses
to strain from stress. This is the main reason of using a viscoelastic model to describe relation-
ship between stress and strain.
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Fig. 1. Scheme of glass sample

We consider a viscoelastic isotropic homogeneous cylindrical bodyΩ symmetrical accord-
ing toz axis with bases formed by two parallel circles with radiiR, and altitudeh. We consider
the body which is fixed on both bases and which is free on its surrounding surface. We denote
P1 upper, resp.P3 bottom, base andP2 surrounding surface of the body. The body is deformed
by flat plunger moving by a constant velocityv in the direction of thezaxis placed on the upper
base. To represent changes of the shape of the body we define a deformation tensor by the
formula

εi j (xxx, t) =
1
2

(

∂ui(xxx, t)
∂x j

+
∂u j(xxx, t)

∂xi

)

. (1)

The stress is represented by symmetrical stress tensorσ . We consider stress strain relation given
by viscoelastic generalized Hook’s law in the form

σi j (xxx, t) = δi j

∫ t

−∞
λ (t − τ)

∂εkk(xxx,τ)

∂τ
dτ +2

∫ t

−∞
µ(t − τ)

∂εi j (xxx,τ)

∂τ
dτ , (2)

whereλ (t) andµ(t) denote relaxation functions describing glass properties in pressing, resp.
in shear andδi j is the Kroneker symbol.
The balance of a linear momentum for the dynamic problem has the form

∂σi j (xxx, t)

∂x j
+Fi(xxx, t) = ρ

∂ 2ui(xxx, t)
∂ t2 i = 1, 2, 3 , (3)

whereFFF (xxx, t) represents the body forces andρ the density of glass.
We use the time discretization method:
Let the time interval[0,T] be divided into the subintervals[tk−1, tk], for k = 1,2, . . . , p, then (3)
has at each time level the form

∂σk
i j (xxx)

∂x j
+Fk

i (xxx) = ρ
zk
i (xxx)−2zk−1

i (xxx)+zk−2
i (xxx)

h2 i = 1, 2, 3, k = 2, . . . , p, (4)

wherezk
i (xxx) = u(xxx, tk), σk

i j (xxx) = σi j (xxx, tk), Fk
i (xxx) = Fi(xxx, tk) andh = T

p .
According to the fact that the body, support and load have rotational symmetry we transform
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the problem to cylindrical coordinates and apply dimensional reduction of an angle to get two-
dimensional problem.
We are going to solve the problem in the regionDk(α) dependent on time the leveltk bounded
by the axisr (part Γ3), the axisz (part Γ4), the straight linez = h− tv (part Γ1) and the free
boundary described by the functionα(z) of variablez (partΓ2).
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Fig. 2. Domain after the dimensional reduction

According to the fact that the problem has rotational symmetry we assume that a displace-

ment vector component in the directionϑ is zero(zk
ϑ (xxx) = 0), similarly ∂zk

r
∂ϑ = 0, and∂zk

z
∂ϑ = 0.

We denote the physical components of the displacement vector by two functions, e.g.
zk
r (xxx) = uk ,

zk
z(xxx) = wk ,

(zk
ϑ (xxx) = 0) .

The relationship between the displacement vector and the strain tensor is in the form

εk
rr =

∂uk

∂ r
, (5)

εk
zz=

∂wk

∂z
, (6)

εk
ϑϑ =

uk

r
, (7)

εk
rz =

1
2
(
∂uk

∂z
+

∂wk

∂ r
) , (8)

(εk
rϑ = 0, εk

zϑ = 0) . (9)

The components of the stress tensorσσσ have the form

σk
rr =

1
h

∫ t

−∞
λ (t − τ)(ek(xxx)−ek−1(xxx))+2µ(t − τ)(εk

rr (xxx)− εk−1
rr (xxx))dτ , (10)

σk
zz=

1
h

∫ t

−∞
λ (t − τ)(ek(xxx)−ek−1(xxx))+2µ(t − τ)(εk

zz(xxx)− εk−1
zz (xxx))dτ , (11)

σk
ϑϑ =

1
h

∫ t

−∞
λ (t − τ)(ek(xxx)−ek−1(xxx))+2µ(t − τ)(εk

ϑϑ (xxx)− εk−1
ϑϑ (xxx))dτ , (12)
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σk
rz =

2
h

∫ t

−∞
µ(t − τ)(εk

rz(xxx)− εk−1
rz (xxx))dτ , (13)

(σk
rϑ = 0, σk

zϑ = 0) , (14)

where
e= εrr + εzz+ εϑϑ . (15)

The bilinear form representing mechanical work of inner forces has the form

A(uuu,ϕϕϕ) = −
1
h

∫

Dk(α)

∫ t

−∞

(

(λ (t − τ)+2µ(t − τ))

[

∂uk(xxx)
∂ r

∂ϕ1(xxx)
∂ r

r +

+
∂wk(xxx)

∂z
∂ϕ2(xxx)

∂z
r + uk(xxx)ϕ1(xxx)

1
r

]

+

+ µ(t − τ)

[

∂wk(xxx)
∂ r

∂ϕ2(xxx)
∂ r

r +
∂wk(xxx)

∂ r
∂ϕ1(xxx)

∂z
r +

+
∂uk(xxx)

∂z
∂ϕ2(xxx)

∂ r
r +

∂uk(xxx)
∂z

∂ϕ1(xxx)
∂z

r

])

dτ dxxx +

+
ρ
h2

∫

Dk(α)

(

uk(xxx)ϕ1(xxx)r +wk(xxx)ϕ2(xxx)r
)

dxxx . (16)

Linear functional representing mechanical work of outwardforces has the form

〈FFF(t),ϕϕϕ〉 =
∫

Dk(α)

(

[ Fk
1 (xxx)ϕ1(xxx)r + Fk

2 (xxx)ϕ2(xxx)r ]−

−
1
h

∫ t

−∞

(

(λ (t − τ)+2µ(t − τ))

[

∂uk−1(xxx)
∂ r

∂ϕ1(xxx)
∂ r

r +

+
∂wk−1(xxx)

∂z
∂ϕ2(xxx)

∂z
r + uk−1(xxx)ϕ1(xxx)

1
r

]

+

+ µ(t − τ)

[

∂wk−1(xxx)
∂ r

∂ϕ2(xxx)
∂ r

r +
∂wk−1(xxx)

∂ r
∂ϕ1(xxx)

∂z
r +

+
∂uk−1(xxx)

∂z
∂ϕ2(xxx)

∂ r
r +

∂uk−1(xxx)
∂z

∂ϕ1(xxx)
∂z

r

])

dτ −

−
ρ
h2

[(

uk−2(xxx)ϕ1(xxx)r +wk−2(xxx)ϕ2(xxx)r
)

−

−2
(

uk−1(xxx)ϕ1(xxx)r +wk−1(xxx)ϕ2(xxx)r
)])

dxxx . (17)

Boundary conditions:
The flat plunger moves in the direction of thez axis by the constant velocityv acting on part of
boundaryΓ1, i.e.

u = 0
w = v(t − tk)

}

on Γ1 . (18)

The part of boundaryΓ2 represents the so called free boundary which is deformed by the influ-
ence of the inner forces and is not able to catch any force (tangent or normal)

σrr = 0
σzz= 0

}

on Γ2 . (19)

132



The part of boundaryΓ3 is fixed, i.e.

u = 0
w = 0

}

on Γ3 . (20)

The part of boundaryΓ4 is formed by the axis of symmetry and has properties of contact with
solid support (without friction), i.e.

u = 0
∂w
∂ r = 0

}

on Γ4 . (21)

We define the spaceW1,2,r(Dk(α)) with the norm

‖u‖1,2,r =

(

∫

Dk(α)

[

(

∂u
∂ r

)2

+

(

∂u
∂z

)2

+u2

]

r dxxx

)
1
2

. (22)

We define the space of functions with the finite energy as the weighted Sobolev spaceH (Dk(α))

H (Dk(α)) = {ûuu≡ (u, w) ∈W1,2,r(Dk(α))×W1,2,r(Dk(α))} . (23)

We denote
V1 = {u∈C∞(Dk(α)) | suppu∩Γ4 = /0, u = 0 on Γ1∪Γ3} . (24)

Let V1 be the closure of the setV1 in the spaceW1,2,r(Dk(α)).
Further we denote

V2 = {u∈C∞(Dk(α)) | u = 0 on Γ1∪Γ3} . (25)

Let V2 be the closure of the setV2 in the spaceW1,2,r(Dk(α)).
We denote by

HHH = {ûuu≡ (u, w) ∈V1×V2} (26)

the space of test functions (i.e. such functions with finite energy which satisfy stable boundary
conditions).
We use the principle of virtual displacement to get a variational formulation of the problem:
Let û0 ∈ H (Dk(α)) be given, which specifies the displacement on the boundaryΓ1 by its
traces. We are looking for ˆu∈ H (Dk(α)) such that

ûuu − ûuu0 ∈ HHH , (27)

A(ûuu, ϕ̂ϕϕ) = 〈FFF(t), ϕ̂ϕϕ〉 ∀ϕ̂ϕϕ ∈ HHH, k = 2,3, . . . , p . (28)

Theorem. The problem (27) - (28) has the unique solution.

Proof: The proof based on the Lax-Milgram theorem is too long and technical to be published.

2 Numerical Experiment

The numerical model, describing the course of experimentalmeasurements of rheological prop-
erties of melt glass, was created.

The principle of experiment is based on the evaluation of theforce (viscoelastic) response
of isothermal cylindrical molten glass sample, which is compressed at a constant velocity. Nu-
merical simulation was realized in the commercial FEM (Finite Elements Method) code MSC
MARC.
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The initial sample sizes were 20,3 mm (diameter) - 18,45 mm (height), the velocities of
compression were taken from the range 0,5 - 40 mm/s. The Maxwell model was used for
description of material behavior of FLOAT melted glass.
Viscosity of the shaped glass was defined according to the experiment, i.e.η = 107,52 [Pa.s].
The modulus of elasticity was selected from the rangeE1 = 2,5.108 2,5.109 [Pa], molten glass
was assumed to be incompressible substance, i.e. The Poisson constantν = 0,5.

Sticking conditions were presumed between glass and metal punch contact surfaces.

Source: Own

Fig. 3. Distribution of the stress fields in the form of equivalent Cauchy stress for compression
2, 6 and 10 mm

The course of distribution of the stress fields in the form of the equivalent Cauchy stress
for 3 different stages (compression 2, 6 and 10 mm) are presented in Fig. 3 (for velocityv = 4
[mm/s]).

The courses of the force response for different elastic moduli are shown in Fig. 4. From the
figure it results that the elastic modulus influences only thefirst stage of the experiment, second
one is only controlled by viscous flow.

Conclusion

In the contribution the model for evaluation of descriptionof viscoelastic force response to
compression loading was suggested. Integration of the viscoelastic model of the Maxwell type
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Source: Own

Fig. 4. Course of computed load forces

to the mathematical model allowed fair description of the force response according to character
of the realized experiments [6]. The shape course of deformed glass sample in the experiment
was visibly similar to the computed one. Development of the measured load force showed the
similar tendency but values became more different from the computed ones during the experi-
ment.
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NUMERICKÉ HODNOCEŃI REOLOGICKÉHO EXPERIMENTU

Uvažujeme viskoelasticḱe, prosťe podep̌reńe, rotǎcně symetricḱe ťeleso pevňe spojeńe s podkla-
dem. Ťeleso je zaťežováno plochou lisovaćı čelist́ı, kteŕa se pohybuje ve sm̌eru osyzkonstantńı
rychlost́ı v. V předlǒzeńem p̌rı́sp̌evku je pǒćıtána silov́a odezva. To ńam umǒzńı porovńavat nu-
mericḱe výsledky s réalnými daty z reologicḱych experiment̊u. Je odvozena variačńı formulace
úlohy a transformov́ana do v́alcov́ych soǔradnic. D́ale jsou prezentov́any numericḱe výsledky.

NUMERISCHEBEWERTUNG EINES RHEOLOGISCHENEXPERIMENTS

Wir betrachten einen viskoelastischen, einfach unterstützten, drehsymmetrischen Körper, der
fest mit dem Untergrund verbunden ist. Der Körper wird mit der Fl̈ache eines Presskiefers
beschwert, die sich in Richtung der Achse aus der konstanten Geschwindigkeit v bewegt.
Im vorliegenden Beitrag wird das Kraftecho berechnet. Dies ermöglicht uns einen Vergleich
der numerischen Ergebnisse mit den realen Daten aus den rheologischen Experimenten. Da-
raus wird eine Variantenformulierung der Aufgabe abgeleitet und in Walzenkoordinaten trans-
formiert. Weiter werden numerische Ergebnisse präsentiert.

NUMERYCZNA OCENA EKSPERYMENTU REOLOGICZNEGO

W artykule rozwȧzane jest wiskoelastyczne, prosto podparty, rotacyjnie symetryczne ciało
na stałe poł֒aczony z podłȯzem. Na ciało oddziałuje powierzchnia szcze֒k prasuj֒acych, kt́ora
porusza si֒e w kierunku osiz stała֒ pre֒dkóscia֒ v. W opracowaniu obliczana jest reakcja siłowa.
Umożliwia to poŕownanie wyniḱow numerycznych z realnymi danymi z eksperymentów reo-
logicznych. Okréslona jest zmienna formuła zadania, która jest transformowana do współrze֒d-
nych cylindrycznych. Naste֒pnie zaprezentowano wyniki numeryczne.
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