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Abstract:

This work delivers a set of mathematical tools for analysis of rotor systems supported in aero-
static journal bearings with special attention to thermal conditions of analysed system. Pre-
sented finite element thermo-hydrodynamic lubrication model of aerostatic bearings enables
calculation of temperature distribution inside bearing air film and solid parts of rotor–bearing
system. Test problem showed that the air film remains nearly isothermal, even if the average
air film temperature is significantly higher than the ambient temperature as a result of power
losses at high speed of journal. It also confirmed that Poiseuille part of the air flow does not
contribute to increase of temperature. These findings suggest that isothermal bearing models
are adequate, on condition that the average air film temperature is known. Steady state and
transient isothermal hydrodynamic lubrication models of aerostatic bearings and a method
of obtaining stiffness and damping coefficients corresponding to the lateral translational and
angular displacements are also presented. Linearity of bearing models is discussed by means
of obtained linear coefficients and by means of the response of the model to stochastic force
excitation. This work also deals with reduction of defective, strongly gyroscopic rotor sys-
tems. Reduction of these systems is desirable for direct numerical integration of equations
of motion of rotor supported by nonlinear bearings. Suitability of three feasible methods is
evaluated.
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Abstrakt:

Tato práce přináší soubor matematických nástrojů pro analýzu rotorových soustav uložených
v aerostatických radiálních ložiskách se zvláštním zřetelem na teplotní podmínky analyzo-
vaného systému. Předložený konečněprvkový model termo-hydrodynamického mazání aero-
statického ložiska umožňuje výpočet rozložení teploty uvnitř vzduchového filmu a pevných
částí systému rotoru a ložiska. Testovací úloha ukázala, že vzduchový film zůstává téměř
izotermický i tehdy, když je jeho průměrná teplota výrazně vyšší než teplota okolí v důsledku
ztrátového výkonu při vysoké rychlosti čepu hřídele. Také potvrdila, že Poiseuilleova část
proudění vzduchu nepřispívá ke zvýšení teploty. Tyto poznatky naznačují, že izotermické
modely jsou vhodné za předpokladu známé průměrné teploty vzduchového filmu. Dále jsou
prezentovány statické a dynamické modely isotermického hydrodynamického mazání aero-
statických ložisek a metoda získání koeficientů tuhosti a tlumení odpovídajících bočním
translačním a úhlovým výchylkám. Linearita modelu ložisek je diskutována pomocí získaných
lineárních charakteristik a odezev dynamického modelu ložisek na stochastické silové buzení.
Tato práce se také zabývá redukcí defektivních, silně gyroskopických rotorových soustav, jež
je žádoucí pro přímé numerické řešení pohybových rovnic rotoru uloženého v nelineárních
ložiskách. Hodnocena je vhodnost tří možných metod.

Klíčová slova:

THDL, Termo-hydrodynamické mazání, Aerostatické radiální ložisko, Redukce defektivních
soustav, Timošenkův rotující nosník
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Symbol Dimension Description
A(x) m2 Cross section area
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co 1 Discharge coefficient
cp J kg−1 K−1 Isobaric specific heat
cv J kg−1 K−1 Isochoric specific heat capacity
E Pa Young modulus of elasticity
f Pam−1 External volume force
G Pa Shear modulus of elasticity
Gx1 , Gx2 1 Turbulence coefficients
h m Thickness of fluid film
hb W m−2 K−1 Bushing heat convection rate
hj W m−2 K−1 Journal heat convection rate
i J kg−1 Specific enthalpy
j 1 Imaginary unit; j =

√
−1

J(x) m4 Polar moment of inertia
k W m−1 K−1 Heat conductivity
kb W m−1 K−1 Bushing heat conductivity
kj W m−1 K−1 Journal heat conductivity
kl W m−1 K−1 Lubricant heat conductivity
Kn 1 Knudsen number
L m Bearing length
ṁi kg s−1 Inlet mass flow
ṁit kg s−1 Theoretic inlet mass flow
p Pa Pressure
pa Pa Ambient pressure
ps Pa Supply pressure
P Pa Dimensionless pressure
Pr 1 Prandtl number
Qd W Dissipative heat rate
r J kg−1 K−1 Specific gas constant
R m Radius of bearing
Rec 1 Couette Reynolds number
Res 1 Squeeze Reynolds number
t s Time

xii



Nomenclature

T K Temperature
Ta 1 Taylor number
Ti K Inlet temperature
Tr K Reference temperature
u(x) m Axial displacement
v = (v1, v2, v3) m s−1 Velocity
vξ, vη, vζ 1 Dimensionless velocities
v(x), w(x) m Lateral displacements
V = (U, V )T m s−1 Boundary velocity
αH 1 Hysteretic damping coefficient
αv 1 Viscous damping coefficient
β∗ 1 Critical pressure ratio
δij 1 Kronecker delta
∆t s Time step
κ Pa s Bulk viscosity (Chapter 1)
κ 1 Shear correction coefficient (Chapter 2)
κ 1 Ratio of specific heats (Exc. chapter 1&2)
λ Pa s Second viscosity
λf m Mean free path of gas particles
Λ 1 Bearing (compressibility) number
µ Pa s Dynamic viscosity
µr Pa s Reference viscosity
ν 1 Poisson constant
ξ, η, ζ 1 Dimensionless spatial coordinates
ρ kg m−3 Density
τ 1 Dimensionless time
τij Pa Stress tensor
τS Pa Mean shear stress
τ(y, z) Pa Shear stress
τ ′ij Pa Deviatoric stress tensor component
ϕ(x) 1 Angle of torsional rotation
Φ W m−3 Dissipation function (Exc. chapter 2)
Φ 1 Shear deformation coefficient (Chapter 2)
ψ(x), ϑ(x) 1 Angles of lateral rotations
ω s−1 Journal angular velocity (Exc. pages 18–64)
ω s−1 Excitation angular velocity (Pages 18–64)
ω0 s−1 Shaft angular velocity
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Chapter 1

Introduction

1.1 The Air Lubrication

It has been over 150 years since Gustaph Adolph Hirn published results of his experimental
work with bearing friction using various lubricants, having been the first who observed that
air might behave as sufficient lubricant. Several decades later Albert Kingsbury performed
his impressive experiments with externally pressurized air bearing. The physical explanation
of load-carrying capacity of fluid film during hydrodynamic lubrication based on work of
Osborne Reynolds is also known for over one century. Despite the long period since the first
valuable experiments were carried out as well as their physical explanation was provided, there
were practically no applications using air bearings until second half of twentieth century
[1]. The precise manufacture with close tolerances, necessary for air bearings production,
together with the lack of practical design directions were the main reasons restraining them
from broader practical introduction. Meantime, the improving quality of steel materials used
for rolling element bearings allowed them to prevail over classical journal bearings and later
even other plain joints, which trend continues and is noticeable even today for instance in
machining tool and turbo-machinery industry. However the rolling element bearings were
great improvement against plain bearings and still experience evolution, there are certain
borders difficult to pass. Thermal behaviour, bearing endurance and life of rolling element
bearings are some of the limiting factors at very high speed of modern machinery [2],[3].
Nonlinear microscopic behaviour of the rolling elements [4] means another limitation with
respect to increasing demands for ultra-precision operation [5]. Gas bearings offer noticeable
benefits, especially for ultra-precise and very fast applications.

Gas bearings can be divided into two basic categories. Bearings operating exclusively
on the principle of hydrodynamic lubrication are referred to as aerodynamic or self-acting
bearings. These bearings use the pressure profile of lubricant within wedge shaped clearance
that is formed by means of reciprocal movement of moving and static body. They do not
need external supply of pressurized gas, but can only operate after exceeding certain speed of
relative motion of parts that generate the wedge gap. Their apparent advantage of low running
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cost is counterbalanced by inability of operation at rest, generally low carrying capacity
and stiffness in comparison with aerostatic bearings. Aerostatic bearings, also referred to as
externally pressurized bearings, work with supply of pressurized gas incoming into narrow
gap between two surfaces, where the gas consequently expands and leaves the bearing. These
bearings operate at rest as well as during reciprocal motion of both faces.

The previously mentioned effect of hydrodynamic lubrication also takes place in the case
of aerostatic bearings at higher speed. It may even dominate the bearing load. This principle
is utilized in hybrid bearings that operate with supply of pressurized gas at low speed, but
act as aerodynamic bearings at operational conditions. Compressed gas can be delivered only
during start up and shut down. These hybrid bearings commonly incorporate surface features,
for instance the so-called herringbone grooves on journal surface.

1.1.1 Aerodynamic Journal Bearings

From the geometry point of view, the basic aerostatic journal bearings are similar to oil-
operating hydrodynamic bearings. However, the working substance has significantly different
properties. Liquids have bulk modulus higher of several orders of magnitude than gases.
Whilst the liquids are often treated as incompressible continuum, the gases have bulk mod-
ulus dependent on pressure. Viscosity of gases is also substantially smaller than viscosity of
liquids and it increases with temperature. Another considerable distinction from oil-operating
bearings is the absence of gaseous and vaporous cavitation. Aerostatic bearings require smaller
clearances between sliding surfaces than oil bearings while offering a fraction of their damp-
ing abilities, therefore a special attention must be paid to dynamic stability of the bearing
system. Without the presence of liquid lubricant even short contact of parts at full speed
can end up with severe damage of precision surfaces. Aerodynamic bearings often necessitate
special materials in order to capable of dry run during start up and shut down phase.

Figure 1.1: a) Plain Bearing, b) Fixed-Pad Bearing, c) Multilobe Bearing

Fig. 1.1 shows three shapes of bearings with rigid geometry. Plane aerodynamic bearings
overpay their simplest geometry by very low load capacity for bigger clearances and ten-
dencies to unstable behaviour. Application of this design is typically restricted to very light
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Figure 1.2: a) Tilting Pad Bearing, b) Multileaf Bearing, c) Bump Foil Bearing

rotors. The work of Piekos [6] provides performance study of plain bearings used in MEMS
(Micro-Electro-Mechanical-Systems), where the implementation of more complex bearing ge-
ometries is limited by manufacturing process. Another study of micro bearing combining
thrust and journal faces can be found in [7]. For larger, but still rather light devices, journal
with so-called herringbone grooves is often used in order to improve the stability of plain
bearing [8, 9]. The two remaining schemes in the figure 1.1 present geometrically preloaded
bearings. The preload is ensured by multiple wedge shape.

Fig. 1.2 depicts three types of aerodynamic journal bearings with variable geometry. The
tilting pad bearing design is already widely used in broad range of machinery. Authors Šimek
et al. [10] present the use of tilting pad journal bearings and spiral groove thrust bearing
system in several industrial applications ranging from the size of 80 g turbine expander for
helium liquefaction running on 350,000 rpm to 100 kW industrial turboblower. The more
recent aerodynamic bearing designs incorporate thin foils to allow accommodation of the
film thickness to actual conditions of the bearing. A flexible element that acts as one of the
sliding faces improves the load capacity and allows journal to move on orbits exceeding in
radius the base clearance [11]. The foil bearings may incorporate multiple foil leafs [12] or
the corrugated (often called bump) foil covered by plain top foil [13]. Both of the mentioned
cases use the foils configurations, where the deflection of foil is caused by bending, instead of
foil tension that was used in older foil bearings [14]. Further improvements on the bump foil
bearings are available. For instance, the bearings that use multiple layers of corrugated foils
that provides a piecewise stiffness support to the top foil [15], or bearings with viscoelastic
foil made from acrylic polymers inserted between corrugated and top foil in order to ensure
higher damping of bearing [16]. The top foil is in contact with journal during run up and
shut down, therefore an appropriate foil coating is necessary, primarily for high temperature
operating bearings [17].
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1.1.2 Aerostatic Journal Bearings

Aerostatic bearings generate load capacity by means of gas pressure, which is supplied from
the outside of bearing. Gas flows to the area of bearing gap via feeding system of orifices or
flows through porous material, see fig. 1.3. The gas is throttled within the narrow gap. Actual
thickness of the air film corresponds with resistance against air flow out of the bearing and
thus with local magnitude of pressure. These bearings work exclusively on this principle at low
speed of journal. At higher speed, the aerodynamic effect increases the bearing load, but also
promotes instability of the bearing. Aerostatic bearings can also incorporate a noncircular
shape design, similarly to the aerodynamic bearings, in order to deal with instability at high
speed. Other problems may be caused by inappropriate arrangement of feeding system, when
instability called pneumatic hammer may occur. This is typical for bearings with pocketed
orifices. Experimental investigation of pneumatic hammer on orifice-compensated air bearings
can be found in the work of Talukder and Stowell [18]. Porous aerostatic bearings are generally
less prone to this phenomenon.

Figure 1.3: a) Aerostatic bearing with simple orifices, b) Porous aerostatic bearing

The necessity of delivering pressurized gas is the biggest drawback of aerostatic bearings.
Beside the purchase costs of an aggregate that produces sufficient amount pressurized air the
energy consumed by this process means significant expenses. Compared to the aerodynamic
bearings, we additionally get feasibility of running the bearings at zero journal speed, higher
and controllable stiffness and load capacity. Flow of the compressed air through the bearing
also helps in dirt removal from the working space of the bearing. High stiffness and precision,
together with feasibility of running at high speed practically without mechanical wear, are
the main advantages of aerostatic bearings.
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1.2 Fundamentals of Lubrication Theory

1.2.1 Navier–Stokes Equations

Navier–Stokes equations are fundamental equations of viscous fluid dynamics. Consecutive
assumptions and simplifications relevant to specific conditions of bearings lead to Reynolds
equation of classical lubrication theory. This way of deriving Reynolds equation allows us to
observe all simplifications along the process and to judge their validity. The Navier–Stokes
equations are represented by set of three components of momentum transfer [19]:

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p+∇ · τ ′ij + f . (1.1)

The volume inertia forces on the left-hand side consist of density ρ multiplied by acceleration
written as a convective derivative of velocity v. This force is equal to the sum of the external
volume forces f and the surface forces acting upon boundaries of volume element. These
forces can be separated into normal and tangential components. The former are represented
by pressure gradient, the latter by tensor derivative of deviatoric stress tensor τ ′ij . For assumed
Newtonian fluid, the stress tensor is established as a linear function of strain rates

τ ′ij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
+ δijλ∇ · v, (1.2)

where symbol µ is dynamic viscosity; λ is coefficient of second viscosity. δij means Kronecker
delta. Assuming those coefficients constant, the term for coefficient of second viscosity: λ =
κ− 2

3µ, the momentum equation can be rewritten to

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p+ µ∆v +
(
κ+

1
3
µ

)
∇ (∇ · v) + f . (1.3)

The third term on the right-hand side is called second viscosity term, κ is called bulk coeffi-
cient of viscosity. Bulk coefficient of viscosity κ can be left out, so the second viscosity term
becomes λ = −2

3µ. This is exact for monoatomic gases, although it is usually used for vis-
cous fluids regardless to internal structure [19]. In cited book, this simplification is explained
by following contemplation. Full stress tensor τij is a sum of its deviatoric and hydrostatic
components. Deviatoric part of tensor τ ′ij is defined as equation (1.2). From Navier–Stokes
equation (1.1), we can see that full stress tensor is

τij = −δij p+ τ ′ij = −δij p+ µ

(
∂vi
∂xj

+
∂vj
∂xi

)
+ δijλ∇ · v. (1.4)

Contraction of stress tensor provides invariant

τii = τ11 + τ22 + τ33 = −3 p+ (3λ+ 2µ)
∂ vj
∂ xj

. (1.5)
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Last term ∂ vj

∂ xj
is velocity divergence (Einstein summation convention is used in this work,

unless it is explicitly emphasized otherwise), which essentially equals zero for incompressible
fluids. In that case, it can be said that the local pressure is negative mean value of principle
stresses or mean value of normal stresses acting upon any three perpendicular planes at given
point. Should this requirement be satisfied even for compressible viscous fluid, the second
viscosity must follow

λ = −2
3
µ. (1.6)

The other equations of viscous fluid dynamics are the continuity equation expressing
conservation of mass

∂ρ

∂t
+∇ · (ρv) = 0, (1.7)

and the conservation of total energy, written in differential form Brdička et al. [19]:

ρcv

(
∂T

∂t
+ v · ∇T

)
− p

ρ

(
∂ρ

∂t
+ v · ∇ρ

)
= ∇ · (k∇T ) + Φ, (1.8)

where k is heat conductivity, cv isochoric heat capacity and Φ dissipation function

Φ = λ(∇ · v)2 + 2µ ˙eij ˙eij , ˙eij =
1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
. (1.9)

The above energy conservation equation can be expressed in terms of specific enthalpy i

(assuming that continuum obeys state equation of ideal gas)

ρ

(
∂i

∂t
+ v · ∇i

)
=
∂p

∂t
+ v · ∇p+∇ · (k∇T ) + Φ. (1.10)

Dissipation function broken down to its components:

Φ = µ

(
2
(
∂v1
∂x1

)2

+ 2
(
∂v2
∂x2

)2

+ 2
(
∂v3
∂x3

)2

+
(
∂v2
∂x1

+
∂v1
∂x2

)2

+
(
∂v3
∂x2

+
∂v2
∂x3

)2

+

+
(
∂v1
∂x3

+
∂v3
∂x1

)2
)

+ λ(∇ · v)2. (1.11)

Ideal gas equation of state provides relation among density, pressure and temperature

p = ρ r T, (1.12)

where r is specific gas constant, for dry air r = 286.7 J kg−1K−1. Material properties for
specific continuum material enclose entire system.

The complex set of equations described above is to be simplified by relevant preconditions.
Assumption of isothermal flow leads to omission of the equation (1.8). By substitution to
density from ideal gas equation of state, the Navier–Stokes equations of isothermal flow and
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the mass conservation become

p

r T

(
∂v
∂t

+ v · ∇v
)

= −∇p+ µ∆v +
1
3
µ∇ (∇ · v) + f , (1.13)

∂p

∂t
+∇ · (pv) = 0. (1.14)

1.2.2 Stokes Flow

Considering only flow with low Reynolds number, we are allowed to leave out nonlinear
advective term of acceleration. Remaining members of Navier–Stokes equations (1.13) form
unsteady Stokes equations for compressible flow

p

r T

∂v
∂t

= −∇p+ µ∆v +
1
3
µ∇ (∇ · v) + f . (1.15)

Steady form of Stokes equation for compressible fluid become

0 = −∇p+ µ∆v +
1
3
µ∇ (∇ · v) , (1.16)

from (1.15) by not considering of external and inertia volume forces. Equation now repre-
sents balance of normal and shear surface forces, written in components related to individual
coordinates:

0 = − ∂p

∂x1
+ µ

(
∂2v1
∂x2

1

+
∂2v1
∂x2

2

+
∂2v1
∂x2

3

)
+

1
3
µ

(
∂2v1
∂x2

1

+
∂2v2

∂x2 ∂x1
+

∂2v3
∂x3 ∂x1

)
, (1.17)

0 = − ∂p

∂x2
+ µ

(
∂2v2
∂x2

1

+
∂2v2
∂x2

2

+
∂2v2
∂x2

3

)
+

1
3
µ

(
∂2v1

∂x1 ∂x2
+
∂2v2
∂x2

2

+
∂2v3

∂x3 ∂x2

)
, (1.18)

0 = − ∂p

∂x3
+ µ

(
∂2v3
∂x2

1

+
∂2v3
∂x2

2

+
∂2v3
∂x2

3

)
+

1
3
µ

(
∂2v1

∂x1 ∂x3
+

∂2v2
∂x2 ∂x3

+
∂2v3
∂x2

3

)
. (1.19)

1.2.3 Reynolds Equation

Balance of surface forces (1.16) does not contain external and inertia forces. Acceleration as an
inertia volume force is justifiably omitted as long as Reynolds number keeps at low level. With
respect to journal bearings, small ratio of clearance to bearing diameter is considered. Journal
can experience very high speed, therefore the centripetal acceleration acting on dragged air
can be enormous, but very small film thickness makes it radially almost uniform. Both the
small thickness and low density of air make it negligible, as well as effect of gravity, which
does not show measurable effect on technical proportions.

Thin fluid film orientation is depicted in the fig. 1.4. Thickness of the lubricant film is
aligned to x3 coordinate and it is assumed to be much smaller than the other two dimen-
sions. Assuming these conditions, velocity derivatives with respect to the x3 coordinate has
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predominant effect in former two equations (1.17, 1.18). The third equation of momentum
transfer (1.19) is omitted by presuming constant pressure across film thickness.

Figure 1.4: Orientation of thin fluid film

Equations (1.17, 1.18) are reduced to

∂p

∂x1
= µ

∂2v1
∂x2

3

, (1.20)

∂p

∂x2
= µ

∂2v2
∂x2

3

. (1.21)

These equations with help of continuity equation (1.14) are starting point for Reynolds equa-
tion. Introducing no-slip condition for velocities v1, v2 on boundaries of film x3 = 0 and
x3 = h(x1, x2, t)

v1 = 0, v2 = 0 for x3 = 0, (1.22)

v1 = U, v2 = V for x3 = h, (1.23)

allows velocity profiles to be solved by integration of both equations:

v1 =
1

2µ
∂p

∂x1

(
x2

3 − hx3

)
+ U

x3

h
, (1.24)

v2 =
1

2µ
∂p

∂x2

(
x2

3 − hx3

)
+ V

x3

h
. (1.25)

Integration of continuity equation across thickness of fluid film∫ h

0

∂p

∂t
dx3 +

∫ h

0

(
∂(p v1)
∂x1

+
∂(p v2)
∂x2

+
∂(p v3)
∂x3

)
dx3 = 0 (1.26)
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with regard to that h = h(x1, x2, t) yields

∂

∂t
(ph)− p

∂h

∂t
+

∂

∂x1

(
p

∫ h

0
v1 dx3

)
− p

∂h

∂x1
· v1
∣∣∣
h

+

∂

∂x2

(
p

∫ h

0
v2 dx3

)
− p

∂h

∂x2
· v2
∣∣∣
h

+ p · v3
∣∣∣
h
− p · v3

∣∣∣
0

= 0. (1.27)

Boundary conditions for v1 and v2 are already established and then

v3

∣∣∣
0

= 0, v3

∣∣∣
h

=
∂h

∂t
+

∂h

∂x1
U +

∂h

∂x2
V. (1.28)

The equation (1.27) leads after integration to Reynolds equation of classical lubrication
theory

∂

∂t
(ph)+

1
2
∂

∂x1
(phU)+

1
2
∂

∂x2
(phV )− 1

12µ

(
∂

∂x1

(
ph3 ∂p

∂x1

)
+

∂

∂x2

(
ph3 ∂p

∂x2

))
= 0, (1.29)

which can be written in vector notation:

∂

∂t
(ph) =

1
12µ

∇ ·
(
ph3∇p

)
− 1

2
∇ · (phV), (1.30)

where V = (U, V )T is vector of top surface velocities. The derived Reynolds equation is non-
linear because of pressure term p in the first divergence of the right-hand side of (1.30).

If mass conservation law for incompressible flow ∇ · v = 0 is used, the Reynolds equation
turnes into simpler elliptic linear form

0 =
1

12µ
∇ ·
(
h3∇p

)
− 1

2
∇ · (hV)− ∂h

∂t
, (1.31)

referred to as Reynolds equation for incompressible fluid or less formal as incompressible
Reynolds equation. There is no term of pressure time derivative in the equation (1.31). This
equation cannot be directly used for gas bearings due to high velocities of air and big variations
of pressure and density within air film.

1.3 Limitations of Classical Reynolds Equation in Air Lubri-
cation Problems

Reynolds equation is widely used in lubrication theory and belongs to well studied problems.
Two dimensional form makes it computationally friendly, but it should be borne on mind that
results obtained from (1.29) are trustworthy only as far as respective conditions are satisfied.
Following list shows all the prerequisites to Reynolds equation in previous section:
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1. Fluid is Newtonian

2. State equation of ideal gas is valid for used fluid

3. Fluid behaves as continuum; no-slip condition on top and bottom boundary surfaces is
valid

4. The inertia and body forces are negligibly small against viscous and pressure forces,
the flow is laminar

5. The fluid film thickness is small compared to lateral dimensions, pressure is assumed
constant across fluid film, gradient of velocity is strongly dominant in direction of film
thickness

6. The processes in the film are isothermal, viscosity is independent to pressure and is
therefore constant

Assumptions number 1 and 2 have appeared valid for air over wide range of conditions.
The other limitations are less apparent. The premise 3, which expects air to act as a continuum
is reasonable at large scale, where mean free path of molecules is insignificant compared to
spatial dimensions. In view of small air film thickness an effect of particular structure may
become important. Points 4 and 5 are basically conditions on bearing geometry. Air velocity in
the bearings can approach very high speed and small thickness of fluid film is needed to ensure
that Reynolds number is low enough. Thin film is also required to reduce three dimensional
problem to the two dimensional one. The last item on the list is the assumption saying that
only isothermal processes occur in the air film. Heat conduction is expected to effectively carry
out dissipative heat from the fluid to material of journal and bush. Uniform temperature is
expected across thickness as well as along circumferential and axial coordinates.

1.3.1 Rarefaction

For very narrow gaps, where the mean free path of air particles becomes significant, the
gaseous rarefaction must be taken into account. Gas dynamics cannot be directly described
by continuum transport. Measure of rarefaction effect is described by Knudsen number as
the ratio between the mean free path of gas particles and the characteristic length.

Kn =
λf
h
. (1.32)

Mean free path λf is inversely proportional to pressure p and thus

Kn =
λf0 p0

h p
, (1.33)

where λf0 is the mean free path at pressure p0.

10



Chapter 1. Introduction
1.3. Limitations of Classical Reynolds Equation in Air Lubrication Problems

Value of Knudsen number is commonly used to classify rarefied gas flow into several
regimes. Continuum flow for Kn < 0.01, molecular flow for Kn > 10 and transitional between
those limits. Transitional regime with lower Knudsen numbers Kn < 0.1 is often called slip-
flow regime, where continuum approach is still used, but no-slip boundary condition for
velocity is no longer considered.

As can be seen from (1.33), the meaning of term very narrow gap changes with air pres-
sure. Mean free path for air at normal atmospheric conditions is approximately λf0 = 80nm.
Fig. 1.5 shows critical characteristic lengths for pressure range typical for gas bearings. Rel-
evant to viscous flow regime, the critical thickness is approximately 8µm at atmospheric
pressure. This value is satisfied for most of common sized bearings, in view of the fact that
the minimum pressure in the bearing occurs at the location of maximum film thickness, but
it is usually exceeded in case of MEMS devices.

Figure 1.5: Rarefaction: flow regimes

Many slip flow models of various capabilities of describing flow at high Knudsen numbers
have been developed. After integration of continuum equation with new velocity profiles, the
effective viscosity is often utilized to Reynolds equation as a nonlinear function of Knudsen
number. Alternative ways to obtain effective viscosity are to use Boltzmann equation or
experimental data fitting. List of models of effective viscosity can be found in dissertation of
Younis [20].

Introduction of slip velocity on the boundaries as a function of Knudsen number is also
used in generalized models. Multi-coefficient slip-corrected Reynolds equation in comparison
with slip models up to the second order is presented in the work of Ng and Liu [21]. Cited
model is claimed suitable at wide range of Knudsen number covering slip to transition regimes.
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1.3.2 Inertial Forces versus Film Thickness

To justify elimination of inertia from momentum transport, it is useful to introduce following
dimensionless variables:

ξ =
x1

R
, η =

x2

R
, ζ =

x3

c
, τ = ω t. (1.34)

To keep the system consistent, then dimensionless velocities should be

vξ =
v1
Rω

, vη =
v2
Rω

, vζ =
v3
c ω

. (1.35)

Dimensionless pressure can be set independently as

P =
p

pa
, (1.36)

where pa is reference pressure. It may be the ambient pressure or the feeding pressure in
the case of aerostatic bearings. For our general purpose, it is convenient to use the standard
atmospheric pressure. All of dimensionless variables should be of the same order of magnitude
of 1.

Substitution of newly introduced variables into continuity equation (1.14) shows that the
equation preserves its general form

∂ P

∂ τ
+
∂ P vξ
∂ ξ

+
∂ P vη
∂ η

+
∂ P vζ
∂ ζ

= 0. (1.37)

Now, the Navier–Stokes equations (1.13) can be written by means of dimensionless vari-
ables:

ρ
ω c2

µ

(
∂ vξ
∂ τ

+ vξ
∂ vξ
∂ ξ

+ vη
∂ vξ
∂ η

+ vζ
∂ vξ
∂ ζ

)
= − pa c

2

R2 µω

∂P

∂ξ
+
∂2vξ
∂ζ2

+

c2

R2

(
∂2vξ
∂ξ2

+
∂2vξ
∂η2

)
+

c2

3R2

(
∂2vξ
∂ξ2

+
∂2vη
∂η ∂ξ

+
∂2vζ
∂ζ ∂ξ

)
, (1.38)

ρ
ω c2

µ

(
∂ vη
∂ τ

+ vξ
∂ vη
∂ ξ

+ vη
∂ vη
∂ η

+ vζ
∂ vη
∂ ζ

)
= − pa c

2

R2 µω

∂P

∂η
+
∂2vη
∂ζ2

+

c2

R2

(
∂2vη
∂ξ2

+
∂2vη
∂η2

)
+

c2

3R2

(
∂2vξ
∂ξ ∂η

+
∂2vη
∂η2

+
∂2vζ
∂ζ ∂η

)
, (1.39)

ρ
ω c2

µ

(
∂ vζ
∂ τ

+ vξ
∂ vζ
∂ ξ

+ vη
∂ vζ
∂ η

+ vζ
∂ vζ
∂ ζ

)
= − pa

µ c

∂P

∂ζ
+
ω

c

∂2vζ
∂ζ2

+

c ω

R2

(
∂2vζ
∂ξ2

+
∂2vζ
∂η2

)
+

ω

3 c

(
∂2vξ
∂ξ ∂ζ

+
∂2vη
∂η ∂ζ

+
∂2vζ
∂ζ2

)
. (1.40)

12



Chapter 1. Introduction
1.3. Limitations of Classical Reynolds Equation in Air Lubrication Problems

Right-hand sides of first two momentum equations contain terms multiplied by c2

R2 . Typical
value of ratio between clearance and radius is approximately 0.001. Square of this ratio is
negligibly small compared to 1 or even to the value of pa c2

R2 µω
. Effect of second viscosity and

shear stress in plane of film layer would become significant if pa ∼ µω. Common conditions
are far from this relation. In the last equation, pressure gradient strongly dominates over
many orders of magnitude, thus momentum transport becomes

Res

(
∂ vξ
∂ τ

+ vξ
∂ vξ
∂ ξ

+ vη
∂ vξ
∂ η

+ vζ
∂ vξ
∂ ζ

)
= − 6

Λ
∂P

∂ξ
+
∂2vξ
∂ζ2

, (1.41)

Res

(
∂ vη
∂ τ

+ vξ
∂ vη
∂ ξ

+ vη
∂ vη
∂ η

+ vζ
∂ vη
∂ ζ

)
= − 6

Λ
∂P

∂η
+
∂2vη
∂ζ2

, (1.42)

0 =
∂P

∂ζ
. (1.43)

Parameter Res is called the squeeze Reynolds number. It is Reynolds number based on radial
motion of journal with amplitude c and angular frequency of journal ω. Λ is called the bearing
number or the compressibility number.

Res = ρ
ω c2

µ
= Rec

c

R
, Λ =

6µωR2

pa c2
. (1.44)

From the definition of squeeze Reynolds number it is clear that inertia effects would be
significant if ω ∼ µ

ρ c2
, hence the elimination of left-hand side is justified for most cases.

Momentum equations are simplified to

0 = − 6
Λ
∂P

∂ξ
+
∂2vξ
∂ζ2

, (1.45)

0 = − 6
Λ
∂P

∂η
+
∂2vη
∂ζ2

, (1.46)

0 =
∂P

∂ζ
. (1.47)

These equations are identical to those used in deriving Reynolds equation (1.20),(1.21).
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1.3.3 Turbulence

Turbulent flow can occur at high Reynolds numbers, when destabilising inertia forces outweigh
stabilizing viscous forces. Transition from laminar flow to fully turbulent is usually preceded
by flow instability. Two basic forms of flow instability are the circumferential instability and
the parallel flow instability.

The circumferential instability can occur in flows with curved streamlines, when destabilis-
ing effect of centrifugal force cannot be suppressed by viscous forces anymore. This instability
is characterized by a steady secondary laminar flow often referred as Taylor vortices. Taylor
vortex flow is characterized by series of toroidal vortices equally spaced along cylinder axis.
This phenomenon has been studied for the flow between rotating cylinders. Experiments
showed that the flow is stable against centrifugal disturbances if the outer cylinder rotates
while the inner one is stationary. If the outer cylinder is at rest and the inner one rotates,
the laminar flow can become unstable depending on value of Taylor number

Ta =
( c
R

)
Re2c . (1.48)

Critical value of Taylor number Ta = 1707.8 is valid for concentric cylinders. Bearing ec-
centricity raises the value of critical Taylor number. Additional Poiseuille flow, caused either
by an external axial pressure gradient or circumferential pressure gradient, also makes the
critical value of Taylor number higher. As Taylor number increases above the critical value
the vortex cells become distorted and parallel flow instability takes place as a transient to
the fully turbulent regime. Widely accepted value of Reynolds number when flow becomes
turbulent due to parallel flow instability is Rec = 2, 000, however this critical value does not
reflect axial flow caused by imposed pressure gradient.

The way how the turbulent flow is developed within bearing depends on which critical
value is reached first. If the first exceeded critical value is the Taylor number, Taylor vortices
occur until the critical Reynolds number is reached. Otherwise the direct transient to fully
turbulent regime will happen at around Rec = 2, 000. For critical values given above, the
relative eccentricity c/R = 4.27 · 10−4 is the boundary case.

The turbulent-flow model as well as the effects of inertia forces can be found in the work of
Frêne et al. [22]. Comparison of three turbulent models applied to tilting pad journal bearing
is provided by Bouard et al. [23]. Experimental observation of Taylor vortices instability
for Newtonian and Non-Newtonian fluids was done by Dumont et al. [24], who used direct
visualization technique and electro-diffusion probes. Widely used turbulent model based on
works of Constatinescu can be found e.g. in Chun [25]:

∂

∂ x1

(
ρh3

µ
Gx1

∂ p

∂ x1

)
+

∂

∂ x2

(
ρh3

µ
Gx2

∂ p

∂ x2

)
=
U

2
∂ (ρh)
∂ x1

, (1.49)
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where values of the parameters Gx1 and Gx2 are given in the range 1000 ≤ Re ≤ 30000 as

Gx1 =
1

12 + 0.0136
(
ρhU
µ

)0.9 , (1.50)

Gx2 =
1

12 + 0.0043
(
ρhU
µ

)0.96 . (1.51)

1.3.4 Anisothermal Flow

The last item of the list of necessary conditions for validitity of classical Reynolds equation,
summarized on the page 9, constitutes widely used assumption undertaken wherever the
classical form of Reynolds equation is used. It renders the temperature and viscosity constant
around entire volume of lubricant. Searching for appropriate temperature can be complicated,
especially with lack of experimental data. In general, the phenomena influencing lubricant
temperature are dissipative heat generation by viscous friction, heat transfer between film
and rigid boundaries, heat carried by inlet/outlet flow, convection and conduction of heat
within film and expansion work of compressible continuum. Last term will not be present
for case of incompressible fluids. If the temperatures of bearing surfaces and inlet lubricant
are known, the simple lumped-mass quasistatic heat balance calculation can be iteratively
performed along the solution of Reynolds equation.

cp ṁi (Ti − T ) +Qd + S1h1 (T1 − T ) + S2h2 (T2 − T ) = 0. (1.52)

The first term is the balance of heat carried in and out of control volume by medium, Qd is
dissipative heat that can be computed from the results of Reynolds equation, heat convection
through boundaries is represented by the last two terms. S1, S2 mean boundary areas, h1 and
h2 are heat convection rates. The heat convection rates can be estimated by means of Prandtl
number and thickness of laminar boundary layer taken equal to bearing radial clearance.

h1,2 =
3
2
kl
c
Pr1/3, P r =

µ cp
kl

, (1.53)

c is radial clearance, kl is lubricant thermal conductivity. It is worth realizing that the Prandtl
number of air within expectable range of temperature is lower than 1, see fig. (1.6), what ren-
ders the thickness of temperature boundary layer greater than thickness of laminar boundary
layer. On this condition, the relation (1.53) cannot be used for calculation of heat convection
in air operating bearings. The temperature boundary layer should be thinner than the half
of the radial clearance, what would happen provided Pr > 8. More detailed analysis needs
to account for more or less simplified equation of energy conservation (1.8).

Despite the fact, that the gas bearings are in minority compared to bearing using liquid
lubricants, it is surprising how little information on thermal analysis of gas bearing can be
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Figure 1.6: Prandtl number for dry air

found in literature. One of the reasons might be that the gas bearings have been believed to
experience only little heat generation because of low viscosity of operating medium, which
effect is in the case of aerostatic bearings further reduced by expansion work of gas passing
the orifice system. With increasing speed of machinery using gas bearings, the energy balance
within bearings should be taken into consideration.

Experimental observation of temperature profiles within aerostatic bearing supporting
a spindle of 60 mm in diameter and rotating up to the 20,000 rpm has been carried out
by Ohishi and Matsuzaki [26]. This isolated work brings unique data on thermal behaviour
of entire bearing system. The experimental setup comprised 94 thermocouples to measure
the temperature of bearing housing, bush and the air film. Thermocouples used for measur-
ing temperatures of metal parts were fitted in blind drillings. Those used for the air film
temperatures were inserted into plugs pressed through the wall of bearing bush, which was
consequently lapped. Authors logged transient data for 300 minutes from rotor start up.
One of the observed facts was that the air bearing was nearly isothermal. Only small vari-
ations in temperature along circumferential dimension were found in the air film; however,
the variations could be promoted by feeding with cooler air. The nearly constant tempera-
ture of air film around the circumference is discussed to be attributed to the used feeding
system of twelve evenly distributed orifices. Bush and housing temperature variations were
more affected. the air film temperature measurements showed that the outlet air temperature
closely represents the average temperature within air film. This information is of consider-
able practical use. Another important observation was that the Poiseuille flow, which is still
present when spindle is at rest did not cause measurable temperature rise and thus entire heat
generation comes from the shear rate in Couette flow. This is in accordance with measured
temperature rise that was proportional to the square of spindle speed, which was about 30
K at 20,000 rpm.
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Author did not find any article dealing with analytical modelling of temperature effects
for journal gas bearing. There exist a few papers approaching special cases of air bearings in
terms of thermal analysis. One of such is the work of Zhang and Bogy [27], where a solution
of heat transfer model of thin slider/disk air bearing system of magnetoresistive transducer
is presented. This specific design of self-acting slider air bearing works with Kn = 0.02 ÷ 1,
what implies wall slip to transitional flow regime. Authors used simplified Stokes equation
and applied boundary conditions for velocity and temperature derived from kinetic theory
of gases. However, the air properties were assumed constant over bearing geometry and all
nonlinear terms of energy conservation was neglected. These significant simplifications were
reasonable for obtaining heat flux coefficient within this bearing, but would not serve well for
the case of externally pressurized bearing.

There can be found significantly more papers on thermal analysis, approaching the prob-
lem both analytically and experimentally, of bearings with liquid lubricant that can be treated
as incompressible medium. Andres et al. [28] provides bearing model with two-dimensional en-
ergy equation supplemented by global energy balance at recessed oil inlet pocket, considering
the convection, oil mixing and energy dissipation in the recess. Another example of numerical
observation of the temperature and the velocity profiles is introduced in Kumar et al. [29].
The finite element method was used on thermo-hydrodynamic problem of pad slider bearing.
The problem was restricted to two spatial dimensions, thus only one-dimensional Reynolds
equation was used (infinite width of the pad), but full energy conservation was involved.
Solution for incompressible fluid has been provided with density and viscosity as functions of
temperature. Authors Yang and Jeng [30] have studied thermal effects in conical-cylindrical
bearing lubricated by incompressible fluid. They have added the effect of viscosity rise due
to pressure that has shown important in the temperature-pressure-viscosity interaction at
isothermal, convective and adiabatic boundary conditions. Chun and Ha [31] studied the
thermal variability of high speed oil bearings with axial feeding groove at turbulent flow
condition. The Reynolds equation was solved with two-dimensional energy equation with
isothermal, convective and adiabatic boundary conditions of temperatures at wall surfaces.

Reynolds boundary condition was incorporated in order to account for cavitation. Mix-
ing of recirculated and inlet oil was considered for different oil inlet conditions. Syverud [32]
maintained experimental study of surface temperature in the cavitated region of oil bearings.
The measured temperature distribution along circumferential coordinate has shown temper-
ature fall in the oil undergoing the pressure drop. The fall in the temperature is discussed to
be caused by evaporation of the oil with certain contribution of isentropic expansion of gas
released from oil due to cavitation. The work of Santos and Nicoletti [33] analyses the hybrid
tilting pad bearing with various configurations of oil inlet orifices. Variation of viscosity along
circumferential and axial dimension is considered in Reynolds equation. The energy equation
uses calculated velocity profiles and it is implemented in two-dimensional form after inte-
gration of the energy equation across the film thickness. This approach allows time efficient
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calculation, but gives up on considering thermal variations across film thickness. Adiabatic
boundary conditions have been adopted in this paper. Kumar et al. [34] and Sharma et al.
[35] provide elasto-thermo-hydrodynamic solution for hybrid bearing with elastic bush. This
work uses finite element formulation of the Reynolds equation, energy conservation equation
and problem of thermo-elastic deformation of the bush. The effect of design of inlet flow
restrictors on the stability of rotor is studied. This complex study on analytical modelling
of bearing considers steady state solution. Adiabatic solution of energy for elliptic journal
bearings can be found in the work of Mishra et al. [36]. Fillon and Bouyer [37] studied tem-
perature distribution in worn plain bearings. The solution is provided by means of steady
form of the energy equation for incompressible fluid. Results for different level of local circular
worn out have shown significant fall in temperature for wear of above the 30% of bearing
radial clearance.

1.4 Mathematical Models of Flexible Rotors

Apart from traditional analytic models, Transfer Matrix Method used to be popular in the
past. This method provides the solution directly in the frequency domain, which was beneficial
because of limited power of available computers. Nowadays, it is used rather rarely, being
superseded by Finite Elements Method (FEM). FEM is more universal, because it builds
equations of motion in the time domain, what is necessary for dealing with strongly nonlinear
problems. Power of today’s computers is not a limitation for transition of these models to
frequency or frequency-modal domains.

Standard approach to derive FEM formulation of rotor system is to establish kinetic
and potential energy of shaft element by means of nodal values of generalized displacements
followed by application of Lagrange equations in order to obtain equations of motion. For
assumed small displacements, these equations are linear and can be represented by matrices of
mass, stiffness, and generalized damping involving gyroscopic effects. Assembled into global
matrices they provide numerical model of the shaft that can be supplemented by lumped
matrices of rigid discs, linear bearings etc. These models can be generalized to cover the use
of flexible discs, turbine blades, fatigue crack propagation, inertial reference frame etc. Most
of available extensions of classical rotor FEM models are out of scope of this work, which
restricts the use of flexible rotor model to FEM model of axisymmetric rotor with rigid discs.

1.4.1 Rayleigh Shaft Finite Elements

This model is adopted from the book [38]. It uses Navier’s hypothesis of non-deformable
cross section of the beam, which remains perpendicular to the neutral axis of the beam. This
condition assumes negligible contribution of shear to the potential deformation energy, which
is applicable in the case of slender beams. This model is shortly presented here, as the work
of cited authors Slavík et al. [38], because this model is to be extended to respect also the
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contribution of shear deformation potential energy. Author refers to the mentioned book for
full details about derivation of these Rayleigh shaft elements.

Shaft is treated as one-dimensional continuum divided by nodes into a number of finite
elements. Generalized displacements of single shaft element of length l are defined as per
figure 1.7.

Figure 1.7: Configuration of shaft finite element

Finite base representation of transversal displacements along the length of the element is
held by means of polynomials of third order

v(x) = P3 c1, w(x) = P3 c2, P3 = (1, x, x2, x3). (1.54)

Angular displacements are then

ψ(x) =
d v(x)

dx
=

dP3

dx
c1, ϑ(x) = −dw(x)

dx
= −dP3

dx
c2. (1.55)
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Axial and torsional angular displacements are represented by linear functions

u(x) = P1 c3, ϕ(x) = P1 c4, P1 = (1, x). (1.56)

Vector of nodal values fully defines the configuration of the element:

qe =
(
qT

1 ,q
T
2 ,q

T
3 ,q

T
4

)T
, (1.57)

where

q1 =


v(0)
ψ(0)
v(l)
ψ(l)

 , q2 =


w(0)
ϑ(0)
w(l)
ϑ(l)

 , q3 =

(
u(0)
u(l)

)
, q4 =

(
ϕ(0)
ϕ(l)

)
. (1.58)

Relations between nodal values and deformations approached by selected polynomials (1.54),
(1.55), (1.56),

v(x) = P3 S−1
1 q1, w(x) = P3 S−1

2 q2, ψ(x) =
dP3

dx
S−1

1 q1,

ϑ(x) = −dP3

dx
S−1

2 q2, u(x) = P1 S−1
3 q3, ϕ(x) = P1 S−1

3 q4, (1.59)

are determined by transformation matrices

S1 =


1 0 0 0
0 1 0 0
1 l l2 l3

0 1 2l 3l2

 , S2 =


1 0 0 0
0 −1 0 0
1 l l2 l3

0 −1 −2l −3l2

 , S3 =

(
1 0
1 l

)
. (1.60)

Local matrices are now constructed as follows

Me =


S−T

1 (I1 + I2)S−1
1 0 0 0

0 S−T
2 (I1 + I2)S−1

2 0 0

0 0 S−T
3 I4S−1

3 0

0 0 0 S−T
3 I5S−1

3

 ,

Ge =


0 2S−T

1 I2S−1
2 0 0

−2S−T
1 I2S−1

2 0 0 0

0 0 0 0

0 0 0 0

 , (1.61)

Ke =


S−T

1 I3S−1
1 0 0 0

0 S−T
2 I3S−1

2 0 0

0 0 S−T
3 I6S−1

3 0

0 0 0 S−T
3 I7S−1

3

 .
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Material and geometric properties of the element are contained in

I1 =
∫ l

0
ρA(x)PT

3 P3 dx, I2 =
∫ l

0
ρ J(x)

dP3

dx

T dP3

dx
dx,

I3 =
∫ l

0
E J(x)

d2 P3

dx2

T d2 P3

dx2
dx, I4 =

∫ l

0
ρA(x)PT

1 P1 dx, (1.62)

I5 = 2
∫ l

0
ρ J(x)PT

1 P1 dx, I6 =
∫ l

0
E A(x)

dP1

dx

T dP1

dx
dx,

I7 = 2
∫ l

0
GJ(x)

dP1

dx

T dP1

dx
dx.

For prismatic shaft element these integrals will become

I1 = ρAl


1 l/2 l2/3 l3/4

l2/3 l3/4 l4/5
l4/5 l5/6

sym. l6/7

 I2 = ρJl


0 0 0 0

1 l l2

4l2/3 3l3/2
sym. 9l4/5



I3 = EJl


0 0 0 0

0 0 0
4 6l

sym. 12l2

 I4 = ρAl

(
1 l/2
l/2 l2/3

)
(1.63)

I5 = 2ρJl

(
1 l/2
l/2 l2/3

)
, I6 = EAl

(
0 0
0 l

)
, I7 = 2GJl

(
0 0
0 l

)
.

Reordering the components of vector of nodal displacements qe to the

q̃e = (u(0), v(0), ψ(0), w(0), ϑ(0), ϕ(0), u(l), v(l), ψ(l), w(l), ϑ(l), ϕ(l))T (1.64)

by means of permutation matrix T = [Tij ]

qe = T q̃e, (1.65)

where

Tij =

{
1 for i, j = 1, 2; 2, 3; 3, 8; 4, 9; 5, 4; 6, 5; 7, 10; 8, 11; 9, 1; 10, 7; 11, 6; 12, 12
0 else,

(1.66)

leads to the new local matrices

M̃e = TTMeT, G̃e = TTGeT, K̃e = TTKeT. (1.67)
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If only transversal degrees of freedom are of concern, then the model can be simplified
by leaving out relevant rows and columns from matrices (1.67). This can be done during
assembly of local matrices what simplifies the relations (1.61) to

Me =

(
S−T

1 (I1 + I2)S−1
1 0

0 S−T
2 (I1 + I2)S−1

2

)
,

Ge =

(
0 2S−T

1 I2S−1
2

−2S−T
1 I2S−1

2 0

)
, (1.68)

Ke =

(
S−T

1 I3S−1
1 0

0 S−T
2 I3S−1

2

)
.

Elements of the permutation matrix T are now

Tij =

{
1 for i, j = 1, 1; 2, 2; 3, 5; 4, 6; 5, 3; 6, 4; 7, 7; 8, 8
0 else,

(1.69)

with respect to the vector of nodal displacements

q̃e = (v(0), ψ(0), w(0), ϑ(0), v(l), ψ(l), w(l), ϑ(l))T. (1.70)

The global matrices K,G,M are built in the typical way by adding up local matrices,
respecting the node positions of the particular elements. The FEM model of free, undamped
rotating shaft can be written as

Mq̈(t) + ω0 Gq̇(t) + Kq(t) = f(q̇,q, t). (1.71)

1.4.2 Rigid Discs

Rigid discs mounted centrically and perpendicular with respect to the shaft axis can be
incorporated into rotor model by updating the global matrices M̃e and G̃e by lumped mass
and gyroscopic matrices. For Rayleigh rotor model, the matrices are constructed as

Md =



md 0 0 0 0 0
md md xT 0 0 0

Id +md x
2
T 0 0 0

md −md xT 0
Id +md x

2
T 0

sym. Id0


, (1.72)
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Gd =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −Id0 0
0 0 0 0 0 0
0 0 Id0 0 0 0
0 0 0 0 0 0


. (1.73)

For models involving lateral generalized displacements only, the first and the sixth raws
and columns of the matrices (1.72) and (1.73) will be left out. List of disc’s parameters is
following: md –mass of the disc; xT –distance from attachment node to disc’s centre of mass;
Id –transversal mass moment of inertia; Id0 –axial mass moment of inertia.

1.4.3 Bearings and External Forces

If it is possible to consider the bearings linear, then the bearing reactions can be represented
as

fbi = Kbi qbi + Bbj q̇bi. (1.74)

Vector qbi contains generalized displacements of the node at which i-th bearing reaction acts.
Matrices Kbi and Bbi are bearing stiffness and damping matrices. Their properties depend
on the specific kind of bearing and its parameters, but in general, these matrices are full
and unsymmetrical, what introduces cross-coupling between particular degrees of freedom.
Elements of these bearing matrices can be added to the system matrices of the rotor model
to the respective positions. This linear model can be treated by means of modal analysis
and frequency response calculations. Methods of obtaining bearing stiffness and damping
coefficients are discussed later in this work.

Non-linear bearing reactions as well as other external forces can be put in the force vector
f(q̇,q, t). Solution of the system is then accessible by time domain analyses only.

An important kind of force excitation of rotor system is the one caused by inertial reactions
from eccentrically and askew mounted discs. On condition of small angle of skewness γ and
eccentricity eT of the disc, the inertial reaction can be expressed as following force vector

fd =


fy

Mψ

fz

Mϑ

 =


md eT ω

2
0

((Id − Id0) γ +md eT xT ) ω2
0

−j md eT ω
2
0

j ((Id − Id0) γ +md eT xT ) ω2
0

 · ejω0 t. (1.75)

This force excitation is valid for constant or only slowly changing ω0. For fast transition
analysis, the torsional degrees of freedom should be taken into account, which would introduce
cross-coupling between torsional and lateral degrees of freedom. Real part of fd is taken for
time domain analyses.

23



Chapter 1. Introduction
1.5. Modal Analysis of Rotor Systems

1.5 Modal Analysis of Rotor Systems

In comparison with conservative non-rotating structures or such structures with light propor-
tional damping, there are some differences in terms of applicability of spectral decomposition
on matrices describing rotor systems. The most important ones are listed below.

1. Coefficient matrices describing rotor system are dependent on angular speed of rotor,
therefore also eigenvalues and eigenvectors are dependent on rotor angular speed

2. System in the state space is non-self-adjoint owing to the presence of skew-symmetric
parts of coefficient matrices. Pair of complex eigenvectors describes one degree of free-
dom instead of real eigenvectors

3. Defective system may occur, thus preventing direct the use of spectral decomposition
in the form of full diagonalization of matrices of the problem

The last item of the list comes into play when rigid body modes of rotor system with gy-
roscopic effects are solved for. These modes would be useful for modal reduction of rotor
supported by nonlinear bearings.

1.5.1 Linear Eigenvalue Problem of Non-Self-Adjoint Diagonalizable Sys-
tem

Linear dynamic system, representing a rotor system supported in linear bearings:

Mq̈(t) + (B + ω0 G) q̇(t) + Kq(t) = f(q̇,q, t). (1.76)

The equation (1.76) contains matrices, which have following properties: M is real, symmetric
positive definite, G is real skew-symmetric. Considering that rotor is supported in linear
bearings then K is only regular. The damping matrix B contains so far only a few bearing
damping coefficients. (Accounting for internal damping models is not vital at this point.)

Equation (1.76) can be, by adding identity, expressed in state space as

Nu̇ + Pu = F, F =
(
fT,0T

)T
, (1.77)

where

N =

(
M 0

0 M

)
, P =

(
B + ω0 G K

−M 0

)
, u =

(
q̇

q

)
. (1.78)

It is possible to assembly matrices N,P and vector u in alternative forms. Advantage of
presented structure is that matrix N is regular, symmetric positive definite as long as the
mass matrix M holds these properties. Fundamental solution of linear differential equations
is expected, hence for

q = q̂ es t, q̇ = sq̂ es t (1.79)
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can the homogenous system associated to (1.77) be expressed as

(A− sI)v = 0, A = −N−1P, (1.80)

which is the linear eigenvalue problem. Since the matrix A is not symmetric, there is no
orthogonal system of real eigenvectors. It is therefore necessary to take eigenvalue problem of
adjoint system into account in order to obtain complete set of eigenvectors. Adjoint system
can be understood in two manners, expressed by means of left eigenvectors

vT
L (A− sI) = 0T, (1.81)

or
wT (A∗ − sI) = 0T, A∗ = −PN−1. (1.82)

The first one is clearly the eigenvalue problem adjoint to (1.80), the second one is adjoint
to generalized eigenvalue problem of homogenous system associated with (1.77). Whether
to choose (1.81) or (1.82) depends on which matrices are desired to diagonalize, A, or N

and P. Eigenvalue problems defined by (1.80) and (1.81) provides biorthogonal system of
eigenvectors with respect to matrix A. Generalized problem established by (1.80) and (1.82)
will provide system of biorthogonal eigenvectors v and w with respect to N. Normalization
of eigenvectors could be done in several ways, but it should obey following relations (no
summation over indexes)

wT
i Nvj = δij , wT

i Pvj = −δij si. (1.83)

This condition can be used directly for searching left eigenvectors as

WT = (NV)−1 . (1.84)

It is convenient to sort the eigenvalues in spectral matrix according to their ascending
imaginary parts. Supposing there are no real eigenvalues then

Sp =

(
S

S̄

)
, S =


s1

s2
. . .

 . (1.85)

Modal matrices will get following block structures

V =

(
US ŪS̄

U Ū

)
, W =

(
Y Ȳ

X X̄

)
. (1.86)
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System of equations of motion (1.77) is transformed from physical coordinates to modal
ones by means of modal matrices V and W

WTNV ċ(t) + WTPVc(t) = WTf(t), u(t) = Vc(t). (1.87)

This is a set of decoupled ordinary differential equations. It can be treated in time domain
with opportunity to reduce the model by considering only modes, the eigenfrequencies of
which lie within certain range of frequency.

Steady state response of the system (1.77) subjected to harmonic excitation F(t) = F̂ ejωt

is
û = Vĉ = V (jωI− Sp)

−1 WTF̂ = Hu(jω) F̂. (1.88)

Given (1.86), the complex amplitudes of displacements are

q̂ = U (jωI− S)−1 YTf̂ + Ū
(
jωI− S̄

)−1 ȲTf̂ = Hq(jω) f̂ . (1.89)

Transfer matrix Hu(jω) or Hq(jω) fully describes the response of studied linear system.
Modal analysis shortly described in this section is applicable to a system of rotor equations

of motion only if the system matrix A is diagonalizable. If the matrix A has any eigenvalue
s with algebraic multiplicity greater than the nullity of the matrix A − sI, then the set of
eigenvectors does not form a complete base, in which the matrix A would become a diagonal
matrix.

From previous it appears that matrix M and therefore also matrix N is always regular,
positive definite matrix. Stiffness matrix Kn×n is singular with rank n− 4, unless it contains
stiffness coefficients of linear bearings. If it does, than K is also regular. If rotor angular speed
ω0 = 0, than gyroscopic matrix G is ruled out of matrix P, as well as circulatory part of
stiffness matrix K. If K is regular owing to bearing stiffnesses, then there are no rigid modes
present and the A is diagonalizable by means of eigenvectors defined in (1.80) and (1.82).
For ω0 = 0, there are pairs of eigenvalues with equal values, but each pair has eigenspace
of dimension two. Two linearly independent vectors can be stated to span this eigenspace.
Such situation is identical to beam bending in two independent planes. If ω0 > 0, then each
pair of identical eigenvalues splits into two distinct ones, each inevitably having its own
eigenvector. They are usually related to forward and backward whirl modes, however mixed
forward-backward whirl modes can occur for e.g. strongly dissimilar coefficients of bearings.
Classification of eigenmodes, whether they belong to plane bending, forward, backward or
mixed whirl is enclosed as the appendix B.

1.5.2 Defectiveness of Free Rotor with Gyroscopic Effects

Situation becomes more complicated when stiffness matrix K is singular. Rotor system with-
out gyroscopic effects (slow, or standstill rotor) can be diagonalized by generalized eigenvalue
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problem. This approach is identical to decomposition of system of static structures defined
by mass and stiffness matrices as follows

Kq = −s2Mq. (1.90)

However the calculation of eigenvalues s2 may exhibit numerical difficulties, there exists a
set of four linearly independent eigenvectors for multiple zero eigenvalue, so it is possible to
find a system of eigenvectors that diagonalizes both the matrices M and K. It is possible
to use generalized formulation of the eigenproblem, since matrix K is symmetric and M is
positive definite symmetric matrix. Cholesky decomposition in LAPACK routine DSYGV is used
by Matlab, when command eig(K,M) is called and the entire process stays in real numbers.

If gyroscopic effects are present, we have to describe the problem in the state space. One
of the rigid modes relates to the free precession with corresponding eigenvalue becoming non-
zero. Gyroscopic effects bound the rotational lateral displacements of rigid shaft together,
and there is only subspace of dimension two left for zero eigenvalue with multiplicity of three.
However, Matlab routine DGGEV provides matrices V and D that satisfy AV = VD. Matrix
W can be calculated by equation (1.84) (numerically and only owing to round-off errors),
what enforces the diagonalization of matrix N, but not matrix P. To compare what remains
in matrix WTPV for this degenerated case and the case of constrained shaft with regular
stiffness matrix K we can define residual matrix

R = WTPV + Sp. (1.91)

This matrix should contain only numbers of small magnitudes, caused by round-off errors
and problem conditioning. Suitable norm of matrix R can serve as a criterion of quality of
diagonalization process. Maximum norm has been chosen in this case. For numerical exam-
ple, let us consider steel prismatic rotor 300 mm long with full circular cross-section with
diameter 15 mm. Values for system with regular stiffness matrix, obtained by supporting this
shaft at the both ends in linear isotropic bearing of stiffness 107 Nm−1 and defective system
of free shaft are ‖R‖= 8.9 · 10−6 and ‖R‖= 0.29 respectively. Former value is acceptable
according to condition number of the problem, the latter one shows that matrix P has not
been diagonalized. Profiles of the residual matrices are displayed in the figure 1.8, where
shade of gray of each cell is determined by decadic logarithm of absolute value of number
at corresponding position. From the fig. 1.8b) it can be seen that residuals of high order of
magnitude are cumulated at two block columns, corresponding to the positions where four
rigid modes would be present in case of non-gyroscopic free rotor.

All square matrices, including all defective ones, can be put in Jordan canonical form.
Considering the rigid modes only, Jordan canonical form and generalized eigenvectors can be
expressed symbolically. Equations of motion of free rigid prismatic shaft, including gyroscopic
effects and considering only small displacements measured at the centre of mass, can be
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Figure 1.8: Profiles of residual matrices R – Orders of magnitudes of the elements; a) Regular
stiffness matrix, b) Singular stiffness matrix (defective system); 20 finite elements, ω0 =
10000 rad s−1
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written in matrix form as
Mq̈ + ω0Gq̇ = 0, (1.92)

where

M =


m 0 0 0
0 I 0 0
0 0 m 0
0 0 0 I

 , G =


0 0 0 0
0 0 0 −I0
0 0 0 0
0 I0 0 0

 , q =


v

ψ

w

ϑ

 . (1.93)

Linearization of the system (1.92) gives again

Nu̇ + Pu = 0, u = (q̇, q)T , (1.94)

with matrices N and P constructed as

N =

(
M 0

0 M

)
, P =

(
ω0 G 0

−M 0

)
. (1.95)

Jordan canonical form of matrix A = −N−1P is

J = Q−1AQ. (1.96)

For this particular case of defective system are

J =



0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 i ω0I0

I 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 − i ω0I0

I


, (1.97)

Q =



0 0 1 0 0 0 0 0
0 0 0 1

2 0 0 0 1
2

0 0 1 0 0 0 1 0
0 0 0 i

2 0 0 0 −i
2

0 1 0 0 0 0 0 0
I

ω0I0
0 I

ω0I0
−iI

2ω0I0
0 0 I

ω0I0
iI

2ω0I0

0 1 0 0 0 1 0 0
0 0 −I

ω0I0
I

2ω0I0
I

ω0I0
0 −I

ω0I0
I

2ω0I0


. (1.98)
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Jordan canonical form J contains two Jordan blocks of dimension two for zero eigenvalues
of algebraic multiplicity two, another two independent zero eigenvalues and two non-zero
eigenvalues. The last two are complex conjugated and they belong to regular synchronous
precession, corresponding generalized eigenvectors in the fourth and eighth column of matrix
Q are also conjugated and satisfy the structure introduced in (1.86). They can therefore be
understood as regular eigenvectors.The geometric meaning of related normal modes of regular
synchronous precession is a spherical motion with its centre of motion located in the centre
of mass of the shaft body. The axis of rotation ω0 moves conically with angular frequency
determined by the ratio of moments of inertia and the shaft’s angular speed. The rest of
generalized eigenvectors do not have structure of the regular eigenvectors. As can be seen
in the matrix Q, it is clear how they use up allowed degrees of freedom; static translational
and angular displacements and translational movement. An unenforced angular motion of
the free rotating shaft, with exception of the regular synchronous precession, is not a part of
the general solution, because vector describing such motion does not belong to linear space
of basis Q.

1.6 Motivation and Objectives

1.6.1 Thermal Aspects of Aerostatic Bearings

Only limited attention has been paid to thermal analysis of gas bearings so far and there are
minimal scientific publications in literature sources on the subject. This is probably because
there is not an extended use of gas bearings in comparison with oil bearings or bearings
with rolling elements. In view of the low viscosity of air, the heat generation due to shear
rate seems negligible at a glance. However, the fact is that for modern high-speed machinery,
the temperature conditions are important. The concerns are not only the heat generated via
shear rate, but also the heat transfer through bearings, which fulfil their cooling duty in
many applications. Cited experimental work of Ohishi and Matsuzaki [26] has shown that
temperature rise in bearing can easily exceed 30 ◦C at a relatively low speed of 20,000 rpm.
In addition to air properties, the bearing geometry also changes with temperature, especially
when materials with different temperature dilatation coefficients are used for journal and
bearing bush. These changes are significant, considering the small radial clearance. Often a
water cooling system is implemented to high speed devices using gas bearings. During the
design stage of such devices, the information on thermal behaviour of journal-bush-housing
system is valuable, especially for equipment where operating precision is a critical parameter.

The graph in fig. 1.9 illustrates typical clearance change (relative clearance c/R = 0.001)
for steel shaft and bronze bush drawn together with changes of selected air properties at at-
mospheric pressure. 275 K was used as the nominal temperature. It is evident from this graph
that a change in bearing operating temperature is likely to alter the bearing performance.
On the other hand, Ohishi and Matsuzaki [26] found aerostatic bearings working with small
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Figure 1.9: Change of bearing clearance and air properties with temperature. cp – Isobaric
specific heat capacity, κ – Ratio of specific heats, µ – Dynamic viscosity, k – Thermal conduc-
tivity, ρ – Density, c – Bearing radial clearance for combination steel-bronze at c/R = 0.001

variations of temperature of the air film. This finding suggests that if the bearing operating
temperature is known, then isothermal models will produce adequate results. The one of the
aims of this dissertation is to develop a thermo-hydrodynamic lubrication model of aerostatic
bearings that could be capable of predicting the bearing operating temperature and to assess
the suitability of using isothermal bearing models.

1.6.2 Isothermal Aerostatic Bearings Properties

Isothermal models of aerostatic bearings with orifice restrictors contain noticeable nonlin-
earities that are caused by nonlinear Reynolds equation of classical lubrication theory and
nonlinearity of equations driving air inlet flow. Transient solver could be used to calculate the
pressure distribution inside the air film and bearing reaction. However, that would involve
the solving of Reynolds equation in the time domain. The former use of aerostatic bearings
has rendered them closely linear within the certain eccentricities. Bearings at these conditions
can therefore be represented by a set of linear coefficients of stiffness and damping. Such co-
efficients can be obtained by various methods, presented in literature: Czolczyński [39], Han
et al. [40], Czolczyński [41]. The next two objectives of this work are to develop an isothermal
aerostatic bearing model for transient analysis and to establish a feasible method of evalua-
tion of bearing linearity at specific conditions. The applicability of linear bearing coefficients
will be based on the results of this linearity assessment. While the methods presented in
the literature focus on only coefficients related to lateral translations, this dissertation will
cover linear stiffness and damping coefficients corresponding to lateral translational displace-
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ments, as well as the angular displacements and the coefficients of cross-coupling between
translational and angular displacements.

1.6.3 Models of Rotors Supported by Aerostatic Bearings

If bearings can be considered linear and the rotor model is free from nonlinearities of other
origin, then determination of the response of the rotor system by means of spectral decompo-
sition is applicable. Rotors supported in strongly nonlinear bearings can be, for the purpose of
transient analysis, treated as free rotors with bearing reactions acting as excitation forces. Fi-
nite element models of such rotors are accessible by numerical solvers in the physical domain,
although the number of degrees of freedom might be unnecessarily high for an adequate de-
scription of system dynamics. These systems with the singular stiffness matrix and gyroscopic
generalized damping are defective and cannot be treated by spectral decomposition.

Although there are some algorithms of numerical Jordan decomposition (working with
floating point arithmetics) published in the literature the task is commonly perceived as very
difficult, ill-posed and extremely sensitive to numerical errors. The author of this work did
not test such algorithms, because the relevant matrices of rotor systems are usually large
and always poorly conditioned, even if they are not defective. He has decided to leave the
numerical algorithms of Jordan decomposition out of the scope of this work, even though it
is admittable that such an algorithm, consistently and reliably working on large matrices of
his interest, would be of great value. Another objective of this work is to investigate and test
available options of the reduction of defective systems generated by gyroscopic rotor models
with singular stiffness matrices. This work presents a Timoshenko rotating beam (shaft)
element that has a rotation of cross-section treated as an independent degree of freedom.
Internal viscous damping of this model is also incorporated.
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Chapter 2

Rotordynamics of Flexible Rotors

2.1 Chapter Outline

This chapter documents the main parts of program MEROT that has been built to provide
models of elastic rotors constructed by finite element method and respective analysis tools of
rotordynamics. It has been built entirely in MATLAB as a set of routines that can be used in
a modular way to suite the analysed problem. Instead of detailed description of the code, that
would likely to occupy entire volume of the text, an higher altitude image is offered, leaving
enough space to deal with particularly important topics with occasional excursions beyond
the implemented features to discuss potential extension related to specific rotordynamics
problems.

Apart from standard analyses of rotor models supported in linear bearings, the transient
solver of equations of motion of rotor supported by nonlinear bearings is provided. Models of
aerostatic bearings developed and described in the next chapter can be linked to this solver.

Transient analysis can be performed on full set of equations of motion, or it can run
on reduced models of rotor. Those deserve serious attention owing to problems linked with
spectral decomposition of free (unsupported) rotor with gyroscopic effects. Unlike the rotor
constrained to the inertial frame by linear stiffness of the bearings, the free rotor generates
defective, non-diagonalizable system matrix. In such case, spectral decomposition and modal
reduction cannot be used directly, which is the reason, why transient analyses are usually
performed in the physical space. Three possible methods of reduction of defective systems
are described and evaluated in the text of this chapter.

Attention is also paid to eigenvalue problem conditioning, quality of finite element model
representation and differences between Rayleigh and Timoshenko rotating beam models in
terms of selected eigenvalues.
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2.2 Concept of MEROT Routine Package

Structure of the program is drawn in the figure 2.1. It contains procedures for creating
FEM models of rotors based on Rayleigh and Timoshenko finite elements as described in
following sections. It also contains tools for analysis and further treatment of these models:
Modal analysis of rotors with linear bearings, calculation of critical speed maps, whirl maps,
frequency response functions to harmonic excitation by unbalance and transfer functions for
calculation of response to general time-dependent excitation of the linear system.

The ellipse labelled “Non-linear forces” is an external routine that provides vector of
forces dependent on actual state vector of the rotor system and the time. It can conclude
nonlinear bearing models as well as any arbitrary excitation forces. It is used in connection
with transient solvers (4th order Runge-Kutta and Newmark-β method). The analysed models
can be composed of several coupled rotors, using either full systems of equations of motion
or Craig-Bampton reduced systems.

Input data

Rayleigh/Timoshenko
FEM rotor model
(shaft & discs)

Linear bearing
matrices K & B

Unbalance excitation
vector

Whirl modes

Whirl map –
Campbell diagram

Synchronous response

Transfer matrix –
Frequency response

functions

Equations of motion
for free rotor

Boundary dofs

Component
Mode Synthesis

RK4 solver

Newmark-β

Post-processor

Non-linear forces

Figure 2.1: MEROT scheme
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2.2.1 Timoshenko Shaft Finite Elements

One assumption of Euler-Bernoulli beam theory is that planar cross section of beam remains
planar and perpendicular to the neutral axis during bending deformation of the beam. This
assumption (Navier’s hypothesis) is appropriate in the case of slender beams, where contribu-
tion of shear deformation to the total deformation energy is negligible. Beam slenderness can
be quantified by means of shear deformation coefficient Φ defined as the ratio of the bending
and the shear stiffness

Φ =
12E J
κAG l2b

, (2.1)

where κ is shear correction coefficient depending on the cross section. If Φ� 1 than Euler-
Navier hypothesis is valid. In the case of thicker beams that do not obey this assumption,
Timoshenko beam model should be implemented to respect additional shear deformation.
The length lb should not be understood only as the length of the beam, defined by beam
supports, but it should be considered as a reduced length, defined by deflection mode of
the beam. For dynamic analysis of beam/shaft structures, where higher vibration modes are
of concern, is its value driven by wavelength of particular mode. In such case, the beam
that appears slender from static point of view may become thick, when dynamic analysis is
applied. Respecting the shear deformation as well as the bending one, deplanation of beam
cross-section takes place, because of uneven distribution of shear stress upon cross-section.
Cross-section warping is neglected in Timoshenko model by assuming constant shear stress
τS , for what the κ coefficient is introduced in order to satisfy∫

A
τ(y, z)dA = κτS A = κAGδ. (2.2)

For full circular cross section is
κ =

6 (1 + ν)
7 + 6ν

(2.3)

and for hollow circular cross section

κ =
6 (1 + ν)

(
1 +m2

)2
(7 + 6ν) (1 +m2)2 + (20 + 20ν) m2

, (2.4)

where ν denotes the Poisson constant of shaft material and m is the ratio of inner to outer
radii. [42]. Constant shear stress causes rotation of the cross section additional to the angle
caused by pure bending. This situation is depicted in figure 2.2.

Finite elements of rotating shafts respecting shear deformation can be found e.g. in the
book of Byrtus et al. [43], or in the papers of Qin and Mao [44], Mohiuddin and Khulief [45],
Lee et al. [46], and L.-W.Chen and Peng [47].

Finite elements presented in [43], [44], [45], [46] do respect that the slope of deflection
curve of shaft element is generally different from the angle of rotation of element’s cross
section, but do not treat shear induced rotation of cross section as independent degree of
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Figure 2.2: Rotation of cross section of Timoshenko beam due to shear stress

freedom. Instead, the equation

EJ
∂2 ψ

∂ x2
+ κGAδ = 0, (2.5)

is used to couple shear and bending contributions to the rotation of element’s cross sec-
tion. This equation is valid for static deflection of the shaft and it can be incorporated into
Rayleigh model formulation. These shaft elements are referred in this work to as quasistatic
Timoshenko finite elements. Preserving the formalism of FEM model in [38], quasistatic finite
elements, expressed in the non-rotating coordinates are enclosed in appendix A. More general
formulation of these quasistatic elements in co-rotating coordinates can be found in the cited
book [43].

Without the equation (2.5), the shear and the bending deformations of a shaft element
are independent degrees of freedom, which will double the number of independent state
variables of model of elastic shaft. Non-rotating Timoshenko beam finite element models
can be found in [48] and [49]. Authors L.-W.Chen and Peng [47] deliver the finite element
model of rotating Timoshenko beam in co-rotating coordinates. Description of the model
in co-rotating coordinates was beneficial in their particular study, because they investigated
shafts with dissimilar lateral moments of inertia. Not having that in scope, the equations of
motion in static coordinates are more convenient, especially when anisotropic bearings are
planned to be incorporated. Both the independent variables, the lateral displacements and
the shear induced rotation, are approached by third order polynomials. Using lower order
of approximation would lead to shear lock phenomenon [50], where constant shear rotation
angle over single element does not create adequate contribution to the deformation energy.
This results in overestimated stiffness of an element.

36



Chapter 2. Rotordynamics of Flexible Rotors
2.2. Concept of MEROT Routine Package

the lateral generalized displacements v,ψ and w,ϑ are now four independent variables.
State of the element is described by vector of nodal displacements

qe =
(
qT
v , q

T
ψ , q

T
w, q

T
ϑ

)T
, (2.6)

where

qv =


v(0)
dv
dx(0)
v(l)
dv
dx(l)

 , qψ =


ψ(0)
dψ
dx (0)
ψ(l)
dψ
dx (l)

 , qw =


w(0)
dw
dx (0)
w(l)
dw
dx (l)

 , qϑ =


ϑ(0)
dϑ
dx (0)
ϑ(l)
dϑ
dx (l)

 . (2.7)

Shaft generalized displacements are approached by third order polynomial

v(x) = Nqv, ψ(x) = Nqψ, w(x) = Nqw, ϑ(x) = Nqϑ, N = P3 S−1
1 , (2.8)

N1 = 1− 3 x2

l2
+ 2 x3

l3
, N2 = x− 2 x2

l + x3

l2
,

N3 = 3 x2

l2
− 2 x3

l3
, N4 = −x2

l + x3

l2
.

(2.9)

Potential strain energy of shaft element contains both the bending and the shear components

U e =
1
2

∫ l

0

(
EJ(x)

((
∂ψ

∂x

)2

+
(
∂ϑ

∂x

)2
)

+ κGA(x)

((
∂v

∂x
− ψ

)2

+
(
∂w

∂x
+ ϑ

)2
))

dx,

(2.10)

written in terms of nodal displacements

U e =
1
2

∫ l

0

(
EJ(x)

(
qT
ψ

∂NT

∂x

∂N
∂x

qψ + qT
ϑ

∂NT

∂x

∂N
∂x

qϑ

)
+κGA(x)

(
qT
v

∂NT

∂x

∂N
∂x

qv − 2qT
v

∂NT

∂x
Nqψ + qT

ψNTNqψ (2.11)

+qT
w

∂NT

∂x

∂N
∂x

qw + 2qT
w

∂NT

∂x
Nqϑ + qT

ϑNTNqϑ

))
dx.

Kinetic energy of the element

T e =
1
2

∫ l

0

(
ρA(x)

(
v̇2 + ẇ2

)
+ ρJ(x)

(
ψ̇2 + ϑ̇2

)
+ ρJp(x)ω0

(
2 ϑ̇ ψ + 1

))
dx (2.12)

written by means of nodal displacements

T e =
1
2

∫ l

0

(
ρA(x)

(
q̇T
v NTNq̇v + q̇T

wNTNq̇w
)

+ ρJ(x)
(
q̇T
ψNTNq̇ψ + q̇T

ϑNTNq̇ϑ
)

+ρ Jp(x)ω0

(
2q̇T

ϑNTNqψ + 1
))

dx. (2.13)
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Application of Lagrange equations to potential and kinetic energy

d
dt

(
∂T e

∂q̇e

)
− ∂T e

∂qe
+
∂U e

∂qe
= Me

T q̈e + ω0 Ge
T q̇e + Ke

T qe (2.14)

renders

Me
T =


I1 0 0 0

0 I2 0 0

0 0 I1 0

0 0 0 I2

 , Ge
T =


0 0 0 0

0 0 0 −2I2

0 0 0 0

0 2IT
2 0 0

 , (2.15)

and

Ke
T =


I3 −I4 0 0

−IT
4 I5 + I6 0 0

0 0 I3 I4

0 0 IT
4 I5 + I6

 . (2.16)

Auxiliary integrals are

I1 =
∫ l

0
ρANTNdx, I2 =

∫ l

0
ρJNTNdx, I3 =

∫ l

0
κGA

∂NT

∂x

∂N
∂x

dx,

I4 =
∫ l

0
κGA

∂NT

∂x
Ndx, I5 =

∫ l

0
EJ

∂NT

∂x

∂N
∂x

dx, I6 =
∫ l

0
κGANTNdx. (2.17)

For prismatic circular shaft element, it is possible to evaluate these integrals as

I1 = ρA


13l
35

11l2

210
9l
70

−13l2

420
l3

105
13l2

420
−l3
140

13l
35

−11l2

210

sym. l3

105

 , I2 = ρJ


13l
35

11l2

210
9l
70

−13l2

420
l3

105
13l2

420
−l3
140

13l
35

−11l2

210

sym. l3

105

 , (2.18)

I3 = κGA


6
5l

1
10

−6
5l

1
10

2l
15

−1
10

−l
30

6
5l

−1
10

sym. 2l
15

 , I4 = κGA


−1
2

−l
10

−1
2

l
10

l
10 0 −l

10
l2

60
1
2

l
10

1
2

−l
10

−l
10

−l2
60

l
10 0

 , (2.19)

I5 = EJ


6
5l

1
10

−6
5l

1
10

2l
15

−1
10

−l
30

6
5l

−1
10

sym 2l
15

 , I6 = κGA


13l
35

11l2

210
9l
70

−13l2

420
l3

105
13l2

420
−l3
140

13l
35

−11l2

210

sym. l3

105

 . (2.20)
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Transformation to global displacement coordinates

q̃e =
(
v(0), dv

dx(0), ψ(0), dψ
dx (0), w(0), dw

dx (0), ϑ(0), dϑ
dx (0),

v(l), dv
dx(l), ψ(l), dψ

dx (l), w(l), dw
dx (l), ϑ(l), dϑ

dx (l)
)T

(2.21)

is again done via permutation matrix T with elements

Tij =


1 for i, j = 1, 1; 2, 2; 3, 9; 4, 10; 5, 3; 6, 4; 7, 11; 8, 12;

9, 5; 10, 6; 11, 13; 12, 14; 13, 7; 14, 8; 15, 15; 16, 16
0 else,

(2.22)

For quasistatic Timoshenko model, derived in appendix A, the matrices (1.72) can be
used, which assumes that angular displacements of the discs are driven by actual angles of
shaft cross section. This is rightful expectation in the case of very thin disc, especially if it
makes one piece with the shaft. For disc the length of which is comparable to shaft diameter,
the angular displacements should be derived rather from the slope of shaft deflection. Disc
matrices for Timoshenko model derived in this section are similar to those of Rayleigh model
(1.72). Angular displacements of disc, the slope of deflection curve or angular displacement
of shaft cross section are both possible to respect. In both cases, only rows and columns of
zero vectors have to be added to the matrices (1.72).

2.2.2 Rotor Damping

Damping of mechanical structures has complicated nature and basic linear models are strong
simplification of complex reality. Detailed studies on damping of rotating structures are be-
yond the scope of this work. However, it is worth noticing that some new phenomena arise in
the case of damping of rotating structures in comparison to the non-rotating ones. In the case
of rotating structures, the damping effects can be separated into two parts: the internal and
the external damping. The internal damping consists mainly of material hysteretic damping
due to elastic deformation of the shaft and of structural dry friction between components of
the rotor. The origin of external damping is in the interaction of rotor and surrounding media,
e.g. compressor wheels, turbines, and especially bearings. The effects of internal and external
damping, hysteretic damping, and structural dry friction on stability as well as the enforced
vibration of rotors are analytically studied in the famous book of Tondl [51]. Detailed study
of rotor internal damping instability can be found in doctoral thesis of Kandil [52].

For its complexity in nature and nonlinearity, damping is often considered as viscous
damping i.e. linear function of velocity. External damping forces act in the inertial coordi-
nates, in which the presented rotor models are formulated, so that forces acting upon shaft
element at inertial coordinates, such as bearing reactions or drag forces induced by interaction
between impellers and surrounding media, can be directly linearized with respect to vector
q̇.
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Internal viscous damping, incorporated into the model of elastic rotor described as (1.71),
can be constructed by means of Rayleigh dissipation function in co-rotating coordinates
defined as xRyR

zR

 =

1 0 0
0 cosω0t sinω0t

0 − sinω0t cosω0t


xy
z

 . (2.23)

For quasistatic Timoshenko elements, similar to model in appendix A, can be the imple-
mentation of internal viscous damping found in [43]. For 16 degree of freedom version of
Timoshenko shaft finite element, presented in this chapter, the Rayleigh dissipation function
is constructed with help of potential function similar to strain potential energy (2.10). For
viscoelastic material, the viscous part of potential function can be considered

De
R =

αV
2

∫ l

0

EJ(x)

(∂ψ̇R
∂x

)2

+

(
∂ϑ̇R
∂x

)2


+ κGA(x)

((
∂v̇R
∂x

− ψ̇R

)2

+
(
∂ẇR
∂x

+ ϑ̇R

)2
))

dx, (2.24)

written in terms of nodal displacements in co-rotating coordinate system

De
R =

αV
2

∫ l

0

(
EJ(x)

(
q̇T
ψR

∂NT

∂x

∂N
∂x

q̇ψR + q̇T
ϑR

∂NT

∂x

∂N
∂x

q̇ϑR

)
+κGA(x)

(
q̇T
vR

∂NT

∂x

∂N
∂x

q̇vR − 2q̇T
vR

∂NT

∂x
Nq̇ψR + q̇T

ψRNTNq̇ψR (2.25)

+q̇T
wR

∂NT

∂x

∂N
∂x

q̇wR + 2q̇T
wR

∂NT

∂x
Nq̇ϑR + q̇T

ϑRNTNq̇ϑR

))
dx.

Vectors of nodal displacements in co-rotating frame are constructed as

qeR =
(
qT
vR, q

T
ψR, q

T
wR, q

T
ϑR

)T
, (2.26)

where

qvR =


vR(0)
dvR
dx (0)
vR(l)
dvR
dx (l)

 , qψR =


ψR(0)
dψR
dx (0)
ψR(l)
dψR
dx (l)

 , qwR =


wR(0)
dwR
dx (0)
wR(l)
dwR
dx (l)

 , qϑR =


ϑR(0)
dϑR
dx (0)
ϑR(l)
dϑR
dx (l)

 . (2.27)

Transformation of nodal quantities from non-rotating coordinates to co-rotating coordinates
is

qeR = TR(t)qe, (2.28)
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where transformation matrix TR(t) is unitary matrix of structure

TR(t) =


C 0 S 0

0 C 0 −S

−S 0 C 0

0 S 0 C

 , C = I cosω0t, S = I sinω0t. (2.29)

Rayleigh dissipative term in non-rotating coordinates is then

∂De

∂q̇e
= TT

R(t)
∂De

R

∂q̇eR
, (2.30)

where
∂De

R

∂q̇eR
= Be

ITRq̇eR. (2.31)

Matrix of internal viscous damping in co-rotating frame Be
ITR is

Be
ITR = αV Ke

T . (2.32)

Using transformation (2.28), the Rayleigh dissipative term in non-rotating frame becomes

∂De

∂q̇e
= αVTT

R(t)Ke
T ṪR(t)qe + αVTT

R(t)Ke
TTR(t) q̇e = ω0 Ke

CTq
e + Be

IT q̇
e (2.33)

introducing new local matrices. Matrix Ke
CT is circulatory stiffness matrix and Be

IT is internal
damping matrix. Both these matrices are constant in time. Owing to the properties of unitary
transformation and the symmetry of matrix Ke

T , the forms of the matrices (using the auxiliary
integrals from (2.17) ) are

Be
IT = αVKe

T = αV


I3 −I4 0 0

−IT
4 I5 + I6 0 0

0 0 I3 I4

0 0 IT
4 I5 + I6

 ,

Ke
CT = αV


0 0 I3 I4

0 0 −IT
4 − (I5 + I6)

−I3 I4 0 0

−IT
4 I5 + I6 0 0

 . (2.34)

Full set of equations of motion of elements are

d
dt

(
∂T e

∂q̇e

)
− ∂T e

∂qe
+
∂U e

∂qe
+
∂De

∂q̇e
= Me

T q̈
e+(ω0 Ge

T + αVKe
T ) q̇e+(Ke

T + ω0 Ke
CT )qe. (2.35)
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Internal damping effects are represented by two parts. The first one represented by matrix
Be
IT is the classical proportional damping. The second one, described by anti-symmetric

circulatory matrix increases with rotor speed and has destabilizing effect.
Traditional approach to linear hysteretic, frequency-independent damping that uses com-

plex stiffness matrix in the form

KH = K (1 + jαH) (2.36)

would lead in the case of rotor system to the equations of motion

Mq̈(t) + ω0 Gq̇(t) + K (1 + jαH) q(t) = f(q̇,q, t), (2.37)

in which the material damping forces are independent on frequency and proportional to
displacements. The equation (2.37) is viable only in the case of single-frequency steady state
sinusoidal motion [52], which assumption can be expressed as

q(t) = qejωt, q̇(t) = jωq(t). (2.38)

This condition can be satisfied during spectral decomposition process, so the equation (2.37)
can be used for calculation of eigenmodes and frequency response functions, but it is un-
suitable for numerical integration in the time domain. For time domain numerical solution,
the internal damping can be implemented as non-linear forces. Overview of such models of
internal damping can be found in the thesis of Kandil [52].

Another serious problem of hysteretic damping concept used in rotordynamics is that it
tends to overestimate damping for very low frequencies of vibration. This frequency vanishes
at synchronous whirl and thus the use of hysteretic damping leads to inconsistent results
[53]. The paper of Genta and Amati [53] shows that the use of equivalent viscous damping
to approach hysteretic damping of rotor systems gives agreement in natural frequencies and
decay rates only for standstill rotor. With increasing speed, the decay rates of eigenmodes
differ and this equivalent damping concept is not adequate for rotors running above critical
speeds. To obtain good agreement in terms of decay rates as well, nonviscous models of
damping must be introduced in the time domain formulation. The nonviscous damping model
with finite number of viscous dampers that allows for writing equations of motion in the time
domain is provided, with examples of application, in the referred article [53].

2.2.3 Finite Element Representation and Convergence of Eigenvalues

Effect of number of finite elements used for discretization of rotating shaft on the error of
eigenvalues is investigated in this section. It is naturally assumed that computed eigenvalues
converge to exact values as the number of elements increases, until of course the effects of
numerical process of spectral decomposition become important. Higher number of elements
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means higher influence of round-off errors and higher condition number for the eigenvalue
problem of matrix A.

Convergence of eigenvalues is studied for both the Rayleigh and the Timoshenko shaft
models. Prismatic circular shaft of 15 mm in diameter and length of 300 mm is used as
a trial rotor. Material properties match the properties of steel: E = 2.05 MPa, ν = 0.3,
ρ = 7860 kgm−3. The shaft is supported by isotropic linear bearings with stiffness Kb =
1 · 107 Nm−1 at both ends. Finite element models have been coded up in program Matlab.
Spectral decomposition method is chosen by Matlab automatically based on the type of in-
put matrix. For this particular case, LAPACK routine DGEEV is used. The matrix A is balanced
first in order to reduce the condition number, QR algorithm follows. Condition number cor-
responding to the eigenvalue problem of matrix A is determined as cond(V), which means
condition number with respect to inversion of modal matrix.

condeig(A) = cond(V) = ‖V‖ · ‖V−1‖. (2.39)

Condition numbers for this shape of system matrix are relatively high even for small number
of elements. The actual values for trial case are displayed in fig. 2.3.

Figure 2.3: Condition numbers with respect to eigenvalues vs. number of finite elements

Rates of eigenvalues’ convergence are depicted in figures 2.4 and 2.5 for Rayleigh and
Timoshenko models. Relative differences of the lowest twenty imaginary parts of eigenvalues
with respect to the values calculated for the highest number of elements are there plotted
against number of elements used. From both these chart can be seen that minimum number
of elements for relevant representation of eigenmodes corresponds to the half of the highest
order of modes of the interest. The eigenmodes occur in pairs, so at least one element per
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half-wave of the highest mode is necessary. Beyond this point the eigenfrequencies converge
with similar speed for all eigenvalues, noticeably faster for Timoshenko model.

Shift of eigenfrequencies due to additional shear deformation is drawn in fig. 2.6 in ascend-
ing order of eigenvalues. The same differences drawn against the values of eigenfrequencies
of Rayleigh model are in the fig. 2.7.

2.3 Numerical Methods of ODE Integration

Two basic methods for numerical integration of ordinary differential equations were imple-
mented. the explicit 4th order Runge-Kutta method and the implicit A-stable Newmark-β
method. An advantage of the former one is the higher order of error, but it is not suitable
for stiff systems due to the fact that stability of this method is limited by highest eigenvalues
of linearized system of solved equations. FEM models of rotor systems typically belong to
highly stiff systems, what makes this numerical method feasible only for reduced systems.
The latter method is suitable for stiff systems, owing to the unconditional stability for linear
systems.

Runge-Kutta method is used to solve first order system in the state space

Nu̇ + Pu = F. (2.40)

For given time step ∆t and known current state of the system ut, the next step is calculated
as

ut+∆t = ut + ∆t
6 (k1 + 2 (k2 + k3) + k4) , (2.41)

where

k1 = N−1 (F(t)−Put) ,

k2 = N−1
(
F(t+ ∆t

2 )−P
(
ut + k1

∆t
2

))
,

k3 = N−1
(
F(t+ ∆t

2 )−P
(
ut + k2

∆t
2

))
,

k4 = N−1 (F(t+ ∆t)−P (ut + k3∆t)) . (2.42)

Inverse matrix N−1 is calculated just once before own process.
Newmark-β method is used for solving directly a set of differential equations of second

order
Mq̈(t) + (B + ω0 G) q̇(t) + Kq(t) = f(q̇,q, t). (2.43)

It uses following approximation of displacements and velocities within single time step

q̇t+∆t = q̇t + ∆t ((1− γ) q̈t + γq̈t+∆t) , (2.44)

qt+∆t = qt + ∆tq̇t + ∆t2
((

1
2
− β

)
q̈t + βq̈t+∆t

)
. (2.45)
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Figure 2.4: Convergence of eigenfrequencies of Rayleigh shaft model, ω0 = 10000 s−1

Figure 2.5: Convergence of eigenfrequencies of Timoshenko shaft model, ω0 = 10000 s−1
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Figure 2.6: Difference in eigenfrequencies between Rayleigh and Timoshenko models, slender-
ness Φ(l0) is based on full length of the shaft, ω0 = 10000 s−1

Figure 2.7: Difference in eigenfrequencies between Rayleigh and Timoshenko models, slender-
ness Φ(l0) is based on full length of the shaft, ω0 = 10000 s−1
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Parameters γ and β are chosen with respect to desired unconditional stability of the method.
The most popular variant of this method uses γ = 1/2 and β = 1/4. With these values, the
acceleration within single time step is held constant as an average of initial and final value

q̈ =
1
2

(q̈t + q̈t+∆t) . (2.46)

From (2.44) and (2.45), final values of acceleration and velocity

q̈t+∆t =
4

∆t2
(qt+∆t − qt)−

4
∆t

q̇t − q̈t, (2.47)

q̇t+∆t =
2

∆t
(qt+∆t − qt)− q̇t (2.48)

are substituted into

Mq̈t+∆t + (B + ω0 G) q̇t+∆t + Kqt+∆t = f(q̇t+∆t,qt+∆t, t+ ∆t). (2.49)

Resulting set of algebraic equations(
4

∆t2
M +

2
∆t

(B + ω0 G) + K
)

qt+∆t = Mq̈t +
(

4
∆t

M + B + ω0 G
)

q̇t

+
(

4
∆t2

M +
2

∆t
(B + ω0 G)

)
qt + f(q̇t+∆t,qt+∆t, t+ ∆t) (2.50)

is solved for qt+∆t. Velocity is updated using (2.48), acceleration is obtained from (2.49). The
algebraic system (2.50) is nonlinear due to its last term on the right-hand side, what makes
the finding of qt+∆t more complicated.

Author Musil [54] used following linearization of set of algebraic equations given by New-
mark method. Let us have function f(q̇,q, t) split into f(q̇,q, t) = fh(q̇,q) + fr(t). The non-
linear part of function f(q̇,q, t), representing hydrodynamic forces of bearings is a function
of displacement and velocities only, fh(q̇,q). Remaining parts of function f are functions of
time only. Musil proposes first order linearization of fh with respect to initial time as

fh(q̇t+∆t,qt+∆t) ≈ fh(q̇t,qt) + Dq (qt+∆t − qt) + Dq̇ (q̇t+∆t − q̇t) , (2.51)

where Jacobi matrices are

Dq i,j =
∂fh(q̇,q)i
∂qj

∣∣∣
q̇t,qt

, Dq̇ i,j =
∂fh(q̇,q)i
∂q̇j

∣∣∣
q̇t,qt

. (2.52)

Approximation (2.51) substituted back into (2.50) gives a linear set of equations. This step
turns the solver to explicit single step numerical method, with all its drawbacks. It is time
efficient approach, but the local error is controlled by time step only. First order approxima-
tion is used here, which may lead to very small time step to ensure stability of this method,
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especially for higher bearing eccentricities, where slopes of hydrodynamic forces rise very
quickly.

To preserve the implicitness of the Newmark-β method, some method of solving nonlinear
set of equations has to be implemented. Newton-Raphson method can be implemented as
follows. The set of equations (2.50) can be written as

Aqt+∆t − c− fh(q̇t+∆t,qt+∆t) = 0, (2.53)

where c and A are constants

c = Mq̈t +
(

4
∆t

M + B + ω0 G
)

q̇t +
(

4
∆t2

M +
2

∆t
(B + ω0 G)

)
qt + fr(t+ ∆t), (2.54)

A =
(

4
∆t2

M +
2

∆t
(B + ω0 G) + K

)
. (2.55)

Vector qt+∆t is iteratively searched by solving set of linear equations

J{k}
(
q{k+1}
t+∆t − q{k}t+∆t

)
= −

(
Aq{k}t+∆t − c− fh(q̇

{k}
t+∆t,q

{k}
t+∆t)

)
. (2.56)

Jacobian J{k} is constructed as

J
{k}
ij = Aij −

∂fh(q̇,q)i
∂qj

∣∣∣
q̇
{k}
t ,q

{k}
t

. (2.57)

After each iteration (2.56), the velocity is updated according to

q̇{k+1}
t+∆t =

2
h

(
q{k+1}
t+∆t − qt

)
− q̇t. (2.58)

Despite the Newton-Raphson method usually converges quickly, it is highly time consumptive
method. Especially if Jacobi matrix J has to be estimated numerically each step of iterative
process. However, if the Newton-Raphson method converges, then this method does not
compromise the stability and local accuracy of Newmark-β ODE solver.

Presented approach to set of nonlinear equations assumes that there exist derivatives of
function fh(q̇,q) and that they form total differentials

dfh(q̇,q)i =
∂fh(q̇,q)i

∂qj
dqj +

∂fh(q̇,q)i
∂q̇j

dq̇j . (2.59)

By other words, the function fh is time-independent. In connotation to hydrodynamic bearings
that means that reaction forces are free from memory effect. This may be satisfied by using
Reynolds equation for incompressible lubricant to model the pressure distribution within
fixed geometry bearings. If the pressure distribution is a product of some dynamic process, as
it is for gas lubricated bearings due to compressibility of the gas, then such approach cannot
be applied generally without ignoring internal dynamics of the bearing model.
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Such dynamic models of gas bearings can be numerically solved simultaneously to the
model of the rotor and provide only the instantaneous force. The system of nonlinear equations
of Newmark-β method can be approached by fixed-point iterations. Slow convergence of this
method may enforce more iterations than the case of Newton-Raphson, but one step of
this method is much less time consumptive, in view of the fact that Jacobi matrix is never
constructed and instead of solving the linear system (2.56) only matrix multiplication takes
place. The fixed-point iteration is used on set of (2.50), that can be rewritten as

qt+∆t = Af (e + f(q̇t+∆t,qt+∆t, t+ ∆t)) , (2.60)

with constants

Af =
(

4
∆t2

M +
2

∆t
(B + ω0 G) + K

)−1

, (2.61)

e = Mq̈t +
(

4
∆t

M + B + ω0 G
)

q̇t +
(

4
∆t2

M +
2

∆t
(B + ω0 G)

)
qt. (2.62)

Iterative process proceeds according to formula

q{k+1}
t+∆t = g(q̇{k}t+∆t,q

{k}
t+∆t, t+ ∆t) = Afe + Af f(q̇

{k}
t+∆t,q

{k}
t+∆t, t+ ∆t). (2.63)

Velocity is updated using (2.58).
Conditions guarantying convergence of this method are quite restrictive. First of all, the

function f is defined only within bearing clearance, but it can theoretically gain infinite values.
The matrix Af would have to project the vector e+f back inside the range defined by bearing
clearances for respective degrees of freedom. If f contains values higher than certain limit,
then the iterative process inevitably fails. Second necessary condition is that the projection
g(q, t) is contractive, hence

‖∂g(q, t)i
∂qj

‖ = ‖Af
∂f(q, t)i
∂qj

‖ < 1. (2.64)

Again, the slopes of bearing reactions contained within function f grows infinitely with
increase of bearing eccentricity, what causes iterative algorithm to fail if certain limit is
reached. Fortunately, matrix Af contains time step ∆t which sets up such limits. Time step
of Newmark-β method is thus driven by character of external forces rather than by accuracy
of the Newmark-β method itself, because the limitation coming from convergence of fixed-
point iterative method is more stringent as numerical experiments with this method have
shown.
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2.4 Decomposition of Free Flexible Rotor System with Gyro-
scopic Effects

As shown in the introduction in section 1.5.2, free flexible rotor system with gyroscopic effects
is defective and such fact does not allow spectral decomposition to be used directly for modal
reduction of the model. However, reduction of the system is desirable when system is to
be treated by numerical integration. Although it is possible to directly integrate full set of
equations of motion obtained from finite element methods, it brings strong limitations to
applicable numerical methods. Presence of very high frequencies in such system disqualifies
more accurate methods of higher order, either explicit or implicit, because of their limited
stability. Stability conditions of these methods could be satisfies only for very small time
step, so that transient analysis would often need unreasonable machine time. Some A-stable
implicit method must be used instead to solve such system more efficiently, but unconditional
stability of these methods is outweighed by low order of integrator rule that harms accuracy
of the method.

2.4.1 Real Modes Partial Decoupling

This approach uses normal modes of rotor system without gyroscopic effects. Simplicity of
this method and benefit of using real modes has its drawback of gyroscopic part of motion
equations not being diagonalized and therefore entire system not being fully decoupled.

Mq̈(t) + ω0 Gq̇(t) + Kq(t) = f(q̇,q, t). (2.65)

Eigenvalue problem (1.90) is solved for spectral D and modal Vr matrices. This problem
is self-adjoint, so after normalization of eigenvectors Wr = (MVr)−T can be the previous
equation transformed into modal space as

Wr
TMVr c̈(t) + ω0 Wr

TGVr ċ(t) + Wr
TKVr c(t) = Wr

Tf(q̇,q, t). (2.66)

Matrices Wr
TMVr and Wr

TKVr are fully diagonalized. Matrix Wr
TGVr remains full.

Profile of this matrix, calculated for two trial rotors is plotted in the figures 2.9 and 2.10
as orders of magnitude of its elements. Prismatic circular shaft (see page 43) corresponds to
figure 2.9. The same shaft, but supplemented by rigid disc positioned in the 3/10-th of its
length serves as the second case of trial rotor. The parameters of the disc are: m = 0.5 kg,
I = 7.81 · 10−5 kgm2, I0 = 1.56 · 10−4 kgm2. This second case was selected to promote effects
of gyroscopic matrix on eigenfrequencies of the system, see Campbell plot in fig. 2.8.

Figures 2.9 and 2.10 clearly show that normal modes are strongly coupled via gyroscopic
effects, even if they are distant in term of corresponding eigenvalues. Presented reduction of
this system ignores these distant couplings between preserved and omitted modes.
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Figure 2.8: Campbell plot of trial rotor with disc; 20 finite elements

To check on consistency of previous simple method as well as to assess numerical errors,
normal modes and their frequencies of constrained rotor were calculated and compared with
those obtained by modal analysis in the state space that was directly applied to the full
system. Validity of this reduction process for defective system of unconstrained rotor system
was tested in the time domain. Trial case of rotor with disc is used in all following numerical
analyses. System of equations (2.65) is reduced and put into state space

NR ż + PR z = FR, (2.67)

where

NR =

(
WT

RMVR 0

0 WT
RMVR

)
, PR =

(
ω0WT

RGVR WT
RKVR

−WT
RMVR 0

)
, (2.68)

and

FR =

(
WT

Rf

0

)
, z =

(
ċ

c

)
,

(
q̇

q

)
=

(
VR ċ

VR c

)
. (2.69)

VR and WR are reduced modal matrices, columns of which consist of reduced set of eigen-
vectors of K, M eigenvalue problem. Full set of eigenvectors creates the matrices Vr and
Wr. Now, it is possible to solve eigenvalue problem using reduced matrices NR and PR and
compare the eigenvalues of selected low frequency modes to those of the original system,
taking N and P matrices.

The convergence of imaginary parts of eigenvalues for the lowest ten modes is depicted
in the fig. 2.11. To assess the effect of this reduction to eigenvectors obtained from reduced
system NR and PR, let us calculate following matrix R

R = I−WT
nNV∗, (2.70)
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Figure 2.9: Profile of WT
r GVr; Orders of magnitudes of the elements; 20 finite elements,

ω0 = 10000 rad s−1; Prismatic trial rotor

Figure 2.10: Profile of WT
r GVr; Orders of magnitudes of the elements; 20 finite elements,

ω0 = 10000 rad s−1; Trial rotor with disc
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where Wn is a matrix that consists of n left eigenvectors of the unreduced original system,
and matrix V∗ is the approximation of the right eigenvectors, but calculated from reduced
system using matrices NR and PR

V∗ =

(
VR 0

0 VR

)
V∗∗. (2.71)

The matrix V∗∗ is the modal matrix obtained by solving eigenvalue problem determined by
matrices NR and PR. The diagonal elements of matrix R indicate the level of generalized
biorthogonality of eigenvectors of original and reduced system. Their values tend to zero with
increasing number of eigenmodes taken into reduction process, see figure 2.12.

As it can be seen from both figures 2.11 and 2.12, relatively small number of normal
bending modes taken for reduction gives reasonable approximation of ten modes of the original
rotor model. These tests were done for diagonalizable system; the rotor was supported by
linear bearings. The process applied on non-diagonalizable system without these supports
was tested in the time domain. Equation (2.66) was constructed and then solved by means
of Newmark-β solver. For detail about this method see section 2.3. Reactions of the bearings
were applied at each time step of the method as an excitation forces. Full set of equations of
motion of the original system was solved for comparison. Transient vibration of the rotor was
solved with initial conditions of zero displacements and velocities for all nodes, synchronous
unbalance of 10−6 g m was applied at disc location. Damping of the system was neglected in
both cases in order to promote potential differences in the results. Orbit plots of midplane
node of the shaft are plotted in the figures 2.13 and 2.14.

2.4.2 Component Mode Synthesis

Component mode synthesis (CMS) or substructure coupling methods are the names for wide
set of methods applicable to various problems of structure vibrations. These methods treat
the complex problems divided into substructures with defined coupling between them, leading
to reduction of degrees of freedom of the problem. This topic has been extensively discussed in
the literature over decades and many variations to the original methods have been presented.
According to review of these methods made by Craig et al. [55], a CMS method can be
classified as belonging into one of the following groups:

• Fixed-Interface methods

• Free-Interface methods

• Loaded-Interface methods

• Hybrid methods

Craig-Bampton method is almost certainly the most popular member of the first category.
Each substructure is treated by means of so-called boundary (also sometimes referred to
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Figure 2.11: Convergence of eigenvalues; Partial decoupling of rotor system; 20 finite elements,
ω0 = 10000 rad s−1

Figure 2.12: Diagonal elements of matrix R; Partial decoupling of rotor system; 20 finite
elements, ω0 = 10000 rad s−1
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Figure 2.13: Orbit plots for full and reduced (10 degrees of freedom total) rotor model; Real
modes partial decoupling

Figure 2.14: Orbit plots for full and reduced (20 degrees of freedom total) rotor model; Real
modes partial decoupling
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as static, interface, constraint, or attachment) modes, and a set of normal modes. Normal
modes of particular substructure are calculated with boundary degrees of freedom fixed.
Normal modes are supplemented by boundary modes, which are calculated as deflections of
the substructure when unit displacement is enforced at respective degree of freedom (having
the rest of boundary dofs fixed). Unlike the other three categories, it does not use rigid body
modes in description of substructure dynamics, what means that issue of defectiveness of our
particular system is avoided.

The latter three kinds of substructuring methods use rigid body modes in the case of un-
constrained problems. To deal with rotors, defective due to gyroscopic effects, similar partial
decoupling as described in the last section can be introduced. This approach to hybrid fixed-
free interface CMS neglecting the gyroscopic matrix is presented in the work of Shanmugam
and Padmanabhan [56]. Similar free-interface method has been delivered by Wang et al. [57].
Another example is hybrid method of coupling between rigid and flexible modes of rotating
beams using beam and solid finite elements by Hu et al. [58]. In that work, centrifugal forces
are taken into account, but the models do not consider gyroscopic effects.

In next sections, fixed-interface substructuring methods based on Craig-Bampton ap-
proach are used to decompose the defective rotor systems.

2.4.3 Real Modes Craig-Bampton Method

Classical Craig-Bampton method can be used on rotor system, neglecting the gyroscopic ma-
trix. Boundary and internal modes are then identical to those of non-rotating beam problem.
Resultant transformation matrices are then used to reduce size of all matrices M, K, G.

Starting from (2.65), displacement vector is reordered by unitary transformation matrix
to achieve following structure of new state vector

z =

(
qB

qI

)
= TTq. (2.72)

Index B denotes boundary degrees of freedom, index I denotes internal degrees of freedom.
Mass and stiffness matrices are transformed to the new configuration

M̃ = TTMT, K̃ = TTKT. (2.73)

The transformed part of the system is now(
M̃BB M̃BI

M̃IB M̃II

)(
q̇B(t)
q̇I(t)

)
+

(
K̃BB K̃BI

K̃IB K̃II

)(
qB(t)
qI(t)

)
=

(
fB(t)
fI(t)

)
. (2.74)

The idea of Craig-Bampton method is to represent state vector z(t) as a sum of static
zs(t) and dynamic zd(t) components. Static part is based on vectors of static deflections
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(boundary modes) that span the subspace of rigid body modes, dynamic part is based on
contribution of set of selected normal modes with fixed boundary degrees of freedom.

Static reduction can be implemented to calculate static modes. State vector has been
reordered in such way, that term fI(t) is zero vector, so static part of the equations (2.74) is

K̃IBqB + K̃IIqI = 0. (2.75)

This equation states the relation between the boundary degrees of freedom and the internal
degrees of freedom

qI = −K̃−1
II K̃IBqB. (2.76)

Static modes contribution is then

zs(t) =

(
IBB

RIB

)
qB(t), (2.77)

where matrix IBB is identity with dimension equal to number of boundary degrees of freedom
B, and matrix RIB = −K̃−1

II K̃IB.
Dynamic modes are now calculated from matrices K̃II and M̃II(

−M̃−1
II K̃II − sIII

)
v = 0. (2.78)

Dynamic part of state vector written by means of modal participation vector cI

zd(t) =

(
0BI

VII

)
cI(t) (2.79)

is reduced by taking only k normal modes, so the vector z(t) will become

z(t) =

(
IBB 0BK

RIB VIK

)(
qB(t)
cK(t)

)
= Ru(t). (2.80)

Self-adjointness of this K, M problem leads to the final transformation

Mcb = RTTT MTR, Kcb = RTTT KTR, Gcb = RTTT GTR. (2.81)

The original system of equations is finally reduced to

Mcb ü(t) + ω0Gcb u̇(t) + Kcb u(t) =
(
fT
B (t),0T

)T
. (2.82)

Gyroscopic matrix of the system has been blindly treated as stiffness and mass matrices, but
the gyroscopic coupling between preserved modes is still preserved. Profiles of these matrices
that generate reduced system (20 degrees of freedom of reduced model) of trial rotor with
disc (page 50) are depicted in figures 2.15 to 2.17.
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Figure 2.15: Profile of Mcb; Orders of magnitudes of the elements; 20 finite elements, ω0 =
10000 rad s−1
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Figure 2.16: Profile of Kcb; Orders of magnitudes of the elements; 20 finite elements, ω0 =
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Figure 2.17: Profile of Gcb; Orders of magnitudes of the elements; 20 finite elements, ω0 =
10000 rad s−1
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Convergence of eigenfrequencies of reduced model to those calculated with full system is
shown in fig. 2.18. Figure 2.19, as a graph of diagonal elements of matrix Rcb, represents the
convergence of eigenvectors. Matrix Rcb is constructed as follows:

Rcb = I−WT
nNV∗, (2.83)

where the approximation of the system eigenvectors V∗ is obtained by

V∗ =

(
TR 0

0 TR

)
V∗∗. (2.84)

Matrix V∗∗ is right-hand side modal matrix of reduced system in state space defined by
matrices Pcb and Ncb, which are for this method

Ncb =

(
Mcb 0

0 Mcb

)
, Pcb =

(
ω0 Gcb Kcb

−Mcb 0

)
. (2.85)

Results of numerical example of rotor transient vibrations, identical to test problem of
previous reduction method are drawn in figures 2.20 to 2.21.

2.4.4 Craig-Bampton Method for General Damping

Craig-Bampton substructuring technique, originally designed for reduction of conservative
structures or structures with small proportional damping, can be used in the state space
for systems with gyroscopic effects or systems with general damping. This variation of the
method can be found in [59]. In this section, the idea of Craig-Bampton method will be
applied on the rotor system with gyroscopic effects as a specific case of system damping.

Dynamic system given as

Mq̈(t) + ω0Gq̇(t) + Kq(t) = f(t) (2.86)

can be put into the state space as first order system

Nẏ(t) + Py(t) = g(t), (2.87)

where

N =

(
M 0

0 M

)
, P =

(
ω0G K

−M 0

)
, y(t) =

(
q̇(t)
q(t)

)
, g(t) =

(
f(t)
0

)
. (2.88)

Matrices N and P have structure as introduced earlier in order to keep the consistency with
rest of the code. Degrees of freedom of entire structure are separated into the set of boundary
degrees of freedom, where any type of constraint or external force is to be applied, and the
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Figure 2.18: Convergence of eigenvalues; Real modes Craig-Bampton substructuring; 20 finite
elements, ω0 = 10000 rad s−1

Figure 2.19: Diagonal elements of matrix Rcb; Real modes Craig-Bampton substructuring;
20 finite elements, ω0 = 10000 rad s−1
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Figure 2.20: Orbit plots for full and reduced (10 degrees of freedom total) rotor model; Real
modes Craig-Bampton substructuring

Figure 2.21: Orbit plots for full and reduced (20 degrees of freedom total) rotor model; Real
modes Craig-Bampton substructuring

61



Chapter 2. Rotordynamics of Flexible Rotors
2.4. Decomposition of Free Flexible Rotor System with Gyroscopic Effects

rest of internal degrees of freedom. State vector y(t) is now reordered

z(t) = TTy(t), (2.89)

to achieve following structure of new state vector

z(t) =

(
zB(t)
zI(t)

)
=


q̇B(t)
qB(t)
q̇I(t)
qI(t)

 . (2.90)

Transformed matrices N and P are then

Ñ = TTNT, P̃ = TTPT, (2.91)

and entire system has now following structure(
ÑBB ÑBI

ÑIB ÑII

)(
żB(t)
żI(t)

)
+

(
P̃BB P̃BI

P̃IB P̃II

)(
zB(t)
zI(t)

)
=

(
gB(t)
gI(t)

)
. (2.92)

Static relation between boundary and internal displacements (2.76) is used also in this
case. Derivation of this equation gives

q̇I = −K̃−1
II K̃IBq̇B. (2.93)

Static modes contribution is then

zs(t) =

(
IBB

RIB

)
zB(t), (2.94)

where matrix IBB is identity with dimension equal to number of boundary degrees of freedom
B, and matrix RIB is

RIB =

(
−K̃−1

II K̃IB 0

0 −K̃−1
II K̃IB

)
. (2.95)

Dynamic modes are standard normal modes of the system having all boundary modes
suppressed, so they can be calculated only from matrices P̃II and ÑII by solving eigenvalue
problem (

−Ñ−1
II P̃II − sIII

)
v = 0. (2.96)
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Dynamic part of state vector zd(t) can be written by means of modal participation vector cI

as

zd(t) =

(
0BI

VII

)
cI(t). (2.97)

Zero matrix 0BI represents locked boundary degrees of freedom, modal matrix VII consists of
eigenvectors of problem (2.96). System reduction strategy is based upon taking only selected
eigenmodes into consideration and neglecting contribution of the others. Considering only k
normal modes, the state vector z(t) will become

z(t) =

(
IBB

RIB

)
zB(t) +

(
0BK

VIK

)
cK(t) =

(
IBB 0BK

RIB VIK

)(
zB(t)
cK(t)

)
= Ru(t). (2.98)

The matrix R is based on right-hand side static modes and eigenvectors. The system with
gyroscopic matrix G is non-self-adjoint, so the left-hand-side decomposition matrix L is
constructed identically as with modal decomposition in state space. Structure of matrix L is
identical to matrix R, but it is based on adjoint system with matrices NT and PT instead of
N and P. Matrix L can be written as

L =

(
IBB 0BK

LIB WIK

)
. (2.99)

Using substitution (2.98) and multiplying by matrix LT from the left, the system (2.92) will
become

Ncbu̇(t) + Pcbu(t) = LTg̃(t). (2.100)

Reduced matrices Ncb and Pcb are

Ncb = LTÑR, Pcb = LTP̃R, (2.101)

with the following structure

Ncb =

(
ÑBB + ÑBIRIB + LT

IBÑIB + LT
IBÑIIRIB ÑBIVIK + LT

IBÑIIVIK

WT
IKÑIB + WT

IKÑIIRIB WT
IKÑIIVIK

)
, (2.102)

Pcb =

(
P̃BB + P̃BIRIB + LT

IBP̃IB + LT
IBP̃IIRIB P̃BIVIK + LT

IBP̃IIVIK

WT
IKP̃IB + WT

IKP̃IIRIB WT
IKP̃IIVIK

)
. (2.103)

Bottom right blocks WT
IKÑIIVIK and WT

IKP̃IIVIK are naturally diagonal. Right-hand side
of the equation

LTg̃(t) =

(
IBB gB(t) + LT

IB gI(t)
WT

IK gI(t)

)
(2.104)
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shows the pleasant property of the Craig-Bampton method. Degrees of freedom have been
reordered in such way that gI(t) equals to zero vector, so that right-hand side of the reduced
system consists of only (gT

B(t),0T)T.
Profiles of the matrices Ncb and Pcb are plotted in figures 2.22 and 2.23, for case of trial

rotor with disc and 20 degrees of freedom of the reduced system. Convergence of eigenvalues
for trial rotor (see page 50), used also for testing other two decoupling methods is drawn in
the fig. 2.24. Convergence of eigenvectors’ approximation is tested by means of matrix Rcb,
which is for this method defined as

Rcb = I−WT
nNV∗, (2.105)

where matrix V∗ is an approximation of eigenmodes of the system calculated from

V∗ = TRV∗∗ (2.106)

with matrix V∗∗ being modal matrix obtained by solving eigenvalue problem determined
by matrices Ncb and Pcb. Graph of diagonal elements of matrix Rcb is in the figure 2.25.
Comparisons of the time domain solutions of identical problem as in previous subsection are
in the figures 2.26 and 2.27.
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Figure 2.22: Profile of Ncb; Orders of magnitudes of the elements; 20 finite elements, ω0 =
10000 rad s−1
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Figure 2.23: Profile of Pcb; Orders of magnitudes of the elements; 20 finite elements, ω0 =
10000 rad s−1
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Figure 2.24: Convergence of eigenvalues; Craig-Bampton method for general damping; 20
finite elements, ω0 = 10000 rad s−1

Figure 2.25: Diagonal elements of matrix Rcb; Craig-Bampton method for general damping;
20 finite elements, ω0 = 10000 rad s−1
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Figure 2.26: Orbit plots for full and reduced (10 degrees of freedom total) rotor model; Craig-
Bampton method for general damping

Figure 2.27: Orbit plots for full and reduced (20 degrees of freedom total) rotor model; Craig-
Bampton method for general damping
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Chapter 3

Isothermal Models of Aerostatic Bearings

3.1 Chapter Outline

This chapter documents the isothermal models of aerostatic bearings with orifice restrictors.
The presented models have been developed by means of finite element method and finite
difference method and programmed in order to investigate their suitability for steady state
and transient numerical solvers. Steady state bearing models are helpful during the pre-design
stage of new bearings. These models help with selection of adequate bearing dimensions in
relation to load capacity, air consumptions, and power loss. A method of using transient
numerical solver to obtain the stiffness and damping coefficients that corresponds not only
to the lateral translational displacements, but also to the angular displacements, and the
coefficients of cross-coupling between translational and angular displacements is presented.
This method has been developed as an extension of existing method of Czolczyński [39]. The
last part of this chapter discusses the methods of linearity assessment for aerostatic bearings
in terms of obtained linear coefficients and response of the bearing transient model to a
stochastic force excitation.

3.2 Aerostatic Bearing Geometry

Circular aerostatic bearing with single row of simple orifices is drawn in the fig. 3.1. The
radial clearance is determined by difference of bearing and journal radii c = R − Rj . Figure
3.2 defines chosen orientation of coordinates’ system. The centre of journal is misaligned from
bearing centre by eccentricity e =

√
(v2 + w2). Thickness of air layer is the radial distance

measured between surfaces of the bearing bushing and the journal. Air pressure acting upon
journal surface results in bearing reaction that consists of two force components Fy, Fz and
two moments, My and Mz. The moments are oriented according to the figure 3.3 in order
to preserve right-hand orientation of coordinate system (x, y, z). These moment components
occur if the pressure distribution is not symmetric with respect to the bearing midplane,
what happens if bushing and journal axes are not parallel or in the case of bearings with
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non-symmetric geometry. Tilt of the journal with respect to bushing is described by angles
ψ and ϑ.

Figure 3.1: Circular aerostatic journal bearing with single row of simple orifices

Annular inlet orifice geometry is characterised by orifice diameter do and length lo. Alter-
natively, the orifices can be supplemented with feed pockets to produce high stiffness bearings.
An example of pocket’s geometry is depicted in the figure 3.4.

3.3 Hydrodynamic Model of Aerostatic Journal Bearings

Pressure distribution inside the bearing air film is described by Reynolds equation that was
derived and discussed in the introduction chapter. In the case of aerostatic bearings, the
Reynolds equation is supplemented by mass flow through feeding system:

∂

∂t
(ph) +

Rω

2
∂

∂x1
(ph)− 1

12µ

(
∂

∂x1

(
ph3 ∂p

∂x1

)
+

∂

∂x2

(
ph3 ∂p

∂x2

))
= rT

∂ṁi

∂x1 ∂x2
. (3.1)

The right-hand side of this equation is non-zero only at the locations of feedholes and air
pockets. The term ∂ṁi

∂x1 ∂x2
denotes the intake velocity of the air flow multiplied by air density.

Using following non-dimensional quantities

ξ =
x1

R
, η =

x2

R
, H =

h

c
, P =

p

pa
, τ =

ω t

2
, (3.2)

the equation (3.1) can be rewritten to

∂

∂τ
(PH) +

∂

∂ξ
(PH)− 1

Λ

(
∂

∂ξ

(
PH3∂P

∂ξ

)
+

∂

∂η

(
PH3∂P

∂η

))
=

2rT
cωR2pa

∂ṁi

∂ξ ∂η
. (3.3)
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Figure 3.2: Bearing midplane cross section

Figure 3.3: Orientation of journal tilt angles and bearing reactive torques

Figure 3.4: Dimensions of feed pocket
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This form of equation is used for numerical models together with the appropriate equations
controlling air mass flow ṁi. This equation can be discretized by method of finite differences
providing a system of ordinary differential equations. The system can be then treated by
various numerical methods to obtain time evolution of pressure distribution or steady state
solution for fixed journal positions. Variations of these methods can be found in Czolczyński
[39], Han et al. [40], Lo et al. [60] and Chen et al. [61]. The biggest advantage of these
straightforward methods is the ease of implementation. However they are mostly perceived as
old-fashioned outside the field of theory of lubrication, they are still widely used in connection
with the Reynolds equation.

3.3.1 Air Inlet Flow

An important part of aerostatic bearing modelling technique is the model of air flow feeding
the air film between bushing and journal. Mass flow through feeding system of orifice com-
pensated bearings can be approached by equations of isentropic flow. Theoretical value of
isentropic mass flow is

ṁit = Ao ps

√√√√ κ

κ− 1
2
r T0

((
p

ps

) 2
κ

−
(
p

ps

)κ+1
κ

)
, (3.4)

for the pressure ratio greater than critical, p
ps
> β∗. For smaller pressure ratios, p

ps
≤ β∗, flow

becomes critical and mass flow reaches

ṁit = Ao ps

√
κ

κ+ 1
2
r T0

(
2

κ+ 1

) 2
κ−1

. (3.5)

Ao is cross section area of the orifice, ps is supply pressure, p is pressure near the outlet of
orifice, κ is ratio of specific heats, r is specific gas constant and T0 is stagnation temperature.
The critical pressure ratio is

β∗ =
(

2
κ+ 1

) κ
κ−1

. (3.6)

Real value of air mass flow is given by

ṁi = co ṁit, (3.7)

where co is discharge coefficient obtained experimentally. This work has been recently under-
taken by Belforte et al. [62]. Authors tested simple orifice flow restrictors and flow restrictors
with feed pockets. They measured air flow and pressure profile in the air film. Obtained
discharge coefficients for annular orifice restrictors were approximated by formula

co = 0.85
(

1− e−8.2
h+hp

do

)
. (3.8)
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This approximation is said acceptable even for feed pocketed annular orifices, if the pocket
is no deeper than limit given by condition h+hp

do
< 0.1. For more recessed pockets, but still

satisfying relation h+hp

do
< 0.2, the discharge coefficient can be estimated by updated relation

involving Reynolds number based on orifice diameter

co = 0.85
(

1− e−8.2
h+hp

do

) (
1− e−0.001Reo

h+hp
h+4hp

)
, (3.9)

where
Reo =

4ṁi

πdoµ
. (3.10)

If a feed pocket is deep enough such that h+hp

do
≥ 0.2, it is necessary to consider the

pressure inside feed pocket as an independent variable pp, because it would be significantly
different from the pressure of the air surrounding feed pocket. Mass flow is determined by two
subsequent restrictors with the pressure drops ps–pp and pp–p. Mass flow through the former
one is calculated the same way using equations (3.4), (3.5), (3.7) and (3.9) substituting pp for
p. Mass flow through annular pocket restrictor also satisfies isentropic flow equations (3.4),
(3.5), but with pressure pp used instead of ps and with passage area Ap = πdph instead of
orifice cross section Ao. Real value of mass flow is obtained from theoretic one by

ṁi = cp ṁit. (3.11)

Pocket discharge coefficient cp was found to follow

cp = 1.05
(
1− e−0.005Rep

)
, (3.12)

with Reynolds number Rep now based on the air film thickness

Rep =
ṁi

πdpµ
. (3.13)

Both the mass flows, the one passing from orifice to the pocket and the second one leaving
the pocket, are equal one another. This relation determines the value of pocket pressure pp.

Authors Belforte et al. [62] encountered phenomenon called pressure depression near outlet
of a simple orifice. The passage area is suddenly reduced when air reaches the film, and inertia
volume forces are dominant for the flow. Pressure drops to a local minimum, then increases
again as the air continues through the gap where laminar flow develops owing to prevailing
viscous forces. The pressure depression phenomenon is depicted in the fig. 3.5 using actual
data from [62]. Local maximum pressure p is used in isentropic flow equations (3.4), (3.5).
Computational Fluid Dynamics (CFD) analysis of the air flow through feeding system of
air bearing has been recently done by Chen and He [63], showing the pressure depression
phenomenon for rectangular recess of the orifice.
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Figure 3.5: Pressure depression phenomenon according to Belforte et al. [62]

3.3.2 FEM Formulation

Galerkin formulation was used to obtain a set of ordinary differential equations from (3.3).
For a set of basis functions Ni, weak formulation of Reynolds equation is∫

Ω
Ni

∂

∂τ
(PH) dΩ +

∫
Ω
Ni

∂

∂ξ
(PH) dΩ− 1

Λ

∫
Ω
Ni

∂

∂ξ

(
PH3∂P

∂ξ

)
dΩ

− 1
Λ

∫
Ω
Ni

∂

∂η

(
PH3∂P

∂η

)
dΩ =

2rT
R2cpaω

∫
Ω

∂ṁi

∂ξ ∂η
NidΩ. (3.14)

Ω is the region determined by dimensions of the bearing: Ω = {(ξ, η) : ξ ∈ 〈0, 2π), η ∈
〈0, L/R〉}. This rectangular area is meshed by bi-linear quadrilateral finite elements. Orien-
tation and position of single element with respect to coordinates, ξ and η, are displayed in
the figure 3.6. Basis functions of this type of element are

N1 =
ξbηb − ξ ηb − η ξb + ξ η

(ηb − ηa) (ξb − ξa)
, N2 =

−ξaηb + η ξa + ξ ηb − ξ η

(ηb − ηa) (ξb − ξa)
,

N3 =
−ξbηa + ξ ηa + η ξb − ξ η

(ηb − ηa) (ξb − ξa)
, N4 =

ξaηa − ξ ηa − η ξa + ξ η

(ηb − ηa) (ξb − ξa)
. (3.15)

Derivatives of basis functions with respect to ξ and η are

∂N1

∂ξ
=

−ηb + η

(ηb − ηa) (ξb − ξa)
,

∂N2

∂ξ
=

ηb − η

(ηb − ηa) (ξb − ξa)
,

∂N3

∂ξ
=

ηa − η

(ηb − ηa) (ξb − ξa)
,

∂N4

∂ξ
=

−ηa + η

(ηb − ηa) (ξb − ξa)
, (3.16)
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η

ξξa ξb
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ηb

1 2

34

Ωe

Γe

Figure 3.6: Orientation of quadrilateral finite elements

∂N1

∂η
=

−ξb + ξ

(ηb − ηa) (ξb − ξa)
,

∂N2

∂η
=

ξa − ξ

(ηb − ηa) (ξb − ξa)
,

∂N3

∂η
=

ξb − ξ

(ηb − ηa) (ξb − ξa)
,

∂N4

∂η
=

−ξa + ξ

(ηb − ηa) (ξb − ξa)
. (3.17)

Let us use following approximations of physical quantities

P ≈ PiNi, H ≈ HiNi, PH3 = Q ≈ QiNi i = 1, 2, 3, 4. (3.18)

Integration of (3.14) over single element gives

∂Pj
∂τ

∫
Ωe

NiNj HkNk dΩe +
∂Hj

∂τ

∫
Ωe

NiNj PkNk dΩe +
∫

Γe

Ni PH nξ ds−

Pj

∫
Ωe

HkNk
∂Ni

∂ξ
Nj dΩe −

1
Λ

∫
Γe

NiQ
∂P

∂ξ
nξ ds+

Pj
Λ

∫
Ωe

QkNk
∂Ni

∂ξ

∂Nj

∂ξ
ds−

1
Λ

∫
Γe

NiQ
∂P

∂η
nη ds+

Pj
Λ

∫
Ωe

QkNk
∂Ni

∂η

∂Nj

∂η
dΩe =

2rT ṁi

AR2cpaω

∫
Ωe

Ni dΩe.

(3.19)

Unexpanded line integrals along element boundary Γe will cancel out when assembling system
of equations for entire domain Ω because of the opposite directions of integration paths of
adjacent elements. The exceptions are the boundary elements with edges on η = 0 and
η = L/R. (ξ is a cyclic coordinate with boundary condition P(ξ=0) = P(ξ=2π).) For those
elements, only third line integral remains and can be simplified to

1
Λ

∫
Γe

NiQ
∂P

∂η
nη ds =

Pj
Λ

∫ ξb

ξa

NiQkNk
∂Nj

∂η
dξ. (3.20)
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If Dirichlet conditions are applied along bearing ends, also the contribution of this integral
becomes zero. Equation (3.19) can be written in the matrix form as

M e
ij

∂Pj
∂τ

+Be
ij

∂Hj

∂τ
+Ke

ijPj = Fj , (3.21)

with elemental matrices calculated neglecting line integrals as

M e
ij =

4∑
k=1

Hk

ξb ηb∫∫
ξa ηa

NiNj Nk dη dξ, Be
ij =

4∑
k=1

Pk

ξb ηb∫∫
ξa ηa

NiNj Nk dη dξ,

Ke
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4∑
k=1

Hk

ξb ηb∫∫
ξa ηa

Nj
∂Ni

∂ξ
Nk dη dξ +

Qk
Λ

ξb ηb∫∫
ξa ηa

Nk

(
∂Ni

∂ξ

∂Nj

∂ξ
+
∂Ni

∂η

∂Nj

∂η

)
dη dξ

 .

(3.22)

The double integrals can be expressed in close algebraic form. This approach has been used
to build elemental matrices in the Matlab code. It is also possible to evaluate these integrals
numerically by means of Gauss quadrature rule or other suitable numerical method. Right-
hand side vector is zero for all elements except of those positioned at air inlet orifices, for
which

F ei =
2rT ṁi

AR2cpaω

ξb ηb∫∫
ξa ηa

Ni dη dξ. (3.23)

In the last equation, the index at ṁi does not mean a summation index. Set of all elemental
equations (3.21) forms global system of equations

Mij
∂Pj
∂τ

+Bij
∂Hj

∂τ
+KijPj = Fi (3.24)

the solution of which provides the weak solution of original Reynolds equation. Global ma-
trices are composed of individual elemental matrices, and modified by Dirichlet boundary
condition for those nodes at the ends of bearing, where the ambient pressure is expected.

3.3.3 Steady State Solver

Static pressure distribution for stationary position of journal is obtained from the equation
(3.24), considering both the time derivatives of pressure and the film thickness zero. The
stiffness matrix Kij is a function of pressure Pj , thus a set of nonlinear algebraic equation

KijPj − Fi = 0 (3.25)

75



Chapter 3. Isothermal Models of Aerostatic Bearings
3.3. Hydrodynamic Model of Aerostatic Journal Bearings

has to be solved. Newton-Raphson method was implemented to iteratively approach the weak
solution for pressure distribution by solving

J
{k}
ij

(
P
{k+1}
j − P

{k}
j

)
= −

(
K

{k}
ij P

{k}
j − F

{k}
i

)
. (3.26)

Jacobian J
{k}
ij is calculated in each iteration:

J
{k}
ij = K

{k}
ij −

∂F
{k}
i

∂Pj
. (3.27)

The second term on the the right-hand side is obtained numerically, but since the vector Fi
contains non-zero elements only at a few positions that corresponds to the nodes of elements
at inlet orifices, this process can be done effectively with minimum time requirements.

An example of static pressure distribution, calculated by developed numerical method,
is shown in the fig. 3.7. The pressure was calculated for bearing operating at relative eccen-
tricity ε = 0.6, with eight inherently compensated orifices of diameter do = 0.2 mm evenly
distributed at bearing midplane section. Air supply pressure: ps = 0.5 MPa, angular velocity
ω = 1000 s−1. Dimensions of the bearing: L = 30mm, R = 15mm, c = 20µm.

Figure 3.7: Pressure distribution of aerostatic bearing with 8 inherently compensated orifices

The convergence of Newton-Raphson steady state solver applied on this particular bearing
design is depicted in the figure 3.8. It shows that pressure distribution converge rapidly, and
that the speed of convergence is practically unaffected by the number of finite elements used
for spatial discretization.

76



Chapter 3. Isothermal Models of Aerostatic Bearings
3.3. Hydrodynamic Model of Aerostatic Journal Bearings

Figure 3.8: Convergence of Newton-Raphson steady state solver

3.3.4 Bearing Load Capacity

The pressure distribution inside bearing air film is driven by bearing geometry and operating
conditions of the bearing, involving air supply pressure, angular speed of journal, and position
of journal with respect to bushing. For stationary operating conditions, the balance between
bearing load and reaction determines the operating point of the bearing. Bearing reactions
are the lateral components of the resultant of the air film pressure acting upon shaft journal

Fy = −paR2

2π L
R∫∫

0 0

P cos ξ dη dξ, My = paR
3

2π L
R∫∫

0 0

P sin ξ
(
η − L

2R

)
dη dξ,

Fz = −paR2

2π L
R∫∫

0 0

P sin ξ dη dξ, Mz = −paR3

2π L
R∫∫

0 0

P cos ξ
(
η − L

2R

)
dη dξ.

(3.28)

For given eccentricity, bearing reactions determine the bearing load capacity W . It is the
maximum static load applicable to the bearing on condition that the journal position does
not exceed the respective eccentricity.

W (ε) =
√
F 2
y + F 2

z . (3.29)

The load capacity of the bearing design specified above, versus maximum relative eccen-
tricity, is drawn in the figure 3.9. It shows the increase of bearing reaction force for greater
speed of journal due to hydrodynamic effect. Such operating conditions may not be always
stable, even though the steady state solver converges. Figures 3.10 and 3.11 show the effects
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of the orifice diameter and bearing radial clearance on bearing load capacity and air con-
sumption. These graphs show the relation between orifice diameter and radial clearance for
the maximum load capacity achievable. Smaller diameter of the orifices reduces the air con-
sumption, but smaller radial clearance, corresponding to the maximum load capacity, does
not only bring limitations to the production process in terms of precision and surface quality,
but also reduces the stability margin at higher speeds. Convergence of load capacity obtained
by finite element solver is depicted in the figure 3.13.

Figure 3.9: Load capacity W (ε)

3.3.5 Drag Torque and Power Loss

Bearing drag torque and power loss can be obtained from static pressure distribution by
means of following post-process formulae. Drag torque contribution from single element

M e
d = R3

∫
Ωe

Hcpa
2R

∂P

∂ξ
+
µRω

Hc
dξ dη (3.30)

gives the contribution to total bearing power loss from single element as

P el = ωM e
d . (3.31)

3.3.6 Transient Solver

The transient solver using FEM model of aerostatic bearing works with system of first order
differential equations

Mij
∂Pj
∂τ

+KijPj = Fj −Bij
∂Hj

∂τ
(3.32)

describing time evolution of the pressure distribution of the bearing. The system matrices
are dependent on actual thickness function H, its time derivative, and, due to nonlinearity of
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Figure 3.10: Load capacity versus radial clearance and orifice diameter, relative eccentricity
ε = 0.5

Figure 3.11: Air consumption versus radial clearance and orifice diameter, relative eccentricity
ε = 0.5
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the problem, also on the actual pressure P . This fact leads to necessity of re-building these
matrices each time step, which is extremely time-consuming for bigger number of elements.
However the dimensionless Reynolds equation was used for development of the system (3.32),
the time step of transient solver remains limited due to the inlet mass flow conditions con-
tained in vector Fj on the right-hand side of the equation. Numerical experiments revealed
that the reasonable time step for 4th order Runge-Kutta and 2nd order Adams-Moulton
methods should not exceed order of magnitude ∆τ = 10−6ω.

Alternatively, the time evolution of the pressure determined by the Reynolds equation
(3.3) can be approached by finite difference method. Area of the air gap Ω ∈ {ξ × η; ξ ∈
〈0, 2π), η ∈ 〈0, L/R〉} is divided into (n + 2) × (m + 1) rectangular regions. The uniform
mesh contains extra rows of nodes outside the solved region in order to implement boundary
conditions. Two extra columns of nodes are used for enforcing the periodicity condition in η

direction, see figure 3.12.

Figure 3.12: Mesh of air gap region – FDM

Replacing the spatial derivatives in (3.3) by approximative differences of second order
leads to the set of nonlinear differential equations (3.33), which describes the nodal values
of pressure and their time changes that both depend on the functions describing air film
thickness and its time derivative obtained from instantaneous position and velocity of journal
inside bearing. This FDM transient solver, in conjunction with rigid rotor dynamics, has been
presented by author of this work, Skarolek [64]. Similar modelling technique can be found in
the work of Lo et al. [60].
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Transient numerical schemes can also be used for calculation of steady state pressure
profile. Pressure profiles for two bearing designs marked A & B, both fed with pressure
ps = 0.6 MPa, and running at eccentricity ε = 0.5 are plotted in the figures 3.14 to 3.17. Both
bearing variants share parameters: R = 15mm, L = 30mm, c = 20µm, do = 0.2 mm. Bearing
A has eight orifices at bearing midplane evenly distributed around circumference. Bearing
B has two rows of evenly distributed orifices positioned at planes at the first and the third
quarter of bearing length. Bearing A: Fig. 3.14 for stationary shaft and fig. 3.15 for 30,000
rpm. Bearing B: Fig. 3.16 for stationary shaft and fig. 3.17 for 30,000 rpm.

Figure 3.13: Convergence of load capacity W – FDM & FEM, ε = 0.6, ω = 1000 s−1

The convergence of bearing load capacity calculated by means transient FDM solver is
plotted in fig. 3.13. Values of load capacity obtained by steady state FEM solver are added
to the picture. In both cases, the results show that it is necessary to work with relatively fine
meshes to obtain acceptably accurate estimation of bearing reactions. The non-monotonic
convergence to the limit values of both is likely caused by implementation of discharge coef-
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ficient according to the section 3.3.1. In view of rather slow convergence of bearing reactions,
the FDM solver is preferable option for transient analysis owing to significantly faster algo-
rithm for greater number of elements/nodes.

3.4 Dynamic Bearing Characteristics

Authors Han et al. [40] used for obtaining linear stiffness and damping coefficients of the
aerostatic bearing harmonic the perturbations of film thickness and pressure profile applied
to the Reynolds equation that was discretized by finite difference method. This linearization
method provides the coefficients at the limit case of small amplitudes of the rotor journal.
Paper of Czolczyński [41] and the book of the same author [39] describe approach based
on direct numerical solution of the journal equations of motion and the Reynolds equation.
The calculated time series of bearing reactions, journal positions and velocities are subjected
to regression in order to find the best fit of the bearing coefficients. This method assumes
harmonic motion of the journal of given amplitude and returns a set of bearing stiffness and
damping coefficients. These coefficients are not limited to the linear model of bearing, but
contain also higher components of bearing forces treated as a polynomials of displacements
and velocities of journal up to the third order. This author uses various time series calculated
based on following situations: free vibrations, forced vibrations, step-jump journal displace-
ment and harmonic motion of the shaft. The former three are said inconvenient for described
method. The last one brings the advantage of possibility of enforcing a harmonic vibrations of
the journal in specific directions separately. This is important because of linear independence
of the vectors of displacements and velocities. In the case of journal undergoing circular orbit
motion, the vectors of v and ẇ and vice versa are not linearly independent.

3.4.1 Translational Stiffness and Damping Coefficients

The method of direct numerical solution restricted to linear coefficients is explained in this
subsection. This method has been previously published at national conference by author of
this work, Skarolek and Kozánek [65].

Journal equations of motion

mv̈ = Fy −mg, mẅ = Fz (3.34)

contain gravity force acting on the journal and the bearing reactions Fy,Fz, which are cal-
culated by transient solver of Reynolds equation. Firstly, by solving these equations, the
equilibrium position of journal ye, ze is calculated. This position depends on mass of the
journal and its angular velocity for given bearing. See the fig. 3.18.
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Figure 3.14: Pressure distribution, isobars: Bearing A, 0 rpm

Figure 3.15: Pressure distribution, isobars: Bearing A, 30000 rpm

Figure 3.16: Pressure distribution, isobars: Bearing A, 0 rpm

Figure 3.17: Pressure distribution, isobars: Bearing B, 30000 rpm

83



Chapter 3. Isothermal Models of Aerostatic Bearings
3.4. Dynamic Bearing Characteristics

Figure 3.18: Equilibrium position of journal

Linear model of bearing expects reaction forces written in matrix form as(
Fy − F ey

Fz − F ez

)
= −

(
kyy kyz

kzy kzz

)(
v − ye

w − ze

)
−

(
byy byz

bzy bzz

)(
v̇

ẇ

)
, (3.35)

where F ey , F ez are reaction forces acting upon journal at equilibrium position ye, ze. The
journal is than forced to harmonic motion of amplitude A, separately in directions of y and
z axes.

ṽ = v − ye = A · sin(ωt), ˙̃v = v̇ = Aω · cos(ωt),

w̃ = w − ze = A · sin(ωt), ˙̃w = ẇ = Aω · cos(ωt). (3.36)

During these enforced motions of shaft journal, the bearing reactions are stored together with
displacements and velocities of journal.

It is convenient to divide equation (3.35) into four independent ones before applying least
square regression for bearing coefficients:

−Fyy = kyy · ṽ + byy · ˙̃v, −Fzy = kzy · ṽ + bzy · ˙̃v,

−Fyz = kyz · w̃ + byz · ˙̃w, −Fzz = kzz · w̃ + bzz · ˙̃w. (3.37)

It is evident that due to harmonic motion the vectors ṽ and ˙̃v as well as w̃ and ˙̃w are
orthogonal, hence the least square fitting is well posed problem. The increase of angular
speed promotes cross-coupling coefficients of stiffness and damping due to non-symmetry of
the pressure profile. Cross-coupling stiffness coefficient kyz and kyz have major impact to
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stability of equilibrium position. It can be easily shown that without taking damping into
equations, the equilibrium cannot be stable for ω > 0.

3.4.2 Experimental Validation of Bearing Dynamic Parameters

Authors Kozánek and Půst [66] have recently published paper dealing with identification of
aerostatic bearing parameters based on experiments. Details on the identification methods as
well as on used experimental setup can be found also in Kozánek et al. [67],[68]. Experimental
results of diagonal stiffness and damping coefficients of bearing similar to bearing design
referred to as B are compared with the results obtained by algorithm presented in this work.
The bearing design differs from bearing design B by length L = 45 mm and radial clearance
c = 40µm. The air supply pressure was ps = 0.2 MPa. The experimental and calculated
stiffness and damping parameters are displayed in the figures 3.19, 3.20.

The figures 3.19 and 3.20 show reasonable agreement of calculated and experimental data.
Differences in diagonal stiffness coefficients, Kyy, Kzz, reach slightly over 20 percent. In the
case of damping coefficients, Byy, Bzz, the calculated parameters lie inside the range, spanned
by experimentally obtained data. Observed differences are not considered excessive, because
they involve entire chain of inevitable uncertainties: Manufacturing tolerances of the test
bearing, achievable precision of test rig setup, numerical errors of measurement, identification
and simulation processes, and estimation of discharge coefficients used in bearing transient
solver. From engineering standpoint, this level of accuracy of estimation of bearing parameters
is satisfactory; very often engineers have to accept uncertainties of similar or even greater
level.

3.4.3 Angular and Lateral-Angular Cross-Coupling Coefficients

Previous direct simulation method of enforced harmonic vibration of journal is applicable
to the extended case of searching stiffness and damping coefficients related not only to the
lateral displacements v, w and their derivatives, but also the coefficients corresponding to tilt
angles ϑ, ψ and to respective angular velocities. Bearing reactions are expected to be linear
with displacement and velocities

R = −Ku−Bu̇, (3.38)

where R is vector of bearing reactions, vector u comprise displacements. The previous equa-
tion, written in components, is then

F̃y

F̃z

M̃y

M̃z

 = −


kyy kyz kyϑ kyψ

kzy kzz kzϑ kzψ

kϑy kϑz kϑϑ kϑψ

kψy kψz kψϑ kψψ



ṽ

w̃

ϑ̃

ψ̃

−


byy byz byϑ byψ

bzy bzz bzϑ bzψ

bϑy bϑz bϑϑ bϑψ

bψy bψz bψϑ bψψ




˙̃v
˙̃w
˙̃
ϑ
˙̃
ψ

 . (3.39)
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Figure 3.19: Bearing stiffness coefficients; Calculation vs. experiment

Figure 3.20: Bearing damping coefficients; Calculation vs. experiment
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The off-diagonal blocks in K and B provide cross-coupling between translational and rota-
tional degrees of freedom. The blocks bellow diagonal blocks are expected all zero for circular
bearings, because while undergoing translational motion, the journal remains parallel to the
bearing axis. The coefficients in the blocks above diagonal blocks may become non-zero for
bearing running with certain eccentricity. However, their values are expected to be insignifi-
cant.

Harmonic motion of the journal is enforced separately for each degree of freedom according
to

ṽ = A · sin(ωt), ˙̃v = Aω · cos(ωt),

w̃ = A · sin(ωt), ˙̃w = Aω · cos(ωt),

ϑ̃ =
A

2L
· sin(ωt), ˙̃

ϑ =
A

2L
ω · cos(ωt), (3.40)

ψ̃ =
A

2L
· sin(ωt), ˙̃

ψ =
A

2L
ω · cos(ωt).

For all the cases, the time series of journal positions, velocities and bearing reactions are
obtained by means of transient solver. The bearing coefficients are calculated by least square
regression applied to the time series using one of the following equations:

−Fyy = kyy · ṽ + byy · ˙̃v, −Fzy = kzy · ṽ + bzy · ˙̃v, −Myy = kϑy · ṽ + bϑy · ˙̃v,

−Mzy = kψy · ṽ + bψy · ˙̃v, −Fyz = kyz · w̃ + byy · ˙̃w, −Fzz = kzz · w̃ + bzz · ˙̃w,

−Myz = kϑz · w̃ + bϑz · ˙̃w, −Mzz = kψz · w̃ + bψz · ˙̃w, −Fyϑ = kyϑ · ϑ̃+ byϑ · ˙̃
ϑ,

−Fzϑ = kzϑ · ϑ̃+ bzϑ · ˙̃
ϑ, −Myϑ = kϑϑ · ϑ̃+ bϑϑ · ˙̃

ϑ, −Mzϑ = kψϑ · ϑ̃+ bψϑ · ˙̃
ϑ,

−Fyψ = kyψ · ψ̃ + byψ · ˙̃
ψ, −Fzψ = kzψ · ψ̃ + bzψ · ˙̃

ψ, −Myψ = kϑψ · ψ̃ + bϑψ · ˙̃
ψ,

−Mzψ = kψψ · ψ̃ + bψψ · ˙̃
ψ. (3.41)

All of these equations work with harmonic vibration of single degree of freedom, so that
functions of displacement and respective velocity are orthogonal.

3.4.4 Numerical Examples

Dynamic characteristics of both the bearing designs A & B, carrying 5 kg journal, have been
investigated at four levels of air supply pressure: 0.3, 0.4, 0.5 and 0.6 MPa. Eccentricities of
journal with respect to angular velocity and supply pressure are in the figures 3.21 and 3.22.
The lowest pressure level is missing for bearing design A because of low load capacity of this
configuration. The bearings were run to such angular speed, where the journal equilibrium
position lost stability and the journal started to follow whirl orbit, similar to oil whirl of
traditional hydrodynamic bearings.
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Figure 3.21: Bearing eccentricity v. angular velocity of journal ω, Bearing design A

Figure 3.22: Bearing eccentricity v. angular velocity of journal ω, Bearing design B
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Figure 3.23: Translational stiffness v. angular velocity of journal ω, Bearing design A&B,
Supply pressure ps = 0.6 MPa

Figure 3.24: Angular stiffness v. angular velocity of journal ω, Bearing design A&B, Supply
pressure ps = 0.6 MPa
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Figure 3.25: Cross-coupling stiffness v. angular velocity of journal ω, Bearing design A&B,
Supply pressure ps = 0.6 MPa

Figure 3.26: Cross-coupling stiffness v. angular velocity of journal ω, Bearing design A&B,
Supply pressure ps = 0.6 MPa
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Figure 3.27: Translational damping coeff. v. angular velocity of journal ω, Bearing design
A&B, Supply pressure ps = 0.6 MPa

Figure 3.28: Angular damping coeff. v. angular velocity of journal ω, Bearing design A&B,
Supply pressure ps = 0.6 MPa
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Figure 3.29: Cross-coupling damping coeff. v. angular velocity of journal ω, Bearing design
A&B, Supply pressure ps = 0.6 MPa

Figure 3.30: Cross-coupling damping coeff. v. angular velocity of journal ω, Bearing design
A&B, Supply pressure ps = 0.6 MPa
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The process described in the previous subsection was applied at each of stable equilibrium,
thus obtaining 32 dynamic coefficients from (3.39) for each point. For 0.6 MPa pressure level,
the coefficients are plotted in the figures 3.23 to 3.30. Results for the other supply pressures
are attached in the appendices as figures C.1 to C.16.

As expected, all cross-coupling coefficients –both the stiffness (figs. 3.25 and 3.26) and the
damping (figs. 3.29 and 3.30) ones– that put in relation the translational degrees of freedom
and the angular ones are negligible in comparison to the rest.

The translational and the angular stiffnesses (fig. 3.23 and 3.24 ) are of same character.
The diagonal coefficients kyy, kzz, kϑϑ, kψψ are mostly determined by supply pressure level and
bearing design. The off-diagonal components kzy, kyz, kψϑ, kϑψ gain their absolute values with
increase of angular velocity due to bearing hydrodynamic effect, with lesser effect from the
number of feeding orifices or the supply pressure. The greater differences in figures C.1 and
C.3 are caused by greater difference between running eccentricities for both designs. Damping
coefficients exhibit similar properties with exception of greater effect of angular velocity on
diagonal coefficients byy, bzz, bϑϑ, bψψ, see the figures 3.27 and 3.28.

3.5 Linearity of Aerostatic Bearing

According to the linearization technique from the previous section, the bearings running
at given speed and load are described by using 16 linear coefficients (neglecting the nearly
zero cross-coupling ones). This linearization technique assumes specific level of amplitudes of
vibration and specific angular frequency of excitation. The most common is the synchronous
excitation by unbalance. The nonlinearity of bearing at given conditions can be assessed by
effect of different excitation frequency and vibration amplitudes to linear coefficients. Method
of linearization by means of numerical simulation of Reynolds equation and enforced harmonic
motion of journal can be used with various frequencies of journal motion νω at several levels
of amplitude A. The effects of frequency and amplitude for bearing design B, supplied with
0.6 MPa and running at angular frequency ω = 2000 s−1 is depicted in figures 3.31 to 3.46.

Figures 3.31 and 3.32 show that bearing diagonal stiffness coefficients kyy, kzz, kϑϑ, kψψ
tend to increase for higher frequency of journal vibration, meanwhile the off-diagonal ones
kyz, kzy, kψϑ, kϑψ decline in amplitudes; kyz, kzy even crossing zero value and swapping signs.
Cross-coupling stiffnesses in the figures 3.33 and 3.34 appear oscillating along increasing vi-
bration frequency. Their values remain small compared to diagonal coefficients and those
oscillations seem to be of numerical origin. Diagonal damping coefficients byy, bzz, bϑϑ, bψψ
also increase with vibration frequency, but all quickly saturate. The off-diagonal damping co-
efficients byz, bzy, bψϑ, bϑψ are practically unaffected by frequency. See figs. 3.35 and 3.36. The
cross-coupling coefficients in the figure 3.37 and 3.38 are again of insignificant magnitudes.

Influence of the level of vibration (0.5µm to 9.5µm of 20µm bearing radial clearance) on
bearing stiffness coefficients is rather insignificant, with noticeable effect only to the transla-
tional stiffness coefficients, see the figures 3.39 to 3.42. Diagonal bearing damping coefficients
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Figure 3.31: Translational stiffness v. relative vibration frequency, bearing B, ps = 0.6 MPa

Figure 3.32: Angular stiffness v. relative vibration frequency, bearing B, ps = 0.6 MPa
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Figure 3.33: Cross-coupling stiffness v. relative vibration frequency, bearing B, ps = 0.6 MPa

Figure 3.34: Cross-coupling stiffness v. relative vibration frequency, bearing B, ps = 0.6 MPa
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Figure 3.35: Translational damping coeff. v. relative vibration frequency, bearing B, ps =
0.6 MPa

Figure 3.36: Angular damping coeff. v. relative vibration frequency, bearing B, ps = 0.6 MPa
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Figure 3.37: Cross-coupling damping coeff. v. relative vibration frequency, bearing B, ps =
0.6 MPa

Figure 3.38: Cross-coupling damping coeff. v. relative vibration frequency, bearing B, ps =
0.6 MPa
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byy, bzz, bϑϑ, bψψ increase with amplitude, the rest of the coefficients are either unaffected or
insignificant.

Presented numerical example indicates that the studied kind of aerostatic bearings run-
ning at lower eccentricity behave almost linearly with respect to the vibration amplitude
(considering the stiffness part of their reactions). Linearized damping increase with ampli-
tude, which effect is important when equilibrium point becomes unstable due to off-diagonal
stiffnesses and self-excited vibration of journal occurs. Linearized bearing parameters are
more sensitive to frequency of vibration, which fact should be considered in the case of non-
synchronous excitation forces.

3.5.1 Transfer Function of Journal–Bearing System

The linearity of journal-bearing system can be also assessed by system response to random
force excitation. The frequency response function estimated from simulation results can be
compared to the transfer functions calculated by means of linearized bearing coefficients.
Coherence functions can be used as a measure of system linearity. Journal-bearing system
(3.34) employing the transient bearing solver (3.33) has been solved over period of 6 seconds,
while external forces Fy and Fz were acting upon journal. Time series for these functions
were constructed as a filtered white noise. Spectral density of these signals is in the figure
3.47.

Frequency response functions have been estimated by averaging of N = 91 peridograms,
using Hann window with 50% overlap, symbolically by

Gij(jω) =
1
N

N∑
k=1

FFT
[
wH(t) · g{k}i (t)

]
FFT

[
wH(t) · f{k}j (t)

] , (3.42)

where operator FFT [·] signs single-side amplitude spectrum normalized with respect to win-
dow function wH(t). Functions fj(t), gi(t) are j-th input resp. i-th output of the system. Su-
perscript {k} signs k-th segment of given time-series. Transfer functions of linearized model
were calculated directly as

Gij(jω) =
(
K + jωB− ω2M

)−1
, (3.43)

where matrices K, B are the translational parts of bearing stiffness and damping matrix. M

is diagonal matrix with journal mass on diagonal positions. These analyses have been done
for both bearing designs A and B, running at identical conditions as previous analyses (ps =
0.6 MPa, m = 5kg, ω = 2, 000 s−1). Transfer functions of the linearized model and estimated
frequency response functions of nonlinear transient model are plotted in the figures 3.48 and
3.49. The results closely agree in terms of amplitude and phase, with minor discrepancies
around amplitude peaks.
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Figure 3.39: Translational stiffness v. vibration amplitude, bearing B, ps = 0.6 MPa

Figure 3.40: Angular stiffness v. vibration amplitude, bearing B, ps = 0.6 MPa
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Figure 3.41: Cross-coupling stiffness v. vibration amplitude, bearing B, ps = 0.6 MPa

Figure 3.42: Cross-coupling stiffness v. vibration amplitude, bearing B, ps = 0.6 MPa
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Figure 3.43: Translational damping coeff. v. vibration amplitude, bearing B, ps = 0.6 MPa

Figure 3.44: Angular damping coeff. v. vibration amplitude, bearing B, ps = 0.6 MPa
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Figure 3.45: Cross-coupling damping coeff. v. vibration amplitude, bearing B, ps = 0.6 MPa

Figure 3.46: Cross-coupling damping coeff. v. vibration amplitude, bearing B, ps = 0.6 MPa
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Figure 3.47: Spectrum density of signal used for excitation forces Fy, Fz

Another option of quantitative assessment of the validity of linear approximation of tran-
sient journal–bearing model is to calculate magnitude-square coherence of the force input and
the displacement output of transient model. The magnitude-square coherence is calculated
by means of spectral densities of signals as

γ2
ij(ω) =

∣∣∣∑N
k=1 FFT

[
wH(t) · f{k}j (t)

]∗
· FFT

[
wH(t) · g{k}i (t)

]∣∣∣2∑N
k=1

∣∣∣FFT
[
wH(t) · f{k}j (t)

]∣∣∣2 ·∑N
k=1

∣∣∣FFT
[
wH(t) · g{k}i (t)

]∣∣∣2 , (3.44)

where the numerator contains squared modulus of averaged cross-spectral density of output
and input, whilst denominator contains averaged squared moduli of auto-spectral densities.
Values of calculated coherences are depicted in the figures 3.50 and 3.51. On all of these
graphs, local minima of coherence at around the peak amplitude occur. This is in correlation
to discrepancies found in the comparisons of FRFs. Rapid decay at above 104 Hz of cross-
coherences is caused by prevailing effect of numerical noise of integration methods, as the
input signals had been limited by low pass filter at this frequency. At other regions, the values
stay above 0.6; below the resonance and right above it closely approaching 1. For presented
particular case of bearing systems, the calculated coherence functions show that linearized
models reasonably approximate full transient nonlinear model, with some systematic errors
at resonance due to nonlinearity of reaction forces in the displacement. Discrepancies at
supersynchronous frequencies are not as significant, because frequency response functions
rapidly tend to zero.
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Figure 3.48: Transfer functions obtained using linear bearing coefficients and estimated from
random signal excitation of transient bearing model, bearing A, ps = 0.6 MPa
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Figure 3.49: Transfer functions obtained using linear bearing coefficients and estimated from
random signal excitation of transient bearing model, bearing B, ps = 0.6 MPa
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Figure 3.50: Magnitude-square coherence, bearing A, ps = 0.6 MPa

Figure 3.51: Magnitude-square coherence, bearing B, ps = 0.6 MPa
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Chapter 4

Thermal Analysis of Aerostatic Bearings

4.1 Chapter Outline

All models derived in the previous chapter expected the isothermal conditions of the air flow
within the lubricant film. The rationale behind this assumption is discussed in the introduc-
tion chapter of this work. Summary of the recent research is provided in the section 1.3.4.
the objective of this chapter is to document developed Thermo-Hydrodynamic Lubrication
(THDL) model of aerostatic bearings, providing deeper insight into the thermal conditions
of the bearings. The Reynolds equation of classical lubrication theory assumes isothermal
processes of the lubricant film, thus a part of the THDL model is the generalized Reynolds
equation that takes an uneven distribution of the temperature in all three spatial dimensions
into account. Equation of conservation of energy is solved by finite element method in three
dimensions in order to obtain the temperature distribution. The outcome of this analysis per-
mits a quantitative assessment of validity of the previously accepted isothermal condition. On
the top of this validity check, this model can be used for estimation of heat flow through the
boundaries of the air film. Such data may be valuable in thespecific cases of design process,
especially for machines operating with high temperature differences of its parts, e.g. turbines,
machining spindles etc.

Complete Computational Fluid Dynamic (CFD) model of aerostatic bearings, solving
directly the set of Navier-Stokes equations and mass and energy conservations is out of
the scope of this work. Aerostatic bearings have the radial clearance typically thousand
times smaller than the other two dimensions. The acceptable quality finite volume mesh
would consists of enormous number of elements that would exceed available resources. The
convergence of CFD analysis of such problem (compressible flow with strongly significant
contribution of advective terms on an inconvenient mesh) has been also tested on simplified
two-dimensional formulation without success. To this date, the author is not aware of any
scientific paper delivering results of three-dimensional CFD solution of aerostatic bearings
(including the heat conservation equation).
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4.2 Thermo-Hydrodynamic Lubrication Model of Aerostatic
Journal Bearings

4.2.1 Generalized Reynolds Equation

For obtaining the generalized Reynolds equation, let us consider the first five conditions from
the page 10 satisfied. In addition to those conditions, let us assume that the temperature
differences across film thickness are rather small, so the viscosity is little affected and it can be
treated as nearly constant along radial coordinate (film thickness). This is strong assumption
that restricts this model to small variations of temperature across the film thickness. It does
not mean a limitation of viscosity variations in other two spatial directions nor its absolute
value. The initial equations of mass and momentum conservation of thin fluid film are

∂ρ

∂t
+∇ · (ρv) = 0,

∂p

∂x1
= µ

∂2v1
∂x2

3

,
∂p

∂x2
= µ

∂2v2
∂x2

3

. (4.1)

The meaning of variables is as defined in the chapter 1. Substitution of boundary conditions
for velocity components

v1 = 0, v2 = 0 at x3 = 0,

v1 = Rω, v2 = 0 at x3 = h, (4.2)

into the momentum conservation equations renders the velocities v1 a v2

v1 =
1

2µ
∂p

∂x1

(
x2

3 − hx3

)
+Rω

x3

h
, v2 =

1
2µ

∂p

∂x2

(
x2

3 − hx3

)
. (4.3)

Continuity equation 4.1 can now be integrated over film thickness∫ h

0

∂ρ

∂t
dx3 +

∫ h

0

∂(ρ v1)
∂x1

+
∂(ρ v2)
∂x2

+
∂(ρ v3)
∂x3

dx3 = 0. (4.4)

Density of the air is replaced by the term

ρ =
p

rT
(4.5)

coming from the state equation of ideal gas. Partial evaluation of the integrals in (4.4) leads
to

∂

∂t

(
p

∫ h

0

1
T

dx3

)
− p

T

∂h

∂t

∣∣∣
h

+
∂

∂x1

(
p

∫ h

0

v1
T

dx3

)
− p

T
v1
∂h

∂x1

∣∣∣
h

+
∂

∂x2

(
p

∫ h

0

v2
T

dx3

)
− p

T
v2
∂h

∂x2

∣∣∣
h

+ p
(v3
T

∣∣∣
h
− v3
T

∣∣∣
0

)
= 0. (4.6)
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Boundary condition for the third component of velocity v3

v3

∣∣∣
h

=
∂h

∂t
+

∂h

∂x1
Rω (4.7)

is added and further manipulation provides

∂

∂t

(
p

∫ h

0

1
T

dx3

)
+

∂

∂x1

(
p

∫ h

0

v1
T

dx3

)
+

∂

∂x2

(
p

∫ h

0

v2
T

dx3

)
= p

[v3
T

]
0
. (4.8)

In the case of isothermal situation, the integration after substitution for velocities would lead
to classical Reynolds equation. For general temperature field, following auxiliary functions
are introduced

QT =
∫ h

0

1
T

dx3, QTC =
∫ h

0

x3

T
dx3, QTP =

∫ h

0

x2
3

T
dx3. (4.9)

By means of these functions, the equation (4.8) is expressed as

∂

∂t
(pQT ) +

1
2

∂

∂x1

(
p

µ

∂p

∂x1
(QTP − hQTC)

)
+Rω

∂

∂x1

(p
h
QTC

)
+

1
2

∂

∂x2

(
p

µ

∂p

∂x2
(QTP − hQTC)

)
= p

[v3
T

]
0
. (4.10)

The auxiliary variables QT , QTP , QTC are functions of coordinates x1, x2 and time (owing
to upper integrals’ boundary h). Considering only static analysis, the film thickness function
becomes time invariant and all the time derivatives can be left out. The generalized Reynolds
equation can be put into steady state implicit form

1
2

∂

∂x1

(
AQ

∂p

∂x1

)
+

1
2

∂

∂x2

(
AQ

∂p

∂x2

)
+Rω

∂

∂x1
(BQ p) = p

[v3
T

]
0
, (4.11)

where
AQ =

p

µ
(QTP − hQTC) , BQ =

QTC
h

. (4.12)

The right-hand side of the equation (4.11) represents the air supplied through bearing orifices,
symbolic form of this term stands for

p
[v3
T

]
0

=
∂ṁi r

∂x1 ∂x2
, (4.13)

where ṁi is mass flow rate through the orifice, the spatial differentials are understood as per
section 3.3, page 69. The value of air mass flow is determined by equation of isentropic flow
described in section 3.3.1 on page 71. Providing that the temperature field inside the air film
is known, the auxiliary variables can be calculated and generalized Reynolds equation can be
numerically solved.
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4.2.2 Dimensionless Formulation of Generalized Reynolds Equation

Time dependent generalized Reynolds equation (4.10) can be put in the non-dimensional
form

∂

∂τ
(P Q∗

T ) +
∂

∂ξ

(
P

H
Q∗
TC

)
+

3
Λ
∂

∂ξ

(
P

µ∗
∂P

∂ξ
(Q∗

TP −H Q∗
TC)

)
+

3
Λ
∂

∂η

(
P

µ∗
∂P

∂η
(Q∗

TP −H Q∗
TC)

)
=

r Tr
R2ωpac

∂ṁi

∂ξ ∂η
(4.14)

using dimensionless quantities defined as

P =
p

pa
, H =

h

c
, Q∗

T = QT
Tr
c
, Q∗

TC = QTC
Tr
c2
, Q∗

TP = QTP
Tr
c3
,

µ∗ =
µ

µr
, ξ =

x1

R
, η =

x2

R
, ζ =

x3

H c
, τ = ω t, Λ =

6R2ωµr
pa c2

. (4.15)

The newly introduced variables Tr and µr are the reference temperature and the viscosity of
the air, conveniently chosen according to bearing operation condition (ambient temperature
and corresponding viscosity). From the equation (4.14), the pressure rate of change can be
directly expressed as

∂P

∂τ
=

1
Q∗
T

(
−P

∂Q∗
T

∂τ
− ∂

∂ξ

(
P

H
Q∗
TC

)
− 3

Λ
∂

∂ξ

(
P

µ∗
∂P

∂ξ
(Q∗

TP −H Q∗
TC)

)
−

3
Λ
∂

∂η

(
P

µ∗
∂P

∂η
(Q∗

TP −H Q∗
TC)

)
+

r Tr
R2ωpac

∂ṁi

∂ξ ∂η

)
. (4.16)

4.2.3 FEM formulation of Steady State Generalized Reynolds Equation

Similarly to the section 3.3.2, the Galerkin method of creating weak formulation was used
on this two-dimensional problem. In the physical coordinates the weak form of generalized
Reynolds equation is

−
∫

Ω
AQ

(
∂Ni

∂x1

∂Nj

∂x1
+
∂Ni

∂x2

∂Nj

∂x2

)
pjdΩ− 2Rω

∫
Ω
BQ

∂Ni

∂x1
NjpjdΩ = 2r

∫
Ω

∂ṁi

∂x1∂x2
NidΩ.

(4.17)

Dirichlet boundary conditions for pressure are assumed at the bearing ends. The auxiliary
variables AQ and BQ are approximated by their projection to the vector space with basis Ni

of bi-linear quadrilateral finite elements.

AQ ≈ AQiNi, BQ ≈ BQiNi, i = 1, 2, 3, 4. (4.18)

The coefficients of weak solution in the finite element basis are obtained by solving the
equation

Kijpj = Fi. (4.19)
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Global matrix K and vector F are constructed from the elemental matrices as

Ke
ij =−

4∑
k=1

AQk

x1b x2b∫∫
x1a x2a

(
∂Ni

∂x1

∂Nj

∂x1
+
∂Ni

∂x2

∂Nj

∂x2

)
Nk dx1 dx2−

2Rω
4∑

k=1

BQk

x1b x2b∫∫
x1a x2a

∂Ni

∂x1
NjNk dx1 dx2, (4.20)

F ei =2
ṁir

A

x1b x2b∫∫
x1a x2a

Ni dx1 dx2. (4.21)

The variable A is the area of finite elements containing air inlet. For those the ṁi is nonzero.
Closed algebraic forms of the above elemental matrix and vector were found for bi-linear
quadrilateral element and they were used during numerical calculations. The global matrix
K and vector F are both dependent on the actual pressure (and temperature) via variables AQ
and BQ. Iterative Newton-Raphson method (section 3.3.3) is used to approach to the weak
solution of generalized Reynolds equation. Between iterations of the method, temperature
and temperature dependent variables AQ and BQ are updated. Recalculation of all Ke and
Fe follows.

4.2.4 Conservation of Energy

The equations of conservation of energy (??) can be rewritten in the terms of temperature,
considering the ideal gas, as

ρcp

(
∂T

∂t
+ v · ∇T

)
=
∂p

∂t
+ v · ∇p+∇ · (k∇T ) + Φ. (4.22)

Dissipative function (1.11) has been simplified to account for dominant shear rates due to
small thickness in comparison with the other two spatial dimensions

Φ = µ

((
∂v1
∂x3

)2

+
(
∂v2
∂x3

)2
)
. (4.23)

4.2.5 Transformation of Coordinates

The equation (4.22) describes energy conservation in the air film. It is supposed to be solved
in volume described by following set

Ω = {(x1, x2, x3) ∈ R3 : x1 ∈ 〈0, 2πR〉, x2 ∈ 〈0, L〉, x3 ∈ 〈0, h (x1, x2)〉}. (4.24)
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The thickness h of the air film is a function of spatial coordinates and its value is very small
compared to the other two spatial boundaries. Such volume is not easy to mesh. Even with
a very fine mesh, the elements would be highly stretched. Author of this work decided to
transform the equation of energy conservation using new coordinates. The benefit of the
transformation is that the new volume, on which the solution is to be searched, will become
a cuboid with comparable dimensions in all three directions. The drawback of this choice
is that the solved equation will become significantly more complicated. The new curvilinear
coordinates ξ, η and ζ are defined as follows

ξ =
x1

R
, η =

x2

R
, ζ =

x3

h (x1, x2)
=

x3

cH(ξ, η)
. (4.25)

This coordinate transformation leads to the new cuboid set Ωn

Ωn = {(ξ, η, ζ) ∈ R3 : ξ ∈ 〈0, 2π〉, η ∈ 〈0, L/R〉, ζ ∈ 〈0, 1〉} (4.26)

in which the transformed energy equation will be solved.
Vector x, expressed in the original Cartesian coordinates as

x = xiei = (Rξ,Rη, cHζ) (4.27)

is represented in covariant basis of the curvilinear coordinates as

x = ξigi, gj =
∂xi
∂ξj

ei. (4.28)

The covariant basis in this particular case consists of

g1 = R e1 + cζ
∂H

∂ξ
e3, g2 = R e2 + cζ

∂H

∂η
e3, g3 = cH e3. (4.29)

The change of the basis can be represented by means of Jacobian matrix

[Jij ] =
∂xi
∂ξj

=

 R 0 0
0 R 0

cζ ∂H∂ξ cζ ∂H∂η cH

 , (4.30)

which rows consist of coordinates of the covariant basis vectors. The backward transformation
is done by inverse matrix

[Jij ]
−1 =


1
R 0 0
0 1

R 0
−ζ
RH

∂H
∂ξ

−ζ
RH

∂H
∂η

1
cH

 , (4.31)

that has the coordinates of contravariant basis put in the rows (gigj = δij).
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The covariant and contravariant metric tensors are

[gij ] = JTJ =


R2 + c2ζ2

(
∂H
∂ξ

)2
c2ζ2 ∂H

∂ξ
∂H
∂η c2ζH ∂H

∂ξ

c2ζ2 ∂H
∂ξ

∂H
∂η R2 + c2ζ2

(
∂H
∂η

)2
c2ζH ∂H

∂ζ

c2ζH ∂H
∂ξ c2ζH ∂H

∂ζ c2H2

 , (4.32)

[
gij
]

= J−1J−T =


1
R2 0 −ζ

HR2
∂H
∂ξ

0 1
R2

−ζ
HR2

∂H
∂η

−ζ
HR2

∂H
∂ξ

−ζ
HR2

∂H
∂η

1
c2H2 + ζ2

R2H2

((
∂H
∂ξ

)2
+
(
∂H
∂η

)2
)
 . (4.33)

Gradient of a scalar field can be now calculated as

∇f =
∂f

∂ξi
gi = gki

∂f

∂ξk
gi, (4.34)

Laplacian of a scalar field as

∆f =
1
√
g

∂

∂ξi

(
gki

∂f

∂ξk
√
g

)
, (4.35)

where
√
g =

√
det ([gij ]). (4.36)

Specially, the thermal gradient coordinates are

[∇T ] = J−T

[
∂T

∂ξi

]
=


1
R
∂T
∂ξ −

ζ
RH

∂H
∂ξ

∂T
∂ζ

1
R
∂T
∂η −

ζ
RH

∂H
∂η

∂T
∂ζ

1
Hc

∂T
∂ζ

 , (4.37)

and the Laplacian of temperature is

∆T =
1
R2

∂2T

∂ξ2
+

1
R2

∂2T

∂η2
+

1
H2c2

∂2T

∂ζ2
+

1
R2H2

((
∂H

∂ξ

)2

+
(
∂H

∂η

)2
)
ζ2∂

2T

∂ζ2
− 2
R2H

∂H

∂ξ
ζ
∂2T

∂ξ∂ζ
− 2
R2H

∂H

∂η
ζ
∂2T

∂η∂ζ
−(

1
R2H

∂2H

∂ξ2
+

1
R2H

∂2H

∂η2
− 2
R2H2

(
∂H

∂ξ

)2

− 2
R2H2

(
∂H

∂η

)2
)
ζ
∂T

∂ζ
. (4.38)

Other quantities used in the equation (4.22) are already known expressed in the Cartesian
coordinate system {ei} from the results of generalized Reynolds equation or as material
properties.
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The energy conservation equation now becomes (considering constant thermal conductiv-
ity k)

ρcp

(
∂T

∂t
+ v1

(
1
R

∂T

∂ξ
− ζ

RH

∂H

∂ξ

∂T

∂ζ

)
+ v2

(
1
R

∂T

∂η
− ζ

RH

∂H

∂η

∂T

∂ζ

)
+ v3

(
1
Hc

∂T

∂ζ

))
=

∂p

∂t
+ v1

(
1
R

∂p

∂ξ

)
+ v2

(
1
R

∂p

∂η

)
+ k

(
1
R2

∂2T

∂ξ2
+

1
R2

∂2T

∂η2
+

1
H2c2

∂2T

∂ζ2
+

1
R2H2

((
∂H

∂ξ

)2

+
(
∂H

∂η

)2
)
ζ2∂

2T

∂ζ2
− 2
R2H

∂H

∂ξ
ζ
∂2T

∂ξ∂ζ
− 2
R2H

∂H

∂η
ζ
∂2T

∂η∂ζ
−(

1
R2H

∂2H

∂ξ2
+

1
R2H

∂2H

∂η2
− 2
R2H2

(
∂H

∂ξ

)2

− 2
R2H2

(
∂H

∂η

)2
)
ζ
∂T

∂ζ

)
+

µ

((
∂v1
∂x3

)2

+
(
∂v2
∂x3

)2
)
. (4.39)

The above time dependent equation (in partial dimensionless form) has been solved by finite
difference method together with the generalized Reynolds equation (4.16). The finite differ-
ence scheme was complicated, and problems with oscillations of approximate solution often
occurred, when approaching steady state solution.

4.2.6 FEM formulation of Steady State Equation of Energy Conservation

Steady state form of equation (4.22),

∇ · (k∇T )− ρcp (v · ∇T ) = −v · ∇p− Φ, (4.40)

is discretized by means of Galerkin method as∫
Ω
kNi

(
∂2T

∂x2
1

+
∂2T

∂x2
2

+
∂2T

∂x2
3

)
dΩ−

∫
Ω
ρcpNi

(
v1
∂T

∂x1
+ v2

∂T

∂x2
+ v3

∂T

∂x3

)
dΩ =

−
∫

Ω
Ni

(
v1
∂p

∂x1
+ v2

∂p

∂x2

)
dΩ−

∫
Ω
µNi

((
∂v1
∂x3

)2

+
(
∂v2
∂x3

)2
)

dΩ. (4.41)

Applying Green’s first identity leads to∫
Ω
k

(
∂Ni

∂x1

∂Nj

∂x1
+
∂Ni

∂x2

∂Nj

∂x2
+
∂Ni

∂x3

∂Nj

∂x3

)
Tj dΩ−

∫
∂Ω
kNi (∇Nj) · nTj dS+∫

Ω
ρcpNi

(
v1
∂Nj

∂x1
+ v2

∂Nj

∂x2
+ v3

∂Nj

∂x3

)
Tj dΩ =

∫
Ω
Ni

(
v1
∂p

∂x1
+ v2

∂p

∂x2

)
dΩ+∫

Ω
µNi

((
∂v1
∂x3

)2

+
(
∂v2
∂x3

)2
)

dΩ. (4.42)
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The original volume Ω is mapped onto volume Ωn (4.26) by presented change of coordi-
nates. The Jacobian of the transformation is

det (J) = R2Hc, (4.43)

so that the volume integrals from (4.42) containing temperature, expressed in the new curvi-
linear coordinates and using the formula (4.34) for scalar gradients are as follows.

Conductive part:∫
Ω
k

(
∂Ni

∂x1

∂Nj

∂x1
+
∂Ni

∂x2

∂Nj

∂x2
+
∂Ni

∂x3

∂Nj

∂x3

)
Tj dΩ = c

∫
Ωn

kH

(
∂Ni

∂ξ

∂Nj

∂ξ
+
∂Ni

∂η

∂Nj

∂η

)
+

kζ2

H

∂Ni

∂ζ

∂Nj

∂ζ

((
∂H

∂ξ

)2

+
(
∂H

∂η

)2

+
(
R

cζ

)2
)
− kζ

(
∂H

∂ξ

(
∂Ni

∂ξ

∂Nj

∂ζ
+
∂Nj

∂ξ

∂Ni

∂ζ

)
+

∂H

∂η

(
∂Ni

∂η

∂Nj

∂ζ
+
∂Nj

∂η

∂Ni

∂ζ

))
dΩn Tj . (4.44)

Convective part:∫
Ω
ρcpNi

(
v1
∂Nj

∂x1
+ v2

∂Nj

∂x2
+ v3

∂Nj

∂x3

)
Tj dΩ = (4.45)

Rc

∫
Ωn

ρcpNi

(
H

(
v1
∂Nj

∂ξ
+ v2

∂Nj

∂η
+

v3R

Hc

∂Nj

∂ζ

)
− ζ

∂Nj

∂ζ

(
∂H

∂ξ
+
∂H

∂η

))
dΩn Tj .

the integrals on the right hand side of equation (4.42) are trivial, because velocity, pressure and
their gradients are known functions (in the weak sense; obtained from generalized Reynolds
equation). Using finite element technique, the surface integral in (4.42) will become important
only at boundaries of region Ω, where other than Dirichlet boundary condition is applied.

The region Ωn is meshed by 8-node trilinear brick elements, all oriented with faces parallel
to planes defined by ξ = 0, η = 0, ζ = 0. Boundary of a single finite element encloses a region
Ωe
n = {(ξ, η, ζ) ∈ R3 : ξ ∈ 〈ξa, ξb〉, η ∈ 〈ηa, ηb〉, ζ ∈ 〈ζa, ζb〉}. The basis functions of such

element are

N1 =
−η ξ ζ + ζbη ξ + ξbη ζ + ηbξ ζ − ζbξbη − ζbηbξ − ηbξbζ + ζbηbξb

(ξb − ξa) (ηb − ηa) (ζb − ζa)

N2 =
η ξ ζ − ζbη ξ − ξbη ζ − ηaξ ζ + ζbξbη + ηaζbξ + ξbηaζ − ηaξbζb

(ξb − ξa) (ηb − ηa) (ζb − ζa)

N3 =
η ξ ζ − ζaη ξ − ξbη ζ − ηbξ ζ + ξbζaη + ζaηbξ + ηbξbζ − ηbξbζa

(ξb − ξa) (ηb − ηa) (ζb − ζa)

N4 =
−η ξ ζ + ζaη ξ + ξbη ζ + ηaξ ζ − ζaξbη − ζaηaξ − ηaξbζ + ζaηaξb

(ξb − ξa) (ηb − ηa) (ζb − ζa)

N5 =
η ξ ζ − ζbη ξ − ξaη ζ − ηbξ ζ + ξaζbη + ζbηbξ + ξaηbζ − ηbξaζb

(ξb − ξa) (ηb − ηa) (ζb − ζa)
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N6 =
−η ξ ζ + ζbη ξ + ξaη ζ + ηaξ ζ − ξaζbη − ηaζbξ − ξaηaζ + ηaξaζb

(ξb − ξa) (ηb − ηa) (ζb − ζa)

N7 =
−η ξ ζ + ζaη ξ + ξaη ζ + ηbξ ζ − ξaζaη − ζaηbξ − ξaηbζ + ηbξaζa

(ξb − ξa) (ηb − ηa) (ζb − ζa)

N8 =
η ξ ζ − ζaη ξ − ξaη ζ − ηaξ ζ + ξaζaη + ζaηaξ + ξaηaζ − ηaξaζa

(ξb − ξa) (ηb − ηa) (ζb − ζa)

The weak solution for temperature is searched as the solution of set of linear equations
KijTj = Fi. The element stiffness matrix Ke is given by

Ke
ij = Id + Iv + IS, (4.46)

Id = kc
8∑
l=1

Hl

ξb ηb ζb∫∫∫
ξa ηa ζa

Nl

(
∂Ni

∂ξ

∂Nj

∂ξ
+
∂Ni

∂η

∂Nj

∂η

)
dζ dη dξ+

R2

c2
Qal

ξb ηb ζb∫∫∫
ξa ηa ζa

Nl
∂Ni

∂ζ

∂Nj

∂ζ
dζ dη dξ +Qbl

ξb ηb ζb∫∫∫
ξa ηa ζa

ζ2Nl
∂Ni

∂ζ

∂Nj

∂ζ
dζ dη dξ−

Qcl

ξb ηb ζb∫∫∫
ξa ηa ζa

ζNl

(
∂Ni

∂ξ

∂Nj

∂ζ
+
∂Ni

∂ζ

∂Nj

∂ξ

)
dζ dη dξ− (4.47)

Qdl

ξb ηb ζb∫∫∫
ξa ηa ζa

ζNl

(
∂Ni

∂η

∂Nj

∂ζ
+
∂Ni

∂ζ

∂Nj

∂η

)
dζ dη dξ

 ,

Iv = Rcρcp

8∑
l=1

Qel
ξb ηb ζb∫∫∫

ξa ηa ζa

NlNi
∂Nj

∂ξ
dζ dη dξ +Qfl

ξb ηb ζb∫∫∫
ξa ηa ζa

NlNi
∂Nj

∂η
dζ dη dξ+

R

c
Qgl

ξb ηb ζb∫∫∫
ξa ηa ζa

NlNi
∂Nj

∂ζ
dζ dη dξ −Qhl

ξb ηb ζb∫∫∫
ξa ηa ζa

ζNlNi
∂Nj

∂ζ
dζ dη dξ

 , (4.48)

where

Qa =
1
H
, Qb =

1
H

((
∂H

∂ξ

)2

+
(
∂H

∂η

)2
)
, Qc =

∂H

∂ξ
, Qd =

∂H

∂η
,

Qe = Hv1, Qf = Hv2, Qg = v3, Qh =
∂H

∂ξ
+
∂H

∂η
, (4.49)

are auxiliary functions used during matrix assembly. All integrals in (4.47) and (4.48) are
calculated just once. Update during iterative numerical solution is done only by these coeffi-
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cients and quick rebuilding of the elements’ matrices. Matrix IS is the surface integral from
(4.42), and it has effect only for the boundary elements at the end of bearing, where the air
escapes to the atmosphere. Depending on which end of the bearing the element is positioned,
the surface integral can be expressed as either one of the following

IS = ck
8∑
l=1

Hl

ξb,ζb∫∫
ξa ζa

NlNi
∂Nj

∂η
dζ dξ −Qdl

ξb,ζb∫∫
ξa ζa

ζNlNi
∂Nj

∂ζ
dζ dξ


∣∣∣∣∣∣∣
η=ηa

,

IS = −ck
8∑
l=1

Hl

ξb,ζb∫∫
ξa ζa

NlNi
∂Nj

∂η
dζ dξ −Qdl

ξb,ζb∫∫
ξa ζa

ζNlNi
∂Nj

∂ζ
dζ dξ


∣∣∣∣∣∣∣
η=ηb

. (4.50)

The right-hand side of (4.42) is straightforwardly integrable per finite elements, giving the
forcing vectors Fei . It should be mentioned that thermal conductivity k, viscosity µ, isobaric
heat capacity cp and density ρ are all treated constant over single element to simplify the
process. The mesh is supposed to be fine enough to make this assumption not causing an
excessive error. The pressure and the velocity are also known only in the weak sense.

4.2.7 Numerical Process of THDL Analysis

High altitude view of the process of THDL analysis is depicted in the figure 4.1. It consists
of two main blocks, the generalized Reynolds equation FEM solver (section 4.2.3) and the
thermal analysis FEM solver (section 4.2.6) in a closed loop. Between those two solvers, the
updates of the air properties and the other shared quantities take place. The entire analysis
runs iteratively, until the results seem reached converged values according to selected criteria
(maximum norm of difference of two consecutive temperature vectors Tj). Rest of the process
belongs to the necessary pre and post processors. Pre-processor consists of meshers producing
quadrilateral mesh for generalized Reynolds equation solver and brick mesh for the thermal
analysis. The algorithms of the meshers are trivial, as both meshed regions are rectangle or
cuboid. All the elements are of uniform size.

Described numerical process exhibits fast convergence of the results for analysis of bearing
with Dirichlet boundary conditions applied on the journal and bushing cylindrical surfaces.
With this scenario, seven iterations within the loop of generalized Reynolds and thermal
analysis is sufficient number to obtain stabilized results for given number of finite elements,
as can be seen in the figure 4.2.

The generalized Reynolds equation solver uses Newton-Raphson method, so does the
solver developed for the isothermal bearing analysis. Thermal analysis is developed in the
way, that a system of linear equations is solved every iteration loop. Iterative solver is used
for solving this set, because direct sparse solver based on LU decomposition of system ma-
trix K turned out to be excessively memory consuming, owing to the fact that even though
system matrix K is sparse, its LU factorisation may produce (and it does in this particu-
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Input Data & Starting
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GR: Local and Global
Matrices Update &

Iterative Solver
(Newton-Raphson)

Updates for TA:
ρ, p, v

TA: Local and Global
Matrices Update &

Iterative Solver
(BiCGstab)

Updates for GR:
AQ, BQ

Post Process

Convergence Check
(Temperature)

Updates of k, cp, µ

Figure 4.1: THDL analysis process chart. GR: Generalized Reynolds FEM solver, TA: Ther-
mal analysis FEM solver

lar case) significantly denser matrices L, U. Biconjugate gradients stabilized method with
preconditioning is used to solve the system instead. For preconditioning, the incomplete LU
factorisation is used. Drop tolerance of this factorisation was set to 10−4. This value was
found experimentally in order to preserve fast convergence of biconjugate gradients method,
while avoiding overflow of available physical memory. The biconjugate gradients method then
converged mostly within a few iterations with relative error of order 10−16.

4.3 Test Case of THDL Analysis

Bearing with eight inherently compensated orifices of diameter do = 0.2 mm, positioned in
the middle of bearing length, with other dimensions R = 15mm, L = 30mm, c = 20µm was
analysed to test the THDL analysis process in the terms of convergence of the results with
respect to number of finite elements used. Dirichlet boundary conditions (T = 300K) applied
on cylindrical surfaces of the bearing bushing and journal were applied.
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Figure 4.2: Convergence of iterative process of steady state THDL solver

4.3.1 Convergence Criteria

Firstly, minimum, maximum and average temperature of the air within the bearing was calcu-
lated for increasing number of elements. The results are plotted in the graph 4.3 for stationary
and relatively fast running journal. The average temperature is virtually independent on the
number of finite elements, whereas the minimum and maximum temperature show tendency
to slowly diverge within the examined range of number of finite elements. This finding has
the origin in the fact that both extremes of temperature appear in small regions near the air
inlet orifices, where the highest pressure gradients occur. With respect to the size of elements,
even for the highest number used, each air inlet acts as a singularity, which is averaged over
single element surface. Presented model is not capable of providing detailed solution of tem-
perature within the areas of air inlet orifices. To obtain accurate temperature peaks in those
small areas close to air inlet orifices, a different kind of model, solving both the flow and heat
transfer related problems on significantly refined mesh would have been necessary. However
the maximum and minimum temperatures do not converge with more precise representation
of the pressure and the temperature, the affected regions are getting smaller. Isolated force
acting at a single node of structural FEM model might be good analogy to this situation.

More important than local extremes of the temperature is the overall energy balance
of the system. During deriving this model, there were number of simplifications taken into
process. Following criteria of convergence is provided.

Energy balance of the bearing control volume can be written in terms of stagnation
enthalpy change between inlet and outlet of the control volume. For steady state situation,
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Figure 4.3: Convergence of temperature

the difference in the stagnation enthalpy is covered by shaft work and heat brought to the
system, according to the next equation

ṁ
(
i
{out}
ST − i

{in}
ST

)
= Q̇+ Ẇsh. (4.51)

The heat flow Q̇, as well as the stagnation enthalpy change, can be calculated from the results
of thermal analysis by means of integrals over surfaces enclosing the bearing volume. Outlet
stagnation enthalpy rate İ{out}ST = ṁi

{out}
ST is calculated as

İ
{out}
ST =

∫∫
S{out}

ρ

(
cpT +

v2

2

)
v · ndS = İ{out} + Ẇ

{out}
kin , (4.52)

S{out} being the bearing outlet area. Inlet stagnation enthalpy can be calculated directly,
summing over n inlets

İ
{in}
ST =

n∑
i=1

ṁi

(
cpTi +

v2
i

2

)
= İ{in} + Ẇ

{in}
kin . (4.53)

Heat transferred from journal and bushing can be estimated by means of integral all over the
control volume surface. Noticeable value will have only heat transport through cylindrical
surfaces of journal and bushing S{JB}.

Q̇ =
∫∫

S{JB}
k∇T · ndS. (4.54)
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Using above relations, the shaft work done on the system can be put down as

Ẇsh = İ
{out}
ST − İ

{in}
ST − Q̇ = İ + Ẇkin − Q̇. (4.55)

By integration of the energy equation (4.40) over entire control volume, we get

İ − Q̇ =
∫∫∫

Ω
(Φ + v · ∇p) dΩ, (4.56)

which should be satisfied for fully conservative model.
Let residual enthalpy change rate be defined as

İres =
n∑
i=1

ṁicpTi −
∫∫

S{out}
ρcpTv · ndS +

∫∫
S{JB}
k∇T · ndS +

∫∫∫
Ω
(Φ + v · ∇p) dΩ, (4.57)

using the last equation (4.56), enthalpy rate of change, and heat transfer rate calculated from
the equations (4.52),(4.53) and (4.54). The residual enthalpy rate of change for two chosen
cases is in the graph of the figure 4.4.

Figure 4.4: Convergence in terms of residual enthalpy rate of change

4.3.2 Results of the Test Case

Results of the analysis of the test case of bearing A, running at angular speed ω = 10, 000 s−1

are presented in the following figures. Number of finite elements used was 291,600. The fig.
4.5 shows the calculated temperature in the middle of the air film, figs. 4.6 and 4.7 show
the air temperature at bearing midplane and the temperature at the end of bearing. In
the figures 4.8, 4.9, the temperature in radial-axial cuts is displayed. These results show the
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temperature variations within range of several Kelvins, even with respect to the discussed fact
of uncertain absolute values of the temperatures near orifices. Because Galerkin method was
used to solve strongly convective problem, the stability of the method is of concern. With the
number of elements used, mild non-physical spatial oscillations are becoming visible. Further
increase of number of elements promotes these oscillations. For higher resolution of spatial
discretization, some stabilized variant of the Galerkin method will have to be used in order
to obtain the results free from non-physical oscillation. For general purpose of this analysis,
level of discretization of the problem is sufficient.

Figure 4.5: Temperature of the air, measured in the middle of air film thickness (ζ = 0.5);
Bearing design A, ω = 10000 s−1, ps = 0.5 MPa, ε = 0.5

Pressure profile calculated by the generalized Reynolds equation is drawn in the fig-
ure 4.10. Difference between this pressure and pressure obtained by finite element model of
isothermal bearing at 300 K is in the figure 4.11. Maximum difference between those two
pressure profiles is less than 10% for this relatively fast running bearing configuration. Use
of isothermal bearing models is justifiable in most cases of isothermal boundary conditions.
Angular speed of 10, 000 s−1 for this bearing design is rather excessive with respect to bearing
stability. Lesser effect on pressure is expected within practical range of journal speed.

The circumferential and the axial components of air velocity, measured in the middle of air
film, are in the figures 4.12 and 4.13. The figure 4.14 shows this velocity field in streamlines,
together with isobaric contours. The streamlines are significantly not perpendicular to the
isobars due to the Couette component of flow generated by rotation of journal.
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Figure 4.6: Temperature of the air, measured in the middle of the bearing (η = 0.5); Bearing
design A, ω = 10000 s−1, ps = 0.5 MPa, ε = 0.5

Figure 4.7: Temperature of the air leaving the bearing, measured at the bearing end (η = 0);
Bearing design A, ω = 10000 s−1, ps = 0.5 MPa, ε = 0.5
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Figure 4.8: Temperature of the air, measured in between two air inlet orifices (radial-axial
cut); Bearing design A, ω = 10000 s−1, ps = 0.5 MPa, ε = 0.5

Figure 4.9: Temperature of the air, measured at position of an air inlet orifice (radial-axial
cut); Bearing design A, ω = 10000 s−1, ps = 0.5 MPa, ε = 0.5
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Figure 4.10: Pressure profile obtained by THDL analysis; Bearing design A, ω = 10000 s−1,
ps = 0.5 MPa, ε = 0.5

Figure 4.11: Difference between pressure profiles resulting from THDL and isothermal HDL
analyses; Bearing design A, ω = 10000 s−1, ps = 0.5 MPa, ε = 0.5
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Figure 4.12: Circumferential (ξ) component of air velocity, measured in the middle of air film
thickness (ζ = 0.5); Bearing design A, ω = 10000 s−1, ps = 0.5 MPa, ε = 0.5

Figure 4.13: Axial (η) component of air velocity, measured in the middle of air film thickness
(ζ = 0.5); Bearing design A, ω = 10000 s−1, ps = 0.5 MPa, ε = 0.5
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Figure 4.14: Streamlines (blue) of air flow in the middle of air film (ζ = 0.5) and isobars
(black); Bearing design A, ω = 10000 s−1, ps = 0.5 MPa, ε = 0.5

Mean values of viscosity, thermal conductivity and isobaric thermal capacity are plotted
in graphs of the figures 4.15, 4.16 and 4.17. These quantities exhibit little spatial variations
caused by temperature variations within the air film.

Mechanical part of enthalpy change, taken from the right-hand side of equation (4.56) is
shown in the figure 4.18 as surface density, defined as

İDmech =
∫ h

0
(Φ + v · ∇p) dx3, (4.58)

Contribution to the enthalpy change from air expansion and energy dissipation are plotted
separately in the figures 4.19, 4.20, where

İDexp =
∫ h

0
v · ∇p dx3, İDdis =

∫ h

0
Φ dx3. (4.59)

Overall contributions of these components to the enthalpy rate of change,

İexp =
∫∫∫

Ω
v · ∇p dΩ, İdis =

∫∫∫
Ω
Φ dΩ, İmech = İexp + İdis, (4.60)

are depicted in the figure 4.21 with respect to journal angular speed. This graph shows
a balance between the air expansion and the energy dissipation in the case of standstill
journal, ω = 0, when only Poiseuille part of flow is present. Therefore, this part of flow does
not significantly contribute to the change of average temperature of the bearing. The Couette
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Figure 4.15: Mean value of air viscosity, averaged across air film thickness; Bearing design A,
ω = 10000 s−1, ps = 0.5 MPa, ε = 0.5

Figure 4.16: Mean value of air thermal conductivity, averaged across air film thickness; Bear-
ing design A, ω = 10000 s−1, ps = 0.5 MPa, ε = 0.5
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Figure 4.17: Mean value of isobaric thermal capacity of the air, averaged across air film
thickness; Bearing design A, ω = 10000 s−1, ps = 0.5 MPa, ε = 0.5

flow, driven by journal rotation is the main contributor to the enthalpy rate of change and as
such it is mostly taken out of the control volume in the form of heat transfered through the
isothermal boundaries representing journal and bushing. The quantity İmech closely follows
quadratic function approaching the bearing mechanical power loss.
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Figure 4.18: Surface density of enthalpy rate of change, isolated effect of air expansion and
dissipation; Bearing design A, ω = 10000 s−1, ps = 0.5 MPa, ε = 0.5

Figure 4.19: Surface density of enthalpy rate of change, isolated effect of air expansion; Bearing
design A, ω = 10000 s−1, ps = 0.5 MPa, ε = 0.5
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Figure 4.20: Surface density of enthalpy rate of change, isolated effect of dissipation; Bearing
design A, ω = 10000 s−1, ps = 0.5 MPa, ε = 0.5
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Figure 4.21: Enthalpy rate of change components vs. journal angular speed; Bearing design
A, ps = 0.5 MPa, ε = 0.5
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4.4 Bearing Operating Temperature

Thermal analysis of the bearing with isothermal boundary conditions confirmed the assump-
tion of nearly isothermal air film, which is in accordance with experimental evidence observed
by Ohishi and Matsuzaki [26]. The opened question is the mean air film temperature in the
case of more realistic boundary conditions of the air film. The temperatures of the shaft and
bushing cylindrical surfaces are determined by solid parts of the bearing and their boundary
conditions.

Using steady state heat conduction models of journal and bushing, the thermal contact
temperature can be searched by means of the balance between the heat transferred through
air film model boundaries to solid parts and the heat leaving those parts by natural or forced
convection.

4.4.1 Steady State Heat Conduction Models of Bearing Parts

For demonstrative purposes, simple geometry of solid parts composing the bearing was chosen:
Hollow shaft of 30 mm outer diameter, with inner diameter 10 mm and length of 100 mm;
Cylindrical bushing of outer diameter 50 mm and 30 mm length, with neglected geometry
of the air supply ducts. Bushing is positioned on the shaft so that the bearing end face is in
distance of 20 mm from the end of the shaft. Other bearing parameters are identical to the
test case analysed in previous section.

20 30
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Figure 4.22: Shaft and air bearing configuration for thermal analysis

Steady state heat conduction problem for bushing was formulated in cylindrical coordi-
nates (r, ϕ, z) according to Lewis et al. [69]; Galerkin method using basis functions of trilinear
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brick elements was applied on equation

kb

(
∂2T

∂r2
+

1
r

∂T

∂r
+

1
r2
∂2T

∂ϕ2
+
∂2T

∂z2

)
= 0. (4.61)

Axisymmetric formulation was chosen for journal heat conduction, assuming the rotation of
the journal will lead to uniform temperature along ϕ coordinate. Simplex triangular linear
elements were used for journal discretization. Axisymmetric steady state heat conduction
equation used for journal:

kj

(
∂2T

∂r2
+

1
r

∂T

∂r
+
∂2T

∂z2

)
= 0. (4.62)

Convection boundary conditions for free surfaces of both these parts were considered with
heat convection coefficients: hj = 200 W m−2K−1 and hb = 50 W m−2K−1. Thermal conduc-
tivity of materials of journal and bushing was kj = 16 W m−1K−1, kb = 45 W m−1K−1. Heat
flow boundary conditions are applied on remaining surfaces. Sizes of the elements in circum-
ferential and axial directions are equal to those of THDL model of the air film. The amount
of heat transferred to the metal parts is calculated by solving the thermal analysis of the air
film.

4.4.2 Results of Steady State Operating Temperature

Steady state temperature of bearing configuration described in the previous section was
calculated for two journal angular speeds: ω = 10, 000 s−1 and ω = 1 s−1. The second case can
be considered standstill journal, but very slow rotation was set in order to satisfy assumption
of uniform temperature along circumferential coordinate of journal. Results of these analyses
are presented in the figures 4.23 to 4.28.

Results for standstill rotor confirmed that virtually no effect on temperature comes from
the Poiseuille flow induced by supply of pressurized air. Bearing operating temperature for
configuration of fast running journal is driven by particular design of the parts and the con-
vective boundary conditions, but from obtained temperature distribution it can be concluded,
that the air film remains nearly isothermal in this particular case and that it could be treated
as isothermal for most technical applications, even if the operating temperature significantly
differs from the ambient temperature. Accurate prediction of the operating temperature is a
matter of adequate models of solid parts involved and of understanding boundary conditions
of particular design case.
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Figure 4.23: Steady state temperature of bearing, radial (r, ϕ) cut in quarter of bearing length.
Bushing: red element edges, Journal: blue element edges, Air film: grey element edges, Air
film thickness scaled up by factor 400; Bearing design A, ω = 10000 s−1, ps = 0.5 MPa, ε = 0.5

Figure 4.24: Steady state temperature of bearing, radial (r, ϕ) cut in quarter of bearing
length, isotherms; Bearing design A, ω = 10000 s−1, ps = 0.5 MPa, ε = 0.5
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Figure 4.25: Steady state temperature of bearing, axial (r, z) cut, isotherms; Air film thickness
scaled up by factor 400; Bearing design A, ω = 10000 s−1, ps = 0.5 MPa, ε = 0.5

Figure 4.26: Steady state temperature of bearing, radial (r, ϕ) cut in quarter of bearing length.
Bushing: red element edges, Journal: blue element edges, Air film: grey element edges, Air
film thickness scaled up by factor 400; Bearing design A, ω = 1 s−1, ps = 0.5 MPa, ε = 0.5
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Figure 4.27: Steady state temperature of bearing, radial (r, ϕ) cut in quarter of bearing
length, isotherms; Bearing design A, ω = 1 s−1, ps = 0.5 MPa, ε = 0.5

Figure 4.28: Steady state temperature of bearing, axial (r, z) cut, isotherms; Air film thickness
scaled up by factor 400; Bearing design A, ω = 1 s−1, ps = 0.5 MPa, ε = 0.5
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Chapter 5

Conclusion

This dissertation defines and delivers a set of mathematical tools for analysis of rotor systems
supported in aerostatic journal bearings, with special concerns about thermal conditions of
analysed system. This work was motivated by the fact that there is little attention paid
to the thermal analysis of aerostatic bearings in scientific literature despite the high sensi-
tivity of bearing geometry and lubricant parameters to the temperature changes. Elevated
temperature of aerostatic bearings during high speed operation is evident from experiments.
Modelling technique capable of analysing the thermal situation of these bearings is the key
aim of this work. Results of developed model, the average temperature of lubricant film,
its distribution over the lubricant volume, and the resulting effect to the lubricant pressure
enable the calculation of relevant properties of the air bearings. These results also provide
reasoning of the use of significantly simpler isothermal hydrodynamic bearing analysis in par-
ticular design cases. Providing that the non-uniformity of bearing temperature causes little
effect to the pressure distribution, the isothermal bearing models can be employed (using
adequate parameters obtained from the thermal analysis). Those isothermal models can be
treated in the time domain together with equations of motions of rotor system. In spite of
the fact that hydrodynamic models of aerostatic bearing are non-linear, the bearings itself
can behave almost linearly at certain conditions. Development of isothermal bearing models
and methods of assessment of their linearity was also objective of this work. An analysis tool
providing linear coefficients of bearings (respecting all four lateral degrees of freedom: two
displacements and two tilts), which would be applicable to linear models of rotor systems
was also in the scope of this work. Elastic rotor models, whether treated in the time domain
together with a transient bearing models or approached in the frequency domain with the
use linear bearing coefficients, were to be programmed. Transient analysis of rotor systems
is usually time consumptive owing to a large span of eigenfrequencies of the rotor model,
therefore a reliable reduction method of gyroscopic defective rotor models was intended to
be implemented into resultant code package. All these objectives have been accomplished.

Thermo-hydrodynamic Lubrication model of aerostatic bearing with inherently compen-
sated orifices is presented in the chapter 4. It consists of energy conservation equation that is
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solved in three dimensions by means of finite element method. Galerkin approach is utilized in
order to obtain the weak formulation of energy equation in curvilinear coordinates. Transition
to curvilinear coordinates was proposed in order to transform problematic geometry of air film
to simple cuboid, which can however be done only on the cost of getting more complicated
form of solved equation. The energy equation is coupled with proposed generalized Reynolds
equation that represents momentum and mass transfer. The generalized Reynolds equation is
also discretized by means of finite elements. Both the generalized Reynolds equation and the
energy equation are solved iteratively together. Results of the test problems with isothermal
boundary conditions of bearing and journal surfaces suggested that the temperature inside air
film is nearly uniform (less than 5 K) in the most of the air volume even for the power loss of
70 W. The exceptions were the areas close to the orifices, at which the absolute temperature
was not obtainable, because the orifices were treated as point sources. Generated dissipative
heat was nearly all conducted out of the air volume via these idealized isothermal boundaries.
Test case also confirmed that Poiseuille part of the flow through bearing does not contribute
to the total generated heat, because the dissipative heat of this part of flow is balanced out by
the expansion work. Maximum local effect on the pressure, caused by observed little spatial
variations of temperature, was approximately 5% in the terms of difference from the pres-
sure of isothermal model. More realistic boundary conditions of THDL were implemented by
heat conduction models of journal and bushing. This joined system has been solved and the
results confirmed nearly isothermal distribution of the temperature within the air film, even
if the average film temperature was elevated by nearly 75 K. It also confirmed the negligible
effect of the Poiseuille flow. Both these findings, the effect of Poiseuille flow and the nearly
isothermal conditions of air film are in agreement with experimental observation of Ohishi
and Matsuzaki [26], who measured the air film temperatures for this kind of bearings and
also did not encounter an effect of Poiseuille part of the air flow to air film temperature. The
results of maintained analyses suggest that the isothermal assumption is justifiable in many
cases. Therefore the isothermal models of aerostatic bearings seem appropriate on condition
that the average air film temperature is understood.

Isothermal bearing models based on the Reynolds equation of classical lubrication are pre-
sented in the chapter 3 of this work. Finite element method was implemented in the steady
state solver of pressure distribution. Finite element approach to transient solver is also pre-
sented, but it was excessively time-consuming in comparison to the simple finite difference
method. Finite difference method was therefore preferred for transient solver. Comparison
of bearing load capacities that were calculated by both these methods showed reasonable
agreement for number of elements (mesh nodes resp.) exceeding 10,000. Finite difference
transient solver was used in the method of obtaining bearing linear stiffness and damping co-
efficients. Angular displacements as well as cross-coupling between translational and angular
displacements were respected. This method has been developed as an extension of existing
method of Czolczyński [39]. Characteristics of aerostatic bearing corresponding to the lateral
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translational displacements were recently measured by Kozánek and Půst [66]; these data
were compared to the data calculated by presented numerical method. Agreement between
measured and calculated stiffness coefficients was within the range of 25%, what can be con-
sidered good agreement with respect to all uncertainties involved in both processes. Linearity
of aerostatic bearings was studied by means of dependence of identified linear characteristics
on vibration amplitude and frequency. The biggest effects of nonlinearity were observed in
diagonal stiffness and damping coefficients. These parametric studies are difficult to interpret
in the terms of expected errors of bearing system response. Assessment of bearing linearity is
more accessible in the frequency domain. Comparison of transfer functions of bearing-journal
system that were obtained by means of calculated linear characteristics and the transfer func-
tion estimated from the transient response to a stochastic signal is more convenient option.
The level of nonlinearity can be also observed by magnitude-square coherence of force input
and displacement output of transient model.

Chapter 2 contains selected topics on elastic rotor models for analyses of combined sys-
tems of rotors and bearings. The most general model of rotating shaft developed in this
work is a Timoshenko shaft finite element with independent tilt of shaft cross-section and
internal viscous damping. The key topic of the chapter 2 is reduction of defective gyroscopic
rotor models. Three reduction methods were programmed and tested in frequency and time
domains. Partial decomposition of rotor system by bending modes of rotor system without
gyroscopic effect exhibited faster rate of convergence of eigenfrequencies and eigenvectors
than other two methods that were derived from Craig-Bampton component mode synthesis.
Results of transient analyses of the test case of a rotor with significant gyroscopic effect were
in accordance with this finding, although all three methods are proved feasible for reduction
of presented kind of defective rotor systems. Purpose of this reduction methods is to avoid
problems that are linked to computation of dynamic contributions of high frequency whirl
modes. In contrast with somewhat worse approximation of the full rotor system, the modified
Craig-Bampton component mode synthesis methods are better suited for transient analysis.
These fixed-interface methods do not use the rigid body modes of the rotor system. In addi-
tion, the transformations from physical to modal space and vice versa each integration step
are completely avoided.
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Appendix A

Quasistatic Timoshenko Shaft Finite
Element

Slopes of deflection curves v, w consist of two components of cross section lateral rotations

dv
dx

= ψ + δv,
dw
dx

= −ϑ+ δw (A.1)

Shear and bending angles are coupled by relation (2.5) in the case of static deflection. Slopes
of shaft deflection can be then written as

dv
dx

= ψ − EJ

κGA

d2ψ

dx2
,

dw
dx

= −ϑ− EJ

κGA

d2ϑ

dx2
. (A.2)

Actual angles of shaft cross section rotations ψ, ϑ are taken as independent state variables
and are approached by quadratic polynomial

ψ(x) =
dP3

dx
c1, ϑ(x) = −dP3

dx
c2, P3 = (1, x, x2, x3). (A.3)

Displacements v and w now involve bending and shear deformations

v(x) =
(
P3 − β

d2P3

dx2

)
c1, w(x) =

(
P3 + β

d2P3

dx2

)
c2, (A.4)

where
β =

EJ

κGA
. (A.5)

Vector of nodal displacements in terms of selected state variables is

qe = (qT
1 ,q

T
2 )T, (A.6)

where
qT

1 =
(
v(0) ψ(0) v(l) ψ(l)

)
, qT

2 =
(
w(0) ϑ(0) w(l) ϑ(l)

)
. (A.7)

Relation between nodal values and coefficients ci of basis polynomials is given by linear
transformation

qi = Siβ ci, (A.8)

148



Appendix A. Quasistatic Timoshenko Shaft Finite Element

where

S1β =


1 0 −2β 0
0 1 0 0
1 l l2 − 2β l3 − 6lβ
0 1 2l 3l2

 , S2β =


1 0 2β 0
0 −1 0 0
1 l l2 + 2β l3 + 6lβ
0 −1 −2l −3l2

 . (A.9)

Shaft deflection is now determined by means of nodal values as

v(x) =
(
P3 − β

d2 P3

dx2

)
S−1

1β q1, w(x) =
(
P3 + β

d2 P3

dx2

)
S−1

2β q2,

ψ(x) =
dP3

dx
S−1

1β q1, ϑ(x) = −dP3

dx
S−1

2β q2. (A.10)

Potential strain energy of shaft element contains both the bending and the shear compo-
nents

U e =
1
2

∫ l

0
E J(x)

[(
∂ ψ

∂ x

)2

+
(
∂ ϑ

∂ x

)2
]

dx

+
1
2

∫ l

0
κGA(x)

[(
∂ v

∂ x
− ψ

)2

+
(
∂ w

∂ x
+ ϑ

)2
]

dx. (A.11)

Kinetic energy of the element:

T e =
1
2

∫ l

0
ρA(x)

(
v̇2 + ẇ2

)
dx+

1
2

∫ l

0
ρ J(x)

(
ψ̇2 + ϑ̇2

)
dx

+
1
2

∫ l

0
ρ Jp(x)ω0

(
2 ϑ̇ ψ + 1

)
dx. (A.12)

Equations of motion of single finite element are obtained by means of Lagrange equations

d
dt

(
∂T e

∂q̇e

)
− ∂T e

∂qe
+
∂U e

∂qe
= Me

β q̈e + ω0 Ge
β q̇e + Ke

β qe (A.13)

providing local stiffness matrix

Ke
β =

(
S−T

1β (I3 + I3β)S−1
1β 0

0 S−T
2β (I3 + I3β)S−1

2β

)
, I3 =

∫ l

0
E J(x)

d2 P3

dx2

T d2 P3

dx2
dx,

I3β =
∫ l

0
κGA(x)β2 d3 P3

dx3

T d3 P3

dx3
dx, (A.14)

gyroscopic matrix:

Ge
β =

(
0 2S−T

1β I2S−1
2β

−2S−T
2β I2S−1

1β 0

)
, I2 =

∫ l

0
ρ J(x)

dP3

dx

T dP3

d2
dx, (A.15)
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and mass matrix

Me
β =

(
S−T

1β (I1β + I2)S−1
1β 0

0 S−T
2β (I2β + I2)S−1

2β

)
,

I1β =
∫ l

0
ρA(x)

(
P3 − β

d2 P3

dx

)T (
P3 − β

d2 P3

dx

)
dx,

I2β =
∫ l

0
ρA(x)

(
P3 + β

d2 P3

dx

)T (
P3 + β

d2 P3

dx

)
dx. (A.16)

Assuming prismatic shaft element, integrals I1β , I2β , I2, I3 and I3β can be evaluated in
closed form in advance

I1β = ρAl


1 l/2 l2/3− 2β l

(
l2 − 12β

)
/4

l2/3 l
(
l2 − 4β

)
/4 l2

(
l2 − 10β

)
/5

l4/5− 4βl2/3 + 4β2 l
(
l4 − 12βl2 + 36β2

)
/6

sym. l2
(
5l4 − 84βl2 + 420β2

)
/35

 ,

I2β = ρAl


1 l/2 l2/3 + 2β l

(
l2 + 12β

)
/4

l2/3 l
(
l2 + 4β

)
/4 l2

(
l2 + 10β

)
/5

l4/5 + 4βl2/3 + 4β2 l
(
l4 + 12βl2 + 36β2

)
/6

sym. l2
(
5l4 + 84βl2 + 420β2

)
/35

 ,

I2 = ρJl


0 0 0 0

1 l l2

4l2/3 3l3/2
sym. 9l4/5

 , (A.17)

I3 = EJl


0 0 0 0

0 0 0
4 6l

sym. 12l2

 , I3β = κGAl


0 0 0 0

0 0 0
0 0

sym. 36β2

 .

For convenience, parameter β can be substituted by

β =
l2

12
Φ, Φ =

12EJ
κGAl2

. (A.18)

When β=0 (Φ=0), then Timoshenko Ke
β , Ge

β, Me
β and Rayleigh Ke, Ge,Me matrices become

identical. Transformation by means of matrix T (1.69) provides local matrices in global
coordinates of nodal displacements

q̃e = (v(0), ψ(0), w(0), ϑ(0), v(l), ψ(l), w(l), ϑ(l))T. (A.19)
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Classification of Rotor Vibration Modes

Complex eigenvectors describing vibration modes (higher than rigid ones) of rotor can be of
four kinds: Planar bending, Forward whirl, Backward whirl and Mixed whirl. One method to
determine which type particular eigenvector v belongs to is to assess motion orbit v · ejωt of
each node separately, and decide as follows

1. Planar bending: All nodes follow linear trajectories

2. Forward whirl: All nodes follow elliptic trajectories in the same direction as (1,−j)Tejωt

3. Backward whirl: All nodes follow elliptic trajectories in oposite direction to (1,−j)Tejωt

4. Mixed whirl: Nodes follow elliptic trajectories, only part of them in the same direction
as (1,−j)Tejωt

Orbit trajectory of i-th node is

y(t) = Re
(
v̂i · ejωt

)
, z(t) = Re

(
ŵi · ejωt

)
, (B.1)

where v̂ and ŵ are components of eigenvector v. Substitutions v̂i = v · ejφv and ŵi = w · ejφw

to (B.1) renders the orbit trajectory as parametric equations of ellipse

y(t) = v cos (ωt+ φv) , z(t) = w cos (ωt+ φw) .

Phase difference between cosines determines following possibilities (Z denotes the set of whole
numbers)

φw − φv ∈


nπ, n ∈ Z; Ellipse degenerated into line segment
((2n− 1)π, 2nπ) , n ∈ Z; Forward (anti-clockwise) rotation of vector (y, z)T

(2nπ, (2n+ 1)π) , n ∈ Z; Backward (clockwise) rotation of vector (y, z)T
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Dynamic Parameters of Bearings
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Appendix C. Dynamic Parameters of Bearings

Figure C.1: Translational stiffness v. angular velocity of journal ω, Bearing design A&B,
Supply pressure ps = 0.4MPa

Figure C.2: Translational stiffness v. angular velocity of journal ω, Bearing design A&B,
Supply pressure ps = 0.5MPa
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Figure C.3: Angular stiffness v. angular velocity of journal ω, Bearing design A&B, Supply
pressure ps = 0.4MPa

Figure C.4: Angular stiffness v. angular velocity of journal ω, Bearing design A&B, Supply
pressure ps = 0.5MPa
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Figure C.5: Cross-coupling stiffness v. angular velocity of journal ω, Bearing design A&B,
Supply pressure ps = 0.4MPa

Figure C.6: Cross-coupling stiffness v. angular velocity of journal ω, Bearing design A&B,
Supply pressure ps = 0.5MPa
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Appendix C. Dynamic Parameters of Bearings

Figure C.7: Cross-coupling stiffness v. angular velocity of journal ω, Bearing design A&B,
Supply pressure ps = 0.4MPa

Figure C.8: Cross-coupling stiffness v. angular velocity of journal ω, Bearing design A&B,
Supply pressure ps = 0.5MPa
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Figure C.9: Translational damping coeff. v. angular velocity of journal ω, Bearing design
A&B, Supply pressure ps = 0.4MPa

Figure C.10: Translational damping coeff. v. angular velocity of journal ω, Bearing design
A&B, Supply pressure ps = 0.5MPa
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Figure C.11: Angular damping coeff. v. angular velocity of journal ω, Bearing design A&B,
Supply pressure ps = 0.4MPa

Figure C.12: Angular damping coeff. v. angular velocity of journal ω, Bearing design A&B,
Supply pressure ps = 0.5MPa
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Figure C.13: Cross-coupling damping coeff. v. angular velocity of journal ω, Bearing design
A&B, Supply pressure ps = 0.4MPa

Figure C.14: Cross-coupling damping coeff. v. angular velocity of journal ω, Bearing design
A&B, Supply pressure ps = 0.5MPa
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Figure C.15: Cross-coupling damping coeff. v. angular velocity of journal ω, Bearing design
A&B, Supply pressure ps = 0.4MPa

Figure C.16: Cross-coupling damping coeff. v. angular velocity of journal ω, Bearing design
A&B, Supply pressure ps = 0.5MPa
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