
The Servlet Model

HTTP Methods

Form Parameters

Requests

Responses

Servlet Life Cycle

Objectives

• HTML Introduction

– What is HTML?

– HTML Tags

– Web Browsers

• The Servlet Model

– HTML Methods (GET, POST)

– Form Parameters

– Requests

– Responses

– Servlet Life Cycle

HTML Introduction
What is HTML?

• HTML is a language for describing web pages.

– HTML stands for Hyper Text Markup Language

– HTML is not a programming language, it is a

markup language

– A markup language is a set of markup tags

– HTML uses markup tags to describe web pages

• HTML Documents = Web Pages

– HTML documents describe web pages

– HTML documents contain HTML tags and plain text

– HTML documents are also called web pages

HTML Introduction

HTML Tags

• HTML markup tags are usually called HTML tags

– HTML tags are keywords surrounded by angle brackets, that

begin “<” and finish with “>”, like <html>

– HTML tags normally come in pairs like and

• The first tag in a pair is the start tag, the second tag is the end tag

• Start and end tags are also called opening tags and closing tags.

• Web Browser

– The purpose of a web browser (like Internet Explorer, or Firefox,

etc) is to read HTML documents and display them as web pages.

– The browser does not display the HTML tags, but uses the tags to

interpret the content of the page

HTML Introduction
Example

The Servlet Model
Applications

• A collection of program is designed to perform a

particular task (different purposes)

• Classification (based on running and accessibility)

Local machine

Single user

LAN, WAN, or MAN

Muli-users in particular

network only

The Servlet Model
Applications

Web Server
Multi-users having administrator or

equivalent privileges

Browsing with Web Browser

N – tiers Architecture

•Subdivided to functioning

•Presentation is GUI

•Reducing the number location implementing the logic

The Servlet Model
HTTP Protocols

• Request – Response pairs

• Stateless

• Port 80 is default

192.168.54.3:80

http://microsoft.com/index.html

Connect

1. Convert http://microsoft.com/ to 192.168.54.3:80

2. Send a request to Web Server (index.html)

3. Web Server

processes a request

(connecting DB,

calculating, call

service …)

4. The result is responsed to Browser

5. Web Browser views

the result which

contains a markup

language

http://microsoft.com/

The Servlet Model
HTTP Requests

•The HTTP method

•A pointer to the resource requested, in the form of a URI

•The version of HTTP protocol

•Ex: GET /index.html HTTP/1.1

A carriage return/ line feed•Return the User-Agent (the browser) along with the Accept header

in the form name:value (provides information on what media types

the client can accept)

•Ex: User-Agent: Mozilla/4.0 (compatible: MSIE 4.0 : Windows 95)

Accept : image/gif, image/jpeg, text/*, */*

•Contain pretty much any thing (a set of parameters and values, an

image file intending to upload)

The Servlet Model
HTTP Requests – Example

The Servlet Model
HTTP Requests – Example

The Servlet Model
Request Objects

• GET:
– Is the method commonly used to request a

resource/ get information (access static resource
such as HTML doc and images or retrieve dynamic
information such as query parameters) from
server

– The length of query string, that is introduced by
the question mark “?”, is restricted 240 to 255

– Is trigger by
• Typing into the address line of the browser and

pressing GO

• Clicking on a link in a web page

• Pressing the submit button in an HTML <form>
whose method is set to GET

1. Form’s information is sent to Web

Server using request parameter.

2. Server process

requested client

(server script –

Server Side),

connect DB ...

4. The result of processing is responsed

3
. C

o
n

n
ect

Database

The Servlet Model
HTTP Methods

• GET – retrieves the resource identified by the request URL

• POST – sends data of unlimited length to the web server.

– Is the method commonly used for passing user input/ sending information to the
server (access dynamic resources and enable secure data in HTTP request
because the request parameters are passed in the body of request)

– No limit and cannot be booked mark or emailed

• HEAD – returns the headers identified by the request URL.

– Is identical to the GET method but it doesn‟t return a message body

– Is an economical way of checking that a resource is valid and accessible

• OPTIONS – returns the HTTP methods the server supports.

• PUT – stores a resource under the request URL.

• DELETE – removes the resource identified by the request URL.

• TRACE – returns the header fields sent with the TRACE request.

• Idempotency and Safety

– GET, TRACE, OPTIONS, and HEAD

The Servlet Model
HTTP Responses

Blank line

• Indicates status of request process (HTTP version,

response code, status)

• Ex: HTTP/1.1 200 OK

•Server. Ex: Server: JavaWebServer

•Last modified date.
• Ex: Last-modified: Tuesday, 24-Mar-09 8:30:34 GMT

•Content length. Ex: Content-length: 100

•Content type. Ex: Content-type: text/plain

The Servlet Model
HTTP Responses – Example

The Servlet Model
HTTP Responses – Example

The Servlet Model
Some commonly Status codes

Code Associated Message Meaning

101 Switching Protocols
- Server will comply with Upgrade header and

change to different protocol. (New in HTTP 1.1)

200 OK
- Everything is fine; document follow

- Default for servlets

201 Created
- Server created a document

- The Location header indicates its URL

203
Non-Authoritative

Information

- Document is being returned normally, but some of

the response headers might be incorrect since a

document copy is being used.

204 No Content - Browser should keep displaying previous document

301 MovedPermanently

- Document is moved to a separate location as

mentioned in the URL.

- The page is redirected to the mentioned URL, to

find the document

302 Found
- Temporary replacement of file from one location to

the other as specified

The Servlet Model
Some commonly Status codes

Status code Associated Message Meaning

400 Bad Request - The request placed is syntactically incorrect

401 Unauthorized
- Authorization not given to access a password

protected page

403 Permission denied
- Authentication but authorization not given to

access protected resource

404 Not Found - Resource not found in the specified address

408 Request Timeout
- Time taken by client is very long to send the

request (only available in HTTP 1.1)

500 Internal Server Error

- Server is unable to locate the requested file. The

servlet has been deleted or crashed or had been

moved to a new location with out informing

503
- Indicates that the HTTP server is temporarily

overloaded, and unable to handle the request

… … -…

The Servlet Model
Common Gateway Interface (CGI)

• A small program (*.exe) is written
in languages such as C/C++, Perl,
... for the gateway programs.

• Used in complex applications, such
as Web pages

• A set of standards followed to
interface applications form client
side to a Web Server

• Enables the Web server to send
information to other files and Web
browsers

• Helps to process the inputs to the
form on the Web page

• Enables to obtain information and
use it on the server machine (server
side)

• When the Browser sends request
to server, CGI instantaties to
receive and process.

The Servlet Model
Common Gateway Interface (CGI)

• Disadvantages

– Reduced efficiency

– Reloading Perl interpreter

– Interactive: not suitable for graphical or highly

interactive programs

– Time consuming and more memory consumed

– Debugging: error detection is difficult

– Not support Session

The Servlet Model
Servlets

• Are small Java programs that run on a Web server and help to build dynamic
Web pages.

• Servlets receive and respond to requests from Web clients, usually across HTTP.

• Java Servlet technology was created as a portable way to provide dynamic, user-
oriented content.

• A server side scripting is not requirement of reloading the Servlet compiler
each time a request is received from client

• Using multi threading (Overcome CGI’s consumed more memory)

• Gets auto refreshed on receiving a request each time

• A Servlet‟s initializing code is used only for initializing in the 1st time

• Merits
– Enhanced efficiency (initializing only once, auto refresh)

– Ease to use (using Java combining HTML)

– Powerful (using Java)

– Portable

– Safe and cheap

• Demerits
– Low-level HTML documentation (Static well-formed-ness is not maintained)

– Unclear-session management (flow of control within the codes is very unclear)

The Servlet Model
Servlets

Browser

Client

Web

Server

Request

Response

Database

Internet HTTP Protocol

ServletContainer

Servlets

The Servlet Model
Architecture of the Servlet packages

• The javax.servlet package provides
interfaces and classes for writing
servlets
• The important interface is

javax.servlet.Servlet

• When a servlet accepts a call from a
client, it receives two objects:
• ServletRequest, which encapsulates

the communication from the client to
the server.

• ServletResponse, which encapsulates
the communication from the servlet to
the client.

The Servlet Model
Form Parameters

• HTML Forms

– A form is defined on a web page starting with the opening tag
<form> and ending with closing tag </form>

– Syntax: <form action=“target” [method=“HTTP method”]>

• action attribute presents value that contains some target resource
in the web application (e.g. Servlet or JSP)

• method attribute denotes the HTTP method to execute. The default
is to execute HTTP GET when the form is submitted

• Notes: the action parameter obeys the rules

– action=“targetServlet”: the browser will assume that targetServlet
resides in the same place the default page as index.jsp or index.html

– action=“/targetServlet”: the browser will asume the the path at the
root location for specified host (http://host:port).

» Ex: http://localhost:8086/targetServlet

– action=“target?queryString”:the request send the data in
queryString to the URL

http://host:port/
http://host:port/
http://host:port/
http://host:port/
http://host:port/
http://localhost:8086/targetServlet
http://localhost:8086/targetServlet
http://localhost:8086/targetServlet
http://localhost:8086/targetServlet
http://localhost:8086/targetServlet
http://localhost:8086/targetServlet

The Servlet Model

Form Parameters
• HTML Forms – input tag

– Is used to input data

– Syntax: <input type=“…” [value=“…” name=“…”] />
• type attribute

– Dedicates to holding a single line of text (text).

» The size attribute specifies the width of text field in characters

» The maxlength attribute controls the maximum number of characters that a user can
type into the text field

– A browser should mask the character typed in by the user (password)

– Being a hidden field – is invisible (hidden)

– Put one or more small boxes that can be clicked to tick or check the corresponding value
denote (checkbox)

» checked=“checked” sets up the checkbox as already selected

– The choice made is mutual exclusive (radio)

» The name attribute is crucial to tying together a group of radio buttons

– Send the form data to the URL designated by the action attribute (submit)

– A request to the client browser to reset all the values within the form (reset)

– Defining the “custom button” which is connected to some soft of script (button)

• name attribute supplies the parameter name

• value attribute supplies the parameter value

The Servlet Model
Form Parameters

• HTML Forms – select tag
– Sets up a list of values to choose (combo box or pop-up menu, or list box)

– Syntax: <select name=“…” [size=“…” multiple] >
<option value=“…” [selected]>…</option>
…

</select>
• option tag

– The user-visible text goes between opening and closing option tag

– The value attribute passes the value in the parameter

• multiple attribute presents the control that can choose more than one

• HTML Forms – textarea tag
– Presents multiple line of text

– Syntax: <textarea name=“…” rows=“…” cols=“…”>
…

</textarea>
• The text value put in opening and closing tag is passed as the parameter value to

server

• rows present the number of visible lines

• cols present the number of characters to displayed across the width of the area

The Servlet Model
Form Parameters – Examples

The Servlet Model
Form Parameters – Examples

Web Applications

Web Application Development Process

• Requirement tools: NetBeans 6.9.1

• Step 1: Creating a Web application project

• Step 2: Creating the Servlets

• Step 3: Writing the code for Servlet & Compile

• Step 4: Building the Web application project

• Step 5: Deploying to a Web Server

• Step 6: Executing the application

Web Applications
Web Application Development Process

• Step 1: Creating a Web App project

• Click Java Web categories

• Click the “Web Application” Projects

• Click Next button

Web Applications
Web Application Development Process

• Step 1: Creating a Web App project

Fill your project name

Browser your location

where store the project

• Click Next button

Web Applications
Web Application Development Process

• Step 1: Creating a Web App project

Choose deployed server

Choose J2EE 1.4

Modify the context path

(if necessary). Defaults,

it is named same as

Project Name

• Click Finish button

Web Applications
Web Application Development Process

• Step 1: Creating a Web App project
Project name

Configuration directory related define for

Web App

Web Directory

Web deployment descriptor

Source code directory, containing

java class. When project is built,

package in classes directory

Support library directory, containing

jar file. When project is built,

package in lib directory

Web Applications
Add the META-INF/context.xml to project

• Step 1: Creating a Web App project (optional – if it does not exist)
– Right click the Web Pages, choose New, then choose Other

– In New File Dialog, choose Other, then choose Folder, click Next

– In New Folder Dialog, type the META-INF into Folder Name

– Click Finish

– Right click the META-INF, choose New, then choose Other

– In New File Dialog, choose XML, then choose XML Document, click Next

– In New XML Document Dialog, type context into File Name, click Next,
then click Finish

– Type the content of content.xml file as (Notes: must type “/” in front of
context)

Web Applications
Web Application Development Process

• Step 2: Creating a Servlet

• Click Web categories

• Click the “Servlet” File Types

• Click Next button

Web Applications
Web Application Development Process

• Step 2: Creating a Servlet

Fill your servlet

name

Fill or choose

package name

• Click Next button

Web Applications
Web Application Development Process

Modify the Servlet

Name or URL Pattern

if necessary) to

configure the servlet

information to web.xml

• Click Finish button

• The servlet class (ex: HelloServlet.java) is added to source packages
(with package name if it‟s exist) and it‟s information is added to xml

Web Applications
Web Application Development Process

• Step 3: Writing the Code and Compile

Web Applications
Web Application Development Process

• Step 3: Writing the Code and Compile

Web Applications

Web Application Development Process
• Step 3: Writing the Code and Compile

Web Applications

Web Application Development Process

• Step 3: Writing the Code and Compile

• Package War file with command prompt

– jar –cvf fileName.war directoryOrFile (using blank to

separate)

– Ex: jar –cvf HelloServlet.war *.jsp WEB-INF/*

Web Applications

Web Application Development Process
• Step 4, 5 & 6: Building, Deploying & Executing

Web Applications
Web Application Development Process

• Step 5 & 6: Deploying & Executing

Web Applications

Additional

• Caches of server

– WinXP: C:\Documents and Settings\LoggedInUser\.netbeans\6.9\
apache-tomcat-6.0.26_base\work\Catalina\localhost\

– Vista or Win7: C:\Users\LoggedUser\.netbeans\6.9\
apache-tomcat-6.0.26_base\work\Catalina\localhost\

– Above location should be gone and cleared when the application
cannot be undeployed or the web servers occur the errors

The Servlet Model
GenericServlet class

• Defines a servlet that is not protocol dependent

• Implements the Servlet, the ServletConfig, and the java.io.Serializable interfaces

• Retrieves the configuration information by implementing the ServletObject

• Some methods

Methods Descriptions

init
- public void init() throws ServletException

- Initialises the servlet

service

- public abstract void service(ServletRequest req, ServletResponse res)

throws ServletException, IOException

- Called by the container to respond to a servlet request

destroy - public void destroy(): cleaning the servlet

getInitParameter
- public String getInitParameter(String name)

- Return a String containing the value of name initialisation

getServletContext
- public ServletContext getServletContext()

- Returns the ServletContext in which this servlet instance is running

getServletConfig
- public ServletConfig getServletConfig()

- returns the servlet configuration objects of this servlet instance

getServletInfo

- public String getServletInfo()

- returns the useful servlet information on the name of the creator of the

servlet, version information and copyright information

Servlet

Life

Cycle

defined

in Generic

The Servlet Model
ServletRequest interface

• Provides access to specific information about the request

• Defines object (ServletRequest object)
– Containing actual request (ex: protocol, URL, and type)

– Containing raw request (ex: headers and input stream)

– Containing client specific request parameters

– Is passed as an argument to the service() method

• Some methods
Methods Descriptions

getParameter

- public String getParameter(String name)

- Returns the value of a specified parameter by the name (or null or “”)

- String strUser = request.getParameter(“txtUser”);

getParameterNames

- public Enumeration getParameterNames()

- Returns an enumeration of string objects containing the name of

parameters.

- Returns an empty enumeration if the request has no parameters

- Enumeration strUser = request.getParameterName();

getParameterValues

- public String[] getParameterValues(String names)

- Returns an array of string objects containing all of the parameter

values or null if parameters do not exist.

- String[] value = request.getParameterValues(”chkRemove”);

The Servlet Model

ServletRequest interface
Methods Descriptions

getAttribute

- public Object getAttribute(String name)

- Retrieves the value of an attribute specified by the name, that was set

using the setAttribute() method.

- Returns null when no attribute with the specified name exists

- String strUser = (String)request.getAttribute(”Username”)

getContentLength
- public int getContentLength()

- Returns the length of content in bytes & return -1(length isn’t know)

getInputStream

- public ServletInputStream getInputStream() throws IOException

- Returns the binary data of the body of request requested by the client

and stores it in a ServletInputStream object

- ServletInputStream inStr = request.getInputStream();

getServerName

- public String getServerName()

- returns the host name of the server to which the client request was sent

- String serverName = request.getServerName();

setCharacterEncoding

-public void setCharacterEncoding (String env)

-Overrides the name of the character encoding used in the body of this

request. This method must be called prior to reading request parameters

or reading input using getReader(). Otherwise, it has no effect.

The Servlet Model
ServletResponse interface

• Is response sent by the servlet to the client

• Include all the methods needed to create and manipulate a
servlet’s output

• Retrieve an output stream to send data to the client, decide on the
content type ...

• Define objects passed as an argument to service() method

• Some methods

Methods Descriptions

getContentType

- public String getContentType()

- Returns the Multipurpose Internet Mail Extensions (MIME)

type of the request body or null if the type is not known

- String contentType = response.getContentType();

getWriter

- public PrintWriter getWriter() throws IOException

- Returns an object of PrintWriter class that sends character

text to the client, particular Browser.

- PrintWriter out = response.getWriter();

The Servlet Model

ServletResponse interface
Methods Descriptions

getOutputStream

- public ServletOutputStream getOutputStream() throws

IOException

- Uses ServletOutputStream object to write response as binary data

to the client.

- ServletOutputStream out = response.getOutputStream();

- 02 supporting methods

+ public void print(boolean b) throws IOException

. writes a boolean value to the client with no carriage

return line feed (CRLF) character at the end

. out.print(b);

+ public void println(char c) throws IOException

. same as the print methods but it writes a character value

to the client, followed by a carriage return line feed (CRLF)

setContentType

- public void setContentType(String str)

- Used to set format in which the data is sent to the client, either

normal text formate or html format

- Ex: response.setContentType(“text/html”);

The Servlet Model
HttpServlet class

• The protocol defines a set of text-based request messages called
HTTP „methods‟ implemented in HttpServlet class

• Provides an abstract class to create an HTTP Servlet

• Extends the GenericServlet class

• A subclass of HttpServlet class must override at least one of the
following methods: doGet(), doPost, doPut(), doDelete(), init(),
destroy(), and getServletInfo

• Some methods to process the request

Methods Descriptions

doGet

- protected void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException

- called by container to handle the GET request.

- This method is called through service() method

doPost

- protected void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException

- called by container to handle the POST request.

- This method is called through service() method

The Servlet Model
HttpServletRequest interface

• Extends
ServletRequest
Interface

• Add a few more
methods for handling
HTTP-specific request
data

• Defines an
HttpServletRequest
object passed as an
argument to the
service() method

The Servlet Model
HttpServletRequest interface

Methods Descriptions

getCookies

- public Cookie[] getCookies()

- Returns an array containing the entire Cookie objects

- Returns null if no cookies were found

- Ex: Cookie[] cookie = request.getCookies();

getMethod

- public String getMethod()

- Returns a name of the HTTP method used to make the request.

- Ex: String method = request.getMethod();

getPathInfo

- public String getPathInfo()

- Returns the path information associated with a URL.

- Ex: String strPath = request.getPathInfo();

getAuthType

- public String getAuthType()

- Returns the basic authentication schema used to protect the

servlet from unauthorized users

The Servlet Model
HttpServletRequest interface

Methods Descriptions

getHeader

- public String getHeader(String name)

- Returns the value of the specified request header as a String.

- Returns null if the request did not include a header name

- Ex: String strHost = request.getHeader(”host”);

getHeaders

- public Enumeration getHeaders(String name)

- returns all values of the specified request header as an Enumeration of String

objects

- Request Header

Allow the client to pass additional information about request, client itself to the

server

Some request headers

Accept: specifies types of headers acceptable by client

Accept – Charset: the character sets acceptable by the response

Accept – Encoding: restriction of content-coding which is accepted by response

Accept – Language: restriction of natural languages which is used by response

Authorization: authentication of a user agent with a server

- Ex String headers = request.getHeaders(“Accept”);

getHeaderNames

- public Enumeration getHeaderName()

- returns an enumeration of all the header name

- returns empty enumeration if the request has no headers

- Ex: String headers = request.getHeaders();

The Servlet Model
HttpServletRequest interface – Examples

The Servlet Model
HttpServletRequest interface – Examples

The Servlet Model
HttpServletRequest interface – Examples

The Servlet Model
HttpServletRequest interface – Examples

The Servlet Model
HttpServletRequest interface – Examples

The Servlet Model
HttpServletRequest interface – Examples

The Servlet Model
HttpServletRequest interface – Examples

The Servlet Model
HttpServletRequest interface – Examples

The Servlet Model
HttpServletRequest interface – Examples

The Servlet Model
HttpServletRequest interface – Examples

The Servlet Model
HttpServletRequest interface – Examples

The Servlet Model
HttpServletRequest interface – Examples

The Servlet Model
HttpServletRequest interface – Examples

The Servlet Model
HttpServletRequest interface – Examples

The Servlet Model
HttpServletResponse interface

• Extends ServletResponse Interface

• Defines HttpServlet objects to pass as an argument to the service() method to
the client

• Set HTTP response, HTTP header, set content type of the response, acquire a text
stream for the response, acquire a binary stream for the response, redirect an
HTTP request to another URL or add cookies to the response

Methods Descriptions

addCookies

- public void addCookie(Cookie cookie)

- Adds specified cookie to the response sent to the client

- response.addCookie(new Cookie(“Aptech”, “Servlet”);

sendError

- public void sendError(int sc) throws IOException

- Send an error response to the client using the specified

status code and clearing the buffer

- response.sendError(HttpServletResponse.SC_FORBIDDEN,

“Goodbye”);

encodeRedirectURL

- public String encodeRedirectURL (String url)

- Encodes the specified URL for use in the sendRedirect

method, or if encoding is not needed, returns the URL

unchanged

Methods Descriptions

addHeader

- public void addHeader(String name, String value)

- Add name and value to the response header.

- Ex: response.addHeader(”Refresh”, 15);

- Response header

+ is attached to the files being sent back to the client

+ contains the date, size and type of file that server sends back to the client and also data

about the server itself

+ can be used to specify cookies to supply the modification date

+ used to instruct the browser to reload the page

+ it specifies how big the file is, to dertermine how long the HTTP connection needs to be

maintained

containHeader

- public boolean containsHeader(String header)–return true if the response header has any values

- Verify if the response header contains any values.

- Returns true if the response header has any values. Otherwise, returns false

- Ex: response.containsHeader(“Cache”);

addDateHeader

- public void addDateHeader(String name, long date)

- Adds response header with the given name and date value

- Ex: response.addDateHeader(“Cache”, 20-02-2002)

addIntHeader

- public void addIntHeader(String name, int value)

- Adds response header with the given name and integer value

- Ex: response.addIntHeader(“Chache”, 3)

sendRedirect

- public void sendRedirect(String URL) throws IOException

- Sends a redirect response to the client using the specified redirect location URL

- the servlet using the sendRedirect method to decide the request handled by particular servlet or

- Ex: response.sendRedirect(“process.jsp”);

The Servlet Model
HttpServletResponse interface - Example

• Using sendRedirect

The Servlet Model
HttpServletResponse interface - Example

• ResServlet

The Servlet Model
HttpServletResponse interface - Example

The Servlet Model
The Servlet Life Cycle

Uninstantiated meet requestInitializationInstantiation

destroyUnload

Unavailable

success success

failure

failure
Detroy received request and using

thread

Meet multi request

init() service()

destroy()

The life cycle is defined by

• init() – called only one by the server in the first request

• service() – process the client‟s request, dispatch to doXXX() methods

• destroy() – called after all requests have been processed or a server-

specific number of seconds have passed

The Servlet Model
The Servlet Life Cycle – Example

The Servlet Model
The Servlet Life Cycle – Example

The Servlet Model
The Servlet Life Cycle – Example

The Servlet Model
The Servlet Life Cycle – Example

• Addition the destroy method (comment service method)

• Execute project again, then undeploy the current project on

Tomcat Server

The Servlet Model
Example

• Building the web application can do some following

function
– The application allows the user calculating the add and subtract

operation of 2 numbers that are input from the user interface

– The result of calculating will be presented after the user press the

corresponding button

The Servlet Model

Example
•Form parameter using html should be implemented as following

The Servlet Model
Example

•CalServlet should be implemented as following

Summary

• HTML Introduction

• The Servlet Model

Q&A

Exercises

• Do it again all of demos

• Using servlet to write the programs as the following

requirement

– Present the Login form (naming LoginServlet) with title Login,

header h1 – Login, 02 textbox with naming txtUser and

txtPass, and the Login button

• Rewrite above Login application combining with DB

– Writing the ColorServlet that presents “Welcome to Servlet

course” with yellow in background and red in foreground

– Writing the ProductServlet includes a form with a combo box

containing Servlet & JSP, Struts & JSF, EJB, XMJ, Java Web

Services, and the button with value Add to Cart

Next Lecture

• Web Application

– Web application Structure

– Web Deployment Descriptors

• The Web Container Model

– Attribute, Scope (Request, Session, Application)

– Request Dispatching

– Filters

