Technická univerzita v Liberci Fakulta textilní

DIPLOMOVÁ PRÁCE

2009

Bc. Lucie Kopecká

Technická univerzita v Liberci

Fakulta textilní

Obor Textilní technologie

Katedra textilních technologií

Příčné rozměry dvojmo skané příze

Lateral dimensions of two-fold yarn

Lucie Kopecká

KTT

Vedoucí práce:

Ing. Bc. Monika Vyšanská, PhD.

Počet stran textu: 62

Počet obrázků: 42

Počet tabulek: 15

Počet příloh: 6

Prohlášení

Byl(a) jsem seznámen(a) s tím, že na mou diplomovou práci se plně vztahuje zákon č. 121/2000 Sb. o právu autorském, zejména § 60 – školní dílo.

Beru na vědomí, že Technická univerzita v Liberci (TUL) nezasahuje do mých autorských práv užitím mé diplomové práce pro vnitřní potřebu TUL.

Užiji-li diplomovou práci nebo poskytnu-li licenci k jejímu využití, jsem si vědom povinnosti informovat o této skutečnosti TUL; v tomto případě má TUL právo ode mne požadovat úhradu nákladů, které vynaložila na vytvoření díla, až do jejich skutečné výše.

Diplomovou práci jsem vypracovala samostatně s použitím uvedené literatury a na základě konzultací s vedoucím diplomové práce.

Dne 5. ledna 2009

Poděkování:

Děkuji touto cestou Ing. Bc. Monice Vyšanské, PhD. za odborné vedení, rady a ochotu při vypracování diplomové práce.

Dále děkuji mé rodině za psychickou podporu v tomto období.

Anotace:

Tato diplomová práce se pokouší o popsání příčných rozměrů dvojmo skané příze. V teoretické části jsou definovány příčné rozměry dvojmo skané příze a poté uvedeny metody jejich získávání.

První etapa experimentální části je zaměřena na metodiku a zpracování obrazů, získaných z dvojmo skaných bavlněných přízí. Následuje jejich zpracování v prostředí softwaru Matlab.

Další etapa experimentální části je zaměřena na určení minimální počtu měření pro dané příze. V poslední etapě experimentu jsou porovnávány data získaná z měření a vypočtené podle teoretických vztahů.

V závěru jsou shrnuta data získaná z poslední fáze experimentu.

Annotation:

The diploma work is focused on lateral dimensions of two-ply yarn. Lateral dimensions of two-ply yarn are defined in theoretic part and after that methods of their extraction are introduced.

First phase of experimental part is orientated on methodology and processing of pictures, which are extracted from cotton's two-ply yarns. After that they are processed in Matlab environment.

Additional phase of experimental part is orientated on determination of minimal number of measuring pictures for given yarns. In the last phase of experiment data from measurements and data calculated by theoretical relations are compared.

In the end of work data are summarized from the last phase of experiment.

Klíčová slova:

dvojmo skaná příze příčné rozměry podélné pohledy *D*₁, *Max_s*, *Min_s* minimální počet měření vliv parametrů na příčné rozměry

Keywords:

two-ply yarn lateral dimensions longitudinal view D_1, Max_s, Min_s minimum number of measurements impact characteristics on lateral dimensions

Obsah

Ú	VOD DO PR	OBLEMATIKY	10
1.	TEOR	ETICKÁ ČÁST	11
	1.1 G	eometrické vlastnosti dvojmo skaných přízí - příčné rozměry	11
	1.2 M	letody měření příčných rozměrů u dvojmo skané příze	14
	1.2.1	Metoda podélných pohledů	14
	1.2.2	Metoda příčných řezů	15
	1.3 To	eoretické vztahy	15
2.	EXPER	IMENTÁLNÍ ČÁST	18
	2.1 Po	opis přízí používaných v experimentu	18
	2.2 Po	ostup měření v prostředí NIS Elements	18
	2.3 Zj	pracování obrazů v prostředí programu MatLab	20
	2.3.1	Zpracování obrazů dvojmo skané příze	20
	2.3.2	Zpracování obrazu jednoduché příze	22
	2.4 U	rčení minimálního počtu měření	23
	2.4.1	Srovnání počtu měření s [2]	25
	2.5 V	liv parametrů dvojmo skané příze na její příčné rozměry	26
	2.5.1	Vliv zákrutů na příčné rozměry	26
	2.5.2	Vliv zákrutového koeficientu α_s na příčné rozměry	30

3.	Komparace Teoretických vztahů a experimentálních hodnot příčný	СН
	ROZMĚRŮ	35
	3.1 Závislost experimentálních a teoretických hodnot u CO přízí	51
4.	ZÁVĚR	59
5.	POUŽITÁ LITERATURA	61
6.	Seznam příloh	62

Seznam použitých zkratek:

СО	bavlna
РР	polypropylen
čes	česaná příze
myk	mykaná příze

Seznam použitých veličin:

Pro skanou přízi:

D_1 [µm]	průměr nejmenšího válce, do něhož se dvojmo skaná příze vejde
<i>D</i> ₂ [μm]	nejkratší kolmá vzdálenost hranic řezu dvojmo skanou přízí
Max_s [µm]	nejdelší kolmá vzdálenost mezi hranicemi příze
<i>Min</i> _s [µm]	nejkratší kolmá vzdálenost mezi hranicemi příze
T_s [tex]	jemnost dvojmo skané příze
$Z_{ss} [m^{-1}]$	zákrut dvojmo skaných přízí skutečný
Z_{sj} [m ⁻¹]	zákrut dvojmo skaných přízí jmenovitý
$\beta_s [\mu m] \dots$	sklon jednoduchých přízí k "ose" skané příze
μ_s [1]	zaplnění skané příze
$\alpha_{s} [ktex^{1/2} m^{-1}] \dots$	zákrutový koeficient α pro skanou přízi

Pro jednoduchou přízi:

D^0 [µm]	teoretická vzdálenost os zaskaných jednoduchých přízí v dvojmo
	skané přízi
<i>d_j</i> [μm]	průměr jednoduché příze
T_j [tex]	jemnost jednoduché příze
$Z_j [\mathrm{m}^{-1}] \dots$	zákrut jednoduchých přízí

Pro charakter materiálu:

$\rho [\text{kg m}^{-3}]$	hustota materiálu
---------------------------	-------------------

<u>Statistika:</u>

IS [-]	interval spolehlivosti
ρ[1]	výběrový koeficient korelace

ÚVOD DO PROBLEMATIKY

Hlavními body této diplomové práce jsou:

- definování příčných rozměrů dle různých autorů
- zmapování možností jejich měření a popisu
- podélné pohledy- D₁, Max_s a Min_s
- sledování vlivu parametrů dvojmo skaného útvaru na jeho charakteristické rozměry
- ověření již existujících teoretických matematických vztahů

První fáze experimentální části je zaměřena na určení minimálního počtu snímaných obrazů jednoduchých a dvojmo skaných přízí. Pro samotné měření byla vybrána metoda podélných pohledů. Jako materiál byly použity příze různých českých společností, které byly posléze nasnímány do prostředí obrazové analýzy NIS Elements, která se nachází v prostorách laboratoří KTT. Tyto vytvořené snímky byly dále zpracovávané v programu MATLAB 7.1.

Určování příčných rozměrů bylo prováděno na následujících jednoduchých i dvojmo-skaných přízí (tab. 1):

Jed. příze, 100% co - technologie	T _j [tex]				Zs	jmeno	ovitá [1	m ⁻¹]			
CES	10	370	425	486	537	601					
	29,5	370	425	486	537	601					
МҮК	42	300	370	425	486	537	601	681	783	861	1014
	50	300	370	425	486	537	601	681	783	861	1014

tab. 1: Přehled zkoumaných jednoduchých a dvojmo skaných přízí

Posledním bodem této práce bylo ověření již existujících teoretických matematických vztahů a jejích porovnání s naměřenými experimentálními rozměry. V literatuře bylo nalezeno 5 teoretických vztahů, z nichž, ale byly použity pouze vztahy 4. První dva vztahy byly získány z [1], třetí byl získán z [2] a čtvrtý z [12].

1. TEORETICKÁ ČÁST

kde

1.1 Geometrické vlastnosti dvojmo skaných přízí - příčné rozměry

Dvojmo skaná příze je útvar relativně pravidelný, pokud zanedbáme chlupatost a nestejnoměrnost příze. Její příčné rozměry jsou odvozeny od definice jednoduché příze. Tvar těla jednoduché příze si pro zjednodušení obvykle představíme ve tvaru válce, který má přesně definovaný průřez d_j , který používáme k jejímu popisu. Skaná příze je vytvořena z nejméně dvou jednoduchých přízí, kde tyto nejméně dvě jednoduché příze spolu vytváří útvar podobný tvaru šroubovice. Dvojmo skaná příze tedy vzniká zakroucením dvou válců vzájemně okolo sebe. Osa každého takového válce pak v prostoru tvoří šroubovici popsanou následujícím vektorem

$$\vec{s}(x) = (a\cos(x), a\sin(x), bx),$$
(1) [3]
x [rad]... velikost otočení

<i>a</i> [m]	poloměr válcové plochy, na níž leží šroubovice
<i>b</i> [m]	redukovaná výška závitu šroubového pohybu.

Při tvorbě dvojmo skané příze však na ní působí vlivy, které ovlivňují podobu daného produktu. Těmito vlivy se rozumí – zákrut udělený ať již jednoduchým přízím při jejich výrobě, tak i zákrut opačný udělovaný při skaní. Pro lepší představu o chování jednoduché příze v dvojmo skané přízi je tedy možné na základě vztahu (1) znázornit dvě šroubovice např. v rovině xy, jako funkci cos, obr. 3.

Obr. 1: Schematické znázornění a) extrémní a b) reálné polohy os přízí jednoduchých v přízi dvojmo skané podle [11]

Situace na obr. 1a) může nastat pouze při velmi nízkých skacích zákrutech, kdy příze jednoduché leží v dvojmo skané na sobě. Druhá, již reálná poloha přízí jednoduchých v dvojmo skané přízi je zobrazena na obr. 1b), kde již zaznamenáváme vliv změny počtu skacích zákrutů. Konkrétně se zvyšujícím se počtem skacích zákrutů se fázový rozdíl mezi osami jednoduchých přízí zvyšuje (pouze, ale do určité míry limitované vlastním tělem jednoduché příze), perioda goniometrické funkce *cos* se zkracuje a velikost amplitudy se snižuje.

Tyto argumenty o uspořádání a chování jednoduchých přízí v přízi dvojmo skané v závislosti na změně skacích zákrutů naznačují, že jediný parametr, jako je tomu u jednoduché příze, nestačí k charakteristice dvojmo skané příze.

Při zkoumání obrazu podélného pohledu se dvojmo skaná příze jeví jako útvar, u něhož se pravidelně střídají "silná" a "slabá" místa [3]. "Silné" místo na přízi bylo pojmenováno Max_s – tj. nejdelší kolmá vzdálenost mezi hranicemi příze, a "slabé" místo Min_s – tj. nejkratší kolmá vzdálenost mezi hranicemi těla příze [4].

Obr. 2 zobrazuje reálnou dvojmo skanou přízi co myk 2x50 tex, při pohledu pod mikroskopem v procházejícím světle, při 2,4x zvětšení, se znázorněními parametry.

Obr. 2: Reálná dvojmo skaná příze s vyznačenými rozměry Max_s, Min_s, D₁a úhlem \beta_s

Parametr D_1 představuje skutečný průměr nejmenšího válce, do něhož se dvojmo skaná příze vejde [4]. V extrémních případech, jako je znázorněn na obr. 1a), je parametr D_1 roven Max_s . U ostatních případů je D_1 větší než Max_s . Tento třetí rozměr popisuje dvojmo skanou přízi jako prostorové těleso, jenž je aproximován do tvaru válce. Slouží tedy jako konstrukční parametr, kde pro symetricky skanou přízi určuje poměr $D^0 = D_1/2$ (2) [5], vzdálenost os jednoduchých přízí v přízi dvojmo skané [6]. Tento jev však může nastat pouze při idealizovaném tvaru řezu skané příze, jako je tomu na obr. 3a). Obr. 3b) znázorňuje skutečný tvar řezu skané příze, kdy je $D^0 < D_1/2$ (3) [5].

Obr. 3 Znázornění a) idealizovaného tvaru řezu skané příze, b) skutečný tvar řezu skané příze podle [5]

Obr. 2 ještě znázorňuje úhel, který svírá osa jednoduché příze s osou dvojmo skané příze – β_s . Výpočet β_s je podobný s výpočtem úhlu sklonu vlákna na povrchu jednoduché příze k její ose

$$\tan \beta_s = \pi \, Z_s \, d_j / 2, \tag{4}$$

Posledním, doplňujícím příčným rozměrem dvojmo skané příze je D_2 , která představuje nejkratší kolmou vzdálenost hranic řezu dvojmo skanou přízí [7], viz obr. 4.

Obr. 4: Půdorys modelu dvojmo skané příze s vyznačenými parametry [7]

1.2 Metody měření příčných rozměrů u dvojmo skané příze

V kapitole 1.1 je nastíněna problematika správného geometrického popisu příčných řezů dvojmo skané příze u parametrů Max_s , Min_s , D_1 a D_2 . Metodami měření příčných rozměrů u dvojmo skané příze se zabývá v případě parametrů – Max_s , Min_s a D_1 – Interní norma vytvořená pro podélné pohledy [4] a pro parametry – D_1 a D_2 – Interní norma vytvořená pro řezy [7].

1.2.1 Metoda podélných pohledů

Tato metoda používá pro postup měření příčných rozměrů dvojmo skané příze a průměru příze jednoduché. Využívá se v ní obrazové analýzy (např. NIS Elements), která se používá pro získání obrazů v procházejícím světle, které se posléze vyhodnocují ve skriptu "skana_podelny.m" v prostředí systému Matlab, který slouží k získání datového a grafického výstupu.

Skript "skana_podelny.m" nalezne na binárním obrazu dvojmo skané příze její nejdelší spojitý řádek a nejkratší spojitý řádek. Takto se zjišťují charakteristické hodnoty *Max_s* a *Min_s*. Parametr D_1 program nalezne, vyhledáním nejbližšího a nejvzdálenějšího bodu těla příze vzhledem k počátku souřadného systému. Tato metoda byla použita pro experimentální část této diplomové práce a bude podrobně vysvětlena v kap. 2.2 a 2.3.

1.2.2 Metoda příčných řezů

Tato metoda používá pro postup zjišťování geometrických parametrů a charakteristik tvaru dvojmo skané a jednoduché příze, z nichž byla dvojmo skaná příze vyrobena, a postup změn jejich chování. Při této metodě se používají laboratorní pomůcky pro přípravu měkkých řezů, využívá se obrazové analýzy (např. NIS Elements), pro získávání obrazů řezů a vyhodnocuje se v programu v prostředí softwaru Matlab.

Pomocí této metody lze zjistit tyto parametry – rozměr D_1 a D_2 , maximální rozměr řezu jednoduchou přízí (nejdelší kolmé vzdálenost řezu), minimální rozměr řezu jednoduchou přízí (nejkratší kolmá vzdálenost řezu), ekvivalentní průměr jednoduché příze $D_{ekvivalentni}$, kruhovitost – K (jednoduché i dvojmo skané příze), ovalitu – O(jednoduché i dvojmo skané příze), dvoukruhovitost – DK (u dvojmo skané příze), poměr dvou rozměrů řezu D_2 a D_1 a změny ekvivalentního průměru jednoduché příze vzhledem k D_1 a D_2 dvojmo skané příze.

1.3 Teoretické vztahy

V této části jsou uvedeny jednotlivé teoretické vztahy sloužící k matematickému výpočtu teoretických parametrů dvojmo skané příze.

Teoretický vztah (1)

První teoretické vztahy vychází z hypotézy, že Max_s se nachází tam, kde leží obě jednoduché příze vedle sebe. Při výpočtu Min_s , bere v úvahu průměr jednoduché příze a sklon jednoduchých přízí k "ose" skané příze.

$$Max_{s} = 2 d_{j}$$

$$Min_{s} = \frac{d_{j}}{\cos \beta_{s}}, \text{ kde} \qquad \cos \beta_{s} = \frac{1}{\sqrt{1 + \left(\pi \left(\frac{D_{1}}{2}\right)Z_{s}\right)^{2}}}$$
(5) [1]

Teoretický vztah (2)

Teoretické vztahy (5) a (6) jsou založeny na stejné teorii jako teoretický vztah (5), s rozdílem, že v teoretickém vztahu (6) je odlišně definován parametr *Min_s*, u které ho se počítá s deformací původního průřezu jednoduché příze v přízi dvojmo skané.

$$Max_s = 2 d_j \tag{6} [1]$$

$$Min_s = \sqrt{2} d_i$$

Teoretický vztah (3) [2]

Teoretický vztah (7) vychází z teoretického vztahu (6). Tento vztah je upraven o seskání přízí δ . Konstanty tohoto vztahu byly vypočteny v práci [7] sice pro polypropylenové dvojmo skané příze, ale v této práci byly testovány pro bavlněné dvojmo skané příze.

$$Max_{s} = 2 d_{j} (1 - \delta)^{o}$$
(7) [2]

$$Min_s = \sqrt{2} d_j \left(\frac{1}{|\delta 100|}\right)^{1/m},$$

kde o... konstanta o hodnotě 3,33 m... konstanta o hodnotě 21,26.

Teoretický vztah (4)

Předposlední teoretický vztah (8) vychází ze vztahu pro výpočet průměru jednoduché příze. Tento vztah, ale nebude zahrnut v práci, neboť nebylo měřeno zaplnění příze a analytické vyjádření pro zaplnění dosud není známo.

$$Min_s/Max_s = \sqrt{\frac{4 T_s}{\pi \rho \mu_s}}$$
(8) [1]

Teoretický vztah (5)

Poslední teoretický vztah (9) vychází z rovnice pro výpočet úhlu sklonu vlákna k ose příze, viz rovnice (4). Slouží k výpočtu příčného rozměru D_1 .

$$D_1 = 2d_j \cos\beta \tag{9}$$

2. Experimentální část

2.1 Popis přízí používaných v experimentu

V této kapitole je blíže specifikován materiál, jenž byl použit pro experimentální část diplomové práce. Následující informace mohou sloužit k vysvětlení některých vlastností a chování experimentálních přízí.

Experiment je rozdělen do dvou částí. V první části experimentu týkající se určení minimálního počtu měření - obrazů, byla zvolena 100 % dvojmo skaná bavlněná příze o jemnosti 2x29,5 tex a jmenovitém zákrutu 425 m⁻¹. Pro kontrolu pak byla ještě v průběhu druhé části experimentu vybrána 100 % dvojmo skaná bavlněná příze o jemnosti 2x10 tex a jmenovitém zákrutu 370 m⁻¹. Pro určení minimálního počtu měření u jednoduché příze byly zvoleny 100 % bavlněná příze česané o jemnosti 10 a 29,5 tex a příze mykané o jemnosti 42 a 50 tex. Přádní zákruty těchto přízí jsou poté uvedeny v tab. 3 (kap. 3, str. 35).

Druhá část je zaměřena na chování charakteristických rozměrů dvojmo skané příze při změně jemnosti a změně počtu skacích zákrutů. Zde se jednalo o CO příze z tab. 1 (Úvod do problematiky, str. 10), které poskytly textilní fakultě různé české firmy. Parametry vláken těchto přízí byly zvoleny pro svou širokou nabídku, co do jemnosti, tak do zákrutů. Mohou tedy objektivně zastupovat bavlněné příze.

2.2 Postup měření v prostředí NIS Elements

Jak bylo uvedeno v kap. 1.2.1, pro stanovení příčných rozměrů dvojmo skané příze, byla zvolena metoda podélných pohledů.

Snímaní obrazů podélných pohledů pro dvojmo skanou přízi v systému obrazové analýzy NIS Elements vychází z interní normy [4], která se zcela zabývá metodou podélných pohledů.

Prvním krokem ještě před zahájením samotného snímání je příprava materiálu. Cívky s přízemi, které budou snímány, musí být na 24 hodin umístěny do klimatizační skříně, kde je předem nastavena relativní vlhkost vzduchu a teplota vzduchu. Po splnění této podmínky se může přistoupit k vykonání zkoušky. Pro přípravu je nutné připevnění mostového vodiče příze na stolek mikroskopu a navedení příze [10]. Měřený vzorek dvojmo skané příze je umístěn pod mikroskop tak, aby bylo na monitoru vidět minimálně jedno "údolí – Mins", dva celé "vrcholy – Maxs" a příze byla dokonale svislá nebo vodorovná, viz obrázek 5.. Následuje vhodné zvolení zvětšení, nastavení kalibrace a poté samotné snímání sekvencí obrazů podélných pohledů na přízi s použitím dolního osvitu mikroskopu.

Obr. 5: Příklad správně sejmutého obrazu dvojmo skané příze [4] a) v procházejícím světle; b) v dopadajícím světle

Před zpracováním nasnímaných obrazů v systému MatLab je nutno obrazy překontrolovat a špatné (nezaostřené, nečitelné) z vyhodnocení vyřadit. Obrazy je nutné před zpracováním v systému MatLab přeformátovat na *.jpg, pokud již tak nebyly uloženy v prostředí obrazové analýzy. Obrazy jsou dále zpracovávány v systému MatLab – skript "Skana_podelny.m".

2.3 Zpracování obrazů v prostředí programu MatLab

Ve skriptu "Skana_podelny.m" je možno zpracovávat obrazy podélných pohledů, jak pro přízi dvojmo skanou tak i pro přízi jednoduchou. V následující kapitole bude uveden postup pro zpracování obrazů s dvojmo skanou přízí a v další kapitole budou uvedeny pozměňující poznámky ke zpracování obrazů s jednoduchou přízí.

2.3.1 Zpracování obrazů dvojmo skané příze

Připravené barevné obrazy podélných pohledů s dvojmo skanou přízí (obr. 6a)) jsou načteny programem a na každém z nich jsou provedeny následující operace [4].

Obr. 6: Znázornění morfologických operací prováděných na obraze: a) binární obraz, b) lineární dilatace, c) uzavření, d) otevření (morfologické operace probíhají na binárním obraze – zde překrývá pro ilustraci obraz barevný [4]

- Segmentace barevného obrazu přes šedý na binární příze je ponechána jako pozadí (černá) a pozadí jako objekt (bílé). Je použita Otsuova metoda, která je součástí knihovny MatLab.
- 2) Každý řádek každého obrazu je dilatován lineárním strukturním elementem (SE) o doporučované délce 51 pixelů (jeden ze vstupních parametrů), která by měla spolehlivě odstranit nejdelší chlupy příze, viz obr. 6b). Pro případ velmi jemných přízí je jeho délka iterací upravena tak, aby obraz příze nebyl po následujících morfologických operacích (viz bod 3) porušen. Pro urychlení případných iteračních procesů se doporučuje u těchto velmi jemných přízí zvolit počáteční délku SE menší (např. pro jednoduché příze se osvědčila velikost SE 11 pixelů).

- Dále je prováděno uzavření a otevření za pomoci SE ve tvaru disku o poloměru 5 pixelů (voleno empiricky), obr. 6c) – d). Tyto jemnější operace vyčistí dokonale obraz a zároveň správně vytvarují tělo příze.
- 4) V každém řádku obrazu jsou nalezeny x-souřadnice okrajů těla příze (tj. minimální a maximální), od nichž je po řadě odečtena a přičtena ½ délky SE (dokonalé překrytí barevného obrazu binárním, ovšem již bez odstraněných chlupů viz ilustrativně červené čáry na obr. 6d)).
- 5) Rozdílem x-souřadnic je v každém řádku nalezena "šířka" těla příze. V každém obrazu je nalezen nejdelší spojitý řádek, což odpovídá definici pro Max_s. V každém obrazu je nalezen nejkratší spojitý řádek, což odpovídá definici pro Min_s. V každém obrazu je nalezen nejbližší a nejvzdálenější bod těla příze vzhledem k počátku souřadného systému, což odpovídá definici pro D₁.
- 6) Dle principu vnitřních hradeb [8] jsou vyhledána vybočující data ve skupinách *Max_s*, *Min_s* a *D₁* ve všech obrazech dohromady. Homogenní výběry jsou testovány na normalitu. Pro všechny tři rozměry je vypočtena střední hodnota, směrodatná odchylka, interval spolehlivosti. Vše je po výpočtu uloženo do datového souboru vysledky_skana.mat.
- Součástí grafického výstupu jsou histogramy a krabicové grafy [8] rozložení tři rozměrů dvojmo skané příze, viz obr. 7 a 8.

Obr. 7: *Histogram dvojmo skané příze CO myk 2x42 tex / 783 m⁻¹*

Obr. 8: Krabicové grafy dvojmo skané příze CO myk 2x42 tex / 783 m⁻¹

2.3.2 Zpracování obrazu jednoduché příze

Vstupní informace pro vyhodnocení příze jednoduché jsou shodné se vstupy pro přízi dvojmo skanou.

Pokud má být vyhodnocována jednoduchá příze spustí se ve skriptu "skana_podelny.m" program pro zpracování jednoduché příze, kde je vypočten průměr (princip je shodný s bodem 4 v předchozí kapitole) a příslušná statistika, je vykreslen krabicový graf a histogram rozložení průměru jednoduché příze. Datové výstupy jsou uloženy do souboru vysledky_jednoducha.mat.

2.4 Určení minimálního počtu měření

Jedním z hlavních bodů této práce bylo určení minimálního počtu obrazů pro další zpracování dvojmo skaných a jednoduchých přízí.

Minimální rozsah výběru je možno určit tak, aby relativní chyba směrodatné odchylky $\delta(s)$ měla stanovenou hodnotu. Poté je minimální velikost výběru rovna:

$$n_{min} = \frac{g_2(x) - 1}{4\,\delta^2(s)} + 1 \tag{10} [8]$$

kde $g_2(\mathbf{x})...$ špičatost výběrového rozdělení

 $\delta(s)...$ relativní chyba směrodatné odchylky.

Relativní chyba směrodatné odchylky byla zvolena $\delta(s) = 0,1$ (tj. 10 %), dle údajů v literatuře [8]. Při výpočtu minimální velikosti výběru ze vztahu (10) vychází pro normální rozdělení hodnota $n_{min} \sim 50$ [8].

Data byla nejprve zpracována v prostředí systému MatLab ve skriptu "skana_podleny.m" a poté statisticky zpracována v programu QC Expert, kde byla prověřována také normalita a homogenita.

Minimální počet obrazů pro dvojmo skanou přízi

Pro určení minimální velikosti výběru n_{min} bylo použito 1085 podélných pohledů ing. Martinkové – CO dvojmo skané příze prstencově dopřádané 2x29,5 tex se zákruty 425 m⁻¹.

- pro příčný rozměr D₁ g₂(x) = 2,6543
 n_{min} = 42,3579 ~ 43 pohledů
- pro rozměr Maxs $g_2(x) = 2,7636$ $n_{min} = 45,0894 \sim 46$ pohledů
- pro rozměr Mins $g_2(x) = 2,6040$ $n_{min} = 41,0994 \sim 42$ pohledů.

Dalo by se tedy souhlasit s výše uvedeným faktem, že pro normální rozdělení vychází hodnota $n_{min} \sim 50$. Ovšem při kontrole, s použitím zpracovávaných dat ze 100 pohledů na CO dvojmo skané příze česané 2x10 tex se zákruty 370 m⁻¹, byly zjištěny následující údaje:

- pro příčný rozměr D₁ − g₂(x) = 3,3163
 n_{min} = 58,9075 ~ 59 pohledů
- pro rozměr Maxs $g_2(x) = 2,4989$ $n_{min} = 38,4725 ~ 39$ pohledů
- pro rozměr Mins $g_2(x) = 3,3525$ $n_{min} = 59,8125 \sim 60$ pohledů.

Vzrůst minimálního počtu obrazů pro příčný rozměr D_1 a *Mins* vedl ke zvýšení $n_{min} \sim 60$ pohledů.

Minimální počet obrazů pro jednoduchou přízi

Pro jednoduchou přízi byly přezkoušeny podle vzorce (10) všechny jednoduché příze, které byly poté zpracovávány v kap. 2.5 – konkrétně se jednalo o 560 pohledů na příze prstencově předené česané 10 a 29,5 tex a příze mykané 42 a 50 tex.

- pro CO jednoduchou přízi čes 10 tex $g_2(x) = 2,9074$ $n_{min} = 48,6850 \sim 49$ pohledů
- pro CO jednoduchou přízi čes 29,5 tex $g_2(x) = 3,0181$ $n_{min} = 51,4525 \sim 52$ pohledů
- pro CO jednoduchou přízi myk 42 tex $g_2(x) = 3,1091$ $n_{min} = 53,7275 \sim 54$ pohledů
- pro CO jednoduchou přízi myk 50 tex $g_2(x) = 2,7900$ $n_{min} = 45,7500 \sim 46$ pohledů.

Minimální počet obrazů pro jednoduchou přízi byl stanoven na 55.

2.4.1 Srovnání počtu měření s [2]

Po provedených výpočtech bylo provedeno srovnání počtu měření s výsledky z literatury [2]. V této práci byl zkoumán optimální počet obrazů pro dvojmo skanou přízi a okrajově (pro ověření vztahů) také pro jednoduchou přízi.

Pro dvojmo skanou přízi byly hodnoceny následující příze – jednoduché CO příze prstencově dopřádané, poté s opačným zákrutem seskané, jednoduché CO příze rotorově dopřádané, poté prstencově seskané, jednoduché PP příze kompaktně vypředené, poté prstencově seskané a jednoduché PP příze prstencově vypředené, poté s opačným zákrutem seskané.

Z práce [2] vyplývá, že po provedení statistiky charakteristických rozměrů a variačních koeficientů a po odstranění všech vybočujících dat je optimální počet obrazů 550 pro dvojmo skanou přízi.

Pro jednoduchou přízi, kam byly zařazeny výše uvedené příze, ale jednoduché byl stanoven optimální počet obrazů 400.

Shrnutí:

V této práci měl být stanoven minimální počet obrazů. Tento minimální počet, však nebere v potaz přesnost výsledků, k nimž dospěje, nebere dále ani statistické údaje (variační koeficienty, ani intervaly spolehlivosti). Naopak je tomu u v práci [2], která stanovuje optimální počet obrazů. Tady se již zaznamenávala statistická charakteristika. Proto, je výhodnější použití optimálního počtu měření, pokud však jde pouze o průběžné hodnocení, rychlou zkoušku, tak lze požít i tento minimální počet měření. Ale vždy se musí mít na paměti, že rozsah výběru n ovlivňuje přesnost odhadů parametrů polohy a rozptýlení. S růstem n se snižuje pravděpodobnost chyby a roste míra síly zkoušky.

2.5 Vliv parametrů dvojmo skané příze na její příčné rozměry

V této části práce byl sledován vliv parametrů (zákruty, jemnost) na chování jednotlivých příčných rozměrů dvojmo skané CO příze. Jak se vyvíjí jejich závislost s ohledem na zákrut a jemnost, viz příloha 5 a 6, a obr. 9 - 13. Typy zkoušených přízí jsou uvedeny v tab. 1 (kap. Úvod do problematiky, str. 10). V přílohách 1 až 4 jsou k ukázce experimentálně naměřené a vyhodnocené příčné rozměry dvojmo skané příze.

V podkapitole 2.5.1 je na grafech sledován vliv zákrutů na příčné rozměry dvojmo skané příze. V podkapitole 2.5.2 je poté sledován vliv zákrutové koeficientu α_s , který v sobě zahrnuje jak parametr zákrutu, tak i parametr jemnosti.

2.5.1 Vliv zákrutů na příčné rozměry

Obr. 9: Příčné rozměry ces dvojmo skané CO příze 2x10 tex

Na obr. 9 můžeme pozorovat nejprve malý vzrůst všech příčných rozměrů. Tento vzrůst se zastavuje u rozměrů Max_s a D_1 u zákrutů 420 m⁻¹, kde je překročen vrchol a poté následuje mírný sestup, který znamená přibližování se rozměrů Max_s a D_1 k rozměru Min_s . U rozměru Min_s je téměř konstantní chování (výkyv je v řádu 4 µm).

Obr. 10: Příčné rozměry ces dvojmo skané CO příze 2x29,5 tex

Na obr. 10 pozorujeme pokles všech tří příčných rozměrů U rozměru D_1 je tento pokles největší a naopak u rozměru *Min_s* je nejmenší. Pouze při zákrutech 551 m⁻¹ je pozorován vzrůst všech tří příčných rozměrů, který může být způsoben vybočujícími daty, pro tento zákrut.

Obr. 11: Příčné rozměry myk dvojmo skané CO příze 2x42

Na obr. 11 můžeme vidět podobný trend, jako u předešlého obr. 10. Pouze na počátku je pozorován nepatrný nárůst, který ovšem téměř okamžitě je překonán a opět sledujeme pokles u všech tří rozměrů. Poté opět následuje pokles, který jako u obr. 10 není pro rozměr *Min_s* tak prudký jako je v případě parametrů *Max_s* a D_1 , které ovšem oproti předchozímu grafu vykazují prudší pokles.

Obr. 12: Příčné rozměry myk dvojmo skané CO příze 2x50

Pokles všech tří rozměrů D_1 , Max_s a Min_s je nejlépe viditelný na obr. 12. Pokles rozměrů Max_s a D_1 je prudký až do hodnoty 843 m⁻¹. Poté se příčné rozměry ustalují.

Zhodnocení vlivu samotného zákrutu na rozměry dvojmo skané příze

Všeobecnou známou skutečností je, že hrubší příze, které mají větší množství vláken v příčném řezu a mají stejný počet zákrutů, budou mít také větší příčné rozměry než příze jemnější, tato skutečnost je k vidění na obr. 13. K této reakci dochází při procesu skaní, kdy se přízi vkládají jednotlivé zákruty a při zvyšování jejich počtu, je na přízi vyvíjejí stále větší tlak a jsou k ní více přitlačována, a tím dochází ke zvyšování

zaplnění příze a tedy ke zmenšení příčných rozměrů Max_s a D_{I_1} od určité hodnoty zákrutu.

Jemnější příze, které mají méně vláken v řezu, jejímž následkem je nižší možnost stlačení přízí k sobě, tím je míra klesání pozvolná, (obr. 13). Hrubší příze (2x42 a 2x50 tex), lze naopak lépe stlačit (mají menší zaplnění). Tím je míra jejich klesání větší než v případě přízí jemných přízí (2x10 a 2x29,5 tex), které mají vyšší zaplnění.

Obr. 13: Porovnání příčné rozměrů dvojmo skaných CO přízí

2.5.2 Vliv zákrutového koeficientu *a*_s na příčné rozměry

V této podkapitole byl posuzován vliv zákrutové koeficientu, který byl odvozen ze vztahu pro výpočet zákrutového koeficientu podle Koechlina, na příčné rozměry.

$$\alpha_s = Z_{sz} \frac{\sqrt{T_s}}{31,623} \, [\text{ktex}^{1/2} \,\text{m}^{-1}] \tag{11}$$

Pohled na obr. 13 vede k zamyšlení, že pokud by byl posuzován vliv nejenom samotného zákrutu, ale i jemnosti, tj. zákrutového koeficientu α , mohlo by to vést ke sblížení jednotlivých příčných rozměrů. Bohužel tento předpoklad se nepotvrdil, jak je vidět na obr. 14, jednotlivé příčné rozměry *Max_s* pro jemnosti 2x10, 2x29,5, 2x42 a 2x50 tex jsou si ve vertikálním směru dosti vzdálené. Z tohoto důvodu bylo přistoupeno k vytvoření samostatných grafů, se všemi příčnými rozměry pro jednotlivé typy dvojmo skaných přízí.

Obr. 14: Vliv zákrutového koeficientu α_s na příčné rozměry Max_s

V tab. 2 jsou uvedeny zákrutové koeficienty pro všechny typy testovaných dvojmo skaných CO přízí. A na obr. 15 až 18 jsou vyobrazeny grafy se koeficienty závislostí a rovnicemi přímek.

ces 2x10 tex						
zákrut Z _{sz} [m-1]	jemnost T _s [tex]	zákrut. koef. α_s [ktex ^{1/2} m ⁻¹]				
394,72	20,328	56,2773				
419,20	20,612	60,1836				
480,48	22,018	71,2954				
539,36	20,112	76,4898				
596,16	19,984	84,2754				
	ces 2x29,5 te	2X				
zákrut Z _{sz} [m-1]	jemnost T _s [tex]	zákrut. koef. α_s [ktex ^{1/2} m ⁻¹]				
393,12	29,569	95,5995				
424,96	29,692	103,5571				
496,00	29,924	121,3398				
550,56	30,080	135,0379				
617,28	30,033	151,2848				
	myk 2x42 te	X				
zákrut Z _{sz} [m-1]	jemnost T _s [tex]	zákrut. koef. α_s [ktex ^{1/2} m ⁻¹]				
376,00	81,706	107,4761				
379,83	82,430	109,0508				
483,20	83,170	139,3501				
502,08	83,312	144,9184				
529,92	83,544	153,1669				
613,44	85,070	178,9193				
700,96	85,050	204,4219				
837,28	88,550	249,1506				
1047,84	91,920	317,6852				
1161,60	94,828	357,7024				
	myk 2x50 te	X				
zákrut Z _{sz} [m-1]	jemnost T _s [tex]	zákrut. koef. α_s [ktex ^{1/2} m ⁻¹]				
300,80	99,866	95,0569				
388,00	100,236	122,8402				
417,74	101,730	133,2378				
493,12	102,782	158,0913				
556,80	105,464	180,8208				
617,83	105,268	200,4537				
708,64	107,784	232,6482				
842,56	111,034	280,7539				
986,88	114,806	334,3825				
1198,08	127,174	427,2499				

Tab. 2: Zákrutové koeficienty pro všechny typy zkoušených přízí

Obr. 15: Vliv zákrutové koeficientu α_s *na dvojmo skanou CO přízi 2x10 tex*

Obr. 16: Vliv zákrutové koeficientu α_s *na dvojmo skanou CO přízi 2x29,5 tex*

Obr. 17: Vliv zákrutové koeficientu α_s na dvojmo skanou CO přízi 2x42 tex

Obr. 18: Vliv zákrutové koeficientu α_s na dvojmo skanou CO přízi 2x50 tex

Při porovnání obr. 9 až 12 s obr. 15 až 18, se dospělo k závěru, že vliv jemnosti na příčné rozměry dvojmo skané příze je minimální. Vypočtené regresní přímky mají rovnice uvedené na obr. 15 až 18. Tyto přímky predikují závislost příčných rozměrů na zákrutovém koeficientu α_s . Rovnice přímky vychází z obecné rovnice pro směrnicové vyjádření přímky

$$y = kx + q, \tag{12}$$

kdek [-]...směrnice (sklon) přímkyq [-]...absolutní člen přímky, který lze interpretovat jako bod, v němžregresní přímka protíná svislou osu.

Z obr. 15 až 18 je zřejmé, že nejblíže si jsou směrnice dvojmo skaných přízí 2x42 a 2x50 tex. Hodnoty příze 2x10 tex se přibližují těmto hodnotám, zatímco hodnoty u příze 2x29,5 tex jsou od nich nejvíce vzdálené.

Z posuzování absolutních členů je zřejmé, že u každé přímky pro daný příčný rozměr, je jiný bod, v němž přímka protíná vertikální osu. S rostoucími Max_s , Min_s a D_1 rozměry roste i tento absolutní člen. Tento poznatek odpovídá zhodnocení vlivu parametru zákrutu, jež je uveden v předchozí kapitole 2.5.1 na str. 28.

3. KOMPARACE TEORETICKÝCH VZTAHŮ A EXPERIMENTÁLNÍCH HODNOT PŘÍČNÝCH ROZMĚRŮ

Tato část práce je zaměřena na posuzování souvislostí mezi experimentálními daty a daty získanými z teoretických vztahů z kap. 1.3 (5), (6) a (7), které slouží k výpočtu příčných rozměrů *Min_s* a *Max_s*. Příčný rozměr D_1 bude posuzován podle teoretických vztahů určených pro rozměr *Max_s* a ještě z hodnot vypočtených podle vztahu (9), který slouží k výpočtu přímo pro tento rozměr. Zhodnocení teoretických vztahů a experimentálních hodnot příčných rozměrů je umístěno na konci kapitoly.

Pro výpočet teoretických vztahů, bylo nutné znát průměry a zákruty jednoduchých přízí. Tyto hodnoty jsou uvedeny v tab. 3.

T. [tev]/	Průměr	Směrodatná	Variační	IS [μm]
$Z_{jm}[m^{-1}]$	příze [µm] odchylka [µ		koeficient [%]	dolní mez	horní mez
10/1107	128,6933	17,0043	13.2130	128,5522	128,8345
29,5/654	252,8601	31,0978	12.2984	252,6017	253,1184
42/677	293,6825	31,4510	10.7092	293,4207	293,9443
50/528	342,2977	39,1138	11.4268	341,9734	342,6219

Tab. 3: Průměr jednoduchých CO přízí určených ze 100 podélných pohledů

Experimentální data byla získána ze 100 podélných pohledů. V grafech jsou znázorněny příčné rozměry a jejich intervaly spolehlivosti.

V tab. 4 až 6 jsou uvedeny experimentální hodnoty příčných rozměrů a teoretické hodnoty určené ze vztahů (5), (6), (7) a (9) pro ces dvojmo skanou CO přízi 2x10 tex.

ba 2x10/1107	Experimentální hodnoty		Vzta	h (5)
$Z_{z} [m^{-1}]$	¹] Charakteristický rozměr [µm]		Charakteristick	xý rozměr [μm]
394,72		364.9240		257,3866
419,20		367,5138		257,3866
480,48	Max_s	357,4728	$Max_{s}(5)$	257,3866
539,36		354,9257		257,3866
596,16		351,3932		257,3866
394,72		249,6701		132,2227
419,20		252,2758		132,7237
480,48	<i>Min</i> _s	253,0446	$Min_s(5)$	133,6637
539,36		250,6243		134,9021
596,16		252,8630		135,9326
394,72		380,3084		257,3866
419,20		383,0379		257,3866
480,48	D_1	371,7821	$D_1(5)$	257,3866
539,36		371,0370		257,3866
596,16		363,1817		257,3866

Tab. 4: Experimentální a teoretické hodnoty (5) ces dvojmo skanou CO přízi 2x10 tex

ba 2x10/110 7	Experimentální hodnoty		Vztah (6)		Vztah (7)		
$Z_{z} [m^{-1}]$	Charakteristický		Charakteristický		Seská	Charakteristický	
	rozměr [µm]		rozměr [µm]		ní [%]	rozměr [µm]	
394,72	Max _s	364.9240	Max _s (6)	257,3866	-0,592	Max _s (7)	262,4957
419,20		367,5138		257,3866	-0,697		263,4092
480,48		357,4728		257,3866	-0,675		263,2176
539,36		354,9257		257,3866	-0,580		262,3914
596,16		351,3932		257,3866	-0,489		261,6017
394,72	Mins	249,6701	Min _s (6)	181,9998	-0,592	Min _s (7)	186,5435
419,20		252,2758		181,9998	-0,697		185,1163
480,48		253,0446		181,9998	-0,675		185,3958
539,36		250,6243		181,9998	-0,580		186,7233
596,16		252,8630		181,9998	-0,489		188,2283
394,72	D_1	380,3084	D ₁ (6)	257,3866	-0,592	D ₁ (7)	262,4957
419,20		383,0379		257,3866	-0,697		263,4092
480,48		371,7821		257,3866	-0,675		263,2176
539,36		371,0370		257,3866	-0,580		262,3914
596,16		363,1817		257,3866	-0,489		261,6017

Tab. 5: Experimentální a teoretické hodnoty (6), (7) ces dvojmo skanou CO přízi 2x10 tex
ba 2x10/1107	Experiment	tální hodnoty	Vzta	h (9)
$Z_{z} [m^{-1}]$	Charakteristic	ký rozměr [μm]	Charakteristick	ý rozměr [µm]
394,72		380,3084		250,5162
419,20		383,0379		249,5707
480,48	D_1	371,7821	$D_{1}(9)$	247,8156
539,36		371,0370		245,5406
596,16		363,1817		243,6792

*Tab. 6: Experimentální a teoretické hodnoty D*₁ (9) ces dvojmo skanou CO přízi 2x10 tex

Graficky znázorněné srovnání příčných rozměrů Max_s , Min_s a D_1 s hodnotami vypočítanými podle teoretických vztahů (5), (6), (7) a (9) pro CO přízi 2x10 tex, jsou k vidění na obr. 19 až 21.

Obr. 19: Porovnání experimentálních a teoretických hodnot Max_s u příze 2x10 tex

Obr. 20: Porovnání experimentálních a teoretických hodnot Min_s u příze 2x10 tex

Obr. 21: Porovnání experimentálních a teoretických hodnot D_1 u příze 2x10 tex

V tab. 7 až 9 jsou uvedeny experimentální hodnoty příčných rozměrů a teoretické hodnoty určené ze vztahů (5), (6), (7) a (9) pro ces dvojmo skanou CO přízi 2x29,5 tex.

ba 2x29,5/654	Experimentální hodnoty		Vztah	n (5)
$Z_{z} [m^{-1}]$	Charakteristic	ký rozměr [µm]	Charakteristick	ý rozměr [µm]
393,12		526,8375		505,7202
424,96		491,3029		505,7202
496,00	Max_s	469,5711	$Max_{s}(5)$	505,7202
550,56		496,0286		505,7202
617,28		447,0587		505,7202
393,12		380,6768		266,9799
424,96		342,8514		267,2306
496,00	Mins	340,4764	$Min_s(5)$	271,8704
550,56		364,7388		276,5491
617,28		326,4810		277,1052
393,12		548,7138		505,7202
424,96		512,1852		505,7202
496,00	D_1	506,9682	$D_1(5)$	505,7202
550,56		512,1116		505,7202
617,28		462,3308		505,7202

Tab. 7: Experimentální a teoretické hodnoty (5) ces dvojmo skané CO příze 2x29,5 tex

ba 2x29,5/654	Experimentální hodnoty		654 Experimentální Vztah (6)		Vztah (7)		
7 [···· ¹]	Charak	teristický	Charak	Charakteristický		Seskání Charakteristický	
	rozm	ěr [µm]	rozm	rozměr [µm]		rozměr [µm]	
393,12		526,8375		505,7202	-0,204		509,1638
424,96		491,3029	Maria	505,7202	-0,113	Mari	507,6257
496,00	Max_s	469,5711	Max_s	505,7202	-0,142	Max_s	508,1155
550,56		496,0286	(0)	505,7202	0,434	(7)	498,4483
617,28		447,0587		505,7202	0,572		496,1514
393,12		380,6768		357,5982	-0,204		385,3612
424,96		342,8514	Min	357,5982	-0,113	Min	396,2191
496,00	Min _s	340,4764	Min_s	357,5982	-0,142	Min_s	391,9848
550,56		364,7388	(0)	357,5982	0,434	(7)	371,9175
617,28		326,4810		357,5982	0,572		367,1188
393,12		548,7138		505,7202	-0,204		509,1638
424,96		512,1852		505,7202	-0,113		507,6257
496,00	D_1	506,9682	$D_{1}(6)$	505,7202	-0,142	$D_{1}(7)$	508,1155
550,56		512,1116		505,7202	0,434		498,4483
617,28		462,3308		505,7202	0,572		496,1514

Tab. 8: Experimentální a teoretické hodnoty (6),(7) ces dvojmo skané CO příze 2x29,5 tex

ba 2x29,5/654	Experimentální hodnoty		Vztal	n (9)
$Z_{z} [m^{-1}]$	Charakteristi	Charakteristický rozměr [µm]		ý rozměr [µm]
393,12		548,7138		478,9716
424,96		512,1852		478,5248
496,00	D_1	506,9682	$D_{1}(9)$	470,3582
550,56		512,1116		462,4005
617,28		462,3308		433,9331

Tab. 9: Experimentální a teoretické hodnoty D1 (9) ces dvojmo skané CO příze 2x29,5 tex

Graficky znázorněné srovnání příčných rozměrů Max_s , Min_s a D_1 s hodnotami vypočítanými podle teoretických vztahů (5), (6), (7) a (9) pro CO přízi 2x29,5 tex, jsou k vidění na obr. 22 až 24.

Obr. 22: Porovnání experimentálních a teoretických hodnot Max_s u příze 2x29,5 tex

Obr. 23: Porovnání experimentálních a teoretických hodnot Min_s u příze 2x29,5 tex

Obr. 24: Porovnání experimentálních a teoretických hodnot D_1 u příze 2x29,5 tex

V tab. 10 až 12 jsou uvedeny experimentální hodnoty příčných rozměrů a teoretické hodnoty určené ze vztahů (5), (6), (7) a (9) pro myk dvojmo skanou CO přízi 2x42 tex.

Pod tab. 10 až 12 jsou umístěny obr. 25 až 27 znázorňující srovnání příčných rozměrů Max_s , Min_s a D_1 s hodnotami vypočtenými podle teoretických vztahů (5), (6), (7) a (9) pro myk dvojmo skanou CO přízi 2x42 tex.

ba 2x42/677	Experimentální hodnoty		Vztah (5)		
$Z_{z} [m^{-1}]$	Charakteristic	ký rozměr [µm]	Charakteristic	ký rozměr [µm]	
376,00		570,2216		587,3650	
379,83		572,1530		587,3650	
483,20		566,9027		587,3650	
502,08		568,1160		587,3650	
529,92	14	550,2753	M (5)	587,3650	
613,44	Max _s	532,1500	$Max_{s}(5)$	587,3650	
700,96		506,2765		587,3650	
837,28		491,3352		587,3650	
1047,84		471,3420		587,3650	
1161,60		455,7039		587,3650	
376,00		392,1762		311,7318	
379,83		399,9199	Min _s (5)	312,0962	
483,20		401,5128		322,3738	
502,08		403,1810		324,1529	
529,92	Min	393,7280		325,4460	
613,44	<i>with</i> _s	385,0931		332,2952	
700,96		379,3679		339,5566	
837,28		374,2299		352,2640	
1047,84		361,8664		378,0670	
1161,60		358,5590		388,2122	
376,00		602,6507		587,3650	
379,83		602,9076		587,3650	
483,20		596,3194		587,3650	
502,08		592,4270		587,3650	
529,92	ת	573,6435	$D_{(5)}$	587,3650	
613,44	D_1	549,2889	$D_1(3)$	587,3650	
700,96		527,1084		587,3650	
837,28		503,6056		587,3650	
1047,84		492,5440		587,3650	
1161,60		473,8337		587,3650	

Tab. 10: Experimentální a teoretické hodnoty (5) myk dvojmo skané CO příze 2x42 tex

ba	Experimentální hodnoty		Vate	oh (6)	Vztah (7)		
2x42/677			V ZLC	v ztun (0)		v Ztali (7)	
7 [m ⁻¹]	Charak	teristický	Charak	teristický	Seskání	Charak	teristický
	rozme	ér [µm]	rozmè	ér [µm]	[%]	rozm	ěr [µm]
376,00		570,2216		587,3650	-0,904		605,2335
379,83		572,1530		587,3650	-0,918		605,5132
483,20		566,9027		587,3650	-0,612		599,4208
502,08		568,1160		587,3650	-0,504		597,2809
529,92	Mar	550,2753	Max (6)	587,3650	-0,376	Max _s	594,7516
613,44	<i>max_s</i>	532,1500	$Max_s(0)$	587,3650	0,226	(7)	582,9562
700,96		506,2765		587,3650	0,688		574,0158
837,28		491,3352		587,3650	2,416		541,4257
1047,84		471,3420		587,3650	4,708		500,2257
1161,60		455,7039		587,3650	6,594		468,011
376,00		392,1762		415,3298	-0,904		417,3061
379,83		399,9199		415,3298	-0,918		417,0045
483,20		401,5128	Min _s (6)	415,3298	-0,612	Min _s (7)	425,0334
502,08		403,1810		415,3298	-0,504		428,9333
529,92	Mire	393,7280		415,3298	-0,376		434,8854
613,44	<i>Mins</i>	385,0931		415,3298	0,226		445,4241
700,96		379,3679		415,3298	0,688		422,7001
837,28		374,2299		415,3298	2,416		398,4497
1047,84		361,8664		415,3298	4,708		386,1402
1161,60		358,5590		415,3298	6,594		380,0695
376,00		602,6507		587,3650	-0,904		605,2335
379,83		602,9076		587,3650	-0,918		605,5132
483,20		596,3194		587,3650	-0,612		599,4208
502,08		592,4270		587,3650	-0,504		597,2809
529,92	л	573,6435		587,3650	-0,376	D (7)	594,7516
613,44	D_1	549,2889	$D_{1}(0)$	587,3650	0,226	$D_1(I)$	582,9562
700,96		527,1084		587,3650	0,688		574,0158
837,28		503,6056		587,3650	2,416		541,4257
1047,84		492,5440		587,3650	4,708		500,2257
1161,60		473,8337		587,3650	6,594		468,011

Tab. 11: Experimentální a teoretické hodnoty (6), (7) myk dvojmo skané CO příze 2x42 tex

ba 2x42/677	Experimentální hodnoty		Vz	rtah (9)
$Z_{z} [m^{-1}]$	Charakterist	Charakteristický rozměr [µm]		ický rozměr [µm]
376,00		602,6507		553,3566
379,83		602,9076		552,7105
483,20		596,3194		535,0895
502,08		592,4270	D ₁ (9)	532,1527
529,92	Л	573,6435		530,0382
613,44	D_1	549,2889		519,1132
700,96		527,1084		508,0120
837,28		503,6056		489,6862
1047,84		492,5440		456,2651
1161,60		473,8337		444,3416

Tab. 12: Experimentální a teoretické hodnoty D_1 (9)myk dvojmo skané CO příze 2x42 tex

Obr. 25: Porovnání experimentálních a teoretických hodnot Max_s u příze 2x42 tex

Obr. 26: Porovnání experimentálních a teoretických hodnot Min_s u příze 2x42 tex

Obr. 27: Porovnání experimentálních a teoretických hodnot D_1 u příze 2x42 tex

V tab. 13 až 15 jsou uvedeny experimentální hodnoty příčných rozměrů a teoretické hodnoty určené ze vztahů (5), (6), (7) a (9) pro myk dvojmo skanou CO přízi 2x50 tex.

Pod tab. 13 až 15 jsou umístěny obr. 28 až 30 znázorňující srovnání příčných rozměrů Max_s , Min_s a D_1 s hodnotami vypočtených podle teoretických vztahů (5), (6), (7) a (9) pro myk dvojmo skanou CO přízi 2x50 tex.

ba 2x50/528	Experimentální hodnoty		Vztah (5)		
$Z_{z} [m^{-1}]$	Charakteristic	ký rozměr [µm]	Charakteristick	κý rozměr [μm]	
300,80		680,4328		684,2977	
388,00		650,9479		684,2977	
417,74		640,8413		684,2977	
493,12		615,6238		684,2977	
556,80	14	601,4763		684,2977	
617,83	Max _s	565,2167	$Max_{s}(5)$	684,2977	
708,64		542,7151		684,2977	
842,56		524,8609		684,2977	
986,88		515,6706		684,2977	
1198,08		504,7992		684,2977	
300,80		478,4212		360,8071	
388,00		469,9802	Min _s (5)	369,7717	
417,74		467,0168		373,0765	
493,12		457,6857		382,3274	
556,80	Min	453,5386		389,2401	
617,83	<i>with</i> s	423,4813		395,1261	
708,64		432,3301		404,3682	
842,56		421,3808		421,7567	
986,88		422,2809		445,6421	
1198,08		422,0106		488,0903	
300,80		705,0848		684,2977	
388,00		670,6558		684,2977	
417,74		660,4517		684,2977	
493,12		645,0212		684,2977	
556,80	ת	618,9696	D (5)	684,2977	
617,83	\boldsymbol{D}_1	594,2831	$D_1(3)$	684,2977	
708,64		564,9705		684,2977	
842,56		543,8924		684,2977	
986,88		537,6976		684,2977	
1198,08		540,2061		684,2977	

Tab. 13: Experimentální a teoretické hodnoty (5) myk dvojmo skané CO příze 2x50 tex

ba	Experimentální		Vztah (6)		Vztah (7)		
2x50/528	hod	Inoty					
$Z_{z} [m^{-1}]$	Charak	teristický	Charakteristicky		Seskání		
200.00	rozme	er [μm]	rozme	er [µm]	[%]	rozm	er [μm]
300,80		680,4328		684,2977	-0,508		696,2450
388,00		650,9479		684,2977	-0,3		691,4584
417,74		640,8413		684,2977	-0,188		688,8906
493,12		615,6238		684,2977	0,464		674,0746
556,80	Mar	601,4763	Mar(6)	684,2977	1,048	Max _s	660,9945
617,83	MULLS	565,2167	$Max_s(0)$	684,2977	1,67	(7)	647,2596
708,64		542,7151		684,2977	2,824		622,3082
842,56		524,8609		684,2977	4,36		590,1518
986,88		515,6706		684,2977	6,648		544,4345
1198,08		504,7992		684,2977	10,095		480,3239
300,80		478,4212		484,0821	-0,508		499,7516
388,00		469,9802		484,0821	-0,3		512,2872
417,74		467,0168		484,0821	-0,188	Min _s (7)	523,6730
493,12		457,6857		484,0821	0,464		501,8858
556,80	14.	453,5386		484,0821	1,048		483,0157
617,83	<i>Mins</i>	423,4813	$Min_s(0)$	484,0821	1,67		472,5450
708,64		432,3301		484,0821	2,824		461,0115
842,56		421,3808		484,0821	4,36		451,6891
986,88		422,2809		484,0821	6,648		442,8150
1198,08		422,0106		484,0821	10,095		434,1993
300,80		705,0848		684,2977	-0,508		696,2450
388,00		670,6558		684,2977	-0,3		691,4584
417,74		660,4517		684,2977	-0,188		688,8906
493,12		645,0212		684,2977	0,464		674,0746
556,80	D	618,9696		684,2977	1,048	D (7)	660,9945
617,83	$\boldsymbol{\nu}_{1}$	594,2831	$\boldsymbol{D}_1(\boldsymbol{0})$	684,2977	1,67	$D_1(I)$	647,2596
708,64		564,9705		684,2977	2,824		622,3082
842,56		543,8924		684,2977	4,36		590,1518
986,88		537,6976		684,2977	6,648		544,4345
1198,08		540,2061		684,2977	10,095		480,3239

Tab. 14: Experimentální a teoretické hodnoty (6), (7) myk dvojmo skané CO příze 2x50 tex

ba 2x50/528	Experimentální hodnoty		Vzt	ah (9)
$Z_{z} [m^{-1}]$	Charakteristic	ký rozměr [μm]	Charakteristický rozměr [µm]	
300,80		705,0848		649,4757
388,00		670,6558		633,7300
417,74		660,4517		628,1163
493,12		645,0212	D ₁ (9)	612,9183
556,80	Δ	618,9696		602,0332
617,83	D_1	594,2831		593,0650
708,64		564,9705		579,5100
842,56		543,8924		555,6176
986,88		537,6976		525,8377
1198,08		540,2061		480,1068

Tab. 15: Experimentální a teoretické hodnoty D_1 (9) myk dvojmo skané CO příze 2x50 tex

Obr. 28: Porovnání experimentálních a teoretických hodnot Max_s u příze 2x50 tex

Obr. 29: Porovnání experimentálních a teoretických hodnot Min_s u příze 2x50 tex

Obr. 30: Porovnání experimentálních a teoretických hodnot D_1 u příze 2x50 tex

Zhodnocení teoretických vztahů s experimentálními hodnotami příčných rozměrů

Zhodnocení obr. 19 – 21, na kterých jsou porovnávány experimentální a teoretické hodnoty pro dvojmo skanou CO přízi 2x10 tex. Ani jeden teoretický vztah nenapodobil chování experimentálních rozměrů. Lze se domnívat, že tyto teoretické vztahy nejsou přizpůsobeny pro tak jemné příze, jako je tato. Může to být způsobeno i vysokým zákrutem (1107 m⁻¹) jednoduché příze nebo špatně zvoleným zvětšením příze (dvojmo skaná CO příze 2x10 tex byla zvětšena 24x a jednoduchá příze 10 tex 40x). I když tento fakt, byl odstraněn vhodnou kalibrací, může to být způsobeno i tím.

Pro ostatní rozměry již teoretické vztahy hodnotově odpovídaly, a proto jsou hodnoceny všechny (obr. 22 - 30) dohromady, tedy zvláště pro *Max_s*, *Min_s* a *D*₁.

Z obr. 22, 25 a 28 pro Max_s vyplývá, že pro výpočet příčného rozměru Max_s se jeví jako vhodný pro výpočet, teoretický vztah (7), neboť má tendenci zaznamenávat trend daného experimentálního rozměru. Vztahy (5) a (6) zaznamenaly u příze 2x29,5 tex a průměrnou hodnotu měření, u přízí 2x42 a 2x50 tex poté zaregistrovaly vyšší hodnoty příčného rozměru Max_s .

Z obr. 23, 26 a 29 pro *Min_s* vyplývá, že pro výpočet příčného rozměru *Min_s* se nejlépe zpočátku projevuje teoretický vztah (6), který nabývá průměrné hodnoty rozměru *Min_s*. Avšak u příze 2x42 tex dochází ke změně. A pro výpočet se nyní hodí spíše vztah (7), který sleduje trend experimentálních hodnot. Vztah (5) není vhodný pro výpočty *Min_s*, z důvodu vzdálených hodnot. (Je ale silně nepřímo závislý).

Z obr. 24, 27 a 30 pro D_1 vyplývá, že pro výpočet příčného rozměru D_1 se jeví jako vhodný pro výpočet, teoretický vztah (9), neboť má tendenci zaznamenávat trend daného experimentálního rozměru. Pro přízi 2x50 tex se jeví jako ideální. Vztah (7) sice sleduje trend experimentálního rozměru, ale body má ve větší vzdálenosti než vztah (9). Ostatní vztahy (5) a (6) pouze zaznamenávají, v případě příze 2x29,5 průměr experimentální hodnoty příčného rozměru D_1 a v ostatních případech registrují vyšší hodnoty příčného rozměru D_1 .

3.1 Závislost experimentálních a teoretických hodnot u CO přízí

Tato část práce je zaměřena na ověřování míry závislosti. Zkoumá, zda existuje nějaká afinita mezi experimentálními a teoretickými hodnotami ze vztahů (5), (6), (7) a (9). Pro možnost toto výzkumu byly vytvořeny bodové grafy XY, obr. 31 až 42, kde každý pár údajů je graficky znázorněn jedním bodem v rovině. Těmito body je poté proložena regresní přímka. Pro vyjádření míry závislosti byl použit korelační koeficient.

Hodnoty vztahu (6) jsou vždy na experimentálních hodnotách lineárně nezávislá, neboť koeficient korelace je roven nule, obr. 31 - 42. Stejně tomu tak je u hodnot *Max_s* a D_1 (5) a (6), obr. 35 - 42. Vztah (9) je porovnáván pouze s rozměrem D_1 , pro jehož výpočet, je vztah určen

Silná lineární závislost je pozorována u příčného rozměru *Max_s*, mezi vztahem (7) a experimentem, obr. 35 - 38. Pouze u obr. 36 je hodnota korelace lineárně slabá závislá, což může být způsobeno vybočujícím měřením.

U minimálních hodnot charakteristických rozměrů Mins, nejsou závěry tak jednoznačné, obr. obr. 31 - 34.

Obr. 31: Závislost experimentálních a teoretických Min_s rozměrů u CO 2x10 tex

Obr. 31 ukazuje nejvyšší koeficient korelace u hodnot ze vztahu (5), kde se vyskytuje lineární slabá závislost. Závislost mezi experimentálními a teoretickými hodnotami ze vztahu (7) neexistuje.

Obr. 32: Závislost experimentálních a teoretických Min_s rozměrů u CO 2x29,5 tex

Obr. 32 ukazuje nejvyšší koeficient korelace u hodnot ze vztahu (5), kde se vyskytuje nelineární slabá závislost, což znamená, že jedna hodnota roste, zatímco druhá klesá. Závislost mezi experimentálními a teoretickými hodnotami ze vztahu (7) prakticky neexistuje.

Obr. 33: Závislost experimentálních a teoretických Min_s rozměrů u CO 2x42 tex

Obr. 33 ukazuje nejvyšší koeficient korelace u hodnot ze vztahu (5), kde se vyskytuje nelineární velmi silná závislost. Závislost mezi experimentálními a teoretickými hodnotami ze vztahu (7) je velmi silná přímá.

Obr. 34: Závislost experimentálních a teoretických Mins rozměrů u CO 2x50 tex

Obr. 34 ukazuje nejvyšší koeficient korelace u hodnot ze vztahu (7), kde se vyskytuje lineární velmi silná závislost. Závislost mezi experimentálními a teoretickými hodnotami ze vztahu (5) je velmi silná nepřímá.

Obr. 35: Závislost experimentálních a teoretických Max_s rozměrů u CO 2x10 tex

Obr. 35 ukazuje nejvyšší koeficient korelace u hodnot ze vztahu (7), kde se vyskytuje lineární velmi silná závislost.

Obr. 36: Závislost experimentálních a teoretických Max_s rozměrů u CO 2x29,5 tex

Obr. 37: Závislost experimentálních a teoretických Max_s rozměrů u CO 2x42 tex

Obr. 38: Závislost experimentálních a teoretických Max_s rozměrů u CO 2x50 tex

Obr. 39: Závislost experimentálních a teoretických D1 rozměrů u CO 2x10 tex

Obr. 40: Závislost experimentálních a teoretických D₁ rozměrů u CO 2x29,5 tex

Obr. 41: Závislost experimentálních a teoretických D₁ rozměrů u CO 2x42 tex

Obr. 42: Závislost experimentálních a teoretických D1 rozměrů u CO 2x50 tex

Diskuse:

Příčný rozměr Mins

vztah (5) x experimentální hodnoty:

 $\rho \in \langle 0,4073; -0,4098; -0,9404; -0,8056 \rangle$

Silná nelineární závislost hrubších přízí mykaných (ne ces 2x10 a 2x29,5 tex).

vztah (6) x experimentální hodnoty:

 $\rho = 0$

Závislost neexistuje, ale hodnoty se přibližují průměrným hodnotám experimentálním.

vztah (7) x experimentální hodnoty:

 $\rho \in \langle -0,0822; 0,0,070; 0,7740; 0,9027 \rangle$

Závislost existuje pouze pro jemnosti 2x42 tex a 2x50 tex, a to silná, kde teoretické hodnoty sledují tendenci experimentálních hodnot.

Příčný rozměr Max_s

vztah (5) x experimentální hodnoty:

 $\rho = 0$

Závislost neexistuje, ale teoretické hodnoty jsou blízké experimentálním.

vztah (6) x experimentální hodnoty:

 $\rho = 0$

Stejně jako u předešlého závěru. Je použit stejný vzorec. Závislost neexistuje, ale teoretické hodnoty jsou blízké experimentálním.

vztah (7) x experimentální hodnoty:

 $\rho \in \langle 08503; 0, 5644; 0, 9485; 0, 8936 \rangle$

Závislost existuje. U první CO příze je závislost velmi silná lineární, ale u příze 2x29,5 se hodnota korela a s ní závislost snížila, u přízí 2x42 a 2x50 tex je již závislost opět velmi silná lineární. Vztah je vhodný pro výpočet Max_s .

Příčný rozměr D₁

vztah (5) x experimentální hodnoty:

 $\rho = 0$

Závislost neexistuje, ale teoretické hodnoty jsou blízké experimentálním.

vztah (6) x experimentální hodnoty:

 $\rho = 0$

Stejně jako u předešlého závěru. Je použit stejný vzorec. Závislost neexistuje, ale teoretické hodnoty jsou blízké experimentálním.

vztah (7) x experimentální hodnoty:

 $\rho \in \langle 0,7293; 0,7421; 0,9309; 0,8710 \rangle$

Závislost existuje. U první CO příze je závislost silná lineární, u druhé příze 2x29,5 tex je závislost podstatná lineární a u dvou přízí je závislost velmi silná lineární. Vztah je vhodný pro výpočet D_I .

vztah (9) x experimentální hodnoty:

 $\rho \in \langle 0,9382; 0,8889; 0,9635; 9055 \rangle$

Závislost existuje. Už u příze 2x10 tex je závislost velmi silná lineární. Mimo příze 2x10 tex jsou teoretické hodnoty blízké experimentálním hodnotám. Vztah se jeví jako nejvhodnější pro výpočet příčného rozměrů D_1 .

4. ZÁVĚR

Hlavními body této diplomové práce byly v teoretické části uvedené definice příčných rozměrů, zmapování možností jejich měření a popisu. V experimentální části to bylo provedení snímání podélných pohledů na dvojmo skanou přízi, dále určení hodnot jejich příčných rozměrů – D_1 , Max_s , Min_s . Poté následovalo určení minimálního počtu snímaných obrazů, kde tyto získané výsledky byly porovnány s diplomovou prací [2]. Následovalo sledování vlivu parametrů (zákrut a zákrutový koeficient α_s) na příčné rozměry dvojmo skané příze. A poslední část se věnovala ověření existujících teoretických vztahů pro výpočet příčných rozměrů a porovnání těchto hodnot s hodnotami získanými z experimentu.

První experimentální částí této práce bylo stanovení minimálního počtu snímaných obrazů. U dvojmo skané příze bylo toto minimum stanoveno na 60 obrazů a u jednoduchých přízí na 55 obrazů. Tyto výsledky byly porovnávány s diplomovou prací [2], která se v jedné ze svých stěžejních částí věnovala stanovení optimálního počtu snímaných obrazů.

V další části byl sledován vliv parametrů na příčné rozměry dvojmo skané příze. V této části práce byly zvoleny takové typy přízí, aby byl vytvořen reprezentativní vzorek pro CO příze. Na základě naměřených hodnot příčných rozměrů u dvojmo skaných CO přízí, o různých jemnostech a zákrutech, byly sledovány vlivy, které by mohly ovlivňovat chování dvojmo skaného útvaru. A to právě parametry – zákrutu a jemnosti. U všech přízí byly již od počátku pozorovány poklesy všech tří příčných rozměrů – u *Mins* nejmenší a u rozměru D_1 největší, mimo přízi 2x10 tex, kde byl sice na počátku pozorován malý nárůst, ale poté následoval opět pokles. S klesající jemností se zvyšoval sklon poklesu příčných rozměrů se závislostí na zákrutu, jak narůstalo zaplnění příze. Následovalo sledování vlivu zákrutového koeficientu α_s , který v sobě zahrnu, jak parametr zákrutu, tak i parametr jemnosti. Předpoklad byl, že pokud by byl posuzován vliv nejenom samotného zákrutu, ale i jemnosti, mohlo by to vést ke sblížení jednotlivých příčných rozměrů z různých přízí. Bohužel se, ale tento předpoklad nepotvrdil.

Následující část byla zaměřena na komparaci teoretických vztahů a experimentálních hodnot příčných rozměrů. V této části byly posuzovány hodnoty získané z teoretických vztahů (5), (6), (7) a (9), které poté byly porovnávány s hodnotami získanými z experimentálního mření. Pro výpočet maximálního rozměru Max_s se jevil jako nejlépe vhodný teoretický vztah (7), který sledoval tendenci vývoje tohoto rozměru. Pro minimální rozměr Min_s se zpočátku jevil jako nejvíce vhodný vztah (6), ovšem přízím 2x42 a 2x50 tex již nejlépe odpovídal vztah (7). Jako nejlépe vhodný pro výpočet příčného rozměru D_1 se jevil vztah (9). Naopak vztahy (5) a (6) se projevily jako naprosto nevyhovující pro výpočet tohoto rozměru.

Ani jeden vztah plně neodpovídá naměřeným experimentálním hodnotám. Nejblíže se jim přibližují hodnoty vypočtené pro dvojmo skanou přízi 2x42 a 2x50 tex. Pro dvojmo skané příze s vyšší jemností tyto hodnoty neodpovídají. Důvod, proč tomu tak je, spočívá v tom, že stále ještě nedokážeme přesně stanovit všechny faktory, které ovlivňují chování dvojmo skané příze. Tyto uvedené skutečnosti by se mohly stát námětem dalších diplomových prací, které by mohly přispět k přesnému logickému řešení problematiky příčných rozměrů u dvojmo skané příze.

5. POUŽITÁ LITERATURA

- [1] Vyšanská, M.: Skaná příze geometrická a mechanická charakterizace, Výzkumná zpráva VCT I, Liberec, 2004
- [2] Martinková, Z.: Charakteristické rozměry dvojmo skané příze, Diplomová práce, TUL, Liberec, 2007
- [3] Rektorys, K. a spol.: Přehled užitné matematiky I, Praha, 2000
- [4] Vyšanská, M.: Příčné rozměry dvojmo skané příze a průměr jednoduché příze Podélné pohledy, Interní norma č. 32-102-01/01, TUL, Liberec, 2007
- [5] Cahová, J.: Příčné rozměry a seskání bavlnářských skaných přízí, Diplomová práce, TUL, Liberec, 1996
- [6] Ursíny, P.: Struktura a vlastnosti skaní bavlněné příze mykané, Zpráva z pracovní etapy dílčího úkolu Optex – Optimalizace použití skaní, VŠST, Liberec, 1975
- [7] Vyšanská, M.: Příčné rozměry dvojmo skané příze a průměr jednoduché příze –
 Řezy, Interní norma č. 22-102-02/01, TUL, Liberec, 2007
- [8] Meloun, M., Militký, J.: Statistické zpracování experimentálních dat, Academia, Praha, 1998
- [9] Dostálová, M., Křivánková M.: Základy textilní a oděvní výroby, skripta, TUL, Liberec, 2001
- [10] Neckář B., Voborová, J.: Průměr a chlupatost příze, Interní norma č. 22-102-01/01, TUL, Liberec, 2004
- [11] Vyšanská, M.: Skaná příze interní zpráva I, II, III pro VÚTS, TUL, Liberec, 2007
- [12] Vyšanská, M.: The Geometry of two-ply yarn, zpráva pro 5th World Textile Conference AUTEX 2005, TUL, Liberec, 2005

6. SEZNAM PŘÍLOH

Příloha č. 1 Tabulky - Příčné rozměry dvojmo skaných CO přízí 2x10 tex
Příloha č. 2 Tabulky – Příčné rozměry dvojmo skaných CO přízí 2x29,5 tex
Příloha č. 3 Tabulky – Příčné rozměry dvojmo skaných CO přízí 2x42 tex
Příloha č. 4 Tabulky – Příčné rozměry dvojmo skaných CO přízí 2x50 tex
Příloha č. 5 Tabulky – Skací zákruty a hodnoty seskání
Příloha č. 6 Tabulky – Skutečná jemnost u dvojmo skaných přízí

7 [m ⁻¹]	7 [m ⁻¹]	Max [um]	Směrodatná	Variační koeficient	IS [μm]	Medián
∠ _{jm} [III]	∠ _{zj} [m_]		odchylka [µm]	[%]	dolní mez	horní mez	[µm]
370	394,72	364.9240	25,1721	6,8979	359,9655	369,8826	363,3300
425	419,20	367,5138	23,3631	6,3571	362,9346	372,0930	356,1650
486	480,48	357,4728	20,5204	5,7404	353,4306	361,5151	355,9900
537	539,36	354,9257	22,5106	6,3424	350,5136	359,3378	355,9900
601	596,16	351,3932	22,0720	6,2813	347,0453	355,7411	348,6500

Vyhodnocení česané dvojmo skané CO příze o délkové hmotnosti 2 x 10 tex / 1107 Zm^{-1}

7 [m ⁻¹]	$7 [m^{-1}]$	Min [um]	Směrodatná	Variační koeficient	IS [μm]	Medián
∠ _j [m_]		Iviin _s [µiii]	odchylka [µm]	[%]	dolní mez	horní mez	[µm]
370	394,72	249,6701	22,6682	9,0793	245,2271	254,1131	255,0650
425	419,20	252,2758	20,2472	8,0258	248,3073	256,2443	256,9000
486	480,48	253,0446	20,0218	7,9123	249,1006	256,9887	256,9000
537	539,36	250,6243	24,5793	9,8072	245,8068	255,4418	256,9000
601	596,16	252,8630	20,7443	8,2038	248,7971	256,9289	258,7350

7 [m ⁻¹] 7 [m ⁻¹]			Směrodatná	Variační koeficient	IS [µm]		Medián
∠ _j [m_]	$\mathbf{L}_{\mathbf{Z}}$ [III]	D_1 [µm]	odchylka [µm]	[%]	dolní mez	horní mez	[µm]
370	394,72	380,3084	25,9221	6,8161	375,2021	385,4147	378,0100
425	419,20	383,0379	24,8674	6,4921	378,1639	387,9119	381,6800
486	480,48	371,7821	19,8638	5,3429	367,8692	375,6950	370,6700
537	539,36	371,0370	22,5179	6,0689	366,6235	375,4505	370,6700
601	596,16	363,1817	22,1998	6,1126	358,8086	367,5548	359,6600

7 [m ⁻¹] 7 [m ⁻¹]		May [um]	Směrodatná	Variační koeficient	IS [Medián	
	wax _s [µm]	odchylka [µm]	[%]	dolní mez	horní mez	[µm]	
370	393,12	526,8375	54,1065	10,2701	516,2326	537,4424	526,2800
425	424,96	491,3029	57,2694	11,6566	480,0781	502,5277	482,6050
486	496,00	469,5711	53,7301	11,4424	459,0400	480,1022	473,8750
537	550,56	496,0286	53,5306	10,7918	485,4837	506,5734	490,6000
601	617,28	447,0587	47,9472	10,7250	437,6137	456,5037	434,8500

Vyhodnocení česané dvojmo skané CO příze o délkové hmotnosti 2 x 29,5 tex / 654 Zm^{-1}

7 . $[m^{-1}]$ 7 . $[m^{-1}]$		Min [um]	Směrodatná	Variační koeficient	IS [Medián	
L _{jm} [III]	∠ _{zj} [m⊔]	Mins [µm]	odchylka [µm]	[%]	dolní mez	horní mez	[µm]
370	393,12	380,6768	41,4085	10,8776	372,5198	388,8337	379,1000
425	424,96	342,8514	38,0511	11,0984	335,3934	350,3094	341,3100
486	496,00	340,4764	38,7518	11,3816	332,8810	348,0718	341,1900
537	550,56	364,7388	39,7758	10,9053	356,9427	372,5349	359,0300
601	617,28	326,4810	29,1661	8,9335	320,7357	332,2264	325,5800

7 [m ⁻¹]	7 [m ⁻¹]	D [um]	Směrodatná Variační koeficien		IS [Medián	
L _{jm} [III]	∠ _{zj} [m]	D_1 [µm]	odchylka [µm]	[%]	dolní mez	horní mez	[µm]
370	393,12	548,7138	57,5354	10,4855	537,4369	559,9907	548,5800
425	424,96	512,1852	59,9611	11,7069	500,4328	523,9376	510,1300
486	496,00	506,9682	58,3619	11,5119	495,5293	518,4071	510,6700
537	550,56	512,1116	55,0164	10,7430	501,2741	522,9492	506,2100
601	617,28	462,3308	47,1053	10,1887	453,0517	471,6100	452,6900

7 [m ⁻¹]	7 [m ⁻¹]	Max [um]	Směrodatná	Variační	IS	[µm]	Medián
Z _j [III]		Max _s [µm]	odchylka [µm]	koeficient [%]	dolní mez	horní mez	[µm]
300	376,00	570,2216	60,9922	10,6962	558,2069	582,2363	568.8500
370	379,83	572,1530	60,2625	10,5326	560,3415	583,9645	572.5200
425	483,20	566,9027	53,7810	9,4868	556,2546	577,5508	563.3450
486	502,08	568,1160	62,5501	11,0101	555,8562	580,3758	565.1800
537	529,92	550,2753	51,9225	9,4357	539,9952	560,5554	550.5000
601	613,44	532,1500	43,2073	8,1194	523,6814	540,6186	535.8200
681	700,96	506,2765	42,2919	8,3535	497,9873	514,5657	502.7900
783	837,28	491,3352	38,3241	7,8000	483,7858	498,8845	491.7800
861	1047,84	471,3420	31,8833	6,7644	465,0614	477,6226	472.9100
1014	1161,60	455,7039	35,7805	7,8517	448,6909	462,7169	455.0800

Vyhodnocení mykané dvojmo skané CO příze o délkové hmotnosti 2x42 tex / 677 Zm⁻¹

$7 [m^{-1}]$	$7 [m^{-1}]$	Min [um]	Směrodatná	Variační	<u>IS [μm]</u>		Medián
∠ _j [m_]			odchylka [µm]	koeficient [%]	dolní mez	horní mez	[µm]
300	376,00	392,1762	45,4509	11,5894	383,2678	401,0846	387,1850
370	379,83	399,9199	40,3597	10,0920	392,0094	407,8304	398,1950
425	483,20	401,5128	37,0426	9,2258	394,2159	408,8098	392,6900
486	502,08	403,1810	43,1160	10,6939	394,6877	411,6743	400,0300
537	529,92	393,7280	39,3321	9,9897	385,9801	401,4759	389,0200
601	613,44	385,0931	33,4668	8,6906	378,5336	391,6526	381,6800
681	700,96	379,3679	31,1133	8,2013	373,2697	385,4661	376,1750
783	837,28	374,2299	29,6113	7,9126	368,4261	380,0337	374,3400
861	1047,84	361,8664	27,0883	7,4857	356,5571	367,1757	362,8050
1014	1161,60	358,5590	26,5750	7,4116	353,3503	363,7677	359,6600

Příloha č. 3 - pokračov	vání
-------------------------	------

7 [m ⁻¹]	7 [m ⁻¹]	D [um]	Směrodatná	Variační	IS	[µm]	Medián
L _j [m]		D_1 [µm]	odchylka [µm]	koeficient [%]	dolní mez	horní mez	[µm]
300	376,00	602,6507	71,8741	11,9263	588,5634	616,7380	598,2100
370	379,83	602,9076	62,1728	10,3122	590,7217	615,0935	601,8800
425	483,20	596,3194	62,5712	10,4929	583,9937	608,6451	590,8700
486	502,08	592,4270	65,9040	11,1244	579,4447	605,4092	594,5400
537	529,92	573,6435	53,4942	9,3253	563,0522	584,2348	576,1900
601	613,44	549,2889	48,5371	8,8363	539,7756	558,8022	554,1700
681	700,96	527,1084	43,9887	8,3453	518,4432	535,7736	524,8100
783	837,28	503,6056	37,9467	7,5350	496,1305	511,0806	506,4600
861	1047,84	492,5440	31,0417	6,3023	486,3980	498,6899	494,5700
1014	1161,60	473,8337	37,7233	7,9613	466,4399	481,2275	473,4300

7 [m ⁻¹]	7 [m ⁻¹]	Max [um]	Směrodatná	Variační	<u>IS [μm]</u>		Madián [um]
∠ _j [m_]		Max _s [µm]	odchylka [µm]	koeficient [%]	dolní mez	horní mez	Median [µm]
300	300,80	680,4328	66,1472	9,7213	667,4027	693,4630	682,6200
370	388,00	650,9479	62,3642	9,5805	638,7245	663,1713	645,9200
425	417,74	640,8413	63,6607	9,9339	628,3010	653,3817	634,9100
486	493,12	615,6238	61,3889	9,9718	603,4694	627,7782	611,0550
537	556,80	601,4763	58,2358	9,6822	590,0621	612,8905	601,8800
601	617,83	565,2167	42,2215	7,4700	556,9413	573,4921	561,5100
681	708,64	542,7151	43,2514	7,9694	534,2378	551,1924	538,5450
783	842,56	524,8609	40,5969	7,7348	516,8638	532,8580	526,2800
861	986,88	515,6706	33,8752	6,5692	508,9976	522,3436	510,6700
1014	1198,08	504,7992	33,1604	6,5690	498,2338	511,3646	500,6350

Vyhodnocení mykané dvojmo skané CO příze o délkové hmotnosti 2x50 tex / 528 Zm⁻¹

7 [m ⁻¹]	7 [m ⁻¹]	Min [um]	Směrodatná	Variační	<u>IS [μm]</u>		Madián [um]
L _j [m]		Mins [µin]	odchylka [µm]	koeficient [%]	dolní mez	horní mez	Median [µm]
300	300,80	478,4212	40,2655	8,4163	470,5292	486,3132	477,1000
370	388,00	469,9802	43,8196	9,3237	461,3916	478,5688	469,7600
425	417,74	467,0168	40,7540	8,7265	458,9887	475,0448	458,7500
486	493,12	457,6857	49,0951	10,7268	448,0631	467,3083	451,4100
537	556,80	453,5386	42,0623	9,2742	445,2944	461,7828	451,4100
601	617,83	423,4813	32,9657	7,7844	417,0200	429,9426	420,2150
681	708,64	432,3301	32,3215	7,4761	425,9951	438,6651	433,7350
783	842,56	421,3808	28,3672	6,7320	415,8208	426,9408	418,1250
861	986,88	422,2809	24,2647	5,7461	417,5011	427,0608	421,4700
1014	1198,08	422,0106	25,0704	5,9407	417,0721	426,9492	419,2400

DY /1 1	~ 4		~	, ,
Priloha	c. 4 –	pokr	aco	vanı

7 [m ⁻¹]	7 [m ⁻¹]	D [um]	Směrodatná	Variační	IS	[µm]	Madián [um]
Z _j [m]		D_1 [µm]	odchylka [µm]	koeficient [%]	dolní mez	horní mez	
300	300,80	705,0848	69,9333	9,9184	691,3089	718,8608	708,3100
370	388,00	670,6558	66,1683	9,8662	657,6868	683,6248	662,4350
425	417,74	660,4517	65,0472	9,8489	647,6382	673,2652	656,9300
486	493,12	645,0212	65,8011	10,2014	631,9933	658,0492	634,9100
537	556,80	618,9696	57,8693	9,3493	607,5701	630,3691	620,2300
601	617,83	594,2831	44,7821	7,5355	585,5058	603,0604	590,8700
681	708,64	564,9705	46,5933	8,2470	555,8382	574,1028	559,7300
783	842,56	543,8924	40,5447	7,4546	535,8650	551,9199	543,0050
861	986,88	537,6976	35,2413	6,5541	530,7903	544,6049	532,9700
1014	1198,08	540,2061	41,2238	7,6311	532,0442	548,3680	535,2000

$Z_{sj} [m^{-1}]$	Z _{sz} [m ⁻¹]	Směrodatná odchylka [µm]	Variační koeficient [%]	Seskání [%]
370	394,72	22,0464	5,5851	-0,592
425	419,20	22,2567	5,3093	-0,697
486	480,48	17,2815	3,5967	-0,675
537	539,36	30,2455	5,6077	-0,580
601	596,16	25,9101	4,3462	-0,489

Vyhodnocení zákrutů zjištěných u česané dvojmo skané CO příze 2x10 tex / 1107 m⁻¹

Vyhodnocení zákrutů zjištěných u česané dvojmo skané CO příze $2x29,5 \text{ tex} / 654 \text{ m}^{-1}$

$\mathbf{Z}_{sj} [\mathbf{m}^{-1}]$	Z _{sz} [m ⁻¹]	Směrodatná odchylka [µm]	Variační koeficient [%]	Seskání [%]
370	393,12	9,8319	2,5010	-0,204
425	424,96	13,0613	3,0735	-0,113
486	496,00	13,8101	2,7843	-0,142
537	550,56	5,3208	3,8657	0,434
601	617,28	37,9932	6,1549	0,572

Vyhodnocení zákrutů zjištěných u mykané dvojmo skané CO příze $2x42 \text{ tex} / 677 \text{ m}^{-1}$

$Z_{sj} [m^{-1}]$	Z _{sz} [m ⁻¹]	Směrodatná odchylka [µm]	Variační koeficient [%]	Seskání [%]
300	376,00	18,0665	4,8049	-0,904
370	379,83	10,4230	2,7441	-0,918
425	483,20	16,6661	3,4491	-0,612
486	502,08	18,4216	3,6690	-0,504
537	529,92	19,6650	3,7109	-0,376
601	613,44	18,5862	3,0298	0,226
681	700,96	29,3128	4,1818	0,688
783	837,28	7,1984	3,4390	2,416
861	1047,84	53,8856	5,1425	4,708
1014	1161,60	41,9676	16,4510	6,594

Příloha č. 5 – pokračování

Z _{sj} [m ⁻¹]	Z _{sz} [m ⁻¹]	Směrodatná odchylka [µm]	Variační koeficient [%]	Seskání [%]
300	300,80	13,7637	4,5353	-0,508
370	388,00	14,3295	3,6932	-0,3
425	417,74	11,4862	2,7496	-0,188
486	493,12	16,6092	3,3682	0,464
537	556,80	20,4274	3,6687	1,048
601	617,83	18,1835	2,9431	1,67
681	708,64	15,4994	2,1872	2,824
783	842,56	40,2692	4,7794	4,36
861	986,88	41,0817	4,1628	6,648
1014	1198,08	73,9567	6,1729	10,095

Vyhodnocení zákrutů zjištěných u mykané dvojmo skané CO příze 2x50 tex / 528 m⁻¹

Z _{sj} [m ⁻¹]	T _s [tex]	Směrodatná odchylka [tex]	Variační koeficient [%]
370	20,328	0,0382	0,1877
425	20,612	0,5357	2,5989
486	22,018	0,0857	0,3890
537	20,112	0,1719	0,8545
601	19,984	0,1574	0,7878

Vyhodnocení skutečných jemností zjištěných u česané dvojmo skané CO příze $2x10 \text{ tex} / 1107 \text{ m}^{-1}$

Vyhodnocení skutečných jemností zjištěných u česané dvojmo skané CO příze $2x29,5 \text{ tex} / 654 \text{ m}^{-1}$

Z _{sj} [m ⁻¹]	T _s [tex]	Směrodatná odchylka [tex]	Variační koeficient [%]
370	29,569	0,1421	0,4805
425	29,692	0,0989	0,3332
486	29,924	0,0885	0,2958
537	30,080	0,0902	0,2998
601	30,033	0,1728	0,5754

Vyhodnocení skutečných jemností zjištěných u mykané dvojmo skané CO příze $2x42 \text{ tex} / 677 \text{ m}^{-1}$

$Z_{sj} [m^{-1}]$	T _s [tex]	Směrodatná odchylka [tex]	Variační koeficient [%]
300	81,706	0,6345	0,7766
370	82,430	0,2450	0,2972
425	83,170	0,5423	0,6520
486	83,312	0,5385	0,6464
537	83,544	0,2549	0,3051
601	85,070	0,3542	0,4164
681	85,050	0,3694	0,4344
783	88,550	0,2323	0,2623
861	91,920	1,8409	2,0028
1014	94,828	1,4347	1,5130

Příloha č. 6 - pokračování

Z _{sj} [m ⁻¹]	T _s [tex]	Směrodatná odchylka [tex]	Variační koeficient [%]
300	99,866	0,2730	0,2733
370	100,236	0,6899	0,6883
425	101,730	0,8106	0,7968
486	102,782	0,9128	0,8881
537	105,464	0,2818	0,2672
601	105,268	0,4916	0,4670
681	107,784	0,6700	0,6212
783	111,034	0,9878	0,8896
861	114,806	1,1255	0,9804
1014	127,174	4,0905	3,2164

Vyhodnocení skutečných jemností zjištěných u mykané dvojmo skané CO příze 2x50 tex / 528 m⁻¹