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Abstract

Systems of so called two-sidéthax min)—linear inequalities with variables on both sides will
be studied. Optimization problems, the objective functénrvhich is equal to the maximum
of a finite number of continuous functions of one variable @esidered. The set of feasible
solutions in described by a system of two-sidethx min)—linear inequalities with variables
on both sides. A finite algorithm for finding the optimal sodut of the problem is proposed.

Keywords: Two-sided(max min)—linear inequalities system; lower and upper bounds; max-
min optimization problems.

I ntroduction

The algebraic structures in whigmax +) or (max min) replace addition and multiplication
of the classical linear algebra have been appeared in #ratlire approximately since the six-
ties of the last century (see e.g. [1], [3], and [8]). In rabepublished book [2] readers can
find the latest results concerning theory and algorithmgwax +)—linear systems of equa-
tions. A polynomial method for finding the maximum solutidittee (max min)-linear system
has been proposed in [5]. A finite algorithm for finding theimyatl solution of the optimiza-
tion problems undefmax +)—linear constraints has been introduced in [10]. A survey of
some of the recent results concerning theax min)-linear systems of equations and inequali-
ties and optimization problems under the constraints de=gtrby such systems of equations
and inequalities is presented in [6]. Algorithm for optiaion problems under one-sided
(max min)—linear equality constraints is introduced in [4]. Maximalwgions of two-sided
linear systems in max-min algebra have been given in [7]. # oo application of two-sided
systems of max min)—linear equations and inequalities to some fuzzy set probleas been
given in [9].

In this contribution, we will study systems of so calléthax min)—linear (or using an
alternative notatiorimax A\)—linear) inequalities with variables on both sides. We cdesi
optimization problems, the objective function of which gual to the maximum of a finite
number of continuous and unimodal functions of one variablee set of feasible solutions is
described by a system @fax A)—linear inequalities with variables on both sides. Let ugnot
that if we have variableson the left hand sides and different variabyem the right hand sides,
the system can be processed like the one-sided system ewetsiel.g. in [6]. Including lower
and upper bounds o yis only a technical problem.

We can consider the practical problem, in which transpioraneans of different size are



transporting goods from places | to one terminall. The goods are unloaded ihand the
transportation means (possibly with other goods are upldaad T) have to return ta. We
assume that the connection betweemdT is only possible via one of the places (e.g. cities)
j € J the roads betweenand | are one-way roads, and the capacity of the road betwedn
andj € Jis equal toajj. We have to join placeg with T by a two-way road with a capacity
Xj in both directions. The total capacity of the connectionteeini and T is therefore equal
to maxej(aj AXj). The transport fronT toi is carried out via other one-way roads between
placesj € J andi < | with (in general, different) capacities betwegandi are equal tdj;.
Since the roads betwe@nand | are two-way roads, the total capacity of the connection betw

T andi is equal to may;(bjj AXx;), for alli € I. We assume that the transportation means can
only pass through some roads with the capacity which is natlemthan the capacity of the
transportation mean and our task is to choose appropripseitiesx;, j € J. In order that each
of the transportation means may returniteve may e.g. require for eaghthat the maximal
attainable capacity of connections betweéemndT via | is greater than or equal to maximal
attainable capacity of connections betwdeandi on the way back. In other words, we have
to choosexj, j € J, which satisfy relation (1) below. In what follows, assurhattwe have the
same variables on the left hand sides and right hand sidée afi¢quality system.

1 Systemsof (max min)—Linear Inequalities

Let us consider the following system of inequalities:
ai(x) > bi(x),i €1, (1)

where a;(x) = maxjey(aij AXj), bi(x) = maxei(bij AXj), andaj, bij e R iel, jeJbe
given numbers. LeM= denote the set of all solutions of system (1). We will set foy a
X,ye RN :x<y&x; <y Vje€J. LetusseM=(x,X) = {x; xe M= & x <x <X} for any
finite x < xand letx™® denote the maximum elementMf= (x,X). So thatM=(x,X) C M=, and
M= (x,XM®) c M=, alsoitis clearM=(x,x™®) C M=(x,X). To prove M= (x,X) C M= (x,xM&X)
there are two cases: the first one xf¢ M= , then x™ < x . ThereforevV x € M=(x,X) , the
inequality x < x™* verified, i.e. x; <XV j € J andif x* € (X" X] , (i.e. X" <X <X,
le. Xp¥ <X <Xj, foratleastonejoeJ and X" <xj <X; for j€J& j#jo)
then x* ¢ M=, otherwise x* is the maximum element oM=(x,X) , but this contradicts the
hypothesisx™ is the maximum element af1=(x,X). So that for anyx € M=(x,X), we have
X < XM and x € M= (x, XM, then M=(x,X) € M=(x,x™®), The second case, ik € M=,
then X" =x . Then we haveM=(x, x™®) = M=(x,X) C M=. In this section we will propose an
algorithm, which find the maximum element of the b&t (x,X), and calculates the maximum
solution of system (1), take in account x < X. Note that, since any equation can be replaced
by two inequalities, therefor we can use the next algoritbifinid the maximum element of the

setM=(x,X), which is the set of all solutions of a system of equatigagx) = bj(x),i € 1).

Algorithm 1
[0] Input 1, J, X, &; andbjj foralli € 1 andj € J.
FindI<(X)={i el ; a(X) < b(X)}.
If 1<(X) = 0, thenx™@: =%, STOP.

Find a (%) = minig; < x @ (X).



Find1<(a (X)) ={i e 1<(X); a(X) = a(X)}.
FindH=(X) = {j € J;bij A%} > af
6] SetH=<(R) := Uici<(ax) Hi* (%)

Setx; := a(X) for all j € H<(X) go to|1].

We will illustrate the performance of this algorithm by tlaléwing small numerical example.
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Examplel. : LetJ= {1,234}, 1 ={1,2,3}, x=(10,10,10,10), and consider system (1) of
inequalities whereja & bjj V icland jeJ are given by the matrices A and B as follows:

7 5 3 0 6 13 10 -1
A=|(4 3 1 2|, B=|8 0 3 1
10 20 10 -1 11 1 -8

By substitution for these values in system (1) and usingratgo 1:
[teration 1:

1=(x) ={1,2}.

1<(X) # 0.

a(X) = min(7,4) = 4.

1=(a(x)) ={2}.

Hy (%) = {1}.

6] H=(x) = {1}.

%1 =4, X=(4,10,10,10) go to[ 1],
Iteration 2:

1=(x) = {1}.

1<(X) # 0.

a(x) =5.

1= (a(x)) ={1}.

H= (%) = {2,3}.

(6] H<(X) = {2,3].

%, = 5,%3 = 5, X= (4,5,5,10) go to[ 1]
Iteration 3:

I<(X) = 0, then ¥"@ = (4,5,5,10) STOP.



In the next part of this section we will introduce a method ethiinds the minimum upper
boundxfor solution of system (1) such that>=x. In other wordsx™has the properties €
M=(x,x"®) and if x < X, x # X, then there existg* € M=(x,x"®) such thatx* £ X. It will
be clear thak € M=(x,x™®) and this element is suitable to find the optimal solution @ th
minimization problem as we will see in the next section. Iratiollows to simplify the notation
we set foranya, B € R: a V3 =maxa, ). Let us set

Tij = {Xj ;%] ngaX& ajAXj > bi(x) v x}, Viel, jed.

Note that ifi1, i are two different indices of, j € J, andbj,(x) v Xj < bi, (X )\/x then
evidentlyT;,; C Tj,j. It follows that for any subset afindices ofl, there eX|sts such permutation
i1, ,..., ir of these indices that the inclusiofig; C Tj,j € ... CTij,j hold so thaﬂh_l'l'.hj =
Ti,j. SetsTjj have the following properties:

Tij #0 & aj > bi(x) VX

Tij 70 = Tij = [bi(x) V), X",

Since we assumed that< x™& setM=(x,x™®) is nonempty. Let us note that for any
x € M= (x,x™®) and anyi € I, the inequalities; (x) > bj(x) & x; > x; ¥ j € J hold and further
there exists for eache | an indexj(i) € J such thatT;;;) # 0 (otherW|se seM= (x, xmax)
would be empty, because we would haye < bi(x) V X; VJ € J and thereforeg;(x) < bj(X)
for anyx € R" and we havex < XM so thatM=(x xma’ﬁ # 0). Let us note further, that if
ajj Axj < bi(x) vVx; Vj € J, then we havey(x) < bi(x) and thusx ¢ M= (x,x™®). If for some
fixed j € Jthe mequalltlea, < bi(x )\/x hold , thenaj; AX; < bj(X )\/X V Xj € Rso thatlj; =0
andx; will never be "active” ing;(x) or bi(x) if x e M= (i.e. it will never determine the values
of a4(x) or b;(x)). We will exclude such variables from our considerationd assume that for
eachj € J there exists at least one "row” indéx | such thatgj; > bj(x )\/X We define sets
Vi, jeJ

={ieliaj > bi(X) VX},

and denote  maxy; (bk(x)) = bk(j)(>_<). A vectorXwill be defined as follows:

j = max(b(X)) V%) = by (X) V) Vi€ (2)
J

The elemenk defined by (2) has the following properties:
(1) M=(x,X) #0, & X € M=(x,X).
2) £ eMZ(x,%) = x<E <K
(38) There may exist elementsc M=(x,X) such that) # X.

If Xis the minimum element d¥1=(x,x™&), then it would bex’e M= (x,x™®) and for any
X € M= (x,XM®) = x > X. Therefore, because of the property X33 hot the minimum element
of M2(>_<, xMaX) “put we can say that i$ the minimum upper bound ofi=(x,x™) such that
M=(x,X) # 0. Let us choosg < XM & 1 # XM andX'e M= (x,T) = X < xM*andg;(X) >
bi(X) Viclandx <X<T. LetH = {xmax T) | X"®(1) is the maximum element o fNix, 7) },
thenx’is the minimum element dfl.

Theorem 1. : LetX be defined as in (2). Thehe M= (x,xMa),



Proof: Since evidentlyx™> x, we have to prove that onlg(X) > bj(X), Vi € |. Leti €1 be
arbitrarily chosen. We have

bi(>~<)=rpg><(buAij)=rp€aj><(bim(rk23jx(bk<>_<)vz<j))) max(bu (byjy (X) VX))

Let us assume that
i (%) = max(bij A%j) = b A %)
Since i~n this cafdae_\/j(i)_, we havea”-(_i) 2_)?]-() and we obtairg;(X) > &) A Xji) = Xji) >
bij iy AXjiy = bi(X). Sincei € | was arbitrarily chosen, the theorem is proved.
O

Elementx'defined by (2) shows that the given lower boundhight not be an element of
M=(x,xM@), Moreover we obtained an explicit dependencex@in"the given lower bound
x (compare (2)), which can be used for sensitivity analysithefsetM=(x,X) or for a post
optimal analysis of optimization problems, the set of felssolutions equal té1=(x, x™2X).
The properties ok €nable us to solve some of the optimization problems meediabove
explicitly.

2 Optimization Problemsunder Two-Sided (max min)—Linear Inequalities Constraints

In this section we consider an optimization problem that combination of the problems
solved in the above chapters but with a different feasiblelsether words, let us consider for
instance the optimization problem:

f(x)zmeajxf,—(xj) — min (3)

subject tox € M= (x,x™®), wherefj, j € J are increasing functions. Let indicg¢§) € J will
be chosen for eadhe | such that mife; fj(x 5)) = fii) (Xji)), wherefj(x 5)) ming T, j(xj).
Let X be defined as in (2) and then we have to proceed as follows:
0 if aj <bi(x),
Tij=qbi i aj>bix),
X, % if - aij = Dbj.

Setf; ()?S')) =min, .5, fj(x), (if Tij = 0, we set minimum equal ta-«). Let us set

if R # 0, but whenR, = 0, we set

fiOEP) = ().

The proof can be carried out in the same way as in the one saic [6]. We mentioned
above that a system of inequalities can be transformed tstarayof equations by making use
of slack variables. Let us note that the other way round esystof equations considered can
be solved alternatively by the methods in this section, ire@ace the equation system by the
system of inequalities of the form



ai(x) > bi(x), i el
bi(x) > agj(x), i €1
Xj > X, j €J.
We will describe now the corresponding algorithm exphcgtep by step.
Algorithm 2
[0] Inputm,n,x, %, A B, f(x).
Find XM e MZ (x,X).
If x £ XM thenM~= (x,X) = 0, STOP.
Vii={iel;aj>bxVvx} Vjed
X" := (bi(x) Vx;) Vi €V;forall j € J such thav; # 0.
Setx] 1= maxey, (X)) if Vj # 0, % := x; if V; = 0.
6] Q:={keJ; f(R) = (X))}, P={j€d;&=x}
If QNP +# 0, then sek®Pt:= %, STOP.
Ro={iel; )”(k:xg)} vke Q.
(9] Vk:=Vi\ A Vke Q.
If UjesVj =1, go to|4]
Setx°Pt:= %, STOP.,
We will illustrate the performance of this algorithm by tleléwing numerical examples.

Example2. : LetJ={1,2,...,5}, | ={1,2,3}, x=(10,10,10,10,10), x= (0,3,0,0,1) and
consider system (1) of inequalities wherg & bjj V i cland j< J are given by the matrices
A and B as follows:

-10 10 15 -9 -8 7 2 -10 -20 6
A=| 5 -8 10 20 7|, B=[8 9 -15 -25 5
3 4 -18 19 11 13 -17 12 10

and consider the objective functiorixj = max(x1, X2 — 3,X3,X4,Xs). By substitution for these
values in system (1) and using Algorithm 1 and Algorithm 2:

XMax — x — (10,10,10,10,10).

X < xmax

Vi={2}, Vo={1,8},Va={1,2},Va = {2,3},V5 = {2,3}.



%=(3,3,2,3,3).

(6] Q={1,4,5},,f(%X) =3, P= {2} then QAP =10.
PL={2}, = {1,2,3},Ps = {1},Ps = {2}, s = {2}.
9| Vi=0,Vo=0Va={2},Va={3},Vs = {3}.
UjeaVi={2,3} # 1.

XOPt— % STOP,

Then £P' = (3,3,2,3,3) is the optimal solution of the set MxX) and
f (x°PY) = max(3,0,2,3,3), then the objective function is equal3o

Example3. : LetJ={1,2...,5}, 1 ={1,2,...,6}, x=(20,20,20,20,20), x= (0,3,0,0,0)
and consider system (1) of inequalities whejie & bjj V i<l and j< J are given by the
matrices A and B as follows:

2 2 6 01 0O 10 9 -1 5
8 11 10 7 7 3 -3 1 -6 -7
A 4 3 0 13 8 B_ 4 -8 2 -14 11
14 3 3 13 2|’ 14 -7 7 -3 4
1 3 13 4 2 6 -8 12 2 0
12 15 7 3 1 0O -11 2 -3 5

and consider the objective function(xi = maxjcy(fj(xj), where f(x;) = cjxj + dj,
c=(6,3,7,3,7) and d= (10,0,5,1,7). By substitution for these values in system (1) and
using Algorithm 1 and Algorithm 2:

XM — x — (20,20, 20,20, 20).

X < xmax

Vi={2,3,4,5,6},Vo={26},Va={1,2,4,5,6},Va={2,3,4,5,6},Vs = {1,2,3,4,5,6}.
find X'

%=(0,3,3,0,3).

(6] Q={5},f(X) =28 P={1,2,4} then QP = 0.
UjesVj =1{1,2,3,4,5,6} =1 go to 4|

find X",

%= (0,3,3,0,0).



(6] Q= {3}, (%) =26, P={1,2,4,5} then QNP = 0.

UjesVj = {1,2,4,5,6} #1.
XOPt = %, STOP.

Then XP' = (0,3,3,0,0) is the optimal solution of the set MxX) and
f (x°PY = max(10,9,26,1,7), then the objective function is equal26.

Conclusion

We can summarize the properties of the systenisaix min)-linear inequalities studied in this
paper as follows:

(1) Any system of two-sidedmax min)-linear inequalities is solvable and has a unique maxi-
mum elemenk™®(A, B) depending on the matricés B with finite elementsj, bjj (note that
including infinite elements can cause nonsolvability ofgfistem).

(2) If we include an additional requiremexk X, then the system is also solvable and has the
maximum elemermt™®(A, B, X) < xM¥(A B).

(3) The system with a finite lower bound on variables (i.e hvaih additional constraint> x)

is solvable if and only ik < xX™®(A B), or in case of the additional upper bound and only

if x <XM(A, B, X).
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OPTIMALIZA CNi PROBLEMY PRI OMEZENICH VE TVARU SOUSTAV
DVOUSTRANNYCH (max min)—LINEARNICH NEROVNOST

Zkoumaj se soustavy tzv. dvoustraych (max min)—linearrich nerovnosts pronénrymi na
obou straach Bchto nerovnost Zabyvame se optimalizanimi tlohami, jejict Gcelova funkce
je rovna maximu kon&ého pd@tu spojifych funkd jedré pronénre. Mnazina @ipustrych
feSen téchtouloh je popé&na soustavou dvoustrarah (max min)—linearrich nerovnost Je
navizen konény algoritmus pro nalezémptimalnihofeSer zkoumargho optimalizaniho pro-
bléemu.

OPTIMALISIERUNGSPROBLEME BEIBEGRENZUNGEN IN DERFORM VON
ZWEISEITIGEN (max min)—LINEARER UNGLEICHHEITSSYSTEMEN

Es werden sog. zweiseitigenax min)—lineare Ungleichheitssysteme mit Variablen auf bei-
den Seiten dieser Ungleichheiten untersucht. Wir befagsemit Optimalisierungsaufgaben,
deren Zweckfunktion dem Maximum einer finiten Anzahl kooterlicher Funktionen einer
Variablen gleich ist. Die Menge der Adsigen bsungen dieser Aufgaben wird durch zweiseit-
ige (max min)—lineare Ungleichheitssysteme beschrieben. Es wird eitefiAlgorithmus zur
Auffindung einer optimalen @isung der untersuchten Optimalisierungsprobleme vohdgsc
gen.

PROBLEMY OPTYMALIZACJI PRZY OGRANICZENIACH W POSTACI UKLADOW
DWUSTRONNYCH (max, min)—LINIOWYCH NIEROWNOSCI

Badaniem olgto uktady tzw. dwustronnyckmax min)—nierowndsci liniowych ze zmien-
nymi po obu stronach tych niawndsci. W artykule przedstawiono zadania optymalizacyjne,
ktorych funkcja celowa jesbwna maksymum skazonej liczby funkcji cagtych jednej zmi-
ennej. Zbor mazliwych rozwiazah tych zada opisano przy pomocy uktadu dwustronnych
(max min)—nierdwndasci liniowych. Zaproponowano ostateczny algorytnzatty do znalezie-
nia optymalnego rozvaizania badanego problemu optymalizacji.



