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1. Introductory commentary

1.1. Basic domain formations

At phase transitions accompanied by a lowering of symmetry the
homogeneous high symmetry parent phase changes almost always into a
heterogeneous domain structure which consists of homogeneous regions
(domains) of the low symmetry distorted phase. In real conditions the
domain structure usually appears as a complicated geometrical pattern the
form of which depends on the kinetics of the transitions, on external forces,
defects, etc. In any case, the concrete form of the domain structure
determines to a large extent the physical properties of the crystalline
material.

Theoretical explanation of real domain structures represents a complex
problem which involves highly non-linear objects (domain walls), long-range
elastic and electric interactions, metastable states, surface effects, etc. Any
reasonable model of a domain structure tractable by recently available
mathematical tools and computer facilities necessarily involves severe
simplifications and approximations.

The symmetry analysis of domain structures is in this respect
exceptional since it needs no approximations and its conclusions, based on
the group theory, are exact. Though the predictions deduced from symmetry
have serious limitations (e.g., in most cases do not yield numerical results)
they provide a unique reliable guide in the deciphering of domain structures.
This exceptional position and predictive power of the symmetry analysis
follows from the fact that the very basic reason for domain formation is the
symmetry lowering at the phase transition.

Domain structures are traditionally described in terms of domains and
domain walls. Such a picture usually exhibits no obvious symmetry. To



disclose the profound symmetry properties of domain structures we have
introduced other objects the symmetry of which can be expressed in exact
terms of the group theory. We call these objects basic domain formations.
Papers /P1/-/P11/ deal with following basic domain formations: domain
states, domain pairs, domain twins and walls, and perfect domain textures.

Basic domain formations have the following common features:

« Their definitions apply both for a miscroscopic or a continuum approach
and can be used for magnetic crystals as well.

o Their symmetry can be expressed by crystallographic groups (space or
point groups, ordinary or magnetic groups, dichromatic groups, layer
groups, etc.).

o They can be partitioned into classes of crystallographically equivalent
formations that can be symmetrically classified.

The concepts of basic domain formations have developed in the course
of our study in an effort to reach more exactness and to cover more general
situations. This explains certain shifts in their definitions, changes in the
terminology and in designation used in different papers in the Part 2.

1.2. Domain states and their degeneracy

We consider a structural phase transition from a homogeneous parent phase
with the symmetry G to a distorted phase with the symmetry F which is a
subgroup of G, F < G. We denote this phase transition by FV¥G and the
corresponding order parameter of the transition by P.

As a rule, the distorted phase does not appear as a homogeneous single
domain (as all theories of phase transitions tacidly assume) but as a non-
homogeneous formation called domain structure which consists of many
domains. A domain is a region with homogeneous distorted structure. The
boundary of a domain is formed either by the surface of the crystal or by the
transient regions between neighbouring domains called domain walls.

Very often (also in our older papers /P1-P3/) the term "domain" is used
not only in the sense decriberd above but also for the bulk structure of the
domain. To make this distinction clear we define a domain state S; as the
bulk structure (extended into the entire space) of a possible domain in a



domain structure. A domain Dj is then defined by the domain state Sj and by
the connected region Q; to which the structure of S; is confined in a real
domain structure.

In the simplest case the crystal in the distorted phase consists of one
domain only (the region Q; covers the whole crystal). Then we call the
corresponding domain state S; the single domain state.

As it is explained in /P1/ (where the term "domain" is used instead of
"single domain state") possible single domain states S1.S3....Sp are
crystallographically equivalent (c.e.) with respect to the group G, 1.e. any
single domain state, say S;j, can be brougth into coincidence with another
single domain state, say Sj, by an operation gj; of the group G' (all single
domain states form an orbit in G). The symmetry groups F; and Fj of single
domain states Sj and S;, resp, are conjugate subgroups of G.

The single domain states S1,S,...,Sp are specified by corresponding
values of the order parameter Pyp,P».....Py,, resp. The order parameter P is
the proper (primary) order parameter of the transition F¥G, consequently,
$1.53.....S, can be denoted as the proper single domain states.

Further it can be shown (see /P1/) that the single domain states
$1.S2,....Sp are in one-to-one correspondence to the left cosets of the
decomposition of G into left cosets of F; and that number » of all proper
single domain states equals the index of F; in G (see Theorem I, where g is
used instead of n).

This last result illustrates well the power and elegance of symmetry
predictions: The number n of all possible single domain states can be
determined from very simple formulae (see.e.g. Eqs (3.9), (310) in /P1/ and
Eqs (6), (7) in /P2/) without any knowledge of the strucure or of the order
parameter; the only input information needed is the group G and Fj

If there exists an intermediate group K such that F<K<G' then the
notion of the improper (secondary) domain states can be introduced /P1/
(This concept is a generalization of the concept of partial ferroelectric or
ferroelastic domain states introduced by Aizu ). Let I be the order parameter
of the virtual phase transition K¥G from the parent phase with symmetry G
to a phase with symmetry K (the parameter I is the improper (secondary)
order parameter of the transition FVG). Then an improper single domain



state Q(1) is such a distorted structure in which the improper order parameter
I has constant value I(i), The essential point here is that there exist d.>1
different proper domain states S1,S7,....Sq with the same value of the
improper order parameter 1(1), & another different proper domain states with
the same improper order parameter 1(2), etc. The number d, which we call
the degeneracy of improper single domain states Q(), equals the index of F
in K (see Eq. (4.11) in /P1/) and the number m of improper domain states
equals the index of K in G. The degeneracy and the numbers of improper and
proper single domain states fulfil simple relation » = md (see Eqs. (3.12),
(4.11) and (4.12) in /P1/).

The fact that both proper and improper single domain states form c.e.
sets (orbits) allows one to classify them according to the transformation
properties of the corresponding order parameters. Thus one speaks about

ferroelectric, ferroelastic, piezoelectric,... single domain states if the
corresponding order parameter transforms as a vector V, symmetrized square
[/2] or the product V]V2], resp.

The concept of improper domain states allows partitionig of domain
states into sets with the same property, e.g. domain states with the same
symmetry group (see Theorem III in /P1/), with the same macroscopic
(ferroic) properties ( see Eq. (6) in /P2/), etc. This concept is useful in
experimental studies since it determines the "resolution" of certain
experimental techniques (e.g. an observation in polarized light enables one to
discriminate only domain states that differ in spontaneous deformation which
may be an improper order parameter. Then one ferroelastic domain can
consist of several smaller domains which differ in the primary order
parameter, e.g., polarization). Concrete examples of single domain states can
be found in /P1/,/P2/,/P3/,/P6/,/P8/,/P11/.

In non-ferroelastic phases the single domain states are identical with
domain states in any polydomain structure (see /P10/). In ferroelastic phases
the distinction between single domain states and domain states in a
polydomain structure is essential (see /P11/, esp. Fig.1 and 2). Due to
mechanical compatibility, the single domain states split into so called
disoriented domain states. Symmetry groups of these domain states are so
called isotropy groups (stabilizers) of disoriented domain states which can be
subgroups of the symmetry groups of single domain states. Then the number



of c.e. disoriented domain states is greater than the number of the single
domain states. Another difference is that the disoriented domain states cannot
be associated with the order parameter. In any case, however, domain states
in ferroelastic domain structures can be related in a unique way to the single
domain states.

In what follows we shall use for brevity the term domain state for single
domain state and in all situatuations where the difference is not essential or
when the distinction should be clear from the context.

Original contribution: Basic symmetry properties of domain states
formulated in a consistent group-theoretical language /P1,P2,P12/.

1.3. Domain pairs and distinction of domains

Domain pair is the simplest domain formation which allows one to study
relations between two domain states. It was introduced in /P1/ as a purely
theoretical concept but later on it has proved to be indispensable for
examining distinction of domains and has provided the starting point for the
symmetry analysis of domain twins and walls.

A domain pair is a set of two domain states Sj and S; that are treated
irrespectively of their coexistence. From the mathematical point of view we
have to discriminate two types of domain pairs (see /P1/ and /P6/): In an
ordered domain pair (Si.Sj) the transposed domain pair (S;.Si) i1s not
identical with the original domain pair (Si.Sj) unless i=j (trivial domain
pair). In an unordered domain pair {S;,Sj} the identity (Si.S;j) = (S;.Si) holds
for all i and j. Further, the term "domain pair" will be used for both ordered
and unordered domain pairs when the distinction is not significant or when it
is clear from the context.

Domain pairs can be visualized as a superposition of the structures S;
and Sj which are "coloured” (e.g. S black and Sj red). In an ordered domain
pair one discriminates the colours whereas in an unordered domain pair not,
i.e. the unordered pair is a "colour-blind" (black only) picture of the
corresponding ordered domain pair. Examples of such geometrical
representations of unordered domain pairs can be found in /P6/, Fig. 4, /P9/
Fig. 1 and /P11/ Fig. 1.
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Symmetrical equivalence between two domain pairs is defined in /P1/
Eq. (5.4) and in /P6/ Eq. (4.2). It enables one to divide ordered domain pairs
into two main classes: ambivalent domain pairs (for which the ordered
domain pair is c.e. with the transposed domain pair) and polar domain pairs
(the ordered domain pair is not c.e. with the transposed domain pair) - see
/P1/ Eq. (5.9) and Theorem IV.

From n domain states one can form n(n-1) non-trivial ordered pairs.
The crystallographical equivalence of domain pairs divides these domain
pairs into c.e. classes (orbits). It has been shown in /P1/ that there exists one-
to-one correspondence between these classes and double cosets of F; in G.
This correspondence also allows one to find representative domain pair of
each class and to determine whether the class consists of ambivalent or polar
domain pairs (see Theorem V in /P1/).

Thus unlike for single domain states (which are all c.e.) domain pairs
can form several c.e. classes (orbits). Domain pairs from different orbits
differ in some inherent properties, whereas domain pairs from the same orbit
have essentially equal properties since after performing some operation from
G they can be brought into coincidence. The double coset decomposition
thus reduces the task of examining n(n-1) ordered domain pairs to a
considerable lower (especially for large #) number of representative domain
pairs corresponding to double cosets.

The importance of left and double coset resolutions in domain analysis
has led to tabulation of coset decompositions for all crystallographical point
groups and it subgroups /1/ and has encouraged the development of computer
programs for IBM compatible personal computers both for point group
decompositions /P5/ and space group decompositions /P8/.

The symmetry group F, ij of an ordered domain pair (Si,Sj) consists of
operations common to symmetry groups F; and Fj of domain states S and
Sj, resp. (see /P1/, Eq. (5.3)). The symmetry group Jij of an unordered
domain pair {S;.Sj} is

Jij=Fyj+jiiFy, (1)
where Jij is an operation from ' that transposes (exchanges) domain states

S; and Sj and is, therefore, an allowable operation of the unordered domain
pair (see /P3/,/P6/,/P10/ and /P11/). An operation j,'j exists for any



ambivalent ordered domain pair but does not exist for polar domain pairs for
which Jj; = Fjj . The group Jj; can be treated as a dichromatic (black &
white) group in which the operations of the left coset jjjFjj comprise all
"colour-changing" operations that transpose domain states S; and S;

Symmetry group Jjj allows one to classify domain pairs. Thus, e.g., a
domain pair {S;j,S;} for which

Fam(J;j) = Fam(F,'j), 2)

where Fam means crystal family of the group given in the parenthesis, is
non-ferroelastic, i.e. the domain states Sj and S;j have the same spontaneous
deformation (for other examples of the classication see /P3/).

If, especially, the symmetry groups F; and Fjj of both domain states are
equal, F; = ot W= (we call in /P11/ such a domain pair fotally
transposable domain pair) the group Jj; expresses in a convenient way the
relation between two domain states ('twin law" of the pair) which determines
the distinction of two domain states Sj and S;.

In /P10/ we have shown that within continuum description all non-
ferroelastic domain pairs fulfilling the condition (2) are in a non-ferroelastic
phase totally transposable and their symmetry has the simple form

Jij=F +jjiFij. (3)

where F is the symmetry of the distorted non-ferroelastic phase. .From the
condition (2) we have found all non-ferroelastic twin laws (3). For each twin
law we have determined the irreducible representation according to which
transform the tensor components that are different in two domain states of
the pair. From them it is easy to find, for particular material tensors, number
of components that are distinct (have opposite signs in a properly chosen
coordinate system) in two domain states under consideration. Table II in
/P10/ displays these results for all non-ferroelastic twin laws and for
important material tensors. These results are useful,e.g. for determining
which material property can be used for visualization of non-ferroelastic
domains which are not directly visible in a polarized light.

Similar procedure has been applied in /P11/ to totally transposable
ferroelastic domain pairs which form only part of possible ferroelastic



domain pairs. Here, moreover, the effect of disorientations of ferroelastic

domain states has been discussed.

Original contribution: The concept of domain pairs and their
classification /P1,P2,P3/. Description of their symmetry by dichromatic
groups (/P3,P10,P11/). Enumeration of all symmetries (twin laws) of non-
ferroelastic domain pairs, determination of tensor distinction of domains in
non-ferroelastic phases /P10/ and in totally transposable ferroelastic domain
pairs /P11/.

1.4. Domain twins and domain walls

Each domain structure can be resolved into simple twins consisting of
two domains that meet along a domain wall. We consider an infinite domain
twin consisting -of two domains that are joined along a planar coherent
domain wall. Such a domain twin (and the wall as well) is defined by the
orientation and position of the central plane of the domain wall and by the
domain states Sj and Sj on the negative and positive side of the normal to the
domain wall (for details see /P6/ part V). The symmetry of this twin (and
also of the wall) is described by a layer group T, ij (this is a subperiodic
subgroup of a space group which specifies symmetries of 3-dimensional
objects with 2-dimensional periodicity). The layer group 7jj can be derived
from the symmetry Jjj of the corresponding domain pair {Si.Sj} (see Eq (2)
and (3) in /P3/ and (5.4) and (5.5) in /P6/). According to the form of the
group T;j the twin and the wall can be classified and partitioned into c.e.
classes.

The displacements of atoms (or ordering of molecules) within the wall
are controlled by site symmetries at corresponding Wyckoff positions. These
site symmetries can be deduced from the layer group Tjj that describes the
symmetry of the wall. The symmetry of the wall restricts in this way possible
structural changes within the wall. In crystals with higher symmetry this
constrains determine the topology of the local displacements or ordering, i.e.
those characteristics of the structural changes that are independent on
numerical values, like the thickness of the wall, magnitudes of
displacements,etc.
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This approach has been successfully tested on two concrete examples:
on the order-disorder domain walls of zero thickness in KSCN /P6/ and on
displacive walls of finite thickness in HgpClp /P9/. The results illustrate the
dependences of the wall structure on the orientation and position of the wall.

From the layer symmetry of the wall one can also deduce tensorial
properties of the wall. Due to the structural gradients within walls the wall
symmetry is in most cases lower than that of the domain bulk. As a result the
wall exhibits new tensorial properties which are not present in the domain
bulk. Thus, e.g., spontaneous polarization appears in domain walls in non-
polar phases of quartz /P7/ and of calomel /P9/.

Original contribution: Symmetry description of domain twins and domain
walls by layer groups. An algorithm for finding these symmetries from the
symmetries of domain pairs /P2,P3/. Conclusions that can be deduced from
these symmetries concerning the structure and physical properties of domain
walls. Illustration on concrete examples /P6,P7,P9/.

1.5. Perfect domain textures

In /P4/ we have put forward an alternative continuum description of
incommensurate phases close to the phase transition to commensurate phase.
It consists in replacing the discommensurations by a mesoscopic regular
pattern formed by c.e. domain walls with negative energy. This description,
which we call a domain texture approximation of the incommensurate phase,
allows one to visualize and treat complicated situations (which have been
observed by electron microscopy) like non-homogeneous modulated
structures with several q-vectors of modulation consisting of
"incommensurate domains" (textural blocks) (see /P7/), planar and linear
defects of the modulation /2/, transitions between incommensurate phases,
etc.

This approach also enables one to determine the macroscopic symmetry
of incommensurate phases which cannot be found in an usual way via the
factor group since the translation group of the incommensurate phase is not
defined. A particular prediction obtained from domain texture
approximation, namely that the triangular texture in quartz has polar
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macroscopic symmetry 6 and that the textural blocks behave like ferroelectric
domains (see p. 125 in /P7/), has been recently confirmed experimentally /3/.

Original contribution: The concept of a perfect domain texture. Application
of perfect domain textures for approximate description of incommensurate
phases. Determination of the macroscopic (averaged) symmetry of the
incommensurate phases from the mesoscopic symmetry of the domain
texture. The concepts of textural blocks and their basic symmetry properities.
Application of the results on concrete incommensurate structures, especially
those observed in quartz (see /P4/ and P7/).

1.6. Concluding remarks.

1. All conclusions that follow from the symmetry analysis of domain
structures are exact but some of its predictions are only qualitative in nature
(e.g. in the tensor distinction of domains the analysis determines which
components of a material tensor are the same and which have opposite sign
in two non-ferroelastic domains but cannot offer any information about their
numerical values).

2. The only input information are the symmetry groups of the parent
and distorted phases. In some microscopic considerations (e.g. microscopic
structure of domain walls) they are to be supplemented with the Wyckoff
positions of atoms in the parent structure. Symmetry analysis always
represents an efficient and useful first step in deciphering any real domain
structure.

3. The results of the papers /P1/ - /P11/ have been utilized by other
researches (e.g., the Science Citation Index gives several tens of quotations
in the last 3 years of these publications, in the book /4/ a considerable part of
the chapter about domains is taken from /P1/ and /P2/), book /5/ talks in
connection with symmetry analysis about "Prague school", etc.).
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GROUP ANALYSIS OF DOMAINS AND DOMAIN PAIRS

V. JANOVEC

Institute of Physics. Czechosl. Acad. Sci., Prague®)

Basic symmetry properties of transformation twins and of ferroelectric or ferromagnetic
domains arc examined in terms of the abstract group theory. It is shown that the crystaliographical
relations between domains (twin components) and between domain pairs can be deduced from the
Jdecomposition of the symmetry group of the high symmetry phase into the left and double cosets
of the group of the low symmetry phase. Expressions are derived for the numbers of proper and
improper domains, for the number of crystallographically equivalent low symmetry phases, and
for the number of crystallographically non-equivalent domain pairs. A classification of domain
pairs according to their symmetry is proposed. The domain structure of the monoclinic phase in
WO, and the Dauphiné twinning in quartz are analysed as illustrative examples.

1. INTRODUCTION

Phase transitions accompanied by a symmetry reduction exhibit, besides other
similarities, the following common feature: The homogeneous high symmetry phase
splits at a phase transition into a heterogeneous aggregate consisting of homogeneous
regions of lower symmetry which are in well-defined spatial relations. These regions
are called domains (especially in ferroelectric and ferromagnetic materials) or twin
components (e.g., in martensitic transformations or in quartz) and the entire phenom-
enon may be called the domain structure formation or transformation twinning.
A symmetry operation which brings a domain (twin component) into coincidence
with another domain (twin component) is called the twinning operation and the
plane along which domains or twin components meet a domain wall or a composition
plane.") b

Ferroelectric crystals provide a suitable material for the domain structure investiga-
tion since ferroelectric domains can be represented by a polar vector of spontaneous
polarization and can be visualized optically or by etching. The fundamental principles
of the crystallographical approach to ferroelectric domain structures were formulated
by Zheludev and Shuvalov [1, 2, 3]. Important contributions were also given by
Aizu [4.5] and by Ascher [6, 7]. The basic symmetry relations of twinning are
clearly summarized by Indenbom [8]. Many ideas of these works can be generalized
and provide starting points of our consideration.

In this paper we are aiming at a general approach to main crystallographical fea-
tures of transformation twinning. Instead of investigating domains themselves we
examine their transformation laws which are concealed in the algebraic structure of

*) Na Slovance 2, Praha 8, Czechoslovakia.

') We shall use both kinds of terms interchangeably, i.e. expressions like domain, domain
structure will not be restricted to ferroelectric or ferromagnetic materials.

974 Czech. |. Phys. B 22 (1972)



Group unalysis of domains and domain pairs

the symmetry groups of high and low symmetry phases. Such formulation docs not
rely on geometric imagination and can be applied to any phasc transition connectcd
with a symmetry reduction.

In Szction 2 the relation between the symmetry change at the transition and possible
characterization of domains is discussed. The notion of crystallographical equivalence
of objects is introduced in Section 3 where, further, the connection between the sym-
metry reduction and the number of domains is elucidated. In Section 4 we demon-
strate that, generally, several crystallographically equivalent low symmetry phases
can appear at the transition and we find domains compatible with one low symmetry
phase. In next two Sections the symmetry relations between domains and domain
pairs?) are analysed. In section S we examine twinning operations which transform
the first domain into the second domain of an ordered pair and we put forward
a classification of ordered domain pairs. In Section 6 we divide all pairs into classes
of crystallographically equivalent pairs and find representatives of all these classes.
In this way a complete set of non-equivalent pairs can be constructed which enables
an cfficient analysis of the twinning structure of the low symmetry phase. For con-
venience, the main results of Sections 3 through 5 are summarized in Theorems.
Szction 7 illustrates possible use of general results. First, the domain structure of the
monoclinic phase of tungsten trioxide is analysed. Further, it is shown that some con-
clusions take a simpler form if the group of the low symmetry phase is an invariant
subgroup of the group of the high symmetry phase. As an example, the Dauphiré
twinning i quartz is discusscd. For simplicity, examples are treatcd within non-
magnetic point groups though the exposition and Theorems are formulated in a gen-
cral way and can be used also for space groups and magnetic groups.

No attention 1s paid to the conditions of real coexistence of domains. A continuum
theory of coherent stress-free domain walls is discussed elsewhere [9]

2. SYMMETRY CHANGES AT PARAMETRIC PHASE TRANSITIONS

At a structural phase transition one phase changes into another phase and the for-
mer differs from the latter in symmetry. [n many cases one phase has specific propzr-
ties which do not exist in the other phase. Thus we speak about a ferroelectric (ferro-
magnetic. ferroelastic) transition if an electric polarization (magnetization. mechanical
strain) forms in one phase but does not exist in the other phase. Generally, we shall
call parametric such a phase transition the symmetry change of which can be de-
scribed as a conscquence of specific geometrical or physical properties which appear
in one phase only. Any property (set of propertics) the appearance of which accounts
fully for the symm:try change at the transition will be referred to as a transition

) We reserve the term “twin” for an edifice in which two domains coexist along a domain
wall of given orientation. The expression **domain pair” should imply that no attention is paid
to the question of a real coex stence of domains.

Czech. |. Phys. B 22 (1972) : 975
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parameter. Those properties which manifest themselves at the transition but cannot
explain the symmetry change will be called partial or improper?) parameters.

Transition parametérs and improper parameters, or appropriate quantities which
describe them, will be denoted by P and I, respectively. Superscripts (i), (j) etc. will
specify the spatial relations of the parameters to the phase with P = 0. Thus P de-
notes a transition parameter of a given spatial orientation with respect to the phase
in which P = 0 (e.g., for proper ferroelectrics P{" signifies the vector of spontaneous
polarization of a fixed orientation relative to the paraelectric phase).

L=t us denote by G and F” the symm:try group with P = 0 and P'”, respectively.
From the definition of the transition parameter it follows that*)

(2.1) F' = maximal subgroup of G which leaves P" invariant .

Obviously, F is a proper subgroup of G,
(2.2) FP < G.

Thus, at a parametric phase transition symmetry always lowers. The phase with
zero transition parameter can be called a high symmetry phase whereas the phase
with non-zzro transition parameter a low symmetry phase.’)

The relation between G, F" and P can be, formally, expressed in a more compact
way. By applying a symmztry operation ¢ from G on the parameter P’ we get,
generally, a parameter P with different spatial orientation (j),°)

(2-3) gP = pPY) . g€@G.
Some operations f € G may, however, leave P**) unchangad,
(2.4) fPY =P8 feG.

From (2.1) it follows that (2.4) holds for all elements of F'”, and only for elements
of G belonging to F). In algebra, the set of all elements obeying (2.4) is called the

3) The former term has been introduced by Aizu [4, 5], the latter one is coined recently by
Dvorak [10]. For transitions of the second order the transition parameter is equivalent to Landau
order parameter [l1].

*) Similar formulation was put forward by Ascher [12].

5) Alternative expressions like prototype [4, 5], initial phase [2], high form [13] and ferroic
phase [4, 5], low form [13] are also used for high symmetry and low symmetry phases, respectively.
A critical review of the nomenclature is given in [14].

%) In algebra, the operation of a group G on a set . is a mapping G < # —- # such that
(9,92 PP = g,(g,P"), and P = pi)

for all elements g, 9, € G and PY) e P (eis the identity element of G) [15]. These requirements
are met in our case so that the relation (2 3) can be treated us an operation of the group G on the
set # of all conceivable parameters. The concrete form of the “mapping™ (2.3) is given by the trans-
formation laws of the parameter (e.g., for tensorial parameters by the transformation laws for
tensors). Fortunately, the explicit form of (2.3) is not needed in our consideration.
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isotropy group of P in G (o the stabilizer of P in G) and is denoted by G [ 57
Thus
(2.5) F(” = GP{I] 5

the.group F of the low symmetry phase equals the isotropy group Gp, of the
transition parameter P’ in the group G of the high symmetry phase.”)

Finally, we mention a useful extension of the notion of parametric transitions. Let
a phase « (symmetry group F) change in a phase § (symmetry ?’F), where neither
@F < PF nor MF < F%, Obviously, no transition parameter can be found in this
case. If, nevertheless, a symmetry group G exists (at least theoretically) such that

(2.6) @WF G and PF<c G

then the phases « and a can bz treated as two different modifications of a common
“mother phase” of symmeiry G, and the transition @ — § as the change from the state
with @ more stable than 3 to the state with 8 more stable than a.®) (Clearly, such tran-
sition must be of the first order.) All our further considerations apply also for such
extended parametric transitions; we just have to treat separately each of the phases
a and f as being formed from a common high symmetry mother phase in ordinary
parametric transitions G - @F and G — P’F, respectively.

3. CRYSTALLOGRAPHICALLY EQUIVALENT PARAMETERS:
PROPER AND IMPROPER DOMAINS

In this Section we show that a symmetry reduction at a parametric transition pro-
vides conditions for domain structure formation. Let us start with the following
definition: :

Parameters P, PY are said to be crystallographically equivalent with respect
to the group G if an element g € G exists such that

(3.1 PY) = gP) | g4€G.
Symbolically we write PO < p(i),
Utilizing the group properties of G one can easily demonstrate that the relation =
satisfies three requirements of the equivalence relation [19],
(3.2) PO 2 PO (reflexivity) ,
(3.3) it PO PO then PO L pd (symmatry) ,
(34) if PO PD and PO I PW then PO L PO (iransitivity) .

7) Relations between G, F{" and P can also be given in terms of the representation theory
[11, 16]. These formulations provide useful tools for finding the transformation properties of
the transition parameter P’ for a given symmetry change G — F(¥,

') Similar approach has been applied in the thermodynamical treatment of the polymorphism
of BaTiOy [17], and, recently, of the Rochelle salt [18].
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The rclation can, therefore, bz used to divide the sct 2 of all conceivable parameters
into disjoint classes of parameters crystallographically equivalent with respect to G.
Symbol GP! will denote such a class where P is the representative of this class.
Obviously, the representative P can generate the entire class if it is exposed to all
transformations g € G. From group properties of G it follows that any element of the
class GP'"" may be taken as the representative. In algebra, the set GP" is called the
orbit of P under G [15].

The physical significance of the crystallographical equivalence with respect to
a group G is evident: If a parameter P forms at a transition from G to F” then any
other parameter P crystallographically equivalent?) to P®) may appear with the
same probability. Thus the parameters of the class GP") represent all possible proper
domains of the low symmetry phase. For brevity, we shall call parameters of the class
GPY domains (twin components)'®).

We decompose now the group G into subsets so that each element of a subset trans-
forms the domain P into one domain from GP'”. The number of subsets will give
us the number of domains in GP®. Moreover, if we choose one element of each sub-
sct as its representative, the entire class GP‘" can be effectively formed by applying
representatives of all subsets to P, '!)

First, let us notice that each element of a left coset'?) 1,,F' transforms the domain
B into the domain PY) = ¢, P:

£1.5) ;UF(HPU) s IUP“) = PN

Conversely, if an element g € G transforms P into P then g belongs to the left
coset ¢,;F":gP" = PN = 1, PO, therefore 1;,'gP" = P, hence t;;'g e F®, ie.
g et;;F". Thus, all elements transforming P) into P are contained in the left
coset t,,F”, and two different cosets of F(” generate from P two different domains.
Further, in algebra it is proved that a group G can be expressed as a set-theoretie
sum of disjoint left cosets of the subgroup F",

(3.6) G.= e £ 1 BV 40 o e Y

where e is the identity element. The (cardinal) number g of distinct left cosets in the
resolution (3.6) is called the index of F" in G and denoted by [G : F"]. For finite

%) Unless stated otherwise, the expression “‘crystallographically equivalent’ will indicate the
equivalence with respect to the group G of the high symmetry phase.

19) Other expressions have also been proposed, e.g., orientation states [4, 5] or modification
multiplets [13].

1) The expression for the number of domains was given by Zheludev and Shuvalov (1]
for ferroelectric transitions, and recently derived by Aizu (5]. We, nevertheless, sketch the proof
here since we shall use a similar reasoning in the next Section.

'2) The left coset !UF‘” consists of products t;,f where 1;; is a fixed element of G and £ runs
over all elements of F'". The element 1, is called the representarive of the coset. It can be proved
that any element of a coset may be taken as the representative, tF" = 1, F\) for any r & 8 9
[19—-21].
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group G, [G : F"] = ng : ng. where ng and ng are the orders of G and .f"“’, respec-
tively [20]. Applying successively all left cosets of (3.6) to the domain P we get all
domains of the class GP":

(3.7) GPY = eF P ¢, FOPD 4 4 1, PP =
= PP . o e, PRY

The equation (3.7) defines a one-to-one correspondence between the domains GP"
and the set of left cosets of F'") in G. From this relation we deduce the following

Theorem I. The number g of distinct domains which can form at a parametric
transition from G to F' equals the number of the left cosets in the resolution

(3.8) G B it He aidergn B

i.e., ¢ equals the index of F” in G,

(3.9) g=1]6: E{
For finite group G,
(3.10) q = ng:ng

where ng and n, are orders of G and F'", respectively.

There exist n, elements of G which transform the domain P into the domain
P (j = L...., q). These elements are comprised in the I=ft coset t;;F'” of the
resolution (3.8). All ¢ domains can be found by applying to P'" representatives
of all distinct left cosets of the resolution (3.8).

Any parametric transition is accompanied by reduction of symmetry; hence,
according to (3.9) or (3.10), there is always ¢ > 1. Thus at any parametric phase
transition the splitting of the low symmetryv phase into domains may occur.

Let us note that any element g € G transforms a domain from GP'” in another do-
main of the same class. The application of g on GP'” results, thercfore, in a permuta-
tion of elements in GP"), i.e. the class is invariant under G. This means that a poly-
domain aggregate in which all domains of GP'" appear with the same probability has,
in average, the symmetry G of the high symmetry phase'?). This statement can be
utilized for constructing the group G of the high symmestry phase (which is sometimzs
unaccessible or unknown) from the domain structure of the low symmetry phase.

So far we have considered proper domains only. Sometimes, however, it is difficult
to dctect the transition parameter though improper parameters can be observed. Then
the notion of improper domains is useful. Under an improper domain we understand

13y Zheludevand Shuvalov [1]and also Ascher (7] reached the same conclusion for ferro-
electric transitions. Ascher, moreover, pointed out the connection with the Goldstone theory of
broken symmetries.

Czech. |J. Phys. B 22 (1972) 979




V. Janovec

the state of the low symmetry phase described by an improper parameter 1. Th
class of crystallographically equivalent improper parameters, i.e. GI'”, will represen
possible improper domains of the low symmetry phase.

All results of the Section can be applied to improper domains if we substitute the
isotropy group Gy, for F. Thus, for example, the decomposition of the class Gl
reads (cf. Eq. (3.7)):

(3.11) GIV = Gyl + 91,6yl + ... +

+ gl'q'Gﬂi)‘{n == '(” + gizll“ S s g'_q"l“ N
and the numbezr g, of improper domains is
(3.12) ql = [G i Gll”] .

The isotropy group Gy, is a proper supergroup of F’, F®Y = G,., = G, hence the
number g, of improper domains is always less than the number q of proper domains,

(3.13) g9 < 4.
On the other hand, the equality

(15) gy = d
holds if, and only if,

(3.15) Gy = L

Then I should be treated as a “‘symmatrically proper” transition parameter.

Another consequence follows from (3.12). If one can observe a property described
by the parameter I then a necessary condition for the detection of the domain

structure 1s
]

(316) G":) & G
If, on the other hand,
(3.17) Gin =G

domains are masked and cannot be detected by this method.

4. CRYSTALLOGRAPHICALLY EQUIVALENT LOW SYMMETRY PHASES
AND THEIR DEGENERACY

We have shown that at the parametric phase transition domains from the class
GP) may appear. To every domain P from GP” corresponds an isotropy group
Gpy = FU which describes the associated low symmetry phase. For deducing all
these low symmetry phases we utilize the following statement [5, 8]:
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If 1, € G transforms P” into P,
(4.1) PO = 1,PV, 1,€G,

then corresponding groups of low symmetry phases are conjugate under the clement

(4.2) FO = Ft, 1,€G.

(We adopt the definition of conjugate subgroups given in [19—21]).

We shall call two groups FY> and F" crystallographically equivalent with respect
to G if an element 1, € G exists such that (4.2) is fulfilled. The relation of crystallo-
graphical equivalence can, again, be used for dividing the set of all subgroups of G
into disjoint classes of crystallographically equivalent subgroups. We shall denote
such a class by GF”. Obviously, the class GF") can be generated by exposing the repre-
sentative F" to all transformations (4.2), and any element of GF" can be chosen
as the representative'?). Clearly, all isotropy groups corresponding to all domains of
GP') form the class GF". Since all conjugate subgroups have the same order we sce
that Eq. (3.9) yields the same number g of domains for any group of the class GP'".

We shall call the number m of crystallographically equivalent subgroups in GF” the
multiplicity of F in G [7]. To find this number we have to realize that all elements
of G which do not change F” constitute a subgroup of G called the normalizer of
F% in G [19—21]. We shall denote this normalizer by G, since it is equivalent of
the isotropy group of F in G. Now using the same reasoning as in the proof of the
Theorem I, but replacing the parameter P” by F, Eq. (3.1) by (4.2) and F*" by
Gy, we arrive at the following

Theorem II. The number m of crystallographically equivalent low symmetry
phases equals the number of left cosets in the resolution

(43) b= Gr(ll e hiZGFU’ SR h.-mG;-(u )
that is
(44) m = [G . GF“’]

where G is the normalizer of F? in G. For finite G,

(4.5) m = ng:ng,
where n;_ is the order of Ggs.

There exist ng, elements in G which transform the group F'” into a crystallo-
graphically equivalent group FY). The inverses of these elements constitute the
left cosct hy;Gp of the resolution (4.3). All m crystallographically equivalent low
symmetry groups can be found as conjugates of F) where the transforming ele-
ments are inverses of the representatives of all distinct left cosets of the resolution

(4.3).

“‘) We can say that, according to (4.2), the group G operates on the set of its subgroups by
“inverse” conjugation. Then GF'" can, again, be interpreted as an orbit of £ in G.
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L=t us now turn to the fact that, gznerally, several distinct domains from the class
GP'" may possess one common isotropy group. We shall call the number 4 of domains
from GP" with the same isotropy group the degeneracy of the low symmetry phase.

Theorem IIT. The number d of domains with the same group F” of the low sym-
meatry phase equals the number of left cosets in the resolution

(4.6) Grony== FO 4 1P £ il B

e.. d equals the index of F'" in Ggn,

(47) d= [GF(” - F(“] .
Fl)f ﬁnite G;.-u),
(4.8) d=ng, :ng.

All domains with the same isotropy group F” can be found by experiencing
on P successively representatives of all distinct left cosets of the resolution (4.6).

The numbzr of domains g, the multiplicity m and the degeneracy d are related
by the equation

(4.9) g = md.

The proof of the fi:st part of the Theorem can be performed in the same way as
that of Theorem I. Instead of G we consider only those elements of G which do not
'tllange F9, ic. the group Ggy. Eq. (4.9) follows from Egs. (3.9), (4.4), (4.7) and
from the theorem on index multiplication (for F*? = Gy = G it holds [G : FV] =
=[G : Grv] . [Gren : F] [20]).

~ We can infer from Theorem III that the low symmetry phasc is non-degenerate
(d = 1) if, and only if,

(4.10) PG ey

Then to each low symm:try phase from the class GF'” there corresponds just one
domain in the class GP'”, and vice versa. In this case, domains can be faithfully re-
presented by associated groups of the low symm:try phases.

Comparmg (3.8) and (4.6) we sze that the normalizer Gy is identical with the
anion of d left cosets of (3.8) associated with d domains compatible with F(,

~ We turn now to improper domains. Substituting G, for Ggy in Theorem 11
ve ge! the number d; of proper domains which are compatible with the improper
jomain I'? (i.e.. the degeneracy of the improper domain IV):

ll) d, = [G,m . F("] .

degzneracy d; and the total numbezr g, of improper domains are related by the
ation

q i d[Ql‘
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We may note the striking similarity of Theorems I —III. In fact, these Theorems
are just various “‘crystallographical versions™ of the following algebraic statement:
L2t G be a group which operates on a set # (see footnote ®)). Then the orbit Gs can
be mapped onto the set of all left cosets of the isotropy group G, (se #) in G [15].
This mapping follows from the decomposition

(4.13) Gs = (eG,)s + (9,G,)s + ... +(9,G,) s =

=8 Fig, s E L g =% 5 &0+ 8,

which relates the elements of Gs, s, = g,s. with their ‘“‘coset images™ ¢,G, (k =
= |, 2. .... q). The order g of the orbit Gs is

(4.14) e el

5. DOMAIN PAIRS AND THEIR CLASSIFICATION "

The simplest object on which the mutual relations between domains can be studied
is a pair of domains. First, we shall investigate an ordered pair, which consists of the
first domain P' and the second domain P of the same class GP”, and will be de-
noted by (P'". PU").'") For a given ordered pair there exists at least one element 1,

such that

(5.1) PO = 1, PP 1,.€G.

Any element of G which transforms the first domain P into the second domain P/
will be referred to as a twinning operation'®) of the ordered pair (P, PJ). The set
of all twinning operations (5.1) will bz called the twinning complex of the ordered
pair (P, PY) and will be denoted by T;;. From the Theorem [ it follows immediately
that the twinning complex T;; contains ng twinning operations which constitute one
left coset of F'",

where t,, is any twinning operation of (P, PY") and F" is the isotropy group of the
first domain P

'5) A twin (see footnote 2)) can be formed from an ordered pair (P, P)) only if a coherent
coexistence of domains P! and P'Y) is possible. This condition may not be fulfilled for all ordered
pairs [9].

%) F-operation in Aizu's terminology (4, 5]. We stress that the twinning operation of an or-
dered pair may not coincide with the twinning operation of the corresponding twin since, in
some cases, a small additional rotation is needed to bring domains of an ordered pair into a
mutual contact along a coherent stress-free domain wall (9). Then the twinning operations of an
ordered pair should be treated as psewdo-twinning operations of the corresponding twin.
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The isotropy group FUD of the ordered pair (P”, P) consists of elements common
to the isotropy groups F'" and FY of the first and second domains, respectively,

(5_3) FU = g N F

where () denotes the set-theoretic intersection.

Two ordered pairs (P, PY?) and (P, P"") are said to be crystallographically
equivalent with respect to G, (P, PY) - (P™®), PY), if an element ge G exists
such that

(5.4) (gP®, gPUY) = (PW PWY  geG .

The twinning complexes T,,, T, of crystallographically equivalent pairs (5.4) are
conjugate under the inverse of the element g which relates the equivalent puairs,

(5.5) Tu=9T,9", g€G.

Proof: Let t;; € T;;; then P’ = gPU = g1, .P¥ = gt,,97'P™, hence gt,;9 ™' € Ty,
On the other hand, any element t,, € T}, can be written in the form 1, = gt;,g "
where t;, € T;;: 1, = 99 "tg) g™ =gtig™h f:‘jp(i) = g7 ' gP? =g PN =
=g 'PY = PY, hence tj,e T

The isotropy groups F*V, FUD of the crystallographically equivalent pairs (5.4)
are also conjugate under the inverse of g,

(5.6) F&D = gFtng =1

since from Eqgs. (5.4), (4.1) and (4.2) it follows that F*" = (gF¥g ") N (gFP ") =
= g(F N\ F") ¢! = gFihg~1,

The change of the order in an ordered pair will be called transposition and will be
denoted by the superscript ¢:

(5.7) (P, p(jJ)f = (PO, P) .

The twinning complex T, of the transposed pair (P, PY) equals the inverse of the
twinning complex T,; of the original ordered pair (P'”, PY),

(58) T:q = T;,'l = (;UFUJ)“[ L F(“rf—jl :

since all elements of T;;' transform PY) into PY), T 'PY = FZ1pU) = FUIPLO -
= P, and the set T;;' contains ng elements and thus forms, according to Theorem I,
the entire twinning complex T);.

We turn now to the classification of ordered pairs. Often, single twinning operation
(e.g., a mirror, the inversion) is used for labeling an ordered pair (a twin). We could
hardly justify this in our approach, for all ng twinning operations of T}, have, crystal-
lographically, equal rights to be chosen as representatives. Therefore, we put forward
a simple distinction based on the comparison of the,otdered pair with the associated
transposed pair. An ordered pair crystallographically equivalent with the transposed
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pair,
(5.9) (P, P! & (PO, PUY)

will be referred to as an ambivalent pair. The pairs (P, PY)" and (P", PP which
are not crystallographically equivalent will be called complementary polar pairs.

This classification can be restated in terms of the twinning complexes. According
to (5.4) and (5.9) a necessary and sufficient condition for a pair (P, P"’) to be
ambivalent is the existence of an element a;; such that

(5.[0) a,jP(” = P‘j) aﬂd a“PU] - P“), a,-jE-'G.

The element a;; must be a twinning operation of (P, PY") and also a twinning
operation of (P, PY)". Thus

(5.11) oy e LT

Another equivalent condition follows from (5.10): P = a, PV = a} P, hence

a;, € FO. Similarly, PV = g, PV = al P9, hence aj; € FY. Therefore,
\

(5.12) a e FINFI)=aFP, a,61y.

Conversely, if (5.12) holds then a;;P"" = a;;a,,P" = P, ie. a;;€ T;; and (5.11)
is satisfied.

i Uspeeifi@ily® 7, = T, '="T ', /then” F;’= g FtV'= Fyplignt s Hnd
a;;F" = a;;'F for each a;; € T;;. Therefore a,,F"" = FPa,, for all a;; € T};, so that
T;; = Gg and. according to Theorem I1I, FP = FU) = FU9,

If no element a; fulfilling (5.10) (or any equivalent condition) exists then (P, P*))
is a polar pair, and vice versa. If, moreover, TJ‘ forms an entire left coset disjoint
R0 T, icoif T5'= taF) &k +§, then (1, F") ! = FOzl = punlp@
since t;;' € 1,F? and t;' can, therefore, be taken as a representative of t,F". Thus
all elements of T;;', and also of T;, commute with F®". Further, t;, brings P into
P™® and P into P, so that (P, P) and (P, P™) are crystallographically equi-
valent ordered pairs.

Theorem 1V. An ordered pair (P, PY) is ambivalent if, and only if, either of
the following equivalent rclations holds

(5.13) QT T,

(5.14) aj, € F, forsome a,eT.
If, specifically,

(S.IS) Tu = T'}-l

then all elements of T}, satisly (5.14), commute with F", and

(5.16) FUD = FO = FU)
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An ordered paic (P, P'7) is polar if, and only if, cither of the following condi-
tions is fulfilled

(5.17) Tl et = 0

(5.18) t;,;none F, forall t;eTy.

If, specifically, T;;" constitutes a left coset disjoint with T;;,

(5.19) Tl P O ek o

then all elements of T;; and of T;;' = T, commute with F'”. Further,
(5.20) FENEDpt =aptihs (gl e i)

and

(5.21) (PO, pr) £ (p) pv)).

Simple rules follow immediately from Theorem [V. Thus, for example. to any
twinning complex containing the inversion, a mirror or a two-fold axis, there corre-
sponds an ambivalent ordered pair. The twinning complex of a polar pair contains
no element of order 2.

Finally, we mention briefly unordered domain pairs. Under an unordered pair a sct
of two domains is meant irrespectively of their order. The unordered pair of domains
P™ and PY will be denoted by (PH PPy Obviously, the ordered pair (P, PU)
and its transpose (P, P‘?) correspond to the same unordered pair (P, P95, Two
unordered pairs (P, P and (P®, Py are said to be crystallographically equi-

. G f - : .
valent with respect to G, (P®, POy < (PD PDY if g e G exists such that either

(5.22) gPY = PY. iand " gPIl = U

or
gP(}') = p(h) and gP(i) e PH] .

Obviously, all results of this Section can be applied to improper domains: we just
substitute the normalizzr G, for the symmetry group F.

6. CLASSES OF CRYSTALLOGRAPHICALLY EQUIVALENT DOMAIN PAIRS
From g domains of the class GP"” one can form g% ordercd pairs and {q(q + 1)
urordered pairs. The relation of crystallographical equivalence of domain pairs
satisfies three requirements of an equivalence relation and divides, therefore, these
sets of pairs into disjoint classes of domain pairs crystallographically equivalent
with respect to G. A class of crystallographically equivalent ordered pairs will be de-
noted by G(P, P") and the class of crystallographically equivalent unordered pairs
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by G(P'' PPy where (P, PY') and (P'”, PU") are representatives of classes'”).
respectively. The entire class can be generated by applying all operations from G to
both domains of the representative. Classes can, again, be interpreted as orbits and
any pair from the class can be taken as its representative. /

The significance of the classes is clear. When studying the crystallographical proper-
ties of domain pairs we may confine our attention to the set of crystallographically
non-equivalent pairs only. Such a set can be formed by taking one representative of
each class. We find now a procedure for constructing the representatives of all classes.

Notice first that in every class G(P*), P") an ordered pair (P, PY) can be found
such that its first domain is a chosen domain P since an element h must exist in G
such that hP® = P®_ 5o that (P™, PM) 2 (hP™, hPM) = (PM, hP™M). A class of
crystallographically ordered pairs may contain several ordered pairs with the first
domain P"". Two crystallographically equivalent ordered pairs with the same first
domain P'” can be related by elements of F'"’ only, so that

(6.1) it (P, P £ (PO P) then P £ puni

Second domains of all ordered pairs with fixed first domain P‘“ form, therefore, the
class F(PYD),

The class GP'” can be resolved into disjoint classes of domains crystallographically
equivalent with respect to F'/):

(6.2) GP = PO 4 FUIPW 4 FOPO

To any class of crystallographically equivalent ordered pairs with the first domain
P'" there corresponds in the resolution (6.2) just one class of domains crystallo-
graphically equivalent with respect to F'“, and vice versa. The disjoint subsets of
(6.2) can be constructed by making use of the following relation

('6.3) Flpt) _ F{iltﬂtpti} 2 F(r‘),“F(Hp(il :

As 1, F comprises all elements of G which transform P into P*) we realize that
the set F't;, F'"" contains all elements of G which generate the entire class F('P®*
from P The set F®t, F""" si called a double coset of F in G '®). A group G can be
decomposed into set-theoretic sum of disjoint double cosets [19—21]:

(6.4) G = FURY BFiy FO g R P
The resolution (6.2) #g, therefore, be written in the following way
(6 5) GP) = Fligplip(i F“‘r- Fapa 4 F(”l‘ F‘”P(”
7) Henceforth “‘class” means class of domain pairs crystallographically equivalent with re-
spect to the group G of the high symmetry phase. The indifferent expression “domain pair' will

mdtca(e that the statement holds for ordered pairs and, separately, also for unordered pairs.
$9) Generally, the double coset FgH is the set of all products fgh where g is a fixed element of
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This relation states a one-to-one correspondence between the clusses of ordered
domain pairs and the double cosets of F'" in G. Specifically, the number r of crystallo-
graphically equivalent classes of ordered pairs equals the number of distinct double
cosets in the resolution (6.4). Notice that the number r includes the trivial class which
consists of the trivial pairs (P, PU), j = 1,2,..., 4.

Now we shall demonstrate that a class always consists of ordered pairs of the same
type. From the definition of the crystallographical equivalence it follows that if two
ordered pairs are crystallographically equivalent then the corresponding transposed
pairs are also crystallographically equivalent. To every class there corresponds a class
of transposed pairs. Since the classes are disjoint we infer that two classes formed by
mutually transposed pairs are either identical or disjoint. In the former case, the
class consists of ambivalent pairs only and will be referred to as an ambivalent class;
in the latter case, two disjoint classes of mutually transposed pairs will be called

complementary polar classes. =

We show how the type of a class can be inferred from the properties of the asso-
ciated double coset. We notice first that the set of inverse elements of F”t; F""’ forms
again a double coset, (F"¢;,F)~! = FO¢ 7' F, which is either identical or disjoint
with the double coset FV1,;F". The double coset which is its own inverse, will be
referred to as an ambivalent double coset'®). If a double coset is disjoint with its
inverse, we shall call F¥t; ,F® and (F1,,F")~" complementary polar double cosets.

Furthermore, the right coset F'“1,; contains representatives of all left cosets in
a double coset Ft, ,F® Since (t,F")™' =F'"1;;', the inverse coset (t,;F")) ™! contains
representatives of all left cosets of the inverse double coset Ft7 ' F) If a twinning
complex t,,F belongs to an ambivalent double coset then (1,,F"")™ 'contains re-
presentatives of all left cosets in F(1,;F\"), i.e. a representative of 1,;F' as well. Thus
t,;F and (1,;F(")~" have at least one common element and, according to Theorem
1V, the corresponding pair (P, PY) is ambivalent. Conversely, if (P*”, PJ’) is an
ambivalent pair then, according to Theorem IV, an element a;; can be found such
that

(66) ; a€ ,U_FUJ - F{r’lruFtn :
and, simultaneously

(i), = i), = i
(6.7) agehn Vel FON

Hence the corresponding double coset is ambivalent. If, on the other hand, 4, FY
belongs to a polar double coset then no element a,; satisfying (6.6) and (6.7) exists
and, consequently, (P, PV is a polar pair. Finally, if t;,F*") has no common element
with F17 ! then FOr, F® must be a polar double coset.

the group G, and f, & run over all elements of subgroups F and H, respectively (F S G, H € G)
[19—21]. In our case, F = H. It holds Fg'F = FgF for any g’ € FgF.
19) In analogy with ambivalent conjugation classes [19].
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If, specifically, (t,,F")™" constitutes a left coset (i.e. if (5.15) or (5.19) holds) then
1,F"" = Grw and the double coset consists of one left coset only,

(6.8) F1, FO = ¢, F

Conversely, if (6.8) holds then 1,,F" = G (see Theorem 66 of Speiser [21]),
so that (1,;F")~" = (F"1,)~' = 1;;'F" = 1, F, ii.c. the inverse coset forms again

a left coset which must be either identical or disjoint with t;;F*". Due to Theorem 111
there are just d left cosets of this kind in the resolution (3.8).
Before summarizing the main results of this Section we mention briefly the classes

of unordered domain pairs. The relation < divides the set of all unordered pairs into
disjoint classes. To each ambivalent class of ordered pairs there corresponds one
class of unordered pairs, whereas to two complementary classes of ordered pairs there
corresponds one class of unordered pairs. This correspondence enables us to utilize
the results obtained for classes of ordered pairs also for the classes of unordered pairs.

Theorem V. The number r of classes of crystallographically equivalent ordered
pairs equals the number of double coscts in the decomposition

(6.9) G = FMef 4 Uy FO 4 4 Fliy, F
The representative of the j-th class of ordered pairs can be found in the form
(6.10) (PO, 1,,P)

where t,, is a representative of the j-th double coset of the resolution (6.9). A one-
to-one correspondence exists between ambivalent classes of ordered pairs and
ambivalent double cosets of the decomposition (6.9), and between complementary
polar classes of ordered pairs and complementary polar double cosets of (6.9).

There exist d distinct classes of ordered pairs represented by the ordered pairs
(P, P®)) the components of which have the common isotropy group

(6.11) FO — F0 _ gk :

(d is the degeneracy of F""). Corresponding double cosets. and only these double
cosets, consist of one left coset,

(6.12) FOUFD = ( FD
The inverses of these, and only of these, double cosets form left cosets.

(613) (llkF{“)_l - !ImF“I]I ] llm € G ’

and the union of these cosets constitutes the normalizer Gp,.
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The number s of the classes of crystallographically equivalent unordered pairs

equals
(6.14) s=a + ic

where a and ¢ are numbers of ambivalent and complementary double cosets in
(6.9), respectively. The representatives of all classes of unordered pairs can be

found in the form
(6.15) (P, ¢, P>

where t,; runs over representatives of all ambivalent double cosets and over either
of the representatives of each pair of complementary polar double cosets in (6.9).

We may note that no simple explicit formula analogous to (3.9) exists for the num-
ber of classes of ordered or unordered pairs. In some cases, however, the following
consideration may be effective. The number p;; of left cosets in F(1 F(" is (see
Theorem 1.7.1. of Hall [20])

(6.16) piy = [t FPt,  FO (V17 FO] = [FO - FO] .
Applying this expression to the resolution (6.9) we obtain the relation
(6.17) it i 8 B Tl L e S

where FU9 ... are the isotropy groups of the representative ordered pairs (6.10).
Obviously, the number of terms on the right side of the Eq. (6.17) equals the number
of classes. Just d of these terms equal unity. If, specifically, all FU/) in remaining terms
have equal order then

(6.18) r=d+(q — d)J[F? : F4iD].

7. APPLICATIONS

In order to illustrate possible use of general results we discuss two examples: First,
we analyse the domain structure of the monoclinic phase of WOj, and, second,
we derive special properties of domain structures for transitions where the group F
is an invariant subgroup of the group G.

[. Tungsten trioxide, WO,, has at room temperature the point group symmetry
F = 2[m and above 740 °C the symmetry 4/mmm [22]. The only common supergroup
of these groups is m3m which can be, therefore, treated as the symmetry group G of
the high symmetry ““mother phase™. The number g of domains which can appear in
the monoclinic phase is q = ng :np =48 :4 = 12. We may choose F" =2 /m
The left coset decomposition of m3Im with respect to 2,/m can be performed
casily using the multiplication table of m3m [23]. The j-th row in Table | contains
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Table |
Decomposition of m3m into left and double cosets of 2, /m.
' Left cosets (twinning complexes) Associated domains
' o | 11j 2e/m ' type : gl ’ orientation
BT e T Tamby SR | louv|
e i = S s o SR DR RN R e e Lo ] et
| ! . | e I
| T, i el e | ambiv. ; p(2! [ loUuV|
! T g 7. 71 Ii "— 3 r ; (3) ; : -
| 13 L om 2 m 2 ambiv. | P i lovu|
! o, ! TR e ambiv. E p4) ! loVu|
e R T oo o Lo e e i R e e s = e ——
l P Ve PALUT ambiv. ' s L uov|
T i Srad e Smbiys S P B (7114
| _— e o _______.,______i_._._ - — e e e
; o PR TR PR ambiv. p7) . |vuol
e T, o Bl ambiv. ptel | Ivuol
e = : i A g fan L
7 | S e e e
g T g iy (40 008, polar p(?) ! [vou|
T | Yy %3 F polar e
T AT . i P R S R A
I: Ty J 3335 32 3z polar ptil : |UVvo| :
2 32 7 i =
!i g - - - 3= polar pt12) | luvol

Notation [25): x = [100], v = [010], z = [001], a = [011], b = [OT1], ¢ = [101], d = [10T],
e = [110), £ = [T10]), « = [1TT). B = (TIT}, y = (TT1), 6 = [111].

Table 2
Decomposition of m3m into left cosets of 4, /mmm.
Ty
Associated | Domains J
Left cosets of 4_/mmm f
</ { subﬁ:?}ups stable under F/)
B4 2, 4;:' m,m_m, R mx4_f 2, S Sl 1 2./m _. ptl) p(2) p(3)  p(4)
meﬂ ‘I:I }, 42 2' 3}, 3a 2! 33 43 3, 3: m, 3}, 35 2:/"1' ‘P(S', P(6],P(q‘. P(lo'
my _';E ZJ' 3} 7. 43 3‘2, 33 2 33 4, 33 "’cd—; 55 ia! 2,/’" | P p(8) p(il) p(12)
|

the twinning complex T;; of the ordered pair (P"), P'’), j = 1,2, ..., 12. Each of the
first four cosets equals its inverse, hence their union provides the normalizer G, =
= 4. /mmm. The multiplicity of the low symmetry phase is m = ng:ng, =48 :16 =
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= 3 and the degeneracy d = n;, : ngp = 16 : 4 = 4, i.e. each of three crystallographi-
cally equivalent low symmetry phases leaves four domains invariant. The decomposi-
tion of m3m into left cosets of 4,/mmm is given in Table 2. Each element of the first
row leaves 2,/m unchanged, each inverse element of the second row transforms 2, /m
into 2,/m, and each inverse element of the third row transforms 2,/m into 2,/m.
Comparing Tables 1 and 2 we can verify that each left coset of 4,/mmm consists of
three left cosets of 2,/m; domains associated with these three cosets are stable under
the same low symmetry group.

Classification of the ordered domain pairs can be performed by inspecting the
twinning complexes and their inverses. Thus we find that (P("), P) are ambivalent
pairs for j = 1, 2, ..., 8 (check that (5.14) is fulfilled), and polar pairs for j = 9, 10,
11, 12. Since F'') = Tforj = 5,6, ..., 12, the number of left cosets in double cosets
FM1 FY for j > 4 equals [F® : F'*'] = 2, and the number of classes is r =
=4 + (12 — 4)/2 = 8. Left cosets can be assembled into double cosets by making
use of the fact that the inverse coset (t,,F"))™" contains representatives of all left
cosets of the inverse double coset F*'t;;' F{"). [n Table 1 left cosets constituting one
double coset are presented within one solid frame, complementary polar double cosets
are marked by additional dashed frame. We see that there exist 6 classes of ambivalent
ordered pairs (the representatives of these classes are (P, PY), j =1, 2, 3, 4, 5, 7)
and 2 complementary polar classes (the representatives are (P PY), j =9, 11).
Thus, from possible 144 ordered pairs and 78 possible unordered pairs we need to
consider only 8 crystallographically non-equivalent ordered pairs and 7 crystallo-
graphically non-equivalent unordered pairs.

We notice that the whole analysis can be performed without specifying the transi-
tion parameter which is needed only for the exact domain characterization. It can
be shown that a symmetric second order tensor e{}’ with e{'} = ¢4y = 0 and all other
components non-zero and unequal (in the standard coordinate system of m3m) in-
duces the symmetry reduction from m3m to 2,/m and provides us, therefore, with
a transition parameter (G,u, = 2,/m = F"’). The monoclinic phase can be treated
as a “‘macroscopically full (proper)” ferroelastic phase [S]. Then, within the macro-
scopic approach, the spatial orientation of a domain can conveniently be represented
by a straight line directed along the principal axis of the tensor e'” which lies in the
mirror plane m of the corresponding low symmetry group [24]. These characteristic

directions [UVW‘ are also given in Table 1.

2. Some of the general results obtained in previous Sections are particularly simple
if the symmetry group F of the low symmetry phase is an invariant subgroup of the
symmetry group G of the high symmetry phase, i.e. if it holds [19—-21]:

(7.1) Fg = gF for all geG.
Then

(1) there exists only one low symmetry phase which leaves invariant all ¢ domain
of GP'” (from (7.1) it follows that G = G);

992 Czech. |. Phys. B 22 (1972)



Group analysis of domains and domain pairs

(ii) the number r of classes of crystallographically equivalent ordered pairs equals
the number g of domains:

(7.2) r=q

(due to (7.1) all double cosets arc identical with the left cosets of F in G). ;
(ii1) the twinning complexes form a factor group G/F provided the coset multi-
plication is defined in the usual manner [19—21]:

(7.3) Tf}Tﬁ = r‘jFIuF — (rljfi.’-) F.

The condition (7.1) is fulfilled in two important cases: if G is a commutative group.
and if F has index 2. In the latter case there exist two domains P, P®) and one sym-
metry phase F which preserves both domains. There are two classes of crystallo-
graphically equivalent ordered pairs which can be represented by the pairs (P, P"")
and (P, P?)) and one symmetry phase F which stabilizes both domains. The twin-
ning complex T, contains all elements of G which do not belong to F. The factor
group G/F has the order 2 and its elements are F and T,,. The defining relation of

G/F is (Ty;)* = F, hence T;3' = T,,, and the non-trivial pairs are ambivalent.
Table 3
Decomposition of 622 into left cosets of 32.
= e
Left cosets of 32 Domains i
= im S e
Ty e R e + |

One may verify all these relations on the Dauphiné twinning in a-quartz. At about
573 °C the B-phase (symmetry 622) transforms into a-phase (symmetry 32). Corre-
sponding resolution of G = 622 into left cosets of F = 32 is given in Table 3.
Domains can, conventionally, be designated + or —, e.g. according to the sign of the
d,,, component of the piczoelectric coefficient.

The author is grateful to Dr. V. Dvoidk and to Dr. F. Kroupa for critical comments on the
manuscript.

Received 26. 4. 1972.
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Whereas the symmetry of the order parameter is specified by operations preserved at the transition, domains are
determined by lost symmetry operations. The number and the relations between domains and domain pairs can be
found by grouping the lost operations into left and double cosets. Different types of domains, rotational (e.g.,
ferroelectric, ferroelastic) and translational ones, are related to maximal subgroups retaining a characteristic
domain property. The interface between domains is treated as a two-dimensional residue of the parent phase

and is described by two-sided plane groups. The existence, orientation and charge of coherent stress-free domain
walls between ferroelastic domains can also be determined from left coset decompositions. Junctions and inter-
actions of antiphase boundaries, domain walls and imperfect dislocations are considered. Annihilation of antiphase
boundaries by moving domain walls, the creation of antiphase boundaries by reacting domain walls and the selective
interactions of dislocations with antiphase boundaries and domain walls are demonstrated on the example of
gadolinium molybdate. Goldstone modes as a dynamical counterpart of domain structures in systems described by

continuous symmetry groups are briefly mentioned.

INTRODUCTION

Domain formation (transformation twinning) is a
direct consequence of the symmetry lowering at the
phase transition, In the past, two different types of
domain structures have been studied separately:
Macroscopic rotation domains (mainly in ferroelectrics,
ferromagnetics and ferroelastics) and antiphase trans-
Jation domains (in alloys). Only recently both types of
domains and interactions between domain walls, anti-
phase boundaries and dislocations have been observed
in gadolinium molybdate' =% and in some other
materials.’ 7 Rotation and translation domains can
appear simultaneously at any transition in which
both the point group symmetry and the translation
symmetry decrease.®® ~!! The complexity of these
structures has not yet been fully revealed and appreci-
ated. In this paper we try to domenstrate how simple
symmetry considerations can help in deciphering
domain structures in such cases.

] DOMAINS AND DOMAIN PAIRS

Number of Domains, Symmetry Relations Between
Domains

In proper ferroelectrics a vector can be attached to
each domain. Counting the number of crystallo-

1 Permanent address: Institute of Physics, Czechosl.
Acad. Sci., Na Slovance 2, 180 40 Prague 8, Czechoslovakia.
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graphically equivalent directions one can find the
number of ferroelectric domains.'?~'* Many alloys
have relatively simple structures so that the anti-
phase domains can be directly visualized and enume:
ated.’® These simple methods fail, however, in many
other more complicated phase transitions, especially
when both point and translation symmetry change.
Then an algebraic treatment appears to be a more
reliable guide.'®'° It is independent on our limited
abilities to visualize symmetry relations in space and
makes it possible to exploit simple theorems of the
group theory.

To demonstrate the essence of this approach let
us consider an orthorhombic proper ferroelectric
phase of perovskites.?” Twelve different directions
of the spontaneous polarization along the face
diagonals characterizing twelve possible domains are
listed in the third column of Table I. The second
column contains all 48 symmetry operations of the
cubic parent point group G = m3m, They are divide
in such a manner that in the jth row all operations
are assembled that transform the first domain [110]
into the jth one. Four operations in the first row
retain the polarization of the first domain and con-
stitute the group F =2, ,mm of the orthorhombic
phase. For any other domain there exist always fou
operations that produce this domain from the first
one. This division of the group G into disjoint sub-
sets consisting of the same number of operations as



TABLE ]
Decomposition of m3m into left and double cosets of 2, ymm

L({)— Spont. f-elast.
J Left cosets 1P deform. % PP DW’s
e 2o mzy m, (110] uM 0°
Ll | My 25y 2 [1T0] u® 180° W
q 1 11
Ao 43 i, m, [170] u(”) 90° W
6 2, 4, a3 My [110) u(1D
4 2y 3y 3 a, [0T1] ul :'\:;
ey 3%. 3 a3 (0TT) u(v 120° WS,
e e 32 35 43 [101) uv)
B Doy 35 3s 4, 101} u(VD
5 omy; 3 3, 4, [017) (M
10 my, 31;, R 4; (011) (V)
1 my, 3 32 43 [107] V) 60° WS
12 my, 335 32 4, (101] u(VD

Notation: Subscripts indicate orientation of axes in the standard coordinate system of the
cubic system; at diads zero components are omitted, at triads only positive components are
given (e.g. 3y, 3 mean rotations along the 3-fold axes in the direction [111] and [111], res-
pectively). P()/ | PU) | denote direction of the spontaneous polarization in the jth ferroelectric
domain. Latin superscripts signify different tensors of spontaneous deformation. Left cosets
constituting one double coset are assembled within two horizontal solid lines. Subscript e
denotes a charged wall. Walls without subscript are neutral.

the subgroup Fis known as the decomposition of G
into left cosets of the subgroup F:?!

R te, P+ .-+ F (1)

The number ¢ of left cosets in the decomposition (1)
is called the index of Fin G and is denoted by

[G : F]. Within point groups g = ng : np, where n,
ng are numbers of operations in G and F, respectively.
We can say, therefore, that the number of domains
equals the index of Fin G and that all operations
from G that transform the first domain into the jth
one constitute just the g;F left coset. These statements
enable us to determine the number of domains and
their symmetry relations without considering the
order parameter at all. This point can be appreciated
when the order parameter has a non-vectorial char-
acter as the following example shows.

Gadolinium molybdate (GMO) changes its sym-
metry from the tetragonal G = P42, m to the ortho-
rhombic improper ferroelectric F = Pba2.?* The order
parameter transforms according to a two-dimensional
representation” to which no vector or tensor can be
attached. We shall, therefore, represent domains by
sets of equivalent positions in the common net of

FIGURE 1 Symmetry elements and general equivalent
positions of the tetragonal paraelectric space group PEZ; m
(given in the centre of the figure) and of the orthorhombic
improper ferroelectric group Pha2 (background net) of
gadolinium molybdate. Symhols +a, —a, +8, — B denote
different distributions of equivalent positions in Pba2
structure and correspond to four different domains. Primitive
unit cells in P42y m and in 4o and 48 domains are shown with
dotted lines.
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TABLE 11
Decomposition of P42 m into left and double cosets of Pha2

Pz
Left cosets Domain 1Pl
(E1000) T' 421100) T’ (mxy| =HO T’ (mzy IO T’ +a
(001]
(E1100) T (421000) T° (myy1 $40) T (mzy!4 —40) T’ +4
2l 40T (2,1330) T (431100 T (41000) 7' —a .
——————————————————————————————————————————————————————— [001)
2330 T Qyli-100 T (431000) 7 @1100) T -8

Symmetry operations are expressed in Seitz notation?! with origin at 4; translational parts refer to
the primitive translations ty, ty, t3 of the tetragonal group P42, m. The Seitz operators of Pba2 have
been derived from general equivalent positions given in Ref. 24 by transforming them into the co-
ordinate system of PJZ. m. Translation group T of the group Pha2 consists of all translations
t =nyty + nyty + nyty, with ny +n, even, ny — n, even, and ny integer. Each left coset constitutes a
double coset. Complementary polar double cosets are separated by a dashed line.

symmetry elements of the orthorhombic phase (see +O OF a vk *.O@+ s
Figure 1). Any equivalent position of the tetragonal o'* s R e S

phase has an equal right to be chosen as the initial

point for generating all equivalent positions of the

orthorhombic phase. Four different sets of equivalent > yigs

positions that can be produced are drawn in four W e Ry =K 'O@- =k
corners of the figure and are denoted by +a, —a, -0 3

+3, —f. They correspond to four possible domains.

Any of these sets is invariant with respect to all opera-

tions of F, but changes under any operation of G not
contained in . We see that (i) each domain contains
either +points or —points (the sign corresponds to the
sign of the spontaneous polarization P,). If we are to
change the sign we always have to perform a rotation.
We can call, therefore, + or — domains rotation or
macroscopic domains. (ii) we can get from +a to 48
or from —a to —f by a pure translation. Therefore,
we call +a and +f, —a and —f pairs of translation or
antiphase domains.

The equivalent positions in the orthorhombic
phase appear always in couples. This enables us to
introduce abbreviated symbols for sets of equivalent
positions (see Figure 2) which we shall use in a later
discussion.

In the algebraic approach we decompose the space
group P42, m into left cosets of Pba2 (see Table II).
Although both groups consist of an infinite number
of operations we get four left cosets. To each of them
there corresponds one domain. The first coset
assembles again all operations leaving the first +a
domain invariant, i.e. the group F. Each of the other
cosets collects those operations of G that bring +a
into another domain the symbol of which is given in

FIGURE 2 Symbols for sets of general equivalent positions
in Fig. 1.

the second column. We see that any domain can be
obtained from +a by a pure rotation. The transla-
tional character of +a with respect to +8 is estab-
lished by the presence of the pure translations
(E1100)T" in the second left coset.

Domain Pairs and their Crystallographic Equivalence

In ferroelectrics domain walls and elementary switch-
ing processes are characterized by the angle between
spontaneous polarization vectors in two neighbour-
ing domains. For orthorhombic perovskites we find
four different angles (see Table I, the fifth column):
180%, 90°, 120° and 60°. Domain pairs (P(1), P())
with the same angle are crystallographically equivalent
i.e. they can be related by an operation from G. The
left cosets corresponding to P)s in all equivalent
pairs (P(1), PD) are collected in Table I within two
horizontal lines. They constitute a set called a double
coset of Fin G'**

G=F+Fg,Ft---+FgF (2)
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Dividing the group G into double cosets of F we thus
find the number and representatives of all non-
equivalent domain pairs—again without considering
the order parameter. (On determining double cosets
from the left coset resolution see Ref. 19.)

In Table II each left coset constitutes one double
coset. Hence for GMO we have three classes of non-
equivalent domain pairs with representative pairs
(+a, +8), (+a, —fB), and (+a, —f).

Generally, a double coset Fg;[” is either identical
with its inverse Fg; 'F or has wiih it no common
operation. We call the former an ambivalent double
coset; a corresponding domain pair (P(1), PD) is
equivalent with the transposed pair (P00, P(1)). In
the latter case we call Fg;F and Fg;' F comple-
mentary polar double cosets; corresponding pairs
(P(Y, POy and (PY), PCV)) are then crystallographic-
ally non-equivalent.'? All double cosets in Table I
and the second double coset in Table II are ambivalent.
The third and the fourth rows in Table Il are com-
plementary polar double cosets. Domain pairs (+a,
—a) and (+a, —f) are therefore non-equivalent with
(—a, +a) and (-, +a), respectively. Physical con-
sequences of this non-equivalence will become clear
in Section 3.

Domain Degeneracy

In the example of the orthorhombic perovskites

one can observe besides ferroelectric domains ferro-
elastic domains as well. The latter are determined by
spontaneous deformations which are given in an
abbreviated form in the fourth column of Table I.
We count six ferroelastic domains. The first one,
ulD) s preserved by eight operations which form a
group G,, = m,,mm (the “stabilizer”” of u/) in G).
All other ferroelestic domains can be derived from
the decomposition

G=Gu+g26u+'”+gqucu- 3)

The index [G: G, ] determines the number g, of
ferroelastic domains.

From Table I it follows that the first ferroelastic
domain u(?) can contain two ferroelectric domains
P(1) and P(2)_ The corresponding coset decomposition
is

Gu=F+h,F, h, €G,. (4)

When we put (4) into (3) we see that each left coset

of G, consists of two left cosets of F, i.e. each ferro-
elastic domain can contain two ferroelectric domains.?*
We shall call the number d,, = [G,, : F'] the degeneracy
of ferroelastic domains. For total number ¢ of domains

we get
q=d,q,. )

GMO provides us with another example of degeneracy
(see Table II): The stabilizer Gp of the spontaneous
polarization is the group Cmm?2 which consists of two
first left cosets of F.2 Hence we have two ferroelectric
domains which are two times translationally degenerate

This is just a particular case of a general rule. The
Hermann theorem'® 2 guarantees that we can always
find a group Z (it is the maximal equitranslation
subgroup of G for which F < Z < G) which stabilizes
a typical macroscopic property appearing in the
distorted phase. The index qo = [G : Z] determines the
number of rotation (macroscopic) domains and equals
ng :ng where ng, ng are numbers of operations in
point groups isogonal with G and F, respectively. Each
rotation domain can further split into

d =2 Fl=E - F (6)

translation (antiphase) domains (¥ and V are volumes
of primitive unit cells in the distorted and parent phases
respectively).® We emphasize that the concept of
translation domains is meaningful only within one
rotation domain. The total number of domains equals

q=dqo ™

and is always finite.

The last conclusion is a consequence of the fact
that crystallographic space groups are infinite but
discrete. In systems described by continuous sym-
metry groups, the group of the ordered phase may
have an infinite index. In this case the concept of
domains and domain boundaries loses its sense since
the typical parameter describing the ordered phase
may appear with equal chance in an infinite number
of variants. The anisotropy vanishes and gapless
excitations, known as Goldstone modes,*” can appear
in the ordered phase. Their characteristic feature is
that they restore the symmetry of the parent phase.
Transitions in liquid crystals provide examples of
such a behaviour.”®

2 DOMAIN BOUNDARIES

Domain [nterface and its Symmetry

Two domains meet along a domain boundary (DB).
Since a DB is a composition plane of a transformation
twin?® we shall treat it in a manner similar to that
used in the crystallography of twinning.
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Crystallographical considerations have revealed
that in many growth twins the twin interface (called
boundary structure) has a structure of a polymorphic
(real or hypothetical) modification of the individual
crystal.’® =3 This can be substantiated by an energy
minimum requirement: The excess surface energy of
the boundary is a result of small deviations of atom
positions within the interface from their normal
positions in the bulk. When the interface has a structure
which is shared by both twin individuals, then the
average deviations are relatively small and the surface
energy is also relatively low. The consideration can be
formalized by treating the interface as a thin slice
the symmetry of which can be described in terms of
two-sided plane groups.”®* This slice, when con-
sidered alone, has elements in its plane symmetry
that are not present in a corresponding plane section
of the crystal individual. These extra symmetry
operations are possible twin operations.”!

Applying this approach to domain structures we
may treat each plane in the parent phase which lowers
its plane symmetry at the transition as a potential
domain interface. (We are neglecting spontaneous
deformations in this consideration.) In other words,
we treat the interface between two domains as a two-
dimensional residue of the parent phase in the
distorted phase. A certain plane with descending sym-
metry can, however, represent a possible interface of
several domain pairs. This can be seen from the
following consideration.

Let G, and F; be the symmetries of a certain
plane in the parent phase and in the first domain of
the distorted phase, respectively. Then all lost opera-
tions belonging to G but not to F; transform the
first domain on one side of the plane into another
domain on the other side. Every left coset in the
resolution

GS=Fs+WIFs+“'+w$Fs (8)
+K +J +K 4 ) K +J K

oﬂ -tB
=K v K K+ *K 4

K +J K +J K W K+ K

APB — Syl e sl =) SdIs ol e
-------- #JK +JK +JK +JK +JKR+JESIK +JK +JK +JK *JK (040)
(010)

) +K «J +K K o) K+
+a +a

K +J +K +J v K 4 +K

(a) (b)

FIGURE 3 Antiphase boundaries in gadolinium molybdate

depicted by abbreviated equivalent position sets (see Figures 1
and 2). (a) Antiphase boundary (010). (b) Antiphase boundary
(040). The structure of the tetragonal paraelectric phase is
sketched in the centre of the figure.

produces a different twin with the same first domain,
the same interface but with an unlike second domain.

We see, therefore, that we have to differentiate be-
tween domain interface and DB: The latter carries
some information about the relation between domains
on both sides of the boundary (we distinguish, e.g.,
90° and 180° domain boundaries) whereas the former
may not. Symmetrically, the domain inter face is des-
cribed by a plane group G but DB is specified by a
left coset of the plane group F;. Operations of this
coset transform the first domain of a pair into its
second domain leaving the interface unchanged.

A domain pair (P(D, P%)) can be classified as a
translational (rotational) one if the corresponding
left coset gF contains (does not contain) a pure
translation. Accordingly, we can distinguish two
types of DB’s: an antiphase boundary (APB) bridging
domains in a translational pair and a domain wall
(DW) separating domains in a rotational pair.

We shall illustrate the above considerations on the
GMO example. As seen from Figure 1 the plane (010)
in the orthorhombic structure contains two-fold axes
42,2, and translations t;3 =n,t, +nst; and its
plane symmetry is G; = p 121 (in the International
notation) or (t,: t3) -2 (in the Shubnikov-Koptsik
noncoordinate notation*"). At the transition the
four-fold axes disappear and the translational sym-
metry reduces to ty3 = 2n,t, +nyty, Fy =pl21
(2t, : t3) - 2. The plane forms an interface of an APB
which is shown in Figure 3a. The plane (040) contains
two-fold screw axes (see Figure 1) and its symmetry

TABLE ITI

Decomposition of the plane group p12;1 (t3: t;)- 2, into
left and double cosets of p1 (t3:2ty) -1

Left cosets

Origin on 2y, Origin at 4 Domain
Eoon T T e Y
(E1100) T3 (E1100) T, +8
(251 —300) T'y3 (251 —550) T3 —a
(2,1500) T3 (—2;%%:3)‘ 1'_":_3 __________ ¥ .'a‘. i

Seitz operators are related to primitive translations ty,
tz, t3 of P42, m. The translation group T' of p12, 1 consists
of all translations t'= 2ny t; + nyty. Origin on 2, isdis-
placed by tg = (050) from the origin at 4.
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FIGURE 4 Two crystallographically non-equivalent 180°
(040) domain walls DW; and DW; in gadolinium molybdate.

lowers from G, =p12,1 (t3:t,)-2, to F; =pl
(t3:2ty) - 1. From the decomposition (8), given in
Table 111 we infer that an interface with the same
symmetry can form either an APB (see Figure 3b)

or two 180° DW’s shown in Figure 4. These two
DW’s are crystallographically non-equivalent since

the corresponding left cosets belong to two different
complementary polar double cosets. All possible DB’s
with the same orientation can, therefore, be in GMO
divided into three classes of non-equivalent DB’s given
in Table IV. This conclusion contrasts with Ref. 2

TABLE IV
Equivalent domain boundaries in GMO

Equivalent DB’s

(+a | +0) (48| +a) (—a | —p) (—81—a) APB
(o | —a) (+81-p) (—a|+f) (=B +a) DW,
(ta | —B) (+3| —a) (—a|+a) (=B 1+p) DW,

where all 180° DW's are treated as crystallographically
equivalent.

Permissible Domain Walls

Domain walls between ferroelastic domains need
special attention. The surface energy of these DW’s
is highly anisotropic due to the mechanical com-
patibility condition. Planar coherent stress-free DW’s
with low energy form along those planes in the dis-
ordered phase which undergo at the phase transition
equal deformations in both domains. Such planes
are called permissible domain walls (PDW).?

Let us consider a domain pair (1,7) with spon-
taneous deformations (1) and 1), Depending on
scalar invariats

W Dy, D::l+ 'Du Dlal I«Dn D:sl
: Dy, Dy Dy3 Di3 D33 Djs
!3 = det D

of the difference tensor D = uD — 4D three cases
can occur: 237

A) I, =15 = 0. Both domains in the pair have
identical deformations and can meet along a DW of
arbitrary orientation (twinning without change of
form).>? We shall denote these walls by We.

B) I, #0,1; = 0. Two mutually perpendicular
PDW's exist. Two twins can be formed from domains
(1) and (/) but additional rotations are always necessz
which bring domains into mutual contact along the
PDW. The PDW’s have either a fixed orientation with
respect to the parent phase (W-walls) or a non-
crystallographic orientation (S-walls).

C) I3 # 0. No PDW exists. Domain can meet only
along stressed or non-coherent DW’s.

The existence and orientation of PDW’s can be
determined by a direct calculation.® ~*! In this way
PDW’s in all proper ferroelectrics® and proper ferro-
elastics*! have been found. It turns out, however,
that all information except the explicit orientation
of the S-wall can be inferred directly from the left
cosets g;F using the following necessary and sufficient
conditions:

A) Twinning without change of form (W.):g;F
contains either the inversion 1, or two non-perpen-
dicular diadsT, or more than two diads of different
directions, or a diad and rotation of higher order
about the same direction as the diad.

B) Two perpendicular permissible domain walls

1) both with fixed orientation (WW) : g;F con-
tains just two perpendicular diads (for
F=4,4,4/m, 3,3 left coset g;Hp, where
Hg is the holosymmetric point group of F,
must be considered instead of gf-F)‘ PDW’s
are perpendicular to the diads;

2) one with fixed, the other one with non-
crystallographical orientation (WS): g;F
contains only one diad but no rotations
about an axis parallel to this diad (for
F=4,4,4/m,3, 3left coset g;H  must be
taken instead of gF). The W-wall is per-
pendicular to the diad.

t The term diad signifies here a two-fold rotation axis or
a two-fold inversion axis, i.e. a mirror plane with a normal
parallel to the diad.
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3) both with non-crystallographical orienta-
tion (SS): g;F contains only rotations of
order higher than two about the same
direction; at least two of them are not
related by 1.

C) No permissible walls: £;F consists of one
operation of higher order than two or of two such
operations related by 1, or contains operations of
higher order than two about different axes.

We see that PDW's with fixed orientation are con-
nected with planes the symmetry of which decreases
at the transition (the perpendicular diad disappears)
in contrast to S-walls where such a plane does not
exist. It can be, therefore, expected that W-walls have
lower energy than the S-walls.

The conditions given above enable a quick search
for all symmetry changes at which a certain type of
PDW's occurs. Thus, e.g., scanning of all left coset
resolutions*? reveals that S-walls are the only possible
PDW's in species 4-2, 4-2. 4/m-2/m, 6-2, 6-m and
6/m-2/m. No PDW's exist at all in species 23-222,
m3-mmm, 3-1_and 3-1. In these cases the energy of
DW:s is expected to be high; if it is comparable with
the surface energy of the crystal, parting along the
DW can occur.*®* An example is provided by
T1,Cd;(S04); (with G = 23 and orthorhombic
ferroelastic phase with F'= 222) where cracks along
a stressed DW have been observed in the ortho-
rhombic phase.*

Domain Wall Charge

In ferroelectric phases DW's can carry a surface charge
which, if not compensated, increases the energy of
the wall. The walls can be either charged or neutral
depending on their orientation. For two perpendicular
PDW’s the charge can be determined from the left
coset, since

1) if one PDW is charged the other is neutral,** *°

2) electrically charged walls can be generated by a
mirror plane whereas the neutral walls by a two-fold
axis. (For the discussion of the magnetic charge see
Ref. 37.)

Combining these rules we infer, e.g., that a WW,
combination (subscript e denotes an electrically
charged wall) is possible only if the left coset con-
tains just one two-fold axis and one perpendicular
mirror plane; if two perpendicular two-fold axes are
present then both DW’s must be neutral (spontaneous
polarization, if it exists, is parallel to the PDW’s inter-
section—see, e.g., Table II).

i
O,Imm

/\‘T V1031)/”

ora / 4 / M.(010)
[10(§\f\5 g M

FIGURE 5 Crystallographical 90° W-walls and non-
crystallographical 60° S-walls observed on the (001) plane
of an orthorhombic KNbO4 crystal by Wiegcndangcr 4% The
arrows .~ , ., ®and L signify {110], {110], [011], and
[017) derC!mnc of the spontaneous polarization, respectivel:

To illustrate the statements of the last two para-
graphs we take again the example of orthorhombic
perovskites. From the left coset resolution in Table 1
we can immediately read out the number, type,
orientation and charge of DW’s (see the last column
of the Table). We see that neutral 90° (100), 120°
(110) W-walls and 60° (Ikl) S-walls have the highest
chance to appear. Domain walls observed in the
orthorhombic phase of KNbO, agree with this pre-
diction (see Ref. 45 and Figure 5).

3 INTERACTIONS BETWEEN DOMAIN WALL
ANTIPHASE BOUNDARIES AND DIS-
LOCATIONS

Junctions of Domain Walls, Antiphase Boundaries
and Dislocations?®

The basic geometrical properties of APB’s have beer
well established in alloys: APB’s can form closed

loops, may end on the crystal surface or can termin
on imperfect dislocations."> *® If rotation domains
are available, APB’s may also terminate on DW's as
illustrated in Figure 6. Here GMO lattice contains a
edge dislocation D which is imperfect in the distort
phase since the Burgers vector b is not equal to any
allowed translation in this phase. The dislocation
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FIGURE 6 A sketch of an antiphase boundary (vertical
dotted line) terminating at an imperfect edge dislocation D
and at the 180° domain wall (horizontal broken lines) in
gadolinium molybdate. At the junction the DW, wall changes
into the DW one. The interface structure of the antiphase
boundary and of the domain walls is not shown.

turns into a perfect one in the parent phase, since b
becomes identical with the primitive translation t,.

A translation mismatch terminating on the dislocation
is an APB. This boundary joins in its lower part a DW.
From the drawing we see that at the junction DW,
changes into a non-equivalent DW,.

A real domain structure of GMO revealed by etch-
ing technique is reproduced in Figure 7.' We see APB’s
forming irregular non-intersecting closed loops, ter-
minating on dislocations or on DW’s. Similar results
were obtained also by other authors.?3

02mm

FIGURE 7 Photomicrograph of an etched ¢ surface of the
gadolinium molybdate crystal taken in reflected light by
Barkley and Jeitschko.! The conic pits mark dislocations
exiting the surface, the straight line grooves along A-B and
C-D correspond to 180° domain walls and curved trench-
like pits are antiphase boundaries. In the area ABCD with
positive surface charge no antiphase boundaries were revealed
due to a relatively fast etching of this region.
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FIGURE 8 Closure relations.
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Domain walls cannot interrupt inside the material;
the crystal can, therefore, be always divided into
rotation domains. From Figure 6 we infer, however,
that if the crystal contains junctions of APB’s with
DW’s or imperfect dislocations that turn into perfect
ones in the disordered phase, the concept of trans-
lation domains loses its sense.

For discussing different types of one-dimensional
junctions a simple device, which we shall call closure
relation, is useful. Let us consider first a perfect
crystal in which we draw a closed circuit that inter-
sects DB’s between domains (see the left part of
Figure 8). The corresponding twinning operations
Wiz, Waa, Wy fulfil the relation wyy wyswy, € F It
expresses the fact that transformations corresponding
to all successive intersections of the loop with DB’s
bring us to a position equivalent to the point of
departure. When the crystal contains dislocations Dy,
D,, . .. we make the closed loop in the “‘good’ parts
of the crystal (see the right part of Figure 8). Though
domains may not be uniquely determined in this case,
DB’s and corresponding operations w;;, Wy j, W,,,,, are
well defined. The successive application of these
operations brings us to a point which is removed
from a position equivalent to the starting point by
negative sum of the Burgers vectors of all-dislocations
enclosed inside the loop. Then the closure relation
can be written in the form

(“? b;’) wmnwklwﬂep- (9)

Applying (9) to GMO we can infer, e.g., that the
mismatch caused by an imperfect dislocation with
b =(E|100) can be accommodated either by an
APB with Wita|+p) = (E| 100), since I:EI 100XE | 100
=(E'|200) € F (loop a in Figure 6), or by two non-
equivalent DW's with W(s4 -5y = (2, 1440) and
Wi—a|+ta) =Wta|-g) = (2] 10). since for the loop
d in Figure 6 it holds (E'[100)(2, |340)(2, |1440)
=(E1200) € F (we use the same Seitz symbols as in
Table IT). The closure relation for the loop ¢ requires
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the change of DW, into DW, at the junction with an
APB:

Wiral-ppW(-p1-a)W(-al+a)
= (2,1 }40XE1100)(2, 1140) = (E1200) E F.

All these closure relations hold independently on
the position of the DW, i.e. a downward movement
of the DW causes extension of the APB (energy con-
suming process) whereas an upward movement
annihilates the APB (energy is released). Observa-
tions' ? agree with this conclusion. The creation and
annihilation of APB’s by moving DW’s is probably
responsible for a well defined threshold field and
the linear dependence of the wall velocity on applied
field in GMO.*

Domain Boundary Reactions

Suppose we have two parallel DB’s (11/) and (/&)
which are close together. They will merge into a single
boundary (1|k) if the sum of the surface energies

0,; + 0, exceeds the energy oy of the resulting DB.
If, on the contrary, 0,5 + g;x <0y, then DB (1 k)
would be unstable and would dissociate into sepa-
rate (1]/) and (j | k) DB’s. Formally, the reaction can
be written in the form?

(1) + (1K) =(1]k). (10)

Considering possible reactions of DB’s in GMO we
notice first that DW; and DW, differ only in the
order of domains in the corresponding domain pairs
and have, therefore, equal energy. The energy opw is
likely to be lower than g4 pp.*?'*® Taking further
into account the equivalence between DB’s (see
Table [V) we get the following exothermal reactions:

DW, + APB > DW,, ah
DW, + APB > DW, , 2
DW, + DW, — APB, (provided oopg < 20py), (13)
DW; + DW, > APB, (provided o5pg < 20py), (14)
DW, + DW; = no DB, (15)
APB + APB - no DB. (16)

We see that a DW changes into its non-equivalent

counterpart when it reacts with an APB. Unlike in

the macroscopic approach, when two 180° DW’s

meet they may not disappear but may form an APB.
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FIGURE 9 Rearrangement of APB pattern by moving
domain walls in gadolinium molybdate. D;, D,, D5 are
imperfect dislocations, A-B and C-D 180° domain walls;
Antiphase boundaries are shown with dotted lines. (a), (b)
and (c) show subsequent changes in the APB structure caused
by moving domain walls which finally meet along AC-BD.

Only the non-equivalent DW,; and DW, annihilate
each other completely?.

The reactions (11)-(16) explain profound changes
in the APB pattern caused by moving and interacting
DW’s. In Figure 9a APB h terminates on a dislocation
Dy, forms a closed loop k and connects dislocations
D, and D;. DW changes its character at the junctions P
and Q with APB semiloop m. In (b) domain walls A-B
and C-D have moved towards each other. The loop & is
partially erased, APB’s & and / have disappeared, but
new ones have connected dislocations with DW’s. In
(c) two DW’s have met along AC-BD. In sections RS,
PQ walls DW, and DW, annihilate each other com-
pletely; in sections LR, SP DW's of the same type

1 Meleshina ef al.2 assume that the reaction of a DW and
an APB cannot go to completion and treat the “composite
boundary™ (+a | +8) + (+8 | —a) as a non-equivalent counter-
part of the single (+a | —a) DW. Such a composite boundary
would, however, be an unstable formation due to an exo-
thermal character of reaction (12). The observed unwilling-
ness of DW to merge with a parallel APB! might suggest a
large activation energy of the reaction.
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SYMMETRY AND STRUCTURE OF DOMAIN WALLS

CuEy

VACLAV JANOVEC R
Inst.of Physices, Czech.Acad.Sci., Na Slovance 2, 18040 Prague, Czechoalov§§

Abstract Symmetries of domain pairs and domain twins are described by black
& white space and layer groups, reep. Domain walls (D# s) are represented by
paths in order paresmeter space which determine their structure and symmetry.
Symmetry aspects of phase transitions of DF s, lattice pinning of DW s and

some properties of DW lattices in incommensurate phases are discussed.

Domain wall (DW) is m slice of structure that accommodates structures of two neigh-
boring domeins. It is a defect of incomplete symmetry reduction that can be conve-
niently discussed in symmetry terms. We shell use smmonium fluoroberyllate (AFB) in
commensurate and incommensurate phases for illustration of our exposition.

SINGLE DOMAIN STATES, DOMAIN PAIRS AND TWIN LAWS

A commensurate distorted phase, formed from a parent phase of symmetry G, can be re-
alized in homogeneous single domain states D. with symmetry groups Fj, i = 1,2,...n.
For AFB G = Pnam, n = 4, F| = F, = -Pn2,a (w31th spontaneocus polarization Py(.D),

g = F, = +Fn2,a (Py) 0) and cell doubling along x (Fig. 1).

Simplest non-homogeneous state is a domein twin coneisting of demeins Dj,D:; and
a LW denoted Wj;. DW is inseparable from the tvin, namely DA symmetry is thet of th
twin. Besic twin characteristic, the twin law, specifies relation between structures
of Dj and Dj and can be determined e.g., by optical or X-ray methods. Symmetricallv,
it is described oy a group J;j; of eymmetry operations (SO s) of G that bring a domai
pair, consisting of Dj end D; extended into entire space, into coincidence with it-
self. Jié assembles SO s Fijf|F; = Fij that retain both Dj and D; , and SO's, 2.g.,

iij- thet traneform Dj into D; end, simultaneously, Dj into Dj (exchange of Dj and
Dj results in an indietinquishable domain pair):
Jij = Fij * 1ijFij = Fij + Iij (1)

Jj; can be treated as & black & vhite space group%'g This description,xhich is a
generalization of designating twin laws of merohedry &and reticular merohedrv by
black & white point groupsi enables one to claesifv domain pairs. E.g., if Fij is
a foler group and J-j is non-polar the domain pair is ferroelectric (in AFB Fy2 =
= Plle, Jjp = +P112/&), if Jj;is based on a blaeck & white Bravais lattice’ domain
pair is trenslationel (antiphase) ore ( Jy3 = Pén?la in AF3). J;3 allowxs also to
clessify domain pairs in Friedel s nomerclature® and eslablish relation between do-
mein twins and twins of classical crystallogrephv: with the exception of cubic re-
ticular merohedry all types of triperiodic twins cen be found between domain pairs
end can be treated as resulting from (hypothetical) phase ‘ransitions. On the other
hand, some types of domein pairs, e.-., translational or with 1i: = O, whic1 have

. - . 3 - - . 1
not been considered in classicel twinning, occur in domain struc{ures.
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TRIN WITH 2zR0 TAICKNSSS DCMAIN WALL

consists of a planar LW of zero thickness, jo. placed at x =0, a domain Di occupy
half-space x< 0 and domain Dj filling up nalf-space x > 0. We shall consider only
txins with coherent DW s. This conditicn is fulfilled in non-ferroelastic domain

pairs for any orientation of %) .. For most of ferroslastic domain rairs there are

- 0. 5,8

0 . N e
Symmetry group Tij of the twin (and wij} is a layer group since 30 s of th-

two rerrendicular orientations of coherent W

twin must preserve a two-dimensional net common to lattices of Di and Dj and trans-
; i o

lations along x are not allowed. Tz. conslists of a plane group xij that leaves Di'

and sign x unchanged, »nd of ccmplex Yz‘j that exchanges Di'Dj and, simultaneously,

half-space x< 0 and x > O

L T e e Rt R (2)
1] 1) 1, 1) -1y 1)
whers E;‘jé_Yij. sz can be interpreted as a black & white layer group?

A sectional layer (plane) group K (E) of a space group K assembles SO's of K

that leave a chosenplane {and its normal) invariant? Relation between T?j and the

sectional layer groug Jii along W?j is revealed by decomposition

y TS EENT Frazing Kperaymaet ine oL,

o S N2 e S e e Hav
E ?1 . 3 34| =T 1eal 513 1] le 13 1) 1)
&i.._;_}__}_'[Ti -1 Pnam where rij exchanges half-spaces but leaves D. ,DJ. invariant
S50 A AR A % it
o bg; H_;ﬁ__}_i O wvhereas sijexchangea Di'D,j but preserves sign x. Rg.i changes
- the twin into the inverse twin in which x < C half-space is
* L] peici occupied by D. and x > 0 by D, . F.. = X2.. J.. expresses
i i 3 J B ¢y 1) 1] 1)
T 2v symmetry of DW central structure that accommodates Di and Dj
lr,' ! For Fi = FJ' G > jij:> ﬁi' i.e., DW 13 a feilure to accomplis
[‘: ; J ’E?aﬂ complete symmetry reduction in a plane. Conversely, each plar
- ' .
} Zary l; : that lowers 1ts sectional layer symmetry at the transition i
}’,_.-‘—o-—‘--o it a potential DW.
* ' a
§ o icf 'C; We discriminate symmetric (Y?j # 0) and asymmetric
-O— - 0 . . : :
T lYij = 0), invertible {32; # 0) and non-invertible {ng = 0)
(¥
}f* ¢ T twins. A non-invertible twin, e.,-., a charged ferroelectric
[h jl C; LW, is not crystallograrhically equivalent with inverted twin

3 in particular they possess different DW energies, . e
FIG. 1 Symmetries g 3 g sxgs ELJ { éﬁ:

. of distorted struc-
‘tures in AFB
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- _ k : o o
, Grours Ji., T?j depend on the orientatibn and position of “ij in the structure
D. since SO0 s 1;jand Eij are available in special positions only. The DW energy

- changes, therefore, with position and this is the reason of lettice pinning and ac-

~ tivation energy of o s.” For ferroelectric W§? in AFB we get 312 = T?Q = pi: pll2,y
at position O, 31/2, elsewhere, resp. This tvin is non-invertible,

E E i /0 y 3 =
12 7 21 ! For antiphase boundary {AP?) %13 is J13 pn21m at al/d or 351/4 and

- and 313= 1lm elsewxhere; T;3 = pill, plgll and pl at al/4,331/4 and elsewhere, resp.

Twin is invertible, Ferroelectric DW s in gadolinium molybdete provide an example of

- asymmetric DW'B}O

 >or pl for E;Q

:fINITE THICKNESS DOMAIN WALLS: SYMMETRY, STRUCTURE AND PHASE TRANSITIONS

Structure of & DW of finite thickness can be conveniently discussed in the space of

- order parameter which has for AFB two components p and qll(Fig. 2).Single dcmain sta-
 teu are represented by points 1,2,3,4, and & smoothly verying structure cf a DV,
f&ridging domain I%with Dj,by an oriented path connecting point i with ). To each po-
sition x in real space there corresponds & point p(x),q(x) on the path (homotopy

fpapping} which describes the local structure in DW. The rate of the structure change
" with position can be expressed by function

1
Bi=) = ((dp/dx}2 + (dq/dx)?) AEE S (4)

fmall h signifies nearly homogeéneous "inside domain" region vhereas maximum h cor-

responds to DW centre.

; To each point of y,c space there corresponds
5 e 1 ( certain symmetry Em(r,q) of homogeneous distorted
N | B . J structure (Fig. 2 below). £ are just the eriker-
g 5 L n, n91512 of the representation inducing the thase
Ex ; g_xfl j;'!—‘ﬁ transition. The local symmetry at position x in DW
kzs ./K: ke can be described by three-dimensional space group
} B %l - SN Em(p(x},q[x)) only if h(x) is small. At jositions
/3 -'QL is¥ I\ with high h the locel svmmetry shcoculd be described
by the sectional layer group Em(p(x).q(x)}.
H—Eﬂfngﬂiipﬁqiffg_LntﬂIpn The ectual structure of - OV can be determined
Paom |-Pr2,0 +PrZp.-Phi2da P2kl Pria from tne conditicn of minimum energy This tssk can
FIc. 2 Parameter space of be, hovever, accomplished for n> 2 only in sfyecierl)

AFB: rerresentation of do-
meins, domein wallse and
:g.COmmensuratg structures. tion p{X) = -p tanh x/4, q{x} =8 [;ath K 5 in
local symmetries. 4 = :

cases, Thus for the ferroelectric D' W the solu-

Fig. 2), with d characterizing DV thickness, has
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been found%j Qelations

2 2
P ootpdy P palpl- 2l
uxy(\J(pg - q2} yield spatial

variations of polarization com-

ponents and shear deformation

e (Fig. 3). We see that the

main features of these depen-
dences follow directly from the
sequence of local symmetriss.
Inequality 612 7 521 is ?aused
by Lifshitz invariant =hich has
not been considered in above so-

lutions. It can be justified in

the approximation of constant

amplitude p2 + q2.14

 3Pn2a Pria :P11Z2/a Pha *Pr2a
i Fig. 4 illustrates the si-

IG. 3 Structure of FIG. 4 Structure cof At 1h antichaus baurdas N
 ferroelectric domain an antiphase boundary Nelfes Teie 3n ¥ %
walls for which:-the solution

; p(x) = -—potanh{x + A VA,
fal(x) = -qotanh(x -0 )/d has been utilized. Solution with J = 0 is associated with
in Fig. 2 whereas [} = 1,5 4 corresponds to path f13. From h(x) ~e clearly

'see that the transition from path 23 to f13 represents a dissociation of one anti-

' phase boundary into two ferroelectric LW s:

= Yo Wy - (5)

.ince Ey<0 stebilizes path a3 and Ey> O favores paths of tygpe f13 or b13 the di-
rection of the transition (5) can be controlled by electric field. Both splitting

Etf antiphase boundary into two ferroelectric DW s 15 and association of two ferro-

16,17

‘electric L% s into an antiphase boundary in electric field have been observed

in gadolinium molybdates,

;f Global symmetry T:j of DW sz with path e consists of SO s that transform the
utire DA (twin) into itsslf. T, is a layer group of the same structurs as T..
(see £3.(2)) though T?Jé;T?j since TEJ nust, in addition, presarve tho path etJGrou;
ﬂfijis raplacedeby symmetry Sid of DW central structure determined by a point of e
atable under Tij (e.g., points Il and B on k,, and LIS resp.). Invertibility of

-

i_ij is determined by bij' For the ferroelectric W12 in AFB 012 = +P1121/a = Ji2’
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;:2 = TT? B EKQ, sz is non-invertible. For antiphase boundary wl] e get

B a b 0 =b Lo} = :

- = = B G, % T = J,,. This means
g - Pnam, ClJ +Pn2 a, T13 T13 le but €13 13 <_ClJ 13

that transition (5) from the path a3 to a path bl3 is acccmpanied by lost of inver-
tibility. This also follows directly frcm non-invertible character of W12 and W23.

Other examples of phase transitions in domain walls have been discussed elsewherel8,19.

DOMAIN %ALLS IN INCOMMENSURATE PHASES

Effects connected with DV s and their structure have the best chance to be observed

incommensurate (IC) phases where DV s are relatively thick and numerous.Far enough
4 o : 3 - 14
from parent-IC transition an IC phase can be considered as a lattice of DV s.

Lifshitz invariant reduces in the IC phase the energy of
ferroelectric DW s but not of antiphase boundaries (for

path a is Lifshitz invariant inactive). Antiphase bound-

13
aries are, therefors, excluded from participation in the

DW lattice. Due to non-invertible character of ferroelec-
tric I s either sequence o{ with increasing indices (anti-
clockwise sense of representative loops m or n of IC phase

']ETu' Bar | / in Fig. 2) or 9 with decreasing indices (clockwise senseof

rerresentative loops) is realized (Fig. 5). Avarage value

L B
of any spontaneous quantity taken over the lattice period
BFIC. 5 Lattice of L is zero, hence the macroscoric symmetry of this regular

omain waells in the
ncommensurate phase

iof AFB. E ; i : ! ;
_ lectric field Ey<{ 0 shifts W12 towards ﬂ?} and “34

towxards W41 enhancing thus relative volume of odd domains

rith Py < 0 on the expense of even domains with Py > 0 and, simultaneously, increas-

phase is that of the parent phase (mmm for AFB).

the period L (L = oo for Ey = Ec). For high enough fields (but lower than Ec]
dne can visualize a situation where ferroelectric Dt's associate into antiphase
ndaries forming thus a lattice of antiphase boundaries with domains of the same
polarity. Possibility of such an arrangement has been confirmed by calculations in
tonatant amrplitude approximation?o When the field is switched off antiphasa bounia-
jes dissociate in ferroelectric DF s which tend to restore ths original DV confizu-
*ation. Since LW s can be pinned in scme intermediate rositions the average poleri-
Ation remains non-zero and the macroscoric symmetry is m2m. This provides an alter-
'itive explanation of hystereses loops observed in IC phasea?l

A snear stress (3xy'> O favores central structure of W and W and depresses

). 12 34
that of 123 and LS (sequence oL ). For high ijy one can envissge a situation when
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favored central structures II and IV turn into domains DII'DIV sep

) / ; : oV the original str
rhase boundaries “II v’ “IV 1 After removing G;xy ' g _
fully recover leaving the average e # 0 and macroscopic symmetry 112,

explain observed hystereses of the quadrupole moment component qu and

22
R, GXY-
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PERFECT DOMAIN TEXTURES OF
INCOMMENSURATE PHASES
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Domain textures of typical incommensurate phases are constructed as regular domain structures formed
by equivalent domain walls of minimum negative energy. Structures with two or three modulation waves
can form several stripe textures and textures periodic in two or three directions. Equivalent textures can
coexist as textural blocks. Symmetry properties of perfect domain textures are discussed.

I INTRODUCTION

An incommensurate structure’? often appears as an intermediate phase in the phase
sequence commensurate (C)—incommensurate (I)—parent (P) phase observed at
heating. Usually, the C phase can be described by an order parameter n specifying
the structural difference between C and P phases. The C structure can be alway:
built up in several equivalent orientations and/or positions. These equivalent C
structures, which we shall call domain states (DS’s) have the same energy bu!
different values of 5. Different DS’s can coexist forming a domain structure with 7
taking DS values in relatively large areas (domains) separated by relatively narrow
transient regions (walls) with a steep change of 7.

The I phase is a spatially modulated structure that can be described by periodi
cally varying 7. Just below the P-I transition this modulation is usually almos
sinusoidal. On cooling, the modulation wave length increases and the form of thi
modulation changes so that regions with structures close to DS are expanding anc
regions with intermediate structures are shrinking. If the intermediate region
become much smaller than the modulation period the I structure can be viewed as
regular domain structure in which almost commensurate regions are identified wit|
C domains and the transient regions (discommensurations) with walls. This struc
ture, which we shall call a domain texture® of the 1 phase (DTI), allows to visualiz
and treat complicated situations, e.g., I structures modulated in several direction:
defects in I structures, textural transitions, etc.

In this contribution we confine ourselves to the determination of possible topc
logically different forms of perfect domain textures in typical I systems. To illustrat
symmetry properties of walls we include a trivial example (sodium nitrite) and i
two cases (krypton monolayer on graphite, quartz) recover well known results. Ot
consideration is based mainly on symmetrical and geometrical arguments and i
therefore, independent on the model or approximation. First we remind necessa
facts about domain structures and then outline the idea of the procedure.

169
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II DOMAIN STRUCTURE OF THE COMMENSURATE PHASE

The appearance of C domain states (DS’s) is a consequence of symmetry lowering at
the P-C transition and different DS's are related by symmetry operations lost at this
transition. DS’s related by lost translations form classes of translational DS's. The
DS's from the same class have unit cells of the same orientation and we say that they
belong to the same orientational state. DS’s belonging to the same orientational state
have the same macroscopic properties whereas DS’s belonging to different orienta-
tional states differ in some spontaneous tensor components.

The number of orientational states equals n, = np: ne, where n, and n. are
orders of the point groups of the P and C phases, resp. and the number of
translational DS’s within each orientational state is d, = N.: Ny, where N and N,
are numbers of molecules in the primitive unit cell of the C and P phase. resp. The
total number n of DS’s equals

n=nsd,=(ne:nc)(Nz: Np) (1)

and can be, therefore, determined from the symmetry groups of the P and C
phases.*>

A DS will be labelled A,, where A signifies the orientational state and the
subscript a (translational index) denotes the translational DS within 1. We shall use
integers for labelling, 4 = 1,2,...,n,, a =1,2,...,d,. If possible the same transla-
tional index is used for DS’s related by point group operations. In the order
parameter space the DS’s are represented by points.

A C domain is a DS restricted to a certain region demarcated by the surface or by
walls. A planar domain wall (W) is specified by domain A, on the negative side and
by domain B, on the positive side of the wall normal n which also determines the
orientation of the wall.

We shall use for such wall the symbol A,/n/B, or simply A4 /B, il the
orientation is clear from the context or if it is not significant.

In this abbreviated symbol the domain on the left adheres to the negative end of n
and domain on the right to the positive end of n. The wall carries an energy o per
unit area.

The wall has diperiodic symmetry that can be expressed by a laver group.® * This
symmetry and also the wall energy o depend on the orientation and also on the
position of the wall center in the lattice. We shall say that a wall has a symmetrically
prominent orientation if a small deviation from this orientation is accompanied by
lowering of the wall symmetry. The energy o has an extreme for a promincr{t
orientation. Prominent orientation is thus a necessary condition for a wall to have in
equilibrium a fixed crystallographical position.

Two walls A,/n,/B, and C_/n,/D, are crystallographically equiralent. A,/n, /B,
= C./n,/B,, if there exists such an operation g from the parent group that

Cc:gAa‘ Dd=ng' "222“1- (2)

Equivalent walls have the same energy o and their symmetry groups are conjugate
under g. In special cases equivalent walls can have the same wall orientation but
differ in adhering domains or can join the same two domains but differ in wall
orientation.
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We say that the wall 4,/n/B, is reversible if
A,/n/B,=B,/n/A,=A,/— n/B, (3)

or shortly A,/B, = B,/A,. Then the wall A4,/B, and the reversed wall B,/A, have
the same energy o and the same symmetry. If 4,/B, = B,/A, ie., if (3) does not
hold, the wall is called irreversible. In this case o of the reversed wall B,/A, is
different from that of the original wall 4,/B, though both have the same symmetry.”

In the order parameter space a wall A,/n/B, is represented by an oriented path
connecting point A, with B,.

1T DOMAIN TEXTURES OF INCOMMENSURATE PHASES

In contrast to walls in the C phase which have positive energy o the walls in the I
phase carry negative o. The equilibrium domain texture of the I phase is determined
by competing negative energy of walls tending to increase the density of walls and

- repulsive interaction between walls trying to increase the wall distance; in I struc-

tures modulated in several directions the energy of wall intersections must be also
taken into account.” With the exception of C phases with two DS’s only (sodium
nitrite, quartz) the negative contribution to a is provided by the Lifshitz invariant.'

An ideal DTI is composed from walls with minimum negative energy o. Up to
rare exceptions (see the example of sodium nitrite) walls with equal o are crystallo-
graphically equivalent. Our basic assumption is that possible DTI's are just different
regular domain patterns that can be formed from all equivalent walls with minimum
energy. To find all possible types of DTI we perform the following steps:

(1) Find all DS’s and their representative points in the order parameter space.

(ii) Find a wall W~ with minimum negative o. This is a difficult variational task
which we replace by the following reasoning: Starting from a chosen DS, say 1,, we
look for the nearest DS to which Lifshitz invariant “drives” the representative point
in the order parameter space. Simultaneously we examine for which orientation is
the contribution from Lifshitz invariant the largest.

(1ii) Find all walls that are crystallographically equivalent with W~ (eg.. by
applying all symmetry operations of the P phase on W ™).

(iv) From these walls construct a regular pattern which represents a possible DTI.

(v) If this texture does not contain all DS’s and all equivalent walls ¥~ construct
another DTI starting with one of the missing equivalent walls.

Now we apply this procedure to concrete examples.

IV EXAMPLES OF DOMAIN TEXTURES OF INCOMMENSURATE PHASES

1) Structures Modulated in One Direction

Sodium nitrite.  Represents the simplest conceivable case. The symmetry group of
the P phase is Immm (D7) and that of the C phase Tm2m (C2°). Both P and C
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FIGURE 1 Domain walls and stripe texture of sodium nitrite. a) reversible domain walls, b) irreversible
domain walls. ¢) stripe texture.

phases have two molecules in the unit cell. hence there are just two orientational
states 1,2 that can be associated with spontaneous polarization + P, — P resp.

The order parameter has one real component (spontaneous polarization). There is
no Lifshitz invariant which would determine the orientation of a wall with negative
energy and the domain sequence in this wall. We can, therefore, discuss only the
svmmetry properties of walls with different orientations and consider their ahility to
form domain textures. It is easy to corroborate that the wall 1/2 has three
prominent orientations with wall normals [100], [001] and [010] (e.g.. for [100]
orientation the mirror (001) and the 2-fold axis along [001] are the svmmetry
elements of the wall—see Figure 1a). Moreover, the walls with [100] and [001]
orientations are reversible since the 2-fold axis along these normals transforms the
wall 1/2 into an equivalent wall 2 /1. Due to this property we can form a regular
sequence of parallel equivalent walls. This type of DTI called a stripe texrure which
corresponds to I modulation in NaNO,—is depicted in Figure 1c. The wall 1 /2 with
[010] orientation is irreversible since there is no operation available that would
transform 1/2 into 2 /1 (see Figure 1b). Although these two walls are not equivalent
(one carries positive and the other negative charge) they have the same energv since
free energy density is invariant with respect to space inversion. Equivalent walls with
noncrystallographical orientation are not parallel and do not allow to form a stripe
texture.

No direct experimental evidence of DTI in NaNO, is available. In the C phase,
however, the etching technique and X-ray topography have revealed a lavered
domain structure of the [100] orientation with fluctuating distances between parallel
and rather thick walls.'?

Similar conclusions hold for thiourea with Pnma and P2,ma symmetries of P and
C phases, resp.

Rubidium tetrachlorzincate. Many crystals with general formula A ,BX, exhihit |
phases. The common symmetry of the P phase is Pnma (D)%), the C phase has polar
orthorhombic structure of the C3, symmetry with unit cell d, times enlarged along

the a direction. Thus, e.g., d, =2 for (NH,),BeF,, d, = 3 for Rb,7nCl, and
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K ,SeO,, d, =5 for [N(CH,),),ZnCl,. Since the domain texture of (NH,),BeF,
has been already analyzed® we shall consider Rb,ZnCl, as an example. Its C ph;?se
has the space group Pn2,a. Two orientational states 1 and 2 can be associated with
spontaneous polarization + P, and — P, along the b axes. There are three transla-
tional DS’s in each orientational state and six DS’s can be labelled 1,,1;.15.2,. 25, 25

The order parameter has two complex conjugate components ¢ = rexp(ig). O*
that transform according to the irreducible representation with the wave vector k
= la*. The values of the phase ¢ corresponding to all DS’s as well as the symmetry
relations between DS’s are given in Table 1.

The existence of the I phase is connected with Lifshitz invariant

A z)\rzg2 (4)
dx

with x along a. If we suppose A < 0 then A provides the largest negative contribu-
tion for walls with the normal n = [100] and with a positive increment in ¢. From
Table I we find six equivalent walls with paths fulfilling this condition

1,/2, =~ 2,00, = 1,73, =2,/1, = 1,/2,= 2,/ (5)

All these walls are obviously irreversible ferroelectric walls since the Lifshitz
invariant (4) is not invariant with respect to x = —x. By repeating the wall
sequence (5) one can form a regular layered domain structure that represents the 1
phase. This stripe texture is sketched in Figure 2a. It is not possible to construct
from the set (5) any other sequence of walls that could be regularly repeated. hence
there exists just one possible stripe texture of this kind.

A closer analysis (similar to that performed for (NH,),BeF{) of the wall
symmetry shows that n = [100] is not a prominent orientation for the single wall
1,/2,. The orientation corresponding to minimal wall energy is rotated away from
this crystallographic direction (this is caused by anisotropy of quadratic terms in
spatial derivatives of ¢). Crystallographically equivalent walls are then not parallel
(see Figure 2b) and cannot form a perfect stripe texture. We also notice that the
inclined walls are charged. A stripe structure composed from inclined parallel walls
would contain non-equivalent walls (see Figure 2c). Applying to this structure the
lost 2-fold screw axis along x we get an equivalent stripe structure in which each

TABLE 1

Rubidium tetrachlorzincate: Domain states 4, and their representation in the order parameter
space Q = rexp(ip). The operation g (given in the Seitz svymhol related to the basis
vectors of the P phase) relates A4, with the domain state 1,, 4, = gl,. P, is the
spontaneous polarization along b axis

g (1p00) (1]100) (1200) (m,0i0) (m,ni0)  (m,pi0)
n/6 5n/6 97 /6 T /6 117 /6 1n /6

+ o 4 .
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FIGURE 2 Stripe textures in rubidium tetrachlorzincate. a) sequence of equivalent walls perpendicular
to [100] direction, b) sequence of equivalent walls with inclined orientation, c), d) sequences of parallcl
inclined walls: solid and dashed walls are not equivalent. a, b are basic vectors of the P phase.

wall appears shifted and with opposite inclination (see Figure 2d). These two
structures have equal energy, hence the stripe texture with walls normal to [100]
direction has extreme (minimal or maximal) energy. We see that whereas the
individual wall has an inclined orientation the walls in a regular collection may
prefer a crystallographic orientation. This collective feature is conditioned by perfect
regularity of the stripe texture so that walls in non-regular structures may exhibit a
tendency to behave as singular walls.

Other crystals from the A ,BX, family would form similar stripe textures onlv the
number of walls in the elementary sequence will be different.

No direct observation of DTI in A,BX, type crystals is available. In (NH ,),BcF,
the scanning electron microscopy has visualized few degrees below the 1-C transi-
tion a layered domain structure with ferroelectric walls perpendicular to a.'' This is
likely to be a relic of the striped DTI.

Barium manganese fluoride. The P phase has orthorhombic symmetry Cmc2, (C12),
The symmetry of the C phase is unknown since the I phase persists till very low
temperatures. The I phase is described by two waves with vectors

ki = {a* + pec*,  k, = 1b* + pc*, (6)
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FIGURE 3 Domain textures in barium manganese fluoride. a) projection of wave vectors k,.k, on
vz-plane: a and ¢ are vectors of the conventional orthorhombic unit cell. by, ¢) two possible stripe

textures,

where a*,b*, c¢* are vectors of the reciprocal lattice and p = 0,39'2, ie., the wave
vectors have a common | component along the ¢ axis (see Figure 3a). Measurements
under hydrostatic pressure yield p = 0.403."* we, therefore, take as the simplest
lock-in value @ = 1/2. From the symmetry of the order parameter with k. k,
(jt = 1/2) describing the P-C phase transition and the fact that the unit cell volume
(incommensurate modulation neglected) is doubled' it is easy to show that the C
phase would have the lowest triclinic symmetry P1 (C!). There are four orientational
states that differ in spontaneous strain components e,,. €, €,, and each orienta-
tional state can be realized in two DS's that are related by lost translation ¢. We
have eight DS’s: 1,,1,.2,,2,,3,.3,.4,.4,.

The order parameter has two complex components Q, = riexp(ip,). o, =
rexp(ip,) with r, = r, = r but only one non-zero amplitude, i.e., the C phase is a
single state associated with one wave only. The values of the order parameter and
spontaneous strain components for all DS's are given in Table I1.

The Lifshitz invariant is

d J
A =A(rlz—$%l-+rzz%). (7)
TABLE 11

Barium manganese fluoride: Domain states 4, and their representation in the order
parameter space riexp(iq, ), nexp(ip,). Operation g (Seitz symbols in the P phasc)
relates A, to domain state 1;. e,,, ey, e;; are spontaneous shear deformations

A 2l 1 g 25 3 3 4, a,

g (1000) (1001) (2,00%) (2,00}) (m.000) (m,001) (m,00}) (m, 00})
n r r r r 0 0 0 0

¢y ¢ eotm 9o+n/2 ¢+3n/2

B 1l 0 0 0 , -~ 2 g

P, P p+m P+ 7/2 @ + 3n/2
e, + b + - - = -

e b - = = % 3 N g

€44 + + = - + + - =
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We choose A < 0. Then A tends to increase both phases ¢, and ¢,. The transition
from one single state to the other would involve states with r,r, # 0 inside the wall
and these double states would increase the energy o due to mixed terms like
rird, riricos 2@, + @,), rirfcos2(p, — @), rirssin2(p, + @,), etc. We infer,
therefore, that the wall with minimum negative energy o joins two DS's belonging to
the same single state. From Table II it further follows that these DS’s differ in phase
by /2. One such wall is 1,/2,. It is an irreversible ferroelastic wall. The Lifshitz
invariant is most effective for the wall orientation [001] which is not a prominent
one. However, this orientation assures a stress-free coherence of the ferroelastic wall
since the shears e,,,e,, break the 2-fold axis.” The elastic energy of the wall is
minimal for this orientation and we shall, therefore further consider walls with
n = [001].
Applying on 1, /2, operations of the P phase we get eight equivalent walls

,/2,=2,/1,=1,/2, = 2,/1,
=3,/4,=4,/3,=3,/4,=4,/3,. (R)

From these walls it is possible to form two stripe textures sketched in Figure 3b, c.
These stripe textures can coexist in equilibrium and form textural blocks. From
Table II it follows that they exhibit monoclinic macroscopic symmetry 2 since shears
e,y and e,, cancel in average and blocks appear as ferroelastic domains differing in
sign of the spontaneous deformation e,,. Such “domains” (textural blocks) meet
coherently without stresses along either (100) or (010) “walls” (block boundaries)
which are crystallographically nonequivalent.

These conclusions agree with y-diffractometry measurements which disclosed
macroscopic ferroelastic “domains” that were discriminated by opposite sign of the
e,, shear deformation.'> From this observation it also follows that these domains
join along boundaries with (010) orientation.

2) Structures Modulated in Two Directions

Barium sodium niobate (BSN) is a representative of the tungsten-bronze-oxide
family. The symmetry of the P phase is PAbm (C},) and that of the C phase Bbm2
(C3%) with four times more formula units in the primitive unit cell. Two orientational
states differ in the sign of the spontaneous deformation e,,. There are cight DS's
1515, 20.25,24,2,

The order parameter has two complex components Q, = riexp(ip,). Q, =
r,exp(ip,) that transform according to the irreducible representation with the star'®

1+t * * _ h* *
k&=a——~*h—+5— k=£——b+%,

4 g ? 4 e (9)

. . 6 . .
The C phase is a single state,'® i.e. either r, or r, equals zero. The correspondence
between DS’s and order parameter values is given in Table I1I.
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TABLE HI

Barium sodium niobate: Domain states A, and their representation in l_hc order param
space rexp(iq, ). rexp(ip,). Operation g transforms domain state 1, into A,, A, = gl

An 11 12 13 1‘ ) 21 2: 23 2‘ y
g (1p00)  (1100)  (1200)  (1300)  (4,000)  (4,0100)  (4,]200) (4,300
” r r r r 0 0 0 0

? 0 /2 ” 3m/2

r 0 0 0 0 r r r r

T 0 /2 T An/2

The Lifshitz invariant has the form

o
Il

ﬁ-_;\ eI ﬂ_ﬂ'ﬁ)
Vi dx ay 4 :

=A(rlzi‘g.l__ ,J.?ﬂ) (10)

dafaeas day’

where x, y, x’, y’ are coordinate axes along [100], [010], [110]. [110] directions of the
P phase (see Figure 4). A wall which joins two DS’s belonging to different single
states has intermediate structures with r, # 0 and r, # 0 that increase the wall
energy due to the term r’r}; the existence of single domain states in the C phase
suggests that this term is energetically unfavourable. We infer, therefore, that walls
with minimum energy connect DS’s from the same single state. Then the Lifshitz
invariant will contribute most in walls with a normal [110] or [110]: in the former
case ¢, increases in the wall by 7 /2 and in the latter case @, decreases by = /2.

FIGURE 4 Two possible stripe textures in barium sodium niobate.

a, b are basic vectors of the P phase,
k .k, are the projections of the wave vectors on the xy-plane.




178 V. JANOVEC and V. DVORAK

From Table 111 we find equivalent walls:

n=[110]: 1,/1,=1,/1;=1y/1, = 1/, Lo
n=[110]: 2,/2,=2,/2,=2,/2, =3 % (12)

All these walls have prominent orientations since a perpendicular mirror m is their
symmetry element. We notice that the walls (11) join DS’s related by translation 3a
and 11”’s (12) DS’s related by a.

Equivalent walls (11), (12) can form two stripe textures with prominent orienta-
tions (see Figure 4). These textures have equal energy and can coexist in equilibrium
as textural blocks. Macroscopically these blocks appear as ferroelastic domains
differing in the sign of the spontaneous shear e,. The coherent stress-free houndaries
between these blocks have two equivalent orientations (100) and (010).

Barium strontium niobate (SBN) belongs also to tungsten-bronze-oxide family with
the same P4bm (C? ) space group of P phase as BSN. However, the space group of
the C phase has not been experimentally determined since the I phase persists till
low temperatures. In contradistinction to BSN, the I phase preserves the macro-
scopic tetragonal symmetry'” and hence assuming that the order parameter trans-
forms according to the same irreducible representation as in BSN the C state must
be a double state with r? = ry. Then it can be shown that the symmetry of the C
phase is 14 (C;) with 8 times more formula units in the unit cell than in the P phase.
The two orientational states differ in the sign of the spontaneous component
d,,,—d,,,. There are 16 DS'’s. The phases ¢,, ¢, of all DS’s can be found in Table
IV.

The Lifshitz invariant has the same form (10) as for BSN. The negative contribu-
tion from this invariant with r;, = r, is slightly higher for wall orientations [100].
[010] connected with simultaneous changes of ¢, and ¢, than for [110]. [110]
orientations associated with a change in one component only. On the other hand. the
contribution of anisotropic terms, like r'cosd¢, + r,'cos4eq,. is also higher for the

TABLE IV

Barium strontium niobate: Domain states A, their relation (expressed by operation g that transforms
1, into A,, A, = gl,) and representation in the order parameter space riexp(iq, ). rexp(iq, ).

n=nrn#0
A, 1 1, 1, 1,4 14 Ic 15 i
g (1000) (1]100) (11200) (11300) (1010) (1]110) (1210 (11310)
7 0 m/2 m in/2 n/2 L An/2 0
P, 0 n/2 m 3n/2 3n/2 0 m/2 ”
A 2, 2, 25 2, 2, 2 y (9 g
g (m130) (m.340) (m330) (m..330) (m,330) (m.B30) (m.i210) (mo.l
T n/2 m 3In/2 0 m in/2 0 n/2

P 0 n/2 " In/2 3n/2 0 w/2 -
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first two orientations making thus the preference of these orientations questionable.
We shall, therefore, consider both possibilities:

(i) Walls involving the change of both components of the order parameter.

The wall 1,/1, with n = [100] gains the largest Lifshitz contribution but this
orientation is not a prominent one (mirror and glide planes change the orientational
state). It can be shown that the extreme wall energy is obtained for n rotated about
an angle € around the ¢ direction. Applying lost translations we get the following
equivalent walls of the same orientation inclined by € from [100]:

L/ =171 =171, = 1T/l
= 1/16=14/1, = 1,/1; = 1. /14. (13)

Four-fold rotations generate another set of equivalent walls with n deviated about ¢
from [010] direction:

1,/1s=1,/1,=1,/1, = 1./},

Il

B b PG B s e e (14)

The mirror planes produce two other sets of equivalent walls with deviation —e

FIGURE 5 Possible tetragonal domain textures in barium strontium niobate formed by a). b) walls with
variation in both order parameter components (¢ measures the deviation from a crystallographic
orientation), c¢) walls with a change in one component. Unit cells of the textures are marked by dashed
lines. a, b are basic vectors of the P phase,k , k, are the wave vectors.
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from [100]:
21/25= 2,025 =272, = 2,/2,
= 24/2¢ = 2¢/29 = 23/24 = 24/25, (15)

and with deviation —e¢ from [010]

]

2)/25=25/25=2;/2; = 2,/2,
=2,/26=2¢/24 = 24/24 = 24/2,. (16)

Each row in (13)-(16) represents an elementary wall sequence of a stripe texture.
These textures do not have prominent orientations and can coexist as textural
blocks. Only textures belonging to different orientational states could be dis-
criminated macroscopically.

Other structures that can be formed from the equivalent walls (13)-(16) are two
tetragonal textures sketched in Figures Sa,b. They have the symmetrv p4 and no
prominent orientation. Macroscopically they differ in the sign of piezoelectric tensor
component d,,,—d,,;.

(i1) Walls involving the change of one component of the order parameter.
A wall facilitated by Lifshitz invariant is 1,/2, with prominent orientation [110]
(the mirror in this wall is its symmetry operation). Equivalent walls are:

n=[1101c1, /2, =2, /A1, =1 . =2 /1

=15/2,=2. /. =19 =3/}

=1 = = 3. S0

=12, =~ 2./ 1./2. =2 .71, (17)
n=[110}: 1,/2, = 2l = 1,/2, <9 /1,

=12, =2 1, =14 -3 /i

=92, =7 ik le/d e 3 1,

=1/, =21 =170 -3 ¢l (18)

From 32 equivalent walls (17) and (18) it is possible to form 8 different stripe
textures and one tetragonal texture (depicted in Figure 5c) all with prominent
orientations. All the stripe textures and also the tetragonal texture have the same
average macroscopic properties as the P phase.

3) Structures Modulated in Three Directions

Quartz and aluminium phosphate. The symmetries of P and C phases are P6,22
(D) and P3,21 (DY), unit cells of both phases contain 3 molecules. There are j‘ml
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two DS's 1, 2 identical with two orientational states that can be associated with plus
or minus sign of the spontaneous component d,,, of the piezoelectric tensor.'*

The order parameter is a real number and transforms according to the irreducible
representation B, (at the I' point) of P6,22. Similarly as in NaNO,, there is no
Lifshitz invariant and walls W~ result from a Lifshitz-like invariant.!” The orienta-
tion of W~ cannot be predicted from symmetry considerations only. We examine,
therefore, textures that can result from W's of three different crystallographical
orientations. ¥

(i) W ’s perpendicular to 2-fold axis 2 that is lost at the transition, e.g., n = [0110]
in hexagonal system. Walls with this orientation are reversible since 2 transforms
1,/0110/2 into 2/0110/1 and vice versa. We get six equivalent W's of three
orientations

I

1/0110/2 = 2/0110/1

I

1/1010/2 = 2/1010/1
=1/1100/2 = 2/1100/1, (19)

from which three stripe textures can be formed (see Figure 6a). We note that 2 axes
in the centres of stripe domains are symmetry elements of the stripe texture. From
walls (19) other textures periodical in 3 directions can be constructed: two comple-
mentary triangular textures (similar to those depicted in Figure 6b, but with walls

A L,

a) :-’

\i-'l

l
|
|
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b

FIGURE 6 Possible domain textures in quartz a) stripe textures with walls perpendicular to lost 2-fo!
axes, b) two complementary triangular textures in inclined orientations, ¢} two complementary textun
with trigonal symmetry and crystallographic orientation. Black and white domains correspond to doma
states 1 and 2, resp. Two-fold axis 2 is preserved, 2, lost at the P-C transition
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perpendicular to 2, axes) with plane symmetry p6 and two complementary trigonal
textures (Figure 6c) with plane symmetry p31m. 3

The stability of these textures should be examined since the orientation [0110] of a
single wall is not a prominent one (no 2-fold axis is a symmetry operation of such a
wall). Consequently, single wall of minimum energy o will have a gencral orientation
rotated away from the [0110] one. For simplicity, we shall consider walls parallel to
the c axis, i.e,,

(ii) W ’s with orientation [uvt0]. There are six equivalent walls each with different
orientation. Similarly as in Rb,ZnCl,, no stripe texture can be formed from these
equivalent walls. A stripe texture with a general orientation would have to be built
up from non-equivalent parallel walls and it would have no prominent symmetry.
Stripe texture considered under (i) has a prominent orientation (due to 2, axes—see
Figure 6a) and, consequently, extremal energy. We cannot, therefore. exclude that
the stripe texture with [0110] orientation is stable though the single wall with this
orientation is unstable. Two complementary triangular textures with opposite devia-
tions from the crystallographical orientation (see Figure 6b) can be formed from six
equivalent walls of general orientation. They have p6 plane symmetry. hence the
special crystallographic orientation of these triangular textures considered above is
not prominent and a minimum energy will be reached in rotated-awav orientations.
These conclusions have been obtained already earlier from a careful analysis of the
thermodynamic potential of quartz.!*-?!

(1) W’s perpendicular to 2-fold axis 2, preserved at the transition, e.g. with
n = [2110), have prominent orientation (both perpendicular and parallel 2-fold axis
are symmetry operations of the wall). They are two classes of symmetrically
equivalent walls:

1/2110/2 = 1/1210/2 = 1/1120/2;

2/2110/1 = 2/1210/1 = 2/1120/1. (20)

Nevertheless, all these walls have the same energy since all non-homogeneous terms
containing spatial derivatives are invariant with respect to the inversion x —» — x.
Hence one can form three stripe textures perpendicular to x axes, two complemen-
tary triangular textures with a prominent orientation and hexagonal svmmetry
p6émm, and two complementary trigonal textures with trigonal symmetry p3.

All results obtained for quartz apply also for ammonium phosphate with the same
symmetries of the P and C phases.

The triangular texture discussed under (ii) (see Figure 6b) has been directly
observed in quartz by electron microscope.?”?* Both textural blocks are clearly
visible as areas with opposite deviations. Convincing experimental evidence about
the stripe textures and the trigonal texture is not available.

Krypton monolayer adsorbed on graphite. This is an example of | phases in two
dimensional systems.”?* The P phase has the hexagonal plane symmetry p6mm with
basic vectors aj, j=1,2,3. The C phase, denoted Y3 X V3 R 30°. has the same
svmmetry group but with V3 times larger basic vectors a{; rotated awav hy 30° (see
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Figure 7a). The volume of the C unit cell is 3 times larger than that of the P unit cell.
Hence there are just 3 translational DS's 1,2, 3. DS's 2, 3 are obtained from the DS1
by applying lost translations a',, 2 a,, resp. :

The order parameter has three complex components rexp(ig,), j = 1,2.3. with
equal amplitudes r, = r, = r, = r and equal phases @, = ¢, = ¢, = @. Thtt phase Q
corresponding to DS’s 1, 2, 3 equals 0, 27/3 and 47 /3, resp. The Lifshitz invariant
1S

dp dg de
PAEL & 1 2y 190
e dx, L5 dx,  dx,

- dp,  1(de, 99, V3 [ o, 39’3)
— Al ——— = —= —= i e 21
A | dx, 2(6‘3(, i ax, § 8

2-0dyy Ay
where the x; axes are parallel to aj/ and y, to a%;. Walls perpendicular to v, are
energetically unfavourable since an opposite change of ¢, and ¢, with constant ¢,

1 does not drive the representative point from one DS to anv other DS This condition

: is fulfilled, however, for walls perpendicular to v, where N vields the Lpest
negative contribution with phase increments Aqp, = +27/3, Aq, = Aq, = —4n/}
for A < 0. One such a wall connects DS 1 with DS 2 (proceeding in positive x,
direction) and produces the shift a', of adjacent structures. This wall is irreversible:
the change of the sequence to 2 /1 (equivalent to transformation x — — x) turns the
negative contribution of A into a positive one and the shift created by this wall

b

1
2
3
1

<

FIGURE 7 On the krypton monolayer on graphite. a) three translational domain states 1.2

; ! : SIE
are basic vectors of the P and C phases, resp k, are wave vectors of the modulation. = 120 hythee
possible stripe textures, ¢) hexagonal (honeveomb) texture
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becomes 2 a',. The equivalent walls are

1/a}/2 = 2/4,/3 = 3/a,/1

=1/al/2 = 2/a%/3 = 3/a} /1
=1/a/2 = 2/a}/3 = 3/a}/1, (22)

where the vectors af indicate the direction of the wall normal. All three orientations
are prominent and all walls are irreversible.

Each row in (22) represents one stripe texture (see Figure 7b). All nine types of
walls form one hexagonal (honeycomb) texture (Figure 7c) which recovers the p6mm
symmetry of the P phase though with much larger unit cell. All these textures have
prominent orientation and have been thoroughly discussed in many papers (see. e.g.
References 2, 24, 25).

2H polytype TaSe,. Represents one of the transition-metal-dichalcogenide layer
crystals which exhibits remarkable charge-density-wave phase transitions. The P
phase has P6,/mmc symmetry and the C phase the Cmcm symmetry with tripled
periodicity along two hexagonal axes basic vectors. There are threce ferroelastic
orientational states with different orientations of the C unit cell and for each there
exist nine translational DS’s; thus in all we have 27 DS’s. The analysis of this case
will be given elsewhere and here we present only the results. There are 54 equivalent
ferroelastic walls with minimum ¢ from which it is possible to form 9 different stripe
textures each with a different elementary wall sequence consisting of 6 walls (see
Figure 8). Only one hexagonal (double honeycomb) texture exists (see Figure 9); it it

~ 11, az\l/a. \\\3
es 1
D\ Ty 2<) o 03 \'\
2 ri e
3, 3y <R
2y 2y 2q
3, % T
Hirs SR SN
4, 3y 3, ;
2 2, g
3, 3, Js

FIGURE R Equivalent stripe textures of 2H-TaSe,. a; (7 = 1.2,3) are basic vectors of the P

S 5 : ; ) phas
rectangles indicate orientation of conventional C unit cell.
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FIGURE 9 Double honeycomb texture in 2H-TaSe,. Dashed (solid) frames mark primitive (conven-
tional) unit cells of the periodic pattern.

a regular repetition of a rhombic unit cell that contains once each of 27 DS’s, once
each of 54 walls and, in addition, 18 three-fold wall intersections and 9 six-fold
intersections.

Domain textures in 2H-TaSe, have been directly observed by electron
microscope.?®?” Coexisting stripe textures with a sharp contrast are seen only on
heating above 90 K. At about 110 K there is a textural transition to a triply I
structure that can be identified with the double honeycomb texture. On cooling this
texture changes gradually into an irregular C domain structure. The observations
have revealed a large variety of textural defects and complexity of textural and C-1
transitions.

vV SUMMARY

The approach described and illustrated above allows to find topologically different
domain textures of the I phases, and to determine their crystallographical orientation
and symmetry. Structures with one modulation wave form just one stripe texture
(e.g., A,BX, type crystals). In structures with more modulation waves several stripe
textures can appear. They are related by lost symmetry operations and can coexist in
equilibrium as textural blocks (e.g., barium manganese fluoride). Moreover, textures
periodic in two or three directions can exist either in a single variant which recovers
the symmetry of the P phase (e.g., Kr monolayer on graphite) or in several
equivalent variants forming textural blocks (e.g., in quartz). Fquivalent textures are
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analogous to domain states, textural blocks to domains and nnn-equivnleln‘i lcix!ures
to different phases that can change one into the other by a textural transition” (c.g..
2H-TaSe,).

Perfect textures acquire periodic symmetry that determines whether their orienta
tion is crystallographically prominent (e.g., krypton on graphite) or non-crvstallo
graphical (e.g., quartz). Crystallographical prominence of a texture can be differen
than that of individual walls which form the texture.

Most of the walls that form domain textures are connected with Lifshitz invariant
All these walls are irreversible since the domain reversion is equivalent to x — —2
transformation along the wall normal which changes the sign of Lifshitz invariant

Domain textures provide only an approximate picture of I structures which i
substantiated if almost commensurate regions are much larger than regions o
changing structure. This is certainly not true for sinusoidal modulation (which seem
to be, e.g., a good approximation in the whole I phase of NaNO,). In many case
(e.g., for 2H-TaSe, and SiO,) the domain texture provides, however. a reasonabl
approximation of the real situation, especially close to the C-I transition.

The main advantage of domain texture approximation is that it allows to visualiz
complicated situations and yields a possibility to treat I phases as systems ¢
interacting walls. It provides a very useful frame for treating the topologice
properties of I phases, like topologically different I structures and topological defect
of these structures. Topological characteristics of these objects are independent ¢
the form of the I modulation and hold, therefore, beyond domain texture approxi
mation.
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Abstract

The coset and double coset decompositions of the 32 crys-
graphic point groups with respect to each of their
subgroups are tabulated.

I. Introduction

mathematical concept of the coset decomposition of a
up with respect to one of its subgroups has wide applica-
ons in crystallography and solid-state physics. The points
[ any crystallographic orbit are in a one-to-one correspon-
ce with the cosets of the coset decomposition of the
stallographic group with respect to the site symmetry
p of one of its points (Wondratschek, 1983). Coset
mpositions have been applied in the analysis of
mains of ferroic crystals using coset decompositions of
t groups (Aizu, 1970; Janovec, 1972) and of space
ups (Aizu, 1974; Janovec, 1972, 1976). This concept
also been used in the derivation of twin laws for
eudo- )merohedry (Flack, 1987).

- The mathematical concept of the double coset decompo-
sition of a group is less well known and has been used in
ications to a lesser extent than the coset decomposition
Ruch & Klein (1987) and references therein]. The
le coset decomposition has been used in a tensorial
sification of domain pairs in the case where each domain
s characterized by a unique form of a physical property
or (Janovec, 1972) and in the case where more than a

* Present address: General Electric Aerospace, PO Box 8048,
delphia, PA 19101, USA,

0108-7673/89/110801-02503.00

single domain is characterized by a specific form of a
physical property tensor (Litvin & Wike, 1989).

In §I1 we briefly review the definitions of coset and
double coset decompositions. Tables of the coset and
double coset decompositions of the 32 crystallographic
point groups with respect to each of their subgroups are
given in § [1I.

Il. Coset and double coset decompositions

For a given group G and subgroup I{ one writes the left
coset decomposition of G with respect to H symbolically as

G=H+g,H+gH+.. +g.H

where g H denotes the subset of elements of G obtained
by multiplying each element of the subgroup H from the
left by the element g, of (G (Hall, 1959). Fach subset of
elements g, H, i=1,2,...,n iscalled a left coset of G with
respect to H, and the elements g,, i =1,2,..., n, of G are
called the left coset representatives of the left coset
decomposition of G with respect to 1.

The subset of elements of G in each coset of the left
coset decomposition of ¢ with respect to H is unique, but
the coset representatives are not unique. A coset representa-
tive g, can be replaced by the element gh, where h is an
arbitrary element of the subgroup H.

For a given group G and subgroup H, one writes the
double coset decomposition of G with respect to H sym-
bolically as

G=H+HgY¥H+Hg\H . .+ Hel H
where Hg{"H denotes the subset of distinct elements of (i

© 1989 International Union of Crystallography
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Table 1. The coset and double coset decomposition of
G = m3Im with respect to H=m.m 2,

Each row contains the elements of a single coset. Sets of cosets
constituting a single double coset are separated, in general, by a
harizontal dashed line, but members of pairs of complementary
double cosets are separated by a horizontal dotted line.

1 2 ., .
2. 2. 1 m,
.. 3or 3 35:
ine 3 v % el
By 1§ Lo 3
i 3% ae 3%
2: 4. 4! m,,
41 2 LR i
- . 4 . i,
4, b 3} m
2. i, i
4' 4, m m

obtained by multiplying each element of the coset g/*H
from the left by every element of the subgroup H (Hall,
1959).* Each subset of elements Hg"H, j=1,2,...,m, is
called a double coset of G with respect to H, and the
elements g/, j=1,2,..., m, are called the double coset
representatives of the double coset decomposition of G
with respect to H. By their definition, each double coset
consists of a specific number of cosets of the coset decompo-
sition of G with respect to H.

The subset of elements of G in each double coset of the
double coset decomposition of G with respect to H is
unique, but the double coset representatives are not unique.
The double coset representative g|° can be replaced by

h'g{°h where h and h’ are arbitrary elements of the sub-

group H.

The elements of the two double cosets Hg{°H and
Hi(g/?) '"H are either identical or disjoint. If identical, the
double coset Hg!*H is called an ambivalent double coset
and the inverse of each element is contained in the double

* This definition of a double coset decomposition of a group G
with respect to a subgroup H, which we use in this paper, is the
special case of the more general definition of a double coset
decomposition of a group G with respect to two subgroups H and
H' (Hasselbarth, Ruch, Klein & Sefigman, 1980) when H'= H.

SHORT COMMUNICATIONS

coset. If disjoint, the two double cosets are called com-
plementary double cosets, and the inverse of cach element
in one of a pair of complementary double cosets is found
in the other double coset.

HI. Tables of coset and double coset decompositions

Tables of the coset and double coset decomposition of the
32 crystallographic point groups with respect to one of each
set of conjugate subgroups were given by Janovec &
Dvorakova (1974). These tables are extended here and
retabulated in International (Hermann-Mauguin) notation
to include all subgroups of the 32 crystallographic point
groups. In Table | we give an example of these tables,” the
coset and double coset decomposition of the point group
G = m3m with respect to the subgroup H = m.m 2, . Fach
row contains the elements of a single coset. In general,
double cosets are separated by horizontal dashed lines but
the members of a pair of complementary double cosets are
separated by a horizontal dotted line.
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Basic symmetry properties of domain states, domain pairs, domain twins and walls in KSCN crystals
are examined by group theoretical methods. Relations between domain states and domain pairs are
expressed in matrix form and by permutation representation. Black and white space groups describing
the symmetry of domain pairs are found and layer group symmetries of domain twins and domain walls
are determined as their sectional subgroups. Microscopic structures of domain walls are given for
coherent ferroclastic walls and for translation (antiphase) walls. Exposition and obtained results provide
an illustrative example of symmetry analysis of domain structures.

1. INGRODUCTION

Symmetry analysis of domain structures discloses relations and regularities in these
structures that result from a symmetry lowering at the phase transition. Conclusions
of this analysis provide a solid basis for deciphering real domain structures.

A KSCN crystal represents a convenient example for studying domain structures.
Its crystal structure is simple and well examined, the phase transition can be easily
achieved and the experiments with domain structure can be performed at room
temperature. The first results of microscopic observations of domain structure and
its preliminary analysis are already available." In this paper we complete the analysis
within the approximation of zero-thickness domain walls and with simple mathe-
matical tools (without invoking representation theory). A phenomenological theory
of domain walls and structures of finite-thickness domain walls in KSCN crystals
will be discussed elsewhere.

The aim of the paper is two-fold: besides the symmetry analysis of a particular
domain structure in KSCN it should provide an illustrative example of methods
and aims of symmetry analysis of domain structures in general. In order to make
the paper self-contained we explain basic concepts and recall some relations. Though
the treatment is based on simple group-theoretical considerations, we also display
graphically the structures of examined objects.

For describing real domain structures the notions of domains and domain walls
are used. The symmetry analysis of domain structures treats more idealized objects:
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FIGURE | Orthorhombic structure of KSCN and its symmetry. Open and full circles represent K-
jons at z = le. ic levels and S, C. N atoms at z = 0, dc levels, resp.

domain states, domain pairs and domain twins. These three elementary domain
formations are defined and analysed in Parts II1, IV, V| resp. First, however, we
recall in Part II necessary data about the crystal structure and the phase transition

in KSCN.
II. STRUCTURE AND PHASE TRANSITION IN KSCN

I. A crystal of KSCN has at room temperature an orthorhombic structure with
four formula units in the primitive unit cell which is depicted in Figure |. The
symmetry is described by the space group F = Pbcm(D?}).> Due to strong overlap
forces atoms S, C and N form a rather stable formation which we shall treat as a
rigid and linear thiocyanate ion (SCN) ~. The site symmetries of the ions K* and
(SCN)~ are given in Table I. From these site symmetries it follows that the K*
ions can be shifted from (0,0,1) positions (these spontaneous displacements have
been recently determined by X-ray') whereas the (SCN) = ions can be shifted in z
= (),%,... planes and can exhibit a spontaneous rotation ¢_. about the z direction.
A schematic picture of the structure is given in Figure 2.

Above 142° C the structure of KSCN has the tetragonal body-centered structure

TABLE 1

Symmetry groups of parent phase and of single domain states, corresponding site symmetries and
spontaneous displacements of wons.

K* (SCN) -
Symmetry
Phase SDS group Site sym. Shift Site sym. Shift Rotat.
parent G 4,/m.cm,, 4,22, (0,0,0) M, mem. (0.0.0) 0
distorted 1 F, Pb.c.m, . (x.0,0) m. (x,v.0) @.
1, F, Pb.c,m, 2o (x,0,0) m, (x.v,0) @
24 F, Pc.a,m, 2 (0.x,0) m. (v.x.0) ®.
25 s Pe.am. 2 (0,x.0) m. (v.x.0) ¢.
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FIGURE 2 Schematic picture of the orthorhombic structure of KSCN. The (SCN)ions are repre-
sented by oriented bars pointing from N to S atom.

(a) View along z axis. Dashed and full bars represent (SCN) - ions at z = 0, 4c levels. resp.. open and
full circles depict K* ions at z = ic, ic. resp. Spontaneous shifts of K* ions are exaggerated. shifts of
(SCN) are neglected.

(b) View along v direction.

with 2 formula units in the primitive unit cell and with the space group G =
14/mem (DL)).* The (SCN) ~ ions are orientationally disordered. In our schematic
picture we represent disordered (SCN) ~ ions by non-oriented bars. The site sym-
metries of ions in this phase are given in Table I from which it follows that both
ions have fully determined positions. The schematic representation of this structure
is given in the centre of Figure 3.

2. Since the space group F = Pbcm of the room temperature phase is a subgroup
of the space group G = [4/mcm of the high-temperature phase, the structural
change at 142°C can be interpreted as a phase transition from the parent (high
symmetry) phase with symmetry group G to the distorted (low symmetry) phase
with symmetry F. This transition, which can be classified as an improper ferroelastic

FIGURE 3 Four single domain states of KSCN. Ordered tetragonal structure is depicted in the
centre,
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one, was examined by X-ray diffraction®* and analysed by group-theoretical meth-
ods.’

[1I. SINGLE DOMAIN STATES

Due to symmetry reduction at the phase transition the distorted phase can appear
in several homogeneous states which have the same structure but different ori-
entation and/or location in space. We call these homogeneous structures domain
states”” (DS’s). An equivalent term is domain variant.® The equilibrium structure,
homogeneous throughout the whole crystal defines a single domain state (SDS)
which has symmetrically prominent orientation. In this Part we shall discuss SDS’s
only. Domain states with orientations different from that of SDS’s appear in fer-
roelastic domain twins and will be invoked in Part VI.

The basic symmetry properties of SDS’s follow directly from svmmetry groups
G; and F of the parent and distorted phases, resp. Thus, e.g., the number n of
SDS’s can be calculated from a simple formula®”

n MGl N7 7 ) 22 — & (3.1)

where |G|, |F| is the order of the point group of G, F, resp. and Z;, Z, is the
number of the formula units in a primitive unit cell of the group G, F, resp. In
our case, |G| = 16, |F| = 8, (Zr:Z;) = 2, hence n = 4. We can, therefore,
designate the SDS’s of KSCN as §,, S,, 85,3,

Let us denote the symmetry group of §, by F|. All operations that transform S,
into §; are comprised in the left coset g F:

i A e S (3-2)

This equation defines a one-to-one correspondence between SDS’s and left cosets
of F, which appear in the resolution of G into left cosets of F,:'"

G ="g,F '+ 5:F + 5 + gl {3.3)

The number of left cosets of F, in G is called the index of F, in G and is denoted
[G:F]. In our case F, = Pbcm (see Figure 1). Four left cosets of the resolution
(3.3) are given in Table II. If we choose g, = 1 (identity operation) then the first
left coset of (3.3) (and the first row of Table II) is identical with F,. Next three
rows represent three other left cosets. Symbols of corresponding SDS’s are given
at the end of each row. Operations of all four left cosets constitute the whole group
G = l4/mem.

An important remark is to be added at this point: F, is a subgroup of G only if
the translation subgroup T, of F, is also a subgroup (a superlattice) of the translation
subgroup of ;. In our particular case this condition requires

a=a,b=a,c°=c¢c=c (3.4)

where a,, a,. ¢, with |a)| = [a,|, are vectors of the conventional unit cell of the
tetragonal parent phase and a, b, ¢” are vectors of the primitive unit cell of the
orthorhombic distorted phase. This condition (Equation 3.4), called the higher
symmetry approximation’” or parent clamping approximation (PCA) of the distorted
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TABLE I1
Decomposition of (G = [Hmem into left cosets of F, = Pb.com_and of K = P2,./m.

Left cosets of F|

Left cosets of K Left cosets of K SDS’s

TI1000) + (284 + (I3 + (e Jo00) + (2,008 + (2,]H0) + (n [30)  + (m ]004] , (RERE o

TP  + (20000) + (1000) + (m 34+ (2,340) + (2,J008 + (n Joody  + (m [H0)] 32

TI(4 000y + (1Y b @B 4 G1000) + (2,008 + 2 J80) + On B0y + Oom ooy g
TIA Y+ (40000) + (3J000) + FF) 4 2 |H0) + (2,008 + on 00y + on 80y S,

(]

Symmetry operations related to a conventional coordinate svstem of [H/mem (origin at 4/m), T = n,a,
+ n.a, + n.c. where n,, n,. n, are integers and a,, a.. ¢ are elementary translations of the conventional unit
cell of IH/mem. Subscripts x.y.z denote non-zero unit components of a vector along a symmetry axis or non-
zero Miller indices of a symmetry plane in the coordinate system of /4/mcem. Each row contains symmetry
operations constituting one left coset of F, and two left cosets of K. Left coset(s) between two horizontal
lines constitute(s) one double coset.

phase. is essential in most of our considerations. Thus, e.g., the first left coset in
Table Il equals F, only if Equation (3.4) holds. Unless stated otherwise explicitely.
we shall assume that Equation (3.4) is fulfilled. We shall lift this condition only in
the last part of Part VI.

The knowledge of left cosets of F, enables one to construct all SDS’s from the
first one, §,. From Table II we see that in each left coset there always exists a
rotation around the axis parallel to z and passing through origin 0 with zero partial
translation, i.e. any SDS can be obtained from §, by certain pure rotation around
this axis. Solid squares in Figure 3 represent parts of the structure that have been
obtained in this way from the unit cell (represented by a solid square) of the SDS
S,. When operations with partial translations (3.5,0) or (5,},3)—also available in
left cosets—are applied, the solid unit cell of §, is transformed into structures
displayed in Figure 3 within dashed squares, which represent just another regions
of the same structures as these within the solid squares.

All SDS’s form a class of symmetrically equivalent objects in G. In the language
of algebra'’-'* one says that the set § = {5,.5,,5:.5,} forms an orbit of S, in G or,
shortly, G-orbit of §,. The group comprising all g&G which leave S, invariant. is
called the stabilizer (isotropy group) of §, in G and is denoted G(S,). In our
particular case, the stabilizer of §, is identical with the symmetry group of §,,
G(S;) = F,. As we shall see in Part VI, a DS with an orientation deviating from
the prominent one of §,, has the stabilizer different from the symmetry group F,
of §;. This difference is significant, since it is the stabilizer, and not the symmetry
group of an object, which determines symmetry equivalent objects in G.

3. The set § of all SDS’s can be divided into subsets (subclasses) comprising
SDS’s with the same attribute (property) X. We shall consider three particular
attributes:

(i) SDS’s with the same macroscopic properties, i.e. with the same orientation
of basic translation vectors. Since this attribute corresponds to Aizu's orientation
states'' (orientation variants in Reference 8), we shall use this name for the sub-
classes too. The stabilizer G, of an orientation state is the equitranslational sub-

L
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group of G = I4/mem with the same point group mmm as F, = Pbcm. In the
International Tables' we find G, = Ibam (D3}). Since Pbcm < [bam < [4/mcm.,
the stabilizer G, can be resolved into left cosets of F,. From Table II it follows
that

Go =5 + &8 (3.5)

There are, d, = [G,:F,] = 2SDS’s in each orientation state and the first orientation
state O}" includes §,, S,. Further, we can conclude from Table II that

G = G, + g:G,, (3.6)

i.e. there are n, = [G:G,] = 2 orientation states and the second one O, can contain
S, and/or S,.

The division of SDS’s into orientation subclasses provides a useful labelling of
SDS’s: S, = 1.5 = 1,8, = 2, 8§, ="2,, where the first number denptes the
orientation state and the subscript (translation index) specifies the SDS’s within
the orientation state'' (cf. Figure 3).

(ii) Subclass of SDS’s with the same symmetry group. If we denote by F; the
stabilizer of §; = g.5;, i = 112,3.4, then’

Fi, = 8F(8) " (3.7)

The stabilizer G(F,) of all SDS’s with the same symmetry group F,, consists of all
g€ G fulfilling the condition

By = gEagt (3.8)

Equation (3.8) identifies G(F,) with the normalizer of F,, in G, N (F,,). which
can be determined from Euclidean normalizers given in the International Tables,'
Chapter XV. In our case N;(Pbmc) = Ibam = G,. We can, therefore, use the
results obtained in the preceding part (i). Thus we find that S, and S, have the
common symmetry group

E” = F(:l = Pb.”](.‘ = F|, (3.9)
and S, and S; another common symmetry group
Fisy = F4 = g:Fi(g3) ! = Pcam = F,. (3.10)

Though the convention used in International Tables' allows in our case to distin-
guish conjugate groups F, and F,, we can attach indices specifying the orientation
of group generators in the coordinate system of the parent phase. In this explicit
notation F, = Pb.cym, and F;, = Pc.am,.

Any two SDS’s from § are related in the following way:

S; = (8iFw)Si 86, 4 = 1,234 (3.11)

This relation (where we do not sum over i) expresses the transitivity of SDS’s: for
any two SDS’s, say S; and §,, there always exists a left coset of F,; which transforms
S, into §,. The explicit form of the matrix of g, F, is given in Table 111.

(iii) Subclass of SDS’s with the same spontaneous deformation w. It turns out
that the corresponding stabilizer G, is identical with G, so that this division co-
incides with that discussed under (i) and (it) and orientation states Q,.0, are
identical with two ferroelastic domain states w,, t,.
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TABLE III
Transformation matrix of single domain states

S §) S 5 5
SJ ll [2 2[ 23
S, 1, (1]000)F, (1444 F, (4.[MHF,  (4.]000)F,
S; 1, (UHHF, (HO00)F,  (4.J000)F, (4. [HHF,
Sy 2, (4.]000)F, (4JH8HF,  (joonF,  (IPHF,
o SRR L (4.JoomF,  (1|1¥YHF, (1]000)F,

IV. DOMAIN PAIRS

I. Domain pairs (DP’s) represent an intermediate step between domain states
and domain twins. They can be introduced as subsets of order 2 of the set § of
SDS’s, {S,.5,}. iy, = 1.2,3.4. These are unordered domain pairs,”!" since. as for
any set,

5l <188y i+ (4.1)

A DP {S,,5,} can be visualized as two overlapping structures S, and S, coexisting
independently on each other. Thus, e.g., the DP {1,.1,} can be constructed by
extending the structures 1, and 1, into the whole space. A schematic picture of
this DP is presented in Figure 4a, where the squares on left and right sides display

(h,1,)

.

FIGURE 4 Domain pairs of KSCN.
(a) translational domain pair.
(h) ferroelastic domain pair.
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structures of 1, and 1,, resp., and the intermediate square, denoted {1,.1,}. rep-
resents the overlapping structures of the DP {1,,1,}. In Figure 4b, the DP {l,.2,}
is displayed in a similar manner. As seen from these Figures. a graphical repre-
sentation of a DP {S,,S,} allows one to visualize displacements experienced by ions
when S, is switched into S,. These displacements follow also from a comparison of
shifts of ions, given in Table I, for two particular SDS’s S, and §,.

2. Any DP can be transformed by an operation gEG into another DP:

g{S:.S;} = {85i.gS;t = {S«.5:}. 8EG. (4.2)
The symmetry group J, of a DP {S,.5,} consists of all operations g for which
g{S.S} = (5.5}, g€G. (4.3)

These operations can be divided into two parts:®’
(i) Operations fEG, that leave both §, and §, invariant. These operations con-
stitute a group F,,, consisting of operations common to F,, and F,:

Fuowiy = Fuy M Egy (4.4)

If S,.S, belong to different ferroelastic DS’s, the application of the parent clamping
approximation is essential since it guarantees the 3-dimensional periodicity of F .
(i1) Operations that exchange S,.S, (according to Equation (4.1) these are also
symmetry operations of {S5,.5,}). These operations form a left coset j'F|,,;, which
can be determined from the relation following from Equations (4.4) and (3.10):

:'"me = g;}Fm N g:F - (4.5)
The symmetry group J,, of the DP {S,.5,} is the union
‘;u' o F(r')(;‘l + j’Fm(;')- (4.(‘1)

Division of operations of the group J; into two parts allows a convenient treat-
ment of DP’s: One “colours™ the structure S; “black™ and the structure S, ““white™.
This colouring changes the unordered domain pair {5,.S,} into an ordered domain
pair (ODP), denoted (S,,S5;), in which one distinguishes the first (black) SDS S,
and the second (white) SDS §;. Contrary to Equation (4.1), the transposition, i.e.
a change of order (colour) of §; and S, changes the ODP (§,.5,) into another ODP
(S,asp'):

(8:,,S;) + (S;.8). i #]. (4.7)
Operations (i) can be treated as “colour-preserving” (unprimed) operations and
the group F,,,, as the symmetry group of the ODP (S,.5,). Operations (ii) are
“colour-changing™ (primed) operations which transform the ODP (§,.5)) into a
transposed ODP (§,,5;). The group J, can be treated as a black and white space
group."”

Symmetry groups J, and F;,, for KSCN, determined from Equations (4.4)-
(4.6), are given in Table IV. Groups J, allow to classify DP's:® Thus, {§,.5,} is a
translational domain pair since J,, is a space group based on a black-and-white
lattice and then j° can be chosen a pure translation. DP {S,.5,} is a ferroelastic
domain pair since F,,, and J,; belong to different crystal families, therefore. DS's
S, and S, have different spontaneous deformations.

b6
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3. Two domain pairs, for which Equation (4.2) holds, are symmetrically equiv-
alent in G. The set P of all DP’s can be divided into classes of symmetrically
equivalent DP’s (G-orbits). As proved in Reference 10 (Theorem V), there is a
one-to-one correspondence between these classes and the resolution of G into
double cosets F,gF, of F,. From Table II, where the double cosets of F, = Pbcm
can be found, it follows that there are two classes of symmetrically equivalent DP’s,
i.e. the set P splits into two G-orbits. From Theorem V it further follows that the
representative DP’s of these two classes are {§,.5,} and {§,,5:}.

Ifwe numerate the DPsof P,e.g., P = {P,,P;.P5. P Ps Pt — {1115} 125251
{1,.2,}. {1,.2,}, {1,.2,}. {1,.2,}}, we can write the relation between the DP's in the
matrix form:

By R ply = 1205 a6 (4.8)

Lo 15 given in Table V. Two diagonal blocks correspond to two classes
of symmetrically equivalent DP’s (cf. TABLE IV).

4. A generalization of a domain pair is the set of all SDS’s. The unordered set
{S5,.5-.5:.5,} is obviously invariant under GG. From the transitivity of SDS’s it follows
that the action of g€ on the ordered set (5,.5,,55,5,),

g(Sl‘SE’S."S-i) == (gS'I'gSZ‘gS.?*gSJJ = (Sk‘sf‘sm‘su)‘ (49)

results in a permutation of the set. From Equations (3.9), (3.10) we find the
stabilizer K of (S,.5,,55.5,),

K=FNF = P2,/m,. (4.10)

The matrix Q

Each left coset of the resolution
G =K +oK+ .. T 5K (4.11)

is associated with one permutation of the ordered set. The explicit form of the
resolution (4.11) can be found in Table II. The resolution (4.11) defines a hom-
omorphic mapping of G onto the group of permutations of (§,,5,,5:,5,). This
permutation representation of G is isomorphic with the representation according
to which the order parameter of the phase transition transforms.>"

TABLE V

Transformation matrix of domain pairs

(5.5 {5,.5.} {5.5.} {5:.5:} {S..5.} {$,.5:} {S..54
(8.5} {1,.1,} {2,.2; {1,2:} {1..2,} {1,:2a} fls2:4
(5,80 L. (oon (4000, 0 0 0 0
(5.5  (2,.2:} (4000, (1OO0)], 0 0 0 0
Byl (1.2 0 0 (1oomg,,  (1HH,, (4 000y, (4 |[Wh,
s {1.2) 0 0 (Y om0 @ ooy,
{'SI[-S!} “r:II 0 0 (1 “”‘)-!}l (4 |””"”1: [|]”(Hl).f|, l]““].fl,
15,5 {12} 0 0 (J000) (L EY L afsYh ooy,

P-6¢
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V. DOMAIN TWINS

[. A domain twin (DT) consists of two domains which meet along a planar
transition region called domain wall (DW). A normal n to the central plane of the
DW defines its orientation and the sidedness. The position of the central plane is
described by a vector p, defined below. Unless stated -otherwise, we shall assume
that the DW has zero thickness. A DT is defined by specifying domain states on
— and + sides of the wall normal n. The symbol of this DT is (5,/n.p/S,). where
the DS on the left (right) side corresponds to the DS adhearing to the — ( +) side
of n. From this convention follows the identity $

(S/n.p/S;) = (S,/—n.p/S;), (5.2

e., if we exchange the sides (reverse the normal n) of DW and, simultaneously,
exchange DS’s in both domains we obtain an identical DT.

2. Applying an operation g€G on a DT we get dnothar DT which is symmet-
rically equivalent in GG with the original one,

g(S;/m.p/S,) = (gS./gn.gp/gs)). {32)

All g€G that leave (S,/n p/S;) invariant constitute the symmetry group 7(S,/n.p/
S;) of DT. This group is a layer group.'” If n and p are specified in the context. or
lf they are not 'ilgmflcmt we use the symbol T, only.'Generally, group 7, consists
of two parts:*’

A (5.4)

i
where F“,,, is a group of all operations that leave §..S,,n.p invariant. This group
equals the one-sided sectional layer group'® of F, for the central plane of DW. ¢,
is an operation exchanging S, and §; (primed operatlon) and, simultaneously, trans-
forming n into —n (underlined Operdtlon) If such an operation exists, i.e., if F
< T, then the DT is called a symmetric DT. In opﬁo‘alte case, F, = T, and the
DT m denoted a non-symmetric DT. There is a close relation between the group
T, and the sectional layer group J of the DP {S,,5,}-along the central plane of the
DT.

J~F+rF+zF+cr O e (o

y i

(5.5)

where r; transforms ninto —n, S ;exchanges §; and §; and the complex R, assembles
the oper atmnq traannrmmg(Wn p/S,) into a re\ersed DT (S,/n.p/S,). If the complex
R, is not empty, i.e. if T;; < J;, we call the DT a, Fevermhle DT. In opposite case,
lhe DT is an irreversible Dl‘.

. The application of these general results on KSCN is summarized in Table VI.
Fnr a given DP {5,.S,} and the normal n, expressed by coordinates o, n..n., we
find in Table VI the prllnlll\’L basis (translations) A and B of the Lllpuuulu lattice
of the DT. The vector C expresses the minimuifi-shift (periodicity) of DW to a
new position with the same structure of the DW. Symmetries 7, and J, repeat with
the periodicity 5 C. The position p of the DW is specified hy a frdt.nun p of C.
The groups T, J,, and f,; specifying symmetry ‘properties of a DT (S,/npC/S)).
are given in the column Associated layer groups. "Two positions of the DW given
in the Table VIcorrespond to symmetrically prominent positions in which :uldilkiun;nl
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symmetry elements appear in comparison with those available in a general position.
A DT with the DW at a general position has the symmetry group T, = F,. Next
columns of the Table VI give the site: symmetries and corresponding spnntanenuq
displacements (shifts) of ions, and:for’'SCN ~ iong'also the spontaneous rotation

¢.. Data given in rows T,, and J;, concern the structure of the central plane of the
DW. whereas the data in the rnw F,, hold not only for the central plane but,

DT's with finite-thickness DW's, (119‘0 for any out-of-the-central-plane layers. For
this reason, symmetry F corresponding site symmetries and shifts are given even
if the particular ons ure missing ‘in'the central plane. We shall brietfly comment

particular cases given in the Table VI:

A. TRANSLATION DOMAIN TWINS

la) DT (1,/100;0/1,), see Figure 5, upper part.

This DT provides an example of a symmetric, irreversible DT, since F,, < T\, =
J,>. Though the structure of the centrattfayer in DT (1,/100:;0/1,) and in the reversed
DT (1,/100;0/1,) is the same (it corresponds to the structure of the parent phase:
K* ions at (003) positions and SCN ~ ions disordered) the arrangement in neigh-
bouring planes on both sides of the céntral plane is different: for the original DT
the K * ions are shifted towards the central plane and the ordered SCN ~ ions have
a head-to-head arrangement. In the reversed DT, K* ions are shifted outwords
the central plane and the SCN ~ ions have a tail-to-tail arrangement.

1b) DT (1,/100;%/1,), see Figure S, lower part.

This is a non-symmetric, reversible DT since £, = T, < 71,,. Though the central
plane does not contain any ions, this position is symmetrically prominent one since
at a general position 7, = T,, = F,,, hence the DT is non-symmetric and irre-
versible. The symmetry T, for position p = i is polar. The DW can, therefore,
carry a non-zero spontaneous polarization. ¢

Comparison of cases la) and 1b) tllustrates that the symmetry of a DT may

considerably change with changing the position of the central plane of the DW.

2a) DT (1,/010,0/1,), see Figure 6, upper part.

The central structure of this symmetric, reversible DT is formed by disordered
SCN ~ions and K" 1ons shifted alternatively in —z and + z directions. These shifts
lower the symmetry of the central layer to the monoclinic symmetry of the entire
DT.

2b) DT (1,/010;3/1,), see Figure 6, lower part.

Though the central plane does not contain any ions, this DT is symmetric and
reversible. Symmetry T, is polar. v
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1

o

- .-

(1,/100,4/1,)

FIGURE 5 Translation domain twins with antiphase boundary of (100) orientation at two symmet-
rically prominent positions.

A comparison of four DT's considered above illustrates the diversity of sym-
metries and structures of translation D'T's formed from one translational DP {1,.1,}.

B. FERROELASTIC DOMAIN TWINS

For the ferroelastic DP {I,.2,} there exist just two planes with normals [110] and
[1T0] along which ferroelastic domains can meet coherently. These planes corre-
spond to the mirror planes lost at the phase transition.” Because of the different
spontancous deformation in SDS’s 1, and 2,, the analysis has to be performed in
parent clamping approximation see Equation (3.4).
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FIGURE 6 Translation domain twins with antiphase boundary of (010) orientation at two symmet-
rically prominent positions.

From Table VI we see that all ferroelastic DT's with symmetrically prominent
positions are symmetric and reversible and possess orthorhombic polar point group
svmmetry m2m (up to the orientation), though with different layer groups 7T, and
J,,. We shall comment briefly only the central structure of the ferroelastic DW's.

Ja) DT (1,/110:0/2,), see Figure 7, upper part.

The central structure is formed by K" ions. Additional shifts from the SDS’s
positions have general directions. All these shifts are, however, correlated by the
glide planes g, and mirror planes m..
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pgxy-z-'hc }'mz
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(0, 1110,212;)

FIGURE 7 Ferroelastic domain twins with walls of (110) orientation at two symmetrically prominent
positions.

3b) DT (1,/110,;3/2,), see Figure 7, lower part.

The central structure is formed by SCN = ions. lTons which are perpendicular to
the central plane are disordered, whereas ions parallel to that plane are ordered.
Both types of SCN = ions experience additional shifts along [1T0] direction.

da) DT (1,/1710;0/2,), see Figure S, upper part.

The central structure is formed by K* ions. The additional shifts from common
positions in SDS’s 1, and 2, are performed along [110] direction. The displacements

at positions (007) and (147) are different (arrows and double arrows).
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FIGURE 8 Ferroelastic domain twins with walls of (1T0) orientation at two symmetrically prominent
positions.

4b) DT (1,/170;3/2,), see Figure 8, lower part.

The central plane is formed by SCN~ ions. Contrary to central structure in
(1,/110;5/2,), ions perpendicular to the central plane are alternatively ordered, ions
with parallel orientation are disordered. Additional shifts are confined to the mirror
planes m_ (see TABLE VI).

VI. LIFTING OF PARENT CLAMPING APPROXIMATION

Introduction of non-zero spontaneous deformations has the following consequences
for ferroelastic domain twins:

(i) Orientations of coherent stress-free DW'’s are confined. in our example, to
mirror planes lost at the phase transition.”
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FIGURE 9 Splitting of single domain states in ferroelastic twins. 1. 2 are ferroelastic single domain
states, 1, 1*, 2 , 2" are domain states in ferroelastic twins with coherent domain walls with (110)
and (1T0) orientations. Distortion connected with lifting of parent clamping approximation (sec text)
is depicted in the right-lower part of the Figure. Significant is the rotation +# which is nceded to
achieve stress-free contact of adjacent domain states.

(1) Structures S.,S; of domains adhearing to a coherent stress-free DW have
orientations different from that of corresponding SDS’s. "' This can be seen from
Figure 9, where the square ABCD represents the unit cell in parent clamping
approximation and A,B,C,D,, i = 1,2, the unit cells of SDS’s. During the defor-
mation only the diagonals AC and BD experience the same change of length,

(17 /110, 0/2))

FIGURE 10 Ferroelastic rlnm:linl twin (1{/1T0:0/2 ) with exaggerated spontancous deformation.
The symmetry of the twin is not affected by the spontancous deformation. (¢f. Figure §. upper part

and Figure 9).
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therefore, the deformed structures can meet without additional stress only along
common diagonals A,C, = A,C,or B,D, = B,D,. This needs, however, a rotation
+¢ or —¢ along the axis z (intersection of DW’s) of both SDS’s. The structures
in new positions (1, 1, 2%, 27) have a common stabilizer P2,_./m_.. Number of
orientational states is n, = [4mm:2/m]| = 4 and the total number of domain states
increases to 8.

Figure 10 illustrates that the symmetry of a DT with non-zero spontaneous
deformations is the same as that derived in the parent clamping approximation.
Since this conclusion holds for other ferroelastic DT’s as well,'” we can conclude
that all symmetries of ferroelastic DT's, which we have derived within the parent
clamping approximation, apply also to DT's with non-zero spontaneous defor-
mation.
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Space Group Coset Decompositions:
Software and Applications to Phase Transitions
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Introdnuction

In order to assist the study of strnctural phase transitions in erystala, the need arose for a
computer program Lo run on IBM compatible PCs to compute left. coset. and double coset
decompositions of a space group Gq of the high symmelry phase with respect to the snb-
space group € of the low symmetry phase. The homogeneouns high symmetry phase splits
al a phase transition into a heterogencons aggregate consisting of homogeneouns regions of
lower symmetry called domains. Crystallographic relations between domains and domain
pairs are dednced form these left coset and double coset decompositions respectively.

Coset Decomposilions of Space Groups

Lel Go be a super-space and G a sub space group of finite index. Fvery set G + {g) + G
defines a double coset of Gg with respect. to G. The task consists ol computing minimal
stibsels of lefl. cosel, representatives (LO'Rs) of Go with respect to € such thal for every pair
0, 02 € DCH(G) their intersections G+ {1} G NG + {g,} + G = B are mutually disjoint. and
that their total union presents Go. The double cosets are cither sell-inverse (ambivalent) or
non-self inverse (complementary) aceording to:

Ambivalent Double Cosets: G+ {g)+C =C+{q7'}) +C (1)
Complementary Nonhle Closels: CGrla)+OGNC+{g'}+C—0 (2)

The first. approach is to apply the Frobenins Theorem (1], [2) which has heen implemented in
the software package or to tailor an alternative approach which exploits the specifie strueture
of space groups [3]. Frohenius Theorem reads:

GrlnlzGi= Zq' (ra) + G
G = ). la}»Glg) (3)
Gla) = GN{g)+ G+ {a")

Space Gronp Cosels Program: PCDC.PAS

A Pascal program for TBM compatible PCs has heen developed to compite coset decompo-
sitions of space gronps. The input and autpit are summarized here. ‘The program is nsed
helow i an actnal application to stractural phase transitions. The notation and conventions
adopted are given in [1].
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Input: (1) Space group Go, (2) Setting data (new origin/ie orientation), (3) Matri:
M(Z) which maps the lattice T (Go) of Gy outo the sublattice T(G) of g, (1) lsogonal poin
group P(G) of G, (5) Non primitive translations assigued to all eletuents of P(Y).

Output: (1) Specification of elements of Gy and G, (2) Left cosets of ‘T (Gy) with respec
to T(G), (3) Left cosets of P(Gy) with respect to P(G), (1) Double cosets of P(Gy) wit!
respect to P(G), (5) Double cosets of Gy with respect to G, (6) Self inverse and non-sell
inverse classification of double cosets in (5H).

Applications to Structural I’hase Transitions

i stouctural phase transition accompauied by a symmetry reduction the space group G «
the ordered (distorted) phase is a proper subgronp of the space group Gg of the disordere
(parent) phase. Due to this symumetiy reduction the ordered phase is degenerate: it ca
appear in several crystallographically equivaleut (with respect to Gy) homogencous ordere
stinctures that differ only in orientation and/or position (with respect to the coordinat
system of the disordered phase). These crystallographically cquivalent ordered stractare
are called single domatn states (SDSs) and will be denoted S§4,S,, ... S, For any two SDE

S.,S, there exists an operation g € Gy, such that
S;‘ —=yo S, (

T'he set of all SDSs forms a Gp-orbit. The stabilizer of S; in G is the maximal subgrot
of Gy that leaves S; invariant. [t equals the space group G, of the ordered phase in the SU
S.. There is a one-to-one correspondence between the SDSs of the orbit of Sy and the le
coscls of Gy with respect to G,. Consequently the number of SDSs equals the index of ¢
in Gy respectively.

Structures of SDSs can co-exist in a domain structure that consists of domains (connect
regions with homogeneous structures of SDSs) and domain walls (boundaries between neig
bouring domains). To study possible relations between structures of two domains the conce
of a domain pair has been introduced [5]. An ordered domain pair (ODP) consists of t
first SDS S, and a second SDS S; both from the same orbit; such an ODP will be denot
(S.,S,). An ODP with reversed order of SDSs is called a transposed ODP. An ODP (S;, €
is nol equal to the transposed ODP (S;,S;) unless i = j (Lrivial ODP). The stabilizer G
of an ODP (S;,S;) is equal Lo the intersection of the stabilizers of S; and S;. Two OD
(S:,S,) and (S, S;) are crystallographically equivalent with respect to Gy if an operati

9 = Qg exists such that

(SL-,S;) = (yosugosj)
Gy = 9+Gunry"

ODPs can be classified in the following manner. An ODP (S;,S;) is ambivalent if it is .
Gy with the transposed ODP (S;,S;). If this condition cannot be fullilled then the O
is polar, in which case the ODP and the transposed ODP are called complementary pe
ODPs. The crystallographical equivalence defined by (6) divides the set of all couceive
ODEs that can be formed from GgoSy into orbits (classes of symmetrically equivalent QD
Gy 0 (S,,S;). From (1) it follows that a representative ODP of Gy o (S;,S;) can always
chusen in such a way that its first SDS is Sy, i.e. the representative has the focm (S, !
T'he attributes "ambivalent” and "complementary polar” are class propertics, i.e. Ol
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in an orbit are either all ambivalent or all polar and all transposed ODIP’s of a polar orbit
constitute another disjoint polar orbit, a complementary polar orbit.

The relation between donble cosets Gy + {g;} + Gy and all possible orbits of ODPs formed
from the orhit Gy 0 Sy is expressed by the following theorem: There is a one-to-one corre-
spondence between ambivalent and complementary polar double cosets of Gy with respect
to G, and ambivalent and complementary polar orbits of ODPs. The representative ODPs
of these orbits can be found in the form (84, g; © S1), where g; € G, are properly chosen
double cosel represenfatives of Gy with respect to Gy.

ODPs from different. orhits differ in at least some inherent propertics, whercas ODPs
from the same orbit have "essentially equal” properties. The double coset decomposition
thus reduces the task of examining n(n — 1) ODPs to a considerably lower (especially for
large n) number g of donble coset representatives. Properties significant for the whole orbit
of ODPs can be found by examining the representative ODPs of the orbits. The main
advantage of the coset analysis described above is that the only input data are jnst Lwo
space gronps Co and G,. No further information, e.g. crystal structures of both phases, is

needed.

Example

To illustrate the importance of coset decompositions in the symmetry analysis of domain
structures, lel us consider the triply commensurate charge-density-wave domain states in
211 polylype 1aSe;. The disordered phase has Go = P63/mme (#194) symmetry and the
ordered commensurate phase exhibits G; = Cincm (#63) symmetry with tripled periodicity
along two hexagonal primitive lattice vectors. There are d = |6/mmm : mmm| =24:8 =13
orientational SDSs and within each of them d = 9 SDSs related by lost translations may
exist. Thus, in all, there are n =3 x 9 = 27 SDSs.

The output from the program PCDC provides the lelt coset and donble coset decom-
positions of 6/mmm with respect to mmm which are omitled owing to lack of space. The
left coset representatives of the translation group 7(Gg) with respect to the translation
subgroup T(G,) (coordinates relative to the primitive lattice vectors of G,) and the double
coset representatives Go with respect to Gy (including left coset partition) are:

S e Table I1: AT

NUNMBER — LCR [ NUMBER DCR LCRs

o RS0y SR TR e
2 (0,1,0) 2 (1L2) (1,2)(1.3)
3 (0.2,0) 3 (L) (L) (1.5) (1,7) (1,9)
1 (1,0.0) A (1,6) (1,6) (1.8)
5 (1,1,0) 5 (2 (3.1 31
f (1.2,0) 6 (2.2) (22)(2.3) (3.2) (2.3)
7 (2,0.0) 7 (24)  (24) (2,7) (3,5) (3.9)
] (2.1.0) ] (2,5) (2,5) (2,9) (3,1) (3,7)
sl i oG8 A0 Gl () ()

NI The DOR and LOR symbaols in the second table are to he interpreted as in this
example: (7.1 means the praduet of the Seitz space group symbhaols (2]v(?2)) + (E]1), where
v(?2) denotes the non priambice translation associaled with the rotation 2. and | denotes

1A




the translation LCR number 1 [= (0,0,0)] in Table | above. The point group symmetry
operations are labelled numerically in the notation of Rel 1]

The last table outputted by the program gives the types of double cosets. ‘This table
shows that all the double cosets are sell- inverse except for those mumbered 6 and 8 in Table
H which form a pair of non-self-inverse double cosets. Thas all double coscts except two are
ambivalent; double cosets 6 and 8 are complementary pola double cosets. Thus the set of
27 x 26 = 702 non trivial ODPs is partitioned into 8 orbits and the representatives of these
orbits are samples of all significantly different relations between two SDSs. The value of the
I'C' software is ohvious !

Complementary double cosets are worthy of further attention since they indicate the
possible appearance of incommensurate phases in between parent and orderced phases. More
detailed analysis has shown that one ol these polar double cosets can generate 54 symmetry
equivalent coherent domain walls with negative formation encrgy; from these 9 different
symmeltry equivalent inconunensurate stripe phases can be formed. These stripe phases have
cqual encrgy and can, therefore, co exist like domains, Rather complicated inconnmensurate
strucbures consisting of such stripe phases were really obscerved by electron microscopy [6].
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MICROSCOPIC STRUCTURE
OF DOMAIN WALLS

AND ANTIPHASE BOUNDARIES
IN CALOMEL CRYSTALS

V. JANOVEC and Z. ZIKMUND

Institute of Physics, Czechoslovak Academy of Sciences,
Na Slovance 2, 180 40O Prague 8, Czechoslovakia

We present examples of microscopic structures of finite thickness ferroelastic domain
walls and antiphase boundaries in H g,C; crystals obtained by symmetry analysis. They
illustrate positional dependencies of the structure of domain walls, topologically different
structures of antiphase boundaries and the role of gradient effects.

INTRODUCTION

Crystals of calomel Hg,Cl, have attracted attention not only for exceptionally
high optical and elastic anisotropy with practical implications but also for a struc-
tural phase transition from a tetragonal to an orthorhombic phase. Its very simple
molecular structure makes calomel an appealing model material for investigating
the microscopic mechanism of the transition and the microscopic structures of do-
main walls and antiphase boundaries.

A ferroelastic domain structure has been observed optically in the orthorhombic
phase.! Basic symmetry properties of this domain structure have been determined
in Ref. 2 and the first results concerning the structure of domain walls have been
reported in Ref. 3. Here we present examples of microscopic structures of domain
walls and antiphase boundaries deduced from symmetry analysis.*~®

SINGLE DOMAIN STATES

Calomel crystals are built up of linear molecules Cl — Hg — Hg — 'l that form at
room temperature a body-centered tetragonal lattice with space group symmetry
I14/mmm — D}] and molecules aligned parallel to the ¢ axis. At 185K calomel
undergoes an improper ferroelastic phase transition to an orthorhombic phase with
the space group symmetry Bbmm(Cmem)— D)} and doubling of the primitive unit
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cell volume.” A direct consequence of this symmetry reduction is a degeneracy of
the orthorhombic phase which can be formed in four single domain states. These
are the same orthorhombic structures that differ only in orientation and/or posi-
tion and are related by symmetry operations lost at the transition. We label these
single domain states 1, 15, 2;, 2,. The first number in the symbol signifies one
of two possible orientations corresponding to two ferroelastic single domain states
with spontaneous deformation +e,, and —e,,, resp., whereas the lower index
distinguishes two single domain states that have the same orientation but different
location.

The structure of Hg,C'l, projected onto the z = 0 plane is depicted in Figure 1.
The full and open circles correspond to the centres of gravity of Hg,C'l; molecules
at levels z = 0, jc, resp. The conventional unit cell of the tetragonal phase (ba-
sic vectors a, b, c) is represented by a solid square in the centre of the Figure.
Unit cells of the orthorhombic phase (basic vectors a — b,a + b, c, see upper left
corner of the Fig. 1) are depicted as dotted squares (spontaneous deformation is
neglected). The arrows represent spontaneous shifts of the centres of gravity of
the molecules. These shifts are frozen-in displacements of a transverse acoustic
soft mode with the k vector at the X point of the Brillouin zone boundary.? In
the domain state 1, all molecules in the (110) plane passing through the origin O

FIGURE 1  Parent tetragonal phase and single domain states 1,, 1,, 2y, 2, of the
orthorhombic improper ferroelastic phase.
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are shifted along the [110] direction and in the neighbouring parallel planes along
antiparallel direction [110] (indices specifying the orientation of planes and direc-
tions are related to the tetragonal coordinate system). The shifts in the domain
state 2, can be obtained by applying on 1, the mirror plane (010) passing through
the origin O or performing the rotation 4, about c. The structure of 1; (or 2;) is
identical with that of 1; (or 2,) shifted by the lost translation a or b.

Within Landau theory the phase transition can be described by an order pa-
rameter (OP) with two components p and ¢.7 The domain states are represented
in the OP space by points 1y(a,,a,), 12(~a,,—a,), 21(—a,,a.), 22(a,, —a,).

FERROELASTIC DOMAIN WALLS

A ferrelastic domain wall joining domain states 1, and 2, is coherent only for
orientations (100) and (010). This wall is represented in the order parameter space
by an oriented path connecting the point 1, with the point 2;.

FIGURE 2 Microscopic structure of a coherent ferroelastic domain wall in two sym-
metrically prominent positions.
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The microscopic structure of a coherent fétroelastic domain wall in two sym-
metrically prominent positions is depicted inFig. 2. The shifts of the molecules
inside the wall have been deduced from the site symmetries of diperiodic layer
groups describing the symmetry of the the wall.*=® The diagrams of these layer
groups, determined in Ref. 2, are given on the left and right sides of the Figure
(the letter p signifies a two-dimensional net with basic vectors 2b, c).

It follows from the Figure that when one passes through the wall in the (110]
direction the molecular shifts are experiencing rotations through % about the ¢
direction in opposite senses for "black” and "white” molecules. The molecules in
the central layer of the wall on Fig. 2(a) exhibit nearly antiparallel displacements
perpendicular to the wall. Strictly perpendicular shifts would represent "averaged”
displacements of domain states 1; and 2; and would correspond to the central point
(0,a) on the wall path which has the symmetry (isotropy group) P4,/mnm. The
deviations (tilts) from this structure exemplify an additional degree of freedom al-
lowed by the wall symmetry and represent gradient effects in the wall.

A wall with a central plane shifted in the [100] direction about Ja is depicted
in Fig. 2(b). In this wall the molecules at the central plane shift alternatively in
[010] and [010] directions. The symmetry (mirror plane m) keeps displacements in

-

FIGURE 3 Microscopic structure of a linear antiphase boundary in two symmetrically
prominent positions.
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the central plane strictly antiparallel. In an "averaged” central structure have these
displacements equal lenght. The gradient effects manifest themselves as shifts of
unequal length in neighbouring molecules.

In both positions the wall symmetries are polar and allow the appearance of
a non-zero spontaneous polarization parallel or antiparallel to b. Structures (a)
and (b) have extreme energy but symmetry considerations cannot decide which of
them has minimum energy.

ANTIPHASE BOUNDARIES

The transition region between domain states 1; and 1; (or between 2, and 2;) is
called an antiphase boundary (APB) or a translational domain wall. The parallel
shifts in the (110) planes have to change sign’when passing through the APB (see
Fig. 3 and 4). This can be accomplished in two topologically different ways:

(1) In a linear APB the molecular shifts diminish to zero at the central plane
without essentially changing directions (Fig. 3). The corresponding path in the

R

FIGURE 4 Microscopic structure of a rotational antiphase bonundary with no symmet-
rically prominent position.
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OP space is a line p(z) = q(z) (where z is the distance from the central plane)
passing through the origin p(z = 0) = ¢(z = 0) = 0 with tetragonal symmetry
of the parent phase. The structure of the central layer in Fig. 3(a) and a double
layer in Fig. 3(b) is identical with that of a tetragonal parent phase (up to small
additional tilts in the latter case connected with gradient effects).

(ii) In a rotational APB the direction of shifts rotates through = about the c di-
rection (Fig. 4). The AP B path in the OP space is an arc with a centre at the point
(—a,a) or (a,—a). Molecules at the central layer are displaced alternatively along
the [110] and [110] directions and the structure of the central layer corresponds to
that of the domain state 2, or 2;, resp. These two topologically distinct variants
of an APB differ in the sense of rotation of both black and white molecules. The
APB in Fig. 4 has the central structure corresponding to the domain state 2, (cf.,
Fig. 2 and Fig. 4).

The symmetry of the rotational APB does not change with its position con-
trary to that of the linear AP B which is positionally dependent.

We notice that the rotational APB structure in Fig. 4 has lower symmetry
than that of the linear AP B structure in Fig. 3. The change from the linear to the
rotational structure is accomplished by the appearance and growth of a plate-like
nucleus of domain 2, in the center of the APB. This change can be performed as
a Landau type of a phase transition in the AP B.19-12
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We show that within continuum description there exist 48 possible relations (twin
laws) between structures of two non-ferroelastic domains. All these twin laws can be
expressed by dichromatic point gronps. For each twin law we give the number of compo-
nents of important material property tensors that have opposite sign in the two domains
under consideration.

INTRODUCTION

Domains in non-ferroelastic phases cannot be simply observed in a polarizing micro-
scope. There exist, however, other properties (expressible by appropriate material
property tensors) that allow to distinguish such domains. Distinction of ferroelec-
tric non-ferroelastic domains has been discussed recently in Ref. 1. Here we shall
present an extension of this work to all non-ferroelastic domain structures that can
appear in non-ferroelastic phases. Since we shall be interested in tensor distinction
of domains we shall use continuum description and point groups only.

DOMAIN STATES IN NON-FERROELASTIC PHASES

We consider a ferroic transition from a prototype (parent) phase with symmetry
to a ferroic (distorted) phase with symmetry I') where I < (. The [erroic phase
is degenerate: it can appear in n, homogeneous single domain orientational states
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Sy, S, ..., Sn which have the same structure and differ only in spatial orientation.?
We call these states single domain states (SDS’s). The number n, of SDS’s equals

n.= |Gl | B, (1)

where | G| and | F | denotes the number of symmetry operations in G and
I’, resp. Symmetry groups of SDS’s Sy, S, ..., S, are Fy, I, ..., F,, resp. Further,
we introduce a more general concept of domain states (DS’s) which denote bulk
strictures (or their orientations) of domains in polydomain samples. Several dis-
connected domains can possess the same DS. DS’s of a polydomain sample thus
represent structures that appear in the sample, irrespectively in which domain.

According to Aizu? a ferroic phase is non-ferroelastic if all of the SDS’s have
the same (zero) spontaneous deformation. A simple criterion can be formulated in
terms of crystal families’ : A ferroic phase is non-ferroelastic if and only if

F < G, Fam(F) = Fam(G); (2)

if Fam(F') < Fam(() the ferroic phase is full or partial ferroelastic one.?

Domain states of non-ferroelastic phases have the following specific properties:

(1) DS’s have a common lattice and their orientation is not affected by the coex-
istence, number and shape of domains in a domain structure. (DS’s in ferroelastic
phases depend on these factors). DS’s coincide with SDS’s (in contrast to polydo-
main ferroelastic phases where SD’s differ from SDS’s due to disorientations®) and
the number of possible DS’s equals the number of SDS’s n, given by Eq. (1).

(i) All DS’s have the same symmetry group, F} = F, = ... = F,, = F . (This
groups may be different for ferroelastic SDS’s and DS’s.)

NON-FERROELASTIC DOMAIN PAIRS AND THEIR TWIN LAWS

Macroscopic properties that are different in two chosen domains are determined by
the relation between their DS’s. Two DS’s S; and Sy form a domain pair (DP)?
{Si, Sk} = {Sk,Si}. An DP {S;, Sk} is ambivalent if there exists ¢/, € G such that

g:xSi = Sk and gl Sk = S;. (3)
Symmetry group Jix of an ambivalent DP {S;, S¢} can be expressed as®
Jik = Fiiry + 95 Flixy (4)

where Fix = FiN Fi and gy fulfils (3). Group Jix has the structure of a dichromatic
group in which unprimed operations F{;) represent trivial symmetry operations and
primed operations g;; F(ix) non-trivial operations of the DP {S;, S;}. The group Jix
specifies in a convenient way the relation hetween Si and Sx. We shall call it the
twin law of the ambivalent domain pair {S;, Si}.

§ Crystal family of a point group P = crystal system of P, with exception of trigonal groups
which belong to the hexagonal family.? We shall represent crystal family of P by the holohedra
point group of P, Fam(P) = holohedral group of P, where we put Fam(trigonal group) = 6/mmm
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A domain pair {S;, Sk} is non-ferroelastic if S; and Sk possess the same (zero)
spontaneous deformation. A necessary and sufficient condition for an ambivalent
DP to be non-ferroelastic is

Fam( Fiixy) = Fam(Jix). (5)
[t can be shown that all %no(no — 1) DP’s that can be formed from n, DS’s of a

non-fervoelastic phase are ambivalent, non-ferroelastic and their twin law has the
form

Jip = F + g0 (6)

where [ is the common symmetry group of the DS’s S; and Sk.

TABLE I Symmetry reductions G — I generating twin law Jix

G r J;

1, 2/m (mmm, 4/m, 4/mmm, 3, 31m, 3ml 1 %

6/m, 6/mmm, m3, m3m)
2/m (mmm, 4/m, 4/mmm, 31m, Iml, 2 2/m’

6/m, 6/mmm, m3, m3m)
2/m (mmm, 4/m, 4/mmm, 3lm, Iml, m 2’ /m

6/m, 6/mmm, m3, m3m)
mmm (4/mmm, 6/mmm, m3, m3m) 222 m'm'm’
mmm (4/mmm, 6/mmm, m3, m3m) mm?2 mmm'’
4/m, 4/mmm (m3m) 4 4/m’
4/m, 4/mmm (m3m) 4 4" /m'
422 4/mmm, 432 (m3m) 4 42'2
Amm 4/mmm  (m3m) 4 am'm’
A2m, 4/mmm, 43m (m3m) 4 42'm’
Am2, 4/mmm, 43m (m3m) 4 Am'2'
A/mmm (m3m) 4/m || 4/mm'm’
4/mmm (m3m) 422 || 4/m'm'm'
4/mmm (m3m) 4dmm || 4/m'mm
4/mmm (m3m) 42m l 4 /m'm'm
3, 3ml, 31m, 6/m, 6/mmm (m3, m3m) 3 3¢
321, 3ml, 622, 62m, 6/mmm (432, m3m) 3 32’1
312, 31m, 622, 6m2, 6/mmm (432, m3m) 3 312
3ml, 3ml, 6mm, 6m2, 6/mmm (43m m3m) 3 3m'l
31m, 3lm, 6mm, 62m, 6/mmm (43m m3m) 3 31m’
3ml, 6/mmm (m3m) 3 3m’1
3tm, 6/mmm (m3m) 3 31m’
3m, 6/mmm (m3m) 32 3m'
3m, 6/mmm (m3m) Im Im
6, 6/m, 622 6mm, 6/mmm 3 6’
6, 6/m 62m 6m2, 6/mmm 3 6’
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TABLE I, cont. There are 48 crystallographically
different dichromatic point groups
G F J; that fulfil conditi(;;l (."))._Ijl T:w.se
7 n groups represent all possible twin
g/m, ?/mmm g 6"/m’ laws of non-ferroelastic DP’s and
B/m, {;/?nmm l."; g,/m are displayed in the third col-
fé;n,ﬁ g 19 ,{2;? umn of Table I, together with
()22' ﬁ/mmm .6 62,2, symmetry groups F' (second col-
6) p I n ? 2 umn). This list is identical with 48
Gm.m, Sianimgn i i’ ”tm, dichromatic point groups used by
_gtm, o 69 Sf; - Curien and Le Corre to designate
g;n, § p I (—i ,m, twins by merohedry and reticular
6 n.;’ gjmmm .]6 g? ?;, merohedry (except cubic reticular
m2, 6/mmm | 3m m =
& = e merohedry).
272’ Vi ;;6 6,/671? g . Groups G that fulfil for given F
mmm 3m m'mm g
E i 6l | 6/mmim! and J;x the relation
6/mmm 622 || 6/m'm'm’ F<hi <G (7)
6/mmm 6mm || 6/m'mm : :
6/mmm 62m || 6//mm'm represent symmetries of possible
m3. m3m 23 m’3 prototype phases for which the
4‘;2‘ 3y 23 439 phase transition G — F leads to
‘-113? : m?'fitz 23 3m’ the appearance of the twin law Jix
?-311, L .r—; :,—im, in the non-ferroelastic phase (for
ngm :;2 ::,32, (’s in the first column without
m‘jz i3m s brackets) or in the partial ferroe-

lastic phase (G’s within the brack-
ets).

TENSOR DISTINCTION OF NON-FERROELASTIC DOMAINS

Let us consider a material property tensor T and a specific twin law (6) of a DP
{Si,Sk}. 1f mT denotes the number of components of T in Ji and mp that in

F then the difference mT = mT — mT gives the number of components that are

different in DS’s S; and Sx. Numbers mF and mT can be found e.g. in Ref. 8.
Numbers mT for all non-ferroelastic twin laws Jix and important material property
tensors T are given in Table II.

There is an alternative and more elegant method for determining mT : Distinct
components of T transform as basis functions of an alternating representation DT
of Jiy which subduces the identity representation in [ (the representation D,T 1s
given in the fourth column of Table II). The components of the tensor T transform
as a set of basis functions of a representation DT . The number mT equals the
multiplicity of DT in DT .

The results can be applied also to twins by merohedry” (twin-lattice symmetry?).
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TABLE IT Non-ferroelastic twin laws and numbers of distinct tensor components.
F..symmetry of both domain (twin) components S; and Sy, Jix...dichromatic point
group expressing the twin law, fe: n = non-ferroelectric domain pair, e = ferro-
electric domain pair (see Ref. 1), DT ... alternating irreducible representation of
Jix that subduces the identity representation in F, e...enantiomorphism, V...spon-
taneous polarization, e[V?]...optical activity, V[V?]...piezoelectricity, electrooptics,
eV[V?].. electrogyration, [[V?]?]..linear elasticity, [V?]?...piezooptics, electrostric-

tion.
E . | DT [e V. V2] VIVY eVIVY (VIR VPR
1 1 U 0 S | 6 18 0 0 0
2 2/m’ oo v o B 4 8 0 0 0
m 2' fm e 8, 18 2 2 10 0 0 0
222 m'm'm/’ 7 o W PO 0 R 0 3 3 0 0 0
mm2 mmm’ N G SO L | 1 5 0 0 0
4 4/m' ol [P A s ] 2 4 0 0 0
4 4'/m’ n B, ¢ 0 2 4 0 0 0
4 12'2' (o 0 oS R | 0 3 3 1 3
4 am'm’ ffedoc - B . It 3 1 3
1 12'm’ nlAd: |0 O 1 2 3 1 3
1 Am' n|A |0 O | 2 3 1 3
4/m A/mm'm’ [n [ Ay |0 O 0 0 3 I 3
422 4/m'm'm' |n | A |1l O 2 1 0 0 0
dmm 4/m'mm e | A, [0 1 0 3 0 0 0
2m 4A'/mm'm|n|B.,|0 0 1 2 0 0 0
3 3 foie] £ ) 2 IS 2 6 0 0 0
3 321 e | Az 0.1 0 4 4 1 4
3 312’ R ) 0 4 4 1 4
3 Im’l m Lds kil 8 3 2 4 1 4
3 31m’ 1 (e T | (R 2 2 4 1 4
3 3m'l 4 Ass | 0000 0 0 4 1 4
3 31m’ n| A 10 20 0 0 4 1 4
32 3Im’ 1] Al boalis 2 2 0 0 0
Im Ym & s 8l 0 4 0 0 0
3 6’ n |B [JRes() 0 A 2 2 4
3 i el hans £2 4 2 2 4
3 6'/m’ 7 2 ) B | 0 0 2 2 4
6 6/m’ A I T 1) S 2 4 0 0 0
6 6'/m o B [ - B B Sl 0 2 0 0 0
32 6'22’ o 12 T o 0 1 1 1 2
6 62’2 " S e L ) 0 3 3 0 9
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TABLE II, cont.

F Jix fe| DY | e V V) V[V v[VY [V
3Im 6'mm’ n B re B 0 | | I 2
6 6m'm’ naleds Tlelis D 2 1 3 0 2
L‘ 32 6'2m’ WA BB AT 1 1 1 2
i 6 62'm’ R M S ) e 1 3 0 2
." Im 6'm?2’ & oA 0 3 | | 2
6 6’2’ o S N R S| 1 3 0 2
3Im 6'/m'mm’ | n | By, |0 0 0 0 1 ! 2
6/m 6/mm'm' ([n Ay |0 0 0 0 3 0 2
622 6/m'm'm/ in [ Aru | 120 2 I 0 0 0
6mm 6/m'mm (e | A, |0 1 0 3 0 0 0
62m 6/mmm ||n| By |0 O 0 1 0 0 0
23 m'3 o O I B | 1 0 0 0
23 4'32' m A 05D 0 1 1 0 1
23 A'3m’ o 7 T = W 0 1 0 1
m3 m3m’ Ay |00 0 0 1 0 1
432  m'3m’ w A tl 0 | 0 0 0 0
A3m w3 Wi (D 0 I 0 0 0
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We present tensor distinction of ferroelastic domains for a large class of ferroelastic domain
states that form so called completely transposable domain pairs. We give the 15 possible
relations (twin laws) between these ferroelastic domain states. For each twin law we list
the numbers of components of important material property tensors that are different and
that are equal in the two single domain states of the domain pair. We demonstrate how
these twin laws and tensor distinction can be influenced by disorientations, i.e. rotations
of single domain states needed to achieve coherent junction of two ferroelastic domain
states along a planar domain wall.

1. INTRODUCTION

Domain structures consist of domains. Bulk structures S;, Sg,... of domains, called
domain states, have the same low symmetry structure and in the continuum de-
scription differ only in spatial orientation. When observed from one laboratory
coordinate system they may exhibit different tensor properties. This tensor distinc-
tion is important, e.g., for finding and applying appropriate methods for observing
domains, for determining average tensor properties of polydomain samples and for
discussing the behavior of domain structures in external fields.

Recently, we have examined tensor distinction in non-ferroelastic phases.! In this
contribution we demonstrate specific features of relations between bulk structures of
ferroelastic domains and present tensor distinction for a class of ferroelastic domain

states that form so called completely transposable pairs.
|
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2. FERROELASTIC DOMAIN PAIRS AND DISORENTATIONS

When examining tensor distinction of two domains D; and Dy we are comparing tensor
properties of their domain states S; and Sk. Instead of describing §; and Sg by their ori-
entations we shall characterize the relation between §; and Si by a suitable point group
which will allow us to determine tensor distinction by group-theoretical procedures.

Two domain states §;, Sx considered irrespectively of their coexistence form a domain
pair {S;, Sk}. Domain pair can be treated algebraically as an unordered set {S:, 5} =
{Sk, Si} or, geometrically, as a superposition of domain states S; and Si. Symmetrically,
the domain pair is specified by the symmetry gronp F; of S; which consists of the opera-
tions of the symmetry group G of the high-symmetry (parent) phase that leave S; invariant,

Fi={g€GlgSi =5}, (1)

and by an operation j!, € G that transforms S; into Sk, 7/, 5i = Sk. If, further, ji, trans-
forms also Sk into S; , i.e. if j!,Si = Sk, and j!, Sk = S, then the domain pair is referred
to as a transposable (ambivalent') domain pair. The operation j!, exchanging the domain
states can be considered a symmetry operation of {S;, Sx}. If, moreover, the domain states
S; and Sk have the same symmetry group, F; = Fj, then the pair is called a completely
transposable domain pair. The symmetry group of such a pair can be expressed in the
form of a dichromatic group

Jix = F. 4+ jL F; (2)

where the unprimed operations of F; leave invariant both S; and Sx whereas primed
operations of the left coset j!, F; exchange S; and Sx. The group Jix fully specifies the
domain pair {S;, Sk} and we say that Jix in Eq. (3) expresses the twin law of a completely
transposable domain pair {S;, Sx}.

Depending on the spontaneous deformations e(*) and e*¥) of S; and S, resp., we can
distinguish between non-ferroelastic domain pairs for which e() = e(¥) and ferroelastic
domain pairs for which e() # e(*). For completely transposable domain pairs a simple
criterion holds: {S;, Sk} is ferroelastic if and only if FamF; C FamJ;, where the symbol
Fam denotes the crystal family of a group.!

There are 15 dichromatic groups of the form (2) that satisfy conditions FamF; C
FamJ;x and F; = Fi. These twin laws are listed in the first three columns of Table
[. Before discussing the tensor distinction in these domain pairs we recall some specific
features of ferroelastic domain structures.

In non-ferroelastic phases the number and orientations of possible domain states are
not influenced by coexistence of domain states and do not depend on the form of the
domain structure. Domain states in the polydomain sample are identical with single
domain states, i.e. with bulk structures of single domains. All possible domain pairs in
non-ferroelastic phases are completely transposable.!

The basic difference, and the main source of complications for ferroelastic phases lies
in the fact that the number and orientation of ferroelastic domain states in polydomain
samples differ from that of single domain states and depend on the specific form of the
domain structure. In each case, however, domain states can be related in a unique way to
single domain states which thus form a reliable reference system of domain states.

To illustrate this let us consider possible coexistence of two ferroelastic domain states
that appear in the ferroelastic phase of the phase transition with ¢ = 4/mmm and
F = m.m,m,. In Figure 1 the tetragonal parent phase is represented by dotted square P
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and the two orthorhombic single domain states S; = [ and Sx = 2 by dashed rectangles
1 and 2 with symmetry Fy = F; = m,m,m,. A geometrical representation of the single

domain pair {1,2} is given on the left side of Figure 2. An operation j{, = mj, exchanges
I and 2, hence the domain pair {1,2} is completely transposable. The symmetry group of
this pair is Jy2 = m.mym, + my {m.m,m.} = 4'/m.m,m’ .

It has been shown?3* that for a ferroelastic domain pair there exist two mutually
perpendicular planes, called permissible walls, along which two domain states can meet in
a compatible way, i.e. without dislocations or other singular defects. To achieve such a
connection the single domain states must be rotated by a disorientation angle ¢ and —¢
about the intersecton of permissible domain walls called an azris of the domain pair. The
rotated structures will be called disoriented domain states and domain pairs in which two
disoriented domain states have a common plane (permissible wall) will be called compati-
ble domain pairs.

In our example permissible domain walls are denoted W/ and W' and the axes of
the domain pair passes through the origin O. From Figures 1 and 2 it follows that disori-
ented domain states 1* and 2~ form a compatible domain pair {1*,27} with a common
plane W!I whereas 1~ and 2% in the compatible pair {17,2*} share the plane W'. Do-
main states in both compatible domain pairs have a common symmetry group in G which
is, according to Eq. (1), Fi- = Fy4+ = F,- = Fy3+ = 2,/m,. Domain states in both
compatible domain pairs are exchanged by the operation j{mﬁ = m},, both compatible
domain pairs are, therefore, completely transposable and have the same symmetry group
Jirg- = Ji-g+ = {2:/m.} + m; {2./m.} = m mi m.. Thus disorientation reduces
symmetry of domain states and of domain pairs as well.

In Table I we list for each of the 15 twin laws the orientation of the axis of the domain
pair and of two perpendicular permissible walls. It can be easily shown that for the first
7 twin laws (given in the upper box) neither the symmetry of the domain states nor that
of domain pairs are influenced by disorientations. For the remaining 8 twin laws the sym-
metry (twin law) Jix of the compatible domain pairs is lower than the symmetry (twin
law) Jix of the corresponding single domain pair (see Table II). In the first three cases
of Table II (middle box of Table I) the symmetry of domain states is not influenced by
disorientations, therefore Jix = F: and the compatible pairs are no more transposable. In
remaining five cases of Table II (lower box of Table I) not only J;x but also the symmetry
of domain states F; = F} is lowered by disorientations and the compatible domain pairs
with reduced symmetry J;;x remain completely transposable (see our example).

TABLE II Symmetry reduction of tetragonal twin laws by disorientation

Jdio || 4, 4. 4./ mg | 4.2:2), 4, mym,

Iy

) 1 ol ! ' _ 9l ol ’ roe ’ ]
e 1 2: 2: 2./m.|2,,25,2. m,mz2, " 2.,252, m; mp2, mimim,

A4’ ot ! ! L !
t,mg2;,  432,m7, 4 /m.m.m,

3. TENSOR DISTINCTION OF FERROELASTIC DOMAIN STATES

Discussion of tensor distinction in completely transposable ferroelastic domain pairs is
similar to that in non-ferroelastic domain pairs." Let us consider a material property
tensor T and a specific twin law J;x. Components of T transform as a set of basis functins
of a (generally reducible) representation DT of Jix. Distinct components of T transform
as basis functions of an alternating representation D, of Jix which subduces the identity
representation in F' (this representation I, is given in the fourth column of Table); equal
non-zero components of T transform as basis function of the identity representation D,
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FIGURE 1 Exploded view of the single domain states 1, 2 and disoriented domain states
1+, 17,24 2= W and W are permissible walls, the axis of the ferroelastic domain pair
{1.2} is perpendicular to the plane of the Fignre and passes throngh the origin 0. Rect-
angles representing domain states should be shifted so that their centers (dotted crosses)

are at the axis.

F==1=-

1 f T
+K z 2
;L::::.l G / %

(1.2) {,27] (*.2%)

FIGURE 2 Single domain pair {1,2} and compatible domain pairs {1+, 27), e 2
Diagonal colid lines passing throngh the center represent mirror planes and two-fold axes
which exchange domain states. Vertical and horizontal lines represent mirror planes and

two-fold axes which leave domain states 1 and 2 invariant.
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of Jix. Number mT of distinct components and number mJ of equal mmponnts of T in
domain states of a rlonnln p:ur are equal to the multiplicity of D, and D; in DT, resp. In
Table I numbers mY and mJ (given in the parenthesis) are presented for all 15 ferroelastic
completely transposable twin laws J;; and for 8 important material property tensors T.
Since D, is one dimensional then in properly chosen (canonical) coordinate system Z, g,
the distinct tensor components in S; and in S differ only in sign.

In our example we find in the Table I for the single domain pair {1,2} with Jj; =

: r
4'/mm,m!, and for, e.g., the second rank tensor [V2] the numbers mLV I 1, i.e. one

Ty
component of [V?] has opposite sign in 1 and 2, and m[}n] = 2, i.e. two non-zero indepen-
dent components are equal in 1 and 2. The tensor [V'?] has in the canonical coordinate
system # || [110],7 || [110],2 = 2z the form of the first matrix given below, where the
components A and C are equal in domain states 1 and 2 whereas the component D has
opposite sign in domain states 1 and 2 :

4. ED" 0 A +D o0 A4 Dsin2p +Dcos2p 0
+DgEA 0 |5t £D B 90 ) =1/ £Duos2p A~ Diisdg il
g obe A6 e R 0 0 £
For the compatible pair {1*,27} with Jy4,- = m} m} m, we find in the seventh line of
the Table I for [V?] the numbers mE,V’] = 1, i.e. again one independent component which

has opposite sign in 1+ and 2~ and mlw] = 3 independent components that are equal
in 1* and 2~. The second and third matrices given above display corresponding matrix
form of [V?] in the canonical coordinate system %,7, 2. One independent component D
changes sign in 1* and 2~ and three independent components A, B, C are equal in 1+ and
27. As the last matrix shows all these four components are functions of A,C, D from the
first matrix and the angle of disorientation ¢.

In general, for 7 twin laws in the upper box of Table I the numbers maT and m}
of opposite and equal tensor components are not influenced by disorientatins, i.e. the
numbers given in the upper box of Table I hold both for single domain pairs and for com-
patible domain pairs. For 5 twin laws in the lower box of Table I the numbers mT and
m? are smaller for single domain pairs than for compatible domain pairs and both can
be determined from Tables I and II, similarly as in our example. For 3 remaining cases
in the middle box one can use Table I but for single domain pairs only. Discussion of
corresponding compatible domain pairs, which are no more completely transposable, falls
outside the scope of this paper.

This work has been supported by the Grant Agency of the Academy of Sciences of the
Czech Republic under the grant No 11074 and by the National Science Foundation under
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