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ABSTRACT  

The thesis is focused on the modelling of fluid flow in porous media. The aim of the work 

was to develop an appropriate model for simulation of fluid transport regardless of the flow 

regime. 

The model, developed in the frames of the work, is based on Lattice Gas Cellular Automata. 

The model is non-deterministic and fully discrete. It is presented by means of algorithm 

created in a C++ programming language. The algorithm allows computer simulation of the 

fluid flow through different porous structures, including nanofibre materials, where the pore 

size is on the order of free path of molecules and flow thus loses its continuous properties. 

The model is verified for two phenomena as the Brownian motion and Poiseuille flow are. 

The presented model is used to the study of fluid flow inside assembled filters with different 

density of porous media. Simulation results proved the hypothesis regarding to the 

reorganization of the flow inside the filter and its orientation perpendicularly to the pleat 

surface.       

 

 

 

ANOTACE   

Předložená disertační práce je zaměřena na modelování proudění tekutiny porézním 

prostředím. Cílem práce bylo vytvoření vhodného modelu pro simulaci transportu tekutiny 

nezávisle na režimu jejího proudění.   

Předložený model vychází z podstaty buněčných automatů a využívá rysy mřížového plynu. 

Model je nedeterministický a plně diskrétní. Pomocí programu vytvořeného v C++ 

programovacím prostředí umožňuje počítačovou simulaci a studium proudění tekutiny 

různými porézními strukturami, včetně nanomateriálů, kde velikosti pórů řádově se blíží 

délce volné dráhy molekuly a proudění tak ztrácí své kontinuální vlastnosti.  

Funkce modelu jsou ověřeny pomocí dvou testů, tj. simulací Brownova pohybu a Poiseuillova 

proudění. Předložený model je použit na studium proudění tekutiny skládanými filtry 

s různou hustotou porézního prostředí. Výsledky simulací prokazují hypotézu týkající se 

orientace proudění kolmo k povrchu skladů filtru.   
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INTRODUCTION  

Fluid flow and especially fluid flow in porous media is a subject of wide interest for a long 

time. From the beginning of the 19th century thanks to Claude-Louis Navier and George 

Gabriel Stokes fluid motion has got a solution in a form of Nevier-Stokes differential 

equations. These equations have arisen, when macroscopic nature of the fluid was only 

known. A continuum fluid flow was a subject of study at that time. The validity of Nevier-

Stokes approach remained undeniable until today. Nevier-Stokes equations became a core 

of the most part of modern software designated for fluid flow modelling, including fluid flow 

in porous structures.     

If we evaluate current scientific trends in global, and textile engineering especially, 

nanomaterials became the subject of the study in all branches of science and research. 

Revolutionary material of the 3rd Millenium, nanofibre and nanoparticle materials, and 

development of the textile materials with difficult internal structures (i.e. multilayer textile 

structures) requires a deeper reassessment of theoretical techniques and methods, used for 

a fluid flow description so far. 

Before any the newly developed textile becomes the subject of business, a number of 

experimental work is could to be done for a determination of its properties. Not all 

properties can be evaluated using available experimental methods and techniques. 

Therefore, the demand for modelling and computer simulations is increasing. The more the 

characteristic dimension of the object under investigation decreases, the exploration of its 

properties becomes more complicated and expensive. Moreover, modelling and simulations 

are often used in order to: (i) obtain critical values of particular parameters of a object or a 

phenomenon; (ii) visualize the time evolution of the phenomenon; (iii) verify empirically 

obtained results. 

Since the fully discrete model of hydrodynamics based on cellular automata conception was 

developed and verified for fluid flow, more and more researchers become to use this 

approach in modelling and simulation. Lattice Gas Cellular Automata appears to be very 

simple at first glance. Nevertheless it provides the more number of options for modelling of 

fluid flow in contrast to Nevier-Stokes equations. Because of its discrete nature it doesn’t 

have limitations in continuity of the flow. It is valid in all regimes of flow – from the 

molecular flow to the continuum one.      

In this dissertation, several contributions to the study of the fluid flow mechanism by means 

of Lattice Gas Cellular Automata method are presented. The motive why Lattice Gas Cellular 

Automata were chosen for fluid flow modelling and simulation is presented in the Chapter 1. 

First, the basic principles of modelling and computer simulation are here described. Then the 

current state of the modelling and simulation in textile industry and especially methods for 

fluid flow modelling are discussed. The substance of the Nevier-Stokes and the Lattice 

Bolzmann approaches are presented in the second part of the Chapter 1. Lattice Gas Cellular 
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Automata model, based on the Lattice Boltzmann approach is described from its origin in the 

Chapter 2. A great attention is paid here to the principles of the space discretization and to 

the description of the different lattice properties, which are very important during the 

creation of an Lattice Gas Cellular Automata model and its application.  

The detailed description of the Lattice Gas Cellular Automata algorithm developed for a fluid 

flow simulation is presented in the Chapter 3. This algorithm was verified for two 

phenomena as the Brownian motion and the Poiseuille flow are. The basic algorithm was 

adjusted for these benchmark tests. Related algorithms and results obtained from the 

computer simulations are subsequently presented in Chapters 4 and 5. Application of the 

developed Lattice Gas Cellular Automata for fluid flow in a porous medium simulation is 

presented in the Chapter 6 of the thesis. Computer simulation based on the developed 

Lattice Gas Cellular Automata algorithm verifies here the particular hypothesis related to the 

curious behaviour of the fluid flow trough assembled filters. General summary of the work 

included visions for the future are presented in the conclusions of the thesis. 
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BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION 

“How can it be that mathematics, being after all a product of human thought independent of 

experience, is so admirably adapted to the objects of reality?” 

Albert Einstein 

Many researchers, which deal with modelling, claim that current research in the natural or 

social science can no longer be imagined without simulations, especially computer ones. 

What was the way of modelling and computer simulation developing, which models are 

known at present time, what stages are the part of simulation study, which benefits and 

dangers of simulation study and partly computer simulation entails, is described in this 

capture.   

1.1. Origins and development of modelling and computer 
simulation  

Without any doubt, first models were already designed in ancient time. It is known, that 

ancient Egyptians created all sorts of models. It is possible, that first physical models come 

from Egypt – models of their tools, vessels, weapons or boats and other objects are founded 

in a big amount in their tombs and serve to the study of this ancient culture now. In ancient 

time those models were used to assure that a human be taken care of during the afterlife. 

In fact, modelling as a theoretical activity began to be dominating at first in the field of 

physics in the end of 19th century. For example, J.C. Maxwell to derive the equation of 

electromagnetism used analogical hydrodynamic models. Lord Kelvin (originally William 

Thomson) mentioned that he couldn’t understand a phenomenon until he had built a 

mechanical model of the system under consideration [1].     

Simultaneously, development of modelling was linked with the invention of computer 

technology and its implementation into the technical sciences. The concept of a first 

computing machine was intimated in a series of drawings of reduction Charles Babbage 

between 1834 and 1857. His so-called “Analytical Engine” was designed to perform 

calculations automatically with a possibility of simple programming [2]. But first computer 

simulation models appear during World War II. On the one side analog computer was well 

known in a world of science, on the other side the development of the first nuclear weapon 

was initiated within the frame of Manhattan Project and the two mathematicians Jon von 

Neumann and Stanislaw Ulam using Monte Carlo approach tried to understand the puzzling 

problem of behaviour of neutrons at that time. The real experimentations were too costly 

and the problem was too complicated for analysis [1, 3]. In the late 1940s and early 1950s, 
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both analog and digital1 computers started to appear in a number of organizations. In the 

1950s, the computers were used for census data recording, defence systems, accounting and 

some scientific calculation. The development of programming languages was felt, first of 

them were rising during the 1960s:  

 SIMSCRIPT (Markowitz H., Hausner B., Karr H.,) – simulation programming language 

developed in 1962 for the U.S Air Force [4];  

 CSL – the Control and Simulation Language (Buxton J., Laski J.) designed for use in the 

field of complex logical problems. The first application has been in the field of Monte 

Carlo simulation [5]; 

 SIMULA (Dahl O., Nygaard K.) – originally it was designed and implemented as a 

language for discrete event simulation, than it was reimplemented as a general 

purpose programming language.  Simula-type objects were later implemented in C++, 

Java and C# programming languages [6].   

In the 1970s, simulation was a topic that was taught to industrial engineers but rarely 

applied. Long time spent at the computer terminal and endless runs to find a bug in a 

language was what “simulation” meant at that time. The popularity of simulation as a 

powerful tool rapidly increased with the number of conferences and seminars devoted to 

this problem. According to Reitman [7] first of them were: Conference on Simulation 

Language (1964), Conference on Application of Simulation using the General Purpose 

Simulation System (GPSS) (1967), Application of Simulation (1968) and Winter Simulation 

Conference (1971) that is also popular at the present time. The number of sessions held to 

computer simulation within the frame of conferences was quintuple at the beginning of 

1980s compare with the end of 1960s. In the 1980s, the offer of computerized systems was 

very limited and too expensive. The number of companies using computer simulations was 

still small. The first simulation language specifically designed for modelling manufacturing 

systems and the discrete event simulation model was developed in 1984.  In the middle of 

1990s the power of simulation as a tool became evident and popular [8]. A big amount of 

simulation packages represented both by simulation languages and application-oriented 

simulators is in offer at present time [9], and modelling in itself became more and more 

popular in technology.  

1.2. Model: the definition and classification 

Models are considered to be one of the basic instruments of modern science. Formally, a 

model is defined as a formalized interpretation, which uses symbols instead meanings, 

                                                        
1 In electronics and computer science analog computer is defined as a mechanical, electrical, or electronic 
computer that performs arithmetical operations by using some variable physical quantity, such as mechanical 
movement or voltage, to represent numbers. Digital computer is an electronic computer in with the input is 
discrete rather than continuous, consisting of combinations of numbers, letters and other characters written in 
an appropriate programming language and represented internally in binary number system (116).   
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substitutes truth-values with the sentences of a formal language. Depending on using and 

representation several kinds of models are mentioned in literature [10]: 

 Mental model – describes person’s behaviour in different situations. In other words, 

it is an explanation of person's thought process according to surrounding world, and 

relation to its parts. 

 Verbal model – consists of intuitive concepts, often used for mathematical models 

interpretation. In contrast to mathematical model, verbal model doesn’t have exact 

and logical internal structure, consequently the verbal model is considered to be 

slightly ambiguous and inaccurate.  

 Physical model – this term is often used in literature for the computer simulation 

model of the certain physical system signification. In fact, it is a small physical object 

with the same shape and appearance as the real object to be studied. Physical 

models mimic some properties of real systems.  

 Mathematical model – gives description of real system or phenomenon, where the 

relationships between variables of the system are expressed in mathematical form 

using mathematical language. So, a great number of laws of nature are mathematical 

models.  

The kinds of models that will be dealt with in this work are mathematical models 

represented by means of computer simulation algorithms. The detail classification of 

mathematical models is given below.  

There are static and dynamic mathematical models with respect to model behaviour in time. 

Static model describes the system in steady state, where the physical characteristics have 

constant values. Dynamic model includes time. The time development of a system (the 

change of its outputs in dependence on the same inputs) is the subject of study here. The 

changing of values of any parameter in time is often an output of the dynamic model. There 

are two main classes of dynamic models depending on how the function changes its 

character in time: continuous-time and discrete-time models (see Figure 1). Continuous-time 

models evolve their variable values continuously over time, while discrete-time models 

change their variable values at discrete points in time only. [10]  



CHAPTER 1: BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION  

 

19 
 

Mathematical models could be denoted also as a qualitative or quantitative. Mainly, 

qualitative analysis is used in social studies and is thought to be subjective and non-

statistical. Qualitative models involve an in-depth understanding of system behaviour and 

the reason of such behaviour. Unlike quantitative models, which rely exclusively on the 

analysis of numerical or quantifiable data and their outputs are represented by means of 

mathematical formulas or graphs. In qualitative models (or analysis) the images, sound, 

video and text is often working with.   

The most part of phenomena in nature are preceded as non-deterministic processes. 

Mathematical non-deterministic models are called stochastic or probability-based models. 

The stochastic process is defined as a one whose behaviour is non-deterministic and the next 

state is determined both by process’s predictable actions and by random element. In other 

words, the stochastic model is a mathematical representation of random phenomena, which 

is defined by sample space, events within the space and probabilities associated with each 

event [11]. The counterpart of the stochastic is a deterministic model, which is specified by a 

set of known relationships among states and events without any random variation. If the 

stochastic model is run several times, it will not give identical results, while in deterministic 

model the given input will always produce the same output. The most common types of 

stochastic modelling tasks are: 

 Markov chains and processes describing the evolution of dynamic processes; 

 Economic models of supply and demand; 

 Survival models (in insurance and health); 

 Game models that have application in strategic decision making.  

It is interesting, that dynamic processes can be modelled using the both deterministic and 

stochastic (non-deterministic) ways. According to [12] dynamic processes are usually 

described by means of a set of first order differential equations: 

 

Figure 1: Types of dynamic models: a – continuous-time model, b – discrete-time model 

a 

b 
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                                      (1) 

where    are physical or other variables; t is time;              are functions that define 

the system;            are parameters that partly affect the behaviour of the dynamic 

system (different constants and values of external parameters, etc.). Depending on the 

values of parameters            the behaviour of the system can be regular and orderly or 

irregular and disordered. But the core of a random non-deterministic behaviour of the 

system is not the large number of degrees of freedom or uncontrollable external factors, but 

mainly non-linear internal dynamics, leading to instability and chaotic behaviour. Looking 

back at the Equation 1, when the function    is non-linear (for example,      
       

 ), 

then 
   

  
 becomes non-linear also. Due to non-linearity the system loses memory – ie. a 

record of its initial conditions. Then the statistical description (stochastic model) is not only 

possible but actually the only effective and suitable one.   

According to [13], all above-mentioned models represent phenomena and/or data in 

general.  

Representational models of phenomena are: 

 Scale models – are basically miniaturized or enlarged copies of their real systems; 

they provide faithful copy of the shape, but not the material.  

 Idealized models – are simplified models of complicated systems. Two general kinds 

of idealized models are under consideration: models based on a so-called Aristotelian 

and/or Galilean idealizations. Aristotelian idealization is equal to “stripping away”, in 

other words all properties of the real system that we believe aren’t significant to our 

model are being disregard. Galilean idealization involves deliberate distortion of the 

model towards real system. Aristotelian and Galilean idealization are often come 

together in models.   

 Analogical models – represent the target systems or phenomena by another more 

understandable system if there are certain relevant similarities between them.     

 Phenomenological models – those models are considered to be independent of 

theories, they result from different empirical observation of the target system or 

phenomena.   

Representational models of data are idealized versions of the data gained from immediate 

observation. Mainly mathematical models are ranged between them. The full overview of 

models mentioned in this chapter and their sections is presented in the Figure 2.  
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The process of producing a model is considered to be modelling [9]. More about modelling 

and computer simulation especially is presented in the Chapter 1.3.   

1.3. Simulation study and computer simulation: definitions, 
stages, benefits and  dangers of their implementation 

Modelling is understood as a process of model generation. Simulation is an imitation of the 

real process or phenomenon over the time and it includes several stages (see Figure 3). The 

term “simulation” comes from Latin “simulare” and means “to prebend” [10]. “Simulation” 

often occurs in connection with dynamic mathematical models – as an experiment 

performed on a model. The aim of simulation is to solve the equation of motion of such a 

model and herewith to represent the time-evolution of the target2 system [13]. But 

generally simulation is defined in literature as a tool to evaluate the performance of a 

system, existing or proposed, under different configurations of interest and over the time.  

Usually, simulation is used when an existing system should be altered or a new system built 

[9]. System here is an object or collection of objects whose properties we want to study. Two 

reasons for system study are mentioned in literature [10]:  

1. From engineering point of view: to understand the system in order to build it. 

2. From natural science viewpoint: to understand more about nature.  

Based on [9, 10, 13] simulation study is used, when: 

 system or process is impossible or extremely expensive to observe in the real world;  

 experimentation with a system is too dangerous or the system to be investigated 

doesn’t exist yet; 

                                                        
2 „Target“ (an adjective) – that is or may be a „goal“, desired goal. 

 

Figure 2: Scheme of model classification 
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 time scale of the dynamics of the system is too large and it takes millions of year to 

observe small changes in the system;  

 some variables of the real system are inaccessible; 

 easy manipulation with system parameters is necessitated;  

 suppression of disturbances or second-order effects is needed. 

 

Figure 3: Stages of simulation study 

From the Figure 3 it is evident, that before the simulation study will start, an identification 

and a formulation of a real problem is needed. Based on real system data, creation of a 

simulation model and modelling itself (i.e. time-evolution study of the system) are possible. 

Modelling also includes making of requirement model documentation. Simulation 

experiment begins from selection of an appropriate experimental design. The establishing of 

experimental conditions for run and the performing of simulation runs takes a place then. 

Simulation analysis is a final stage of simulation study. It is intended for evaluation and 

interpretation of simulation results. Conclusions, which are applied to system under study, 

come both from simulation study and real facts [9].      

Recently, simulation studies based on mathematical models are carried out using different 

computer techniques. Then computer-implemented studies for exploring the properties of 

mathematical models are known as computer simulations [1]. Humphreys in his article 

“Numerical Experimentation” [14] claims that the computer simulation constitutes a new 

kind of scientific method, which is the connecting link between empirical experimentation 

and analytic theory. The reasons that lead to performance the simulation study are the same 

in a case of computer simulation.  Computer simulation studies are often used when analytic 

solutions of formulated mathematical models are impossible or it is complicated to obtain 

them. According to Hartmann [1], computer simulation may also be helpful even if analytic 

solution for the target system is available. Visualizing the result of any kind of simulation on 

a computer screen is another advantage of it.  
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It is evident that implementation of simulation study on a target system has a number of 

benefits. But some dangers are also here. Fritzson in [10] features the following ones: 

1. For user it is easy to forget or involuntary overpass limitations and conditions under 

which a simulation is valid. It leads to wrong conclusions from simulation study. In 

order to prevent it the comparison some results of simulation with known physical 

laws or experimental results from the real system are recommended. 

2. Reaching the “Pygmalion effect”. In other words – to fall in love with model – forget 

that the model isn’t the real world but only represents the real system under certain 

conditions.  

3. Forcing reality into the constraints of a model – the “Procrustes effect”. 

1.4. Modelling and simulation in the textile industry 

From physical point of view a “textile” in general is an object, which can be described by the 

theories of classical physics and experimented with physical instruments. It is a physical 

three-dimensional body (extended in three-dimensions of space), which has a certain mass, 

location or position in space and is lasting for some period of time [15]. It is the subject of a 

study in an experiment and it is the object that could be referred to physical theories and 

laws. During last few years, the principles of modelling and simulation became to be popular 

in the textile industry also. For example, there is a tendency: 

 to use image analysis for textile quality assessment; 

 to carry out modelling and simulations of textile structures (to study various textile 

structures using computer simulation, to characterize the yarn unevenness by means 

of computer technologies); 

 to aid the garment design with a computer; 

 to study physical properties of textiles as a moisture and heat transfer using 

computational simulations. [16]  

The development of textile's structure modelling and their physical properties simulation is 

linked to the advances in computer hardware and software on the one side, and necessity to 

solve more and more complicated phenomena associated either with production or 

application of textiles on the other side. It is impossible to do the complete summary of all 

computational methods, models and instruments used in textile engineering. Generally 

speaking, the design of textile structures and garments are often spoiled with the using of 

CAD system; the study of geometry properties of textile structures predominantly 

comprehends the image analysis instruments and methods for its evaluation; the study of 

physical properties of textiles tends to the solving of differential equations of motion and 

etc.  

The subject of my interest is a fluid transport through the porous media, also through the 

nano-porous materials. The fluid flow through fibrous materials is a phenomenon that 

occurs in a range of technological processes and it is a subject of a wide interest in textile 
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industry for all the time. The textile industry encounters with this phenomenon during a lot 

of production and finishing processes. Examples range from dyeing processes, over filtration 

to high performance textiles with improved wearing comfort. Permeability is the physical 

parameter of primary interest during the comfort evaluation or final textile product testing. 

Invention of multilayer textile materials (for example, Gore-Tex fabrics in clothing) is based 

on an idea to combine various layers with different permeability to reach the maximal 

comfort with respect to the diffusion of water vapour outward and retention of external 

liquid droplets [17].    

It was mentioned in [18], that a common requirement for understanding the transport 

properties of textiles is a detailed understanding regarding the transport of momentum 

through textile structures. This information is difficult to obtain experimentally and often the 

researches rely on “try and error” methods. During last couple of years, the study of fluid 

and heart transfer in porous structures was facilitated thanks to software Fluent. The 

software was developed by the company ANSYS, Inc. (USA). At present it is the most used 

commercial software based on a computation fluid dynamics (CDF) code that has been in 

use since 1983 and has been applied to a broad range of disciplines (e.g., aerospace, 

chemical, environmental, textile engineering, etc.). The solution of Navier-Stokes equations 

for fluid flow (Chapter 1.4.1), coupled with the energy and diffusion equations, is the 

principle of Fluent software. The Finite Element Method (FEM) is usually used for a solution 

of nonlinear partial differential equation as Navier-Stokes equations are. Fluent is also 

considered as a powerful approach to obtain insight into momentum transport within 

textiles. The few skilled works [18, 19], which have used the Fluent software for simulation 

of transport phenomena in textile structures, were founded. 

By the way, traditional numerical simulations, represented by the Navier-Stokes equations, 

rely on the continuum approach [20]. But the approach would break down, when the length 

scale of the physical system decreases, concretely, when the Knudsen number became 

greater that about 0,2 (some authors as Truesdell and Muncaster [21] consider the value 1 as 

a threshold). Knudsen number (  ) is dimensionless parameter that determines the degree 

of appropriateness of the continuum model – the degree of rarefaction of gases 

encountered in a small flows through narrow channels and for an ideal gas it is: 

   
 

 
 

   

     
   

  (2) 

where   is a mean free path of molecules [ ];   is a length characterizing  the geometry of 

flow,  such as the diameter for a circular capillary, or the width of a pore, i.e. any microscopic 

dimension of interest [ ], kB is a Boltzmann’s constant (approximately                 ); 

  – temperature [ ];   – particle diameter [ ]; p is a total pressure [  ]. 

From the Equation (2) it is evident: if the    is near or greater than one, the mean free path 

of a molecule is comparable to a length scale of the system or it is greater. The continuum 

assumption of fluid mechanics is no longer a good approximation. If we will consider the 

fluid flow through very small capillary pores, for      intermolecular collisions are 
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become to be much less frequent than molecular interactions with solid boundaries. The 

intermolecular collisions can be ignored than. Flows under such conditions are termed 

collisionless or free-molecular flow. In this case discrete particle methods must be used 

instead of continuum approach.  

As is shown in the Figure 4, only Boltzmann equation (Chapter 1.4.2), which is based on the 

discrete kinetic theory, is valid for the whole range of Knudsen number. As it was mentioned 

in [20], an alternative to continuum model is the molecular one, which recognizes the fluid 

as a swarm of discrete particles. Position, inertia and state of all individual particles are 

calculated here either deterministically or probabilistically at all times. During last few 

decades a large number of molecular models/methods, which consider individual particle 

dynamics based on a Boltzmann distribution at the temperature of interest, have emerged. 

Those methods are mesoscopic and include: molecular dynamic (MD), direct simulation 

Monte Carlo (DSMC), dissipative particle dynamics (DPD), smooth-particle hydrodynamics 

(SPH), Lattice gas cellular automata and Lattice Boltzmann model (LBM). Those methods are 

also used for the study of macroscopic hydrodynamics. They aren’t based upon Nevier-

Stokes equations, but closely related to kinetic theory and Boltzmann equation. Those 

methods are mentioned in literature as promising candidates effectively connecting 

microscopic and macroscopic scales and enabling to study mesoscopic phenomena as a fluid 

transport in nanopores structures.   

During last few years, investigation of nanometric flow plays a crucial role in material science 

including textile engineering branch. Tendency to use lattice gas cellular automata for 

nanometric fluid flow modelling will be trashed out in chapters given below.  

Next two chapters describe theoretical approaches, as the Nevier-Stokes equation and the 

Boltzmann equation, useful for fluid flow modelling. Both methods characterize the same 

phenomenon but use the different principle for that. The Nevier-Stokes equation presents 

macroscopic or continuum approach, where fluid flow is described by a finite number of 

 

Figure 4: Different regimes of fluid flow and methods for their description depending on Knudsen 
number 
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position dependent quantities such the mass density, the mean velocity, etc (see Chapter 

1.4.1). In contrast to Nevier-Stokes equation the Boltzmann equation uses microscopic 

approach. It characterizes the fluid flow using description of the dynamics of its individual 

particles (see Chapter 1.4.2).    

1.4.1. Nevier-Stokes equation 

The Navier-Stokes equation is an equation describing the flow of incompressible Newtonian 

fluids3. The equation was derived by French engineer and physicist Claude-Louis Nevier in 

1827 and Irish mathematician and physicist George Gabriel Stokes in 1845 independently on 

each other. The detailed derivation of the Nevier-Stokes equation is introduced for example 

in [22] and [23]. Feynmann in [24] describes in detail the essence of the equation. 

According to Feynmann [24], to describe the motion of a fluid it is necessary to know the 

fluid properties at every point. At first we need to know vector and scalar fields of 

characteristics, which vary at every point of fluid and for any time. Those characteristics are 

density, pressure and velocity. Feynmann bases on the assumption: 

 density and pressure determine the temperature at any point; 

 density is a constant – fluid is essentially incompressible – it is expected, that 

variations of pressure are so small (or the velocities of flow are much less than the 

speed of sound wave in the fluid) that the changes in density produced thereby are 

negligible. 

The interpretation of the essence of Nevier-Stokes equation begins from an equation of state 

for the fluid which connects the pressure   to the fluid density   [24]:  

        (3) 

If the fluid velocity is  , then the mass which flows in a unit time across a unit area of surface 

is the component of    normal to the surface. Than the hydrodynamic equation of 

continuity is4: 

        
  

  
 (4) 

The Equation (4) expresses the conservation of mass for a fluid. According to the assumption 

(        - see Equation (3)) the equation of continuity becomes: 

      (5) 

                                                        
3
 Newtonian fluid is a rheological model of a viscous substance, which is governed by Newton’s low of viscosity. 

Rheological equation of Newtonian fluid is characterized by direct proportionality between strain rate and 
stress. The constant of proportionality here is known as viscosity.   
4
 Symbol   denotes the vector of differential operations   

 

  
  

 

  
  

 

  
  containing unitary vectors  ,   and 

  oriented along  ,   and   axes respectively. 
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From the Equation (5) it is evident, that the fluid velocity   has zero divergence. Zero 

divergence means that the velocity doesn’t change at a given point of the velocity vector 

field, it is a constant.  

A second Newton’s law tells how the velocity of the body changes because of the forces 

(    ). Taking an element of unit volume and writing the force per unit volume as  , we 

will get: 

     (6) 

The force density   (  
 

 
, where the   is volume) in an Equation (6) is the sum of three 

terms: pressure force per unit volume –   (consequence of the existence of pressure 

gradient); external forces like gravity etc. – when they are conservative force with a potential 

per unit mass  , they give a force density    ; internal force per unit volume (consequence 

of the existence of shearing stress) – viscous force      . Then the equation of motion is: 

                   (7) 

For the expression of acceleration Feynmann deals how fast the velocity changes for a 

particular pieces of fluid. If we will consider the movement of the drop of water in a small 

interval of time    from point    to    along some path, it will move by an amount     (see 

Figure 5). 

 

Figure 5: The acceleration of fluid unit volume 
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If          is the velocity of the fluid unit volume at the time   at a position        , than 

the velocity of the same unit volume at the time      will be:  

 

Time Position of the fluid unit 
volume 

Velocity 

                     

                                              , where 

       ;        ;         

From the definition of the partial derivates (Taylor series): 

                                

             
  

  
      

  

  
      

  

  
     

  

  
   

(8) 

The acceleration   
  

  
 is: 

     
 

  
      

 

  
      

 

  
   

  

  
 (9) 

Because  
 

  
 
 

  
 
 

  
    is a divergence, than: 

         
  

  
 (10) 

If the velocity at given point isn’t changing ( 
  

  
  ), then acceleration is zero. Putting the 

acceleration from Equation (10) into Equation (7) we will get: 

  

  
         

  

 
    

     
 

 (11) 

Equation (11) is a general form of Nevier-Stokes equation for an incompressible fluid flow. 

To find the solution of the Nevier-Stokes equation of motion it is necessary to rearrange the 

Equation (11) by using the following identity from vector analysis: 

                                     

As a special case, when    : 

                       

 

 
                   

So,        corresponds to the       , eventually: 
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Lets to define a new vector field  , as the curl of  :      . The equation of motion 

becomes: 

  

  
     

 

 
     

  

 
    

     
 

 (12) 

The vector field   is called vorticity. If the vorticity is zero everywhere, the flow is 

irrotational.  

If the fluid is “thin” (in the sense that the viscosity is unimportant) and an object of interest 

is the velocity field, than       and pressure can be eliminated from the Equation (12). Taking 

the curl of both sides of Equation (12) and taking into account that the curl of the gradient of 

scalar field is the zero vector (          where   is any scalar field) we will get: 

   
  

  
          

 

 
               

   
  

  
            

      

  
           

 
  

  
            (13) 

Equation (13) obtained from Nevier-Stokes equation together with the equations 

       (14) 

and 

      (15) 

describes completely the velocity field   of the incompressible fluid. Equation (14) defines 

the vector field   and Equation (15) is a equation of continuity when the fluid density   is 

constant.          

Is well known, the Nevier-Stokes equation is analytically solvable only in a few cases of 

simple flows (as an example, stationary flows in simple channel – Poiseuille flow). In more 

complicated cases it is necessary to solve the equation numerically. The problem with a 

solution of the Nevier-Stokes equation is caused by the       , which is nonlinear and is 

quadratic in  . Mathematicians have not yet proven that the solution always exists in three 

dimensions. The Clay Mathematics Institute has ranked the solution of the Nevier-Stokes 

equation among seven major mathematical problems, so-called “Millennium problems” [25].      

1.4.2. Boltzmann equation  

Except Nevier-Stokes equation there is another theoretical approach, which makes possible 

to describe the fluid flow phenomenon. It is the Boltzmann equation, also known as a 

Boltzmann transport equation or Boltzmann kinetic equation. It was devised by Austrian 
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physicist Ludwig Eduard Boltzmann in 1872. In contrast to the principle of Nevier-Stokes 

equation, the Boltzmann one reflects the state of a fluid by means the state of many 

identical point particles confined to a spatial domain. The state of a fluid is described here at 

kinetic level using so called distribution function  .    

According to Kittel [26] the Boltzmann equation is an equation for the time evolution of the 

distribution function        in a one-particle phase space5. Here   and   denote, 

respectively, the position and velocity vectors, they are elements of the phase space. In a 

general form the distribution function        is determined by the ratio:  

                                           (16) 

             is the average number of particles, which at time   have position       lying 

within a volume element      . Because particles move inside and outside of the volume 

element       and collide with each other, the function will change over the time with a 

rate:  

  

  
  

  

  
 
     

  
  

  
 
    

 (17) 

The Equation (17) is done according to assumption that the number of particles doesn’t 

change. The effect of a time displacement    on the distribution function is then: 

                            (18) 

The Equation (18) is in accordance with Liouville’s theorem of classical mechanics (i.e. if the 

volume element follows along the streams the distribution is conserved) in the absence of 

collisions. With collisions it is: 

                                
  

  
 
    

 (19) 

The total derivation of the function           over the time is: 

   
  

  
   

  

  
 
  

  

  

  
 
  

  

  

  
    

  

  
 
    

 (20) 

Lets   and   denote, respectively, the velocity 
  

  
 and the acceleration 

  

  
, then: 

  

  
  

  

  
  

  

  
  

  

  
 
    

 (21) 

or  

  

  
  

  

  
 
 

 

  

  
  

  

  
 
    

 (22) 

                                                        
5 Phase space is defined as a space, in which all possible states of a system are represented. One-particle phase 
space corresponds to the space of all possible states of the one particle. 
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The Equations (21) and (22) represent the Boltzmann transport equation. In abstract form 

the Boltzmann equation is often written as following: 
  

  
     , where      is a collision 

term, which is account as a result of particle interactions.   

Kittel in [26] expresses the collision operator  
  

  
 
    

 by the introduction of the relaxation 

time       : 

 
  

  
 
    

  
    
 

 (23) 

Here    is the distribution function in thermal equilibrium state. After combination Equations 

(16), (21) and (23) the Boltzmann transport equation in the relaxation time approximation is:  

  

  
  

  

  
  

  

  
  

    
 

 (24) 

The following Chapter 2 describes Lattice Gas Cellular Automata whose nature reflects the 

Boltzhmann transport equation.  
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2. MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS 
CELLULAR AUTOMATA  

From computer science the study of certain phenomena suggests that there are computer 

systems that may be appropriate as models for microscopic physical phenomena. Cellular 

automata are now being used to model varied physical phenomena. Fredkin in his paper [27] 

wrote about cellular automata (CA) modelling:  

“The computer science approach to modelling physics with CA is qualitatively different from 

either theoretical or experimental physics, or from the kinds of abstract mathematical work 

that so often leads to progress in physics. The problem is that the study of cellular automata 

is both a theoretical and an experimental science. However, the experiments, which often 

produce results we did not anticipate, are not like physics experiments. They are the kind of 

experiments that never existed before the age of the computer.” 

Richard Feynman’s view of lattice-gases, as paraphrased by one of his co-workers, Daniel 

Hillis [28] was: 

“We have noticed in nature that behaviour of a fluid depends very little on the nature of the 

individual particles in that fluid. For example, the flow of sand is very similar to the flow of a 

pile of ball bearings. We have therefore taken advantage of this fact to invent a type of 

imaginary particle that is especially simple for us to simulate. This particle is a perfect ball 

bearing that can move at a single speed in one of six directions. The flow of these particles on 

a large enough scale is very similar to the flow of natural fluids.”  

It is necessary to describe the basic principles of Cellular Automata and Lattice Gas modelling 

for the purpose of this work. For that reason I will allow myself to present the description of 

the basic properties of Cellular Automata and Lattice Gas Cellular Automata in Chapters 2.1 – 

2.4.   

2.1. Historical overview: cellular automata and lattice gas 
automata 

It seems currently to be quite impossible to survey the area of cellular automata in a whole 

range. Cellular automata have been invented independently for quite a number times and as 

indicated in [29] for a wide variety of purpose and under different names: “tessellation 

automata”, “homogeneous structures”, “cellular structures”, “tessellation structures” and 

“iterative arrays”.  

Cellular automata are coming from the time when a development of computer technique 

started. One admits commonly that cellular automata have been introduced by John von 

Neumann, the famous Hungarian mathematician, under the name “cellular space” in the end 
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of 1940’s. Whereas other refer that cellular automata were introduced by John von 

Neumann and Stanislaw Ulam independently from Konrad Zuse [30, 31].  

Ulam and Neumann were mathematicians working together on the U.S. Los Alamos project 

during the Second World War. They belonged to research team working on a development 

of modern computers. As it is mentioned in [32] Ulam liked to design pattern games for the 

Los Alamos huge computer. The first game was aimed at printing ever-changing patterns, 

which grew almost as if they would have been alive. The next game, developed by Ulam, 

constructed three-dimensional “recursively defined geometric objects”. Each cell pattern 

from this kind of Ulam’s games consisted of groups of cells creating different shapes in a 

space (square, triangular, hexagonal). These games were played on an infinite chessboard, 

i.e. on an infinite lattice. All changes of these cell patterns took part in discrete time steps. A 

fortune of particular cell state depended on states of its neighbouring cells. So Ulam 

constructed first cellular spatial games and he shared his skills in that with his co-worker 

John von Neumann.  

Thanks to Goldstine [32], who created a research team to work on problems in computers, 

communications, control, and time-series analysis in 1944, Neumann was introduced to 

electronic computing problems also. Neumann proceeded on design of Electric Discrete 

Variable Computer (EDVAC) in 1946. It was the first attempt to design physical automata 

ideas, first developed by Post and Turing at the end of 1930’s. In that time Neumann’s work 

included studies on the complexity that is required for a device or a system to be self-

reproductive. Neumann was a pioneer in the study of a self-reproducing automaton based 

on a “system of non-linear partial differential equations, essentially of the diffusion type” 

and on algorithms of parallel computing [33, 34]. Ulam’s ideas about an abstract space of 

cells, each of which is assign with a finite number of states, with local and uniform 

interactions among them found their usage in these Neumann studies. In the same time, 

independently on works of Neumann, Zuse, who was interested in numerical methods in 

mechanics, came with idea of parallel processing. But special historical circumstances 

forestalled the popularity of his work. His book named “Calculating space” was published 

only once in 1969 [35, 36]. Some of his formulations resemble the first and the most simple 

lattice gas models based on cellular automata method. The latter it has been proposed four 

years later by Hardy, de Pazziz and Pomeau and was well known recently as HPP model [31]. 

The most far-reaching vision of Zuse was that physical laws of the universe are discrete by 

nature, and that the entire universe is just the output of a deterministic computation of a 

giant cellular automaton. 

It is mentioned in literature that two main pathways appeared for cellular automata 

development starting with Neumann’s pioneering works. The first of them raised cellular 

automata, originally perceived merely as “toy” tools, for investigation and monitoring of 

serious biological systems. At least cellular automata penetrated into computer problems 

and dominated in this area for next few decades. A brief history of cellular automata in 

computer science and mathematics is presented in [37]. The path of cellular automata 
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development in the area of biology with connections to some physical problems will be 

traced in brief at the end of this subsection.  

An excellent instance of cellular automata application in biology is the game called “Life” 

invented by John Conway. It was popularized among members of early computing 

community by Martin Gardner [38] in seventies. The game “Life” is a simple two-dimensional 

analogy of basic processes in living systems. It is based upon tracing temporal changes in a 

pattern, formed by sets of “living cells”. Each cell in a grid may be in either of two states: 

“alive” or “dead”. The state of each cell changes in time from one generation to the next one 

according to the update rule. This rule takes into account a state of a certain cell and states 

of its neighbours [32] in a similar way as it was indicated in former Ulam’s games. A system 

evolution over 80 time steps from an initial state is presented in the Figure 6. A “time step” 

(t.s.), also known as a “time unit” (t.u.), in contrast to the real time6, is a unit, needed for 

realization the one cycle of all operations in a simulation algorithm. 

Many next researchers searched for cellular automata’s potential in modelling of biological 

systems [39, 40]. These works demonstrated that simple behaviour and functioning of live 

organisms can be modelled using cellular automata, where site values represent states of 

individual living cells or states of cell colonies. Short-range or contact interactions may lead 

to expression of “genetic characteristics” via the determination of cell colony patterns. It has 

been shown that simple update rules may lead to the formation of complex cellular patterns 

like in living cell colonies, plant and animal tissues. 

                                                        
6
 Under the International System Measurement second is defined as a duration of 9 192 631 770 cycles of 

radiation corresponding to the transition between two electron spin energy levels of the ground state of the 
cesium (Cs) 133 atom. Time step could be equating to the time in itself, but it doesn’t have the same unit [86]. 

 

Figure 6: Set of patterns obtained in game of “Life” for various time evolution steps t  
(courtesy of Jakub Hrůza) [17] 
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The set of theoretical studies and analysis of cellular automata’s properties augured their 

occurrence in modelling of physical problems and especially in simulation of hydrodynamic 

phenomena. It has been already marked that in spite of simple update rules cellular 

automata can display complex behaviour, which is one of the most important conditions to 

use them as a simulation tool for the description of many-particle or collective physical 

phenomena. Partly discrete models, discrete with respect to time and space, were well 

known from biological applications of cellular automata since the end of sixties.  

The first so-called classical Lattice Gas models appeared as theoretical ones, used for liquid-

gas transition. They were structured nearly simultaneously in the late sixties and beginning 

of seventies [41]. A moment-conserving lattice gas model started to be an object of interest 

of hydrodynamics and statistical mechanics when Kadanoff and Swift proposed the first 

discrete-velocity model [42]. They created a version of Ising model in which positive spins 

acted as particles with momentum in one of four directions on a square lattice (see Chapter 

2.3.2.1), while negative spins acted as holes. Particles were then allowed to collide with each 

other or to exchange their positions with holes if energy and momentum were exactly 

conserved [43]. The fully discrete model of hydrodynamics based on cellular automata 

conception, was firstly introduced by Hardy, de Pazziz and Pomeau [44]. This model 

nowadays is known as a HPP model. It led to a lot of interesting results, but due to using the 

square geometry of lattice it had limited applications because of its anisotropic behaviour. It 

was not refined until 1986, when Frisch, Hasslacher and Pomeau designed their own model, 

based on a triangular lattice. This model was called as the first FHP model. The detailed 

description of these models will be introduced in the Chapter 2.4. 

During the last decades the development of the FHP model within the modelling of 

hydrodynamics led to the design of derivative models. In the next section examples of such 

few models and discussions of their usage for transport phenomena in porous materials will 

be given.  

2.2. Specification of finite automata, cellular automata and 
lattice gas cellular automata 

The phrase “cellular automaton” usually indicates an infinite set of finite automata, which 

are interrelated in a specific manner. A lattice gas cellular automaton is a special case of 

cellular automaton. What do the terms finite automaton, cellular automaton, and lattice gas 

cellular automaton mean in general and in the realm of cellular automata? The definitions of 

the same are provided below.  

2.2.1.  Finite automata 

A “finite automaton” or “finite state automaton” (plural: automata) or “finite state machine” 

was firstly introduced and studied by Cobham in 1972 and has got the modern view in 

1980’s thanks to Christol, Kamae, Mendes France and Rauzy. In general, it is a class of 
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simplest mathematical model of processors, or special class of programming languages, that 

are characterized by having a finite number of states [45], which evolve in time and produce 

outputs according to rules depending on inputs [46].  

Similar definitions of finite automaton can be found in literature, which refers to principles 

of simulation, modelling and programming. Taking this view-point, a finite automaton (FA) is 

represented formally by the five-tuple                , where: 

   – is a finite, non-empty set of states (also known as a state space);  

    –  is an initial state, an element of  ; 

   – is a finite, non-empty set of possible input signals (the set of input symbols or 

input alphabet); 

   – is a state-transition function; 

   – is a set of final or accepting states of   , also is a subset (possibly empty) of   

[47, 48]. 

The state-transition function drives the work of finite automaton and specifies, for each 

state and input alphabet, the next state the automaton will enter. For a given current state 

and a given input signal, if an automaton only jumps to one and only one state, then it is a 

deterministic automaton. Another type of automaton is a non-deterministic finite 

automaton. Here, after reading an input signal, automaton may jump into any of number of 

possible states driven by its transition relation. The most standard variant describes bellow is 

the deterministic finite automaton. 

Three possible methods of finite automata representation (here it is the deterministic finite 

automaton) are shown in Figure 7: 

 the state-transition table determines an initial state   , subsequent states 

          , final state    and state-transition function  ; 

 the state tree is presented using original roots, which arise from the initial state   . 

The number of links that come out from each cusp of the tree is equal to the total 

number of input/output signals. Successors of each state are created according to 

the input signals, using the state-transition function  .  

 the state diagram is consists of vertices, which agree with the state of automaton. 

Links indicate the possible transitions between all possible states. Here the arrow 

before the cusp with the initial state    denotes the start of the calculation of the 

finite automaton. Two circles that surround the state    mean that the state of the 

automaton is the final (accepting) one.   
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The computation of finite automaton on inputs              (where      for all 

     ) is the sequence of states              (where      and    is the initial 

state): 

              for all       (25) 

For instance, for the input signal         the automaton presented in Figure 7 begins in   , 

reads the input signal      and goes to the state           . Then reads input signal 

     and goes to the state           , finally it ends up in            after reading 

the last input signal     . Formally this computation can be written as: 

                          (26) 

So, the operation of the finite automaton can be easily displayed as is shown in Figure 8.  

An output signal of a finite automaton can be used 
as an input signal for another finite automaton – it 
is the basic principle of cellular automata (see 
Chapter 2.2.2). The term “individual automaton” 
is used instead of “finite automaton” in the realm 
of Cellular Automata and Lattice Gas Cellular 
Automata models [46]. This notation will be 
followed hereafter.  

 

 

Figure 7: Finite automaton represented using classical methods: state-transition table, state tree and 
state diagram [17] 

 

Figure 8: Basic principle of a finite 
automaton operation 
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2.2.2. Cellular automata 

According to Wolfram [29], “cellular automaton” (plural: cellular automata – CA) is defined 

as a “...mathematical idealization of physical system in which space and time are discrete 

and physical quantities take on a finite set of discrete values”. Cellular automaton consists 

of: 

 a set of identical sites (“cells”) located in a regular and uniform lattice (or “array”), 

usually infinite;  

 each cell holds a finite number of discrete states. A set 

                                    of Boolean variables (where         is a 

single bit of information) is attached to each site of a lattice by position vector   and 

creates the local state of each cell at the time steps            .  

 states of all cells of CA are updated simultaneously at discrete time steps according 

to principles used in finite automaton (see Chapter 2.2.1); 

 changes of states are governed by update rules (in finite automata it is also known as 

a state-transition function), which can be deterministic or non-deterministic, but 

always uniform in space and time; 

 rules for evolution of a cell depend generally on a local neighbourhood of cells 

around it. The update rule                , which specifies the time evolution of 

the states        , in general can be defined in following way: 

                                                    

where      (         ) designate the cells belonging to a given neighbourhood of cell 

 . If   is a location of the certain cell, then     ,     ,...,      are locations of its 

neighbours (see Figure 9). So, the new state of a cell having the location   at time     is 

only a function of its previous state in   and states in neighbour locations       at time   

[49]. 

In the context of cellular automata, the term “neighbourhood” was first used. In cellular 

automata neighbourhood is usually created by cells surrounding a central cell with the 

position  . Neighbourhood is done by the lattice geometry. More about neighbourhood 

types in accordance to lattice geometry is presented in Chapter 2.3.2.2.  
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Therefore, a cellular automaton can be represented as a set of synchronized identical 

individual automata, which exchange their states with predefined neighbourhoods in 

accordance to an update rule, which is the same for all cells (i.e. finite automata, which 

comprise a cellular automaton) in a particular model [46]. Purposely, this definition does not 

contain any reference to the geometrical structure of a lattice, as it is not important to know 

the distances or angles between neighbours. However, it may be noted, that all individual 

automata in a cellular automaton are identical and create a homogeneous structure having 

uniform internal structure and obeying the same evolution and connection rules, except 

those, which are on boundaries. Such a cellular automaton can be presented as is shown in 

Figure 10. 

The one evolution time step of the one cell for two-dimensional cellular automaton is 

illustrated in Figure 10. Different colours of cells in Figure 10 (a, b) represent various states 

of those cells at time    Let us suppose, cells of the cellular automaton has seven possible 

states, all of them a evident from the Figure 10 (c). If the central red cell will designated as a 

team-manager, and men in neighbour cells will perform during one time step the certain five 

activities, than in a next step at time     team-manager will get the definite honorarium 

for his team. From cellular automata point of view, a person in the central red cell is an 

individual automaton (see Figure 11), collected information about activities of his employees 

and designated their financial state depending on their diligence. If the newly acquired state 

of the central red cell will marked with the purple colour, the cell will change its colour from 

red to purple in the next step at time    . The alteration of cell states takes place 

synchronously for all cells in the lattice. Because CA must be also state-homogeneous, the 

state “manager” may appear in any cell of the lattice in a same way as any other activity or a 

state.   

 

Figure 9: Graphical explanation of the cell having the position   and its neighbour cells located in a 
regular square lattice 
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In this session the cellular automaton based on a regular lattice was described. But there are 

also cellular automata, where cells are positioned randomly. Random connection of cells was 

proposed by Richard Feynman [28]. 

  

2.2.3.  Lattice gas cellular automata as a special case of cellular 
automata  

Wolf-Gladrow mentioned in [31]: “despite of their simple update rules cellular automata can 

display complex behaviour which is a prerequisite to use them as a simulation tool for 

physical (biological, chemical,...) phenomena like, for example, fluid flow”. The cellular 

 

Figure 10: Graphical interpretation of two-dimensional cellular automaton: a – general appearance 
of a regular lattice, b – detailed configuration of neighbourhood cells of reference cell, c – application 

of a transition function and updating the state of the cell at time t+1 [17] 

 

Figure 11:   Cell of the cellular automaton as a individual  automaton: states of the neighbour cells 
are inputs, the new state as an output of the automaton [17] 
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automaton that was able to simulate the fluid flow phenomena got the name “lattice gas 

cellular automata” (LGCA).  

Lattice gas cellular automaton accounts itself as relatively new and promising method for the 

study of dynamic phenomena, which are often nonlinear and usually described by partial 

differential equations. Lattice gas cellular automata provide the numerical solution of those 

equations or enable the qualitative analyse of complicated physical tasks at that area at 

least. The field of LGCA started in 1973. In papers published in 1973 and 1976 Hardy, de 

Pazzis and Pomeau introduced the first lattice gas cellular automata named after their 

initials HPP model. Due to inappropriate lattice geometry, the HPP model proved to be 

highly anisotropic. More about that will be presented in the Chapter 2.3.2. The paper of 

Frisch, Hasslacher and Pomeau [50] in 1986 showed that phenomena based on a principle of 

billiard game with collisions that conserve mass and momentum, in the macroscopic limit 

leads to Nevier-Stokes equation when the underlying lattice owns sufficient symmetry in a 

two-dimensional case. It was found that hexagonal lattice meets the condition of symmetry. 

So, LGCA became to be used for the simulation of fluid dynamics. The principles of molecular 

dynamics reflected in the Boltzmann equation (see Chapter 1.4.2), properties and abilities of 

cellular automata (see Chapter 2.2.2) have been joined together into the LGCA model.  

Detailed description of the LGCA, definition, basic properties and types of the LGCA are 

presented in the Chapter 2.3. 

2.3. Principles of lattice gas cellular automata 

As it was mentioned earlier in [50], the points of view from which a fluid can be described 

are, molecular, kinetic, and macroscopic. As it was presented in the Chapter 1.4.1 the 

detailed behaviour of a fluid at continuum macroscopic level is provided by partial 

differential equations, e.g., Navier-Stokes equations. Some other numerical techniques, such 

as, finite-difference and finite-element methods, are used for transforming a continuum 

system into a discrete one [51].  

The Lattice Gas models based on Cellular Automata are newer compared to numerical 

methods mentioned above. These models make possible to describe the behaviour of fluid 

systems at a molecular level under various microscopic conditions. These models are based 

on detailed information about individual particles, such as their positions, masses, and 

velocities and they provide outputs in terms of molecular dynamics. Thus, lattice gas models 

entered into the history as an alternative for modelling fluid systems. 

From the molecular theory developed in the last century it is known that individual 

molecules in crystals fluctuate around their locations in equilibrium state. Only occasionally 

they do jump out of their locations, such events are considered as fluctuations. These jumps 

occur due to their collisions with other molecules, when the system is shifted from its 

equilibrium state by some agent. A remarkable idea was to consider that a fluid has a 
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structure similar to a crystal and that every liquid molecule sits at some fixed point, heaving 

the same number of neighbouring sites at a definite distance. These sites are either empty 

or occupied by a molecule [52]. These spatially organized patterns of molecules are in 

accordance with a term ‘lattice gas model’. Different types of lattice gas models were 

proposed for description of a simple liquid7 behaviour. There are two distinct basic lattice 

gas models mentioned in literature: non-interacting and interacting.  

The non-interacting lattice gas is mentioned in Kittel’s book [26]. This model is represented 

by a set of   non-interacting atoms distributed over    lattice cells. Each cell is either 

occupied by one particle or empty. This system does not have any kinetic energy or any 

energy due to particle interactions. In spite of that, it found its application in statistical 

physics because non-interacting lattice gas model provides a correct shape of the ideal gas 

state equation where the pressure is obtained as a partial volume derivative of the system 

entropy.  

The non-interacting lattice gas models together with cellular automata possibly helped to 

create the interacting lattice gas models – Lattice Gas Cellular Automata model.  

According to Rivet and Boon [46] Lattice Gas Cellular Automata belong to the general class of 

cellular automata, thus sharing features characteristic to that class: 

(i) Being one of the cellular automata, lattice gas cellular automata consist of identical 

individual automata which are tied geometrically to the nodes of a Bravais lattice, situated in 

an Euclidean space of dimension D. Individual automata are also called “nodes” in the 

purview of lattice gas cellular automata. 

(ii) Instantaneous state of lattice gas cellular automata depends on the states of all individual 

automata. Each its individual automaton can inherit any one of the    states, where the 

quantity   represents the number of channels. Channels are links between neighbouring 

lattice nodes, i.e. neighbouring individual automata and they exactly copy the geometry of 

the lattice. In LGCA models each channel may either be occupied by a fictitious particle or 

remain empty and so, it has two possible states of existence. Thus, the state of an individual 

automaton can be interpreted as a set of states of channels, which connect the individual 

automaton with neighbouring ones. Consequently, information about the channel’s 

occupation corresponds to signals fed to individual automata. 

(iii) The elementary evolution process of lattice gas cellular automata takes place in regular 

discrete time steps and consists of two distinct phases of evolution: 

 collision phase – it is the first evolution step. During this phase, each individual 

automaton takes the new post-collision state depending on input signals and collision 

                                                        
7From fluid dynamics, simple liquid (fluid), is also known as a Newtonian liquid (fluid) – is a liquid in which the 
state of stress   [Pa] at any point is proportional to the time rate of strain at that point and the proportionality 

factor   [Pa*s] is the viscosity coefficient:    
  

  
, where 

  

  
 is the velocity gradient perpendicular to the 

direction of shear or equivalently the strain rate [s-1].   
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rules. Inputs signals are obtained from neighbour individual automata and they 

contain information about the states of neighbour individual automata. The collision 

rules are the same for all individual automata and do not depend on their position. 

New states of individual automata generate output signals for the next evolution 

step; 

 propagation phase – is the second evolution step. During this phase output signals of 

every individual automaton are conveyed to its neighbouring ones, i.e. neighbouring 

nodes, along the channels. Thus, these signals becoming a part of the input signals 

for its neighbours at the next time step. It is necessary to emphasise, that all changes 

in each individual automaton of the lattice gas cellular automata transmit output 

signals simultaneously.  

The detailed description of the following properties and principles of LGCA, as a 

discretization of space and time, evolution rules are presented in the Chapters 2.3.1 – 2.4.2. 

 

2.3.1.        Discretization of space – basic methods. Grid generation 

Over the years, many discretization algorithms or methods have been proposed. They have 

been developed due to various needs. In mathematics, discretization concerns the process 

of transferring continuous models and equations into discrete counterparts [53] In physics, 

the discretization is defined as a substitution of a continuous media (continuum) by a system 

of discrete points, where different parameters of a related domain of the continuum are 

settled [54]. 

Discretization of space is an essential step to simplify continuous problems. As a result, the 

necessity to solve the partial differential equations transforms then into the solution of 

differential or algebraic equations only [54]. For example, Nevier-Stokes equation, 

introduced in Chapter 1.4.1, is very difficult to solve using pen and paper, or analytically. For 

continuous problems and such types of analytical description, in the last 40 years, a brand-

new computational approach was developed. Here, the complicated domain or a space is 

broken down into small pieces, each more simple to analyze. Hereby, the values at every of 

the infinite number of points of interest are reduced to the discrete set of values, which are 

finite.     

So, in connection with physical definition of discretization, we are interested here in 

discretization methods, which direct to the formation of a set of discrete points, called 

nodes, and usually used in solution of physical continuous problems. The common 

discretization methods are: 

 Finite differences method (FDM), which is used to obtain an approximate solution of 

partial differential equation governing the behaviour of physical system by using 
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neighbouring points. The regular grid8 is imposed on the physical domain. The 

approximation of derivative of an unknown quantity at a grid point takes place then. 

This approximation is given by the ratio of the difference of the unknown quantity at 

two neighbour points and the distance between grid points.   

 Finite volume method (FVM) includes the splitting of a physical space into small 

volumes and subsequently the integration of the partial differential equations over 

each of volumes. Then the changes through the surface of each volume (fluxes at the 

surface of each finite volume) are approximated as a function of the variables in 

neighbouring volumes.  

 Finite elements method (FEM) also splits up the space into small pieces. Each of the 

pieces is called an element. Compare with FDM, the FEM is an approximation of the 

solution of differential equation. Unlike the previous method, a grid point9 exchanges 

the information with all the grid points which it shares an element [55].  

So, the principle of all the above-mentioned methods is a splitting of the continual space 

onto a grid and thus obtaining the finite number of points in space and in time subsequently, 

at which variables are calculated.  Adjacent points then are used to calculate derivatives. The 

discretization of a geometrical domain into small simple shapes (points, volumes, elements) 

is mentioned in literature as a “grid” or “mesh generation” [56]. During the grid generation 

the next criteria influence the grid geometry:    

 The local density of points – the higher density is elected, the more accurate the 

solution is, but the computation takes more time.  

 The smoothness of the point distribution – large variations in grid density or shape 

can cause numerical diffusion and as a result lead to inaccurate results or instability. 

The elements of the grid should not be overlapped (               ) [57]. 

 The shape of created grid elements – elements of the grid should avoid both very 

sharp and flat angles; shapes of grid elements may cause serious numerical 

problems, etc. [58].    

Three types of grids are distinguished in literature: structured, unstructured and hybrid. 

Their characteristics are typified in the Table 1:.  

The next part of the chapter is concerned with a study of lattices based on the structured 

grids – their types, characteristics, advantages and disadvantages in connection with their 

usage in lattice gas cellular automata modelling.    

 

                                                        
8Grid (also called mesh) is defined as a complex of elements discretizing the simulation domain with the aim of 
construction a discrete version of the original partial differential equations. In two-dimensional domain it is 
triangular or quadrilateral grid, in three-dimension it is tetrahedral or hexahedral [58]. 
9Grid point (also called node) is a place, where elements are connecting.   
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2.3.2.  Discretization of space in LGCA model  

In order to describe natural systems accurately on an ordinary scale, models based on 

cellular automata require an approximation of the Euclidean geometry as closely as possible. 

For that reason different types of lattices (see Chapter 2.3.2.1) are used for a space 

discretization in LGCA models.    

Each physical model (LGCA model in our case) that is defined on a lattice is opposed to the 

continuum space model and is known as the lattice model. Within the context of cellular 

automata or lattice gas cellular automata the term “lattice” is used rather than “grid” or 

“mesh”. Though in Czech language the meaning of all these terms is the same, in English it is 

referred to different definitions.  

Table 1: Characterization of different types of grids [57, 58]: 

Characteristics 
Structured (regular) 

grid10 
Unstructured grid11 Hybrid grid 

The appearance 

   

Splitting the domain Into regular grid 
elements 

Is based on a density 
function that is 
defined by the input 
geometry or the 
numerical 
requirement 

As a first step – 
splitting the domain 
into non-regular 
domain and then 
decomposing each 
such domain by 
regular grid. 

Coordination number 
  12 

  is constant, 
connectivity13 can be 
calculated 

Arbitrary  Arbitrary  

Geometric flexibility Lack  Greater The highest 

Generation intensity Simple and fast Harder and slower The most hard 

The “costs” 
associated with 

Less computer 
memory is needed 

Expensive in time, 
highest memory 

The same as 
unstructured grid has 

                                                        
10 A regular grid is a tessellation of the Euclidean plane by congruent rectangles or a space-filling tessellation of 
rectilinear parallelepipeds [87]. 
11 An unstructured grid is a tessellation of a part of the Euclidean plane or space by simple shapes, such as 
triangles or tetrahedral, in an irregular pattern [88].   
12 Coordination number   is one of the important characteristics of lattices. According to [89] coordination 
number is the number of direction vectors; in [90] it is defined as the total number of neighbours of a given 
lattice node.    
13

 Usually, connectivity of a grid or lattice characterizes the connection of its vertices and is defined as a total 
number of links that meet in a node [46]. Connectivity is a property of the lattice which is described by the 
value of coordination number.   
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usage requirements are 
needed, the resulting 
linear system is hard 
to solve 

Application field Problems with simple 
domain and smooth 
changes in solution; 
simulation based on 
cellular automata 
model (including 
LGCA model).   

Finite element 
method and three-
dimensional problems 

Hydrodynamic studies 
especially unsteady 
flow involving 
multiple objects 
moving toward or 
away from each other 
– usually are solving 
by mathematical 
discretization 
methods [59]  

In mathematics, a lattice in a  -dimensional Euclidean space is defined as a discrete 

subgroup of    which spans the real vector space   . Every lattice node in    can be 

generated here from a basis14 of the unit vectors    by forming all linear combinations with 

integer coefficients    [60]: 

     

 

   

   (27) 

In physics, lattice is a regular, periodic configuration of points, particles, or objects 

throughout an area or a space [61]. In materials science and solid-state physics, lattice is 

engaged as synonym for a crystalline structure and presents the arrangement of atoms or 

molecules in a crystalline solid. Contrary of the grid, lattice is usually viewed as a regular 

tiling of a space by primitive cell. Because the primitive cell is a minimum cell corresponding 

to a single lattice point of a structure with translational symmetry, lattice can be 

characterized by the geometry of its primitive cell. One of the characteristic properties of the 

cell geometry is the number of lattice nodes (sites) directly connected to a single lattice 

point. This number is known then as a coordination number   of the lattice.  

The overview of primitive cell´s geometry and appropriate lattices are presented in the part 

“Bravais lattices”.  More attention is given to Bravais lattices, which are being used in LGCA 

modelling (see Chapter 2.3.2.1). 

Bravais lattices  

Lattices and their symmetries were studied for the first time by M.L. Frankenheim in 1840's. 

He has found fifteen types of lattices. A few years later, Auguste Bravais, the French 

physicist, who is well known thanks to his work in crystallography, pointed out that two of 

                                                        
14

 Basis is a set of vectors that, in a linear combination, can represent every vector in a given vector space, and 
such no element of the set can be represented as a linear combination of the other. So, basis is a linearly 
independent spanning set [91].  

http://en.wikipedia.org/wiki/Discrete_subgroup
http://en.wikipedia.org/wiki/Discrete_subgroup
http://en.wikipedia.org/wiki/Basis_%28linear_algebra%29
http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/Integer
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the Frankenheim classes contained identical lattice, and that there are five two-dimensional 

and only fourteen three-dimensional lattices in crystalline system, which distinct from each 

other by the geometry of primitive cells. [62, 63] Now it is possible to see that all Bravais 

lattices fall within the set of structured grids.  

Two-dimensional Bravais lattices are (see Figure 12): 

 square; 

 rectangular; 

 oblique; 

 centered rectangular (rhombic); 

 hexagonal.   

Today the definition of Bravais lattice is following: it is an infinite set of points generated by 

a set of discrete translation operations. As it was mentioned by Rivet in [46] due to the finite 

capacity of our computers the lattice in LGCA is only a subset (the finite number of lattice 

nodes) of the relevant Bravais lattice.  

Lattice Gas Cellular Automata use two types of Bravais lattices for the space discretization:  

 square Bravais lattice – was used in a first simple LGCA model, known as HPP15 

model;  

                                                        
15 HPP model was the first lattice gas cellular automata. It is called after its autors: Hardy, de Pazzis and 
Pomeau 

 

Figure 12: Two-dimensional Bravais lattices: a - square, b - rectangular, c - oblique, d - centered 
rectangular, e – hexagonal [17]  
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 from 1986 the hexagonal Bravais lattice was applied in a basic FHP model. 

Nowadays, the hexagonal lattice is the main one, which is being used in two-

dimensional LGCA models (in a group of FHP models) and a face centered hypercube 

lattice in three-dimensional LGCA models.  

Definitions and properties of square and hexagonal lattices and also their usability for a 

space discretization in LGCA modelling are described below. 

2.3.2.1. Geometry of square and hexagonal lattices  

As was mentioned before, the square and hexagonal lattice (equivalent is triangular lattice) 

are two of the five two-dimensional Bravais lattices, which are being used for a space 

discretization in LGCA models because of their high symmetry. The most common types of 

square lattice regarding to its orientation are: upright square lattice and diagonal square 

lattice, which differ by an angle of 45° (see Figure 13).  

In a first LGCA model, in the HPP model, the upright square lattice was used. The set of 

direction vectors here was the following one: 

                            

In a case of hexagonal lattice there are two types of lattices also: hexagonal lattice with 

triangular tilling (Figure 14, 1) and hexagonal lattice with honeycomb structure, which has 

hexagonal tilling (Figure 14, 2). Rivet in [46] called those lattices as the triangular lattice with 

hexagonal symmetry and the hexagonal honeycomb lattice. The term “hexagonal lattice” is 

the most frequently in a connection with LGCA modelling and it is used below. Under this 

term the triangular lattice with hexagonal symmetry is understood.  

The hexagonal lattice (triangular lattice with hexagonal symmetry) was chosen for the next 

development of LGCA models. It consists from equilateral triangles. There are four possible 

orientations of such triangle. When triangles are pointing up and down, it is hexagonal 

lattice with horizontal rows, as it is shown in Figure 14, 1 (a) and 1 (b). Exactly this type of 

lattice was used in advanced LGCA model, such FHP models. Second type is a hexagonal 

lattice with vertical rows – it is the lattice with triangles pointing left and right (see Figure 14, 

1 (c)). The honeycomb lattice has also two orientations, subsequently, they are: the 

honeycomb lattice with vertical rows – every hexagon has two horizontal sides (see Figure 

14, 2 (b)) and the honeycomb lattice with horizontal rows – i.e. every hexagon has two 

vertical sides (Figure 14, 2 (c)). Those two structures differ by an angle of 30°.     

It is evident, that lattices, presented in this chapter, have the different coordination number 

 . For example, at the square lattice each node is connected with four nearest nodes – the 

coordination number    , in a case of honeycomb lattice    , for hexagonal lattice 

   . 
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 Figure 13: Types of the square lattice: upright (a) and diagonal one (b) [64] 

 

The topology and geometry of the lattice is very important for LGCA modelling. The collision 

between particles, their propagation and the behaviour of the lattice gas at the boundaries 

are directly dependent on lattice geometry. For example, the HPP model quickly 

disappeared because of its high anisotropic behaviour. The HPP model lacked rotation 

1 

   

 a b c 

2 

   

 a b c 

Figure 14: Geometries of 2D hexagonal lattices: 1 – hexagonal lattice with horizontal (a, b) or 
vertical (c) rows; 2 – hexagonal honeycomb lattice with vertical (a, b) or horizontal (c) rows 
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invariance, which is impossible at the square lattice. The more advanced LGCA models have 

been developed on the hexagonal lattice. Because no node-independent connection of 

nearest neighbour nodes can be design on the honeycomb lattice – the lattice has different 

structure at its odd and even rows; the hexagonal honeycomb lattice with triangular 

symmetry doesn’t satisfy the homogeneity principle of LGCA modelling and wasn’t used in 

LGCA models.   

More about ordering of the neighbour nodes and properties of the square and hexagonal 

lattice is presented in next two chapters.  

2.3.2.2. Neighbourhoods in the square and hexagonal lattice 

From the LGCA point of view, each lattice consists of channels and nodes. Two nodes, 

spoiled with a channel are considered to be neighbour nodes. As was mentioned in the 

Chapter 2.2.2 cellular automata updating rules are local by definition. The same property 

refers to LGCA models (see Chapter 2.4). The state of a given lattice node and states of its 

vicinity are only required for the acquiring of the local state of the system. According to [49] 

the spatial region in which the lattice node needs to be searched is called the 

neighbourhood.   

For two-dimensional square lattice, the following types of neighbourhoods are often 

considered (see Figure 15): 

 the von-Neumann neighbourhood;  

 the Moore neighbourhood; 

 the Margolus neighbourhood. 

For a given central node (marked with a red colour in the Figure 15 (a)), i.e. the one which is 

to be updated, the set of the first four nearest neighbour nodes spoiled by the channels with 

the central node (marked with a blue colour in the same picture), called as a north (N), west 

(W), south (S) and east (E), creates the von-Neumann neighbourhood.  

Except those four nodes, the Moore neighbourhood contains also second nearest 

neighbours: north-east (NE), north-west (NW), south-east (SE) and south-west (SW), that is 

the total of eight nodes – see Figure 15 (b).  

In a case of Margolus neighbourhood the space is divided into so-called Margolus blocks of 

two-by-two nodes. The definition of nodes inside the block is following: upper-left (UL), 

upper-right (UR), lower-left (LL) and lower-right (LR). Blocks are shifted by one cell along 

each dimension on alternate time steps. So, Margolus blocks get different spatial co-

ordinates on alternate time steps and nodes inside the blocks. For example, the node 

labelled as a UR in the following time step (see Figure 15 (c), it is           , i.e. time step) 

will be become UL at the iteration in the next time step (see           ., i.e. the right part 

of the Figure 15 (c)). The idea of Margolus neighbourhood is that during updating phase, the 
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transition rule is applied to a whole block at a time rather than a single cell. This principle is 

being used in block cellular automata or partitioning cellular automaton. [49] 

Hexagonal lattice is the most favourite one in two-dimensional LGCA models. According to 

[65] the standard neighbourhood template consists here of six nearest neighbour nodes (in 

the Figure 16 they are blue).  Those cells are edge-connected to the central hexagonal cell 

(red one in the Figure 16). If the node, located in the centre of the red cell, will be spoiled 

with central nodes of blue cells using links (i.e. channels), geometry of the hexagonal lattice 

become to be evident. 

 

  

a b 

 

c 

Figure 15: Neighbourhood templates for a regular square lattice: von-Neumann neighbourhood (a), 
Moore neighbourhood (b) and Margolus neighbourhood (c) 
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It is well known, that hexagonal lattice is difficult to represent and to visualize. In simulation 

algorithms as well as in an image processing the hexagonal lattice is often mapped into the 

square one. [65] In connection with image processing there are two main techniques how to 

obtain the hexagonal lattice. One of such techniques is presented in [66]. The Mersereau's 

method is based on a suppression of the alternate rows and columns from the square lattice 

as shown in the Figure 17. 

Another method was proposed by Staunton [67]. He has shifted the alternate rows of the 

square lattice by the half of the pixel's distance (see Figure 18).   

 

Figure 16: The hexagonal neighbourhood 

  

a b 

Figure 17:  Mersereau's scheme for obtaining the hexagonal lattice (b) from the square one (a)  
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According to Weimar [68] in CA simulation the hexagonal type of neighbourhood could be 

also done through a shift of even rows of the square lattice in one direction and odd rows 

into the opposite direction. As a result the alternating neighbourhood arises for even and 

odd rows. So, the neighbourhood in all odd rows contains nodes: N, NW, W, SW, S and E; 

whereas the neighbourhood in all even rows contains nodes: N, W, S, SE, E and NE (see 

Figure 19). 

 

  

  

a b 

Figure 18:  Staunton's method for obtaining hexagonal lattice (b) from the square one (a) 

  

a b 

Figure 19: Adaptation of the hexagonal neighbourhood to the square lattice: the ordering of the 
neighbour nodes in all odd (a) and even (b) rows  
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2.3.2.3. Comparison of square and triangular lattice with hexagonal 
symmetry 

With regards to LGCA modelling, the gas dynamics at the macroscopic level is strongly 

dependent on the type of underlying lattice on the one side, and type of neighbourhood on 

the other side. Compared with the triangular lattice with the hexagonal symmetry, square 

lattice has a simpler representation using square arrays, and also easier visualization. On the 

other hand the square lattice is jotted in literature as a most anisotropic one from all 

possible two-dimensional lattices. For example, fluid models based on a square lattice suffer 

from the preferred directions of the lattice; as a result there are preferred axes for flow 

propagation. This property is discordant to the physical laws, (in a steady state of the system 

a certain variable has the same value in all directions, in other words, it is isotropic). That is 

why the development of HPP model was stopped at a moment, when the anisotropy of its 

square Bravais lattice broke the isotropy. [69] However, the regular square lattices (upright 

and diagonal) are usually adopted in other models based on CA because of their simpler 

computer implementation and computations connected with them. [65] 

The hexagonal lattice has been shown in literature as a one, which geometry is suitable for 

modelling the behaviour of a large class of natural systems. The main ones are 

hydrodynamic phenomena, diffusion of gasses, crystal growth and so on. This type of lattice 

has the lowest anisotropy of all regular two-dimensional lattices. The lower anisotropy of the 

lattice makes simulations more natural, what is very important in lattice gas models for fluid 

flow. The main disadvantage of the lattice is a difficult representation and visualization. 

Thus, the mapping of this lattice into the square one it is applied in many simulation 

algorithms. [70] 

2.4. Lattice gas cellular automata – principles of the model 

As it was mentioned earlier in [50], the points of view from which a fluid can be described 

are: microscopic, mesoscopic, and macroscopic. The detailed behaviour of the fluid in the 

continuum macroscopic level is provided by partial differential equations, e.g., Navier-Stokes 

equations for flow of incompressible fluid (see Chapter 1.4.1). Some other numerical 

techniques, such as finite-difference and finite-element methods, are being used for the 

transformation of a continuum system into a discrete one [51]. The lattice gas models based 

on cellular automata are representatives of fully discrete models. Based on the detailed 

information about individual particles, such as their positions, masses, and velocities, they 

enable to describe the behaviour of fluid systems at a molecular level under various 

macroscopic, microscopic or mesoscopic conditions. Thus, lattice gas models entered into 

the history as an alternative for fluid system's modelling. Detailed description of lattice gas 

cellular automata is accessible for example in [31, 46, 49]. 
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According to Reviet [46]: “from the mathematical point of view, a lattice gas is a particular 

class of cellular automata...“. Thus, lattice gas models are based on cellular automata rules 

and must also satisfy following conditions: 

1. Individual automata of lattice gas cellular automata are tied geometrically to the 

nodes of a regular Bravais lattice of dimension   (as it was mentioned in Chapter 

2.2.1, in lattice gas cellular automata the term “individual automaton” is used instead 

of term “finite automaton”). That is why the individual automaton can also be called 

a “node” (see Figure 20, 1). Nodes are labelled by their position vector  , which takes 

only discrete values. All individual automata are taken to be identical. 

2. Any individual automaton has   possible internal states, where   16 – it is a Boolean 

variable, it is integer and it represents the number of channels (or communication 

channels) between nodes (see Figure 20, 2). Channels are also tied geometrically to 

the Bravais lattice – in fact, they are links between neighbour nodes of the lattice. In 

this work channels will label by an integer   ranging from 1 to   or 0 to  . The 

labelling is node-independent.  

3. Similarly to cellular automata, the elementary evolution process of LGCA is repeated 

at discrete time steps and it is separated by a time increment   . In lattice gas 

models      is equal to the unity (time unit –     ), when the information presented in 

channel   at the node   goes to the node     , where    is the velocity vector (see 

Figure 20, 4). Here the information is presented by fictitious particles occupying 

channels  . The maximal number of particles in a node is done by  . In the most part 

of the lattice gas models (in the non-thermal LGCA: HPP, FHP-1) particles (Figure 20, 

3) of the same mass   (in       – mass unit) and velocity   are moving on an 

underlying regular Bravais lattice, which has the unitary distance    (in      – length 

unit) between neighbouring nodes. But there are also multi-speed lattice gas models: 

FHP-2 and FHP-3 LGCA models that contain extra particles with zero velocity; 

particles in a GBL model, named after Grosfils, Boon and Lallemand, has three 

different velocities.  

4. The elementary evolution process of LGCA is a sequence of two phases: the collision 

and the propagation one.  

                                                        
16 In the HPP and FHP-1 lattice gas models   is a coordination number. 



CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR 
AUTOMATA 

 

56 
 

From the information presented below it is obvious that the main characteristic of the LGCA 

models is a fully discreetness, since main parameters are discrete. Basically LGCA models 

differ by collision rules. More about collision phase in non-thermal LGCA models is 

introduced in the following Chapter 2.4.1.   

2.4.1. Collision phase  

In Lattice Gas Cellular Automata the collision phase occurs in each time step, either before 

or after the propagation phase. The order in the sequence of collision and propagation 

phases is unimportant when long-time behaviour is considered and large-scale properties 

are calculated. [46] The collision phase proceeds in accordance with collision rule, which is 

chosen to conserve a mass (in fact the number of particles) and a momentum at each site of 

the lattice. The conservation of the local particle number   and the mass   at the node   is 

described as follows. Conservation of the particle number at the node   is following:  

   
 

 

   

       

 

   

    
(28) 

 

Mass conservation at node   is: 

   
 

 

   

                     

 

   

    
(29) 

 

In Equations (28) and (29) the initial distribution of the colliding particles in the node   at 

individual channels  ’s is represented by      , while their post-collision state in the same 

node and channel is given by the “new”   
     values. It is evident, if the individual masses 

of all particles in the node   are equal to 1, then the total mass in the node   is equal to the 

total number of particles.  

The local momentum conservation during the collision phase may be expressed using its 

components   
     and       as: 

 

Figure 20: Representation of the LGCA model underlaid by the hexagonal Bravais lattice: 1 – the 
node, i.e. the individual automaton, 2 – the channel, 3 – the moving particle, 4 – the direction of 

moving [17] 
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(30) 

 

where        denotes the components of velocity vector (ne number of velocity 

components is given by the connection number  ).   

The redistribution of particles in an individual node obeys the rule of keeping the total 

momentum in the node after the collision phase invariable.  

The post-collision state in the node   depends only on its pre-collision state and collision 

rules, which differ for different LGCA models. 
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2.4.1.1. Collision rules of the FHP-1 and FHP-2 LGCA models 

Historically, the first lattice gas model was introduced in early 1970’s by Hardy, de Pazzis and 

Pomeau and was called after its authors as a HPP lattice gas model. But the anisotropic 

properties of lattice gases living on the square two-dimensional lattice were founded. 

Therefore, the more advanced LGCA models have been developed on two-dimensional 

hexagonal lattice. The group of so-called FHP LGCA model was introduced ten years later by 

Frisch, Hasslacher and Pomeau. Several versions of FHP model have been developed with 

the same geometrical lattice structure having different collision rules. This group of models 

is described in details by Rivet in [46] and is introduced in this study.    

FHP-1 lattice gas cellular automata model 

An individual automaton of the FHP-1 LGCA model has     channels, corresponding to the 

six directions of the hexagonal lattice. Channels are labelled by        . The masses    of 

all particles are equal. Usually,       . The absolute value of momentum    of each 

particle is numerically equal to   , this is physically consistent with unit mass and unit time 

step. [46] Unit time step in LGCA models is a period which particle needs to jump from the 

certain node to neighbour one.      

During the collision phase in the FHP-1 model two-particle and maximum six-particle 

collisions may occur. 

Two-particle collisions in the FHP-1 LGCA 

If two particles meet together in a same lattice node, they yield two-particle collision. An 

example, when particles come from opposite directions is presented in Figure 21, nodes B 

and D. With equal probabilities particles are being rotated by +60° or -60° (Figure 21, node 

D), or continue in a same direction of moving.  

 

 

Figure 21: Typical two- and three-particle collisions in the FHP-1 LGCA model [17] 



CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR 
AUTOMATA 

 

59 
 

Three particle collisions in the FHP-1 LGCA 

When three particles meet simultaneously in one node (see Figure 21, nodes A and C), it is 

three-particle collision. Collision either takes place with a rotatory deflection of the velocity 

vectors by 60° (Figure 21, node A) or their orientation remain unchanged (Figure 21, node C). 

The rotation by -60° leads to an identical local state transition.  

Effective collisions in the FHP-1 LGCA 

In the FHP-1 LGCA model there are             various local states (i.e. states of 

the individual automaton). Among all these states five of them are effective. Effective state 

is a result of effective collision. The collision is considered to be effective, when the rotation 

of the velocity vectors by 60° has a place.  All effective collisions of the FHP-1 LGCA model 

are presented in the Figure 22. Three of them are two-particle collisions (Figure 22, nodes A, 

B, C), and two of them are three-particle ones (Figure 22, node D and E).  

The complete review of all possible pre- and post-collision local states in FHP-1 LGCA model 

is introduced in Appendix A. For a coding and interpretation of the pre- and post-collision 

states the binary or decimal systems are using in some LGCA algorithms. It was taken in that 

appendix into account.  

  

 

Figure 22: Effective collisions in the FHP-1 LGCA model [17] 
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FHP-2 lattice gas cellular automata model 

The FHP-2 LGCA model is a variant of the FHP-1 LGCA model that includes the possibility of 

one rest particle per node in addition to the six moving particles of FHP-1 model. An 

individual automaton in FHP-2 model has     channels, corresponding to the six directions 

of the hexagonal lattice (i.e. six moving particles can be found in a lattice node) and one 

place for a rest particle. The channels corresponding to moving particles are labelled by 

       , and the channel corresponding to the rest particle is labelled as    . The masses 

   of all particles are equal to one and absolute value of the momentum    of each particle 

is equal to    except the momentum of the rest particle which is zero. [46] 

The collision rules of the FHP-2 LGCA model are the same as at the FHP-1 model with two 

additional events. A moving particle arriving at a node with a rest particle produces a pair of 

moving particles at angels +60° and -60°, regarding the direction of the incoming particle 

(see Figure 23, G). The last additional collision event is the reverse to the former. Two 

colliding particles in a node with their velocity vectors at 120° angle result in one resting 

particle and in one moving particle moving in the direction of their original pre-collision 

momentum vector (see Figure 23, H). In the FHP-2 LGCA model there are          

    various local states, twenty two of them are effective ones. Thanks to the effective 

collisions with resting particles, the FHP-2 model doesn’t conserve kinetic energy. It is 

assumed that either the energy is exchanged with an adjacent thermodynamic reservoir or 

the resting particles vibrate with a vibrational energy equalling their original kinetic one.  

The examples of several collisions of the FHP-2 LGCA model are presented in Figure 23. 

Collisions in nodes A, B and E are similar to the two and three-particle collisions, presented 

in a description of the FHP-1 LGCA model. The two-particle collision between one moving 

and one rest particle is shown in the node G. Examples of the three-particle collisions, where 

one of the particles is a rest one, are presented in Figure 23 in the nodes C and D. In the 

node H two-particle collision is illustrated. In contrast to the FHP-1 LGCA model, it results 

stopping one of the moving particles. This type of collision is opposite to the example in the 

node G.  

Effective collisions of FHP-2 LGCA model are depicted in nodes A, B, C, D, G and H. All 

possible pre- and post-collision local states of the FHP-2 LGCA model are introduced in 

Appendix B.    

Collision rules in LGCA models can be deterministic but is more often they are non-

deterministic (probabilistic). In Figure 23 nodes C and D have the same pre-collision state. 

According to the information presented in Appendix B there are three possible post-collision 

states. Two of them are depicted at the right part of the picture (Figure 23) in nodes C and D. 

The third one is a collision without rotary deflection, thus is non-effective one. In 

deterministic LGCA model the post-collision state is always pre-defined. If LGCA model is the 
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probabilistic one, than the post-collision state of the node is probabilistically chosen 

between possible states according to collision rules. 

After the collision phase, the newly acquired information propagates from the node to 

neighbour nodes – thus the propagation phase occurs.      

2.4.2. Propagation phase in LGCA models  

During the propagation phase, a particle is shifted from the node   to the node       , i.e. 

if a particle is present at a moment   in a node  , it is shifted to the neighbouring node at 

time      according to the direction   of velocity vector. This type of propagation phase 

takes a place inside the whole Bravais lattice. At the boundaries of the lattice there are 

various methods how to realize the propagation of particles.  

One of the methods is so-called “periodic boundary condition” [46]. In that case the 

boundary parts of the lattice, on which the propagation phase is implemented, has to be 

connected to the form of a loop (see Figure 24). This wrapping of opposite sides of a finite 

lattice leads to a periodic motion of the individual particles. The escaping particles return to 

the finite lattice on the opposite sides of its boundaries. 

Another method is in conflict between the theoretically infinite lattices used in LGCA models 

and limited memories of computers. This method is called as a reflective boundary condition. 

This type of boundary conditions is based on various types of particle collision with solid 

walls (see Figure 25). According to Rivet [46] the following types of reflections are: 

  

 

Figure 23: Two- and three-particle collisions in FHP-2 LGCA model [17] 
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1. Bounce-back reflection – also known as a 

no-slip boundary condition. When a particle 

reaches the wall, its momentum vector is 

changed with central symmetry, thus the 

particle is being sent back in a same 

direction to where it comes from (see 

Figure 25, node A). 

2. Specular reflection – is also known as a free-

slip boundary condition. The vector 

component of particle momentum, parallel 

to the wall surface, is conserved during 

such a collision, while the normal 

component of it is reversed (see Figure 25, 

node B). 

3. Diffusive reflection – is a combination of the 

bounce-back and specular reflections, it is 

occurring with chosen probabilities   (see 

Figure 25, node C). 

Red nodes in the Figure 25 represent moveless particles of the solid surface (for example, 

solid walls or surface of any obstacle). Black arrows illustrate the momentum vector of 

particles. Blue arrows show the possible directions of the momentum vector as a result of 

diffusive type of reflective boundary condition. 

 

 

 

Figure 24: The principle of periodic 
boundary conditions for two-dimensional 

square LGCA (HPP model [17]  

 

Figure 25: Various reflective boundary conditions: A - bounce-back reflection, B - specular reflection, 
C - diffusive reflection [17] 
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3. BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR 
AUTOMATA  

“The sciences do not try to explain, they hardly even try to interpret, they mainly make 

models. By a model is meant a mathematical construct which, with the addition of certain 

verbal interpretations describes observed phenomena. The justification of such a 

mathematical construct is solely and precisely that it is expected to work.”  

John von Neumann 

The creation of the own Lattice Gas Cellular Automata algorithms based on the FHP-1 LGCA 

model is presented in this chapter. The algorithm is proposed for fluid flow simulation. Main 

blocks of the basic LGCA algorithm developed for general-purpose computers, their 

specification and function within the whole algorithm are analysed in detail. Modifications of 

the basic algorithm depending on problems under investigation are presented later in 

Chapters 4-6.  

A large variety of computers from personal computers to powerful parallel supercomputer 

and a wide range of programming languages explain the existence of a quantum of lattice 

gas algorithms, which have been implemented since 1985. The algorithm developed here for 

fluid flow modelling was briefly described in [17] and is explain in detail in this work. 

Structure of the algorithm includes unchangeable part that can be used as a base for each 

new algorithm independent on the concrete choice of a lattice gas model (collision and 

propagation phases in the concrete). 

The algorithm was created in a C++ programming language Borland version 4.0 and its full 

text is presented in Appendix C. Algorithm was formally divided into ten code fragments. 

This structure is conserved in all algorithms created in the frame of this work. Follow 

description explains only the role and the function of certain algorithm code fragments. My 

own concept of the FHP-1 LGCA from technical point of view is noticeable from the Appendix 

C.   

3.1.  Code fragment 1 – Header files and initialization of the 
simulation domain  

Usually, in computer programming and particularly in the C++ programming language, 

header files stands at the beginning of the algorithm. Header files commonly contain the 

following: 

 definition of standard library functions;  
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 declaration17 of variables;  

 declaration of subroutines and other identifiers.  

Consequently, the own algorithm starts with an enumeration of all standard library 

functions, which will be used during the calculations. In our case these standard libraries are:     

           – is a definition and declaration for graphical library [72]. 

         – Standard General Utilities Library includes dynamic memory management, 

random number generation, integer arithmetics, etc.  

        – Library to perform Input/Output operations [73].   

        – used in MS-DOS compilers is being used to create text user interfaces, it is 

not describes in The C Programming Language book or in the C standard library [72].    

       – Numerics Library declares a set of function to compute mathematical 

operations and transformations. 

        – describes the characteristics of floating-point types. 

       – Time Library contains definition of functions to get and manipulate date 

and time information [73].  

In the next step the initialization18 of the simulation domain, the space where the computer 

simulation takes place, is made. The biggest size of the adjacent domain is chosen the higher 

accuracy of the outcomes is expected. Regarding to the computer power maximum 450 

single points (lattice nodes) in the direction    (        ) and 300 points in the direction 

   (        ) were chosen, where    and    are   and   axes of the Cartesian system of 

coordinates. 

In a part named “Variables declaration” all variables, which will be used in a main part of the  

algorithm, are enumerated.  Type of variables (    – integer type or       – floating point 

type) and their identifiers are declared. Based on a size of the simulation domain identifiers 

     and      gets values 449 and 299 lattice nodes accordingly to      and     . 

Algorithm is working with a big amount of information. In each time step one needs to know 

which channels in the concrete node are occupied, what is the number of particles 

(parameter     ) and their total velocity. Twelve different arrays19 were declared for that 

reason:  

    and    – contain information about   and   components of a total particle 

velocity in the particular lattice node;  

                                                        
17 Declaration specifies identifiers – the single objects in C++ language. Declaration of variables contains 
specification of type and other aspects [72].  
18 Initialization is an assignment of a value to the declared variable [72]. 
19

 Array is a series of elements of the same name and type placed in contiguous memory locations that can be 
individually referenced by adding an index to a unique identifier and can be used independently on each other 
[92].   
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     and     – are using during the calculation of a new particle velocity distribution 

in a particular lattice node during the implementation of propagation phase;  

   and    are arrays, where the instantaneous number of particles in the particular 

node and the new number of them after collision and propagation phases are 

recorded;  

                   – contains information about cannel occupation.  

Probability of a cannel occupation is given by the special parameter    , thus the density of 

simulated fluid is treated. Because the system evolves in time, parameters      ,      and 

       are included, where total number of time steps is given by     . Variables      and 

         declare graphic pre-set; parameter       adjusts the colour of graphic outputs.  

Some calculations are performed in subroutines20. Three subroutines are declared in the 

algorithm. The collision and propagation phases are supplying in those subprograms: 

int collision(void);  

float propagationodd(void);  

float propagationeven(void);  

Due to the lattice geometry and different ordering of neighbohoods propagation phase takes 

place in odd and even rows of the lattice separately. Detailed description of these 

subroutines, their function is described in Chapter 3.6.        

3.2.  Code fragment 2 – Graphic output setting  

The main part of the program begins with the setting of graphic outputs. It is a standard part 

of the algorithm and it doesn’t change in the algorithms proposed later in the thesis.   

3.3.  Code fragment 3 – Creation of the simulation domain 
and initial state of the simulated system 

The values of the data-fields (declared arrays) are reset to 0 at the beginning of the 

algorithm. This operation is called as a “Data arrays resetting”.  

If the simulation model has solid objects as walls of a channel or a cavity, a porous medium 

etc., a creation of those objects becomes as a first. At the basic simulation model the 

simulation domain of the size         lattice nodes was created. Fluid particles are 

usually moving and interacting with each other inside the simulation domain. The domain is 

confined by solid boundaries. In this algorithm fluid particles are colliding with the solid walls 

according to the bounce-back type of the boundary reflections.  

To distinguish different types of particles I used here several codes. These codes were being 

related to arrays named as   and    (arrays using for calculation of an instantaneous 

                                                        
20 Subroutine (also function, method, procedure, subprogram) is a set of codes, which performs a specific task 
and can be relatively independent of the main program.   
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number of particles, i.e. their total mass, in nodes).  At every position with coordinates   and 

  the value of parameters   and    varies from   to  . If the           (also 

          ), i.e. if the node at the position        has no particle its mass is   (Figure 26, 

A). If the           (also           ) the node at the position        is occupied by a 

moveless particle (Figure 26, B). When the             (also             ), then 

there is   to   moving particles at the position        of the simulation field (see Figure 26, 

C). It also means that one to six channels of the node are occupied by a fluid particle, and 

therefore the total mass at the node is between   and  .    

Thus, this part of the algorithm includes creation of the moveless particles at the simulation 

domain. Detailed description of a principle, which was implemented during occupation of 

channels by moving particles, is described in Chapter 3.4.  

3.4.  Code fragment 4 –  Occupation of channels by fluid 
particles 

3.4.1. Geometry of the lattice 

According to the Rivet's definition [46] individual automata of Lattice Gas Cellular Automata 

are being geometrically tied to the nodes of the regular Bravais lattice, embedded in a D-

dimensional Euclidean space. Square and hexagonal types of lattice are being used in two-

dimensional Lattice Gas Cellular Automata models. 

As it was explained in the Chapter 2.3.2, Bravais square lattice offers simple representation 

and visualization. It uses square arrays, but simulation results show anisotropic behaviour of 

LGCA. This is unfit for modelling of physical phenomena. Therefore the square Bravais lattice 

wasn’t used for the LGCA algorithm in this work.   

The hexagonal honeycomb lattice was illustrated in the Chapter 2.3.2.1. Every structural 

element of the lattice has a small number of neighbours (only three) that could be useful in 

some cases. Representation and visualization of that lattice are more difficult as for square 

 

 
Figure 26: Various examples of node’s occupation:  A – an empty node, B – node occupied by a solid 

particle, C – the node  occupied by fluid particles  
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one because it must be mapped to square arrays and display lattice nodes. Hexagonal 

honeycomb lattice is a regular but not a Bravais one. This type of lattice also wasn’t used, 

because of the small number of neighbours. 

The hexagonal lattice has the lower anisotropy compared with the square lattice; thus the 

simulation systems appear more natural and correct. The greatest disadvantage of the 

lattice is more difficult representation and visualization.  

Based on conclusions of the Chapter 2.3.2.2 the hexagonal lattice was created at the regular 

square lattice by the relative shifting of odd and even rows with each other. Position of 

channels                  , which connect any lattice node with neighbour lattice nodes, is 

partially different and depends whether the node inheres in odd or even row of the lattice 

(see Figure 27). Ordering of channels in odd and even rows is evident from the Figure 27 (b). 

Position of the neighbour nodes connected to the node       is separately presented for 

odd and even rows in the Figure 28 (a) and (b). Blue colour is used for labelling the channels 

related to nodes in odd rows of the lattice, the red one – in even rows. 

Based on Figures 27 and 28 it can be acquired the false impression, that the distance to 

diagonal neighbours is longer that to nearest ones and that they are not equiangular. But 

according to the geometry of hexagonal lattice all distances are equal. Thus the value of the 

distance between every pair of neighbour nodes is taken to be                (    ) and the 

angle between neighbour channels is taken to be 60°. That assumption is valid for all 

implemented calculations in the algorithm.  

 
Figure 27: The hexagonal lattice as the equivalent square lattice with an additional diagonal 

connection (a) and the regular hexagonal neighbourhood in odd and even rows of the lattice (b)    
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Because odd and even rows were differentiated in the algorithm, some operations were 

implemented separately for odd and even rows in a case, when the position of channels was 

important.  

3.4.2. Occupation of channels by fluid particles  

In this part of the algorithm an initial state of the simulated system is generated. As it was 

mentioned in theoretical part of the thesis, the state of the LGCA is given by states of its 

individual automata (see Chapter 2.4). The state of individual automaton is generated by 

means of the channel occupation by moving type of particles.  

Thus, generation of moving particles takes place on resting empty nodes of the simulation 

domain, where no moveless particles are taken place. This process is fully random and is 

driven by the probability of channel occupation, called as a     (see Code fragment 1 – i.e. 

Chapter 3.1). Each channel in every lattice node randomly takes the value 0 or 1 according to 

the following steps:  

1. Selecting the lattice node with coordinates   and  ; 

2. Detecting the information about the number of particles   in the lattice node. If the 

node is occupied by a moveless particle (the mass   in the node got value 7), return 

to the step 1;  

3. Selecting a channel of the lattice node and checking the possibility of its occupation 

by fluid particle. The number of particles in the neighbouring node connected with 

the selected channel should be less than 6; the occupation of the channel by moving 

particle is then possible;   

  

a b 
Figure 28: The ordering of the channels         and the determination of the neighbour nodes 

position in all odd (a) and even (b) rows of the lattice 
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4. Generation the random integer number in the range of 0 to    , where     is the 

probability of channel occupation. In the algorithm the parameter     can range 

from 2 to ∞21  The highest value the parameter     has, the lowest probability of 

channel occupation is. If the random number is equal to 1, the fluid particle is 

situated on the channel; channel takes value 1 and parameter   in the node at the 

position       increases by 1.  In other cases, when the channel of the lattice node 

remains unoccupied, algorithm does return to the step 3. As an example, occupation 

of the channel    at every lattice node in odd rows is: 

if (m[x-1][y-1]<7) {I1=random(pco);} 

if (I1==1) {m[x][y]=m[x][y]+1; i1[x][y]=1;} else {i1[x][y]=0;}   

5. Repeating steps 3 and 4 for all the lattice node channels; 

6. Calculating the   component of the total particle velocity in the lattice node    with 

respect to channel occupation and a fact that directions of velocity vectors of moving 

particles are inward the node;   

7. Calculating the   component of the total particle velocity in the lattice node    with 

respect to channels occupation and a fact that directions of velocity vectors of 

moving particles are inward the node; 

8. Repeating the whole procedure for all lattice nodes with regards of odd and even 

rows of the lattice and related channels location. 

3.5.  Code fragment 5 – Graphical outputs of the initial 
system configuration      

If the simulation model has graphical outputs the first graphical image, depicting the initial 

system configuration, takes a place. According to a number of moving particles in every 

lattice node (the value of parameter   in fact), different colours are assigned to different 

number of particles inside lattice nodes (see Figure 29). 

Form the Figure 29 it is obvious that the most dense lattice gas is created by means of the 

      (see Figure 29 (a)). There are nodes with one, two, three and four moving particles, 

i.e. one to four channels are randomly occupied. When the value of     is 2000, only two 

moving particles are randomly generated (see Figure 29 (d)).    

3.6.  Code fragment 6 – The main cycle of the algorithm  

The cyclic part of the algorithm consists of collision and propagation phases mainly. These 

phases repeat subsequently till the variable       gets the value      initialized in a header 

part of the algorithm. The main cycle is given in the algorithm by an expression:  

                                                        
21 When      , the macro              returns a random number in the range 0 to 1. Thus the probability 
of channel’s occupation is 0,5 – i.e. the average density of fluid moving particles is 3 particles per node.  



CHAPTER 3: BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR AUTOMATA 

 

70 
 

for (cycle=0; cycle<cmax+1; cycle++) 

The structure of the main cycle is presented by means of flowchart (see Figure 30). It is 

obvious, that during every time step algorithm goes through all nodes of the lattice. When 

the lattice node is empty (the value of    ), nothing is happend. When one o more 

moving particles are located in the node, algorithm aplies collision and propagation phases. 

Detailed description of these phases is presented in the next Chapter 3.6.1 and 3.6.2. 

  

  

a b 

  

c d 

 

Figure 29: The initial configurations of the system according to the value of the parameter    : 
       (a);         (b);          (c) and          (d).  
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Figure 30: The flowchart representing the main cycle of the developed FHP-1 LGCA algorithm  
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Code fragment 6 – The main cycle 
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3.6.1. Code fragment 6-A – Collision phase 

The collision phase processes homogeneously in all lattice node expecting nodes which 

being settled by the moveless particle (i.e. nodes which belong to the channel walls or solid 

obstacle). During this operation the distinction of odd and even rows of the lattice is not 

needed. The subroutine             attends to collision phase implementation and consists 

of following steps: 

1. Selecting the lattice node with coordinates   and  .  

2. Declaration of the subroutine’s variables:       ,    ,      and     . The variable 

    is kept equal to the instantaneous value of number of particles   in the lattice 

node at the position (    ;      – is kept equal to the instantaneous value of  -

component of total particles velocity    in the lattice node with coordinates (    ; 

     – is kept equal to the instantaneous value of  -component of total particles 

velocity    in the lattice node with coordinates (    . The values of parameters    , 

   and    are the input information for the subroutine            . 

3. Generation of a random number between   to  , where the upper value is given by 

the number of channels in the lattice node22: 

random(6). 

That macro in FHP-2 lattice gas model returns the random number in the range of 0 

to 6 (i.e.          )23.  

4. Choosing the channel at random regarding to the value generated in a step 3. The 

value   is generated, the channel     is being chosen. For example, if the 

parameter         gets value  , the channel    is active for a next operation (the 

adjustment is determined by the numbering of channel that begins with the number 

1). If the chosen channel is empty than occupy the selected channel of the node with 

the particle, i.e. with value  , and reduce the parameter     by 1: 

cannel=random(6); 

if (cannel==0) 

{if (i1[x][y]==1) {goto nav1;} 

i1[x][y]=1; mas=mas-1;} 

In a case that the channel is settled by moving particle, go to the step 3.  

5. Repeating steps 3 and 4 as long as the parameter     is equal to zero. 

6. Calculation the  -component of the new total particle velocity      of the newly 

proposed configuration in the lattice node. If the      in this node is not equal to the 

original input value      (i.e. the difference between newly calculated      and 

original      is not equal to zero), go back to the step 3. 

                                                        
22 In fact,             returns a random number in the range of 0 to 5 (0, 1, 2, 3, 4, 5) – i.e. a random number 
from the interval      .   
23 An individual automaton in FHP-2 model has 7 channels, corresponding to the six directions of the triangular 
lattice with hexagonal symmetry (i.e. moving particles) and to the one place for a rest particle. 



CHAPTER 3: BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR AUTOMATA 

 

73 
 

7. Calculation the  -component of the total particle velocity      of the newly created 

configuration in the lattice node. If the      in the node is not equal to the original 

input value      (i.e. the difference between newly calculated      and original      

is not equal to zero), go back to the step 3. 

8. Registration the information about newly created configuration, i.e. the occupation 

of individual channels in the lattice node                   – it is the output 

information of subroutine            .   

9. Repeating previous steps for all lattice nodes systematically. 

3.6.2. Code fragment 6-B – Propagation phase 

The propagation phase comes after the collision phase. Because the position of individual 

channels is important in this part of the algorithm, the propagation phase is implemented 

separately in odd and even rows of the lattice. The subroutines                  and 

                  serve for that and contain follow steps: 

1. Selecting the lattice node with coordinates   and  . 

2. Detecting the input information of the lattice node. If the selected lattice node is 

occupied by the solid moveless particle (i.e. the mass is equal to 7), return to the step 

1. The greatest interest at that moment is the occupation of individual channels.  

3. Coming through channels of the lattice node and subsequently looking for the first 

occupied channel denoted in the algorithm as  . If all channels are empty, go back to 

the step 1. 

4. If the channel   is occupied, detecting the state of the neighbor node, which 

communicates with the selected lattice node through the channel  . 

5. In the case that the neighbour node is not occupied by solid particle, relocation the 

particle sitting in the channel   to the neighbouring node takes place. The new 

particle number (the value of the parameter   ) in the neighbouring node extends 

by 1. New values of  -component     and  -component     of the total particles 

velocity in the neighbour node are extended by the value of the  - and  -component 

of the velocity of particle coming through the channel  . 

6. In the case that the neighbouring node, communicating with the selected lattice 

node through the channel  , is occupied by solid moveless particle, implement 

reflection depending on the chosen type of boundary conditions. In the basic 

algorithm the bounce-back type of particles reflection was used. In that case the new 

number of particles (the value of the parameter   ) in the chosen lattice node 

extends by 1. New values of  -component     and  -component     of the total 

particles velocity in the lattice node are extended by the values of  - and  -

component of the velocity of particle coming inside the selected lattice node through 

the channel  . In other words instead of displacement the particle from the channel   
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to the neighboring node, we move it back to the selected lattice node and all 

information connected with this particle. 

As an example, implementation of steps 4-6, when the channel    was denoted as an 

occupied is presented here: 

if (i1[x][y]==1) 

 { 

 if (nm[x-1][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

else {nm[x-1][y-1]=nm[x-1][y-1]+1; nvx[x-1][y-1]=nvx[x-1][y-1]-

0.5; 

 nvy[x-1][y-1]=nvy[x-1][y-1]-sinangle;} 

} 

7. Repeating steps 5 and 6 for all occupied individual channels of the selected lattice 

node. 

8. Repeating previous steps until all lattice nodes are not visited.   

3.7.  Code fragment 7 – Recording of the new system’s state 

According to Wolfram [74], models based on cellular automata rules are always defined to 

use the old values of neighbours in order to determine the new value of any particular cell. 

The C++ program explicitly updates values of lattice gas cellular automata from one side of 

the simulation domain to other one. As a result, it is necessary to store the old information 

related to the neighbours in order to make it available for updating the individual automaton 

itself. One of the approaches to this problem is to maintain two copies of the some data 

arrays, and to interchange their data after every step in the lattice gas cellular automaton 

evaluation.  

In that algorithm the propagation phase implements according to a set of input data. Output 

information is first stored in data arrays   ,     and     (the letter “ ” denotes the “new” 

value, i.e. new value of the variable  ,    and   ), and then it moves back to the proper 

place in the arrays  ,    and   . Thus, this part of the algorithm ensures data transfer 

between pairs of arrays    and  ,     and   ,     and   .   

If the simulation model has graphical outputs the drawing of the initial system configuration 

takes place. Base on a value   in the lattice node, different colours assigned to different 

lattice nodes: 

for (x=1; x<xmax; x++) 

 { 

 for (y=1; y<ymax; y++) 

  { 

  m[x][y]=nm[x][y]; vx[x][y]=nvx[x][y]; vy[x][y]=nvy[x][y]; 

  putpixel (x, y, m[x][y]*print); 

  } 

 }   
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3.8.  Code fragment 8 – Data arrays resetting    

Before one cycle of the algorithm closes up, the resetting of some data arrays is needed, 

because new cycle will start and new set of data will be obtained. While passing through the 

lattice, algorithm checks whether the concrete lattice node is occupied by moveless particle 

or not. In a case that the lattice node is occupied by moving particle or it is empty the 

“resetting” of the information fields, which were used during the collision and propagation 

phases implementation, takes place:   ,    ,    ,                   – all elements of them 

get value of 0. In other case the information, that the lattice node occupied by moveless 

particle, remains without a change in the data array   : 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=3; y<ymax-2; y++) 

  { 

  if (nm[x][y]<7) 

    {nm[x][y]=0; nvx[x][y]=0; nvy[x][y]=0; 

    i1[x][y]=0; i2[x][y]=0; i3[x][y]=0; 

    i4[x][y]=0; i5[x][y]=0; i6[x][y]=0;} 

  else {nm[x][y]=7;} 

  } 

 } 

3.9.  Code fragment 9 – Printout macro  

Because the repeating of the cyclic part of the algorithm is equivalent to the one time step in 

the theory of cellular automata, the printout of carried out number of cycles is being used. 

The information about that is visible in the right bottom part of a monitor (see Figure 31). 

 

 

Figure 31: Monitoring of the simulated system. The state after application of 110 cycles    
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3.10. Code fragment 10 – Final operations 

The counting of cycles comes as a last operation of the cyclic part of the algorithm.  

Before the main part of the algorithm will be closed, the last computer programming 

statements have to be called in order to finish the run of the algorithm. In C++ programming 

language they are as follows: 

              – ends the action of graphical functions in the program;  

          – implements the ending of all functions that were called in a program, it 

also ends subroutines; 

         – by means of keyboard makes possible to finish the program run and return 

to the algorithm. 

The time evolution of the FHP-1 LGCA model is evident from the Appendix D. A high value of 

the parameter     (       ) is deliberately chosen. A movement of individual particles 

can thus be recorded. When a colour of particles changes from violet to blue, the two 

particle collision occurs. The evolution of the particle system was monitored for 20 time 

steps.   

 

The basic skeleton of the Lattice Gas algorithm for a general-purpose computer that has 

been used for further introduced simulation experiments was described. Each particular 

simulation experiment includes for instance subroutines for extra conditions. These 

subroutines provide for example with certain particle monitoring or creation of the pressure 

gradient etc., ensure also a formation of special output data files. The concrete differences 

from the basic Lattice Gas Cellular Automata algorithm are described in particular simulation 

experiments (see Chapters 4-6).    
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4. VARIFICATION OF FHP-1 LGCA ALGORITHM FOR BROWNIAN 
MOTION 

According to Roache [75], before any computer code is used to solve a complex problem, it 

must be verified in order to insure it has been implemented correctly. For that reason, a 

problem having an exact solution that encompasses most of the important physical 

phenomena must be chosen.    

By using the developed algorithm discussed in the Chapter 3, some results obtained via 

verification tests are presented below (see Chapters 4.3 and 5.3). First, the Brownian motion 

simulation is used as a benchmark test for a verification of a newly developed FHP-1 LGCA 

algorithm.     

4.1. Theoretical assumption 

The Brownian motion was first discovered by Scottish botanist Robert Brown in 1827. He 

noticed a movement of plant pollens in water using microscope. But he was not able to 

determine the mechanisms that caused this motion. Later this was proved to be one of the 

effects of molecular motion and interactions between molecules [76].      

Nowadays, Brownian motion is defined as a phenomenon whereby small particles 

suspended in a fluid tend to move in pseudo-random or stochastic paths through the fluid 

(liquid or gas), even if the fluid is calm and the drift vector is zero. This motion is caused by 

collisions between suspended particles and atoms or molecules of the fluid. The term 

“Brownian motion” also refers to a theory or model that is used to explain stochastic motion 

patterns. Random walk, in which the displacement of a particle is entire randomized, is an 

example of such a mathematical model [24]. Random walk has the Markov property, which 

means that the future state of the particle is determined by its current state only, not by any 

of past states (i.e. position of a moving particle at time     depends only on its position at 

time  , and not on a path it took to get there). 

According to Feynman [24], the logic question of the Brownian motion is: “Consider a little 

Brownian movement particle which is oscillates about because it is bombarded from all 

directions by randomly moving water molecules. After a given period of time, how far away 

is it likely to be from its original position?” Solution to this problem Feynman attributes to 

Einstein and Smoluchowski [24].  

Let     is the vector distance from the original position of the particle after   steps, then: 

          (31) 

where   is a vector distance between two consecutive steps of the particle. The square 

distance is: 

        
      

             (32) 
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After averaging over many trials,    
        

     , since      and   are not correlated and 

hence          . Thus the mean square value of the distance vector is proportional to the 

number   of steps: 

  
      

 

  
  ,24 (33) 

where   is the time elapsed since the start of the Brownian particle motion and    is the time 

elapsed between two successive steps. Since the number of steps is proportional to the 

time, the mean square distance is proportional to the time as well:          

  
     (34) 

The coefficient in the Equation (34) is usually expressed as     . Coefficient “2” 

corresponds to the dimension and it is 6 for the 3D systems. The quantity        is the 

diffusion coefficient,   denotes the mobility coefficient (characterises the drift of molecules 

due to outside forces),    is the Boltzmann's constant and   is a absolute temperature. Then 

the mean square displacement of a Brownian particle in terms of the time elapses and the 

value of diffusivity becomes: 

  
      (35) 

4.2. FHP-1 Lattice Gas Cellular Automata algorithm for 
Brownian motion simulation 

The basic FHP-1 LGCA algorithm, described in detail in the Chapter 3, is used here for a 

Brownian motion simulation to validate the algorithm. The difference between basic and 

modificated algorithm is discussed in this chapter. An attention is paid to new parts of the 

algorithm code fragments or the most important differences. Code fragments, which are 

similar to the basic FHP-1 LGCA algorithm (see Chapter 3) are omitted from the description. 

The full code of the algorithm is presented in Appendix E.      

4.2.1.  Code fragment 1 – Header files and initialization of the 
simulation box 

Compared to the basic FHP-1 LGCA algorithm presented in Chapter 3, few more arrays, 

variables and parameters are declared in this part of the algorithm for Brownian motion 

simulation: 

      ,      ,      ,      ,      ,       – data arrays, where an exact position 

of the Brownian particle (a certain channel of the particular node) in every time step 

is being stored; 

                                                        
24

 Following the LGCA model,   is a number of time steps (units:     ), the distance between two neighbour 
nodes of the lattice(it is   in the equation) is equal to 1. The mean square distance of Brownian particle from its 
original position is linearly dependent on a time period of the simulation.  
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   – parameter that defines the appropriate place of the simulation box, where the 

Brownian particle is being generated;  

      ,         ,     ,          – parameters that determine a colour of a 

moving particles, a moveless particles and the Brownian particle at a graphical 

output. The empty node is named as a “hole” and at the graphical output it is black;  

        and        – parameters that determine the initial position of the 

Brownian particle according to the 2D Cartesian coordinate system (X0Y); 

   ,   ,   ,    –   and   coordinates of the Brownian particle. Index “1” indicates the 

position of the Brownian particle before collision and propagation phases. Index “2” 

belongs to the position after those phases implementation; 

          – associated to the distance of the Brownian particle from its original 

position.  

Compare to basic LGCA algorithm three more subroutines are declared in the algorithm. The 

collision and propagation phases of the Brownian particle supplying in subprograms are as 

follows: 

int collisionbrown(void);  

float propagationoddbrown(void);  

float propagationevenbrown(void);             

In addition to a graphical output, the data outputs are also stored. Therefore the data file is 

declared in the algorithm: FILE *output0. 

4.2.2. Code fragment 4 – Occupation of channels by fluid particles  

The Brownian particle is generated in this part of the algorithm in addition to all moving 

particles. The position of the Brownian particle is generated randomly and it is controlled by 

means of the parameter  . The parameter determines an acceptable distance from the 

centre of the simulation domain. The aim of this operation is to generate the Brownian 

particle randomly in the centre of the simulation domain.   

In order to distinguish the Brownian particle from other fluid particles, its weight was 

increased by 13 mass units. Therefore the total mass in the node, where the Brownian 

particle occurs, is between 14 and 19 mass units (14      – the mass of the Brownian 

particle, 15...19      – the total mass in the node, where one Brownian and 1 to 5 fluid 

particles occur). It must be noted, that the mass of the Brownian particle is equal to one 

mass unit. In fact, its weight is the same as a weight of any moving particle. Its increasing by 

value of 13 is just the technical trick. It was used with the aim to distinguish the Brownian 

particle among other moving particles.    

4.2.3.  Code fragment 5-A – Data outputs 

Before the cycling part of the algorithm starts, an initialisation of data files proceeds. File’s 

name and its location are first given. The data are arranged into a  -by-  matrix, where   is 

the number of rows (mostly the number of repeating cycles of the algorithm, i.e. the time of 
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the system evolution). Symbol   is the number of columns (the number of observed 

variables). Values of      ,        and       ,   ,    and          were saved into the 

output data file “         ”.  

4.2.4.  Code fragment 6 – The main cycle of the algorithm 

The main cycle of the algorithm consists from the same steps as it was described in Chapter 

3.6. Unlike the basic LGCA algorithm, there are two subroutines for collision phase 

implementation as well as for propagation phase. When the Brownian particle is identified in 

the lattice node, its collision phase is given by the subroutine                  and 

propagation phase – by means of the subroutine                   . Detailed 

description of those subroutines is presented in following Chapters 4.2.4.1 and 4.2.4.2.  

4.2.4.1. Code fragment 6-A – Collision phase 

From the previous explanation it is obvious that the subroutine             serves for the 

implementation of collision phase between moving particles and is described in detail in the 

Chapter 3.6.1. Collisions between fluid moving and/or Brownian particle are implemented 

according to the                  subroutine. It applies to the lattice node, where the total 

mass is         , i.e. for the node, where the Brownian particle is detected.  

The subroutine consists of nine analogous steps (see description of the code fragment 6-A in 

the basic FHP-1 LGCA algorithm – i.e. Chapter 3.6.1). In contrast to the fluid moving particles, 

the Brownian particle is the special one, because an exact position of it is being detected in 

every time step. For that reason the variable        is declared at the beginning of the 

subroutine.  

The random marking of the Brownian particle takes place when the information about newly 

created state of the individual automaton (i.e. the occupation of individual 

channels                   in the lattice node) is obtained. Marking of the Brownian particle 

consists of following steps: 

1. Generation of a random number between   to  , where the upper value is given by 

the number of channels in the lattice node: 

brownp=random(6). 

2. Choosing the channel at random regarding to the value generated in a step 1. When 

the value   is generated, the channel     is chosen. If the chosen channel after the 

collision's phase implementation gets the value of 1, i.e. becomes occupied, than the 

selected channel of the node is occupied by the Brownian particle. So, the value of 

the variable is increasing by 13. This information is being noted into the 

corresponding data array       25 also: 

                                                        
25      - it is      , or      , or      , or      , or      , or       in the algorithm 
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if ((brownp==0)&&(i1[x][y]==1)){i1[x][y]=13; code1[x][y]=13;} 

In a case when the randomly generated channel is empty, go back to the step 1. 

3. Repeating steps 1 and 2 as long as the newly position of the Brownian particle is 

being known.  

It was mentioned before, in the Chapter 3.4.1, collision phase redistributes particles in an 

particular lattice node according to the collision rules only. The state of the LGCA is 

completely specified by indicating the occupied channels and empty ones. This implies that 

moving particles are indistinguishable and the Brownian one may randomly appears in the 

one of occupied channels in the particular node. The random motion of the Brownian 

particle is obtained then.   

4.2.4.2. Code fragment 6-B – Propagation phase           

It was mentioned before, in the Chapter 3.6.2, the propagation phase is implemented 

separately in odd and even rows of the lattice. Propagation of fluid moving particles occurs 

in subroutines                  and                  , while the movement of the 

Brownian particle is realized in subroutines                       and 

                      . The principle of the last two subroutines is following: 

1. Selecting the lattice node with coordinates   and  , where the Brownian particle is 

located. The individual channel occupation is of the particular interest now.  

2. Coming subsequently through channels, denoted in the algorithm as  , of the lattice 

node and looking for the occupied ones.  

3. If the channel   is occupied by moving particle (i1[x][y]=1) or a Brownian one 

(i1[x][y]=14), detecting the state of the neighbour node, which communicates with 

the selected lattice node through the channel  . 

4. Relocation of the particle setting trough the channel   in direction towards the 

neighbouring node in the case when the neighbour node is not occupied by a 

moveless particle. The new particle's number (the value of the parameter   ) in the 

neighbouring node extends by the value 1 and by the value of the variable      . If 

the Brownian particle relocates,       gets value 13, in otherwise the value remains 

0.  New values of   component     and   component     of the total particles 

velocity in the neighbour node are extended by the value of the   and   component 

of the velocity of particle coming through the channel  . 

5. Implementation of the bounce-back type of reflective boundary condition when the 

neighbouring node of the selected lattice node is occupied by solid particle. Thus, the 

new number of particles (the value of the parameter   ) in the chosen lattice node 

extends by value 1 and by the value of the variable      . New values of   

component     and   component     of the total particles velocity in the lattice 

node are extended by the values of   and   component of the velocity of particle 
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coming inside the selected lattice node through the channel  . In other words instead 

of the displacement of the particle from the channel   to the neighbouring node, it 

moves back to the selected lattice node and all the information connected with this 

particle is being hold within. 

The implementation of steps 3-5, when the channel    is denoted as an occupied is 

shown here: 

if ((i1[x][y]==14)||(i1[x][y]==1)) 

  { 

  if (nm[x-1][y-1]==7) 

{nm[x][y]=nm[x][y]+1+code1[x][y]; 

nvx[x][y]=nvx[x][y]+0.5; 

   nvy[x][y]=nvy[x][y]+sinangle; x2=x; y2=y;} 

else {nm[x-1][y-1]=nm[x-1][y-1]+1+code1[x][y]; nvx[x-1][y-

1]=nvx[x-1][y-1]-0.5; 

  nvy[x-1][y-1]=nvy[x-1][y-1]-sinangle; x2=x-1; y2=y-1;} 

  } 

6. Repeating steps 4 and 5 for all occupied individual channels of the selected lattice 

node. 

7. Detecting the new position of the Brownian particle. Coordinates   and   of the 

node, where the Brownian particle was shifted, are recorded. 

4.2.5. Code fragment 9 – Printout macro 

Data outputs are presented as data files. The current distance of Brownian particle from its 

initial position is calculated according to the Pythagorean theorem: 

distance=sqrt(pow(x2-brownx,2)+pow(y2-browny,2)), 

where        and        are   and   coordinates of the Brownian particle's at the initial 

position,    and    – coordinates of the current position. 

If the Brownian particle collides with the solid boundaries of the simulation domain, the 

simulation is imediatly finished and data outputs are not included into the final data 

treatment. Such a simulation is deliberately broken and thus can not be treated together 

with other data due to missing output files. Output files are saved only when the simulation 

is properly finished.      

4.3. Simulation setup 

The modified FHP-1 LGCA algorithm was applied for a two-dimensional Brownian motion 

simulation. The reduced simulation domain of a size                      , where    

and    are numbers of nodes in   and   directions of the lattice is shown in the Figure 32. 

From the Figure 32 (a) it is evident that simulation domain is bordered by solid walls. Inside 

the simulation domain moving particles are generated with a certain probability. 

Subsequently, the lattice gas of average density     or     particles per one lattice node is 

applied. In the Figure 32 when the lattice node is empty it is black. Red colour is used for the 
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identification of moveless particles, blue one denotes moving particles. Initial position of the 

Brownian particle is presented by the grey square, and its final position after 20 time steps – 

by yellow one. In a real simulation in the middle of the simulation domain one of the fluid 

moving particles is marked as a Brownian one. Trajectory of the Brownian random motion 

during           is monitored. The bounce back type of fluid particle's reflection is applied 

to the solid boundaries of the simulation domain. The exact simulation setups are presented 

in the Table 2. The table header includes the following parameters: 

     – parameter, which is used in the algorithm, it denotes the probability of channel 

occupation by moving particles; 

    and    – it is   and   coordinates of the initial position of the Brownian particle;    

 Time – it is the total time period of the simulation. 

From the Table 2 it is evident that simulation settings are different due the lattice gas 

density and initial position of the Brownian particle. The initial position of the Brownian 

particle is generated randomly in every simulation. Thus the results obtained from the 

simulation should be independent on the initial position of the Brownian particle.   

As it was explained in the Chapter 4.2.5, the distance of the Brownian particle   (see Figure 

33) from its initial position after   time steps is calculated as: 

                      (36) 

 

 
a b 

Figure 32:  Simulation of the Brownian motion presented on the reduced simulation domain 
               : a – the simulation domain bounded by solid walls (red lines), moving particles (blue 
squares), initial position of the Brownian particle (grey square)and its final position (yellow square) 
after 20 time steps, black squares present empty lattice nodes; b – Brownian random motion during 

20 time steps obtained by the developed model based on the FHP-1 LGCA model  
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Where    and  
 

 are   and   coordinates of the Brownian particle's current position;    and 

  are coordinates of its initial position.  

Results of two simulation experiments are reviewed below. Every simulation experiment was 

repeated ten times for ten diferent initial positions of the Brownian particle, that was 

randomly genereted. In order to obtain the numerical results, the diplacement of the 

Brownian particle was averaged over 7 experiments. Tree simulations in each experiment 

were breaken off because the Brownian particle collided with solid boundaries of the 

simulation domain. The size of the simulation domain was limited by  the monitor resolution.   

 

Table 2: The list of Brownian motion computer simulations and their setups 

 Size of the 
simulation domain,  

     x      

Average 
density, 
m.u./l.u. 

  , l.u.   , l.u. Time, 
     

Data output files 

Si
m

u
la

ti
o

n
 e

xp
er

im
en

t 
1

 300 x 300  3 164 144 4000 BROWN03.CPP 

300 x 300  3 158 156 4000 BROWN04.CPP 

300 x 300  3 160 164 4000 BROWN05.CPP 

300 x 300  3 170 152 4000 BROWN06.CPP 

300 x 300 3 - - - - 

300 x 300  3 164 128 4000 BROWN08.CPP 

300 x 300 3 - - - - 

300 x 300 3 - - - - 

300 x 300 3 142 157 4000 BROWN11.CPP 

300 x 300 3 166 157 4000 BROWN12.CPP 

Si
m

u
la

ti
o

n
 

ex
p

er
im

en
t 

2
 

400 x 400 1,5 170 181 4000 BROWN01.CPP 

400 x 400 1,5 209 191 4000 BROWN02.CPP 

400 x 400 1,5 - - - - 

400 x 400 1,5 227 196 4000 BROWN04.CPP 

 
Figure 33: Displacement R of the Brownian particle  
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400 x 400 1,5 228 182 4000 BROWN05.CPP 

400 x 400 1,5 - - - - 

400 x 400 1,5 211 166 4000 BROWN07.CPP 

400 x 400 1,5 222 237 4000 BROWN08.CPP 

400 x 400 1,5 219 183 4000 BROWN09.CPP 

  400 x 400 1,5 - - - - 

This table includes value of the following parameters: 

 Size of the simulation domain - it is presented by the  length   x the width  ; 

 Average density – corresponds to the average number of moving particles in the 

lattice node; 

    and    - corresponds to the   and   coordinates of the initial position of the 

Brownian particle; 

 Time of the simulation – it is the total time period of the simulation; 

 Data output files – are data files obtained from the computer simulation. 

4.4. Results and discussion 

The time evolution of the FHP-1 LGCA model for Brownian motion simulation inside the 

reduced simulation domain of a size                  is presented in an Appendix E. 

This scaled down version of the simulation was used for a graphical representation of the 

Brownian particle movement only. The state of the simulation system is detected here after 

every time step during           The square lattice with coordinates   and   is depicted 

on pictures for simplified representation of the results. But according to the principles of the 

FHP-1 LGCA model computer simulation was performed at the hexagonal Bravais lattice.  

The exact paths of the Brownian particle over             were monitored and are 

presented in Appendix G and Appendix H. Those paths aren’t linear.  They are often similar 

to a “bonsai tree” shape, where some part of the path is approximately linear and another 

part is an area, where the Brownian particle is rather going back or turning in a small closed 

area. The two most sequence shapes of the Brownian particle’s paths are presented in the 

Figure 34.   

Figure 35 plots the mean square displacement    of the Brownian particle from its initial 

position as a function of time. As was mentioned before, the square displacement was 

averaged over 7 simulations. Nevertheless, fluctuations around the linear trend line are still 

evident. The greater degree of fluctuations was recorded in the simulation experiment with 

a lower lattice gas density (                    ). The higher density of the lattice gas is 

simulated, the smaller straight forward displacements of the Brownian particle are achieved.   
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A first benchmark test for a verification of a newly developed FHP-1 LGCA algorithm was 

being considered as a successful one. Better agreement is achieved using higher value of 

lattice gas density. For more accurate simulation of the Brownian motion the biggest size of 

the simulation domain, longer time of the Brownian particle monitoring or averaging over 

the larger number of simulations are recommended.  

 

 

  

a b 

Figure 34: Paths of the Brownian particle after 4000 time steps: a – the straight type of paths 
(simulation experiment 1, data output BROWN04.cpp); b – the “bonsai tree” shape of the path  

(simulation experiment 1, data output is BROWN11.CPP) 

 
Figure 35: The main square displacement of the Brownian particle as a function of time, for ρ=1,5 
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5. VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR POISEUILLE 
FLOW  

The 2D Poiseuille flow is the simplest kind of flow system that can be simulated using FHP-1 

Lattice Gas Cellular Automata. It is an incompressible flow between two stationary parallel 

plates and driven by constant body force [24]. According to data from a number of 

dissertations [77, 78] it is evident that Poiseuille flow simulation is beeing used as a 

benchmark test for a verification of a newly developed algorithm, if it is intended to 

transport phenomena modelling using Lattice Gas Cellular Automata or Lattice Boltzmann 

approach. It is also used as verification for numerical analysis since the analytical solution 

can be obtained from Nevier-Stokes equation. Poiseuille flow model requires only the 

bounce-back type of boundary reflections along the walls of a channel and periodic 

boundary conditions in the flow direction.  

5.1. Theoretical assumption 

Poiseuille flow is an example of an elementary fluid flow. It is also a simple model for flow 

through a crack or joint of a rock. Fluid flow through a porous media, and especially through 

fibrous materials, is a subject of wide interest in textile branch. The textile industry 

encounters with this phenomenon during a lot of production and finishing processes. It is 

also a subject of study from the textile comfort properties point of view. Permeability is the 

physical parameter of prime interest in these circumstances. Moreover, the permeability 

measurement is one of the most important ways that enable to evaluate final textile 

products for its application. For example, permeability is a critical parameter for the 

application of fibrous materials as filters, barrier materials, sportive clothing, etc. Invention 

of multilayer textile materials is based on an idea to combine various layers with different 

permeability to reach an optimal comfort with respect to the water vapour transport 

outward and retention of external liquid droplets [17].  

Generally, fluid flow is a three-dimensional process, but it can be reduced in some cases to 

the two-dimensional due to its symmetry. There is a number of authors who studied 

Poiseuille fluid flow under various conditions using Lattice Gas Cellular Automata or Lattice 

Boltzmann models. For example, Rothman in his work [79] studied two-dimensional 

Poiseuille flow as a function of the variety of channel thickness and variety of pressure 

gradient. The similar computer simulation experiment was done by Wolf-Gladrow [31]. The 

same dependence was of Chen’s interest [80] for three-dimensional channel flow. 

Interesting problems were solved by Yang few years ago [81]. It was based on the Lattice-

Boltzmann model, where the influence of various interactions between the fluid and channel 

walls was considered. Particularly, one part of the channel surface was wetted by a liquid 

while other parts repelled it. Using two Poiseuille flows, opposite to each other, Kadanoff at 

al. developed the method to build a numerical viscometer [82].   
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All above mentioned works, dealing with computer simulations, first prove the parabolic 

velocity profile of the flow. The velocity   of such fluid flow is everywhere parallel to the 

channel walls if the uniform pressure gradient is applied along the two-dimensional channel. 

Thus, the   component of the flow velocity is zero. The   component of velocity is strongly 

influenced by the interaction of the fluid with walls of the channel. The velocity   of a 

viscous fluid is considered to be zero at solid boundaries, when no-slip boundary conditions 

are used. The maximum velocity value appears in the centre of the channel, because of 

viscous forces inside the fluid.  

According to Rothman [79] this type of the flow is being known as a plane Poiseuille flow and 

it is being governed by equation: 

      
 

  
 
  

 
     (37) 

where    
  

  
 is a pressure gradient,   is a dynamic viscosity value of the fluid,   is a 

distance between two parallel plates (in other words it is the channel width).  

To find the volumetric flow rate of flow per unit area   it is necessary to integrate    from 

   
 

 
 to   

 

 
   and divide by the unit area – i.e. by the channel width  , then: 

  
   

   
 (38) 

Equation (38) is in accordance with Darcy's law known from the middle of the 19th century, 

when French Henry Darcy experimentally discovered that the flow rate through a porous 

medium, including a fibrous one, is linearly proportional to the applied pressure gradient. 

For a flow along the   axis of the channel it holds: 

   
 

 

  

  
 (39) 

where   is the permeability of the medium. From Equations (38) and (39) it is evident, that 

the permeability of the channel with two parallel plates at the distance   is   
  

  
. 

Darcy's law is valid for laminar flows, where the Reynolds number is relatively small. In other 

words, the law is valid for steady Poiseuille flows with parabolic velocity profiles in free 

channels.   

5.2. FHP-1 Lattice Gas Cellular Automata algorithm for 
Poiseuille flow simulation 

The algorithm based on the FHP-1 LGCA model which developing was described in detail in 

the Chapter 3, is used for a Poiseuille flow simulation. In contrast to the developed basic 

algorithm, this algorithm allows the computer simulation of the fluid flow inside the infinite 

channel in the   direction. The infinity is given by periodic boundary conditions. Reflective 

boundary conditions are used at the top and down channel boundaries. Pressure gradient is 
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applied in order to create the flow inside the channel. As a result, computer simulation 

provides information about flow velocity inside the channel. 

Thus, for the second verification test few new parts of the algorithm are developed. Those 

parts are described in details in this chapter. Code fragments, which are similar to the basic 

FHP-1 LGCA algorithm (see Chapter 3) are omitted from the description. The full code of the 

algorithm is presented in Appendix I.       

5.2.1.  Code fragment 1 – Header files and initialization of the 
simulation box 

Compared to the basic FHP-1 LGCA algorithm, few special variables and parameters were 

declared in this part of the algorithm for Poiseuille flow simulation: 

      and          – are being used in calculation of fluid moving particles and a 

flow rate;  

      – counts the number of lattice nodes inside the simulation domain, where the 

fluid particles are moving;  

       – parameter that defines the probability of the force creation along one 

boundary of the lattice;    

            – parameter that determines the size of an imaginary ventilator, i.e. the 

area (number of boundary columns), where the force was created;   

           ,           ,            – record the change of the   component of 

fluid particle momentum in a position of the imaginary ventilator after the forced 

shifts of moving particles from channels   ,   ,    to channels   ,   ,   ;   

  − is a data array, where the velocity streamlines are recorded.   

Special subroutines are declared in the algorithm. The propagation phase is realized in four 

subprograms and is applied at boundaries of the channel in accordance to odd and even 

rows of the lattice: 

                          – propagation of the fluid moving particles in all odd 

rows at the left boundary of the channel;  

                           - propagation of the fluid moving particles in all even 

rows at the left boundary of the channel; 

                           - propagation of the fluid moving particles in all odd 

rows at the right boundary of the channel; 

                            - propagation of the fluid moving particles in all 

even rows at the right boundary of the channel;. 

Activity of the imaginary ventilator is created in the subprogram            . Velocity 

profile of the fluid is calculated in a subprogram          . Two output data files are 

declared in the algorithm: FILE *output0 and FILE *output1. 

5.2.2. Code fragment 3 – Creation of the simulation domain  
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The channel with upper and bottom solid boundaries is created by means of generation the 

moveless type of particles. At the right and left sides of the simulation domain no moveless 

particles are generated, periodic boundary conditions are applied here (see Figure 36). The 

length of the channel is           , the width   ranging from        to         with 

increments        for particular simulations.  

5.2.3. Code fragment 5-A – Data outputs 

Before the cycling part of the algorithm the data file initialisation starts. File’s name and its 

location is given first. Values of variables           ,           ,           ,      , 

    ,      and      are saved into the data file “        ”.  

5.2.4.  Code fragment 6 – The main cycle of the algorithm 

The structure of the main cycle of the algorithm is evident from the flowchart presented in 

Figure 37. It is obvious, that during every time step algorithm goes through all nodes of the 

lattice. When the moving type of partciles is located in the node, collision and propagation 

phases take place. The force sifts of the moving particles in the direction of flow occurs, 

when they are located in a position of the imaginary ventilator. Operations needed for 

output data obtaining are not illustrated at the flowchart. Calculation of the flow rate occurs 

in every time step. The velocity profile is being calculated after the steady state of the flow is 

obtained.    

Detailed description of the collision phases was presented in the Chapter 3.6.1. This 

algorithm uses the the same subprogram             . The propagation phase occurs here 

inside the simulation domain as well as its boundaries. This fact is reflected into the 

subrograms which are determined for the propagation phase implementation. It is explained 

below in the Chapter 5.2.4.2. The principlne of the force shifts of moving particles at left 

boundary of the simulation domain is described in Chapter 5.2.4.1.    

 

Figure 36: The geometry of two-dimensional channel for Poiseuille flow simulation: 1 – periodic 
boundary conditions, 2 – the imaginary ventilator,    is the length and   is the width of the channel   
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Figure 37: The flowchart representing the main cycle of the algorithm developed for a simulation of 

the Poiseuille flow  
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5.2.4.1.  Code fragment 6-B – Pressure gradient 

Pressure gradient is created in the algorithm by means of a force equally applied along left 

boundary of the channel in a position of the imaginary ventilator with a certain probability. 

The process of the force creation given by the subroutine            . This operation 

relates to every lattice node at the left boundary of the channel and consists of following 

steps: 

1. Going through channels in a particular lattice node and successively choosing the pair 

of opposite channels.  

2. First choosing the pair of channels    and   .   

3. Propagation the fluid moving particle from the channel    to the channel    if the 

channel    is occupied by fluid moving particle and the channel    is empty (see 

Figure 38). As a result of this operation the value            is reduced by value 1 

(the reason is explained in this chapter below).      

4. Repeating steps 2 and 4 for pairs of channels    and   ,    and   .  

As it was mentioned in the Chapter 5.2.1,           ,           ,            

correspond to the change in the   component of fluid momentum according to the 

reorganization of channel occupation. If       is a change in the   component of 

momentum at a single lattice node as a result of fluid particle's shifting from the channel    

to the channel   , then: 

                   —                                       , 

Where   is a mass (i.e. the number of particles, the mass of each particle is equal to 1)    is 

a   component of total velocity in a lattice node and its consists of                   

              ;     ...     are   component of velocity in accordance of channels 

occupation.    

Similarly, the change in the   component of momentum       at a single lattice node after 

shifting the fluid moving particle from the channel    to the channel    is: 

                                                     

         

 

Figure 38: An example of the forced reorganization of channel occupation. Propagation of moving 
particle form the channel i1 to i4 
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The change in the   component of momentum       at a single lattice node after shifting 

the fluid moving particle from the channel    to the channel    is:  

                                                      

Thus, parameters           ,           ,            reflect an increasing of the value 

   by increment equal to 1 or 2. In contrast to       and       the change in the   

component of momentum       is equal to 2. 

5.2.4.2. Code fragment 6-C – Propagation phase           

The propagation phase is implemented separately in odd and even rows of the lattice 

according to the basic FHP-1 LGCA algorithm. Furthermore, periodic boundary conditions 

require the special subprograms for propagation phase implementation. So, propagation of 

moving particles inside the channel occurs in subroutines                  and 

                 , while the propagation at left and right boundaries in the simulation 

domain – in subroutines                          and                          , 

                          and                           .  

The principle of the propagation phase at boundaries of the channel does not differ from the 

propagation inside the channel bulk. The principle of the propagation phase was described in 

details in the Chapter 3.6.2. But the special conditions are defined at the left and right 

boundaries of the lattice (see Figure 39).  

 

a 

 

b 

Figure 39: Propagation of moving particles at the left (a) and at the right (b) boundaries of the 
channel. Periodic boundary conditions are applied 
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Lattice nodes which are located at the left boundary of the channel (i.e.    ), in all odd 

rows of the lattice communicate through channels   ,    and    with lattice nodes at the 

right boundary (i.e.         ). This communication realized through the channel    in 

even rows of the lattice. The ordering of channels according to the lattice geometry was 

illustrated in Figure 28 (see Chapter 3.4.1). Similarly, at the right boundary of the channel 

(        ) lattice nodes communicates with their neighbours at the left boundary 

(   ) through channels   ,    and    in all even rows. It is channel    in odd rows of the 

lattice.  

5.2.5. Code fragment 9 – Printout macro 

This code fragment includes two parts. First, the   component of the flow rate of the lattice 

gas is calculated as a ratio between   component of the velocity and a number of all moving 

particles (i.e. their total mass). This computation takes place in every time step and the 

output data is being recorded into the data file         . The knowledge of the flow rate 

is important to determination the steady state of the flow. An acquiring of fluid velocity 

profile starts after the steady state of the flow is achieved. 

Velocity profile of the fluid represents the   component of the particle velocity averaged 

over the length of the channel for each   coordinate of the lattice and additionally averaged 

over time during the steady state of the flow. A subprogram           is used in order to 

determine the velocity profile of the fluid. The calculation consists of following steps: 

1. Coming through the simulation domain (excepting rows of the lattice with moveless 

particles and lattice nodes where imaginary ventilator takes place) and calculating: 

 the sum of   component of particle’s velocity in a lattice row; 

 the number of moving particles in a lattice row. 

2. Calculation the average   component of particle's velocity.   

3. Repeating steps 1 and 2 for every lattice row of the simulation domain. 

The velocity of the fluid is also averaged in time in order to obtain more accurate results. 

After every time step its value is stored into the data array named as  . The final value of the 

velocity is calculated before final operations of the algorithm and is saved as an output data 

file            . 

5.3. Simulation setup 

The two-dimensional channel geometry is employed in order to suit all computer 

simulations. Overhead and bottom channel sides are composed of solid walls (moveless 

particles) that restrict the flow in a perpendicular direction of the channel. The length of the 

channel   is chosen to be     lattice units (    ), but due to usage of the periodic boundary 

conditions the infinitely long channel in   direction is in fact created. Fluid particles are 

generated into the free space between solid walls. Lattice gas density   is chosen to be     
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particles per node and this condition is used in each simulation. The bounce-back type of 

reflective boundary conditions is used when collisions between moving and moveless 

particles took place. This type of reflection was applied at overhead and bottom channel 

sides. The behaviour of the flow as a function of scale is studied. The width of the channel   

and the probability of force creation     at the left boundary of the channel varied. 

Different pressure gradients    
  

  
 is created along the channel according to the value of 

the    . The exact simulation setups are presented in the Table 3.  

Table 3: The list of Poiseuille flow computer simulations and their setups 

 Size of the channel,  
      

Average 
density, 
m.u./l.u

.  

      / pfc Parameter 
    

Time of 
the 

simulatio
n,      

Steady 
state of the 
flow,      The 

length   
The width 

  

1.  550 25    26 2,5 100 / 1 2 10000 5000 

2.  550 25     2,5 200 / 0,5 1,4 10000 5000 

3.  550 25     2,5 1000 / 0,1 0,4 10000 5000 

4.  550 25     2,5 2000 / 0,05 0,2 10000 5000 

5.  550 25     2,5 10000 / 0,01 0,03 10000 5000 

6.  550 50     2,5 100 / 1 2 10000 5000 

7.  550 50     2,5 200 / 0,5 1,4 10000 5000 

8.  550 50     2,5 1000 / 0,1 0,4 10000 5000 

9.  550 50     2,5 2000 / 0,05 0,2 10000 5000 

10.  550 50     2,5 10000 / 0,01 0,03 10000 5000 

11.  550 75     2,5 100 / 1 2 10000 5000 

12.  550 75     2,5 200 / 0,5 1,4 10000 5000 

13.  550 75     2,5 1000 / 0,1 0,4 10000 5000 

14.  550 75     2,5 2000 / 0,05 0,2 10000 5000 

15.  550 75     2,5 10000 / 0,01 0,03 10000 5000 

16.  550 100     2,5 100 / 1 2 10000 5000 

17.  550 100     2,5 200 / 0,5 1,4 10000 5000 

18.  550 100     2,5 1000 / 0,1 0,4 10000 5000 

19.  550 100     2,5 2000 / 0,05 0,2 10000 5000 

20.  550 100     2,5 10000 / 0,01 0,03 10000 5000 

The table includes values of following parameters: 

 Size of the channel - it is presented by its length   and width  ; 

 Average density – corresponds to the average number of moving particles in the 

lattice node; 

       – parameter declared in the algorithm; value     (probability of force 

creation) is calculated according to the value of force; 

                                                        
26 The factor      is applied to one of the orthogonal directions (the axis OY) because the lattice is triangular 
in fact 
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    - is calculated according to the simulation outputs           ,           , 

          . This parameter is explained in Chapter 5.4.    

 Time – it is the total time period of the simulation. 

 Steady state of the flow – it is the number of time steps after the averaging of the 

flow velocity is being started. 

5.4. Results and discussion 

According to the Table 3 settings for Poiseuille flow computer are varied due to the channel 

width   and pressure gradient created using probability of force creation at the left 

boundary of the channel    . The pressure gradient is imposed on the lattice by the 

parameter     applied equally along the left boundary of the channel. The similar method 

was exploited for example in [79] and [83]. The pressure gradient is created here in terms of 

reversing particle momentum vectors. Reversing of particles is done by the certain 

probability. This process is applied for all nodes of one or more columns of the lattice 

(according to the width of the imaginary ventilator). The length of columns is equal to the 

channel width  . The width of the imaginary ventilator is two columns of lattice nodes due 

to the lattice geometry and is the same in all carried out simulations.  

Probability of force creation is expressed below as   . To be more concrete the parameter    

expresses the average change of the   component of the particle momentum at a particular 

node during one time step (i.e.       ). From the Figure 36 it is evident, that fluid flows in the 

channel to the right. The flipping mechanism impresses merely on particles with negative   

components of velocity at the left side of the channel. The “total force” applied on the line 

of nodes is then     , where   represents the number of nodes in the line that spans across 

the channel width. Thus, the pressure   applied at the left hand channel side is according to 

(86) and (91) the force per unit area and is expressed as a        . Here the physical unit 

of   is               27 , subsequently parameter    has unit               . When 

pressure gradient value is obtained, the “total force”     is being divided by the product of 

the channel length and the channel width    , then the unit of the pressure gradient is 

                    . 

Results of the representative simulation are shown in Figures 40 and 41. The parameters of 

the channel width and flow are as follows: the width                and        

          ; these parameters are chosen for that example. Figures 40 plots the flow rate as a 

function of time. Flow rate is computed by calculating the average  -component of velocity 

of all particles in the lattice. The steady flow rate is achieved approximately after            

The flow rate at the steady state is about                (see Figures 40, the average value of 

the flow rate in the region “The steady flow rate”).  

                                                        
27   
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As it is evident from the Figure 41 the parabolic shape of the flow velocity profile is obtained. 

The   component of velocity was averaged over the whole channel length   for each 

horizontal row of the lattice nodes over             in the steady state region of the flow in 

order to obtain velocity profile. These computer simulation outputs exhibit a parabolic 

velocity profile that is typical for a plane Poiseuille flow. 

 

Figure 40: The flow rate as a function of time for            ,               ,       . The 
time period of the simulation measured in time units (t.u.) is given at the axis OX. Steady state of the 

flow is achieved after about 5000 t.u.   

 

Figure 41: The velocity profile of the flow. Values of the x component of flow velocity averaged over 
the whole channel length (i.e. 550 l.u.) are at the axis OY. The vertical distance from the bottom wall 

of the channel named here as a “axis OY” and it  is presented at the axis OX of the graph  
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Twenty independent experiments are carried out for    values of  ,    ,    ,     and 

                . The width of the channel   is ranging from        to              with 

the increment             (see Table 3). Similar results are obtained for all realized 

computer simulations (see Appendix J). In order to evolve a steady state flow, the system 

was left to relax after the start of each simulation trial. The steady flow rate is achieved 

approximately after                   according to the applied pressure gradient, that is 

being influenced by the parameter   ,  and the width of the channel  . The smaller the value 

   is applied, the longer time period is needed for an achievement of a steady state flow 

when the channel width   is constant. The smaller the width of the channel is, the shorter 

time period to reach the steady state of the flow it takes. Similarly to the representative 

results presented in Figures 40 and 41, all velocity profiles were averaged over the time in a 

steady state flow from             to              

The influence of the pressure gradient and the channel's width on a shape of velocity 

profiles is evident and presented in Appendix K. If to compare fast and slow flow, the 

smoother shapes of velocity profiles can be observed in a faster flow. The higher the value of 

   is, the higher pressure gradient is applied on a channel. Subsequently, the higher value of 

   is, the faster the flow is in a channel – if we compare results obtained for the channel of 

the same width  .  

The relationship between channel width   and the flow rate measured as       where    

is the average   component of flow velocity per particle averaged over the entire lattice in a 

steady period of the flow is presented in Appendix L. Three representative examples are 

presented in that appendix: the fastest flow produced by the maximum pressure gradient 

(i.e.                ), the slowest one (                 ) and the middle example 

(                ). Each figure contains the plot of observed values   (averaged over the 

time period                   ) as a function of the channel width   compared to the 

theoretical values of volumetric flow rate   predicted by (38). The viscosity        for the 

theoretical curve was taken from Rothman [79], who simulated the lattice gas flow of the 

same density i.e.       particles per node. The best matches between the theory and 

simulated results are presented in Figure 42 and obtained for                 .  

 

Figure 42: Predicted and simulated volumetric flow rate as a function of channel width for a 
pressure gradient created using        and the range of the channel width d=25÷100 l.u. 
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According to [79] good agreement between the theory and this type of computer simulation 

experiment are in coincidence with each other. Only when the width of the channel   is 

small (less than         – it is not a case of the computer simulations presented in this 

chapter), or when both   and    are large, then the theory and computer simulation results 

disagree. In a case of large value of the channel width   the predicted flow rate is fasten (see 

Figure 43).  

Two more computer simulations were implemented and evaluated for verification of above 

mentioned statement (i.e. for                 ,                 and              ). 

An anomalously slow flow and its contraposition with predicted flow rate took place 

according to the limited range of possible velocities that Lattice Gas Cellular Automata is 

being able to simulate (see Appendix L,               ). The limited value of the flow rate 

is about               The flow rates greater than that value are in contraposition with an 

equation expressing the plane Poiseuille flow, because it is too fast for the assumption of 

fluid incompressibility.  

Verification of the Darcy's law is presented in Appendix M. The linear dependence between 

flow rate in a steady state and pressure gradient is proved for all simulated channel widths 

 . Values of the pressure gradient for various flow rates are close to the line of linear 

regression. In graphs in Appendix M the relationship between geometry of the channel and 

pressure gradient is presented. If we consider the same length of the channel (it is          

in that series of simulations) and the same flow rate (for example                ), it is 

obvious the wider is the channel width the smaller is the pressure gradient.  

Thus, proposed by FHP-1 Lattice Gas Cellular Automata algorithm model is able to simulate 

fluid flow between two parallel plates with periodic boundary conditions. Results, obtained 

from twenty experiments had proven the parabolic velocity profile of the flow and the 

 

Figure 43:  Predicted and simulated volumetric flow rate as a function of channel width for a 
pressure gradient created using        and the range of the channel width d=25÷200 l.u. 
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Darcy's law. Those simulation outputs are in a good agreement with results obtained by 

Rothman [79]. The range of admissible dimensions of the space for fluid flow simulation is 

obtained. First, the pressure gradient and the geometry of the porous media must be chosen 

in accordance to the limit of the flow rate (               ). It is not recommended to use 

maximum probability of force creation (              ) when the plane Poiseuille flow is 

simulated. An appropriate range of channel widths for that type of flow is obtained 

(               ).  

Models of fluid flow in porous media under different conditions could be designed with the 

same basic approach outlined in Chapter 5. 
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6. COMPUTER SIMULATION OF THE TWO-DIMENSIONAL FLUID 
FLOW THROUGH POROUS STRUCTURES 

In previous chapters Lattice Gas Cellular Automata were described from their essence. The 

developing of the own LGCA model f or fluid flow simulation, its verification under different 

conditions and comparison between particular theoretical assumptions and results obtained 

by means of computer simulations was performed. As it was described in Chapter 4 Lattice 

Gas Cellular Automata model is able to describe fluid movement at its molecular level. It can 

be also expose that the individual particles moving, in a study of diffusion phenomenon for 

example, can be studied using LGCA model. Experiments presented in the Chapter 5 have 

proved that the same model using the same algorithm can describe also the fluid flow and 

finally it can substitute the hydrodynamic equation including Navier-Stokes equations.  

In this chapter I will try to verify the particular hypothesis related to the curious behaviour of 

the fluid flow that was not proved yet. Let consider the filtration through assembled filter – 

i.e. filter consists of many pleats. What directions the fluid flows inside the assembled filter? 

In order to answer the question the developed FHP-1 Lattice Gas Cellular Automata model is 

used as the numerical and visualization technique.   

6.1. Theoretical assumption 

Filtration is defined as a mechanical or physical operation used for the separation of solids 

particles from fluid ones. Filtration is based on a fluid flow phenomenon, when fluid flows 

from the high to the low pressure side of filter leaving some material behind. Nowadays, 

many types of filters exist. There are, for example, granular filters, membrane filters and 

filters based on fibrous materials.  

According to [84] relationship between filtration characteristics and geometry of the porous 

structure is given by Darcy's law, which is valid for the laminar regime of fluid flow. In 

contrast to Equation (39), the Darcy's law includes geometric characteristics of filter: 

  
  

  

  

  
 

(40) 

where   is a filtration area and   is a filter thickness. The internal structure of porous 

medium is given by the permeability coefficient  . From the Equation (40) it is obvious, that 

pressure gradient is linearly dependent on a filtration area. 

Filters based on a pleated porous material are required because of their high efficiency, 

durability and low pressure drop. These properties are obtained because of several times 

bigger filtration area, which decreases the pressure gradient. Brown in his work [85] has 

hypothesized that the good filtration characteristics of assembled filters are obtained 

because the specific orientation of the fluid flow inside the pleats of filters. Brown explains 

his assumption as following: “...the special profile of the fluid velocity field is given by the 
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minimization of kinetic energy dissipation due to the viscous friction”. In other words, fluid 

moves the path towards the least resistance. For that reason, the flow of the filtered 

dispersion tries to orient itself perpendicularly to the filter area in order to minimize the 

distance, which has to be pass in a side of porous matter (see Figure 44). 

Hrůza [84] has studied the filtration characteristics of assembled filters, produced from 

nonwoven materials (spunbond or/and meltblown). Some experiments were focused on 

using nanofibre layers in such type of filters. He has obtained the results that confirm the 

Brown's idea, but do not demonstrate the fluid path through a assembled filters.  

Unfortunately, no visual proofs of the phenomenon were found. Only theoretical 

assumption, presented by Brown, was found in literature. Thus, the aim of the computer 

simulation proposed by me is to prove the convolution of the flow direction at the boundary 

with the random porous media imitating the structure of nonwoven textile. 

6.2. FHP-1 Lattice Gas Cellular Automata algorithm for fluid 
flow through porous medium simulation 

The FHP-1 LGCA algorithm for Poiseuille flow simulation described in detail in the Chapter 

5.2, is used for a simulation of the fluid flow through a porous medium. The newly 

developed parts of the algorithm are described in this chapter. The full code of the algorithm 

is presented in the Appendix N. Supplementary algorithms, which are used for averaging and 

graphical representation of output data, are presented in the Appendix O.       

6.2.1.  Code fragment 1 – Header files and initialization of the 
simulation domain 

Compared to the FHP-1 LGCA algorithm, developed in accordance to Poiseuille flow 

simulation, special variables and parameters are declared in this part of the algorithm: 

           and           corresponds to the   and   components of velocity vectors. 

They are calculated in all lattice nodes, where moving particles are occurred.   

 

Figure 44: Theoretical flow pattern through pleats at assembled filter  
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     ,    and    are used for porous medium generation.  

       is a parameter that determines the angle, at which porous medium crosses 

the vertical channel axis.   

              is a probability of moveless particles generation in a position of 

porous medium 

   – determines the one half of the porous medium thickness. Hense, the width of the 

porous medium is   .  

      and        correspond to the number of  empty lattice nodes and moveless 

particles respectively calculated in a position of porous medium.    

      ,         ,      are parameters, which represent a colour of moving particles, 

moveless ones and a colour of empty lattice nodes at a graphical output.     

One more subroutine has to be declared compare to the FHP-1 LGCA algorithm, designed for 

Poiseuille flow simulation. It is                 which calculates   and   components of the 

moving particles velocity. 

6.2.2. Code fragment 3 – Creation of the simulation domain  

The channel with upper and bottom solid boundaries is created (see Figure 45). The length 

of the channel is           , the width                First, the random porous 

structure is generated in a whole area of the simulation domain. Frequency of moveless 

particles occurrence is controlled by the parameter             . Boundaries of the 

porous medium are determined according to parameters       and thickness of the porous 

medium   then. All lattice nodes behind lines    and    are kept at their original value, i.e. 

zero. As a result, porous medium of a certain thickness and porosity is generated inside the 

channel at a certain angle towards to the vertical channel axis.         

 

Figure 45: The geometry of two-dimensional channel for fluid flow through porous medium 
simulation:   is the length and   is the width of the channel,   is an inclination angle of the porous 
medium,   is a one half of the porous medium thickness, 1 – periodic boundary conditions, 2 – the 

imaginary ventilator. The vertical dot line presents the vertical axis of the channel    
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6.2.3. Code fragment 6 – The main cycle of the algorithm 

The main cycle of the algorithm has the same structure as it was presented in the previous 

algorithm (see Chapter 5.2.4, Figure 37). In contrast to previous algorithm the calculation of 

the  - and  - components of particles velocity occurs in a steady state region of the flow. 

This operation is described in details in following Chapter 6.2.4.  

6.2.4. Code fragment 9-B – Distribution of velocity vectors of moving 
particles  

After the steady state of the flow is achieved,   and   components of a total velocity vector 

in each lattice node starts. The subprogram                 is being used for this reason. It 

is working according to following steps: 

1. Selecting the lattice node with coordinates   and   (except lattice nodes occupied by 

solid moveless particles). 

2. Calculation of the   component of the total velocity           in the lattice node.   

3. Calculation of the   component of the total velocity           in the lattice node.    

4. Repeating previous steps for all lattice nodes systematically. 

This calculation is carried out at every time step in a steady state of the fluid flow. This 

approach allows to obtain a set of random states of the simulated system. Subsequently, 

application of averaging over many random states provides more accurate estimation of 

mean values. 

 

Presented computer simulation allows to observe the distribution of velocity vectors. The 

length of each observed vector corresponds to the time and space-averaged velocity of 

moving particles in a node inside the simulation domain. Space-averaging is performed using 

the first of supplementary algorithms in the direction of Appendix O. Velocities of  particles 

are space-averaged inside the             squares. The last supplementary algorithm is 

used for a graphical representation of data averaged in space and time. For every lattice 

node the length of the velocity vector is calculated according to the Pythagorean theorem, 

where sides of the right triangle are   and   components of the velocity vector.           

6.3. Simulation setup 

The two-dimensional channel geometry is employed for a chosen set of computer simulation 

experiments. Overhead and bottom channel sides are composed of moveless particles which 

imitated channel's walls, similarly to the simulation of fluid flow in a channel. The length of 

the channel   is     lattice units (    ) and due to the usage of the periodic boundary 

conditions the infinitely long channel in   direction is in fact created. The width of the 

channel   is               
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The design of the assembled filter is slightly simplified: fluid has flown only trough the one 

part of a filter pleat. For that reason, porous medium is placed in the middle part of the 

channel at the defined angle. Its thickness   is         Generated fluid particles are directed 

into the free space of the simulation domain as well as between moveless particles of solid 

walls and porous medium. In order to attend viscous flow (i.e. three particles collisions) the 

average density   of   particles per node is used in each simulation. The bounce-back type of 

reflective boundary conditions is pre-set for the fluid particle collisions with moveless 

particles at channel walls as well as for fluid particle collisions with moveless particles of the 

porous material. Pressure gradient is created in a same way as it was described in previous 

computer simulation (see Chapter 5.1). The exact simulation setups are presented in the 

Table 34.  

Table 4: The list of fluid flow through porous medium computer simulations and their setups 

 Size of the channel,  
      

 
average 
density, 
m.u./l.u

.  

      / 
pfc28 

Param
eter 

  29  

Porosity of 
the porous 

medium 

α Time of 
the 

simulatio
n,      

The 
length 

The width 

1.  450 250     2 / 3 30 / 0,3 0,6 0,95 15° 10000 

2.  450 250     2 / 3 30 / 0,3 0,6 0,9 15° 10000 

3.  450 250     2 / 3 30 / 0,3 0,6 0,85 15° 10000 

4.  450 250     2 / 3 30 / 0,3 0,6 0,7 15° 10000 

5.  450 250     2 / 3 30 / 0,3 0,6 0,95 35° 10000 

6.  450 250     2 / 3 30 / 0,3 0,6 0,9 35° 10000 

7.  450 250     2 / 3 30 / 0,3 0,6 0,85 35° 10000 

8.  450 250     2 / 3 30 / 0,3 0,6 0,7 35° 10000 

9.  450 250     2 / 3 30 / 0,3 0,6 0,95 55° 10000 

10.  450 250     2 / 3 30 / 0,3 0,6 0,9 55° 10000 

11.  450 250     2 / 3 30 / 0,3 0,6 0,85 55° 10000 

12.  450 250     2 / 3 30 / 0,3 0,6 0,7 55° 10000 

This table includes value of the the following parameters: 

 Size of the channel - it is presented by its length   and width  ; 

 Average density – corresponds to the average number of moving particles in the 

lattice node; 

       – parameter declared in the algorithm; value     (probability of force 

creation) is calculated according to the value of force; 

    - is calculated according to the simulation outputs           ,           , 

          . This parameter was explained in details in the Chapter 5.4.    

                                                        
28 Parameter       was declared in the algorithm; value     (probability of force creation) is calculated.  
29 Parameter    was calculated according to the simulations outputs           ,           ,            
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 Porosity of the porous medium – is calculated as a ratio between the number of  

     nodes and sum of      and       nodes. Parameters      and       are 

declared in the algorithm;  

 α – it is an inclination angle of the porous medium relative to the axis OY of the 

channel; 

 Time of the simulation – it is the total time period of the simulation. 

It is evident from the Table 3 that settings for these computer simulations vary in the value 

of porosity of the porous medium and the angle, at which the porous medium crossed the 

vertical channel's axis. Porosity values, chosen for this experiment, correspond to real 

porosities of nonwoven materials (i.e. 0,85 – 0,95). Porosity 0,7 approximates the porosity of 

nanofibre layers (porosity of nanofibre layers ranging between 0,5 and 0,85). Simulated 

structures of porous media are shown in Figure 46.     

6.4. Results and discussion 

Twelve independent computer simulations were performed according to the Table 4. The 

results of those simulations are obtained by specifying the parameter        which 

expresses an average change of the   component of the particle momentum at a particular 

node during one time step. Detailed explanation of the parameter    was presented in 

Chapter 5.4. Time evolution of the FHP-1 LGCA model for fluid flow in porous medium 

modelled with a reduced simulation domain (         ,              ) is introduced in 

Appendix P. The low probability of channels occupation is deliberately chosen for verification 

  

Porosity 0,95 Porosity 0,9 

  

Porosity 0,85 Porosity 0,7 

Figure 46: Random structures of porous media generated in the computer simulation experiment. 
Porosity ranging from 0,7 to 0,95 
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of particles collisions and periodic boundary conditions. The average density is 0,2 particles 

per a lattice node here. Simulated system is monitored for           

First, all simulated systems are left to achieve the steady state. The steady states of the fluid 

flow are achieved after about                (see Appendix Q). Achieving of a steady 

flow inside the reduced simulation domain is obvious from the Appendix R. Simulation 

domain of reduced size, where the length of the channel           and the width 

              are used. The average density is equal to 3 particles per lattice node. 

System's configuration are recorded after every ten time steps for           , i.e. when 

the steady state of the flow is reached.  

In real simulations the smaller value of the porosity the system has and the higher inclination 

angle of the porous medium (i.e  , see Figure 45) is simulated (i.e. the biggest surface area 

of the porous medium), the longer time it takes to reach the steady flow. Flow rates 

calculated in steady states as a function of the porosity and the inclination of porous 

medium are presented in Figure 47. The increasing of both the porosity and fluid flow rate is 

obvious from this figure.     

From the Darcy's law (see Equation (40)), fluid velocity is linearly dependant on pressure 

gradient applied at porous medium. It is obvious from the Chapter 5.4 that pressure gradient 

in this type of simulation models is directly dependant on value of parameter    and 

decreases with surface area to which it is applied. Because    is constant in all simulation 

experiments, the pressure gradient is mainly influenced by the inclination of the porous 

medium. With increasing α, surface area of the porous medium increased too. Relationship 

between the inclination angle α and resulting pressure gradient is presented in Figure 48.  

This relationship was introduced by Brown [85] and experimentally verified by Hrůza [84]. 

According to Brown, the pleating of assembled filters increases the area of the material that 

can be accommodated in a fixed volume and so it reduces the filtration velocity. Therefore, 

 

Figure 47: Fluid flow rate as a function of porosity and inclination of porous medium for pressure 
gradient created using        
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the pressure drop at fixed volume flow is reduced too. That is why the pressure drop 

decreases as the number of pleats per unit length grows” [85].  

Velocity fields are monitored and expressed by graphical manner for all setups of the 

simulated system for better understanding of the phenomenon which was introduced in 

Chapter 6.1. Velocity vectors are obtained by averaging over               squares on the 

lattice and over                of the steady flow state. In this way the velocity vector 

arrays are obtained.  

Several unique features of flow through a porous medium are illustrated in Figure 49. For 

better realization of the velocity vectors two colours are used. If the velocity vector points in 

a first or second quadrants (i.e. it is from the interval        ), then it obtains green colour, 

other way, it turns into red. It is evident that on the interface between the free channel area 

and the porous structure appears a reorganization of fluid velocity directions. The flow 

makes an impact on a solid parts of the porous medium, thus fluid particles do try to stream 

to the pores inside the porous material. It is possible to see (see Figure 49), that the fluid 

enters into the porous material perpendicularly. The same results are obtained when the 

inclination angle   of porous medium is 15o, 35o and 55o and the porosity is 0,95 or 0,9 or 

0,85. Some regions of the porous medium was relatively stagnant. The local fluid flow in 

“blind pores” close to channels walls is zero.  

An interesting behaviour of the flow is monitored for porous structure with porosity 0,7 (see 

Figure 50). The same uniform body force at the left boundary of the channel (      ) is 

created, but local velocity vectors are smaller compared to three previous results. Stagnant 

area covers here the whole space of the porous medium. The local fluid flow in such a dense 

porous structure is close to zero. It is obvious from previous results, that flow rate for this 

 

Figure 48: Pressure gradient created using         as a function of inclination angle α indicates the 
orientation of the porous medium in a channel 

0 

0,001 

0,002 

0,003 

0,004 

0,005 

0,006 

0,007 

0 15 30 45 60 

p
re

ss
u

re
 g

ra
d

ie
n

t,
 m

.u
.*

(l
.u

.)
-1

*(
t.

u
.)

-2
 

 

α, ° 



CHAPTER 6: COMPUTER SIMULATION OF THE TWO-DIMENSIONAL FLUID FLOW THROUGH 
POROUS STRUCTURES 

 

109 
 

value of porosity is almost zero. Winding paths are evident in front of, and behind the 

porous medium. Circulating eddies are evident in those parts of the channel.      

 
α=15° 

 
α=35° 

 
α=55° 

Figure 49: Fluid velocity directions inside the declined porous material with random structure for 
porosity 0,95 and  α=15°, 35° and 55°. Region BP corresponds to “blind pores” of the porous medium   
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The same results, as described in this chapter, were obtained for the whole range of porosity 

and inclination angle α introduced in the Table 4 (see Appendix S). These computer 

simulation results are qualitative only, but they show the nature of the phenomenon in 

question.  

The reorganization of fluid flow inside the declined porous structure using the designed FHP-

1 LGCA model was proved. Results obtained in this computer simulation sets are in a good 

agreements with results obtained by Hrůza [84] and conform the hypothesis of Brown [85]. 

 

 

Figure 50:  Fluid velocity directions inside the channel and  declined porous material with random 
structure for porosity 0,7 and  α= 35°  
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CONCLUSIONS  

In a frame of this work a two-dimensional non-deterministic Lattice Gas Cellular Automata 

algorithm based on the FHP-1 LGCA model was developed and described in detail. Algorithm 

was created in a C++ programming language, Borland version 4.0. Basic skeleton of the 

algorithm and function of its particular code fragments were minutely described. The full 

text of the algorithm including all technical aspects was introduced in the appendix part of 

the thesis. The basic Lattice Gas Cellular Automata algorithm has an universal structure and 

was easily modified for various versions. Phases of the LGCA evolution process (collision and 

propagation) take place in subroutines. If boundary conditions are changed, it does not 

interfere into the main part of the algorithm. Due to adaptation of the hexagonal lattice to 

the square one and using different arrangement of neighbourhood in add and even rows of 

the lattice calculations were more complicated. On the other hand, this approach allows 

productively to utilize all points of the simulation domain. The main feature of the algorithm 

is its non-deterministic evolution in time. During the collision phase new state of a finite 

automaton is always generated randomly according to the conservation of mass and 

momentum in the lattice node. No predefined matrix of states changes was used. This 

property allows to model the fluid flow in more realistic way.     

The two-dimensional Lattice Gas Cellular Automata algorithm, developed in a frame of this 

work, was verified using two independent tests. First of them, Brownian motion, simulates 

steady flow and was aimed on a monitoring of the one moving particle among many other 

fluid particles. Brownian motion was simulated inside the simulation domain of the size 

        or                        for the period of time                   . By 

mean of this test the set of Brownian particle's paths was obtained. It was noted that paths 

walked by the Brownian particle are far from linear. Many movements round and round or 

returning back to the starting point were monitored. There is a linear relationship between 

the mean square distance of the Brownian particle and time according to theoretical 

assumption. Based on two computer simulation experiments, varied in density of lattice gas, 

the theoretical assumption was proved. It can be argued that algorithm is working in a right 

way according to the results obtained in that test. Simulated system exhibits behaviour close 

to the real one. To limit the degree of data fluctuation around the linear regression the 

usage of biggest size of the simulation domain and extension of the simulation period were 

suggested. This simulation can be used not only for the verification of a newly developed 

algorithm. It allows the study of diffusion phenomena including calculation of the diffusion 

coefficient. Another possible usage of the created algorithm is modelling of polymer 

molecules shapes.  

The Lattice Gas Cellular Automata algorithms, developed for fluid flow modelling, are 

predominantly verified by means of Poiseuille flow simulation. It was noticed, Poiseuille flow 

simulation is the most popular benchmark test in a case of a fluid flow study. The special 

Lattice Gas Cellular Automata algorithm based on the FHP-1 LGCA model was designed for 

that reason and described in details. The algorithm supposes the simulation of 
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incompressible fluid flow between two stationary parallel plates driven by constant body 

force. The bounce-back type of free reflections was used along the walls of a channel and 

periodic boundary conditions were applied at the both vertical boundaries of the channel. 

Behaviour of the simulated system was studied under various simulation setups. The main 

aim of the test was obtaining the parabolic profile of the flow. Settings for Poiseuille flow 

computer simulations were varied due to the channel width and pressure gradient created 

using certain probability of force creation at the left boundary of the channel. So, twenty 

different parabolic profiles of flow velocity were obtained. The slower fluid flow was 

simulated, the smoother velocity profile was obtained. The channel width had a little effect 

on a shape of the velocity profile. The smaller the channel width was simulated, the more 

peaked velocity profile was obtained. From physical point of view, correctness of the 

developed LGCA algorithm for fluid flow simulation is noticeable not only from the shape of 

velocity profiles but also from the graphs, where the predicted and simulated relationship 

between flow rate and channel width were compared. Good agreement between prediction 

and simulation results was here observed for a range of channel width 

                    , and flows created by the gradient as a result of            . 

These results provide information about the appropriate settings of future simulations. 

Furthermore, based on a computer simulation outputs the Darcy's law was verified. The 

linear dependence between flow rate in a steady state and pressure gradient was proved for 

all simulated channel width. Finally, all outputs of the Poiseuille flow simulation are in a 

good agreement with the Rothman's simulation experiment.  

Computer simulation of a physical phenomenon, the existence of which has not been 

demonstrated experimentally using accessible visualization techniques, was presented in the 

last chapter of the thesis. It concerned to the fluid flow through assembled filters. The 

theoretical assumption that special orientation of the fluid inside those filters leads to the 

good filtration characteristics of them was founded in literature [85]. Relationship between 

filtration characteristics and geometry of the internal structure of the filter was empirically 

obtained by Hrůza [84]. But his experiments did not prove the convolution of the flow 

direction at the boundary with porous media. Developed LGCA algorithm was modified for 

that study. Based on twelve computer simulations the reorganization of the fluid flow inside 

declined porous structure was obtained for different simulation setups. Influence of the 

inclination angle and porosity of the porous medium was studied. The results obtained from 

the computer simulation have shown, that proposed LGCA algorithm is suitable for a 

theoretical prediction of a fluid flow inside porous structures and also it can be used as a 

visualization tool.  

Based on a study that was done in a frame of this work, the suitability of Lattice Gas Cellular 

Automata approach for fluid flow in porous structure modelling was demonstrated. The fluid 

flow in difficult multilayer textile structure is possible to study and visualize using modern 

microscopic techniques and developed LGCA algorithm. However there are a number of 

limitations in the current study. In a case of real porous media study is very difficult to 
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implement “good” boundary conditions for curved walls – always some degree of 

approximation should be here because of using the regular type of lattice. 

Future work  

I would like to aim my future work toward those directions: 

(i) There is a need to calibrate the developed LGCA model and to determine the 

physical units of the simulation system for the fluid flow in porous media study. 

The algorithm for Brownian motion simulation can be used for calibration. It is 

possible to calibrate length unit of the system based on knowledge of a mean 

free path of lattice gas particle [92]. 

(ii) The medical applications of nanofiber materials become topical with technical 

progress, development and production of nanoporous structures. Monte Carlo 

models and especially Lattice Bolzmann model begin to be popular. They are used 

as a simulation tool for the study of cell proliferation in scaffolds or flow in 3D 

porous scaffold materials. 
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The FHP-1 Lattice Gas Cellular Automata model 
The list of possible pre- and post-collision states of 
an individual automaton 

 

In the table       corresponds to six channels of the particular individual automaton (lattice 

node). Values “0” and “1” are in accordance with the channel occupation. When the channel 

is occupied it gets value 1, other way it remains “0”.    
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 0 0 0 0 0 0 0  0 0 0 0 0 0 0  

 1 0 0 0 0 0 1  0 0 0 1 0 0 8  

 0 1 0 0 0 0 2  0 0 0 0 1 0 16  

 1 1 0 0 0 0 3  0 0 0 1 1 0 24  

 0 0 1 0 0 0 4  0 0 0 0 0 1 32  

 1 0 1 0 0 0 5  0 0 0 1 0 1 40  

 0 1 1 0 0 0 6  0 0 0 0 1 1 48  

 1 1 1 0 0 0 7  0 0 0 1 1 1 56  

 0 0 0 1 0 0 8  1 0 0 0 0 0 1  

 1 0 0 1 0 0 9  0 1 0 0 1 0 18 
Efficient 
collision 

 0 0 1 0 0 1 36 

 0 1 0 1 0 0 10  1 0 0 0 1 0 17  

 1 1 0 1 0 0 11  1 0 0 1 1 0 25  

 0 0 1 0 1 1 52  

 0 0 1 1 0 0 12  1 0 0 0 0 1 33  

 1 0 1 1 0 0 13  1 0 0 1 0 1 41  

 0 1 0 0 1 1 50  
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 0 1 1 1 0 0 14  1 0 0 0 1 1 49  

 1 1 1 1 0 0 15  1 0 0 1 1 1 57  

 0 0 0 0 1 0 16  0 1 0 0 0 0 2  

 1 0 0 0 1 0 17  0 1 0 1 0 0 10  

 0 1 0 0 1 0 18  0 0 1 0 0 1 36 
Efficient 
collision 

 1 0 0 1 0 0 9 

 1 1 0 0 1 0 19  0 1 0 1 1 0 26  

 0 0 1 1 0 1 44  

 0 0 1 0 1 0 20  0 1 0 0 0 1 34  

 1 0 1 0 1 0 21  0 1 0 1 0 1 42 
Efficient 
collision 

 0 1 1 0 1 0 22  0 1 0 0 1 1 50  

 1 0 0 1 0 1 41  

 1 1 1 0 1 0 23  0 1 0 1 1 1 58  

 0 0 0 1 1 0 24  1 1 0 0 0 0 3  

 1 0 0 1 1 0 25  1 1 0 1 0 0 11  

 0 1 1 0 0 1 38  

 0 1 0 1 1 0 26  1 1 0 0 1 0 19  

 1 0 1 0 0 1 37  

 1 1 0 1 1 0 27  1 0 1 1 0 1 45  

 0 1 1 0 1 1 54  



APPENDIX A 

 

126 
 

 0 0 1 1 1 0 28  1 1 0 0 0 1 35  

 1 0 1 1 1 0 29  1 1 0 1 0 1 43  

 0 1 1 1 1 0 30  1 1 0 0 1 1 51  

 1 1 1 1 1 0 31  1 1 0 1 1 1 59  

 0 0 0 0 0 1 32  0 0 1 0 0 0 4  

 1 0 0 0 0 1 33  0 0 1 1 0 0 12  

 0 1 0 0 0 1 34  0 0 1 0 1 0 20  

 1 1 0 0 0 1 35  0 0 1 1 1 0 28  

 0 0 1 0 0 1 36  1 0 0 1 0 0 9 
Efficient 
collision 

 0 1 0 0 1 0 18 

 1 0 1 0 0 1 37  0 0 1 1 0 1 44  

 0 1 0 1 1 0 26  

 0 1 1 0 0 1 38  0 0 1 0 1 1 52  

 1 0 0 1 1 0 25  

 1 1 1 0 0 1 39  0 0 1 1 1 1 60  

 0 0 0 1 0 1 40  1 0 1 0 0 0 5  

 1 0 0 1 0 1 41  1 0 1 1 0 0 13  

 0 1 1 0 1 0 22  

 0 1 0 1 0 1 42  1 0 1 0 1 0 21 
Efficient 
collision 

 1 1 0 1 0 1 43  1 0 1 1 1 0 29  
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 0 0 1 1 0 1 44  1 0 1 0 0 1 37  

 1 1 0 0 1 0 19  

 1 0 1 1 0 1 45  1 1 0 1 1 0 27  

 0 1 1 0 1 1 54  

 0 1 1 1 0 1 46  1 0 1 0 1 1 53  

 1 1 1 1 0 1 47  1 0 1 1 1 1 61  

 0 0 0 0 1 1 48  0 1 1 0 0 0 6  

 1 0 0 0 1 1 49  0 1 1 1 0 0 14  

 0 1 0 0 1 1 50  0 1 1 0 1 0 22  

 1 0 1 1 0 0 13  

 1 1 0 0 1 1 51  0 1 1 1 1 0 30  

 0 0 1 0 1 1 52  0 1 1 0 0 1 38  

 1 1 0 1 0 0 11  

 1 0 1 0 1 1 53  0 1 1 1 0 1 46  

 0 1 1 0 1 1 54  1 0 1 1 0 1 45  

 1 1 0 1 1 0 27  

 1 1 1 0 1 1 55  0 1 1 1 1 1 62  

 0 0 0 1 1 1 56  1 1 1 0 0 0 7  

 1 0 0 1 1 1 57  1 1 1 1 0 0 15  

 0 1 0 1 1 1 58  1 1 1 0 1 0 23  
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 1 1 0 1 1 1 59  1 1 1 1 1 0 31  

 0 0 1 1 1 1 60  1 1 1 0 0 1 39  

 1 0 1 1 1 1 61  1 1 1 1 0 1 47  

 0 1 1 1 1 1 62  1 1 1 0 1 1 55  

 1 1 1 1 1 1 63  1 1 1 1 1 1 63  
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The FHP-2 Lattice Gas Cellular Automata model. 
The list of possible pre- and post-collision states of 
an individual automaton  

 

In the table       corresponds to seven channels of the particular individual automaton 

(lattice node). Values “0” and “1” are in accordance with the channel occupation. When the 

channel is occupied it gets value 1, other way it remains “0”.    
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 0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  

 1 0 0 0 0 0 0 1  0 0 0 1 0 0 0 8  

 0 1 0 0 0 0 0 2  0 0 0 0 1 0 0 16  

 1 1 0 0 0 0 0 3  0 0 0 1 1 0 0 24  

 0 0 1 0 0 0 0 4  0 0 0 0 0 1 0 32  

 1 0 1 0 0 0 0 5  0 0 0 0 1 0 1 80 
Efficient 
collision 

 0 1 1 0 0 0 0 6  0 0 0 0 1 1 0 48  

 1 1 1 0 0 0 0 7  0 0 0 1 1 1 0 56  

 0 0 0 1 0 0 0 8  1 0 0 0 0 0 0 1  

 1 0 0 1 0 0 0 9  0 1 0 0 1 0 0 18 
Efficient 
collision 

 0 0 1 0 0 1 0 36 

 0 1 0 1 0 0 0 10  0 0 0 0 0 1 1 96 
Efficient 
collision 

 1 1 0 1 0 0 0 11  1 0 0 1 1 0 0 25  

 0 0 1 0 1 1 0 52  

 0 0 1 1 0 0 0 12  1 0 0 0 0 1 0 33  

 1 0 1 1 0 0 0 13  1 0 0 1 0 1 0 41  

 0 1 0 0 1 1 0 50  

 0 1 1 1 0 0 0 14  1 0 0 0 1 1 0 49  
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 1 1 1 1 0 0 0 15  1 0 0 1 1 1 0 57  

 0 0 0 0 1 0 0 16  0 1 0 0 0 0 0 2  

 1 0 0 0 1 0 0 17  0 0 1 0 0 0 1 68 
Efficient 
collision 

 0 1 0 0 1 0 0 18  0 0 1 0 0 1 0 36 
Efficient 
collision 

 1 0 0 1 0 0 0 9 

 1 1 0 0 1 0 0 19  0 1 0 1 1 0 0 26  

 0 0 1 1 0 1 0 44  

 0 0 1 0 1 0 0 20  1 0 0 0 0 0 1 65 
Efficient 
collision 

 1 0 1 0 1 0 0 21  0 1 0 1 0 1 0 42 
Efficient 
collision 

 0 1 1 0 1 0 0 22  0 1 0 0 1 1 0 50  

 1 0 0 1 0 1 0 41  

 1 1 1 0 1 0 0 23  0 1 0 1 1 1 0 58  

 0 0 0 1 1 0 0 24  1 1 0 0 0 0 0 3  

 1 0 0 1 1 0 0 25  1 1 0 1 0 0 0 11  

 0 1 1 0 0 1 0 38  

 0 1 0 1 1 0 0 26  1 1 0 0 1 0 0 19  

 1 0 1 0 0 1 0 37  

 1 1 0 1 1 0 0 27  1 0 1 1 0 1 0 45  

 0 1 1 0 1 1 0 54  

 0 0 1 1 1 0 0 28  1 1 0 0 0 1 0 35  
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 1 0 1 1 1 0 0 29  1 1 0 1 0 1 0 43  

 0 1 1 1 1 0 0 30  1 1 0 0 1 1 0 51  

 1 1 1 1 1 0 0 31  1 1 0 1 1 1 0 59  

 0 0 0 0 0 1 0 32  0 0 1 0 0 0 0 4  

 1 0 0 0 0 1 0 33  0 0 1 1 0 0 0 12  

 0 1 0 0 0 1 0 34  0 0 0 1 0 0 1 72 
Efficient 
collision 

 1 1 0 0 0 1 0 35  0 0 1 1 1 0 0 28  

 0 0 1 0 0 1 0 36  1 0 0 1 0 0 0 9 
Efficient 
collision 

 0 1 0 0 1 0 0 18 

 1 0 1 0 0 1 0 37  0 0 1 1 0 1 0 44  

 0 1 0 1 1 0 0 26  

 0 1 1 0 0 1 0 38  0 0 1 0 1 1 0 52  

 1 0 0 1 1 0 0 25  

 1 1 1 0 0 1 0 39  0 0 1 1 1 1 0 60  

 0 0 0 1 0 1 0 40  0 1 0 0 0 0 1 66 
Efficient 
collision 

 1 0 0 1 0 1 0 41  1 0 1 1 0 0 0 13  

 0 1 1 0 1 0 0 22  

 0 1 0 1 0 1 0 42  1 0 1 0 1 0 0 21 
Efficient 
collision 

 1 1 0 1 0 1 0 43  1 0 1 1 1 0 0 29  

 0 0 1 1 0 1 0 44  1 0 1 0 0 1 0 37  
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 1 1 0 0 1 0 0 19  

 1 0 1 1 0 1 0 45  1 1 0 1 1 0 0 27  

 0 1 1 0 1 1 0 54  

 0 1 1 1 0 1 0 46  1 0 1 0 1 1 0 53  

 1 1 1 1 0 1 0 47  1 0 1 1 1 1 0 61  

 0 0 0 0 1 1 0 48  0 1 1 0 0 0 0 6  

 1 0 0 0 1 1 0 49  0 1 1 1 0 0 0 14  

 0 1 0 0 1 1 0 50  0 1 1 0 1 0 0 22  

 1 0 1 1 0 0 0 13  

 1 1 0 0 1 1 0 51  0 1 1 1 1 0 0 30  

 0 0 1 0 1 1 0 52  0 1 1 0 0 1 0 38  

 1 1 0 1 0 0 0 11  

 1 0 1 0 1 1 0 53  0 1 1 1 0 1 0 46  

 0 1 1 0 1 1 0 54  1 0 1 1 0 1 0 45  

 1 1 0 1 1 0 0 27  

 1 1 1 0 1 1 0 55  0 1 1 1 1 1 0 62  

 0 0 0 1 1 1 0 56  1 1 1 0 0 0 0 7  

 1 0 0 1 1 1 0 57  1 1 1 1 0 0 0 15  

 0 1 0 1 1 1 0 58  1 1 1 0 1 0 0 23  

 1 1 0 1 1 1 0 59  1 1 1 1 1 0 0 31  
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 0 0 1 1 1 1 0 60  1 1 1 0 0 1 0 39  

 1 0 1 1 1 1 0 61  1 1 1 1 0 1 0 47  

 0 1 1 1 1 1 0 62  1 1 1 0 1 1 0 55  

 1 1 1 1 1 1 0 63  1 1 1 1 1 1 0 63  

 0 0 0 0 0 0 1 64  0 0 0 0 0 0 1 64  

 1 0 0 0 0 0 1 65  0 0 1 0 1 0 0 20 
Efficient 
collision 

 0 1 0 0 0 0 1 66  0 0 0 1 0 1 0 40 
Efficient 
collision 

 1 1 0 0 0 0 1 67  0 0 0 1 1 0 1 88  

 0 0 1 0 0 0 1 68  1 0 0 0 1 0 0 17 
Efficient 
collision 

 1 0 1 0 0 0 1 69  0 0 0 1 0 1 1 104  

 0 1 1 0 0 0 1 70  0 0 0 0 1 1 1 112  

 1 1 1 0 0 0 1 71  0 0 0 1 1 1 1 120  

 0 0 0 1 0 0 1 72  0 1 0 0 0 1 0 34 
Efficient 
collision 

 1 0 0 1 0 0 1 73  0 1 0 0 1 0 1 82 
Efficient 
collision 

 0 0 1 0 0 1 1 100 

 0 1 0 1 0 0 1 74  1 0 0 0 1 0 1 81  

 1 1 0 1 0 0 1 75  1 0 0 1 1 0 1 89  

 0 0 1 0 1 1 1 116  

 0 0 1 1 0 0 1 76  1 0 0 0 0 1 1 97  

 1 0 1 1 0 0 1 77  1 0 0 1 0 1 1 105  
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 0 1 1 1 0 0 1 78  1 0 0 0 1 1 1 113  

 1 1 1 1 0 0 1 79  1 0 0 1 1 1 1 121  

 0 0 0 0 1 0 1 80  1 0 1 0 0 0 0 5 
Efficient 
collision 

 1 0 0 0 1 0 1 81  0 1 0 1 0 0 1 74  

 0 1 0 0 1 0 1 82  0 0 1 0 0 1 1 100 
Efficient 
collision 

 1 0 0 1 0 0 1 73 

 1 1 0 0 1 0 1 83  0 1 0 1 1 0 1 90  

 0 0 1 1 0 1 1 108  

 0 0 1 0 1 0 1 84  0 1 0 0 0 1 1 98  

 1 0 1 0 1 0 1 85  0 1 0 1 0 1 1 106 
Efficient 
collision 

 1 0 1 0 1 0 1 85  

 0 1 1 0 1 0 1 86  0 1 0 0 1 1 1 114  

 1 0 0 1 0 1 1 105  

 1 1 1 0 1 0 1 87  0 1 0 1 1 1 1 122  

 0 0 0 1 1 0 1 88  1 1 0 0 0 0 1 67  

 1 0 0 1 1 0 1 89  1 1 0 1 0 0 1 75  

 0 1 1 0 0 1 1 102  
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 1 0 1 0 0 1 1 101  
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Efficient 
collision 

 0 1 0 0 1 0 1 82 

 1 0 1 0 0 1 1 101  0 0 1 1 0 1 1 108  

 0 1 0 1 1 0 1 90  

 0 1 1 0 0 1 1 102  0 0 1 0 1 1 1 116  

 1 0 0 1 1 0 1 89  

 1 1 1 0 0 1 1 103  0 0 1 1 1 1 1 124  

 0 0 0 1 0 1 1 104  1 0 1 0 0 0 1 69  

 1 0 0 1 0 1 1 105  1 0 1 1 0 0 1 77  

 0 1 1 0 1 0 1 86  
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 0 1 0 1 0 1 1 106  1 0 1 0 1 0 1 85 
Efficient 
collision 

 1 1 0 1 0 1 1 107  1 0 1 1 1 0 1 93  

 0 0 1 1 0 1 1 108  1 0 1 0 0 1 1 101  

 1 1 0 0 1 0 1 83  

 1 0 1 1 0 1 1 109  1 1 0 1 1 0 1 91  

 0 1 1 0 1 1 1 118  

 0 1 1 1 0 1 1 110  1 0 1 0 1 1 1 117  

 1 1 1 1 0 1 1 111  1 0 1 1 1 1 1 125  

 0 0 0 0 1 1 1 112  0 1 1 0 0 0 1 70  

 1 0 0 0 1 1 1 113  0 1 1 1 0 0 1 78  

 0 1 0 0 1 1 1 114  0 1 1 0 1 0 1 86  

 1 0 1 1 0 0 1 77  

 1 1 0 0 1 1 1 115  0 1 1 1 1 0 1 94  

 0 0 1 0 1 1 1 116  0 1 1 0 0 1 1 102  

 1 1 0 1 0 0 1 75  

 1 0 1 0 1 1 1 117  0 1 1 1 0 1 1 110  

 0 1 1 0 1 1 1 116  1 0 1 1 0 1 1 109  

 1 1 0 1 1 0 1 91  

 1 1 1 0 1 1 1 119  0 1 1 1 1 1 1 126  

 0 0 0 1 1 1 1 120  1 1 1 0 0 0 1 71  
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 1 0 0 1 1 1 1 121  1 1 1 1 0 0 1 79  

 0 1 0 1 1 1 1 122  1 1 1 0 1 0 1 87  

 1 1 0 1 1 1 1 123  1 1 1 1 1 0 1 95  

 0 0 1 1 1 1 1 124  1 1 1 0 0 1 1 103  

 1 0 1 1 1 1 1 125  1 1 1 1 0 1 1 111  

 0 1 1 1 1 1 1 126  1 1 1 0 1 1 1 119  

 1 1 1 1 1 1 1 127  1 1 1 1 1 1 1 127  
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Basic FHP-1 Lattice Gas Cellular Automata 
algorithm  
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//Basic FHP-1 LGCA algorithm 

 

/* Code fragment 1: Header files and initialization of a simulation box */ 

 

//Definition of standard library functions 

# include <graphics.h>  

# include <stdlib.h> 

# include <stdio.h> 

# include <conio.h> 

# include <math.h> 

# include <float.h> 

# include <time.h> 

# define DIRX 300 

# define DIRY 300 

 

//Declaration of variables 

int x, y, xmax=299, ymax=299; 

float vx[DIRX][DIRY], nvx[DIRX][DIRY];  

float vy[DIRX][DIRY], nvy[DIRX][DIRY];  

int m[DIRX][DIRY], nm[DIRX][DIRY];  

int i1[DIRX][DIRY], i2[DIRX][DIRY], i3[DIRX][DIRY], i4[DIRX][DIRY], 

i5[DIRX][DIRY], i6[DIRX][DIRY];  

float sinangle=0.866025403, print=5.5; 

int pco=20; 

int sig=15;  

char str[25];  

int I1, I2, I3, I4, I5, I6;  

int cycle, cmax=20, series; 

 

//Declaration of subroutines 

int collision(void);  

float propagationodd(void);  

float propagationeven(void);  

 

/*-----------------------------------------------------------------------*/ 

 

/* Beginning of a main part of the program */ 

int main() 

{ 

 

/* Code fragment 2: Graphic outputs setting */ 

     

int gdriver = DETECT, gmode, errorcode; 

 

//initialize graphics and local variabls 

initgraph (&gdriver, &gmode, "c:\\TC\\BGI"); 

 

//read rezult of initialization 

     errorcode = graphresult(); 

 

    //an error occurred 

     if (errorcode != grOk) 

    { 

  printf ("Graphics error: %s\n", grapherrormsg(errorcode)); 

     printf ("Press any key to halt:"); 

     getch(); 

     exit(1); 

    } 

     

/* Code fragment 3: Creation of the simulation domain and initial state of 

the simulated system */ 
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//Data arrays resetting 

for (x=0; x<xmax+1; x++) 

 { 

 for (y=0; y<ymax+1; y++) 

  { 

  m[x][y]=0; 

  nm[x][y]=0; 

  vx[x][y]=0; 

  nvx[x][y]=0; 

  vy[x][y]=0; 

  nvy[x][y]=0; 

  } 

 } 

 

//Creation of solid boundaries of the simulation box 

for (x=1; x<xmax; x++) 

{ 

m[x][1]=7; 

m[x][2]=7; 

m[x][ymax-1]=7; 

m[x][ymax-2]=7; 

 

nm[x][1]=7; 

nm[x][2]=7; 

nm[x][ymax-1]=7; 

nm[x][ymax-2]=7; 

putpixel (x, 1, m[x][1]*print); 

putpixel (x, ymax-1, m[x][ymax-1]*print); 

} 

 

for (y=1; y<ymax; y++) 

{ 

m[1][y]=7; 

m[2][y]=7; 

m[xmax-1][y]=7; 

m[xmax-2][y]=7; 

nm[1][y]=7; 

nm[2][y]=7; 

nm[xmax-1][y]=7; 

nm[xmax-2][y]=7; 

putpixel (1, y, m[1][y]*print); 

putpixel (xmax-1, y, m[xmax-1][y]*print); 

} 

 

randomize();   

 

/* Code fragment 4: Occupation of cannels by fluid moving particles */ 

 

//odd rows of the lattice 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=3; y<ymax-2; y=y+2) 

  { 

  if (m[x][y]!=7) 

   { 

   m[x][y]=0; vx[x][y]=0; vy[x][y]=0; 

 

   if (m[x-1][y-1]<7) {I1=random(pco);} 

if (I1==1) {m[x][y]=m[x][y]+1; i1[x][y]=1;} else {i1[x][y]=0;} 

 

   if (m[x-1][y]<7) {I2=random(pco);} 

if (I2==1) {m[x][y]=m[x][y]+1; i2[x][y]=1;} else {i2[x][y]=0;} 
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   if (m[x-1][y+1]<7) {I3=random(pco);} 

if (I3==1) {m[x][y]=m[x][y]+1; i3[x][y]=1;} else {i3[x][y]=0;} 

 

   if (m[x][y+1]<7) {I4=random(pco);} 

if (I4==1) {m[x][y]=m[x][y]+1; i4[x][y]=1;} else {i4[x][y]=0;} 

 

   if (m[x+1][y]<7) {I5=random(pco);} 

if (I5==1) {m[x][y]=m[x][y]+1; i5[x][y]=1;} else {i5[x][y]=0;} 

 

   if (m[x][y-1]<7) {I6=random(pco);} 

if (I6==1) {m[x][y]=m[x][y]+1; i6[x][y]=1;} else {i6[x][y]=0;} 

 

   //the total particles velocity in the node 

   vx[x][y]=vx[x][y]+0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-

0.5*i4[x][y]-i5[x][y]-0.5*i6[x][y]; 

   vy[x][y]=vy[x][y]+sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y]; 

   }} 

 } 

 

//even rows of the lattice 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=4; y<ymax-2; y=y+2) 

  { 

  if (m[x][y]!=7) 

   { 

   m[x][y]=0; vx[x][y]=0; vy[x][y]=0; 

 

   if (m[x][y-1]<7) {I1=random(pco);} 

   if (I1==1) {m[x][y]=m[x][y]+1; i1[x][y]=1;} else 

{i1[x][y]=0;} 

 

   if (m[x-1][y]<7) {I2=random(pco);} 

   if (I2==1) {m[x][y]=m[x][y]+1; i2[x][y]=1;} else 

{i2[x][y]=0;} 

 

   if (m[x][y+1]<7) {I3=random(pco);} 

   if (I3==1) {m[x][y]=m[x][y]+1; i3[x][y]=1;} else 

{i3[x][y]=0;} 

 

   if (m[x+1][y+1]<7) {I4=random(pco);} 

   if (I4==1) {m[x][y]=m[x][y]+1; i4[x][y]=1;} else 

{i4[x][y]=0;} 

 

   if (m[x+1][y]<7) {I5=random(pco);} 

   if (I5==1) {m[x][y]=m[x][y]+1; i5[x][y]=1;} else 

{i5[x][y]=0;} 

 

   if (m[x+1][y-1]<7) {I6=random(pco);} 

   if (I6==1) {m[x][y]=m[x][y]+1; i6[x][y]=1;} else 

{i6[x][y]=0;} 

 

   // the total particles velocity in the node 

   vx[x][y]=vx[x][y]+0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]- 

0.5*i4[x][y]-i5[x][y]-0.5*i6[x][y]; 

   vy[x][y]=vy[x][y]+sinangle*i1[x][y]-sinangle*i3[x][y]- 

sinangle*i4[x][y]+sinangle*i6[x][y]; 

   }} 

 } 
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/* Code fragment 5: Craphical outputs of the initial systém configuration 

*/ 

 

for (x=1; x<xmax+1; x++) 

 { 

  for (y=1; y<ymax+1; y++) 

   { 

   putpixel (x, y, m[x][y]*print); 

   } 

 } 

 

/*-----------------------------------------------------------------------*/ 

 

/* Code fragment 6: The main cycle of the algorithm */ 

 

for (cycle=0; cycle<cmax+1; cycle++) 

{ 

 

/* Code fragment 6-A: Collision phase */ 

 

for (x=3; x<xmax-2; x++) 

 {for (y=3; y<ymax-2; y++) 

  { 

  if ((m[x][y]>0)&&(m[x][y]!=7)) {collision();} 

  } 

 } 

 

/* Code fragment 6-B: Propagation phase */ 

 

//odd rows of the lattice 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=3; y<ymax-2; y=y+2) 

  { 

  if ((m[x][y]>0)&&(m[x][y]!=7)) 

   { 

   propagationodd(); 

   } 

  } 

 } 

//even rows of the lattice 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=4; y<ymax-2; y=y+2) 

  { 

  if ((m[x][y]>0)&&(m[x][y]!=7)) 

   { 

   propagationeven(); 

   } 

  } 

 } 

 

/* Code fragment 7: Recording of a new sytem’s state */ 

 

for (x=1; x<xmax+1; x++) 

 { 

 for (y=1; y<ymax+1; y++) 

  { 

  m[x][y]=nm[x][y]; vx[x][y]=nvx[x][y]; vy[x][y]=nvy[x][y]; 

  putpixel (x, y, m[x][y]*print); 

  } 

 } 



APPENDIX C 

 

144 
 

 

/* Code fragment 8: Data arrays resetting */ 

 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=3; y<ymax-2; y++) 

  { 

  if (nm[x][y]<7) 

    {nm[x][y]=0; nvx[x][y]=0; nvy[x][y]=0; 

    i1[x][y]=0; i2[x][y]=0; i3[x][y]=0; 

    i4[x][y]=0; i5[x][y]=0; i6[x][y]=0;} 

  else {nm[x][y]=7;} 

  } 

 } 

 

/* Code fragment 9: Printout macro */ 

setfillstyle(1,0); 

bar(getmaxx()-90,getmaxy()-90,getmaxx(),getmaxy()-70); 

outtextxy(getmaxx()-120,getmaxy()-80,"cycle"); 

outtextxy(getmaxx()-70,getmaxy()-80,gcvt(series,sig,str)); 

 

series=series+1; 

getch(); 

} //The end of the main cycle 

 

/* Code fragment 10: Final operations */ 

 

getch(); 

closegraph(); 

return (0); 

} //The end of the main part of the algorithm 

 

/*-----------------------------------------------------------------------*/ 

 

//SUBROUTINES 

 

/*-----------------------------------------------------------------------*/ 

//Collision phase 

int collision(void) 

{ 

int cannel=0; 

int mas=0; 

float velx=0; 

float vely=0; 

 

nav2: 

velx=vx[x][y]; vely=vy[x][y]; mas=m[x][y]; 

i1[x][y]=0; i2[x][y]=0; i3[x][y]=0; i4[x][y]=0; i5[x][y]=0; i6[x][y]=0; 

 

nav1: 

cannel=0; 

cannel=random(6); 

 

 if (cannel==0) 

  {if (i1[x][y]==1) {goto nav1;} 

  i1[x][y]=1; mas=mas-1;} 

 if (cannel==1) 

  {if (i2[x][y]==1) {goto nav1;} 

  i2[x][y]=1; mas=mas-1;} 

 if (cannel==2) 

  {if (i3[x][y]==1) {goto nav1;} 

  i3[x][y]=1; mas=mas-1;} 
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 if (cannel==3) 

  {if (i4[x][y]==1) {goto nav1;} 

  i4[x][y]=1; mas=mas-1;} 

 if (cannel==4) 

  {if (i5[x][y]==1) {goto nav1;} 

  i5[x][y]=1; mas=mas-1;} 

 if (cannel==5) 

  {if (i6[x][y]==1) {goto nav1;} 

  i6[x][y]=1; mas=mas-1;} 

 

//change of mass and velocity in the cell – has to be zero   

 if (mas!=0) {goto nav1;} 

 velx=velx+(0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-0.5*i4[x][y]-i5[x][y]-

0.5*i6[x][y]); 

 if (velx!=0) {goto nav2;} 

 vely=vely+(sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y]); 

 if (vely!=0) {goto nav2;} 

return(0); 

} 

 

/*-----------------------------------------------------------------------*/ 

 

//Propagation phase in odd rows of the lattice (bounce-back reflection) 

float propagationodd(void) 

{ 

if (i1[x][y]==1) 

 { 

 if (nm[x-1][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x-1][y-1]=nm[x-1][y-1]+1; nvx[x-1][y-1]=nvx[x-1][y-1]-0.5; 

 nvy[x-1][y-1]=nvy[x-1][y-1]-sinangle;} 

 } 

 

if (i2[x][y]==1) 

 { 

 if (nm[x-1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1; 

  nvy[x][y]=nvy[x][y]+0;} 

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1; 

 nvy[x-1][y]=nvy[x-1][y]-0;} 

 } 

 

if (i3[x][y]==1) 

 { 

 if (nm[x-1][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x-1][y+1]=nm[x-1][y+1]+1; nvx[x-1][y+1]=nvx[x-1][y+1]-0.5;  

 nvy[x-1][y+1]=nvy[x-1][y+1]+sinangle;} 

 } 

 

if (i4[x][y]==1) 

 { 

 if (nm[x][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]+0.5; 

 nvy[x][y+1]=nvy[x][y+1]+sinangle;} 

 } 
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if (i5[x][y]==1) 

 { 

 if (nm[x+1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1; 

  nvy[x][y]=nvy[x][y]-0;} 

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1; 

 nvy[x+1][y]=nvy[x+1][y]+0;} 

 } 

 

if (i6[x][y]==1) 

 { 

 if (nm[x][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]+0.5; 

 nvy[x][y-1]=nvy[x][y-1]-sinangle;} 

 } 

return(0); 

} 

 

/*-----------------------------------------------------------------------*/ 

 

//Propagation phase in even rows of the lattice (bounce-back reflection) 

float propagationeven(void) 

{ 

if (i1[x][y]==1) 

 { 

 if (nm[x][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]-0.5; 

 nvy[x][y-1]=nvy[x][y-1]-sinangle;} 

 } 

 

if (i2[x][y]==1) 

 { 

 if (nm[x-1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1; 

  nvy[x][y]=nvy[x][y]-0;} 

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1; 

 nvy[x-1][y]=nvy[x-1][y]+0;} 

 } 

 

if (i3[x][y]==1) 

 { 

 if (nm[x][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]-0.5;  

 nvy[x][y+1]=nvy[x][y+1]+sinangle;} 

 } 

 

if (i4[x][y]==1) 

 { 

 if (nm[x+1][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x+1][y+1]=nm[x+1][y+1]+1; nvx[x+1][y+1]=nvx[x+1][y+1]+0.5;  

 nvy[x+1][y+1]=nvy[x+1][y+1]+sinangle;} 

 } 

 

if (i5[x][y]==1) 
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 { 

 if (nm[x+1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1; 

  nvy[x][y]=nvy[x][y]+0;} 

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1; 

 nvy[x+1][y]=nvy[x+1][y]-0;} 

 } 

 

if (i6[x][y]==1) 

 { 

 if (nm[x+1][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x+1][y-1]=nm[x+1][y-1]+1; nvx[x+1][y-1]=nvx[x+1][y-1]+0.5; 

 nvy[x+1][y-1]=nvy[x+1][y-1]-sinangle;} 

 } 

return(0); 

} 

/*-----------------------------------------------------------------------*/ 
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Time evolution of the FHP-1 Lattice Gas Cellular 
Automata model  
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Initial state (        )          

  
                  

  
                  

  
                  

Figure D-1: Evolution of the developed FHP-1 LGCA model in time. Particle system is monitored for 20 
time steps with an interval of 1 t.u. The size of the simulation domain is                      , 

average lattice gas density is                 
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Figure D-1 (continuation): Evolution of the developed FHP-1 LGCA model in time. Particle system is 
monitored for 20 time steps with an interval of 1 t.u. The size of the simulation domain is       

               , average lattice gas density is                 
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Figure D-1 (continuation): Evolution of the developed FHP-1 LGCA model in time. Particle system is 
monitored for 20 time steps with an interval of 1 t.u. The size of the simulation domain is       

               , average lattice gas density is                
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The FHP-1 Lattice Gas Cellular Automata algorithm 
for a Brownian motion simulation 
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//Basic FHP-1 LGCA algorithm - Brownian motion simulation 

 

/* Code fragment 1: Header files and initialization of a simulation box */ 

 

//Definition of standard library functions 

# include <graphics.h> 

# include <stdlib.h> 

# include <stdio.h> 

# include <conio.h> 

# include <math.h> 

# include <float.h> 

# include <time.h> 

# define DIRX 300 

# define DIRY 300 

 

//Declaration of main variables 

int x, y, xmax=299, ymax=299; 

float vx[DIRX][DIRY], nvx[DIRX][DIRY]; 

float vy[DIRX][DIRY], nvy[DIRX][DIRY]; 

int m[DIRX][DIRY], nm[DIRX][DIRY]; 

int i1[DIRX][DIRY], i2[DIRX][DIRY], i3[DIRX][DIRY], i4[DIRX][DIRY], 

i5[DIRX][DIRY], i6[DIRX][DIRY]; 

float sinangle=0.866025403; 

int pco=6; 

int sig=15;  

char str[25];  

int I1, I2, I3, I4, I5, I6;  

int cycle, cmax=20, series; 

int i=25, print=4; 

int fluid=3, boundary=4, hole=0, brownian=14; 

 

//Declaration of variables of Brownian particle  

int x1, y1, x2, y2; 

int brownx, browny, collide=0; 

int code1[DIRX][DIRY], code2[DIRX][DIRY], code3[DIRX][DIRY], 

code4[DIRX][DIRY], code5[DIRX][DIRY], code6[DIRX][DIRY]; 

float distance=0; 

 

//Declaration of subroutines 

int collision(void);  

int collisionbrown(void);  

float propagationodd(void);  

float propagationeven(void); 

float propagationoddbrown(void);  

float propagationevenbrown(void);  

 

FILE *output0; 

 

/*-----------------------------------------------------------------------*/ 

 

/* Beginning of a main part of the program */ 

int main() 

{ 

 

/* Code fragment 2: Graphic outputs setting */ 

     

int gdriver = DETECT, gmode, errorcode; 

 

//initialize graphics and local variabls 

initgraph (&gdriver, &gmode, "c:\\TC\\BGI"); 

 

//read rezult of initialization 
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     errorcode = graphresult(); 

 

    //an error occurred 

     if (errorcode != grOk) 

    { 

  printf ("Graphics error: %s\n", grapherrormsg(errorcode)); 

     printf ("Press any key to halt:"); 

     getch(); 

     exit(1); 

    } 

     

/* Code fragment 3: Creation of the simulation domain and initial state of 

the simulated system */ 

 

//Data arrays resetting 

for (x=0; x<xmax+1; x++) 

 { 

 for (y=0; y<ymax+1; y++) 

  { 

  m[x][y]=0; 

  nm[x][y]=0; 

  vx[x][y]=0; 

  nvx[x][y]=0; 

  vy[x][y]=0; 

  nvy[x][y]=0; 

  } 

 } 

 

//Creation of solid boundaries of the simulation box 

for (x=1; x<xmax; x++) 

{ 

m[x][1]=7; 

m[x][2]=7; 

m[x][ymax-1]=7; 

m[x][ymax-2]=7; 

 

nm[x][1]=7; 

nm[x][2]=7; 

nm[x][ymax-1]=7; 

nm[x][ymax-2]=7; 

putpixel (x, 1, boundary); 

putpixel (x, ymax-1, boundary); 

} 

 

for (y=1; y<ymax; y++) 

{ 

m[1][y]=7; 

m[2][y]=7; 

m[xmax-1][y]=7; 

m[xmax-2][y]=7; 

nm[1][y]=7; 

nm[2][y]=7; 

nm[xmax-1][y]=7; 

nm[xmax-2][y]=7; 

putpixel (1, y, boundary); 

putpixel (xmax-1, y, boundary); 

} 

 

randomize(); 

 

/* Code fragment 4: Occupation of cannels by fluid moving particles */ 
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//odd rows of the lattice 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=3; y<ymax-2; y=y+2) 

  { 

  if (m[x][y]!=7) 

   { 

   m[x][y]=0; vx[x][y]=0; vy[x][y]=0; 

 

   if (m[x-1][y-1]<7) {I1=random(pco);} 

if (I1==1) {m[x][y]=m[x][y]+1; i1[x][y]=1;} else {i1[x][y]=0;} 

 

   if (m[x-1][y]<7) {I2=random(pco);} 

if (I2==1) {m[x][y]=m[x][y]+1; i2[x][y]=1;} else {i2[x][y]=0;} 

 

   if (m[x-1][y+1]<7) {I3=random(pco);} 

if (I3==1) {m[x][y]=m[x][y]+1; i3[x][y]=1;} else {i3[x][y]=0;} 

 

   if (m[x][y+1]<7) {I4=random(pco);} 

if (I4==1) {m[x][y]=m[x][y]+1; i4[x][y]=1;} else {i4[x][y]=0;} 

 

   if (m[x+1][y]<7) {I5=random(pco);} 

if (I5==1) {m[x][y]=m[x][y]+1; i5[x][y]=1;} else {i5[x][y]=0;} 

 

   if (m[x][y-1]<7) {I6=random(pco);} 

if (I6==1) {m[x][y]=m[x][y]+1; i6[x][y]=1;} else {i6[x][y]=0;} 

 

   //the total particles velocity in the node 

   vx[x][y]=vx[x][y]+0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-

0.5*i4[x][y]-i5[x][y]-0.5*i6[x][y]; 

   vy[x][y]=vy[x][y]+sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y]; 

   }} 

 } 

 

//even rows of the lattice 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=4; y<ymax-2; y=y+2) 

  { 

  if (m[x][y]!=7) 

   { 

   m[x][y]=0; vx[x][y]=0; vy[x][y]=0; 

 

   if (m[x][y-1]<7) {I1=random(pco);} 

   if (I1==1) {m[x][y]=m[x][y]+1; i1[x][y]=1;} else 

{i1[x][y]=0;} 

 

   if (m[x-1][y]<7) {I2=random(pco);} 

   if (I2==1) {m[x][y]=m[x][y]+1; i2[x][y]=1;} else 

{i2[x][y]=0;} 

 

   if (m[x][y+1]<7) {I3=random(pco);} 

   if (I3==1) {m[x][y]=m[x][y]+1; i3[x][y]=1;} else 

{i3[x][y]=0;} 

 

   if (m[x+1][y+1]<7) {I4=random(pco);} 

   if (I4==1) {m[x][y]=m[x][y]+1; i4[x][y]=1;} else 

{i4[x][y]=0;} 

 

   if (m[x+1][y]<7) {I5=random(pco);} 

   if (I5==1) {m[x][y]=m[x][y]+1; i5[x][y]=1;} else 
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{i5[x][y]=0;} 

 

   if (m[x+1][y-1]<7) {I6=random(pco);} 

   if (I6==1) {m[x][y]=m[x][y]+1; i6[x][y]=1;} else 

{i6[x][y]=0;} 

 

   // the total particles velocity in the node 

   vx[x][y]=vx[x][y]+0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]- 

0.5*i4[x][y]-i5[x][y]-0.5*i6[x][y]; 

   vy[x][y]=vy[x][y]+sinangle*i1[x][y]-sinangle*i3[x][y]- 

sinangle*i4[x][y]+sinangle*i6[x][y]; 

   }} 

 } 

 

//Determination of the Brownian particle 

signal11: 

brownx=random(xmax); browny=random(ymax); 

if ((brownx<=xmax/2+i)&&(brownx>=xmax/2-i)) 

 {if ((browny<=ymax/2+i)&&(browny>=ymax/2-i)) 

  {if ((m[brownx][browny]>0)&&(m[brownx][browny]<7)) 

   {m[brownx][browny]=m[brownx][browny]+13;} 

  } 

 else {goto signal11;} 

 } 

else {goto signal11;} 

 

/* Code fragment 5: Graphical and data outputs */ 

 

//Graphical outputs of the initial system configuration   

for (x=1; x<xmax+1; x++) 

 { 

  for (y=1; y<ymax+1; y++) 

   { 

   putpixel (x, y, m[x][y]/print); 

   } 

 } 

 

/* Code fragment 5-A: Data outputs */ 

 

//Opening the data file BROWN.CPP 

if ((output0=fopen("C:\\Outputs\\Brownian\\brown00.cpp","w"))==NULL) 

 { 

 printf("output file error\n"); 

 exit(0); 

 } 

fprintf (output0, "cycle, brownx, browny, x2, y2, distance\n"); 

 

 

/*-----------------------------------------------------------------------*/ 

 

/* Code fragment 6: The main cycle of the algorithm */ 

 

for (cycle=0; cycle<cmax+1; cycle++) 

{ 

 

/* Code fragment 6-A: Collision phase */ 

 

for (x=3; x<xmax-2; x++) 

 {for (y=3; y<ymax-2; y++) 

  { 

  if ((m[x][y]>0)&&(m[x][y]<7)) {collision();} 

  if (m[x][y]>13) {collisionbrown();} 
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  if (m[x][y]>14) {collide=collide+1;} 

  } 

 } 

 

/* Code fragment 6-B: Propagation phase */ 

 

//odd rows of the lattice 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=3; y<ymax-2; y=y+2) 

  { 

  if ((m[x][y]>0)&&(m[x][y]<7)){propagationodd();} 

  if (m[x][y]>13) {propagationoddbrown(); x1=x; y1=y;} 

  } 

 } 

//even rows of the lattice 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=4; y<ymax-2; y=y+2) 

  { 

  if ((m[x][y]>0)&&(m[x][y]<7)){propagationeven();} 

  if (m[x][y]>13) {propagationevenbrown(); x1=x; y1=y;} 

  } 

 } 

 

/* Code fragment 7: Recording of a new sytem’s state */ 

 

for (x=1; x<xmax+1; x++) 

 { 

 for (y=1; y<ymax+1; y++) 

  { 

  m[x][y]=nm[x][y]; vx[x][y]=nvx[x][y]; vy[x][y]=nvy[x][y]; 

  if ((m[x][y]>0)&&(m[x][y]<7)) {putpixel (x, y, fluid);} 

  if (m[x][y]==7) {putpixel (x, y, boundary);} 

  if (m[x][y]==0) {putpixel (x, y, hole);} 

  if (m[x][y]>13) {putpixel (x, y, brownian);} 

  } 

 } 

 

/* Code fragment 8: Data arrays resetting */ 

 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=3; y<ymax-2; y++) 

  { 

  nm[x][y]=0; nvx[x][y]=0; nvy[x][y]=0; 

  i1[x][y]=0; i2[x][y]=0; i3[x][y]=0; 

  i4[x][y]=0; i5[x][y]=0; i6[x][y]=0; 

  } 

 } 

 

/* Code fragment 9: Printout macro */ 

setfillstyle(1,0); 

bar(getmaxx()-90,getmaxy()-90,getmaxx(),getmaxy()-70); 

outtextxy(getmaxx()-120,getmaxy()-80,"cycle"); 

outtextxy(getmaxx()-70,getmaxy()-80,gcvt(series,sig,str)); 

 

//Outputs - BROWN.CPP 

distance=sqrt(pow(x2-brownx,2)+pow(y2-browny,2)); 

fprintf(output0,"%8d %8d %8d %8d %8d %8.3f\n", series, brownx, browny, x2, 

y2, distance); 
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//Collision with solid boundaries - the end of the simulation 

if ((x2==3)||(x2==xmax-3)) {goto signalend;} 

if ((y2==3)||(y2==ymax-3)) {goto signalend;} 

 

series=series+1; 

getch(); 

} //The end of the main cycle 

 

signalend: 

 

/* Code fragment 10: Final operations */ 

 

getch(); 

closegraph(); 

fclose (output0); 

return (0); 

} //The end of the main part of the algorithm  

 

/*-----------------------------------------------------------------------*/ 

 

//SUBROUTINES 

 

/*-----------------------------------------------------------------------*/ 

//Collision phase - fluid 

int collision(void) 

{ 

int cannel=0; 

int mas=0; 

float velx=0; 

float vely=0; 

 

signal2: 

velx=vx[x][y]; vely=vy[x][y]; mas=m[x][y]; 

i1[x][y]=0; i2[x][y]=0; i3[x][y]=0; i4[x][y]=0; i5[x][y]=0; i6[x][y]=0; 

 

signal1: 

cannel=0; 

cannel=random(6); 

 

 if (cannel==0) 

  {if (i1[x][y]==1) {goto signal1;} 

  i1[x][y]=1; mas=mas-1;} 

 if (cannel==1) 

  {if (i2[x][y]==1) {goto signal1;} 

  i2[x][y]=1; mas=mas-1;} 

 if (cannel==2) 

  {if (i3[x][y]==1) {goto signal1;} 

  i3[x][y]=1; mas=mas-1;} 

 if (cannel==3) 

  {if (i4[x][y]==1) {goto signal1;} 

  i4[x][y]=1; mas=mas-1;} 

 if (cannel==4) 

  {if (i5[x][y]==1) {goto signal1;} 

  i5[x][y]=1; mas=mas-1;} 

 if (cannel==5) 

  {if (i6[x][y]==1) {goto signal1;} 

  i6[x][y]=1; mas=mas-1;} 

 

//Change of mass and velocity in the node – has to be zero   

 if (mas!=0) {goto signal1;} 
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 velx=velx+(0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-0.5*i4[x][y]-i5[x][y]-

0.5*i6[x][y]); 

 if (velx!=0) {goto signal2;} 

 vely=vely+(sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y]); 

 if (vely!=0) {goto signal2;} 

return(0); 

} 

 

/*-----------------------------------------------------------------------*/ 

 

//Collision phase - Brownian particle 

int collisionbrown(void) 

{ 

int cannel=0; 

int mas=0; 

int brownp=0; 

float velx=0; 

float vely=0; 

 

signal2: 

velx=vx[x][y]; vely=vy[x][y]; mas=m[x][y]-13; 

i1[x][y]=0; i2[x][y]=0; i3[x][y]=0; i4[x][y]=0; i5[x][y]=0; i6[x][y]=0; 

code1[x][y]=0; code2[x][y]=0; code3[x][y]=0; code4[x][y]=0; code5[x][y]=0; 

code6[x][y]=0; 

 

signal1: 

cannel=0; 

cannel=random(6); 

 

 if (cannel==0) 

  {if (i1[x][y]==1) {goto signal1;} 

  i1[x][y]=1; mas=mas-1;} 

 if (cannel==1) 

  {if (i2[x][y]==1) {goto signal1;} 

  i2[x][y]=1; mas=mas-1;} 

 if (cannel==2) 

  {if (i3[x][y]==1) {goto signal1;} 

  i3[x][y]=1; mas=mas-1;} 

 if (cannel==3) 

  {if (i4[x][y]==1) {goto signal1;} 

  i4[x][y]=1; mas=mas-1;} 

 if (cannel==4) 

  {if (i5[x][y]==1) {goto signal1;} 

  i5[x][y]=1; mas=mas-1;} 

 if (cannel==5) 

  {if (i6[x][y]==1) {goto signal1;} 

  i6[x][y]=1; mas=mas-1;} 

 

//Change of mass and velocity in the node – has to be zero   

 if (mas!=0) {goto signal1;} 

 velx=velx+(0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-0.5*i4[x][y]-i5[x][y]-

0.5*i6[x][y]); 

 if (velx!=0) {goto signal2;} 

 vely=vely+(sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y]); 

 if (vely!=0) {goto signal2;} 

 

//Marking of the Brownian particle 

signal111: 

brownp=random(6); 
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if ((brownp==0)&&(i1[x][y]==1)){i1[x][y]=13; code1[x][y]=13; goto 

signal112;} else {code1[x][y]=0;} 

if ((brownp==1)&&(i2[x][y]==1)){i2[x][y]=13; code2[x][y]=13; goto 

signal112;} else {code2[x][y]=0;} 

if ((brownp==2)&&(i3[x][y]==1)){i3[x][y]=13; code3[x][y]=13; goto 

signal112;} else {code3[x][y]=0;} 

if ((brownp==3)&&(i4[x][y]==1)){i4[x][y]=13; code4[x][y]=13; goto 

signal112;} else {code4[x][y]=0;} 

if ((brownp==4)&&(i5[x][y]==1)){i5[x][y]=13; code5[x][y]=13; goto 

signal112;} else {code5[x][y]=0;} 

if ((brownp==5)&&(i6[x][y]==1)){i6[x][y]=13; code6[x][y]=13; goto 

signal112;} else {code6[x][y]=0; goto signal111;} 

signal112: 

  

return(0); 

} 

 

/*-----------------------------------------------------------------------*/ 

 

//Propagation phase in odd rows of the lattice (bounce-back reflection)- 

fluid 

float propagationodd(void) 

{ 

if (i1[x][y]==1) 

 { 

 if (nm[x-1][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x-1][y-1]=nm[x-1][y-1]+1; nvx[x-1][y-1]=nvx[x-1][y-1]-0.5; 

 nvy[x-1][y-1]=nvy[x-1][y-1]-sinangle;} 

 } 

 

if (i2[x][y]==1) 

 { 

 if (nm[x-1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1; 

  nvy[x][y]=nvy[x][y]+0;} 

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1; 

 nvy[x-1][y]=nvy[x-1][y]-0;} 

 } 

 

if (i3[x][y]==1) 

 { 

 if (nm[x-1][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x-1][y+1]=nm[x-1][y+1]+1; nvx[x-1][y+1]=nvx[x-1][y+1]-0.5;  

 nvy[x-1][y+1]=nvy[x-1][y+1]+sinangle;} 

 } 

 

if (i4[x][y]==1) 

 { 

 if (nm[x][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]+0.5; 

 nvy[x][y+1]=nvy[x][y+1]+sinangle;} 

 } 

 

if (i5[x][y]==1) 

 { 

 if (nm[x+1][y]==7) 
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  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1; 

  nvy[x][y]=nvy[x][y]-0;} 

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1; 

 nvy[x+1][y]=nvy[x+1][y]+0;} 

 } 

 

if (i6[x][y]==1) 

 { 

 if (nm[x][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]+0.5; 

 nvy[x][y-1]=nvy[x][y-1]-sinangle;} 

 } 

return(0); 

} 

 

/*-----------------------------------------------------------------------*/ 

 

//Propagation phase in even rows of the lattice (bounce-back reflection) – 

fluid 

 

float propagationeven(void) 

{ 

if (i1[x][y]==1) 

 { 

 if (nm[x][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]-0.5; 

 nvy[x][y-1]=nvy[x][y-1]-sinangle;} 

 } 

 

if (i2[x][y]==1) 

 { 

 if (nm[x-1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1; 

  nvy[x][y]=nvy[x][y]-0;} 

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1; 

 nvy[x-1][y]=nvy[x-1][y]+0;} 

 } 

 

if (i3[x][y]==1) 

 { 

 if (nm[x][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]-0.5;  

 nvy[x][y+1]=nvy[x][y+1]+sinangle;} 

 } 

 

if (i4[x][y]==1) 

 { 

 if (nm[x+1][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x+1][y+1]=nm[x+1][y+1]+1; nvx[x+1][y+1]=nvx[x+1][y+1]+0.5;  

 nvy[x+1][y+1]=nvy[x+1][y+1]+sinangle;} 

 } 

 

if (i5[x][y]==1) 

 { 
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 if (nm[x+1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1; 

  nvy[x][y]=nvy[x][y]+0;} 

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1; 

 nvy[x+1][y]=nvy[x+1][y]-0;} 

 } 

 

if (i6[x][y]==1) 

 { 

 if (nm[x+1][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x+1][y-1]=nm[x+1][y-1]+1; nvx[x+1][y-1]=nvx[x+1][y-1]+0.5; 

 nvy[x+1][y-1]=nvy[x+1][y-1]-sinangle;} 

 } 

return(0); 

} 

 

/*-----------------------------------------------------------------------*/ 

 

//Propagation phase in odd rows of the lattice (bounce-back reflection)- 

Brownian particle 

 

float propagationoddbrown(void) 

{ 

if ((i1[x][y]==13)||(i1[x][y]==1)) 

 { 

 if (nm[x-1][y-1]==7) 

  {nm[x][y]=nm[x][y]+1+code1[x][y]; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle; x2=x; y2=y;} 

 else {nm[x-1][y-1]=nm[x-1][y-1]+1+code1[x][y]; nvx[x-1][y-1]=nvx[x-

1][y-1]-0.5; 

 nvy[x-1][y-1]=nvy[x-1][y-1]-sinangle; x2=x-1; y2=y-1;} 

 } 

 

if ((i2[x][y]==13)||(i2[x][y]==1)) 

 { 

 if (nm[x-1][y]==7) 

  {nm[x][y]=nm[x][y]+1+code2[x][y]; nvx[x][y]=nvx[x][y]+1; 

  nvy[x][y]=nvy[x][y]+0; x2=x; y2=y;} 

 else {nm[x-1][y]=nm[x-1][y]+1+code2[x][y]; nvx[x-1][y]=nvx[x-1][y]-1; 

 nvy[x-1][y]=nvy[x-1][y]-0; x2=x-1; y2=y;} 

 } 

 

if ((i3[x][y]==13)||(i3[x][y]==1)) 

 { 

 if (nm[x-1][y+1]==7) 

  {nm[x][y]=nm[x][y]+1+code3[x][y]; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]-sinangle; x2=x; y2=y;} 

 else {nm[x-1][y+1]=nm[x-1][y+1]+1+code3[x][y]; nvx[x-1][y+1]=nvx[x-

1][y+1]-0.5;  

 nvy[x-1][y+1]=nvy[x-1][y+1]+sinangle; x2=x-1; y2=y+1;} 

 } 

 

if ((i4[x][y]==13)||(i4[x][y]==1)) 

 { 

 if (nm[x][y+1]==7) 

  {nm[x][y]=nm[x][y]+1+code4[x][y]; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]-sinangle; x2=x; y2=y;} 

 else {nm[x][y+1]=nm[x][y+1]+1+code4[x][y]; 

nvx[x][y+1]=nvx[x][y+1]+0.5; 

 nvy[x][y+1]=nvy[x][y+1]+sinangle; x2=x; y2=y+1;}  
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 } 

 

if ((i5[x][y]==13)||(i5[x][y]==1)) 

 { 

 if (nm[x+1][y]==7) 

  {nm[x][y]=nm[x][y]+1+code5[x][y]; nvx[x][y]=nvx[x][y]-1; 

  nvy[x][y]=nvy[x][y]-0; x2=x; y2=y;} 

 else {nm[x+1][y]=nm[x+1][y]+1+code5[x][y]; nvx[x+1][y]=nvx[x+1][y]+1; 

 nvy[x+1][y]=nvy[x+1][y]+0; x2=x+1; y2=y;} 

 } 

 

if ((i6[x][y]==13)||(i6[x][y]==1)) 

 { 

 if (nm[x][y-1]==7) 

  {nm[x][y]=nm[x][y]+1+code6[x][y]; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]+sinangle; x2=x; y2=y;} 

 else {nm[x][y-1]=nm[x][y-1]+1+code6[x][y]; nvx[x][y-1]=nvx[x][y-

1]+0.5; 

 nvy[x][y-1]=nvy[x][y-1]-sinangle; x2=x; y2=y-1;} 

 } 

return(0); 

} 

 

/*-----------------------------------------------------------------------*/ 

 

//Propagation phase in even rows of the lattice (bounce-back reflection) - 

Brownian particle 

 

float propagationevenbrown(void) 

{ 

if ((i1[x][y]==13)||(i1[x][y]==1)) 

 { 

 if (nm[x][y-1]==7) 

  {nm[x][y]=nm[x][y]+1+code1[x][y]; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle; x2=x; y2=y;} 

 else {nm[x][y-1]=nm[x][y-1]+1+code1[x][y]; nvx[x][y-1]=nvx[x][y-1]-

0.5; 

 nvy[x][y-1]=nvy[x][y-1]-sinangle; x2=x; y2=y-1;} 

 } 

 

if ((i2[x][y]==13)||(i2[x][y]==1)) 

 { 

 if (nm[x-1][y]==7) 

  {nm[x][y]=nm[x][y]+1+code2[x][y]; nvx[x][y]=nvx[x][y]+1; 

  nvy[x][y]=nvy[x][y]-0; x2=x; y2=y;} 

 else {nm[x-1][y]=nm[x-1][y]+1+code2[x][y]; nvx[x-1][y]=nvx[x-1][y]-1; 

 nvy[x-1][y]=nvy[x-1][y]+0; x2=x-1; y2=y;} 

 } 

 

if ((i3[x][y]==13)||(i3[x][y]==1)) 

 { 

 if (nm[x][y+1]==7) 

  {nm[x][y]=nm[x][y]+1+code3[x][y]; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]-sinangle; x2=x; y2=y;} 

 else {nm[x][y+1]=nm[x][y+1]+1+code3[x][y]; nvx[x][y+1]=nvx[x][y+1]-

0.5;  

 nvy[x][y+1]=nvy[x][y+1]+sinangle; x2=x; y2=y+1;} 

 } 

 

if ((i4[x][y]==13)||(i4[x][y]==1)) 

 { 

 if (nm[x+1][y+1]==7) 
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  {nm[x][y]=nm[x][y]+1+code4[x][y]; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]-sinangle; x2=x; y2=y;} 

 else {nm[x+1][y+1]=nm[x+1][y+1]+1+code4[x][y]; 

nvx[x+1][y+1]=nvx[x+1][y+1]+0.5;  

 nvy[x+1][y+1]=nvy[x+1][y+1]+sinangle; x2=x+1; y2=y+1;} 

 } 

 

if ((i5[x][y]==13)||(i5[x][y]==1)) 

 { 

 if (nm[x+1][y]==7) 

  {nm[x][y]=nm[x][y]+1+code5[x][y]; nvx[x][y]=nvx[x][y]-1; 

  nvy[x][y]=nvy[x][y]+0; x2=x; y2=y;} 

 else {nm[x+1][y]=nm[x+1][y]+1+code5[x][y]; nvx[x+1][y]=nvx[x+1][y]+1; 

 nvy[x+1][y]=nvy[x+1][y]-0; x2=x+1; y2=y;} 

 } 

 

if ((i6[x][y]==13)||(i6[x][y]==1)) 

 { 

 if (nm[x+1][y-1]==7) 

  {nm[x][y]=nm[x][y]+1+code6[x][y]; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]+sinangle; x2=x; y2=y;} 

 else {nm[x+1][y-1]=nm[x+1][y-1]+1+code6[x][y]; nvx[x+1][y-

1]=nvx[x+1][y-1]+0.5; 

 nvy[x+1][y-1]=nvy[x+1][y-1]-sinangle; x2=x+1; y2=y-1;} 

 } 

return(0); 

} 

/*-----------------------------------------------------------------------*/ 
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APPENDIX F 
 
 
 
 
 

Computer simulation of the Brownian motion. 
Evolution in time for 20 time steps 
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Initial position (        )          

  
                  

  
                  

Figure F-1: Simulation of the Brownian motion presented on the reduced simulation domain of a size 
                      The lattice gas average density is             The simulation domain is 

bounded by solid walls (red lines), blue regions corresponds with moving particles, black squares 
present empty lattice nodes. The Brownian particle is yellow one. It is monitored for 20 time steps 
with an interval of 1 t.u. The developed FHP-1 LGCA is used for the simulation 



APPENDIX F 

 

167 
 

  
                  

  
                  

  
                    

Figure F-1 (continuation): Simulation of the Brownian motion presented on the reduced simulation 
domain of a size                       The lattice gas average density is             The 

simulation domain is bounded by solid walls (red lines), blue regions corresponds with moving 
particles, black squares present empty lattice nodes. The Brownian particle is yellow one. It is 
monitored for 20 time steps with an interval of 1 t.u. The developed FHP-1 LGCA is used for the 
simulation 
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Figure F-1 (continuation): Simulation of the Brownian motion presented on the reduced simulation 
domain of a size                       The lattice gas average density is             The 

simulation domain is bounded by solid walls (red lines), blue regions corresponds with moving 
particles, black squares present empty lattice nodes. The Brownian particle is yellow one. It is 
monitored for 20 time steps with an interval of 1 t.u. The developed FHP-1 LGCA is used for the 
simulation 
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Figure F-1 (continuation): Simulation of the Brownian motion presented on the reduced simulation 
domain of a size                       The lattice gas average density is             The 

simulation domain is bounded by solid walls (red lines), blue regions corresponds with moving 
particles, black squares present empty lattice nodes. The Brownian particle is yellow one. It is 
monitored for 20 time steps with an interval of 1 t.u. The developed FHP-1 LGCA is used for the 
simulation 
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APPENDIX G 
 
 
 
 
 

Computer simulation of the Brownian motion. 
Paths of the Brownian particle after 4000 time 
steps. Experiment 1 
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simulation 1 (BROWN03.CPP) simulation 2 (BROWN04.CPP) 

  

simulation 3 (BROWN05.CPP) simulation 4 (BROWN06.CPP) 

Figure G-1:  Paths of the Brownian particle after 4000 time steps. The size of the simulation domain is                         Lattice gas average 

density is             
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simulation 5 (BROWN08.CPP) simulation 6 (BROWN11.CPP) 

 

 

simulation 7 (BROWN12.CPP)  

Figure G-1 (continuation):  Paths of the Brownian particle after 4000 time steps. The size of the simulation domain is                         Lattice 

gas average density is             
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APPENDIX H 
 
 
 
 
 

Computer simulation of the Brownian motion. 
Paths of the Brownian particle after 4000 time 
steps. Experiment 2 
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simulation 1 (BROWN01.CPP) simulation 2 (BROWN02.CPP) 

  

simulation 3 (BROWN04.CPP) simulation 4 (BROWN05.CPP) 

Figure H-:  Paths of the Brownian particle after 4000 time steps.  The size of the simulation domain is                         Lattice gas average 

density is               
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simulation 5 (BROWN07.CPP) simulation 6 (BROWN08.CPP) 

 

 

simulation 7 (BROWN09.CPP)  

Figure H-1 (continuation):  Paths of the Brownian particle after 4000 time steps.  The size of the simulation domain is                         Lattice 

gas average density is               
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APPENDIX I 
 
 
 
 

 
The FHP-1 Lattice Gas Cellular Automata algorithm 
for Poiseuille flow simulation 
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//FHP-1 LGCA for Poiseuille flow simulation 

 

/* Code fragment 1: Header files and initialization of the simulation box 

*/ 

 

//Definition of standard library functions 

# include <graphics.h> 

# include <stdlib.h> 

# include <stdio.h> 

# include <conio.h> 

# include <math.h> 

# include <float.h> 

# include <time.h> 

# define DIRX 550 

# define DIRY 200 

 

//Declaration of variables 

int x, y, xmax=549, ymax=199; 

float vx[DIRX][DIRY], nvx[DIRX][DIRY]; 

float vy[DIRX][DIRY], nvy[DIRX][DIRY]; 

int m[DIRX][DIRY], nm[DIRX][DIRY];  

int i1[DIRX][DIRY], i2[DIRX][DIRY], i3[DIRX][DIRY], i4[DIRX][DIRY], 

i5[DIRX][DIRY], i6[DIRX][DIRY];  

int mass=0, node=0; 

float velocity=0; 

int ventilator=5, force=1; 

float sinangle=0.866025403, print=5.5, step=0; 

float flow, V[DIRY]; 

int pco=3; 

int transfer14=0, transfer25=0, transfer36=0; 

int sig=15;  

char str[25];  

int I1, I2, I3, I4, I5, I6;  

int cycle, cmax=10000, series; 

 

//Declaration of subroutines 

int collision(void);  

float propagationodd(void);  

float propagationeven(void); 

float propagationleftsideodd(void);  

float propagationleftsideeven(void); 

float propagationrightsideodd(void); 

float propagationrightsideeven(void); 

float turnright(void); 

float profile(void); 

FILE *output0; 

FILE *output1; 

/*-----------------------------------------------------------------------*/ 

/* Beginning of a main part of the program */ 

int main() 

{ 

 

/* Code fragment 2: Graphic outputs setting */ 

     

int gdriver = DETECT, gmode, errorcode; 

 

//initialize graphics and local variabls 

initgraph (&gdriver, &gmode, "c:\\TC\\BGI"); 

 

//read rezult of initialization 

     errorcode = graphresult(); 
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    //an error occurred 

     if (errorcode != grOk) 

    { 

  printf ("Graphics error: %s\n", grapherrormsg(errorcode)); 

     printf ("Press any key to halt:"); 

     getch(); 

     exit(1); 

    } 

     

/* Code fragment 3: Creation of the simulation domain and initial state of 

the simulated system */ 

 

//Data arrays resetting 

for (x=0; x<xmax+1; x++) 

 { 

 for (y=0; y<ymax+1; y++) 

  { 

  m[x][y]=0; 

  nm[x][y]=0; 

  vx[x][y]=0; 

  nvx[x][y]=0; 

  vy[x][y]=0; 

  nvy[x][y]=0; 

  } 

 } 

 

//Creation of solid boundaries of the simulation box 

for (x=1; x<xmax; x++) 

{ 

m[x][1]=7; 

m[x][2]=7; 

m[x][ymax-1]=7; 

m[x][ymax-2]=7; 

 

nm[x][1]=7; 

nm[x][2]=7; 

nm[x][ymax-1]=7; 

nm[x][ymax-2]=7; 

putpixel (x, 1, m[x][1]*print); 

putpixel (x, ymax-1, m[x][ymax-1]*print); 

} 

 

//randomize(); 

 

/* Code fragment 4: Occupation of cannels by fluid moving particles */ 

 

//odd rows of the lattice 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=3; y<ymax-2; y=y+2) 

  { 

  if (m[x][y]!=7) 

   { 

   m[x][y]=0; vx[x][y]=0; vy[x][y]=0; 

 

   if (m[x-1][y-1]<7) {I1=random(pco);} 

if (I1==1) {m[x][y]=m[x][y]+1; i1[x][y]=1;} else {i1[x][y]=0;} 

 

   if (m[x-1][y]<7) {I2=random(pco);} 

if (I2==1) {m[x][y]=m[x][y]+1; i2[x][y]=1;} else {i2[x][y]=0;} 

 

   if (m[x-1][y+1]<7) {I3=random(pco);} 
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if (I3==1) {m[x][y]=m[x][y]+1; i3[x][y]=1;} else {i3[x][y]=0;} 

 

   if (m[x][y+1]<7) {I4=random(pco);} 

if (I4==1) {m[x][y]=m[x][y]+1; i4[x][y]=1;} else {i4[x][y]=0;} 

 

   if (m[x+1][y]<7) {I5=random(pco);} 

if (I5==1) {m[x][y]=m[x][y]+1; i5[x][y]=1;} else {i5[x][y]=0;} 

 

   if (m[x][y-1]<7) {I6=random(pco);} 

if (I6==1) {m[x][y]=m[x][y]+1; i6[x][y]=1;} else {i6[x][y]=0;} 

 

   //the total particles velocity in the node 

   vx[x][y]=vx[x][y]+0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-

0.5*i4[x][y]-i5[x][y]-0.5*i6[x][y]; 

   vy[x][y]=vy[x][y]+sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y]; 

  }} 

 } 

 

//even rows of the lattice 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=4; y<ymax-2; y=y+2) 

  { 

  if (m[x][y]!=7) 

   { 

   m[x][y]=0; vx[x][y]=0; vy[x][y]=0; 

 

   if (m[x][y-1]<7) {I1=random(pco);} 

if (I1==1) {m[x][y]=m[x][y]+1; i1[x][y]=1;} else {i1[x][y]=0;} 

 

   if (m[x-1][y]<7) {I2=random(pco);} 

if (I2==1) {m[x][y]=m[x][y]+1; i2[x][y]=1;} else {i2[x][y]=0;} 

 

   if (m[x][y+1]<7) {I3=random(pco);} 

if (I3==1) {m[x][y]=m[x][y]+1; i3[x][y]=1;} else {i3[x][y]=0;} 

 

   if (m[x+1][y+1]<7) {I4=random(pco);} 

if (I4==1) {m[x][y]=m[x][y]+1; i4[x][y]=1;} else {i4[x][y]=0;} 

 

   if (m[x+1][y]<7) {I5=random(pco);} 

if (I5==1) {m[x][y]=m[x][y]+1; i5[x][y]=1;} else {i5[x][y]=0;} 

 

   if (m[x+1][y-1]<7) {I6=random(pco);} 

if (I6==1) {m[x][y]=m[x][y]+1; i6[x][y]=1;} else {i6[x][y]=0;} 

 

   // the total particles velocity in the node 

   vx[x][y]=vx[x][y]+0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]- 

0.5*i4[x][y]-i5[x][y]-0.5*i6[x][y]; 

   vy[x][y]=vy[x][y]+sinangle*i1[x][y]-sinangle*i3[x][y]- 

sinangle*i4[x][y]+sinangle*i6[x][y]; 

  }} 

 } 

 

/* Code fragment 5: Craphical outputs of the initial systém configuration 

*/ 

 

for (x=1; x<xmax+1; x++) 

 { 

  for (y=1; y<ymax+1; y++) 

   { 

   putpixel (x, y, m[x][y]*print); 
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   } 

 } 

 

//Opening the data file FLOW.CPP 

if ((output0=fopen("C:\\Outputs\\Poiseuil\\Flow02.cpp","w"))==NULL) 

 { 

 printf("output file error\n"); 

 exit(0); 

 } 

fprintf (output0, "trasfer14, transfer25, transfer36, cycle, node, mass, 

flow\n"); 

/*-----------------------------------------------------------------------*/ 

 

/* Code fragment 6: The main cycle of the algorithm */ 

 

for (cycle=0; cycle<cmax+1; cycle++) 

{ 

 

/* Code fragment 6-A: Collision phase */ 

 

for (x=3; x<xmax-2; x++) 

 {for (y=3; y<ymax-2; y++) 

  { 

  if ((m[x][y]>0)&&(m[x][y]!=7)) {collision();} 

  } 

 } 

 

/* Code fragment 6-B: Pressure gradient */ 

 

transfer14=0; transfer25=0; transfer36=0; 

for (x=3; x<ventilator; x++) 

 {for (y=3; y<ymax-2; y++) 

  { 

  if ((m[x][y]>0)&&(m[x][y]!=7)) 

   { if (random(force)<100) {turnright();}} 

  } 

 } 

 

/* Code fragment 6-C: Propagation phase */ 

 

//odd rows of the lattice 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=3; y<ymax-2; y=y+2) 

  { 

  if ((m[x][y]>0)&&(m[x][y]!=7)) 

   { 

   if (x==3) {propagationleftsideodd();} 

   if (x==xmax-3) {propagationrightsideodd();} 

   if ((x>3)&&(x<xmax-3)){propagationodd();} 

   } 

  } 

 } 

 

//even rows of the lattice 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=4; y<ymax-2; y=y+2) 

  { 

  if ((m[x][y]>0)&&(m[x][y]!=7)) 

   { 

   if (x==3) {propagationleftsideeven();} 
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   if (x==xmax-3) {propagationrightsideeven();} 

   if ((x>3)&&(x<xmax-3)){propagationeven();} 

   } 

  } 

 } 

 

/* Code fragment 7: Recording of a new sytem’s state */ 

 

for (x=1; x<xmax+1; x++) 

 { 

 for (y=1; y<ymax+1; y++) 

  { 

  m[x][y]=nm[x][y]; vx[x][y]=nvx[x][y]; vy[x][y]=nvy[x][y]; 

  putpixel (x, y, m[x][y]*print); 

  } 

 } 

 

/* Code fragment 8: Data arrays resetting */ 

 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=3; y<ymax-2; y++) 

  { 

  if (nm[x][y]<7) 

    {nm[x][y]=0; nvx[x][y]=0; nvy[x][y]=0; 

    i1[x][y]=0; i2[x][y]=0; i3[x][y]=0; 

    i4[x][y]=0; i5[x][y]=0; i6[x][y]=0;} 

  else {nm[x][y]=7;} 

  } 

 } 

 

/* Code fragment 9: Printout macro */ 

 

setfillstyle(1,0); 

bar(getmaxx()-90,getmaxy()-90,getmaxx(),getmaxy()-70); 

outtextxy(getmaxx()-120,getmaxy()-80,"cycle"); 

outtextxy(getmaxx()-70,getmaxy()-80,gcvt(series,sig,str)); 

 

//Code fragment 9-A: Output FLOW.CPP 

node=0; mass=0; velocity=0; 

for (x=3; x<xmax-2; x++) 

 {for (y=3; y<ymax-2; y++) 

       {mass=mass+m[x][y]; node++; 

        velocity=velocity+vx[x][y]; 

       } 

 } 

flow=velocity/float(mass); 

fprintf(output0,"%8d %8d %8d %8d %8d %8d %8.5f\n", transfer14, transfer25, 

transfer36, cycle, node, mass, flow); 

 

//Code fragment 9-B: Velocity profile of the flow 

if (cycle>5000) {profile();} 

series=series+1; 

//getch(); 

 

} //The end of the main cycle 

 

//Opening the data file PROFILE.CPP. Output 

if ((output1=fopen("C:\\Outputs\\Poiseuil\\Profile2.cpp","w"))==NULL) 

 { 

 printf("output file error\n"); 

 exit(0); 
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 } 

for (y=3; y<ymax-2; y++) 

     {fprintf(output1, "%5i %3.5f\n", y, V[y]/float(step));} 

 

/* Code fragment 10: Final operations */ 

 

getch(); 

closegraph(); 

fclose (output0); 

fclose (output1); 

return (0); 

} //The end of the main part of the algorithm 

 

/*-----------------------------------------------------------------------*/ 

 

//SUBROUTINES 

 

/*-----------------------------------------------------------------------*/ 

//Collision phase 

int collision(void) 

{ 

int cannel=0; 

int mas=0; 

float velx=0; 

float vely=0; 

 

nav2: 

velx=vx[x][y]; vely=vy[x][y]; mas=m[x][y]; 

i1[x][y]=0; i2[x][y]=0; i3[x][y]=0; i4[x][y]=0; i5[x][y]=0; i6[x][y]=0; 

 

nav1: 

cannel=0; 

cannel=random(6); 

 

 if (cannel==0) 

  {if (i1[x][y]==1) {goto nav1;} 

  i1[x][y]=1; mas=mas-1;} 

 if (cannel==1) 

  {if (i2[x][y]==1) {goto nav1;} 

  i2[x][y]=1; mas=mas-1;} 

 if (cannel==2) 

  {if (i3[x][y]==1) {goto nav1;} 

  i3[x][y]=1; mas=mas-1;} 

 if (cannel==3) 

  {if (i4[x][y]==1) {goto nav1;} 

  i4[x][y]=1; mas=mas-1;} 

 if (cannel==4) 

  {if (i5[x][y]==1) {goto nav1;} 

  i5[x][y]=1; mas=mas-1;} 

 if (cannel==5) 

  {if (i6[x][y]==1) {goto nav1;} 

  i6[x][y]=1; mas=mas-1;} 

 

//change of mass and velocity in the cell – has to be zero   

 if (mas!=0) {goto nav1;} 

 velx=velx+(0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-0.5*i4[x][y]-i5[x][y]-

0.5*i6[x][y]); 

 if (velx!=0) {goto nav2;} 

 vely=vely+(sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y]); 

 if (vely!=0) {goto nav2;} 

return(0); 
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} 

 

/*-----------------------------------------------------------------------*/ 

 

//Propagation phase in odd rows of the lattice (bounce-back reflection) 

float propagationodd(void) 

{ 

if (i1[x][y]==1) 

 { 

 if (nm[x-1][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x-1][y-1]=nm[x-1][y-1]+1; nvx[x-1][y-1]=nvx[x-1][y-1]-0.5; 

 nvy[x-1][y-1]=nvy[x-1][y-1]-sinangle;} 

 } 

 

if (i2[x][y]==1) 

 { 

 if (nm[x-1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1; 

  nvy[x][y]=nvy[x][y]+0;} 

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1; 

 nvy[x-1][y]=nvy[x-1][y]-0;} 

 } 

 

if (i3[x][y]==1) 

 { 

 if (nm[x-1][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x-1][y+1]=nm[x-1][y+1]+1; nvx[x-1][y+1]=nvx[x-1][y+1]-0.5;  

 nvy[x-1][y+1]=nvy[x-1][y+1]+sinangle;} 

 } 

 

if (i4[x][y]==1) 

 { 

 if (nm[x][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]+0.5; 

 nvy[x][y+1]=nvy[x][y+1]+sinangle;} 

 } 

 

if (i5[x][y]==1) 

 { 

 if (nm[x+1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1; 

  nvy[x][y]=nvy[x][y]-0;} 

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1; 

 nvy[x+1][y]=nvy[x+1][y]+0;} 

 } 

 

if (i6[x][y]==1) 

 { 

 if (nm[x][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]+0.5; 

 nvy[x][y-1]=nvy[x][y-1]-sinangle;} 

 } 

return(0); 

} 
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/*-----------------------------------------------------------------------*/ 

 

//Propagation phase in even rows of the lattice (bounce-back reflection) 

float propagationeven(void) 

{ 

if (i1[x][y]==1) 

 { 

 if (nm[x][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]-0.5; 

 nvy[x][y-1]=nvy[x][y-1]-sinangle;} 

 } 

 

if (i2[x][y]==1) 

 { 

 if (nm[x-1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1; 

  nvy[x][y]=nvy[x][y]-0;} 

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1; 

 nvy[x-1][y]=nvy[x-1][y]+0;} 

 } 

 

if (i3[x][y]==1) 

 { 

 if (nm[x][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]-0.5;  

 nvy[x][y+1]=nvy[x][y+1]+sinangle;} 

 } 

 

if (i4[x][y]==1) 

 { 

 if (nm[x+1][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x+1][y+1]=nm[x+1][y+1]+1; nvx[x+1][y+1]=nvx[x+1][y+1]+0.5;  

 nvy[x+1][y+1]=nvy[x+1][y+1]+sinangle;} 

 } 

 

if (i5[x][y]==1) 

 { 

 if (nm[x+1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1; 

  nvy[x][y]=nvy[x][y]+0;} 

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1; 

 nvy[x+1][y]=nvy[x+1][y]-0;} 

 } 

 

if (i6[x][y]==1) 

 { 

 if (nm[x+1][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x+1][y-1]=nm[x+1][y-1]+1; nvx[x+1][y-1]=nvx[x+1][y-1]+0.5; 

 nvy[x+1][y-1]=nvy[x+1][y-1]-sinangle;} 

 } 

return(0); 

} 
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/*-----------------------------------------------------------------------*/ 

 

//Propagation phase in odd rows of the lattice (bounce-back reflection) 

float propagationleftsideodd(void) 

{ 

if (i1[x][y]==1) 

 { 

 if (nm[xmax-3][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[xmax-3][y-1]=nm[xmax-3][y-1]+1; nvx[xmax-3][y-1]=nvx[xmax-

3][y-1]-0.5; 

 nvy[xmax-3][y-1]=nvy[xmax-3][y-1]-sinangle;} 

 } 

 

if (i2[x][y]==1) 

 { 

 if (nm[xmax-3][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1; 

  nvy[x][y]=nvy[x][y]+0;} 

 else {nm[xmax-3][y]=nm[xmax-3][y]+1; nvx[xmax-3][y]=nvx[xmax-3][y]-1; 

 nvy[xmax-3][y]=nvy[xmax-3][y]-0;} 

 } 

 

if (i3[x][y]==1) 

 { 

 if (nm[xmax-3][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[xmax-3][y+1]=nm[xmax-3][y+1]+1; nvx[xmax-3][y+1]=nvx[xmax-

3][y+1]-0.5;  

 nvy[xmax-3][y+1]=nvy[xmax-3][y+1]+sinangle;} 

 } 

 

if (i4[x][y]==1) 

 { 

 if (nm[x][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]+0.5; 

 nvy[x][y+1]=nvy[x][y+1]+sinangle;} 

 } 

 

if (i5[x][y]==1) 

 { 

 if (nm[x+1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1; 

  nvy[x][y]=nvy[x][y]-0;} 

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1; 

 nvy[x+1][y]=nvy[x+1][y]+0;} 

 } 

 

if (i6[x][y]==1) 

 { 

 if (nm[x][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]+0.5; 

 nvy[x][y-1]=nvy[x][y-1]-sinangle;} 

 } 

return(0); 

} 
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/*-----------------------------------------------------------------------*/ 

 

//Propagation phase in odd rows of the lattice (bounce-back reflection) 

float propagationrightsideodd(void) 

{ 

if (i1[x][y]==1) 

 { 

 if (nm[x-1][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x-1][y-1]=nm[x-1][y-1]+1; nvx[x-1][y-1]=nvx[x-1][y-1]-0.5; 

 nvy[x-1][y-1]=nvy[x-1][y-1]-sinangle;} 

 } 

 

if (i2[x][y]==1) 

 { 

 if (nm[x-1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1; 

  nvy[x][y]=nvy[x][y]+0;} 

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1; 

 nvy[x-1][y]=nvy[x-1][y]-0;} 

 } 

 

if (i3[x][y]==1) 

 { 

 if (nm[x-1][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x-1][y+1]=nm[x-1][y+1]+1; nvx[x-1][y+1]=nvx[x-1][y+1]-0.5;  

 nvy[x-1][y+1]=nvy[x-1][y+1]+sinangle;} 

 } 

 

if (i4[x][y]==1) 

 { 

 if (nm[x][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]+0.5; 

 nvy[x][y+1]=nvy[x][y+1]+sinangle;} 

 } 

 

if (i5[x][y]==1) 

 { 

 if (nm[3][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1; 

  nvy[x][y]=nvy[x][y]-0;} 

 else {nm[3][y]=nm[3][y]+1; nvx[3][y]=nvx[3][y]+1; 

 nvy[3][y]=nvy[3][y]+0;} 

 } 

 

if (i6[x][y]==1) 

 { 

 if (nm[x][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]+0.5; 

 nvy[x][y-1]=nvy[x][y-1]-sinangle;} 

 } 

return(0); 

} 
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/*-----------------------------------------------------------------------*/ 

 

//Propagation phase in even rows of the lattice (bounce-back reflection) 

float propagationleftsideeven(void) 

{ 

if (i1[x][y]==1) 

 { 

 if (nm[x][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]-0.5; 

 nvy[x][y-1]=nvy[x][y-1]-sinangle;} 

 } 

 

if (i2[x][y]==1) 

 { 

 if (nm[xmax-3][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1; 

  nvy[x][y]=nvy[x][y]-0;} 

 else {nm[xmax-3][y]=nm[xmax-3][y]+1; nvx[xmax-3][y]=nvx[xmax-3][y]-1; 

 nvy[xmax-3][y]=nvy[xmax-3][y]+0;} 

 } 

 

if (i3[x][y]==1) 

 { 

 if (nm[x][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]-0.5;  

 nvy[x][y+1]=nvy[x][y+1]+sinangle;} 

 } 

 

if (i4[x][y]==1) 

 { 

 if (nm[x+1][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x+1][y+1]=nm[x+1][y+1]+1; nvx[x+1][y+1]=nvx[x+1][y+1]+0.5;  

 nvy[x+1][y+1]=nvy[x+1][y+1]+sinangle;} 

 } 

 

if (i5[x][y]==1) 

 { 

 if (nm[x+1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1; 

  nvy[x][y]=nvy[x][y]+0;} 

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1; 

 nvy[x+1][y]=nvy[x+1][y]-0;} 

 } 

 

if (i6[x][y]==1) 

 { 

 if (nm[x+1][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x+1][y-1]=nm[x+1][y-1]+1; nvx[x+1][y-1]=nvx[x+1][y-1]+0.5; 

 nvy[x+1][y-1]=nvy[x+1][y-1]-sinangle;} 

 } 

return(0); 

} 

 

/*-----------------------------------------------------------------------*/ 
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//Propagation phase in even rows of the lattice (bounce-back reflection) 

float propagationrightsideeven(void) 

{ 

if (i1[x][y]==1) 

 { 

 if (nm[x][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]-0.5; 

 nvy[x][y-1]=nvy[x][y-1]-sinangle;} 

 } 

 

if (i2[x][y]==1) 

 { 

 if (nm[x-1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1; 

  nvy[x][y]=nvy[x][y]-0;} 

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1; 

 nvy[x-1][y]=nvy[x-1][y]+0;} 

 } 

 

if (i3[x][y]==1) 

 { 

 if (nm[x][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]-0.5;  

 nvy[x][y+1]=nvy[x][y+1]+sinangle;} 

 } 

 

if (i4[x][y]==1) 

 { 

 if (nm[3][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[3][y+1]=nm[3][y+1]+1; nvx[3][y+1]=nvx[3][y+1]+0.5;  

 nvy[3][y+1]=nvy[3][y+1]+sinangle;} 

 } 

 

if (i5[x][y]==1) 

 { 

 if (nm[3][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1; 

  nvy[x][y]=nvy[x][y]+0;} 

 else {nm[3][y]=nm[3][y]+1; nvx[3][y]=nvx[3][y]+1; 

 nvy[3][y]=nvy[3][y]-0;} 

 } 

 

if (i6[x][y]==1) 

 { 

 if (nm[3][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[3][y-1]=nm[3][y-1]+1; nvx[3][y-1]=nvx[3][y-1]+0.5; 

 nvy[3][y-1]=nvy[3][y-1]-sinangle;} 

 } 

return(0); 

} 

 

/*-----------------------------------------------------------------------*/ 
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//Pressure gradient  

float turnright(void) 

{ 

 if ((i1[x][y]==1)&&(i4[x][y]==0)) 

  {i1[x][y]=0; i4[x][y]=1; m[x][y]=m[x][y]; 

  transfer14++;} 

 

 if ((i2[x][y]==1)&&(i5[x][y]==0)) 

  {i2[x][y]=0; i5[x][y]=1; m[x][y]=m[x][y]; 

  transfer25=transfer25+2;} 

 

 if ((i3[x][y]==1)&&(i6[x][y]==0)) 

  {i3[x][y]=0; i6[x][y]=1; m[x][y]=m[x][y]; 

  transfer36++;} 

return(0); 

} 

 

/*-----------------------------------------------------------------------*/ 

 

//Velocity profile 

float profile(void) 

{ 

float velocity; 

int particles; 

 for (y=3; y<ymax-2; y++) 

  { velocity=0; particles=0; 

  for (x=7; x<xmax-2; x++) 

   {velocity=velocity+vx[x][y]; 

   particles=particles+m[x][y];} 

  V[y]=V[y]+velocity/float(particles); 

  } 

 step++; 

return (0); 

} 

 

/*-----------------------------------------------------------------------*/ 
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APPENDIX J 
 
 
 
 

 

Verification of the FHP-1 Lattice Gas Cellular 
Automata algorithm for Poiseuille flow. Flow rate as 
a function of time and velocity profiles for various 
width of the channel    
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Figure J-1: Computer simulation of the Poiseuille flow: a – the flow rate as a function of time for the 

channel of the size            ,               and various   ; b - the velocity profile of the flow 
presented by values of the   component of flow velocity averaged over the whole channel length in a 
steady state region of the flow  
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Figure J-2: Computer simulation of the Poiseuille flow: a – the flow rate as a function of time for the 

channel of the size            ,               and various   ; b - the velocity profile of the flow 
presented by values of the   component of flow velocity averaged over the whole channel length in a 
steady state region of the flow 
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Figure J-3: Computer simulation of the Poiseuille flow: a – the flow rate as a function of time for the 

channel of the size            ,               and various   ; b - the velocity profile of the flow 
presented by values of the   component of flow velocity averaged over the whole channel length in a 
steady state region of the flow 
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Figure J-4: Computer simulation of the Poiseuille flow: a – the flow rate as a function of time for the 

channel of the size            ,                and various   ; b - the velocity profile of the flow 
presented by values of the   component of flow velocity averaged over the whole channel length in a 
steady state region of the flow 
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APPENDIX K 
 
 
 

 
Verification of the FHP-1 Lattice Gas Cellular 
Automata algorithm for Poiseuille flow. Parabolic 
velocity profiles of the flow for various width of the 
channel   and for different pressure gradient 
created by various values of the parameter    
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Figure K-1: Parabolic velocity profiles for various width of the channel   and for pressure gradient 
criated by     . The length of the channel is          

 

Figure K-2: Parabolic velocity profiles for various width of the channel   and for pressure gradient 
criated by       . The length of the channel is          

0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

3 13 23 33 43 53 63 73 83 93 

ve
lo

ci
ty

, l
.u

./
t.

u
. 

axis OY, l.u. 

fx=2 

d=25√3/2 l.u. 

d=50√3/2 l.u. 

d=75√3/2 l.u. 

d=100√3/2 l.u. 

0 

0,05 

0,1 

0,15 

0,2 

0,25 

0,3 

0,35 

0,4 

0,45 

0,5 

3 13 23 33 43 53 63 73 83 93 

ve
lo

ci
ty

, l
.u

./
t.

u
. 

axis OY, l.u. 

fx=1,4 

d=25√3/2 l.u. 

d=50√3/2 l.u. 

d=75√3/2 l.u. 

d=100√3/2 l.u. 



APPENDIX K 

 

197 
 

 

Figure K-3: Parabolic velocity profiles for various width of the channel   and for pressure gradient 
criated by       . The length of the channel is          

 

Figure K-4: Parabolic velocity profiles for various width of the channel   and for pressure gradient 
criated by       . The length of the channel is          
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Figure K-5: Parabolic velocity profiles for various width of the channel   and for pressure gradient 
criated by        . The length of the channel is          
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Verification of the FHP-1 Lattice Gas Cellular 
Automata algorithm for Poiseuille flow. Flow rate as 
a function of channel width   for a pressure 
gradient created by various    
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Figure L-1: Predicted and simulated flow rate as a function of channel width for a pressure gradient 
created by      (a),        (b) and          (c). The range of the channel width is      
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Verification of the FHP-1 Lattice Gas Cellular 
Automata algorithm for Poiseuille flow. Validation 
of the Darcy’s law for various width of the channel 
 . 
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Figure M-1: Verification of the Darcy's law. The flow rate as a function of the pressure gradient for variuos channel width:                (a),                ; 

(b),                 (c) and                  (d) 
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The FHP-1 Lattice Gas Cellular Automata algorithm 
for simulation of the fluid flow through porous 
media.  
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/FHP-1 LGCA for fluid flow through porous media simulation 

 

/*Code fragment 1: Header files and initialization of the simulation box */ 

 

//Definition of standard library functions 

# include <graphics.h> 

# include <stdlib.h> 

# include <stdio.h> 

# include <conio.h> 

# include <math.h> 

# include <float.h> 

# include <time.h> 

# define DIRX 450 

# define DIRY 250 

 

//Declaration of variables 

int x, y, xmax=449, ymax=249; 

float vx[DIRX][DIRY], nvx[DIRX][DIRY]; 

float vy[DIRX][DIRY], nvy[DIRX][DIRY]; 

int m[DIRX][DIRY], nm[DIRX][DIRY];  

int i1[DIRX][DIRY], i2[DIRX][DIRY], i3[DIRX][DIRY], i4[DIRX][DIRY], 

i5[DIRX][DIRY], i6[DIRX][DIRY];  

int mass=0, node=0; 

float velfieldx[DIRX][DIRY], velfieldy[DIRX][DIRY], velocity=0; 

int ventilator=5, force=1; 

float sinangle=0.866025403, step=0, pi=3.14, alfa, b1, b2; 

float flow, V[DIRY]; 

int pco=2; 

int porousmedium=5, i=45, angle=35; 

int pore=0, fibre=0; 

int transfer14=0, transfer25=0, transfer36=0; 

int fluid=3, obstacle=4, hole=0; 

int sig=15;  

char str[25];  

int I1, I2, I3, I4, I5, I6;  

int cycle, cmax=10000, series; 

 

//Declaration of subroutines and output files 

int collision(void);  

float propagationodd(void);  

float propagationeven(void); 

float propagationleftsideodd(void);  

float propagationleftsideeven(void); 

float propagationrightsideodd(void); 

float propagationrightsideeven(void); 

float turnright(void); 

float profile(void); 

float velocityfield(void); 

FILE *output1; 

FILE *output2; 

FILE *output3; 

FILE *output4; 

FILE *output5; 

FILE *output6; 

 

/*-----------------------------------------------------------------------*/ 

/* Beginning of a main part of the program */ 

int main() 

{ 

 

/* Code fragment 2: Graphic outputs setting */ 
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int gdriver = DETECT, gmode, errorcode; 

 

//initialize graphics and local variabls 

initgraph (&gdriver, &gmode, "c:\\TC\\BGI"); 

 

//read rezult of initialization 

     errorcode = graphresult(); 

 

    //an error occurred 

     if (errorcode != grOk) 

    { 

  printf ("Graphics error: %s\n", grapherrormsg(errorcode)); 

     printf ("Press any key to halt:"); 

     getch(); 

     exit(1); 

    } 

     

/* Code fragment 3: Creation of the simulation domain and initial state of 

the simulated system */ 

 

//Data arrays resetting 

for (x=0; x<xmax+1; x++) 

 { 

 for (y=0; y<ymax+1; y++) 

  { 

  m[x][y]=0; 

  nm[x][y]=0; 

  vx[x][y]=0; 

  nvx[x][y]=0; 

  vy[x][y]=0; 

  nvy[x][y]=0; 

  } 

 } 

 

//Creation of solid boundaries of the simulation box 

for (x=1; x<xmax; x++) 

{ 

m[x][1]=7; 

m[x][2]=7; 

m[x][ymax-1]=7; 

m[x][ymax-2]=7; 

 

nm[x][1]=7; 

nm[x][2]=7; 

nm[x][ymax-1]=7; 

nm[x][ymax-2]=7; 

putpixel (x, 1, m[x][1]); 

putpixel (x, ymax-1, m[x][ymax-1]); 

} 

 

//randomize(); 

 

//porous medium 

for (x=3; x<xmax-2; x++) 

 {for (y=3; y<ymax-2; y++) 

  {if (random(101)<porousmedium) 

   {m[x][y]=7; nm[x][y]=7;} 

  } 

 } 

 

//declined porous medium 

alfa=angle*pi/180; 
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b1=cos(alfa)+0; 

b2=cos(alfa)+b1+2*i; 

 

for (x=1; x<xmax; x++) 

{for (y=3; y<ymax-2; y++) 

 { 

 if (y>(x*cos(alfa)-b1)) {m[x][y]=0; nm[x][y]=0;} 

 } 

} 

for (x=1; x<xmax; x++) 

{for (y=3; y<ymax-2; y++) 

 { 

 if (y<(x*cos(alfa)-b2)){m[x][y]=0; nm[x][y]=0;} 

 } 

} 

 

//porosity calculation 

for (x=1; x<xmax; x++) 

 {for (y=3; y<ymax-2; y++) 

  { 

  if ((y>(x*cos(alfa)-b2))&&(y<(x*cos(alfa)-b1))) 

   {if (m[x][y]!=7) {pore++;} else {fibre++;}} 

  } 

 } 

 

/* Code fragment 4: Occupation of cannels by fluid moving particles */ 

 

//odd rows of the lattice 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=3; y<ymax-2; y=y+2) 

  { 

  if (m[x][y]!=7) 

   { 

   m[x][y]=0; vx[x][y]=0; vy[x][y]=0; 

 

   if (m[x-1][y-1]<7) {I1=random(pco);} 

if (I1==1) {m[x][y]=m[x][y]+1; i1[x][y]=1;} else {i1[x][y]=0;} 

 

   if (m[x-1][y]<7) {I2=random(pco);} 

if (I2==1) {m[x][y]=m[x][y]+1; i2[x][y]=1;} else {i2[x][y]=0;} 

 

   if (m[x-1][y+1]<7) {I3=random(pco);} 

if (I3==1) {m[x][y]=m[x][y]+1; i3[x][y]=1;} else {i3[x][y]=0;} 

 

   if (m[x][y+1]<7) {I4=random(pco);} 

if (I4==1) {m[x][y]=m[x][y]+1; i4[x][y]=1;} else {i4[x][y]=0;} 

 

   if (m[x+1][y]<7) {I5=random(pco);} 

if (I5==1) {m[x][y]=m[x][y]+1; i5[x][y]=1;} else {i5[x][y]=0;} 

 

   if (m[x][y-1]<7) {I6=random(pco);} 

if (I6==1) {m[x][y]=m[x][y]+1; i6[x][y]=1;} else {i6[x][y]=0;} 

 

   //the total particles velocity in the node 

   vx[x][y]=vx[x][y]+0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-

0.5*i4[x][y]-i5[x][y]-0.5*i6[x][y]; 

   vy[x][y]=vy[x][y]+sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y]; 

  }} 

 } 
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//even rows of the lattice 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=4; y<ymax-2; y=y+2) 

  { 

  if (m[x][y]!=7) 

   { 

   m[x][y]=0; vx[x][y]=0; vy[x][y]=0; 

 

   if (m[x][y-1]<7) {I1=random(pco);} 

if (I1==1) {m[x][y]=m[x][y]+1; i1[x][y]=1;} else {i1[x][y]=0;} 

 

   if (m[x-1][y]<7) {I2=random(pco);} 

if (I2==1) {m[x][y]=m[x][y]+1; i2[x][y]=1;} else {i2[x][y]=0;} 

 

   if (m[x][y+1]<7) {I3=random(pco);} 

if (I3==1) {m[x][y]=m[x][y]+1; i3[x][y]=1;} else {i3[x][y]=0;} 

 

   if (m[x+1][y+1]<7) {I4=random(pco);} 

if (I4==1) {m[x][y]=m[x][y]+1; i4[x][y]=1;} else {i4[x][y]=0;} 

 

   if (m[x+1][y]<7) {I5=random(pco);} 

if (I5==1) {m[x][y]=m[x][y]+1; i5[x][y]=1;} else {i5[x][y]=0;} 

 

   if (m[x+1][y-1]<7) {I6=random(pco);} 

if (I6==1) {m[x][y]=m[x][y]+1; i6[x][y]=1;} else {i6[x][y]=0;} 

 

   // the total particles velocity in the node 

   vx[x][y]=vx[x][y]+0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]- 

0.5*i4[x][y]-i5[x][y]-0.5*i6[x][y]; 

   vy[x][y]=vy[x][y]+sinangle*i1[x][y]-sinangle*i3[x][y]- 

sinangle*i4[x][y]+sinangle*i6[x][y]; 

  }} 

 } 

 

/* Code fragment 5: Craphical outputs of the initial system configuration 

*/ 

 

for (x=1; x<xmax+1; x++) 

 { 

  for (y=1; y<ymax+1; y++) 

   { 

   putpixel (x, y, m[x][y]); 

   } 

 } 

 

//Opening the data file FLOW.CPP 

if ((output1=fopen("C:\\Outputs\\Filter\\Flow01.cpp","w"))==NULL) 

 { 

 printf("output file error\n"); 

 exit(0); 

 } 

//Opening the data file INFO.CPP 

if ((output2=fopen("C:\\Outputs\\Filter\\Info01.cpp","w"))==NULL) 

 { 

 printf("output file error\n"); 

 exit(0); 

 } 

/*-----------------------------------------------------------------------*/ 

 

/* Code fragment 6: The main cycle of the algorithm */ 
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for (cycle=0; cycle<cmax+1; cycle++) 

{ 

 

/* Code fragment 6-A: Collision phase */ 

 

for (x=3; x<xmax-2; x++) 

 {for (y=3; y<ymax-2; y++) 

  { 

  if ((m[x][y]>0)&&(m[x][y]!=7)) {collision();} 

  } 

 } 

 

/* Code fragment 6-B: Pressure gradient */ 

 

transfer14=0; transfer25=0; transfer36=0; 

for (x=3; x<ventilator; x++) 

 {for (y=3; y<ymax-2; y++) 

  { 

  if ((m[x][y]>0)&&(m[x][y]!=7)) 

   { if (random(force)<100) {turnright();}} 

  } 

 } 

 

//Porous medium 

for (x=3; x<xmax-2; x++) 

 {for (y=3; y<ymax-2; y++) 

  { 

  if (m[x][y]==7) {nm[x][y]=7;} 

  } 

 } 

 

/* Code fragment 6-C: Propagation phase */ 

 

//odd rows of the lattice 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=3; y<ymax-2; y=y+2) 

  { 

  if ((m[x][y]>0)&&(m[x][y]!=7)) 

   { 

   if (x==3) {propagationleftsideodd();} 

   if (x==xmax-3) {propagationrightsideodd();} 

   if ((x>3)&&(x<xmax-3)){propagationodd();} 

   } 

  } 

 } 

 

//even rows of the lattice 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=4; y<ymax-2; y=y+2) 

  { 

  if ((m[x][y]>0)&&(m[x][y]!=7)) 

   { 

   if (x==3) {propagationleftsideeven();} 

   if (x==xmax-3) {propagationrightsideeven();} 

   if ((x>3)&&(x<xmax-3)){propagationeven();} 

   } 

  } 

 } 

 

/* Code fragment 7: Recording of a new sytem’s state */ 
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for (x=1; x<xmax+1; x++) 

 { 

 for (y=1; y<ymax+1; y++) 

  { 

  m[x][y]=nm[x][y]; vx[x][y]=nvx[x][y]; vy[x][y]=nvy[x][y]; 

  if ((m[x][y]>0)&&(m[x][y]<7)) {putpixel (x, y, fluid);} 

  if (m[x][y]==7) {putpixel(x, y, obstacle);} 

  if (m[x][y]==0) {putpixel(x, y, hole);} 

  } 

 } 

 

/* Code fragment 8: Data arrays resetting */ 

 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=3; y<ymax-2; y++) 

  { 

  if (nm[x][y]<7) 

    {nm[x][y]=0; nvx[x][y]=0; nvy[x][y]=0; 

    i1[x][y]=0; i2[x][y]=0; i3[x][y]=0; 

    i4[x][y]=0; i5[x][y]=0; i6[x][y]=0;} 

  else {nm[x][y]=7;} 

  } 

 } 

 

/* Code fragment 9: Printout macro */ 

 

setfillstyle(1,0); 

bar(getmaxx()-90,getmaxy()-90,getmaxx(),getmaxy()-70); 

outtextxy(getmaxx()-120,getmaxy()-80,"cycle"); 

outtextxy(getmaxx()-70,getmaxy()-80,gcvt(series,sig,str)); 

 

//Code fragment 9-A: Output FLOW.CPP 

node=0; mass=0; velocity=0; 

for (x=3; x<xmax-2; x++) 

 {for (y=3; y<ymax-2; y++) 

       {mass=mass+m[x][y]; node++; 

        velocity=velocity+vx[x][y]; 

       } 

 } 

flow=velocity/float(mass); 

fprintf(output1,"%8d %8d %8d %8d\n", transfer14, transfer25, transfer36, 

node); 

fprintf(output2,"%8d %8.5f %8d\n", cycle, flow, mass); 

 

//Code fragment 9-B: Distribution of velocity vectors of moving particles 

if (cycle>2000)  

 {profile(); 

 velocityfield();} 

 

series=series+1; 

//getch(); 

 

} //The end of the main cycle 

 

/*-----------------------------------------------------------------------*/ 

 

//Opening the data file PROFILE.CPP. Output 

if ((output3=fopen("C:\\Outputs\\Filter\\Profile1.cpp","w"))==NULL) 

 { 

 printf("output file error\n"); 



APPENDIX N 

 

210 
 

 exit(0); 

 } 

for (y=3; y<ymax-2; y++) 

     {fprintf(output3, "%5i %3.5f\n", y, V[y]/float(step));} 

 

//Opening the data file POROUS.CPP. Output 

if ((output4=fopen("C:\\Outputs\\Filter\\Porous1.cpp","w"))==NULL) 

 { 

 printf("output file error\n"); 

 exit(0); 

 } 

     fprintf(output4, "%5i %5i\n", fibre, pore); 

 

//Opening the data file VELFIEL.CPP. Output 

if ((output5=fopen("C:\\Outputs\\Filter\\Velfiel1.cpp","w"))==NULL) 

 { 

 printf("output file error\n"); 

 exit(0); 

 } 

for (x=3; x<xmax-2; x++) 

 {for (y=3; y<ymax-2; y++)  

  {fprintf(output5, "%5i %5i %5.5f %5.5f\n", x, y, 

velfieldx[x][y]/float(step), velfieldy[x][y]/float(step));} 

 }     

 

//Opening the data file FIGURE.CPP. Output 

if ((output6=fopen("C:\\Outputs\\Filter\\Figure1.cpp","w"))==NULL) 

 { 

 printf("output file error\n"); 

 exit(0); 

 } 

for (x=3; x<xmax-2; x++) 

 {for (y=3; y<ymax-2; y++) 

  {fprintf(output6, "%5i %5i %5i\n", x, y, m[x][y]);} 

 } 

 

/*-----------------------------------------------------------------------*/ 

 

/* Code fragment 10: Final operations */ 

 

getch(); 

closegraph(); 

fclose (output1); 

fclose (output2); 

fclose (output3); 

fclose (output4); 

fclose (output5); 

fclose (output6); 

return (0); 

} //The end of the main part of the algorithm 

 

/*-----------------------------------------------------------------------*/ 

 

//SUBROUTINES 

 

/*-----------------------------------------------------------------------*/ 

//Collision phase 

int collision(void) 

{ 

int cannel=0; 

int mas=0; 

float velx=0; 



APPENDIX N 

 

211 
 

float vely=0; 

 

nav2: 

velx=vx[x][y]; vely=vy[x][y]; mas=m[x][y]; 

i1[x][y]=0; i2[x][y]=0; i3[x][y]=0; i4[x][y]=0; i5[x][y]=0; i6[x][y]=0; 

 

nav1: 

cannel=0; 

cannel=random(6); 

 

 if (cannel==0) 

  {if (i1[x][y]==1) {goto nav1;} 

  i1[x][y]=1; mas=mas-1;} 

 if (cannel==1) 

  {if (i2[x][y]==1) {goto nav1;} 

  i2[x][y]=1; mas=mas-1;} 

 if (cannel==2) 

  {if (i3[x][y]==1) {goto nav1;} 

  i3[x][y]=1; mas=mas-1;} 

 if (cannel==3) 

  {if (i4[x][y]==1) {goto nav1;} 

  i4[x][y]=1; mas=mas-1;} 

 if (cannel==4) 

  {if (i5[x][y]==1) {goto nav1;} 

  i5[x][y]=1; mas=mas-1;} 

 if (cannel==5) 

  {if (i6[x][y]==1) {goto nav1;} 

  i6[x][y]=1; mas=mas-1;} 

 

//change of mass and velocity in the cell – has to be zero   

 if (mas!=0) {goto nav1;} 

 velx=velx+(0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-0.5*i4[x][y]-i5[x][y]-

0.5*i6[x][y]); 

 if (velx!=0) {goto nav2;} 

 vely=vely+(sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y]); 

 if (vely!=0) {goto nav2;} 

return(0); 

} 

 

/*-----------------------------------------------------------------------*/ 

 

//Propagation phase in odd rows of the lattice (bounce-back reflection) 

float propagationodd(void) 

{ 

if (i1[x][y]==1) 

 { 

 if (nm[x-1][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x-1][y-1]=nm[x-1][y-1]+1; nvx[x-1][y-1]=nvx[x-1][y-1]-0.5; 

 nvy[x-1][y-1]=nvy[x-1][y-1]-sinangle;} 

 } 

 

if (i2[x][y]==1) 

 { 

 if (nm[x-1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1; 

  nvy[x][y]=nvy[x][y]+0;} 

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1; 

 nvy[x-1][y]=nvy[x-1][y]-0;} 

 } 
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if (i3[x][y]==1) 

 { 

 if (nm[x-1][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x-1][y+1]=nm[x-1][y+1]+1; nvx[x-1][y+1]=nvx[x-1][y+1]-0.5;  

 nvy[x-1][y+1]=nvy[x-1][y+1]+sinangle;} 

 } 

 

if (i4[x][y]==1) 

 { 

 if (nm[x][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]+0.5; 

 nvy[x][y+1]=nvy[x][y+1]+sinangle;} 

 } 

 

if (i5[x][y]==1) 

 { 

 if (nm[x+1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1; 

  nvy[x][y]=nvy[x][y]-0;} 

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1; 

 nvy[x+1][y]=nvy[x+1][y]+0;} 

 } 

 

if (i6[x][y]==1) 

 { 

 if (nm[x][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]+0.5; 

 nvy[x][y-1]=nvy[x][y-1]-sinangle;} 

 } 

return(0); 

} 

 

/*-----------------------------------------------------------------------*/ 

 

//Propagation phase in even rows of the lattice (bounce-back reflection) 

float propagationeven(void) 

{ 

if (i1[x][y]==1) 

 { 

 if (nm[x][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]-0.5; 

 nvy[x][y-1]=nvy[x][y-1]-sinangle;} 

 } 

 

if (i2[x][y]==1) 

 { 

 if (nm[x-1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1; 

  nvy[x][y]=nvy[x][y]-0;} 

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1; 

 nvy[x-1][y]=nvy[x-1][y]+0;} 

 } 

 



APPENDIX N 

 

213 
 

if (i3[x][y]==1) 

 { 

 if (nm[x][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]-0.5;  

 nvy[x][y+1]=nvy[x][y+1]+sinangle;} 

 } 

 

if (i4[x][y]==1) 

 { 

 if (nm[x+1][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x+1][y+1]=nm[x+1][y+1]+1; nvx[x+1][y+1]=nvx[x+1][y+1]+0.5;  

 nvy[x+1][y+1]=nvy[x+1][y+1]+sinangle;} 

 } 

 

if (i5[x][y]==1) 

 { 

 if (nm[x+1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1; 

  nvy[x][y]=nvy[x][y]+0;} 

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1; 

 nvy[x+1][y]=nvy[x+1][y]-0;} 

 } 

 

if (i6[x][y]==1) 

 { 

 if (nm[x+1][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x+1][y-1]=nm[x+1][y-1]+1; nvx[x+1][y-1]=nvx[x+1][y-1]+0.5; 

 nvy[x+1][y-1]=nvy[x+1][y-1]-sinangle;} 

 } 

return(0); 

} 

 

/*-----------------------------------------------------------------------*/ 

 

//Propagation phase in odd rows of the lattice (bounce-back reflection) 

float propagationleftsideodd(void) 

{ 

if (i1[x][y]==1) 

 { 

 if (nm[xmax-3][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[xmax-3][y-1]=nm[xmax-3][y-1]+1; nvx[xmax-3][y-1]=nvx[xmax-

3][y-1]-0.5; 

 nvy[xmax-3][y-1]=nvy[xmax-3][y-1]-sinangle;} 

 } 

 

if (i2[x][y]==1) 

 { 

 if (nm[xmax-3][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1; 

  nvy[x][y]=nvy[x][y]+0;} 

 else {nm[xmax-3][y]=nm[xmax-3][y]+1; nvx[xmax-3][y]=nvx[xmax-3][y]-1; 

 nvy[xmax-3][y]=nvy[xmax-3][y]-0;} 

 } 
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if (i3[x][y]==1) 

 { 

 if (nm[xmax-3][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[xmax-3][y+1]=nm[xmax-3][y+1]+1; nvx[xmax-3][y+1]=nvx[xmax-

3][y+1]-0.5;  

 nvy[xmax-3][y+1]=nvy[xmax-3][y+1]+sinangle;} 

 } 

 

if (i4[x][y]==1) 

 { 

 if (nm[x][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]+0.5; 

 nvy[x][y+1]=nvy[x][y+1]+sinangle;} 

 } 

 

if (i5[x][y]==1) 

 { 

 if (nm[x+1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1; 

  nvy[x][y]=nvy[x][y]-0;} 

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1; 

 nvy[x+1][y]=nvy[x+1][y]+0;} 

 } 

 

if (i6[x][y]==1) 

 { 

 if (nm[x][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]+0.5; 

 nvy[x][y-1]=nvy[x][y-1]-sinangle;} 

 } 

return(0); 

} 

 

/*-----------------------------------------------------------------------*/ 

 

//Propagation phase in odd rows of the lattice (bounce-back reflection) 

float propagationrightsideodd(void) 

{ 

if (i1[x][y]==1) 

 { 

 if (nm[x-1][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x-1][y-1]=nm[x-1][y-1]+1; nvx[x-1][y-1]=nvx[x-1][y-1]-0.5; 

 nvy[x-1][y-1]=nvy[x-1][y-1]-sinangle;} 

 } 

 

if (i2[x][y]==1) 

 { 

 if (nm[x-1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1; 

  nvy[x][y]=nvy[x][y]+0;} 

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1; 

 nvy[x-1][y]=nvy[x-1][y]-0;} 

 } 

 



APPENDIX N 

 

215 
 

if (i3[x][y]==1) 

 { 

 if (nm[x-1][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x-1][y+1]=nm[x-1][y+1]+1; nvx[x-1][y+1]=nvx[x-1][y+1]-0.5;  

 nvy[x-1][y+1]=nvy[x-1][y+1]+sinangle;} 

 } 

 

if (i4[x][y]==1) 

 { 

 if (nm[x][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]+0.5; 

 nvy[x][y+1]=nvy[x][y+1]+sinangle;} 

 } 

 

if (i5[x][y]==1) 

 { 

 if (nm[3][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1; 

  nvy[x][y]=nvy[x][y]-0;} 

 else {nm[3][y]=nm[3][y]+1; nvx[3][y]=nvx[3][y]+1; 

 nvy[3][y]=nvy[3][y]+0;} 

 } 

 

if (i6[x][y]==1) 

 { 

 if (nm[x][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]+0.5; 

 nvy[x][y-1]=nvy[x][y-1]-sinangle;} 

 } 

return(0); 

} 

 

/*-----------------------------------------------------------------------*/ 

 

//Propagation phase in even rows of the lattice (bounce-back reflection) 

float propagationleftsideeven(void) 

{ 

if (i1[x][y]==1) 

 { 

 if (nm[x][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]-0.5; 

 nvy[x][y-1]=nvy[x][y-1]-sinangle;} 

 } 

 

if (i2[x][y]==1) 

 { 

 if (nm[xmax-3][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1; 

  nvy[x][y]=nvy[x][y]-0;} 

 else {nm[xmax-3][y]=nm[xmax-3][y]+1; nvx[xmax-3][y]=nvx[xmax-3][y]-1; 

 nvy[xmax-3][y]=nvy[xmax-3][y]+0;} 

 } 

 

if (i3[x][y]==1) 
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 { 

 if (nm[x][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]-0.5;  

 nvy[x][y+1]=nvy[x][y+1]+sinangle;} 

 } 

 

if (i4[x][y]==1) 

 { 

 if (nm[x+1][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x+1][y+1]=nm[x+1][y+1]+1; nvx[x+1][y+1]=nvx[x+1][y+1]+0.5;  

 nvy[x+1][y+1]=nvy[x+1][y+1]+sinangle;} 

 } 

 

if (i5[x][y]==1) 

 { 

 if (nm[x+1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1; 

  nvy[x][y]=nvy[x][y]+0;} 

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1; 

 nvy[x+1][y]=nvy[x+1][y]-0;} 

 } 

 

if (i6[x][y]==1) 

 { 

 if (nm[x+1][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x+1][y-1]=nm[x+1][y-1]+1; nvx[x+1][y-1]=nvx[x+1][y-1]+0.5; 

 nvy[x+1][y-1]=nvy[x+1][y-1]-sinangle;} 

 } 

return(0); 

} 

 

/*-----------------------------------------------------------------------*/ 

 

//Propagation phase in even rows of the lattice (bounce-back reflection) 

float propagationrightsideeven(void) 

{ 

if (i1[x][y]==1) 

 { 

 if (nm[x][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]-0.5; 

 nvy[x][y-1]=nvy[x][y-1]-sinangle;} 

 } 

 

if (i2[x][y]==1) 

 { 

 if (nm[x-1][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1; 

  nvy[x][y]=nvy[x][y]-0;} 

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1; 

 nvy[x-1][y]=nvy[x-1][y]+0;} 

 } 

 

if (i3[x][y]==1) 

 { 
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 if (nm[x][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]-0.5;  

 nvy[x][y+1]=nvy[x][y+1]+sinangle;} 

 } 

 

if (i4[x][y]==1) 

 { 

 if (nm[3][y+1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]-sinangle;} 

 else {nm[3][y+1]=nm[3][y+1]+1; nvx[3][y+1]=nvx[3][y+1]+0.5;  

 nvy[3][y+1]=nvy[3][y+1]+sinangle;} 

 } 

 

if (i5[x][y]==1) 

 { 

 if (nm[3][y]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1; 

  nvy[x][y]=nvy[x][y]+0;} 

 else {nm[3][y]=nm[3][y]+1; nvx[3][y]=nvx[3][y]+1; 

 nvy[3][y]=nvy[3][y]-0;} 

 } 

 

if (i6[x][y]==1) 

 { 

 if (nm[3][y-1]==7) 

  {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5; 

  nvy[x][y]=nvy[x][y]+sinangle;} 

 else {nm[3][y-1]=nm[3][y-1]+1; nvx[3][y-1]=nvx[3][y-1]+0.5; 

 nvy[3][y-1]=nvy[3][y-1]-sinangle;} 

 } 

return(0); 

} 

 

/*-----------------------------------------------------------------------*/ 

 

//Pressure gradient  

float turnright(void) 

{ 

 if ((i1[x][y]==1)&&(i4[x][y]==0)) 

  {i1[x][y]=0; i4[x][y]=1; m[x][y]=m[x][y]; 

  transfer14++;} 

 

 if ((i2[x][y]==1)&&(i5[x][y]==0)) 

  {i2[x][y]=0; i5[x][y]=1; m[x][y]=m[x][y]; 

  transfer25=transfer25+2;} 

 

 if ((i3[x][y]==1)&&(i6[x][y]==0)) 

  {i3[x][y]=0; i6[x][y]=1; m[x][y]=m[x][y]; 

  transfer36++;} 

return(0); 

} 

 

/*-----------------------------------------------------------------------*/ 

 

//Velocity profile 

float profile(void) 

{ 

float velocity; 

int particles; 
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for (y=3; y<ymax-2; y++) 

 { 

 velocity=0; particles=0; 

  for (x=7; x<xmax-2; x++) 

   { 

   if (m[x][y]!=7) 

    {velocity=velocity+vx[x][y]; 

    particles=particles+m[x][y];} 

   } 

  V[y]=V[y]+velocity/float(particles); 

 } 

 step++; 

return (0); 

} 

 

/*-----------------------------------------------------------------------*/ 

 

//The field of velocities vectors 

float velocityfield(void) 

{ 

for (x=3; x<xmax-2; x++) 

 { 

 for (y=3; y<ymax-2; y++) 

  { 

  if (m[x][y]!=7) 

   {velfieldx[x][y]=velfieldx[x][y]+vx[x][y]; 

    velfieldy[x][y]=velfieldy[x][y]+vy[x][y];} 

  } 

 } 

return (0); 

} 

/*-----------------------------------------------------------------------*/ 
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The FHP-1 Lattice Gas Cellular Automata model for 
simulation of the fluid flow through porous media. 
Algorithms for data processing and their graphical 
representation.  
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/* FHP-1 LGCA for fluid flow in porous medium simulation */ 

 

/* X- and y- components of particles velocities - avareging in a space */ 

 

//Definition of standard library functions 

# include <stdlib.h> 

# include <stdio.h> 

# include <conio.h> 

# include <math.h> 

 

//Declaration of variables 

int x, y, xmax=0, ymax=0; 

float velfieldx[450][250], velfieldy[450][250]; 

float xcomponent, ycomponent; 

FILE *output, *output1; 

 

/*-----------------------------------------------------------------------*/ 

/* Beginning of a main part of the program */ 

 

int main(void) 

{ 

 

//Opening the data file VELFIEL.CPP 

if ((output=fopen("C:\\Outputs\\Filter\\Velfiel1.cpp","r"))==NULL) 

 {printf("input file error\n"); 

 exit(0);} 

 

while(fscanf(output,"%i %i %f %f\n", &velfieldx, &velfieldy, &xcomponent, 

&ycomponent)!=EOF) 

 { 

 velfieldx[x][y]=prx; velfieldy[x][y]=pry; 

 if(xmax<x){xmax=x;} 

 if(ymax<y){ymax=y;} 

 } 

 

//Opening the new data file VELFIEL.CPP. Averaging and saving outputs 

if 

((output1=fopen("C:\\Outputs\\Filter\\Graphic\\Velfiel1.cpp","w"))==NULL) 

 {printf("output file error\n"); 

 exit(0);} 

 

for (x=5; x<xmax-6; x=x+5) 

 {for (y=5; y<ymax-6; y=y+5) 

 { 

 xcomponent=velfieldx[x-2][y+2]+velfieldx[x-

1][y+2]+velfieldx[x][y+2]+velfieldx[x+1][y+2]+velfieldx[x+2][y+2] 

  +velfieldx[x-2][y+1]+velfieldx[x-

1][y+1]+velfieldx[x][y+1]+velfieldx[x+1][y+1]+velfieldx[x+2][y+1] 

  +velfieldx[x-2][y]  +velfieldx[x-1][y]  +velfieldx[x][y]  

+velfieldx[x+1][y]  +velfieldx[x+2][y] 

  +velfieldx[x-2][y-1]+velfieldx[x-1][y-1]+velfieldx[x][y-

1]+velfieldx[x+1][y-1]+velfieldx[x+2][y-1] 

  +velfieldx[x-2][y-2]+velfieldx[x-1][y-2]+velfieldx[x][y-

2]+velfieldx[x+1][y-2]+velfieldx[x+2][y-2]; 

 

 ycomponent=velfieldy[x-2][y+2]+velfieldy[x-

1][y+2]+velfieldy[x][y+2]+velfieldy[x+1][y+2]+velfieldy[x+2][y+2] 

  +velfieldy[x-2][y+1]+velfieldy[x-

1][y+1]+velfieldy[x][y+1]+velfieldy[x+1][y+1]+velfieldy[x+2][y+1] 

  +velfieldy[x-2][y]  +velfieldy[x-1][y]  +velfieldy[x][y]  

+velfieldy[x+1][y]  +velfieldy[x+2][y] 
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  +velfieldy[x-2][y-1]+velfieldy[x-1][y-1]+velfieldy[x][y-

1]+velfieldy[x+1][y-1]+velfieldy[x+2][y-1] 

  +velfieldy[x-2][y-2]+velfieldy[x-1][y-2]+velfieldy[x][y-

2]+velfieldy[x+1][y-2]+velfieldy[x+2][y-2]; 

 

 fprintf(output1,"%5i %5i %3.7f %3.7f\n", x, y, xcomponent, 

ycomponent);} 

 } 

 

/*-----------------------------------------------------------------------*/ 

 

//Final operations 

fclose(output); 

fclose(output1); 

getch(); 

return 0; 

}//The end of the main part of the algorithm 

/*-----------------------------------------------------------------------*/ 
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/*FHP-1 LGCA for fluid flow in porous medium simulation.Graphical outputs*/ 

 

//Definition of standard library functions 

#include <graphics.h> 

#include <math.h> 

#include <stdlib.h> 

#include <stdio.h> 

#include <conio.h> 

 

/*-----------------------------------------------------------------------*/ 

 

/* Beginning of a main part of the program */ 

 

int main(void) 

{ 

 

//Declaration of variables  

float xcomponent, ycomponent, step=17.5; 

int x, y, xstart, ystart, xend, yend; 

FILE *output1; 

/*---------------------------------------------------------------------*/ 

 /* request auto detection */ 

 int gdriver = DETECT, gmode, errorcode; 

 int xmax, ymax; 

 

 /* initialize graphics and local variables */ 

 initgraph(&gdriver, &gmode, "C:\\TC\\BGI"); 

 

 /* read result of initialization */ 

 errorcode = graphresult(); 

 /* an error occurred */ 

 if (errorcode != grOk) 

 { 

  printf("Graphics error: %s\n", grapherrormsg(errorcode)); 

  printf("Press any key to halt:"); 

 getch(); 

 exit(1); 

 } 

/*---------------------------------------------------------------------*/ 

   setcolor(getmaxcolor()); 

   setbkcolor(15); 

   xmax = getmaxx(); 

   ymax = getmaxy(); 

/*---------------------------------------------------------------------*/ 

 

//Opening the data file VELFIEL.CPP. Data graphical representation. 

 

//Open file, testing for seccess 

if((vystup1=fopen("C:\\Outputs\\Filter\\Graphic\\Velfiel1.cpp","r"))==NULL) 

   {printf("input vfldx file error\n");exit(0);} 

 

while(fscanf(output1,"%i %i %f %f\n", &x,&y,&xcomponent,&ycomponent)!=EOF) 

      {xstart=1.4*x; ystart=1.4*y; 

      xend=step*xcomponent; yend=step*ycomponent; 

 

      if (pow(xstart,2)+pow(ystart,2)>0) 

  {if(x/1==x/1.) 

  {if(y/1==y/1.) 

   {setcolor(12); if((xkon<0)||(ykon<0)){setcolor(2);} 

   line(xstart, ystart, xend+xend, yend+yend); 

   putpixel(xstart, ystart,1);} 

  }} 
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      } 

 

/*-----------------------------------------------------------------------*/ 

 

//Final operations 

fclose(output1); 

getch(); 

closegraph(); 

return 0; 

}//The end of the main part of the algorithm 

/*-----------------------------------------------------------------------*/ 
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APPENDIX P 
 
 
 
 

 
Computer simulation of the fluid flow through 
declined porous media. Evolution in time for a 
period of 20 time steps.  

 

  



APPENDIX P 

 

225 
 

  
Geometry of the simulation domain and porous 

medium 
Initial state (          ) 

  
                  

  
                  

  
                  

  
                  

Figure P-1: Computer simulation of the fluid flow through the declined porous medium presented 
on the reduced simulation domain of a size                       The lattice gas average 

density is              , porosity of the random generated porous structure is 0,7. Movement of 
fluid particles is monitored for a period of 20 time steps with an interval of 1 t.u.  
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Figure P-1 (continuation): Computer simulation of the fluid flow through the declined porous 
medium presented on the reduced simulation domain of a size                       The 

lattice gas average density is              , porosity of the random generated porous structure is 
0,7. Movement of fluid particles is monitored for a period of 20 time steps with an interval of 1 t.u. 
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Figure P-1 (continuaton): Computer simulation of the fluid flow through the porous medium 
presented on the reduced simulation domain of a size                       The lattice gas 

average density is              , porosity of the random generated porous structure is 0,7. 
Movement of fluid particles is monitored for a period of 20 time steps with an interval of 1 t.u. 
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APPENDIX Q 
 
 
 
 
 

 
Computer simulation of the fluid flow through 
declined porous media. Flow rate as a function of 
time for various inclination angle α.  
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Figure Q-1: The flow rate as a function of time for various porosity and inclination angle       

(a),       (b) and       (c). The length   of the channel         ,the width   is    
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Computer simulation of the fluid flow through 
declined porous media. Time evolution of the 
system with reduced simulation domain. 
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Geometry of the simulation domain and porous 

medium 
Initial state (          ) 

  
                    

  
                    

  
                    

  
                    

Figure R-1: Computer simulation of the fluid flow through the porous medium presented on the 
reduced simulation domain of a size                       The lattice gas average density 
is              , porosity of the random generated porous structure is 0,7. Fluid flow is monitored 
for a period of 150 time steps with an interval of 10 t.u. 
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Figure R-1 (continuaton): Computer simulation of the fluid flow through the porous medium 
presented on the reduced simulation domain of a size                       The lattice gas 
average density is               , porosity of the random generated porous structure is 0,7. Fluid 
flow is monitored for a period of 150 time steps with an interval of 10 t.u. 
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Computer simulation of the fluid flow through 
declined porous media. Fields of velocity vectors.  
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Porosity is 0,95 Porosity is 0,9 

  
Porosity is 0,85 Porosity is 0,7 

Figure S-1: Fluid velocity directions inside the channel and declined porous media of various porosity. The inclination angle   is     

Inclination angle α=35° 
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Porosity is 0,95 Porosity is 0,9 

  
Porosity is 0,85 Porosity is 0,7 

Figure S-2: Fluid velocity directions inside the channel and declined porous media of various porosity. The inclination angle   is     
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Porosity is 0,95 Porosity is 0,9 

  
Porosity is 0,85 Porosity is 0,7 

Figure S-3: Fluid velocity directions inside the channel and declined porous media of various porosity. The inclination angle   is     

 


