

1

TECHNICAL UNIVERSITY OF LIBEREC

FACULTY OF TEXTILE ENGINEERING

Ing. LARYSA OCHERETNA

THE LATTICE GAS CELLULAR AUTOMATA APPROACH FOR

FLUID FLOWS IN POROUS MEDIA

DOCTORAL THESIS

2012

2

TECHNICAL UNIVERSITY OF LIBEREC

FACULTY OF TEXTILE ENGINEERING

Department of Nonwovens and Nanofibrous Materials

Doctoral thesis

THE LATTICE GAS CELLULAR AUTOMATA APPROACH FOR FLUID

FLOWS IN POROUS MEDIA

Ing. Larysa Ocheretna

Advisor: Prof. RNDr. David Lukáš, CSc., FT, TU of Liberec

Thesis contains:

Number of Pages: 96

Number of Figures: 50

Number of Tables: 4

Number of Appendixes: 19

3

Declaration on word of honour

I, Larysa Ocheretna, declare that this thesis has been elaborated independently with the

support of mentioned literary sources.

In Liberec 18th December 2012 Larysa Ocheretna

4

ACKNOWLEDGE

Foremost, I would like to sincerely thank my supervisor, Prof. RNDr. David Lukáš, CSc. for his

encouragement, guidance and support to me throughout my PhD study. His patience on the

one side and motivation on the other, enthusiasm and, of cause, immense knowledge of the

studied problem helped me a lot in all stages of the study, research and writing up the PhD

thesis.

I am grateful to my former colleagues from the Department of Nonwovens (Technical

university of Liberec) for a number of projects that I participated together with them during

my PhD study. Furthermore, special thank belongs to Ing. Eva Koštáková, Ph.D. and deceased

Martin Hamouz for their friendly support, acquaintance with Czech culture and wonderful

time, that I enjoyed together with them.

I would also like to thank my colleagues from the Department of Textile Evaluation

(Technical university of Liberec) for their support during the final stage of my PhD study.

I thank Stephen Wolfram for his valuable lectures and advices in relation to the Cellular

Automata provided during Wolfram Science Summer School.

I am grateful to Victoria Vlasenko (Kyjiv National University of Technology and Designs) for

her faith in me, recommendation for doctoral studies in Technical university of Liberec and

nearly parental care through all period of my study.

My deepest gratitude goes to my family. My parents, my brother, and my boyfriend were

sources of my strength. Without their love, understanding and encouragement it would have

been impossible for me to complete the work.

Finally I would like to thank all who have supported me during my PhD study.

5

ABSTRACT

The thesis is focused on the modelling of fluid flow in porous media. The aim of the work

was to develop an appropriate model for simulation of fluid transport regardless of the flow

regime.

The model, developed in the frames of the work, is based on Lattice Gas Cellular Automata.

The model is non-deterministic and fully discrete. It is presented by means of algorithm

created in a C++ programming language. The algorithm allows computer simulation of the

fluid flow through different porous structures, including nanofibre materials, where the pore

size is on the order of free path of molecules and flow thus loses its continuous properties.

The model is verified for two phenomena as the Brownian motion and Poiseuille flow are.

The presented model is used to the study of fluid flow inside assembled filters with different

density of porous media. Simulation results proved the hypothesis regarding to the

reorganization of the flow inside the filter and its orientation perpendicularly to the pleat

surface.

ANOTACE

Předložená disertační práce je zaměřena na modelování proudění tekutiny porézním

prostředím. Cílem práce bylo vytvoření vhodného modelu pro simulaci transportu tekutiny

nezávisle na režimu jejího proudění.

Předložený model vychází z podstaty buněčných automatů a využívá rysy mřížového plynu.

Model je nedeterministický a plně diskrétní. Pomocí programu vytvořeného v C++

programovacím prostředí umožňuje počítačovou simulaci a studium proudění tekutiny

různými porézními strukturami, včetně nanomateriálů, kde velikosti pórů řádově se blíží

délce volné dráhy molekuly a proudění tak ztrácí své kontinuální vlastnosti.

Funkce modelu jsou ověřeny pomocí dvou testů, tj. simulací Brownova pohybu a Poiseuillova

proudění. Předložený model je použit na studium proudění tekutiny skládanými filtry

s různou hustotou porézního prostředí. Výsledky simulací prokazují hypotézu týkající se

orientace proudění kolmo k povrchu skladů filtru.

6

TABLE OF CONTENTS

LIST OF PICTURES ... 8

LIST OF TABLES ... 10

LIST OF SYMBOLS AND ABBREVIATIONS ... 11

INTRODUCTION .. 14

1. BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION .. 16

1.1. ORIGINS AND DEVELOPMENT OF MODELLING AND COMPUTER SIMULATION .. 16

1.2. MODEL: THE DEFINITION AND CLASSIFICATION .. 17

1.3. SIMULATION STUDY AND COMPUTER SIMULATION: DEFINITIONS, STAGES, BENEFITS AND DANGERS OF THEIR

IMPLEMENTATION ... 21

1.4. MODELLING AND SIMULATION IN THE TEXTILE INDUSTRY.. 23

1.4.1. Nevier-Stokes equation .. 26

1.4.2. Boltzmann equation ... 29

2. MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR AUTOMATA 32

2.1. HISTORICAL OVERVIEW: CELLULAR AUTOMATA AND LATTICE GAS AUTOMATA .. 32

2.2. SPECIFICATION OF FINITE AUTOMATA, CELLULAR AUTOMATA AND LATTICE GAS CELLULAR AUTOMATA 35

2.2.1. Finite automata ... 35

2.2.2. Cellular automata .. 38

2.2.3. Lattice gas cellular automata as a special case of cellular automata ... 40

2.3. PRINCIPLES OF LATTICE GAS CELLULAR AUTOMATA ... 41

2.3.1. Discretization of space – basic methods. Grid generation .. 43

2.3.2. Discretization of space in LGCA model .. 45
2.3.2.1. Geometry of square and hexagonal lattices .. 48
2.3.2.2. Neighbourhoods in the square and hexagonal lattice ... 50
2.3.2.3. Comparison of square and triangular lattice with hexagonal symmetry ... 54

2.4. LATTICE GAS CELLULAR AUTOMATA – PRINCIPLES OF THE MODEL ... 54

2.4.1. Collision phase ... 56
2.4.1.1. Collision rules of the FHP-1 and FHP-2 LGCA models ... 58

2.4.2. Propagation phase in LGCA models .. 61

3. BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR AUTOMATA 63

3.1. CODE FRAGMENT 1 – HEADER FILES AND INITIALIZATION OF THE SIMULATION DOMAIN 63

3.2. CODE FRAGMENT 2 – GRAPHIC OUTPUT SETTING... 65

3.3. CODE FRAGMENT 3 – CREATION OF THE SIMULATION DOMAIN AND INITIAL STATE OF THE SIMULATED SYSTEM 65

3.4. CODE FRAGMENT 4 – OCCUPATION OF CHANNELS BY FLUID PARTICLES ... 66

3.4.1. Geometry of the lattice .. 66

3.4.2. Occupation of channels by fluid particles .. 68

3.5. CODE FRAGMENT 5 – GRAPHICAL OUTPUTS OF THE INITIAL SYSTEM CONFIGURATION .. 69

3.6. CODE FRAGMENT 6 – THE MAIN CYCLE OF THE ALGORITHM .. 69

3.6.1. Code fragment 6-A – Collision phase ... 72

3.6.2. Code fragment 6-B – Propagation phase... 73

3.7. CODE FRAGMENT 7 – RECORDING OF THE NEW SYSTEM’S STATE .. 74

3.8. CODE FRAGMENT 8 – DATA ARRAYS RESETTING .. 75

3.9. CODE FRAGMENT 9 – PRINTOUT MACRO ... 75

3.10. CODE FRAGMENT 10 – FINAL OPERATIONS .. 76

4. VARIFICATION OF FHP-1 LGCA ALGORITHM FOR BROWNIAN MOTION ... 77

7

4.1. THEORETICAL ASSUMPTION .. 77

4.2. FHP-1 LATTICE GAS CELLULAR AUTOMATA ALGORITHM FOR BROWNIAN MOTION SIMULATION 78

4.2.1. Code fragment 1 – Header files and initialization of the simulation box 78

4.2.2. Code fragment 4 – Occupation of channels by fluid particles ... 79

4.2.3. Code fragment 5-A – Data outputs ... 79

4.2.4. Code fragment 6 – The main cycle of the algorithm .. 80
4.2.4.1. Code fragment 6-A – Collision phase .. 80
4.2.4.2. Code fragment 6-B – Propagation phase .. 81

4.2.5. Code fragment 9 – Printout macro .. 82

4.3. SIMULATION SETUP .. 82

4.4. RESULTS AND DISCUSSION ... 85

5. VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR POISEUILLE FLOW ... 87

5.1. THEORETICAL ASSUMPTION .. 87

5.2. FHP-1 LATTICE GAS CELLULAR AUTOMATA ALGORITHM FOR POISEUILLE FLOW SIMULATION 88

5.2.1. Code fragment 1 – Header files and initialization of the simulation box 89

5.2.2. Code fragment 3 – Creation of the simulation domain .. 89

5.2.3. Code fragment 5-A – Data outputs ... 90

5.2.4. Code fragment 6 – The main cycle of the algorithm .. 90
5.2.4.1. Code fragment 6-B – Pressure gradient .. 92
5.2.4.2. Code fragment 6-C – Propagation phase .. 93

5.2.5. Code fragment 9 – Printout macro .. 94

5.3. SIMULATION SETUP .. 94

5.4. RESULTS AND DISCUSSION ... 96

6. COMPUTER SIMULATION OF THE TWO-DIMENSIONAL FLUID FLOW THROUGH POROUS STRUCTURES

 101

6.1. THEORETICAL ASSUMPTION .. 101

6.2. FHP-1 LATTICE GAS CELLULAR AUTOMATA ALGORITHM FOR FLUID FLOW THROUGH POROUS MEDIUM SIMULATION 102

6.2.1. Code fragment 1 – Header files and initialization of the simulation domain 102

6.2.2. Code fragment 3 – Creation of the simulation domain .. 103

6.2.3. Code fragment 6 – The main cycle of the algorithm .. 104

6.2.4. Code fragment 9-B – Distribution of velocity vectors of moving particles 104

6.3. SIMULATION SETUP .. 104

6.4. RESULTS AND DISCUSSION ... 106

CONCLUSIONS .. 111

FUTURE WORK ... 113

REFERENCES ... 114

PUBLICATIONS OF AUTHOR .. 120

LIST OF APPENDIXES ... 122

8

LIST OF FIGURES

Figure 1: Types of dynamic models: a – continuous-time model, b – discrete-time model................................ 19

Figure 2: Scheme of model classification ... 21

Figure 3: Stages of simulation study .. 22

Figure 4: Different regimes of fluid flow and methods for their description depending on Knudsen number 25

Figure 5: The acceleration of fluid unit volume .. 27

Figure 6: Set of patterns obtained in game of “Life” for various time evolution steps t 34

Figure 7: Finite automaton represented using classical methods: state-transition table, state tree and state

diagram [17] .. 37

Figure 8: Basic principle of a finite automaton operation ... 37

Figure 9: Graphical explanation of the cell having the position and its neighbour cells located in a regular

square lattice ... 39

Figure 10: Graphical interpretation of two-dimensional cellular automaton: a – general appearance of a regular

lattice, b – detailed configuration of neighbourhood cells of reference cell, c – application of a transition

function and updating the state of the cell at time t+1 [17] .. 40

Figure 11: Cell of the cellular automaton as a individual automaton: states of the neighbour cells are inputs,

the new state as an output of the automaton [17] ... 40

Figure 12: Two-dimensional Bravais lattices: a - square, b - rectangular, c - oblique, d - centered rectangular, e –

hexagonal [17] ... 47

Figure 13: Types of the square lattice: upright (a) and diagonal one (b) [64] .. 49

Figure 14: Geometries of 2D hexagonal lattices: 1 – hexagonal lattice with horizontal (a, b) or vertical (c) rows;

2 – hexagonal honeycomb lattice with vertical (a, b) or horizontal (c) rows .. 49

Figure 15: Neighbourhood templates for a regular square lattice: von-Neumann neighbourhood (a), Moore

neighbourhood (b) and Margolus neighbourhood (c) ... 51

Figure 16: The hexagonal neighbourhood ... 52

Figure 17: Mersereau's scheme for obtaining the hexagonal lattice (b) from the square one (a) 52

Figure 18: Staunton's method for obtaining hexagonal lattice (b) from the square one (a) 53

Figure 19: Adaptation of the hexagonal neighbourhood to the square lattice: the ordering of the neighbour

nodes in all odd (a) and even (b) rows .. 53

Figure 20: Representation of the LGCA model underlaid by the hexagonal Bravais lattice: 1 – the node, i.e. the

individual automaton, 2 – the channel, 3 – the moving particle, 4 – the direction of moving [17] 56

Figure 21: Typical two- and three-particle collisions in the FHP-1 LGCA model [17] .. 58

Figure 22: Effective collisions in the FHP-1 LGCA model [17] .. 59

Figure 23: Two- and three-particle collisions in FHP-2 LGCA model [17] ... 61

Figure 24: The principle of periodic boundary conditions for two-dimensional square LGCA (HPP model [17] .. 62

Figure 25: Various reflective boundary conditions: A - bounce-back reflection, B - specular reflection, C -

diffusive reflection [17] .. 62

Figure 26: Various examples of node’s occupation: A – an empty node, B – node occupied by a solid particle, C

– the node occupied by fluid particles ... 66

Figure 27: The hexagonal lattice as the equivalent square lattice with an additional diagonal connection (a) and

the regular hexagonal neighbourhood in odd and even rows of the lattice (b) .. 67

Figure 28: The ordering of the channels and the determination of the neighbour nodes position in all

odd (a) and even (b) rows of the lattice .. 68

Figure 29: The initial configurations of the system according to the value of the parameter : (a);

 (b); (c) and (d). .. 70

Figure 30: The flowchart representing the main cycle of the developed FHP-1 LGCA algorithm 71

Figure 31: Monitoring of the simulated system. The state after application of 110 cycles 75

Figure 32: Simulation of the Brownian motion presented on the reduced simulation domain : a

– the simulation domain bounded by solid walls (red lines), moving particles (blue squares), initial

9

position of the Brownian particle (grey square)and its final position (yellow square) after 20 time steps,

black squares present empty lattice nodes; b – Brownian random motion during 20 time steps obtained

by the developed model based on the FHP-1 LGCA model .. 83

Figure 33: Displacement R of the Brownian particle .. 84

Figure 34: Paths of the Brownian particle after 4000 time steps: a – the straight type of paths (simulation

experiment 1, data output brown04.cpp); b – the “bonsai tree” shape of the path (simulation experiment

1, data output is brown11.cpp) .. 86

Figure 35: The main square displacement of the Brownian particle as a function of time, for ρ=1,5

particles/node and 3 particles/node... 86

Figure 36: The geometry of two-dimensional channel for Poiseuille flow simulation: 1 – periodic boundary

conditions, 2 – the imaginary ventilator, is the length and is the width of the channel 90

Figure 37: The flowchart representing the main cycle of the algorithm developed for a simulation of the

Poiseuille flow ... 91

Figure 38: An example of the forced reorganization of channel occupation. Propagation of moving particle form

the channel i1 to i4 .. 92

Figure 39: Propagation of moving particles at the left (a) and at the right (b) boundaries of the channel. Periodic

boundary conditions are applied .. 93

Figure 40: The flow rate as a function of time for , , . The time period of

the simulation measured in time units (t.u.) is given at the axis OX. Steady state of the flow is achieved

after about 5000 t.u. .. 97

Figure 41: The velocity profile of the flow. Values of the x component of flow velocity averaged over the whole

channel length (i.e. 550 l.u.) are at the axis OY. The vertical distance from the bottom wall of the channel

named here as a “axis OY” and it is presented at the axis OX of the graph ... 97

Figure 42: Predicted and simulated volumetric flow rate as a function of channel width for a pressure gradient

created using and the range of the channel width d=25÷100 l.u. .. 98

Figure 43: Predicted and simulated volumetric flow rate as a function of channel width for a pressure gradient

created using and the range of the channel width d=25÷200 l.u. .. 99

Figure 44: Theoretical flow pattern through pleats at assembled filter .. 102

Figure 45: The geometry of two-dimensional channel for fluid flow through porous medium simulation: is the

length and is the width of the channel, is an inclination angle of the porous medium, is a one half of

the porous medium thickness, 1 – periodic boundary conditions, 2 – the imaginary ventilator. The vertical

dot line presents the vertical axis of the channel .. 103

Figure 46: Random structures of porous media generated in the computer simulation experiment. Porosity

ranging from 0,7 to 0,95 .. 106

Figure 47: Fluid flow rate as a function of porosity and inclination of porous medium for pressure gradient

created using ... 107

Figure 48: Pressure gradient created using as a function of inclination angle α indicates the

orientation of the porous medium in a channel .. 108

Figure 49: Fluid velocity directions inside the decline porous material with random structure for porosity 0,95

and α=15°, 35° and 55°. Region BP corresponds to “blind pores” of the porous medium...................... 109

Figure 50: Fluid velocity directions inside the channel and decline porous material with random structure for

porosity 0,7 and α= 35° ... 110

10

LIST OF TABLES

Table 1: Characterization of different types of grids...45

Table 2: The list of Brownian motion computer simulations and their setups........................83

Table 3: The list of Poiseuille flow computer simulations and their setup..............................94

Table 4: The list of fluid flow through porous medium computer simulations and their

setups...104

11

LIST OF SYMBOLS AND ABBREVIATIONS

Symbols

Symbol Meaning

 parameter that affect the behaviour of the system

 function that define the system

 starting position of the fluid unit

 final position of the fluid unit

 initial state of FA/CA

 current state of FA/CA

 physical or other variable

 input signal of FA

 integer coefficient

 particle diameter

 change of the component of the particle momentum

 “new” local particle number

 “new” local momentum

 local particle number

 local momentum

 local velocity

 local component of velocity vector

 component of velocity vector

 component of velocity vector

 component of velocity vector

 vector space

 unit vector

 viscous force

 position vector of the neighbour node

 divergence

kB Boltzmann’s constant

p pressure

t time

α Inclination angle of a porous medium

 dimension

 diffusion coefficient

 set of final states of FA

 pressure gradient

 Knudsen number

 length

 number of lattice nodes

 state of FA/CA

12

 temperature

 coordination number

 distribution function

 channel label

 permeability of the medium

 distance between neighbour nodes

 mass

 number of time steps

 flow rate

 temperature

 coordinate, corresponds to the axis OX

 coordinate, corresponds to the axis OY

 coordinate, corresponds to the axis OZ

 vector distance of the Brownian particle

 acceleration vector

 force per unit volume

 position vector

 velocity vector

 state-transition function, also an update rule

 mean free path of molecule

 dynamic viscosity

 density

 relaxation time

 potential per unit mass

 vector field

Subscripts

Subscript Meaning

 lattice unit

 mass unit

 time step

 time unit

Abbreviations

Abbreviation Meaning

C++ programming language

CA cellular automata

CSL control and simulation language

DSMC direct simulation Monte Carlo

E east node

13

FA finite automata

FDM finite differences method

FEM finite elements method

FHP lattice gas cellular automata at the hexagonal lattice (called after Frisch,

Hasslacher, Pomeau)

FVM finite volume method

GPSS general purpose simulation system

HPP lattice gas cellular automata at the square lattice (called after Hardy, de

Pazzis, Pomeau)

LBM lattice Boltzmann model

LGCA lattice gas cellular automata

LL lower-left node

LR lower-right node

MD molecular dynamic

N north node

NE north-east node

NW north-west node

S south node

SE south-east node

SIMSCRIPT simulation programming language

SIMULA programming language

SPH smooth-particle hydrodynamics

SW south-west node

UL upper-left node

UR upper-right node

W west node

INTRODUCTION

14

INTRODUCTION

Fluid flow and especially fluid flow in porous media is a subject of wide interest for a long

time. From the beginning of the 19th century thanks to Claude-Louis Navier and George

Gabriel Stokes fluid motion has got a solution in a form of Nevier-Stokes differential

equations. These equations have arisen, when macroscopic nature of the fluid was only

known. A continuum fluid flow was a subject of study at that time. The validity of Nevier-

Stokes approach remained undeniable until today. Nevier-Stokes equations became a core

of the most part of modern software designated for fluid flow modelling, including fluid flow

in porous structures.

If we evaluate current scientific trends in global, and textile engineering especially,

nanomaterials became the subject of the study in all branches of science and research.

Revolutionary material of the 3rd Millenium, nanofibre and nanoparticle materials, and

development of the textile materials with difficult internal structures (i.e. multilayer textile

structures) requires a deeper reassessment of theoretical techniques and methods, used for

a fluid flow description so far.

Before any the newly developed textile becomes the subject of business, a number of

experimental work is could to be done for a determination of its properties. Not all

properties can be evaluated using available experimental methods and techniques.

Therefore, the demand for modelling and computer simulations is increasing. The more the

characteristic dimension of the object under investigation decreases, the exploration of its

properties becomes more complicated and expensive. Moreover, modelling and simulations

are often used in order to: (i) obtain critical values of particular parameters of a object or a

phenomenon; (ii) visualize the time evolution of the phenomenon; (iii) verify empirically

obtained results.

Since the fully discrete model of hydrodynamics based on cellular automata conception was

developed and verified for fluid flow, more and more researchers become to use this

approach in modelling and simulation. Lattice Gas Cellular Automata appears to be very

simple at first glance. Nevertheless it provides the more number of options for modelling of

fluid flow in contrast to Nevier-Stokes equations. Because of its discrete nature it doesn’t

have limitations in continuity of the flow. It is valid in all regimes of flow – from the

molecular flow to the continuum one.

In this dissertation, several contributions to the study of the fluid flow mechanism by means

of Lattice Gas Cellular Automata method are presented. The motive why Lattice Gas Cellular

Automata were chosen for fluid flow modelling and simulation is presented in the Chapter 1.

First, the basic principles of modelling and computer simulation are here described. Then the

current state of the modelling and simulation in textile industry and especially methods for

fluid flow modelling are discussed. The substance of the Nevier-Stokes and the Lattice

Bolzmann approaches are presented in the second part of the Chapter 1. Lattice Gas Cellular

INTRODUCTION

15

Automata model, based on the Lattice Boltzmann approach is described from its origin in the

Chapter 2. A great attention is paid here to the principles of the space discretization and to

the description of the different lattice properties, which are very important during the

creation of an Lattice Gas Cellular Automata model and its application.

The detailed description of the Lattice Gas Cellular Automata algorithm developed for a fluid

flow simulation is presented in the Chapter 3. This algorithm was verified for two

phenomena as the Brownian motion and the Poiseuille flow are. The basic algorithm was

adjusted for these benchmark tests. Related algorithms and results obtained from the

computer simulations are subsequently presented in Chapters 4 and 5. Application of the

developed Lattice Gas Cellular Automata for fluid flow in a porous medium simulation is

presented in the Chapter 6 of the thesis. Computer simulation based on the developed

Lattice Gas Cellular Automata algorithm verifies here the particular hypothesis related to the

curious behaviour of the fluid flow trough assembled filters. General summary of the work

included visions for the future are presented in the conclusions of the thesis.

CHAPTER 1: BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION

16

BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION

“How can it be that mathematics, being after all a product of human thought independent of

experience, is so admirably adapted to the objects of reality?”

Albert Einstein

Many researchers, which deal with modelling, claim that current research in the natural or

social science can no longer be imagined without simulations, especially computer ones.

What was the way of modelling and computer simulation developing, which models are

known at present time, what stages are the part of simulation study, which benefits and

dangers of simulation study and partly computer simulation entails, is described in this

capture.

1.1. Origins and development of modelling and computer
simulation

Without any doubt, first models were already designed in ancient time. It is known, that

ancient Egyptians created all sorts of models. It is possible, that first physical models come

from Egypt – models of their tools, vessels, weapons or boats and other objects are founded

in a big amount in their tombs and serve to the study of this ancient culture now. In ancient

time those models were used to assure that a human be taken care of during the afterlife.

In fact, modelling as a theoretical activity began to be dominating at first in the field of

physics in the end of 19th century. For example, J.C. Maxwell to derive the equation of

electromagnetism used analogical hydrodynamic models. Lord Kelvin (originally William

Thomson) mentioned that he couldn’t understand a phenomenon until he had built a

mechanical model of the system under consideration [1].

Simultaneously, development of modelling was linked with the invention of computer

technology and its implementation into the technical sciences. The concept of a first

computing machine was intimated in a series of drawings of reduction Charles Babbage

between 1834 and 1857. His so-called “Analytical Engine” was designed to perform

calculations automatically with a possibility of simple programming [2]. But first computer

simulation models appear during World War II. On the one side analog computer was well

known in a world of science, on the other side the development of the first nuclear weapon

was initiated within the frame of Manhattan Project and the two mathematicians Jon von

Neumann and Stanislaw Ulam using Monte Carlo approach tried to understand the puzzling

problem of behaviour of neutrons at that time. The real experimentations were too costly

and the problem was too complicated for analysis [1, 3]. In the late 1940s and early 1950s,

CHAPTER 1: BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION

17

both analog and digital1 computers started to appear in a number of organizations. In the

1950s, the computers were used for census data recording, defence systems, accounting and

some scientific calculation. The development of programming languages was felt, first of

them were rising during the 1960s:

 SIMSCRIPT (Markowitz H., Hausner B., Karr H.,) – simulation programming language

developed in 1962 for the U.S Air Force [4];

 CSL – the Control and Simulation Language (Buxton J., Laski J.) designed for use in the

field of complex logical problems. The first application has been in the field of Monte

Carlo simulation [5];

 SIMULA (Dahl O., Nygaard K.) – originally it was designed and implemented as a

language for discrete event simulation, than it was reimplemented as a general

purpose programming language. Simula-type objects were later implemented in C++,

Java and C# programming languages [6].

In the 1970s, simulation was a topic that was taught to industrial engineers but rarely

applied. Long time spent at the computer terminal and endless runs to find a bug in a

language was what “simulation” meant at that time. The popularity of simulation as a

powerful tool rapidly increased with the number of conferences and seminars devoted to

this problem. According to Reitman [7] first of them were: Conference on Simulation

Language (1964), Conference on Application of Simulation using the General Purpose

Simulation System (GPSS) (1967), Application of Simulation (1968) and Winter Simulation

Conference (1971) that is also popular at the present time. The number of sessions held to

computer simulation within the frame of conferences was quintuple at the beginning of

1980s compare with the end of 1960s. In the 1980s, the offer of computerized systems was

very limited and too expensive. The number of companies using computer simulations was

still small. The first simulation language specifically designed for modelling manufacturing

systems and the discrete event simulation model was developed in 1984. In the middle of

1990s the power of simulation as a tool became evident and popular [8]. A big amount of

simulation packages represented both by simulation languages and application-oriented

simulators is in offer at present time [9], and modelling in itself became more and more

popular in technology.

1.2. Model: the definition and classification

Models are considered to be one of the basic instruments of modern science. Formally, a

model is defined as a formalized interpretation, which uses symbols instead meanings,

1 In electronics and computer science analog computer is defined as a mechanical, electrical, or electronic
computer that performs arithmetical operations by using some variable physical quantity, such as mechanical
movement or voltage, to represent numbers. Digital computer is an electronic computer in with the input is
discrete rather than continuous, consisting of combinations of numbers, letters and other characters written in
an appropriate programming language and represented internally in binary number system (116).

CHAPTER 1: BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION

18

substitutes truth-values with the sentences of a formal language. Depending on using and

representation several kinds of models are mentioned in literature [10]:

 Mental model – describes person’s behaviour in different situations. In other words,

it is an explanation of person's thought process according to surrounding world, and

relation to its parts.

 Verbal model – consists of intuitive concepts, often used for mathematical models

interpretation. In contrast to mathematical model, verbal model doesn’t have exact

and logical internal structure, consequently the verbal model is considered to be

slightly ambiguous and inaccurate.

 Physical model – this term is often used in literature for the computer simulation

model of the certain physical system signification. In fact, it is a small physical object

with the same shape and appearance as the real object to be studied. Physical

models mimic some properties of real systems.

 Mathematical model – gives description of real system or phenomenon, where the

relationships between variables of the system are expressed in mathematical form

using mathematical language. So, a great number of laws of nature are mathematical

models.

The kinds of models that will be dealt with in this work are mathematical models

represented by means of computer simulation algorithms. The detail classification of

mathematical models is given below.

There are static and dynamic mathematical models with respect to model behaviour in time.

Static model describes the system in steady state, where the physical characteristics have

constant values. Dynamic model includes time. The time development of a system (the

change of its outputs in dependence on the same inputs) is the subject of study here. The

changing of values of any parameter in time is often an output of the dynamic model. There

are two main classes of dynamic models depending on how the function changes its

character in time: continuous-time and discrete-time models (see Figure 1). Continuous-time

models evolve their variable values continuously over time, while discrete-time models

change their variable values at discrete points in time only. [10]

CHAPTER 1: BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION

19

Mathematical models could be denoted also as a qualitative or quantitative. Mainly,

qualitative analysis is used in social studies and is thought to be subjective and non-

statistical. Qualitative models involve an in-depth understanding of system behaviour and

the reason of such behaviour. Unlike quantitative models, which rely exclusively on the

analysis of numerical or quantifiable data and their outputs are represented by means of

mathematical formulas or graphs. In qualitative models (or analysis) the images, sound,

video and text is often working with.

The most part of phenomena in nature are preceded as non-deterministic processes.

Mathematical non-deterministic models are called stochastic or probability-based models.

The stochastic process is defined as a one whose behaviour is non-deterministic and the next

state is determined both by process’s predictable actions and by random element. In other

words, the stochastic model is a mathematical representation of random phenomena, which

is defined by sample space, events within the space and probabilities associated with each

event [11]. The counterpart of the stochastic is a deterministic model, which is specified by a

set of known relationships among states and events without any random variation. If the

stochastic model is run several times, it will not give identical results, while in deterministic

model the given input will always produce the same output. The most common types of

stochastic modelling tasks are:

 Markov chains and processes describing the evolution of dynamic processes;

 Economic models of supply and demand;

 Survival models (in insurance and health);

 Game models that have application in strategic decision making.

It is interesting, that dynamic processes can be modelled using the both deterministic and

stochastic (non-deterministic) ways. According to [12] dynamic processes are usually

described by means of a set of first order differential equations:

Figure 1: Types of dynamic models: a – continuous-time model, b – discrete-time model

a

b

CHAPTER 1: BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION

20

 (1)

where are physical or other variables; t is time; are functions that define

the system; are parameters that partly affect the behaviour of the dynamic

system (different constants and values of external parameters, etc.). Depending on the

values of parameters the behaviour of the system can be regular and orderly or

irregular and disordered. But the core of a random non-deterministic behaviour of the

system is not the large number of degrees of freedom or uncontrollable external factors, but

mainly non-linear internal dynamics, leading to instability and chaotic behaviour. Looking

back at the Equation 1, when the function is non-linear (for example,

),

then

 becomes non-linear also. Due to non-linearity the system loses memory – ie. a

record of its initial conditions. Then the statistical description (stochastic model) is not only

possible but actually the only effective and suitable one.

According to [13], all above-mentioned models represent phenomena and/or data in

general.

Representational models of phenomena are:

 Scale models – are basically miniaturized or enlarged copies of their real systems;

they provide faithful copy of the shape, but not the material.

 Idealized models – are simplified models of complicated systems. Two general kinds

of idealized models are under consideration: models based on a so-called Aristotelian

and/or Galilean idealizations. Aristotelian idealization is equal to “stripping away”, in

other words all properties of the real system that we believe aren’t significant to our

model are being disregard. Galilean idealization involves deliberate distortion of the

model towards real system. Aristotelian and Galilean idealization are often come

together in models.

 Analogical models – represent the target systems or phenomena by another more

understandable system if there are certain relevant similarities between them.

 Phenomenological models – those models are considered to be independent of

theories, they result from different empirical observation of the target system or

phenomena.

Representational models of data are idealized versions of the data gained from immediate

observation. Mainly mathematical models are ranged between them. The full overview of

models mentioned in this chapter and their sections is presented in the Figure 2.

CHAPTER 1: BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION

21

The process of producing a model is considered to be modelling [9]. More about modelling

and computer simulation especially is presented in the Chapter 1.3.

1.3. Simulation study and computer simulation: definitions,
stages, benefits and dangers of their implementation

Modelling is understood as a process of model generation. Simulation is an imitation of the

real process or phenomenon over the time and it includes several stages (see Figure 3). The

term “simulation” comes from Latin “simulare” and means “to prebend” [10]. “Simulation”

often occurs in connection with dynamic mathematical models – as an experiment

performed on a model. The aim of simulation is to solve the equation of motion of such a

model and herewith to represent the time-evolution of the target2 system [13]. But

generally simulation is defined in literature as a tool to evaluate the performance of a

system, existing or proposed, under different configurations of interest and over the time.

Usually, simulation is used when an existing system should be altered or a new system built

[9]. System here is an object or collection of objects whose properties we want to study. Two

reasons for system study are mentioned in literature [10]:

1. From engineering point of view: to understand the system in order to build it.

2. From natural science viewpoint: to understand more about nature.

Based on [9, 10, 13] simulation study is used, when:

 system or process is impossible or extremely expensive to observe in the real world;

 experimentation with a system is too dangerous or the system to be investigated

doesn’t exist yet;

2 „Target“ (an adjective) – that is or may be a „goal“, desired goal.

Figure 2: Scheme of model classification

CHAPTER 1: BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION

22

 time scale of the dynamics of the system is too large and it takes millions of year to

observe small changes in the system;

 some variables of the real system are inaccessible;

 easy manipulation with system parameters is necessitated;

 suppression of disturbances or second-order effects is needed.

Figure 3: Stages of simulation study

From the Figure 3 it is evident, that before the simulation study will start, an identification

and a formulation of a real problem is needed. Based on real system data, creation of a

simulation model and modelling itself (i.e. time-evolution study of the system) are possible.

Modelling also includes making of requirement model documentation. Simulation

experiment begins from selection of an appropriate experimental design. The establishing of

experimental conditions for run and the performing of simulation runs takes a place then.

Simulation analysis is a final stage of simulation study. It is intended for evaluation and

interpretation of simulation results. Conclusions, which are applied to system under study,

come both from simulation study and real facts [9].

Recently, simulation studies based on mathematical models are carried out using different

computer techniques. Then computer-implemented studies for exploring the properties of

mathematical models are known as computer simulations [1]. Humphreys in his article

“Numerical Experimentation” [14] claims that the computer simulation constitutes a new

kind of scientific method, which is the connecting link between empirical experimentation

and analytic theory. The reasons that lead to performance the simulation study are the same

in a case of computer simulation. Computer simulation studies are often used when analytic

solutions of formulated mathematical models are impossible or it is complicated to obtain

them. According to Hartmann [1], computer simulation may also be helpful even if analytic

solution for the target system is available. Visualizing the result of any kind of simulation on

a computer screen is another advantage of it.

CHAPTER 1: BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION

23

It is evident that implementation of simulation study on a target system has a number of

benefits. But some dangers are also here. Fritzson in [10] features the following ones:

1. For user it is easy to forget or involuntary overpass limitations and conditions under

which a simulation is valid. It leads to wrong conclusions from simulation study. In

order to prevent it the comparison some results of simulation with known physical

laws or experimental results from the real system are recommended.

2. Reaching the “Pygmalion effect”. In other words – to fall in love with model – forget

that the model isn’t the real world but only represents the real system under certain

conditions.

3. Forcing reality into the constraints of a model – the “Procrustes effect”.

1.4. Modelling and simulation in the textile industry

From physical point of view a “textile” in general is an object, which can be described by the

theories of classical physics and experimented with physical instruments. It is a physical

three-dimensional body (extended in three-dimensions of space), which has a certain mass,

location or position in space and is lasting for some period of time [15]. It is the subject of a

study in an experiment and it is the object that could be referred to physical theories and

laws. During last few years, the principles of modelling and simulation became to be popular

in the textile industry also. For example, there is a tendency:

 to use image analysis for textile quality assessment;

 to carry out modelling and simulations of textile structures (to study various textile

structures using computer simulation, to characterize the yarn unevenness by means

of computer technologies);

 to aid the garment design with a computer;

 to study physical properties of textiles as a moisture and heat transfer using

computational simulations. [16]

The development of textile's structure modelling and their physical properties simulation is

linked to the advances in computer hardware and software on the one side, and necessity to

solve more and more complicated phenomena associated either with production or

application of textiles on the other side. It is impossible to do the complete summary of all

computational methods, models and instruments used in textile engineering. Generally

speaking, the design of textile structures and garments are often spoiled with the using of

CAD system; the study of geometry properties of textile structures predominantly

comprehends the image analysis instruments and methods for its evaluation; the study of

physical properties of textiles tends to the solving of differential equations of motion and

etc.

The subject of my interest is a fluid transport through the porous media, also through the

nano-porous materials. The fluid flow through fibrous materials is a phenomenon that

occurs in a range of technological processes and it is a subject of a wide interest in textile

CHAPTER 1: BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION

24

industry for all the time. The textile industry encounters with this phenomenon during a lot

of production and finishing processes. Examples range from dyeing processes, over filtration

to high performance textiles with improved wearing comfort. Permeability is the physical

parameter of primary interest during the comfort evaluation or final textile product testing.

Invention of multilayer textile materials (for example, Gore-Tex fabrics in clothing) is based

on an idea to combine various layers with different permeability to reach the maximal

comfort with respect to the diffusion of water vapour outward and retention of external

liquid droplets [17].

It was mentioned in [18], that a common requirement for understanding the transport

properties of textiles is a detailed understanding regarding the transport of momentum

through textile structures. This information is difficult to obtain experimentally and often the

researches rely on “try and error” methods. During last couple of years, the study of fluid

and heart transfer in porous structures was facilitated thanks to software Fluent. The

software was developed by the company ANSYS, Inc. (USA). At present it is the most used

commercial software based on a computation fluid dynamics (CDF) code that has been in

use since 1983 and has been applied to a broad range of disciplines (e.g., aerospace,

chemical, environmental, textile engineering, etc.). The solution of Navier-Stokes equations

for fluid flow (Chapter 1.4.1), coupled with the energy and diffusion equations, is the

principle of Fluent software. The Finite Element Method (FEM) is usually used for a solution

of nonlinear partial differential equation as Navier-Stokes equations are. Fluent is also

considered as a powerful approach to obtain insight into momentum transport within

textiles. The few skilled works [18, 19], which have used the Fluent software for simulation

of transport phenomena in textile structures, were founded.

By the way, traditional numerical simulations, represented by the Navier-Stokes equations,

rely on the continuum approach [20]. But the approach would break down, when the length

scale of the physical system decreases, concretely, when the Knudsen number became

greater that about 0,2 (some authors as Truesdell and Muncaster [21] consider the value 1 as

a threshold). Knudsen number () is dimensionless parameter that determines the degree

of appropriateness of the continuum model – the degree of rarefaction of gases

encountered in a small flows through narrow channels and for an ideal gas it is:

 (2)

where is a mean free path of molecules []; is a length characterizing the geometry of

flow, such as the diameter for a circular capillary, or the width of a pore, i.e. any microscopic

dimension of interest [], kB is a Boltzmann’s constant (approximately);

 – temperature []; – particle diameter []; p is a total pressure [].

From the Equation (2) it is evident: if the is near or greater than one, the mean free path

of a molecule is comparable to a length scale of the system or it is greater. The continuum

assumption of fluid mechanics is no longer a good approximation. If we will consider the

fluid flow through very small capillary pores, for intermolecular collisions are

CHAPTER 1: BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION

25

become to be much less frequent than molecular interactions with solid boundaries. The

intermolecular collisions can be ignored than. Flows under such conditions are termed

collisionless or free-molecular flow. In this case discrete particle methods must be used

instead of continuum approach.

As is shown in the Figure 4, only Boltzmann equation (Chapter 1.4.2), which is based on the

discrete kinetic theory, is valid for the whole range of Knudsen number. As it was mentioned

in [20], an alternative to continuum model is the molecular one, which recognizes the fluid

as a swarm of discrete particles. Position, inertia and state of all individual particles are

calculated here either deterministically or probabilistically at all times. During last few

decades a large number of molecular models/methods, which consider individual particle

dynamics based on a Boltzmann distribution at the temperature of interest, have emerged.

Those methods are mesoscopic and include: molecular dynamic (MD), direct simulation

Monte Carlo (DSMC), dissipative particle dynamics (DPD), smooth-particle hydrodynamics

(SPH), Lattice gas cellular automata and Lattice Boltzmann model (LBM). Those methods are

also used for the study of macroscopic hydrodynamics. They aren’t based upon Nevier-

Stokes equations, but closely related to kinetic theory and Boltzmann equation. Those

methods are mentioned in literature as promising candidates effectively connecting

microscopic and macroscopic scales and enabling to study mesoscopic phenomena as a fluid

transport in nanopores structures.

During last few years, investigation of nanometric flow plays a crucial role in material science

including textile engineering branch. Tendency to use lattice gas cellular automata for

nanometric fluid flow modelling will be trashed out in chapters given below.

Next two chapters describe theoretical approaches, as the Nevier-Stokes equation and the

Boltzmann equation, useful for fluid flow modelling. Both methods characterize the same

phenomenon but use the different principle for that. The Nevier-Stokes equation presents

macroscopic or continuum approach, where fluid flow is described by a finite number of

Figure 4: Different regimes of fluid flow and methods for their description depending on Knudsen
number

CHAPTER 1: BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION

26

position dependent quantities such the mass density, the mean velocity, etc (see Chapter

1.4.1). In contrast to Nevier-Stokes equation the Boltzmann equation uses microscopic

approach. It characterizes the fluid flow using description of the dynamics of its individual

particles (see Chapter 1.4.2).

1.4.1. Nevier-Stokes equation

The Navier-Stokes equation is an equation describing the flow of incompressible Newtonian

fluids3. The equation was derived by French engineer and physicist Claude-Louis Nevier in

1827 and Irish mathematician and physicist George Gabriel Stokes in 1845 independently on

each other. The detailed derivation of the Nevier-Stokes equation is introduced for example

in [22] and [23]. Feynmann in [24] describes in detail the essence of the equation.

According to Feynmann [24], to describe the motion of a fluid it is necessary to know the

fluid properties at every point. At first we need to know vector and scalar fields of

characteristics, which vary at every point of fluid and for any time. Those characteristics are

density, pressure and velocity. Feynmann bases on the assumption:

 density and pressure determine the temperature at any point;

 density is a constant – fluid is essentially incompressible – it is expected, that

variations of pressure are so small (or the velocities of flow are much less than the

speed of sound wave in the fluid) that the changes in density produced thereby are

negligible.

The interpretation of the essence of Nevier-Stokes equation begins from an equation of state

for the fluid which connects the pressure to the fluid density [24]:

 (3)

If the fluid velocity is , then the mass which flows in a unit time across a unit area of surface

is the component of normal to the surface. Than the hydrodynamic equation of

continuity is4:

 (4)

The Equation (4) expresses the conservation of mass for a fluid. According to the assumption

(- see Equation (3)) the equation of continuity becomes:

 (5)

3
 Newtonian fluid is a rheological model of a viscous substance, which is governed by Newton’s low of viscosity.

Rheological equation of Newtonian fluid is characterized by direct proportionality between strain rate and
stress. The constant of proportionality here is known as viscosity.
4
 Symbol denotes the vector of differential operations

 containing unitary vectors , and

 oriented along , and axes respectively.

CHAPTER 1: BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION

27

From the Equation (5) it is evident, that the fluid velocity has zero divergence. Zero

divergence means that the velocity doesn’t change at a given point of the velocity vector

field, it is a constant.

A second Newton’s law tells how the velocity of the body changes because of the forces

(). Taking an element of unit volume and writing the force per unit volume as , we

will get:

 (6)

The force density (

, where the is volume) in an Equation (6) is the sum of three

terms: pressure force per unit volume – (consequence of the existence of pressure

gradient); external forces like gravity etc. – when they are conservative force with a potential

per unit mass , they give a force density ; internal force per unit volume (consequence

of the existence of shearing stress) – viscous force . Then the equation of motion is:

 (7)

For the expression of acceleration Feynmann deals how fast the velocity changes for a

particular pieces of fluid. If we will consider the movement of the drop of water in a small

interval of time from point to along some path, it will move by an amount (see

Figure 5).

Figure 5: The acceleration of fluid unit volume

CHAPTER 1: BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION

28

If is the velocity of the fluid unit volume at the time at a position , than

the velocity of the same unit volume at the time will be:

Time Position of the fluid unit
volume

Velocity

 , where

 ; ;

From the definition of the partial derivates (Taylor series):

(8)

The acceleration

 is:

 (9)

Because

 is a divergence, than:

 (10)

If the velocity at given point isn’t changing (

), then acceleration is zero. Putting the

acceleration from Equation (10) into Equation (7) we will get:

 (11)

Equation (11) is a general form of Nevier-Stokes equation for an incompressible fluid flow.

To find the solution of the Nevier-Stokes equation of motion it is necessary to rearrange the

Equation (11) by using the following identity from vector analysis:

As a special case, when :

So, corresponds to the , eventually:

CHAPTER 1: BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION

29

Lets to define a new vector field , as the curl of : . The equation of motion

becomes:

 (12)

The vector field is called vorticity. If the vorticity is zero everywhere, the flow is

irrotational.

If the fluid is “thin” (in the sense that the viscosity is unimportant) and an object of interest

is the velocity field, than and pressure can be eliminated from the Equation (12). Taking

the curl of both sides of Equation (12) and taking into account that the curl of the gradient of

scalar field is the zero vector (where is any scalar field) we will get:

 (13)

Equation (13) obtained from Nevier-Stokes equation together with the equations

 (14)

and

 (15)

describes completely the velocity field of the incompressible fluid. Equation (14) defines

the vector field and Equation (15) is a equation of continuity when the fluid density is

constant.

Is well known, the Nevier-Stokes equation is analytically solvable only in a few cases of

simple flows (as an example, stationary flows in simple channel – Poiseuille flow). In more

complicated cases it is necessary to solve the equation numerically. The problem with a

solution of the Nevier-Stokes equation is caused by the , which is nonlinear and is

quadratic in . Mathematicians have not yet proven that the solution always exists in three

dimensions. The Clay Mathematics Institute has ranked the solution of the Nevier-Stokes

equation among seven major mathematical problems, so-called “Millennium problems” [25].

1.4.2. Boltzmann equation

Except Nevier-Stokes equation there is another theoretical approach, which makes possible

to describe the fluid flow phenomenon. It is the Boltzmann equation, also known as a

Boltzmann transport equation or Boltzmann kinetic equation. It was devised by Austrian

CHAPTER 1: BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION

30

physicist Ludwig Eduard Boltzmann in 1872. In contrast to the principle of Nevier-Stokes

equation, the Boltzmann one reflects the state of a fluid by means the state of many

identical point particles confined to a spatial domain. The state of a fluid is described here at

kinetic level using so called distribution function .

According to Kittel [26] the Boltzmann equation is an equation for the time evolution of the

distribution function in a one-particle phase space5. Here and denote,

respectively, the position and velocity vectors, they are elements of the phase space. In a

general form the distribution function is determined by the ratio:

 (16)

 is the average number of particles, which at time have position lying

within a volume element . Because particles move inside and outside of the volume

element and collide with each other, the function will change over the time with a

rate:

 (17)

The Equation (17) is done according to assumption that the number of particles doesn’t

change. The effect of a time displacement on the distribution function is then:

 (18)

The Equation (18) is in accordance with Liouville’s theorem of classical mechanics (i.e. if the

volume element follows along the streams the distribution is conserved) in the absence of

collisions. With collisions it is:

 (19)

The total derivation of the function over the time is:

 (20)

Lets and denote, respectively, the velocity

 and the acceleration

, then:

 (21)

or

 (22)

5 Phase space is defined as a space, in which all possible states of a system are represented. One-particle phase
space corresponds to the space of all possible states of the one particle.

CHAPTER 1: BASIC PRINCIPLES OF MODELLING AND COMPUTER SIMULATION

31

The Equations (21) and (22) represent the Boltzmann transport equation. In abstract form

the Boltzmann equation is often written as following:

 , where is a collision

term, which is account as a result of particle interactions.

Kittel in [26] expresses the collision operator

 by the introduction of the relaxation

time :

 (23)

Here is the distribution function in thermal equilibrium state. After combination Equations

(16), (21) and (23) the Boltzmann transport equation in the relaxation time approximation is:

 (24)

The following Chapter 2 describes Lattice Gas Cellular Automata whose nature reflects the

Boltzhmann transport equation.

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

32

2. MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS
CELLULAR AUTOMATA

From computer science the study of certain phenomena suggests that there are computer

systems that may be appropriate as models for microscopic physical phenomena. Cellular

automata are now being used to model varied physical phenomena. Fredkin in his paper [27]

wrote about cellular automata (CA) modelling:

“The computer science approach to modelling physics with CA is qualitatively different from

either theoretical or experimental physics, or from the kinds of abstract mathematical work

that so often leads to progress in physics. The problem is that the study of cellular automata

is both a theoretical and an experimental science. However, the experiments, which often

produce results we did not anticipate, are not like physics experiments. They are the kind of

experiments that never existed before the age of the computer.”

Richard Feynman’s view of lattice-gases, as paraphrased by one of his co-workers, Daniel

Hillis [28] was:

“We have noticed in nature that behaviour of a fluid depends very little on the nature of the

individual particles in that fluid. For example, the flow of sand is very similar to the flow of a

pile of ball bearings. We have therefore taken advantage of this fact to invent a type of

imaginary particle that is especially simple for us to simulate. This particle is a perfect ball

bearing that can move at a single speed in one of six directions. The flow of these particles on

a large enough scale is very similar to the flow of natural fluids.”

It is necessary to describe the basic principles of Cellular Automata and Lattice Gas modelling

for the purpose of this work. For that reason I will allow myself to present the description of

the basic properties of Cellular Automata and Lattice Gas Cellular Automata in Chapters 2.1 –

2.4.

2.1. Historical overview: cellular automata and lattice gas
automata

It seems currently to be quite impossible to survey the area of cellular automata in a whole

range. Cellular automata have been invented independently for quite a number times and as

indicated in [29] for a wide variety of purpose and under different names: “tessellation

automata”, “homogeneous structures”, “cellular structures”, “tessellation structures” and

“iterative arrays”.

Cellular automata are coming from the time when a development of computer technique

started. One admits commonly that cellular automata have been introduced by John von

Neumann, the famous Hungarian mathematician, under the name “cellular space” in the end

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

33

of 1940’s. Whereas other refer that cellular automata were introduced by John von

Neumann and Stanislaw Ulam independently from Konrad Zuse [30, 31].

Ulam and Neumann were mathematicians working together on the U.S. Los Alamos project

during the Second World War. They belonged to research team working on a development

of modern computers. As it is mentioned in [32] Ulam liked to design pattern games for the

Los Alamos huge computer. The first game was aimed at printing ever-changing patterns,

which grew almost as if they would have been alive. The next game, developed by Ulam,

constructed three-dimensional “recursively defined geometric objects”. Each cell pattern

from this kind of Ulam’s games consisted of groups of cells creating different shapes in a

space (square, triangular, hexagonal). These games were played on an infinite chessboard,

i.e. on an infinite lattice. All changes of these cell patterns took part in discrete time steps. A

fortune of particular cell state depended on states of its neighbouring cells. So Ulam

constructed first cellular spatial games and he shared his skills in that with his co-worker

John von Neumann.

Thanks to Goldstine [32], who created a research team to work on problems in computers,

communications, control, and time-series analysis in 1944, Neumann was introduced to

electronic computing problems also. Neumann proceeded on design of Electric Discrete

Variable Computer (EDVAC) in 1946. It was the first attempt to design physical automata

ideas, first developed by Post and Turing at the end of 1930’s. In that time Neumann’s work

included studies on the complexity that is required for a device or a system to be self-

reproductive. Neumann was a pioneer in the study of a self-reproducing automaton based

on a “system of non-linear partial differential equations, essentially of the diffusion type”

and on algorithms of parallel computing [33, 34]. Ulam’s ideas about an abstract space of

cells, each of which is assign with a finite number of states, with local and uniform

interactions among them found their usage in these Neumann studies. In the same time,

independently on works of Neumann, Zuse, who was interested in numerical methods in

mechanics, came with idea of parallel processing. But special historical circumstances

forestalled the popularity of his work. His book named “Calculating space” was published

only once in 1969 [35, 36]. Some of his formulations resemble the first and the most simple

lattice gas models based on cellular automata method. The latter it has been proposed four

years later by Hardy, de Pazziz and Pomeau and was well known recently as HPP model [31].

The most far-reaching vision of Zuse was that physical laws of the universe are discrete by

nature, and that the entire universe is just the output of a deterministic computation of a

giant cellular automaton.

It is mentioned in literature that two main pathways appeared for cellular automata

development starting with Neumann’s pioneering works. The first of them raised cellular

automata, originally perceived merely as “toy” tools, for investigation and monitoring of

serious biological systems. At least cellular automata penetrated into computer problems

and dominated in this area for next few decades. A brief history of cellular automata in

computer science and mathematics is presented in [37]. The path of cellular automata

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

34

development in the area of biology with connections to some physical problems will be

traced in brief at the end of this subsection.

An excellent instance of cellular automata application in biology is the game called “Life”

invented by John Conway. It was popularized among members of early computing

community by Martin Gardner [38] in seventies. The game “Life” is a simple two-dimensional

analogy of basic processes in living systems. It is based upon tracing temporal changes in a

pattern, formed by sets of “living cells”. Each cell in a grid may be in either of two states:

“alive” or “dead”. The state of each cell changes in time from one generation to the next one

according to the update rule. This rule takes into account a state of a certain cell and states

of its neighbours [32] in a similar way as it was indicated in former Ulam’s games. A system

evolution over 80 time steps from an initial state is presented in the Figure 6. A “time step”

(t.s.), also known as a “time unit” (t.u.), in contrast to the real time6, is a unit, needed for

realization the one cycle of all operations in a simulation algorithm.

Many next researchers searched for cellular automata’s potential in modelling of biological

systems [39, 40]. These works demonstrated that simple behaviour and functioning of live

organisms can be modelled using cellular automata, where site values represent states of

individual living cells or states of cell colonies. Short-range or contact interactions may lead

to expression of “genetic characteristics” via the determination of cell colony patterns. It has

been shown that simple update rules may lead to the formation of complex cellular patterns

like in living cell colonies, plant and animal tissues.

6
 Under the International System Measurement second is defined as a duration of 9 192 631 770 cycles of

radiation corresponding to the transition between two electron spin energy levels of the ground state of the
cesium (Cs) 133 atom. Time step could be equating to the time in itself, but it doesn’t have the same unit [86].

Figure 6: Set of patterns obtained in game of “Life” for various time evolution steps t
(courtesy of Jakub Hrůza) [17]

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

35

The set of theoretical studies and analysis of cellular automata’s properties augured their

occurrence in modelling of physical problems and especially in simulation of hydrodynamic

phenomena. It has been already marked that in spite of simple update rules cellular

automata can display complex behaviour, which is one of the most important conditions to

use them as a simulation tool for the description of many-particle or collective physical

phenomena. Partly discrete models, discrete with respect to time and space, were well

known from biological applications of cellular automata since the end of sixties.

The first so-called classical Lattice Gas models appeared as theoretical ones, used for liquid-

gas transition. They were structured nearly simultaneously in the late sixties and beginning

of seventies [41]. A moment-conserving lattice gas model started to be an object of interest

of hydrodynamics and statistical mechanics when Kadanoff and Swift proposed the first

discrete-velocity model [42]. They created a version of Ising model in which positive spins

acted as particles with momentum in one of four directions on a square lattice (see Chapter

2.3.2.1), while negative spins acted as holes. Particles were then allowed to collide with each

other or to exchange their positions with holes if energy and momentum were exactly

conserved [43]. The fully discrete model of hydrodynamics based on cellular automata

conception, was firstly introduced by Hardy, de Pazziz and Pomeau [44]. This model

nowadays is known as a HPP model. It led to a lot of interesting results, but due to using the

square geometry of lattice it had limited applications because of its anisotropic behaviour. It

was not refined until 1986, when Frisch, Hasslacher and Pomeau designed their own model,

based on a triangular lattice. This model was called as the first FHP model. The detailed

description of these models will be introduced in the Chapter 2.4.

During the last decades the development of the FHP model within the modelling of

hydrodynamics led to the design of derivative models. In the next section examples of such

few models and discussions of their usage for transport phenomena in porous materials will

be given.

2.2. Specification of finite automata, cellular automata and
lattice gas cellular automata

The phrase “cellular automaton” usually indicates an infinite set of finite automata, which

are interrelated in a specific manner. A lattice gas cellular automaton is a special case of

cellular automaton. What do the terms finite automaton, cellular automaton, and lattice gas

cellular automaton mean in general and in the realm of cellular automata? The definitions of

the same are provided below.

2.2.1. Finite automata

A “finite automaton” or “finite state automaton” (plural: automata) or “finite state machine”

was firstly introduced and studied by Cobham in 1972 and has got the modern view in

1980’s thanks to Christol, Kamae, Mendes France and Rauzy. In general, it is a class of

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

36

simplest mathematical model of processors, or special class of programming languages, that

are characterized by having a finite number of states [45], which evolve in time and produce

outputs according to rules depending on inputs [46].

Similar definitions of finite automaton can be found in literature, which refers to principles

of simulation, modelling and programming. Taking this view-point, a finite automaton (FA) is

represented formally by the five-tuple , where:

 – is a finite, non-empty set of states (also known as a state space);

 – is an initial state, an element of ;

 – is a finite, non-empty set of possible input signals (the set of input symbols or

input alphabet);

 – is a state-transition function;

 – is a set of final or accepting states of , also is a subset (possibly empty) of

[47, 48].

The state-transition function drives the work of finite automaton and specifies, for each

state and input alphabet, the next state the automaton will enter. For a given current state

and a given input signal, if an automaton only jumps to one and only one state, then it is a

deterministic automaton. Another type of automaton is a non-deterministic finite

automaton. Here, after reading an input signal, automaton may jump into any of number of

possible states driven by its transition relation. The most standard variant describes bellow is

the deterministic finite automaton.

Three possible methods of finite automata representation (here it is the deterministic finite

automaton) are shown in Figure 7:

 the state-transition table determines an initial state , subsequent states

 , final state and state-transition function ;

 the state tree is presented using original roots, which arise from the initial state .

The number of links that come out from each cusp of the tree is equal to the total

number of input/output signals. Successors of each state are created according to

the input signals, using the state-transition function .

 the state diagram is consists of vertices, which agree with the state of automaton.

Links indicate the possible transitions between all possible states. Here the arrow

before the cusp with the initial state denotes the start of the calculation of the

finite automaton. Two circles that surround the state mean that the state of the

automaton is the final (accepting) one.

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

37

The computation of finite automaton on inputs (where for all

) is the sequence of states (where and is the initial

state):

 for all (25)

For instance, for the input signal the automaton presented in Figure 7 begins in ,

reads the input signal and goes to the state . Then reads input signal

 and goes to the state , finally it ends up in after reading

the last input signal . Formally this computation can be written as:

 (26)

So, the operation of the finite automaton can be easily displayed as is shown in Figure 8.

An output signal of a finite automaton can be used
as an input signal for another finite automaton – it
is the basic principle of cellular automata (see
Chapter 2.2.2). The term “individual automaton”
is used instead of “finite automaton” in the realm
of Cellular Automata and Lattice Gas Cellular
Automata models [46]. This notation will be
followed hereafter.

Figure 7: Finite automaton represented using classical methods: state-transition table, state tree and
state diagram [17]

Figure 8: Basic principle of a finite
automaton operation

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

38

2.2.2. Cellular automata

According to Wolfram [29], “cellular automaton” (plural: cellular automata – CA) is defined

as a “...mathematical idealization of physical system in which space and time are discrete

and physical quantities take on a finite set of discrete values”. Cellular automaton consists

of:

 a set of identical sites (“cells”) located in a regular and uniform lattice (or “array”),

usually infinite;

 each cell holds a finite number of discrete states. A set

 of Boolean variables (where is a

single bit of information) is attached to each site of a lattice by position vector and

creates the local state of each cell at the time steps .

 states of all cells of CA are updated simultaneously at discrete time steps according

to principles used in finite automaton (see Chapter 2.2.1);

 changes of states are governed by update rules (in finite automata it is also known as

a state-transition function), which can be deterministic or non-deterministic, but

always uniform in space and time;

 rules for evolution of a cell depend generally on a local neighbourhood of cells

around it. The update rule , which specifies the time evolution of

the states , in general can be defined in following way:

where () designate the cells belonging to a given neighbourhood of cell

 . If is a location of the certain cell, then , ,..., are locations of its

neighbours (see Figure 9). So, the new state of a cell having the location at time is

only a function of its previous state in and states in neighbour locations at time

[49].

In the context of cellular automata, the term “neighbourhood” was first used. In cellular

automata neighbourhood is usually created by cells surrounding a central cell with the

position . Neighbourhood is done by the lattice geometry. More about neighbourhood

types in accordance to lattice geometry is presented in Chapter 2.3.2.2.

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

39

Therefore, a cellular automaton can be represented as a set of synchronized identical

individual automata, which exchange their states with predefined neighbourhoods in

accordance to an update rule, which is the same for all cells (i.e. finite automata, which

comprise a cellular automaton) in a particular model [46]. Purposely, this definition does not

contain any reference to the geometrical structure of a lattice, as it is not important to know

the distances or angles between neighbours. However, it may be noted, that all individual

automata in a cellular automaton are identical and create a homogeneous structure having

uniform internal structure and obeying the same evolution and connection rules, except

those, which are on boundaries. Such a cellular automaton can be presented as is shown in

Figure 10.

The one evolution time step of the one cell for two-dimensional cellular automaton is

illustrated in Figure 10. Different colours of cells in Figure 10 (a, b) represent various states

of those cells at time Let us suppose, cells of the cellular automaton has seven possible

states, all of them a evident from the Figure 10 (c). If the central red cell will designated as a

team-manager, and men in neighbour cells will perform during one time step the certain five

activities, than in a next step at time team-manager will get the definite honorarium

for his team. From cellular automata point of view, a person in the central red cell is an

individual automaton (see Figure 11), collected information about activities of his employees

and designated their financial state depending on their diligence. If the newly acquired state

of the central red cell will marked with the purple colour, the cell will change its colour from

red to purple in the next step at time . The alteration of cell states takes place

synchronously for all cells in the lattice. Because CA must be also state-homogeneous, the

state “manager” may appear in any cell of the lattice in a same way as any other activity or a

state.

Figure 9: Graphical explanation of the cell having the position and its neighbour cells located in a
regular square lattice

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

40

In this session the cellular automaton based on a regular lattice was described. But there are

also cellular automata, where cells are positioned randomly. Random connection of cells was

proposed by Richard Feynman [28].

2.2.3. Lattice gas cellular automata as a special case of cellular
automata

Wolf-Gladrow mentioned in [31]: “despite of their simple update rules cellular automata can

display complex behaviour which is a prerequisite to use them as a simulation tool for

physical (biological, chemical,...) phenomena like, for example, fluid flow”. The cellular

Figure 10: Graphical interpretation of two-dimensional cellular automaton: a – general appearance
of a regular lattice, b – detailed configuration of neighbourhood cells of reference cell, c – application

of a transition function and updating the state of the cell at time t+1 [17]

Figure 11: Cell of the cellular automaton as a individual automaton: states of the neighbour cells
are inputs, the new state as an output of the automaton [17]

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

41

automaton that was able to simulate the fluid flow phenomena got the name “lattice gas

cellular automata” (LGCA).

Lattice gas cellular automaton accounts itself as relatively new and promising method for the

study of dynamic phenomena, which are often nonlinear and usually described by partial

differential equations. Lattice gas cellular automata provide the numerical solution of those

equations or enable the qualitative analyse of complicated physical tasks at that area at

least. The field of LGCA started in 1973. In papers published in 1973 and 1976 Hardy, de

Pazzis and Pomeau introduced the first lattice gas cellular automata named after their

initials HPP model. Due to inappropriate lattice geometry, the HPP model proved to be

highly anisotropic. More about that will be presented in the Chapter 2.3.2. The paper of

Frisch, Hasslacher and Pomeau [50] in 1986 showed that phenomena based on a principle of

billiard game with collisions that conserve mass and momentum, in the macroscopic limit

leads to Nevier-Stokes equation when the underlying lattice owns sufficient symmetry in a

two-dimensional case. It was found that hexagonal lattice meets the condition of symmetry.

So, LGCA became to be used for the simulation of fluid dynamics. The principles of molecular

dynamics reflected in the Boltzmann equation (see Chapter 1.4.2), properties and abilities of

cellular automata (see Chapter 2.2.2) have been joined together into the LGCA model.

Detailed description of the LGCA, definition, basic properties and types of the LGCA are

presented in the Chapter 2.3.

2.3. Principles of lattice gas cellular automata

As it was mentioned earlier in [50], the points of view from which a fluid can be described

are, molecular, kinetic, and macroscopic. As it was presented in the Chapter 1.4.1 the

detailed behaviour of a fluid at continuum macroscopic level is provided by partial

differential equations, e.g., Navier-Stokes equations. Some other numerical techniques, such

as, finite-difference and finite-element methods, are used for transforming a continuum

system into a discrete one [51].

The Lattice Gas models based on Cellular Automata are newer compared to numerical

methods mentioned above. These models make possible to describe the behaviour of fluid

systems at a molecular level under various microscopic conditions. These models are based

on detailed information about individual particles, such as their positions, masses, and

velocities and they provide outputs in terms of molecular dynamics. Thus, lattice gas models

entered into the history as an alternative for modelling fluid systems.

From the molecular theory developed in the last century it is known that individual

molecules in crystals fluctuate around their locations in equilibrium state. Only occasionally

they do jump out of their locations, such events are considered as fluctuations. These jumps

occur due to their collisions with other molecules, when the system is shifted from its

equilibrium state by some agent. A remarkable idea was to consider that a fluid has a

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

42

structure similar to a crystal and that every liquid molecule sits at some fixed point, heaving

the same number of neighbouring sites at a definite distance. These sites are either empty

or occupied by a molecule [52]. These spatially organized patterns of molecules are in

accordance with a term ‘lattice gas model’. Different types of lattice gas models were

proposed for description of a simple liquid7 behaviour. There are two distinct basic lattice

gas models mentioned in literature: non-interacting and interacting.

The non-interacting lattice gas is mentioned in Kittel’s book [26]. This model is represented

by a set of non-interacting atoms distributed over lattice cells. Each cell is either

occupied by one particle or empty. This system does not have any kinetic energy or any

energy due to particle interactions. In spite of that, it found its application in statistical

physics because non-interacting lattice gas model provides a correct shape of the ideal gas

state equation where the pressure is obtained as a partial volume derivative of the system

entropy.

The non-interacting lattice gas models together with cellular automata possibly helped to

create the interacting lattice gas models – Lattice Gas Cellular Automata model.

According to Rivet and Boon [46] Lattice Gas Cellular Automata belong to the general class of

cellular automata, thus sharing features characteristic to that class:

(i) Being one of the cellular automata, lattice gas cellular automata consist of identical

individual automata which are tied geometrically to the nodes of a Bravais lattice, situated in

an Euclidean space of dimension D. Individual automata are also called “nodes” in the

purview of lattice gas cellular automata.

(ii) Instantaneous state of lattice gas cellular automata depends on the states of all individual

automata. Each its individual automaton can inherit any one of the states, where the

quantity represents the number of channels. Channels are links between neighbouring

lattice nodes, i.e. neighbouring individual automata and they exactly copy the geometry of

the lattice. In LGCA models each channel may either be occupied by a fictitious particle or

remain empty and so, it has two possible states of existence. Thus, the state of an individual

automaton can be interpreted as a set of states of channels, which connect the individual

automaton with neighbouring ones. Consequently, information about the channel’s

occupation corresponds to signals fed to individual automata.

(iii) The elementary evolution process of lattice gas cellular automata takes place in regular

discrete time steps and consists of two distinct phases of evolution:

 collision phase – it is the first evolution step. During this phase, each individual

automaton takes the new post-collision state depending on input signals and collision

7From fluid dynamics, simple liquid (fluid), is also known as a Newtonian liquid (fluid) – is a liquid in which the
state of stress [Pa] at any point is proportional to the time rate of strain at that point and the proportionality

factor [Pa*s] is the viscosity coefficient:

, where

 is the velocity gradient perpendicular to the

direction of shear or equivalently the strain rate [s-1].

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

43

rules. Inputs signals are obtained from neighbour individual automata and they

contain information about the states of neighbour individual automata. The collision

rules are the same for all individual automata and do not depend on their position.

New states of individual automata generate output signals for the next evolution

step;

 propagation phase – is the second evolution step. During this phase output signals of

every individual automaton are conveyed to its neighbouring ones, i.e. neighbouring

nodes, along the channels. Thus, these signals becoming a part of the input signals

for its neighbours at the next time step. It is necessary to emphasise, that all changes

in each individual automaton of the lattice gas cellular automata transmit output

signals simultaneously.

The detailed description of the following properties and principles of LGCA, as a

discretization of space and time, evolution rules are presented in the Chapters 2.3.1 – 2.4.2.

2.3.1. Discretization of space – basic methods. Grid generation

Over the years, many discretization algorithms or methods have been proposed. They have

been developed due to various needs. In mathematics, discretization concerns the process

of transferring continuous models and equations into discrete counterparts [53] In physics,

the discretization is defined as a substitution of a continuous media (continuum) by a system

of discrete points, where different parameters of a related domain of the continuum are

settled [54].

Discretization of space is an essential step to simplify continuous problems. As a result, the

necessity to solve the partial differential equations transforms then into the solution of

differential or algebraic equations only [54]. For example, Nevier-Stokes equation,

introduced in Chapter 1.4.1, is very difficult to solve using pen and paper, or analytically. For

continuous problems and such types of analytical description, in the last 40 years, a brand-

new computational approach was developed. Here, the complicated domain or a space is

broken down into small pieces, each more simple to analyze. Hereby, the values at every of

the infinite number of points of interest are reduced to the discrete set of values, which are

finite.

So, in connection with physical definition of discretization, we are interested here in

discretization methods, which direct to the formation of a set of discrete points, called

nodes, and usually used in solution of physical continuous problems. The common

discretization methods are:

 Finite differences method (FDM), which is used to obtain an approximate solution of

partial differential equation governing the behaviour of physical system by using

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

44

neighbouring points. The regular grid8 is imposed on the physical domain. The

approximation of derivative of an unknown quantity at a grid point takes place then.

This approximation is given by the ratio of the difference of the unknown quantity at

two neighbour points and the distance between grid points.

 Finite volume method (FVM) includes the splitting of a physical space into small

volumes and subsequently the integration of the partial differential equations over

each of volumes. Then the changes through the surface of each volume (fluxes at the

surface of each finite volume) are approximated as a function of the variables in

neighbouring volumes.

 Finite elements method (FEM) also splits up the space into small pieces. Each of the

pieces is called an element. Compare with FDM, the FEM is an approximation of the

solution of differential equation. Unlike the previous method, a grid point9 exchanges

the information with all the grid points which it shares an element [55].

So, the principle of all the above-mentioned methods is a splitting of the continual space

onto a grid and thus obtaining the finite number of points in space and in time subsequently,

at which variables are calculated. Adjacent points then are used to calculate derivatives. The

discretization of a geometrical domain into small simple shapes (points, volumes, elements)

is mentioned in literature as a “grid” or “mesh generation” [56]. During the grid generation

the next criteria influence the grid geometry:

 The local density of points – the higher density is elected, the more accurate the

solution is, but the computation takes more time.

 The smoothness of the point distribution – large variations in grid density or shape

can cause numerical diffusion and as a result lead to inaccurate results or instability.

The elements of the grid should not be overlapped () [57].

 The shape of created grid elements – elements of the grid should avoid both very

sharp and flat angles; shapes of grid elements may cause serious numerical

problems, etc. [58].

Three types of grids are distinguished in literature: structured, unstructured and hybrid.

Their characteristics are typified in the Table 1:.

The next part of the chapter is concerned with a study of lattices based on the structured

grids – their types, characteristics, advantages and disadvantages in connection with their

usage in lattice gas cellular automata modelling.

8Grid (also called mesh) is defined as a complex of elements discretizing the simulation domain with the aim of
construction a discrete version of the original partial differential equations. In two-dimensional domain it is
triangular or quadrilateral grid, in three-dimension it is tetrahedral or hexahedral [58].
9Grid point (also called node) is a place, where elements are connecting.

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

45

2.3.2. Discretization of space in LGCA model

In order to describe natural systems accurately on an ordinary scale, models based on

cellular automata require an approximation of the Euclidean geometry as closely as possible.

For that reason different types of lattices (see Chapter 2.3.2.1) are used for a space

discretization in LGCA models.

Each physical model (LGCA model in our case) that is defined on a lattice is opposed to the

continuum space model and is known as the lattice model. Within the context of cellular

automata or lattice gas cellular automata the term “lattice” is used rather than “grid” or

“mesh”. Though in Czech language the meaning of all these terms is the same, in English it is

referred to different definitions.

Table 1: Characterization of different types of grids [57, 58]:

Characteristics
Structured (regular)

grid10
Unstructured grid11 Hybrid grid

The appearance

Splitting the domain Into regular grid
elements

Is based on a density
function that is
defined by the input
geometry or the
numerical
requirement

As a first step –
splitting the domain
into non-regular
domain and then
decomposing each
such domain by
regular grid.

Coordination number
 12

 is constant,
connectivity13 can be
calculated

Arbitrary Arbitrary

Geometric flexibility Lack Greater The highest

Generation intensity Simple and fast Harder and slower The most hard

The “costs”
associated with

Less computer
memory is needed

Expensive in time,
highest memory

The same as
unstructured grid has

10 A regular grid is a tessellation of the Euclidean plane by congruent rectangles or a space-filling tessellation of
rectilinear parallelepipeds [87].
11 An unstructured grid is a tessellation of a part of the Euclidean plane or space by simple shapes, such as
triangles or tetrahedral, in an irregular pattern [88].
12 Coordination number is one of the important characteristics of lattices. According to [89] coordination
number is the number of direction vectors; in [90] it is defined as the total number of neighbours of a given
lattice node.
13

 Usually, connectivity of a grid or lattice characterizes the connection of its vertices and is defined as a total
number of links that meet in a node [46]. Connectivity is a property of the lattice which is described by the
value of coordination number.

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

46

usage requirements are
needed, the resulting
linear system is hard
to solve

Application field Problems with simple
domain and smooth
changes in solution;
simulation based on
cellular automata
model (including
LGCA model).

Finite element
method and three-
dimensional problems

Hydrodynamic studies
especially unsteady
flow involving
multiple objects
moving toward or
away from each other
– usually are solving
by mathematical
discretization
methods [59]

In mathematics, a lattice in a -dimensional Euclidean space is defined as a discrete

subgroup of which spans the real vector space . Every lattice node in can be

generated here from a basis14 of the unit vectors by forming all linear combinations with

integer coefficients [60]:

 (27)

In physics, lattice is a regular, periodic configuration of points, particles, or objects

throughout an area or a space [61]. In materials science and solid-state physics, lattice is

engaged as synonym for a crystalline structure and presents the arrangement of atoms or

molecules in a crystalline solid. Contrary of the grid, lattice is usually viewed as a regular

tiling of a space by primitive cell. Because the primitive cell is a minimum cell corresponding

to a single lattice point of a structure with translational symmetry, lattice can be

characterized by the geometry of its primitive cell. One of the characteristic properties of the

cell geometry is the number of lattice nodes (sites) directly connected to a single lattice

point. This number is known then as a coordination number of the lattice.

The overview of primitive cell´s geometry and appropriate lattices are presented in the part

“Bravais lattices”. More attention is given to Bravais lattices, which are being used in LGCA

modelling (see Chapter 2.3.2.1).

Bravais lattices

Lattices and their symmetries were studied for the first time by M.L. Frankenheim in 1840's.

He has found fifteen types of lattices. A few years later, Auguste Bravais, the French

physicist, who is well known thanks to his work in crystallography, pointed out that two of

14

 Basis is a set of vectors that, in a linear combination, can represent every vector in a given vector space, and
such no element of the set can be represented as a linear combination of the other. So, basis is a linearly
independent spanning set [91].

http://en.wikipedia.org/wiki/Discrete_subgroup
http://en.wikipedia.org/wiki/Discrete_subgroup
http://en.wikipedia.org/wiki/Basis_%28linear_algebra%29
http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/Integer

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

47

the Frankenheim classes contained identical lattice, and that there are five two-dimensional

and only fourteen three-dimensional lattices in crystalline system, which distinct from each

other by the geometry of primitive cells. [62, 63] Now it is possible to see that all Bravais

lattices fall within the set of structured grids.

Two-dimensional Bravais lattices are (see Figure 12):

 square;

 rectangular;

 oblique;

 centered rectangular (rhombic);

 hexagonal.

Today the definition of Bravais lattice is following: it is an infinite set of points generated by

a set of discrete translation operations. As it was mentioned by Rivet in [46] due to the finite

capacity of our computers the lattice in LGCA is only a subset (the finite number of lattice

nodes) of the relevant Bravais lattice.

Lattice Gas Cellular Automata use two types of Bravais lattices for the space discretization:

 square Bravais lattice – was used in a first simple LGCA model, known as HPP15

model;

15 HPP model was the first lattice gas cellular automata. It is called after its autors: Hardy, de Pazzis and
Pomeau

Figure 12: Two-dimensional Bravais lattices: a - square, b - rectangular, c - oblique, d - centered
rectangular, e – hexagonal [17]

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

48

 from 1986 the hexagonal Bravais lattice was applied in a basic FHP model.

Nowadays, the hexagonal lattice is the main one, which is being used in two-

dimensional LGCA models (in a group of FHP models) and a face centered hypercube

lattice in three-dimensional LGCA models.

Definitions and properties of square and hexagonal lattices and also their usability for a

space discretization in LGCA modelling are described below.

2.3.2.1. Geometry of square and hexagonal lattices

As was mentioned before, the square and hexagonal lattice (equivalent is triangular lattice)

are two of the five two-dimensional Bravais lattices, which are being used for a space

discretization in LGCA models because of their high symmetry. The most common types of

square lattice regarding to its orientation are: upright square lattice and diagonal square

lattice, which differ by an angle of 45° (see Figure 13).

In a first LGCA model, in the HPP model, the upright square lattice was used. The set of

direction vectors here was the following one:

In a case of hexagonal lattice there are two types of lattices also: hexagonal lattice with

triangular tilling (Figure 14, 1) and hexagonal lattice with honeycomb structure, which has

hexagonal tilling (Figure 14, 2). Rivet in [46] called those lattices as the triangular lattice with

hexagonal symmetry and the hexagonal honeycomb lattice. The term “hexagonal lattice” is

the most frequently in a connection with LGCA modelling and it is used below. Under this

term the triangular lattice with hexagonal symmetry is understood.

The hexagonal lattice (triangular lattice with hexagonal symmetry) was chosen for the next

development of LGCA models. It consists from equilateral triangles. There are four possible

orientations of such triangle. When triangles are pointing up and down, it is hexagonal

lattice with horizontal rows, as it is shown in Figure 14, 1 (a) and 1 (b). Exactly this type of

lattice was used in advanced LGCA model, such FHP models. Second type is a hexagonal

lattice with vertical rows – it is the lattice with triangles pointing left and right (see Figure 14,

1 (c)). The honeycomb lattice has also two orientations, subsequently, they are: the

honeycomb lattice with vertical rows – every hexagon has two horizontal sides (see Figure

14, 2 (b)) and the honeycomb lattice with horizontal rows – i.e. every hexagon has two

vertical sides (Figure 14, 2 (c)). Those two structures differ by an angle of 30°.

It is evident, that lattices, presented in this chapter, have the different coordination number

 . For example, at the square lattice each node is connected with four nearest nodes – the

coordination number , in a case of honeycomb lattice , for hexagonal lattice

 .

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

49

 Figure 13: Types of the square lattice: upright (a) and diagonal one (b) [64]

The topology and geometry of the lattice is very important for LGCA modelling. The collision

between particles, their propagation and the behaviour of the lattice gas at the boundaries

are directly dependent on lattice geometry. For example, the HPP model quickly

disappeared because of its high anisotropic behaviour. The HPP model lacked rotation

1

 a b c

2

 a b c

Figure 14: Geometries of 2D hexagonal lattices: 1 – hexagonal lattice with horizontal (a, b) or
vertical (c) rows; 2 – hexagonal honeycomb lattice with vertical (a, b) or horizontal (c) rows

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

50

invariance, which is impossible at the square lattice. The more advanced LGCA models have

been developed on the hexagonal lattice. Because no node-independent connection of

nearest neighbour nodes can be design on the honeycomb lattice – the lattice has different

structure at its odd and even rows; the hexagonal honeycomb lattice with triangular

symmetry doesn’t satisfy the homogeneity principle of LGCA modelling and wasn’t used in

LGCA models.

More about ordering of the neighbour nodes and properties of the square and hexagonal

lattice is presented in next two chapters.

2.3.2.2. Neighbourhoods in the square and hexagonal lattice

From the LGCA point of view, each lattice consists of channels and nodes. Two nodes,

spoiled with a channel are considered to be neighbour nodes. As was mentioned in the

Chapter 2.2.2 cellular automata updating rules are local by definition. The same property

refers to LGCA models (see Chapter 2.4). The state of a given lattice node and states of its

vicinity are only required for the acquiring of the local state of the system. According to [49]

the spatial region in which the lattice node needs to be searched is called the

neighbourhood.

For two-dimensional square lattice, the following types of neighbourhoods are often

considered (see Figure 15):

 the von-Neumann neighbourhood;

 the Moore neighbourhood;

 the Margolus neighbourhood.

For a given central node (marked with a red colour in the Figure 15 (a)), i.e. the one which is

to be updated, the set of the first four nearest neighbour nodes spoiled by the channels with

the central node (marked with a blue colour in the same picture), called as a north (N), west

(W), south (S) and east (E), creates the von-Neumann neighbourhood.

Except those four nodes, the Moore neighbourhood contains also second nearest

neighbours: north-east (NE), north-west (NW), south-east (SE) and south-west (SW), that is

the total of eight nodes – see Figure 15 (b).

In a case of Margolus neighbourhood the space is divided into so-called Margolus blocks of

two-by-two nodes. The definition of nodes inside the block is following: upper-left (UL),

upper-right (UR), lower-left (LL) and lower-right (LR). Blocks are shifted by one cell along

each dimension on alternate time steps. So, Margolus blocks get different spatial co-

ordinates on alternate time steps and nodes inside the blocks. For example, the node

labelled as a UR in the following time step (see Figure 15 (c), it is , i.e. time step)

will be become UL at the iteration in the next time step (see ., i.e. the right part

of the Figure 15 (c)). The idea of Margolus neighbourhood is that during updating phase, the

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

51

transition rule is applied to a whole block at a time rather than a single cell. This principle is

being used in block cellular automata or partitioning cellular automaton. [49]

Hexagonal lattice is the most favourite one in two-dimensional LGCA models. According to

[65] the standard neighbourhood template consists here of six nearest neighbour nodes (in

the Figure 16 they are blue). Those cells are edge-connected to the central hexagonal cell

(red one in the Figure 16). If the node, located in the centre of the red cell, will be spoiled

with central nodes of blue cells using links (i.e. channels), geometry of the hexagonal lattice

become to be evident.

a b

c

Figure 15: Neighbourhood templates for a regular square lattice: von-Neumann neighbourhood (a),
Moore neighbourhood (b) and Margolus neighbourhood (c)

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

52

It is well known, that hexagonal lattice is difficult to represent and to visualize. In simulation

algorithms as well as in an image processing the hexagonal lattice is often mapped into the

square one. [65] In connection with image processing there are two main techniques how to

obtain the hexagonal lattice. One of such techniques is presented in [66]. The Mersereau's

method is based on a suppression of the alternate rows and columns from the square lattice

as shown in the Figure 17.

Another method was proposed by Staunton [67]. He has shifted the alternate rows of the

square lattice by the half of the pixel's distance (see Figure 18).

Figure 16: The hexagonal neighbourhood

a b

Figure 17: Mersereau's scheme for obtaining the hexagonal lattice (b) from the square one (a)

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

53

According to Weimar [68] in CA simulation the hexagonal type of neighbourhood could be

also done through a shift of even rows of the square lattice in one direction and odd rows

into the opposite direction. As a result the alternating neighbourhood arises for even and

odd rows. So, the neighbourhood in all odd rows contains nodes: N, NW, W, SW, S and E;

whereas the neighbourhood in all even rows contains nodes: N, W, S, SE, E and NE (see

Figure 19).

a b

Figure 18: Staunton's method for obtaining hexagonal lattice (b) from the square one (a)

a b

Figure 19: Adaptation of the hexagonal neighbourhood to the square lattice: the ordering of the
neighbour nodes in all odd (a) and even (b) rows

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

54

2.3.2.3. Comparison of square and triangular lattice with hexagonal
symmetry

With regards to LGCA modelling, the gas dynamics at the macroscopic level is strongly

dependent on the type of underlying lattice on the one side, and type of neighbourhood on

the other side. Compared with the triangular lattice with the hexagonal symmetry, square

lattice has a simpler representation using square arrays, and also easier visualization. On the

other hand the square lattice is jotted in literature as a most anisotropic one from all

possible two-dimensional lattices. For example, fluid models based on a square lattice suffer

from the preferred directions of the lattice; as a result there are preferred axes for flow

propagation. This property is discordant to the physical laws, (in a steady state of the system

a certain variable has the same value in all directions, in other words, it is isotropic). That is

why the development of HPP model was stopped at a moment, when the anisotropy of its

square Bravais lattice broke the isotropy. [69] However, the regular square lattices (upright

and diagonal) are usually adopted in other models based on CA because of their simpler

computer implementation and computations connected with them. [65]

The hexagonal lattice has been shown in literature as a one, which geometry is suitable for

modelling the behaviour of a large class of natural systems. The main ones are

hydrodynamic phenomena, diffusion of gasses, crystal growth and so on. This type of lattice

has the lowest anisotropy of all regular two-dimensional lattices. The lower anisotropy of the

lattice makes simulations more natural, what is very important in lattice gas models for fluid

flow. The main disadvantage of the lattice is a difficult representation and visualization.

Thus, the mapping of this lattice into the square one it is applied in many simulation

algorithms. [70]

2.4. Lattice gas cellular automata – principles of the model

As it was mentioned earlier in [50], the points of view from which a fluid can be described

are: microscopic, mesoscopic, and macroscopic. The detailed behaviour of the fluid in the

continuum macroscopic level is provided by partial differential equations, e.g., Navier-Stokes

equations for flow of incompressible fluid (see Chapter 1.4.1). Some other numerical

techniques, such as finite-difference and finite-element methods, are being used for the

transformation of a continuum system into a discrete one [51]. The lattice gas models based

on cellular automata are representatives of fully discrete models. Based on the detailed

information about individual particles, such as their positions, masses, and velocities, they

enable to describe the behaviour of fluid systems at a molecular level under various

macroscopic, microscopic or mesoscopic conditions. Thus, lattice gas models entered into

the history as an alternative for fluid system's modelling. Detailed description of lattice gas

cellular automata is accessible for example in [31, 46, 49].

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

55

According to Reviet [46]: “from the mathematical point of view, a lattice gas is a particular

class of cellular automata...“. Thus, lattice gas models are based on cellular automata rules

and must also satisfy following conditions:

1. Individual automata of lattice gas cellular automata are tied geometrically to the

nodes of a regular Bravais lattice of dimension (as it was mentioned in Chapter

2.2.1, in lattice gas cellular automata the term “individual automaton” is used instead

of term “finite automaton”). That is why the individual automaton can also be called

a “node” (see Figure 20, 1). Nodes are labelled by their position vector , which takes

only discrete values. All individual automata are taken to be identical.

2. Any individual automaton has possible internal states, where 16 – it is a Boolean

variable, it is integer and it represents the number of channels (or communication

channels) between nodes (see Figure 20, 2). Channels are also tied geometrically to

the Bravais lattice – in fact, they are links between neighbour nodes of the lattice. In

this work channels will label by an integer ranging from 1 to or 0 to . The

labelling is node-independent.

3. Similarly to cellular automata, the elementary evolution process of LGCA is repeated

at discrete time steps and it is separated by a time increment . In lattice gas

models is equal to the unity (time unit –), when the information presented in

channel at the node goes to the node , where is the velocity vector (see

Figure 20, 4). Here the information is presented by fictitious particles occupying

channels . The maximal number of particles in a node is done by . In the most part

of the lattice gas models (in the non-thermal LGCA: HPP, FHP-1) particles (Figure 20,

3) of the same mass (in – mass unit) and velocity are moving on an

underlying regular Bravais lattice, which has the unitary distance (in – length

unit) between neighbouring nodes. But there are also multi-speed lattice gas models:

FHP-2 and FHP-3 LGCA models that contain extra particles with zero velocity;

particles in a GBL model, named after Grosfils, Boon and Lallemand, has three

different velocities.

4. The elementary evolution process of LGCA is a sequence of two phases: the collision

and the propagation one.

16 In the HPP and FHP-1 lattice gas models is a coordination number.

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

56

From the information presented below it is obvious that the main characteristic of the LGCA

models is a fully discreetness, since main parameters are discrete. Basically LGCA models

differ by collision rules. More about collision phase in non-thermal LGCA models is

introduced in the following Chapter 2.4.1.

2.4.1. Collision phase

In Lattice Gas Cellular Automata the collision phase occurs in each time step, either before

or after the propagation phase. The order in the sequence of collision and propagation

phases is unimportant when long-time behaviour is considered and large-scale properties

are calculated. [46] The collision phase proceeds in accordance with collision rule, which is

chosen to conserve a mass (in fact the number of particles) and a momentum at each site of

the lattice. The conservation of the local particle number and the mass at the node is

described as follows. Conservation of the particle number at the node is following:

(28)

Mass conservation at node is:

(29)

In Equations (28) and (29) the initial distribution of the colliding particles in the node at

individual channels ’s is represented by , while their post-collision state in the same

node and channel is given by the “new”
 values. It is evident, if the individual masses

of all particles in the node are equal to 1, then the total mass in the node is equal to the

total number of particles.

The local momentum conservation during the collision phase may be expressed using its

components
 and as:

Figure 20: Representation of the LGCA model underlaid by the hexagonal Bravais lattice: 1 – the
node, i.e. the individual automaton, 2 – the channel, 3 – the moving particle, 4 – the direction of

moving [17]

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

57

(30)

where denotes the components of velocity vector (ne number of velocity

components is given by the connection number).

The redistribution of particles in an individual node obeys the rule of keeping the total

momentum in the node after the collision phase invariable.

The post-collision state in the node depends only on its pre-collision state and collision

rules, which differ for different LGCA models.

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

58

2.4.1.1. Collision rules of the FHP-1 and FHP-2 LGCA models

Historically, the first lattice gas model was introduced in early 1970’s by Hardy, de Pazzis and

Pomeau and was called after its authors as a HPP lattice gas model. But the anisotropic

properties of lattice gases living on the square two-dimensional lattice were founded.

Therefore, the more advanced LGCA models have been developed on two-dimensional

hexagonal lattice. The group of so-called FHP LGCA model was introduced ten years later by

Frisch, Hasslacher and Pomeau. Several versions of FHP model have been developed with

the same geometrical lattice structure having different collision rules. This group of models

is described in details by Rivet in [46] and is introduced in this study.

FHP-1 lattice gas cellular automata model

An individual automaton of the FHP-1 LGCA model has channels, corresponding to the

six directions of the hexagonal lattice. Channels are labelled by . The masses of

all particles are equal. Usually, . The absolute value of momentum of each

particle is numerically equal to , this is physically consistent with unit mass and unit time

step. [46] Unit time step in LGCA models is a period which particle needs to jump from the

certain node to neighbour one.

During the collision phase in the FHP-1 model two-particle and maximum six-particle

collisions may occur.

Two-particle collisions in the FHP-1 LGCA

If two particles meet together in a same lattice node, they yield two-particle collision. An

example, when particles come from opposite directions is presented in Figure 21, nodes B

and D. With equal probabilities particles are being rotated by +60° or -60° (Figure 21, node

D), or continue in a same direction of moving.

Figure 21: Typical two- and three-particle collisions in the FHP-1 LGCA model [17]

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

59

Three particle collisions in the FHP-1 LGCA

When three particles meet simultaneously in one node (see Figure 21, nodes A and C), it is

three-particle collision. Collision either takes place with a rotatory deflection of the velocity

vectors by 60° (Figure 21, node A) or their orientation remain unchanged (Figure 21, node C).

The rotation by -60° leads to an identical local state transition.

Effective collisions in the FHP-1 LGCA

In the FHP-1 LGCA model there are various local states (i.e. states of

the individual automaton). Among all these states five of them are effective. Effective state

is a result of effective collision. The collision is considered to be effective, when the rotation

of the velocity vectors by 60° has a place. All effective collisions of the FHP-1 LGCA model

are presented in the Figure 22. Three of them are two-particle collisions (Figure 22, nodes A,

B, C), and two of them are three-particle ones (Figure 22, node D and E).

The complete review of all possible pre- and post-collision local states in FHP-1 LGCA model

is introduced in Appendix A. For a coding and interpretation of the pre- and post-collision

states the binary or decimal systems are using in some LGCA algorithms. It was taken in that

appendix into account.

Figure 22: Effective collisions in the FHP-1 LGCA model [17]

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

60

FHP-2 lattice gas cellular automata model

The FHP-2 LGCA model is a variant of the FHP-1 LGCA model that includes the possibility of

one rest particle per node in addition to the six moving particles of FHP-1 model. An

individual automaton in FHP-2 model has channels, corresponding to the six directions

of the hexagonal lattice (i.e. six moving particles can be found in a lattice node) and one

place for a rest particle. The channels corresponding to moving particles are labelled by

 , and the channel corresponding to the rest particle is labelled as . The masses

 of all particles are equal to one and absolute value of the momentum of each particle

is equal to except the momentum of the rest particle which is zero. [46]

The collision rules of the FHP-2 LGCA model are the same as at the FHP-1 model with two

additional events. A moving particle arriving at a node with a rest particle produces a pair of

moving particles at angels +60° and -60°, regarding the direction of the incoming particle

(see Figure 23, G). The last additional collision event is the reverse to the former. Two

colliding particles in a node with their velocity vectors at 120° angle result in one resting

particle and in one moving particle moving in the direction of their original pre-collision

momentum vector (see Figure 23, H). In the FHP-2 LGCA model there are

 various local states, twenty two of them are effective ones. Thanks to the effective

collisions with resting particles, the FHP-2 model doesn’t conserve kinetic energy. It is

assumed that either the energy is exchanged with an adjacent thermodynamic reservoir or

the resting particles vibrate with a vibrational energy equalling their original kinetic one.

The examples of several collisions of the FHP-2 LGCA model are presented in Figure 23.

Collisions in nodes A, B and E are similar to the two and three-particle collisions, presented

in a description of the FHP-1 LGCA model. The two-particle collision between one moving

and one rest particle is shown in the node G. Examples of the three-particle collisions, where

one of the particles is a rest one, are presented in Figure 23 in the nodes C and D. In the

node H two-particle collision is illustrated. In contrast to the FHP-1 LGCA model, it results

stopping one of the moving particles. This type of collision is opposite to the example in the

node G.

Effective collisions of FHP-2 LGCA model are depicted in nodes A, B, C, D, G and H. All

possible pre- and post-collision local states of the FHP-2 LGCA model are introduced in

Appendix B.

Collision rules in LGCA models can be deterministic but is more often they are non-

deterministic (probabilistic). In Figure 23 nodes C and D have the same pre-collision state.

According to the information presented in Appendix B there are three possible post-collision

states. Two of them are depicted at the right part of the picture (Figure 23) in nodes C and D.

The third one is a collision without rotary deflection, thus is non-effective one. In

deterministic LGCA model the post-collision state is always pre-defined. If LGCA model is the

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

61

probabilistic one, than the post-collision state of the node is probabilistically chosen

between possible states according to collision rules.

After the collision phase, the newly acquired information propagates from the node to

neighbour nodes – thus the propagation phase occurs.

2.4.2. Propagation phase in LGCA models

During the propagation phase, a particle is shifted from the node to the node , i.e.

if a particle is present at a moment in a node , it is shifted to the neighbouring node at

time according to the direction of velocity vector. This type of propagation phase

takes a place inside the whole Bravais lattice. At the boundaries of the lattice there are

various methods how to realize the propagation of particles.

One of the methods is so-called “periodic boundary condition” [46]. In that case the

boundary parts of the lattice, on which the propagation phase is implemented, has to be

connected to the form of a loop (see Figure 24). This wrapping of opposite sides of a finite

lattice leads to a periodic motion of the individual particles. The escaping particles return to

the finite lattice on the opposite sides of its boundaries.

Another method is in conflict between the theoretically infinite lattices used in LGCA models

and limited memories of computers. This method is called as a reflective boundary condition.

This type of boundary conditions is based on various types of particle collision with solid

walls (see Figure 25). According to Rivet [46] the following types of reflections are:

Figure 23: Two- and three-particle collisions in FHP-2 LGCA model [17]

CHAPTER 2: MODELLING WITH CELLULAR AUTOMATA AND LATTICE GAS CELLULAR
AUTOMATA

62

1. Bounce-back reflection – also known as a

no-slip boundary condition. When a particle

reaches the wall, its momentum vector is

changed with central symmetry, thus the

particle is being sent back in a same

direction to where it comes from (see

Figure 25, node A).

2. Specular reflection – is also known as a free-

slip boundary condition. The vector

component of particle momentum, parallel

to the wall surface, is conserved during

such a collision, while the normal

component of it is reversed (see Figure 25,

node B).

3. Diffusive reflection – is a combination of the

bounce-back and specular reflections, it is

occurring with chosen probabilities (see

Figure 25, node C).

Red nodes in the Figure 25 represent moveless particles of the solid surface (for example,

solid walls or surface of any obstacle). Black arrows illustrate the momentum vector of

particles. Blue arrows show the possible directions of the momentum vector as a result of

diffusive type of reflective boundary condition.

Figure 24: The principle of periodic
boundary conditions for two-dimensional

square LGCA (HPP model [17]

Figure 25: Various reflective boundary conditions: A - bounce-back reflection, B - specular reflection,
C - diffusive reflection [17]

CHAPTER 3: BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR AUTOMATA

63

3. BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR
AUTOMATA

“The sciences do not try to explain, they hardly even try to interpret, they mainly make

models. By a model is meant a mathematical construct which, with the addition of certain

verbal interpretations describes observed phenomena. The justification of such a

mathematical construct is solely and precisely that it is expected to work.”

John von Neumann

The creation of the own Lattice Gas Cellular Automata algorithms based on the FHP-1 LGCA

model is presented in this chapter. The algorithm is proposed for fluid flow simulation. Main

blocks of the basic LGCA algorithm developed for general-purpose computers, their

specification and function within the whole algorithm are analysed in detail. Modifications of

the basic algorithm depending on problems under investigation are presented later in

Chapters 4-6.

A large variety of computers from personal computers to powerful parallel supercomputer

and a wide range of programming languages explain the existence of a quantum of lattice

gas algorithms, which have been implemented since 1985. The algorithm developed here for

fluid flow modelling was briefly described in [17] and is explain in detail in this work.

Structure of the algorithm includes unchangeable part that can be used as a base for each

new algorithm independent on the concrete choice of a lattice gas model (collision and

propagation phases in the concrete).

The algorithm was created in a C++ programming language Borland version 4.0 and its full

text is presented in Appendix C. Algorithm was formally divided into ten code fragments.

This structure is conserved in all algorithms created in the frame of this work. Follow

description explains only the role and the function of certain algorithm code fragments. My

own concept of the FHP-1 LGCA from technical point of view is noticeable from the Appendix

C.

3.1. Code fragment 1 – Header files and initialization of the
simulation domain

Usually, in computer programming and particularly in the C++ programming language,

header files stands at the beginning of the algorithm. Header files commonly contain the

following:

 definition of standard library functions;

CHAPTER 3: BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR AUTOMATA

64

 declaration17 of variables;

 declaration of subroutines and other identifiers.

Consequently, the own algorithm starts with an enumeration of all standard library

functions, which will be used during the calculations. In our case these standard libraries are:

 – is a definition and declaration for graphical library [72].

 – Standard General Utilities Library includes dynamic memory management,

random number generation, integer arithmetics, etc.

 – Library to perform Input/Output operations [73].

 – used in MS-DOS compilers is being used to create text user interfaces, it is

not describes in The C Programming Language book or in the C standard library [72].

 – Numerics Library declares a set of function to compute mathematical

operations and transformations.

 – describes the characteristics of floating-point types.

 – Time Library contains definition of functions to get and manipulate date

and time information [73].

In the next step the initialization18 of the simulation domain, the space where the computer

simulation takes place, is made. The biggest size of the adjacent domain is chosen the higher

accuracy of the outcomes is expected. Regarding to the computer power maximum 450

single points (lattice nodes) in the direction () and 300 points in the direction

 () were chosen, where and are and axes of the Cartesian system of

coordinates.

In a part named “Variables declaration” all variables, which will be used in a main part of the

algorithm, are enumerated. Type of variables (– integer type or – floating point

type) and their identifiers are declared. Based on a size of the simulation domain identifiers

 and gets values 449 and 299 lattice nodes accordingly to and .

Algorithm is working with a big amount of information. In each time step one needs to know

which channels in the concrete node are occupied, what is the number of particles

(parameter) and their total velocity. Twelve different arrays19 were declared for that

reason:

 and – contain information about and components of a total particle

velocity in the particular lattice node;

17 Declaration specifies identifiers – the single objects in C++ language. Declaration of variables contains
specification of type and other aspects [72].
18 Initialization is an assignment of a value to the declared variable [72].
19

 Array is a series of elements of the same name and type placed in contiguous memory locations that can be
individually referenced by adding an index to a unique identifier and can be used independently on each other
[92].

CHAPTER 3: BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR AUTOMATA

65

 and – are using during the calculation of a new particle velocity distribution

in a particular lattice node during the implementation of propagation phase;

 and are arrays, where the instantaneous number of particles in the particular

node and the new number of them after collision and propagation phases are

recorded;

 – contains information about cannel occupation.

Probability of a cannel occupation is given by the special parameter , thus the density of

simulated fluid is treated. Because the system evolves in time, parameters , and

 are included, where total number of time steps is given by . Variables and

 declare graphic pre-set; parameter adjusts the colour of graphic outputs.

Some calculations are performed in subroutines20. Three subroutines are declared in the

algorithm. The collision and propagation phases are supplying in those subprograms:

int collision(void);

float propagationodd(void);

float propagationeven(void);

Due to the lattice geometry and different ordering of neighbohoods propagation phase takes

place in odd and even rows of the lattice separately. Detailed description of these

subroutines, their function is described in Chapter 3.6.

3.2. Code fragment 2 – Graphic output setting

The main part of the program begins with the setting of graphic outputs. It is a standard part

of the algorithm and it doesn’t change in the algorithms proposed later in the thesis.

3.3. Code fragment 3 – Creation of the simulation domain
and initial state of the simulated system

The values of the data-fields (declared arrays) are reset to 0 at the beginning of the

algorithm. This operation is called as a “Data arrays resetting”.

If the simulation model has solid objects as walls of a channel or a cavity, a porous medium

etc., a creation of those objects becomes as a first. At the basic simulation model the

simulation domain of the size lattice nodes was created. Fluid particles are

usually moving and interacting with each other inside the simulation domain. The domain is

confined by solid boundaries. In this algorithm fluid particles are colliding with the solid walls

according to the bounce-back type of the boundary reflections.

To distinguish different types of particles I used here several codes. These codes were being

related to arrays named as and (arrays using for calculation of an instantaneous

20 Subroutine (also function, method, procedure, subprogram) is a set of codes, which performs a specific task
and can be relatively independent of the main program.

CHAPTER 3: BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR AUTOMATA

66

number of particles, i.e. their total mass, in nodes). At every position with coordinates and

 the value of parameters and varies from to . If the (also

), i.e. if the node at the position has no particle its mass is (Figure 26,

A). If the (also) the node at the position is occupied by a

moveless particle (Figure 26, B). When the (also), then

there is to moving particles at the position of the simulation field (see Figure 26,

C). It also means that one to six channels of the node are occupied by a fluid particle, and

therefore the total mass at the node is between and .

Thus, this part of the algorithm includes creation of the moveless particles at the simulation

domain. Detailed description of a principle, which was implemented during occupation of

channels by moving particles, is described in Chapter 3.4.

3.4. Code fragment 4 – Occupation of channels by fluid
particles

3.4.1. Geometry of the lattice

According to the Rivet's definition [46] individual automata of Lattice Gas Cellular Automata

are being geometrically tied to the nodes of the regular Bravais lattice, embedded in a D-

dimensional Euclidean space. Square and hexagonal types of lattice are being used in two-

dimensional Lattice Gas Cellular Automata models.

As it was explained in the Chapter 2.3.2, Bravais square lattice offers simple representation

and visualization. It uses square arrays, but simulation results show anisotropic behaviour of

LGCA. This is unfit for modelling of physical phenomena. Therefore the square Bravais lattice

wasn’t used for the LGCA algorithm in this work.

The hexagonal honeycomb lattice was illustrated in the Chapter 2.3.2.1. Every structural

element of the lattice has a small number of neighbours (only three) that could be useful in

some cases. Representation and visualization of that lattice are more difficult as for square

Figure 26: Various examples of node’s occupation: A – an empty node, B – node occupied by a solid

particle, C – the node occupied by fluid particles

CHAPTER 3: BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR AUTOMATA

67

one because it must be mapped to square arrays and display lattice nodes. Hexagonal

honeycomb lattice is a regular but not a Bravais one. This type of lattice also wasn’t used,

because of the small number of neighbours.

The hexagonal lattice has the lower anisotropy compared with the square lattice; thus the

simulation systems appear more natural and correct. The greatest disadvantage of the

lattice is more difficult representation and visualization.

Based on conclusions of the Chapter 2.3.2.2 the hexagonal lattice was created at the regular

square lattice by the relative shifting of odd and even rows with each other. Position of

channels , which connect any lattice node with neighbour lattice nodes, is

partially different and depends whether the node inheres in odd or even row of the lattice

(see Figure 27). Ordering of channels in odd and even rows is evident from the Figure 27 (b).

Position of the neighbour nodes connected to the node is separately presented for

odd and even rows in the Figure 28 (a) and (b). Blue colour is used for labelling the channels

related to nodes in odd rows of the lattice, the red one – in even rows.

Based on Figures 27 and 28 it can be acquired the false impression, that the distance to

diagonal neighbours is longer that to nearest ones and that they are not equiangular. But

according to the geometry of hexagonal lattice all distances are equal. Thus the value of the

distance between every pair of neighbour nodes is taken to be () and the

angle between neighbour channels is taken to be 60°. That assumption is valid for all

implemented calculations in the algorithm.

Figure 27: The hexagonal lattice as the equivalent square lattice with an additional diagonal

connection (a) and the regular hexagonal neighbourhood in odd and even rows of the lattice (b)

CHAPTER 3: BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR AUTOMATA

68

Because odd and even rows were differentiated in the algorithm, some operations were

implemented separately for odd and even rows in a case, when the position of channels was

important.

3.4.2. Occupation of channels by fluid particles

In this part of the algorithm an initial state of the simulated system is generated. As it was

mentioned in theoretical part of the thesis, the state of the LGCA is given by states of its

individual automata (see Chapter 2.4). The state of individual automaton is generated by

means of the channel occupation by moving type of particles.

Thus, generation of moving particles takes place on resting empty nodes of the simulation

domain, where no moveless particles are taken place. This process is fully random and is

driven by the probability of channel occupation, called as a (see Code fragment 1 – i.e.

Chapter 3.1). Each channel in every lattice node randomly takes the value 0 or 1 according to

the following steps:

1. Selecting the lattice node with coordinates and ;

2. Detecting the information about the number of particles in the lattice node. If the

node is occupied by a moveless particle (the mass in the node got value 7), return

to the step 1;

3. Selecting a channel of the lattice node and checking the possibility of its occupation

by fluid particle. The number of particles in the neighbouring node connected with

the selected channel should be less than 6; the occupation of the channel by moving

particle is then possible;

a b
Figure 28: The ordering of the channels and the determination of the neighbour nodes

position in all odd (a) and even (b) rows of the lattice

CHAPTER 3: BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR AUTOMATA

69

4. Generation the random integer number in the range of 0 to , where is the

probability of channel occupation. In the algorithm the parameter can range

from 2 to ∞21 The highest value the parameter has, the lowest probability of

channel occupation is. If the random number is equal to 1, the fluid particle is

situated on the channel; channel takes value 1 and parameter in the node at the

position increases by 1. In other cases, when the channel of the lattice node

remains unoccupied, algorithm does return to the step 3. As an example, occupation

of the channel at every lattice node in odd rows is:

if (m[x-1][y-1]<7) {I1=random(pco);}

if (I1==1) {m[x][y]=m[x][y]+1; i1[x][y]=1;} else {i1[x][y]=0;}

5. Repeating steps 3 and 4 for all the lattice node channels;

6. Calculating the component of the total particle velocity in the lattice node with

respect to channel occupation and a fact that directions of velocity vectors of moving

particles are inward the node;

7. Calculating the component of the total particle velocity in the lattice node with

respect to channels occupation and a fact that directions of velocity vectors of

moving particles are inward the node;

8. Repeating the whole procedure for all lattice nodes with regards of odd and even

rows of the lattice and related channels location.

3.5. Code fragment 5 – Graphical outputs of the initial
system configuration

If the simulation model has graphical outputs the first graphical image, depicting the initial

system configuration, takes a place. According to a number of moving particles in every

lattice node (the value of parameter in fact), different colours are assigned to different

number of particles inside lattice nodes (see Figure 29).

Form the Figure 29 it is obvious that the most dense lattice gas is created by means of the

 (see Figure 29 (a)). There are nodes with one, two, three and four moving particles,

i.e. one to four channels are randomly occupied. When the value of is 2000, only two

moving particles are randomly generated (see Figure 29 (d)).

3.6. Code fragment 6 – The main cycle of the algorithm

The cyclic part of the algorithm consists of collision and propagation phases mainly. These

phases repeat subsequently till the variable gets the value initialized in a header

part of the algorithm. The main cycle is given in the algorithm by an expression:

21 When , the macro returns a random number in the range 0 to 1. Thus the probability
of channel’s occupation is 0,5 – i.e. the average density of fluid moving particles is 3 particles per node.

CHAPTER 3: BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR AUTOMATA

70

for (cycle=0; cycle<cmax+1; cycle++)

The structure of the main cycle is presented by means of flowchart (see Figure 30). It is

obvious, that during every time step algorithm goes through all nodes of the lattice. When

the lattice node is empty (the value of), nothing is happend. When one o more

moving particles are located in the node, algorithm aplies collision and propagation phases.

Detailed description of these phases is presented in the next Chapter 3.6.1 and 3.6.2.

a b

c d

Figure 29: The initial configurations of the system according to the value of the parameter :
 (a); (b); (c) and (d).

CHAPTER 3: BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR AUTOMATA

71

Figure 30: The flowchart representing the main cycle of the developed FHP-1 LGCA algorithm

yes

yes

yes

yes

no

no

no

no

Code fragment 6 – The main cycle

The end

CHAPTER 3: BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR AUTOMATA

72

3.6.1. Code fragment 6-A – Collision phase

The collision phase processes homogeneously in all lattice node expecting nodes which

being settled by the moveless particle (i.e. nodes which belong to the channel walls or solid

obstacle). During this operation the distinction of odd and even rows of the lattice is not

needed. The subroutine attends to collision phase implementation and consists

of following steps:

1. Selecting the lattice node with coordinates and .

2. Declaration of the subroutine’s variables: , , and . The variable

 is kept equal to the instantaneous value of number of particles in the lattice

node at the position (; – is kept equal to the instantaneous value of -

component of total particles velocity in the lattice node with coordinates (;

 – is kept equal to the instantaneous value of -component of total particles

velocity in the lattice node with coordinates (. The values of parameters ,

 and are the input information for the subroutine .

3. Generation of a random number between to , where the upper value is given by

the number of channels in the lattice node22:

random(6).

That macro in FHP-2 lattice gas model returns the random number in the range of 0

to 6 (i.e.)23.

4. Choosing the channel at random regarding to the value generated in a step 3. The

value is generated, the channel is being chosen. For example, if the

parameter gets value , the channel is active for a next operation (the

adjustment is determined by the numbering of channel that begins with the number

1). If the chosen channel is empty than occupy the selected channel of the node with

the particle, i.e. with value , and reduce the parameter by 1:

cannel=random(6);

if (cannel==0)

{if (i1[x][y]==1) {goto nav1;}

i1[x][y]=1; mas=mas-1;}

In a case that the channel is settled by moving particle, go to the step 3.

5. Repeating steps 3 and 4 as long as the parameter is equal to zero.

6. Calculation the -component of the new total particle velocity of the newly

proposed configuration in the lattice node. If the in this node is not equal to the

original input value (i.e. the difference between newly calculated and

original is not equal to zero), go back to the step 3.

22 In fact, returns a random number in the range of 0 to 5 (0, 1, 2, 3, 4, 5) – i.e. a random number
from the interval .
23 An individual automaton in FHP-2 model has 7 channels, corresponding to the six directions of the triangular
lattice with hexagonal symmetry (i.e. moving particles) and to the one place for a rest particle.

CHAPTER 3: BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR AUTOMATA

73

7. Calculation the -component of the total particle velocity of the newly created

configuration in the lattice node. If the in the node is not equal to the original

input value (i.e. the difference between newly calculated and original

is not equal to zero), go back to the step 3.

8. Registration the information about newly created configuration, i.e. the occupation

of individual channels in the lattice node – it is the output

information of subroutine .

9. Repeating previous steps for all lattice nodes systematically.

3.6.2. Code fragment 6-B – Propagation phase

The propagation phase comes after the collision phase. Because the position of individual

channels is important in this part of the algorithm, the propagation phase is implemented

separately in odd and even rows of the lattice. The subroutines and

 serve for that and contain follow steps:

1. Selecting the lattice node with coordinates and .

2. Detecting the input information of the lattice node. If the selected lattice node is

occupied by the solid moveless particle (i.e. the mass is equal to 7), return to the step

1. The greatest interest at that moment is the occupation of individual channels.

3. Coming through channels of the lattice node and subsequently looking for the first

occupied channel denoted in the algorithm as . If all channels are empty, go back to

the step 1.

4. If the channel is occupied, detecting the state of the neighbor node, which

communicates with the selected lattice node through the channel .

5. In the case that the neighbour node is not occupied by solid particle, relocation the

particle sitting in the channel to the neighbouring node takes place. The new

particle number (the value of the parameter) in the neighbouring node extends

by 1. New values of -component and -component of the total particles

velocity in the neighbour node are extended by the value of the - and -component

of the velocity of particle coming through the channel .

6. In the case that the neighbouring node, communicating with the selected lattice

node through the channel , is occupied by solid moveless particle, implement

reflection depending on the chosen type of boundary conditions. In the basic

algorithm the bounce-back type of particles reflection was used. In that case the new

number of particles (the value of the parameter) in the chosen lattice node

extends by 1. New values of -component and -component of the total

particles velocity in the lattice node are extended by the values of - and -

component of the velocity of particle coming inside the selected lattice node through

the channel . In other words instead of displacement the particle from the channel

CHAPTER 3: BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR AUTOMATA

74

to the neighboring node, we move it back to the selected lattice node and all

information connected with this particle.

As an example, implementation of steps 4-6, when the channel was denoted as an

occupied is presented here:

if (i1[x][y]==1)

 {

 if (nm[x-1][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

else {nm[x-1][y-1]=nm[x-1][y-1]+1; nvx[x-1][y-1]=nvx[x-1][y-1]-

0.5;

 nvy[x-1][y-1]=nvy[x-1][y-1]-sinangle;}

}

7. Repeating steps 5 and 6 for all occupied individual channels of the selected lattice

node.

8. Repeating previous steps until all lattice nodes are not visited.

3.7. Code fragment 7 – Recording of the new system’s state

According to Wolfram [74], models based on cellular automata rules are always defined to

use the old values of neighbours in order to determine the new value of any particular cell.

The C++ program explicitly updates values of lattice gas cellular automata from one side of

the simulation domain to other one. As a result, it is necessary to store the old information

related to the neighbours in order to make it available for updating the individual automaton

itself. One of the approaches to this problem is to maintain two copies of the some data

arrays, and to interchange their data after every step in the lattice gas cellular automaton

evaluation.

In that algorithm the propagation phase implements according to a set of input data. Output

information is first stored in data arrays , and (the letter “ ” denotes the “new”

value, i.e. new value of the variable , and), and then it moves back to the proper

place in the arrays , and . Thus, this part of the algorithm ensures data transfer

between pairs of arrays and , and , and .

If the simulation model has graphical outputs the drawing of the initial system configuration

takes place. Base on a value in the lattice node, different colours assigned to different

lattice nodes:

for (x=1; x<xmax; x++)

 {

 for (y=1; y<ymax; y++)

 {

 m[x][y]=nm[x][y]; vx[x][y]=nvx[x][y]; vy[x][y]=nvy[x][y];

 putpixel (x, y, m[x][y]*print);

 }

 }

CHAPTER 3: BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR AUTOMATA

75

3.8. Code fragment 8 – Data arrays resetting

Before one cycle of the algorithm closes up, the resetting of some data arrays is needed,

because new cycle will start and new set of data will be obtained. While passing through the

lattice, algorithm checks whether the concrete lattice node is occupied by moveless particle

or not. In a case that the lattice node is occupied by moving particle or it is empty the

“resetting” of the information fields, which were used during the collision and propagation

phases implementation, takes place: , , , – all elements of them

get value of 0. In other case the information, that the lattice node occupied by moveless

particle, remains without a change in the data array :

for (x=3; x<xmax-2; x++)

 {

 for (y=3; y<ymax-2; y++)

 {

 if (nm[x][y]<7)

 {nm[x][y]=0; nvx[x][y]=0; nvy[x][y]=0;

 i1[x][y]=0; i2[x][y]=0; i3[x][y]=0;

 i4[x][y]=0; i5[x][y]=0; i6[x][y]=0;}

 else {nm[x][y]=7;}

 }

 }

3.9. Code fragment 9 – Printout macro

Because the repeating of the cyclic part of the algorithm is equivalent to the one time step in

the theory of cellular automata, the printout of carried out number of cycles is being used.

The information about that is visible in the right bottom part of a monitor (see Figure 31).

Figure 31: Monitoring of the simulated system. The state after application of 110 cycles

CHAPTER 3: BASIC ALGORITHM BASED ON THE FHP-1 LATTICE GAS CELLULAR AUTOMATA

76

3.10. Code fragment 10 – Final operations

The counting of cycles comes as a last operation of the cyclic part of the algorithm.

Before the main part of the algorithm will be closed, the last computer programming

statements have to be called in order to finish the run of the algorithm. In C++ programming

language they are as follows:

 – ends the action of graphical functions in the program;

 – implements the ending of all functions that were called in a program, it

also ends subroutines;

 – by means of keyboard makes possible to finish the program run and return

to the algorithm.

The time evolution of the FHP-1 LGCA model is evident from the Appendix D. A high value of

the parameter () is deliberately chosen. A movement of individual particles

can thus be recorded. When a colour of particles changes from violet to blue, the two

particle collision occurs. The evolution of the particle system was monitored for 20 time

steps.

The basic skeleton of the Lattice Gas algorithm for a general-purpose computer that has

been used for further introduced simulation experiments was described. Each particular

simulation experiment includes for instance subroutines for extra conditions. These

subroutines provide for example with certain particle monitoring or creation of the pressure

gradient etc., ensure also a formation of special output data files. The concrete differences

from the basic Lattice Gas Cellular Automata algorithm are described in particular simulation

experiments (see Chapters 4-6).

CHAPTER 4: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR BROWNIAN MOTION

77

4. VARIFICATION OF FHP-1 LGCA ALGORITHM FOR BROWNIAN
MOTION

According to Roache [75], before any computer code is used to solve a complex problem, it

must be verified in order to insure it has been implemented correctly. For that reason, a

problem having an exact solution that encompasses most of the important physical

phenomena must be chosen.

By using the developed algorithm discussed in the Chapter 3, some results obtained via

verification tests are presented below (see Chapters 4.3 and 5.3). First, the Brownian motion

simulation is used as a benchmark test for a verification of a newly developed FHP-1 LGCA

algorithm.

4.1. Theoretical assumption

The Brownian motion was first discovered by Scottish botanist Robert Brown in 1827. He

noticed a movement of plant pollens in water using microscope. But he was not able to

determine the mechanisms that caused this motion. Later this was proved to be one of the

effects of molecular motion and interactions between molecules [76].

Nowadays, Brownian motion is defined as a phenomenon whereby small particles

suspended in a fluid tend to move in pseudo-random or stochastic paths through the fluid

(liquid or gas), even if the fluid is calm and the drift vector is zero. This motion is caused by

collisions between suspended particles and atoms or molecules of the fluid. The term

“Brownian motion” also refers to a theory or model that is used to explain stochastic motion

patterns. Random walk, in which the displacement of a particle is entire randomized, is an

example of such a mathematical model [24]. Random walk has the Markov property, which

means that the future state of the particle is determined by its current state only, not by any

of past states (i.e. position of a moving particle at time depends only on its position at

time , and not on a path it took to get there).

According to Feynman [24], the logic question of the Brownian motion is: “Consider a little

Brownian movement particle which is oscillates about because it is bombarded from all

directions by randomly moving water molecules. After a given period of time, how far away

is it likely to be from its original position?” Solution to this problem Feynman attributes to

Einstein and Smoluchowski [24].

Let is the vector distance from the original position of the particle after steps, then:

 (31)

where is a vector distance between two consecutive steps of the particle. The square

distance is:

 (32)

CHAPTER 4: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR BROWNIAN MOTION

78

After averaging over many trials,

 , since and are not correlated and

hence . Thus the mean square value of the distance vector is proportional to the

number of steps:

 ,24 (33)

where is the time elapsed since the start of the Brownian particle motion and is the time

elapsed between two successive steps. Since the number of steps is proportional to the

time, the mean square distance is proportional to the time as well:

 (34)

The coefficient in the Equation (34) is usually expressed as . Coefficient “2”

corresponds to the dimension and it is 6 for the 3D systems. The quantity is the

diffusion coefficient, denotes the mobility coefficient (characterises the drift of molecules

due to outside forces), is the Boltzmann's constant and is a absolute temperature. Then

the mean square displacement of a Brownian particle in terms of the time elapses and the

value of diffusivity becomes:

 (35)

4.2. FHP-1 Lattice Gas Cellular Automata algorithm for
Brownian motion simulation

The basic FHP-1 LGCA algorithm, described in detail in the Chapter 3, is used here for a

Brownian motion simulation to validate the algorithm. The difference between basic and

modificated algorithm is discussed in this chapter. An attention is paid to new parts of the

algorithm code fragments or the most important differences. Code fragments, which are

similar to the basic FHP-1 LGCA algorithm (see Chapter 3) are omitted from the description.

The full code of the algorithm is presented in Appendix E.

4.2.1. Code fragment 1 – Header files and initialization of the
simulation box

Compared to the basic FHP-1 LGCA algorithm presented in Chapter 3, few more arrays,

variables and parameters are declared in this part of the algorithm for Brownian motion

simulation:

 , , , , , – data arrays, where an exact position

of the Brownian particle (a certain channel of the particular node) in every time step

is being stored;

24

 Following the LGCA model, is a number of time steps (units:), the distance between two neighbour
nodes of the lattice(it is in the equation) is equal to 1. The mean square distance of Brownian particle from its
original position is linearly dependent on a time period of the simulation.

CHAPTER 4: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR BROWNIAN MOTION

79

 – parameter that defines the appropriate place of the simulation box, where the

Brownian particle is being generated;

 , , , – parameters that determine a colour of a

moving particles, a moveless particles and the Brownian particle at a graphical

output. The empty node is named as a “hole” and at the graphical output it is black;

 and – parameters that determine the initial position of the

Brownian particle according to the 2D Cartesian coordinate system (X0Y);

 , , , – and coordinates of the Brownian particle. Index “1” indicates the

position of the Brownian particle before collision and propagation phases. Index “2”

belongs to the position after those phases implementation;

 – associated to the distance of the Brownian particle from its original

position.

Compare to basic LGCA algorithm three more subroutines are declared in the algorithm. The

collision and propagation phases of the Brownian particle supplying in subprograms are as

follows:

int collisionbrown(void);

float propagationoddbrown(void);

float propagationevenbrown(void);

In addition to a graphical output, the data outputs are also stored. Therefore the data file is

declared in the algorithm: FILE *output0.

4.2.2. Code fragment 4 – Occupation of channels by fluid particles

The Brownian particle is generated in this part of the algorithm in addition to all moving

particles. The position of the Brownian particle is generated randomly and it is controlled by

means of the parameter . The parameter determines an acceptable distance from the

centre of the simulation domain. The aim of this operation is to generate the Brownian

particle randomly in the centre of the simulation domain.

In order to distinguish the Brownian particle from other fluid particles, its weight was

increased by 13 mass units. Therefore the total mass in the node, where the Brownian

particle occurs, is between 14 and 19 mass units (14 – the mass of the Brownian

particle, 15...19 – the total mass in the node, where one Brownian and 1 to 5 fluid

particles occur). It must be noted, that the mass of the Brownian particle is equal to one

mass unit. In fact, its weight is the same as a weight of any moving particle. Its increasing by

value of 13 is just the technical trick. It was used with the aim to distinguish the Brownian

particle among other moving particles.

4.2.3. Code fragment 5-A – Data outputs

Before the cycling part of the algorithm starts, an initialisation of data files proceeds. File’s

name and its location are first given. The data are arranged into a -by- matrix, where is

the number of rows (mostly the number of repeating cycles of the algorithm, i.e. the time of

CHAPTER 4: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR BROWNIAN MOTION

80

the system evolution). Symbol is the number of columns (the number of observed

variables). Values of , and , , and were saved into the

output data file “ ”.

4.2.4. Code fragment 6 – The main cycle of the algorithm

The main cycle of the algorithm consists from the same steps as it was described in Chapter

3.6. Unlike the basic LGCA algorithm, there are two subroutines for collision phase

implementation as well as for propagation phase. When the Brownian particle is identified in

the lattice node, its collision phase is given by the subroutine and

propagation phase – by means of the subroutine . Detailed

description of those subroutines is presented in following Chapters 4.2.4.1 and 4.2.4.2.

4.2.4.1. Code fragment 6-A – Collision phase

From the previous explanation it is obvious that the subroutine serves for the

implementation of collision phase between moving particles and is described in detail in the

Chapter 3.6.1. Collisions between fluid moving and/or Brownian particle are implemented

according to the subroutine. It applies to the lattice node, where the total

mass is , i.e. for the node, where the Brownian particle is detected.

The subroutine consists of nine analogous steps (see description of the code fragment 6-A in

the basic FHP-1 LGCA algorithm – i.e. Chapter 3.6.1). In contrast to the fluid moving particles,

the Brownian particle is the special one, because an exact position of it is being detected in

every time step. For that reason the variable is declared at the beginning of the

subroutine.

The random marking of the Brownian particle takes place when the information about newly

created state of the individual automaton (i.e. the occupation of individual

channels in the lattice node) is obtained. Marking of the Brownian particle

consists of following steps:

1. Generation of a random number between to , where the upper value is given by

the number of channels in the lattice node:

brownp=random(6).

2. Choosing the channel at random regarding to the value generated in a step 1. When

the value is generated, the channel is chosen. If the chosen channel after the

collision's phase implementation gets the value of 1, i.e. becomes occupied, than the

selected channel of the node is occupied by the Brownian particle. So, the value of

the variable is increasing by 13. This information is being noted into the

corresponding data array 25 also:

25 - it is , or , or , or , or , or in the algorithm

CHAPTER 4: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR BROWNIAN MOTION

81

if ((brownp==0)&&(i1[x][y]==1)){i1[x][y]=13; code1[x][y]=13;}

In a case when the randomly generated channel is empty, go back to the step 1.

3. Repeating steps 1 and 2 as long as the newly position of the Brownian particle is

being known.

It was mentioned before, in the Chapter 3.4.1, collision phase redistributes particles in an

particular lattice node according to the collision rules only. The state of the LGCA is

completely specified by indicating the occupied channels and empty ones. This implies that

moving particles are indistinguishable and the Brownian one may randomly appears in the

one of occupied channels in the particular node. The random motion of the Brownian

particle is obtained then.

4.2.4.2. Code fragment 6-B – Propagation phase

It was mentioned before, in the Chapter 3.6.2, the propagation phase is implemented

separately in odd and even rows of the lattice. Propagation of fluid moving particles occurs

in subroutines and , while the movement of the

Brownian particle is realized in subroutines and

 . The principle of the last two subroutines is following:

1. Selecting the lattice node with coordinates and , where the Brownian particle is

located. The individual channel occupation is of the particular interest now.

2. Coming subsequently through channels, denoted in the algorithm as , of the lattice

node and looking for the occupied ones.

3. If the channel is occupied by moving particle (i1[x][y]=1) or a Brownian one

(i1[x][y]=14), detecting the state of the neighbour node, which communicates with

the selected lattice node through the channel .

4. Relocation of the particle setting trough the channel in direction towards the

neighbouring node in the case when the neighbour node is not occupied by a

moveless particle. The new particle's number (the value of the parameter) in the

neighbouring node extends by the value 1 and by the value of the variable . If

the Brownian particle relocates, gets value 13, in otherwise the value remains

0. New values of component and component of the total particles

velocity in the neighbour node are extended by the value of the and component

of the velocity of particle coming through the channel .

5. Implementation of the bounce-back type of reflective boundary condition when the

neighbouring node of the selected lattice node is occupied by solid particle. Thus, the

new number of particles (the value of the parameter) in the chosen lattice node

extends by value 1 and by the value of the variable . New values of

component and component of the total particles velocity in the lattice

node are extended by the values of and component of the velocity of particle

CHAPTER 4: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR BROWNIAN MOTION

82

coming inside the selected lattice node through the channel . In other words instead

of the displacement of the particle from the channel to the neighbouring node, it

moves back to the selected lattice node and all the information connected with this

particle is being hold within.

The implementation of steps 3-5, when the channel is denoted as an occupied is

shown here:

if ((i1[x][y]==14)||(i1[x][y]==1))

 {

 if (nm[x-1][y-1]==7)

{nm[x][y]=nm[x][y]+1+code1[x][y];

nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle; x2=x; y2=y;}

else {nm[x-1][y-1]=nm[x-1][y-1]+1+code1[x][y]; nvx[x-1][y-

1]=nvx[x-1][y-1]-0.5;

 nvy[x-1][y-1]=nvy[x-1][y-1]-sinangle; x2=x-1; y2=y-1;}

 }

6. Repeating steps 4 and 5 for all occupied individual channels of the selected lattice

node.

7. Detecting the new position of the Brownian particle. Coordinates and of the

node, where the Brownian particle was shifted, are recorded.

4.2.5. Code fragment 9 – Printout macro

Data outputs are presented as data files. The current distance of Brownian particle from its

initial position is calculated according to the Pythagorean theorem:

distance=sqrt(pow(x2-brownx,2)+pow(y2-browny,2)),

where and are and coordinates of the Brownian particle's at the initial

position, and – coordinates of the current position.

If the Brownian particle collides with the solid boundaries of the simulation domain, the

simulation is imediatly finished and data outputs are not included into the final data

treatment. Such a simulation is deliberately broken and thus can not be treated together

with other data due to missing output files. Output files are saved only when the simulation

is properly finished.

4.3. Simulation setup

The modified FHP-1 LGCA algorithm was applied for a two-dimensional Brownian motion

simulation. The reduced simulation domain of a size , where

and are numbers of nodes in and directions of the lattice is shown in the Figure 32.

From the Figure 32 (a) it is evident that simulation domain is bordered by solid walls. Inside

the simulation domain moving particles are generated with a certain probability.

Subsequently, the lattice gas of average density or particles per one lattice node is

applied. In the Figure 32 when the lattice node is empty it is black. Red colour is used for the

CHAPTER 4: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR BROWNIAN MOTION

83

identification of moveless particles, blue one denotes moving particles. Initial position of the

Brownian particle is presented by the grey square, and its final position after 20 time steps –

by yellow one. In a real simulation in the middle of the simulation domain one of the fluid

moving particles is marked as a Brownian one. Trajectory of the Brownian random motion

during is monitored. The bounce back type of fluid particle's reflection is applied

to the solid boundaries of the simulation domain. The exact simulation setups are presented

in the Table 2. The table header includes the following parameters:

 – parameter, which is used in the algorithm, it denotes the probability of channel

occupation by moving particles;

 and – it is and coordinates of the initial position of the Brownian particle;

 Time – it is the total time period of the simulation.

From the Table 2 it is evident that simulation settings are different due the lattice gas

density and initial position of the Brownian particle. The initial position of the Brownian

particle is generated randomly in every simulation. Thus the results obtained from the

simulation should be independent on the initial position of the Brownian particle.

As it was explained in the Chapter 4.2.5, the distance of the Brownian particle (see Figure

33) from its initial position after time steps is calculated as:

 (36)

a b

Figure 32: Simulation of the Brownian motion presented on the reduced simulation domain
 : a – the simulation domain bounded by solid walls (red lines), moving particles (blue
squares), initial position of the Brownian particle (grey square)and its final position (yellow square)
after 20 time steps, black squares present empty lattice nodes; b – Brownian random motion during

20 time steps obtained by the developed model based on the FHP-1 LGCA model

CHAPTER 4: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR BROWNIAN MOTION

84

Where and

 are and coordinates of the Brownian particle's current position; and

 are coordinates of its initial position.

Results of two simulation experiments are reviewed below. Every simulation experiment was

repeated ten times for ten diferent initial positions of the Brownian particle, that was

randomly genereted. In order to obtain the numerical results, the diplacement of the

Brownian particle was averaged over 7 experiments. Tree simulations in each experiment

were breaken off because the Brownian particle collided with solid boundaries of the

simulation domain. The size of the simulation domain was limited by the monitor resolution.

Table 2: The list of Brownian motion computer simulations and their setups

 Size of the
simulation domain,

 x

Average
density,
m.u./l.u.

 , l.u. , l.u. Time,

Data output files

Si
m

u
la

ti
o

n
 e

xp
er

im
en

t
1

 300 x 300 3 164 144 4000 BROWN03.CPP

300 x 300 3 158 156 4000 BROWN04.CPP

300 x 300 3 160 164 4000 BROWN05.CPP

300 x 300 3 170 152 4000 BROWN06.CPP

300 x 300 3 - - - -

300 x 300 3 164 128 4000 BROWN08.CPP

300 x 300 3 - - - -

300 x 300 3 - - - -

300 x 300 3 142 157 4000 BROWN11.CPP

300 x 300 3 166 157 4000 BROWN12.CPP

Si
m

u
la

ti
o

n

ex
p

er
im

en
t

2

400 x 400 1,5 170 181 4000 BROWN01.CPP

400 x 400 1,5 209 191 4000 BROWN02.CPP

400 x 400 1,5 - - - -

400 x 400 1,5 227 196 4000 BROWN04.CPP

Figure 33: Displacement R of the Brownian particle

CHAPTER 4: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR BROWNIAN MOTION

85

400 x 400 1,5 228 182 4000 BROWN05.CPP

400 x 400 1,5 - - - -

400 x 400 1,5 211 166 4000 BROWN07.CPP

400 x 400 1,5 222 237 4000 BROWN08.CPP

400 x 400 1,5 219 183 4000 BROWN09.CPP

 400 x 400 1,5 - - - -

This table includes value of the following parameters:

 Size of the simulation domain - it is presented by the length x the width ;

 Average density – corresponds to the average number of moving particles in the

lattice node;

 and - corresponds to the and coordinates of the initial position of the

Brownian particle;

 Time of the simulation – it is the total time period of the simulation;

 Data output files – are data files obtained from the computer simulation.

4.4. Results and discussion

The time evolution of the FHP-1 LGCA model for Brownian motion simulation inside the

reduced simulation domain of a size is presented in an Appendix E.

This scaled down version of the simulation was used for a graphical representation of the

Brownian particle movement only. The state of the simulation system is detected here after

every time step during The square lattice with coordinates and is depicted

on pictures for simplified representation of the results. But according to the principles of the

FHP-1 LGCA model computer simulation was performed at the hexagonal Bravais lattice.

The exact paths of the Brownian particle over were monitored and are

presented in Appendix G and Appendix H. Those paths aren’t linear. They are often similar

to a “bonsai tree” shape, where some part of the path is approximately linear and another

part is an area, where the Brownian particle is rather going back or turning in a small closed

area. The two most sequence shapes of the Brownian particle’s paths are presented in the

Figure 34.

Figure 35 plots the mean square displacement of the Brownian particle from its initial

position as a function of time. As was mentioned before, the square displacement was

averaged over 7 simulations. Nevertheless, fluctuations around the linear trend line are still

evident. The greater degree of fluctuations was recorded in the simulation experiment with

a lower lattice gas density (). The higher density of the lattice gas is

simulated, the smaller straight forward displacements of the Brownian particle are achieved.

CHAPTER 4: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR BROWNIAN MOTION

86

A first benchmark test for a verification of a newly developed FHP-1 LGCA algorithm was

being considered as a successful one. Better agreement is achieved using higher value of

lattice gas density. For more accurate simulation of the Brownian motion the biggest size of

the simulation domain, longer time of the Brownian particle monitoring or averaging over

the larger number of simulations are recommended.

a b

Figure 34: Paths of the Brownian particle after 4000 time steps: a – the straight type of paths
(simulation experiment 1, data output BROWN04.cpp); b – the “bonsai tree” shape of the path

(simulation experiment 1, data output is BROWN11.CPP)

Figure 35: The main square displacement of the Brownian particle as a function of time, for ρ=1,5

particles/node and 3 particles/node

-120

-70

-20

30

80

-80 -30 20 70 120

l.u.

l.u.
-120

-70

-20

30

80

-80 -30 20 70 120

l.u.

l.u.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1000 2000 3000 4000

m
ea

n
 s

q
u

ar
e

 d
is

p
la

ce
m

en
t,

 l.
u

.

time, t.u.

ρ=1,5
particles/
node

ρ=3
particles/
node

CHAPTER 5: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR POISEUILLE FLOW

87

5. VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR POISEUILLE
FLOW

The 2D Poiseuille flow is the simplest kind of flow system that can be simulated using FHP-1

Lattice Gas Cellular Automata. It is an incompressible flow between two stationary parallel

plates and driven by constant body force [24]. According to data from a number of

dissertations [77, 78] it is evident that Poiseuille flow simulation is beeing used as a

benchmark test for a verification of a newly developed algorithm, if it is intended to

transport phenomena modelling using Lattice Gas Cellular Automata or Lattice Boltzmann

approach. It is also used as verification for numerical analysis since the analytical solution

can be obtained from Nevier-Stokes equation. Poiseuille flow model requires only the

bounce-back type of boundary reflections along the walls of a channel and periodic

boundary conditions in the flow direction.

5.1. Theoretical assumption

Poiseuille flow is an example of an elementary fluid flow. It is also a simple model for flow

through a crack or joint of a rock. Fluid flow through a porous media, and especially through

fibrous materials, is a subject of wide interest in textile branch. The textile industry

encounters with this phenomenon during a lot of production and finishing processes. It is

also a subject of study from the textile comfort properties point of view. Permeability is the

physical parameter of prime interest in these circumstances. Moreover, the permeability

measurement is one of the most important ways that enable to evaluate final textile

products for its application. For example, permeability is a critical parameter for the

application of fibrous materials as filters, barrier materials, sportive clothing, etc. Invention

of multilayer textile materials is based on an idea to combine various layers with different

permeability to reach an optimal comfort with respect to the water vapour transport

outward and retention of external liquid droplets [17].

Generally, fluid flow is a three-dimensional process, but it can be reduced in some cases to

the two-dimensional due to its symmetry. There is a number of authors who studied

Poiseuille fluid flow under various conditions using Lattice Gas Cellular Automata or Lattice

Boltzmann models. For example, Rothman in his work [79] studied two-dimensional

Poiseuille flow as a function of the variety of channel thickness and variety of pressure

gradient. The similar computer simulation experiment was done by Wolf-Gladrow [31]. The

same dependence was of Chen’s interest [80] for three-dimensional channel flow.

Interesting problems were solved by Yang few years ago [81]. It was based on the Lattice-

Boltzmann model, where the influence of various interactions between the fluid and channel

walls was considered. Particularly, one part of the channel surface was wetted by a liquid

while other parts repelled it. Using two Poiseuille flows, opposite to each other, Kadanoff at

al. developed the method to build a numerical viscometer [82].

CHAPTER 5: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR POISEUILLE FLOW

88

All above mentioned works, dealing with computer simulations, first prove the parabolic

velocity profile of the flow. The velocity of such fluid flow is everywhere parallel to the

channel walls if the uniform pressure gradient is applied along the two-dimensional channel.

Thus, the component of the flow velocity is zero. The component of velocity is strongly

influenced by the interaction of the fluid with walls of the channel. The velocity of a

viscous fluid is considered to be zero at solid boundaries, when no-slip boundary conditions

are used. The maximum velocity value appears in the centre of the channel, because of

viscous forces inside the fluid.

According to Rothman [79] this type of the flow is being known as a plane Poiseuille flow and

it is being governed by equation:

 (37)

where

 is a pressure gradient, is a dynamic viscosity value of the fluid, is a

distance between two parallel plates (in other words it is the channel width).

To find the volumetric flow rate of flow per unit area it is necessary to integrate from

 to

 and divide by the unit area – i.e. by the channel width , then:

 (38)

Equation (38) is in accordance with Darcy's law known from the middle of the 19th century,

when French Henry Darcy experimentally discovered that the flow rate through a porous

medium, including a fibrous one, is linearly proportional to the applied pressure gradient.

For a flow along the axis of the channel it holds:

 (39)

where is the permeability of the medium. From Equations (38) and (39) it is evident, that

the permeability of the channel with two parallel plates at the distance is

.

Darcy's law is valid for laminar flows, where the Reynolds number is relatively small. In other

words, the law is valid for steady Poiseuille flows with parabolic velocity profiles in free

channels.

5.2. FHP-1 Lattice Gas Cellular Automata algorithm for
Poiseuille flow simulation

The algorithm based on the FHP-1 LGCA model which developing was described in detail in

the Chapter 3, is used for a Poiseuille flow simulation. In contrast to the developed basic

algorithm, this algorithm allows the computer simulation of the fluid flow inside the infinite

channel in the direction. The infinity is given by periodic boundary conditions. Reflective

boundary conditions are used at the top and down channel boundaries. Pressure gradient is

CHAPTER 5: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR POISEUILLE FLOW

89

applied in order to create the flow inside the channel. As a result, computer simulation

provides information about flow velocity inside the channel.

Thus, for the second verification test few new parts of the algorithm are developed. Those

parts are described in details in this chapter. Code fragments, which are similar to the basic

FHP-1 LGCA algorithm (see Chapter 3) are omitted from the description. The full code of the

algorithm is presented in Appendix I.

5.2.1. Code fragment 1 – Header files and initialization of the
simulation box

Compared to the basic FHP-1 LGCA algorithm, few special variables and parameters were

declared in this part of the algorithm for Poiseuille flow simulation:

 and – are being used in calculation of fluid moving particles and a

flow rate;

 – counts the number of lattice nodes inside the simulation domain, where the

fluid particles are moving;

 – parameter that defines the probability of the force creation along one

boundary of the lattice;

 – parameter that determines the size of an imaginary ventilator, i.e. the

area (number of boundary columns), where the force was created;

 , , – record the change of the component of

fluid particle momentum in a position of the imaginary ventilator after the forced

shifts of moving particles from channels , , to channels , , ;

 − is a data array, where the velocity streamlines are recorded.

Special subroutines are declared in the algorithm. The propagation phase is realized in four

subprograms and is applied at boundaries of the channel in accordance to odd and even

rows of the lattice:

 – propagation of the fluid moving particles in all odd

rows at the left boundary of the channel;

 - propagation of the fluid moving particles in all even

rows at the left boundary of the channel;

 - propagation of the fluid moving particles in all odd

rows at the right boundary of the channel;

 - propagation of the fluid moving particles in all

even rows at the right boundary of the channel;.

Activity of the imaginary ventilator is created in the subprogram . Velocity

profile of the fluid is calculated in a subprogram . Two output data files are

declared in the algorithm: FILE *output0 and FILE *output1.

5.2.2. Code fragment 3 – Creation of the simulation domain

CHAPTER 5: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR POISEUILLE FLOW

90

The channel with upper and bottom solid boundaries is created by means of generation the

moveless type of particles. At the right and left sides of the simulation domain no moveless

particles are generated, periodic boundary conditions are applied here (see Figure 36). The

length of the channel is , the width ranging from to with

increments for particular simulations.

5.2.3. Code fragment 5-A – Data outputs

Before the cycling part of the algorithm the data file initialisation starts. File’s name and its

location is given first. Values of variables , , , ,

 , and are saved into the data file “ ”.

5.2.4. Code fragment 6 – The main cycle of the algorithm

The structure of the main cycle of the algorithm is evident from the flowchart presented in

Figure 37. It is obvious, that during every time step algorithm goes through all nodes of the

lattice. When the moving type of partciles is located in the node, collision and propagation

phases take place. The force sifts of the moving particles in the direction of flow occurs,

when they are located in a position of the imaginary ventilator. Operations needed for

output data obtaining are not illustrated at the flowchart. Calculation of the flow rate occurs

in every time step. The velocity profile is being calculated after the steady state of the flow is

obtained.

Detailed description of the collision phases was presented in the Chapter 3.6.1. This

algorithm uses the the same subprogram . The propagation phase occurs here

inside the simulation domain as well as its boundaries. This fact is reflected into the

subrograms which are determined for the propagation phase implementation. It is explained

below in the Chapter 5.2.4.2. The principlne of the force shifts of moving particles at left

boundary of the simulation domain is described in Chapter 5.2.4.1.

Figure 36: The geometry of two-dimensional channel for Poiseuille flow simulation: 1 – periodic
boundary conditions, 2 – the imaginary ventilator, is the length and is the width of the channel

CHAPTER 5: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR POISEUILLE FLOW

91

Figure 37: The flowchart representing the main cycle of the algorithm developed for a simulation of

the Poiseuille flow

yes

yes

yes

yes

no

no

no

no

Code fragment 6 – The main

cycle

The end

no

yes

CHAPTER 5: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR POISEUILLE FLOW

92

5.2.4.1. Code fragment 6-B – Pressure gradient

Pressure gradient is created in the algorithm by means of a force equally applied along left

boundary of the channel in a position of the imaginary ventilator with a certain probability.

The process of the force creation given by the subroutine . This operation

relates to every lattice node at the left boundary of the channel and consists of following

steps:

1. Going through channels in a particular lattice node and successively choosing the pair

of opposite channels.

2. First choosing the pair of channels and .

3. Propagation the fluid moving particle from the channel to the channel if the

channel is occupied by fluid moving particle and the channel is empty (see

Figure 38). As a result of this operation the value is reduced by value 1

(the reason is explained in this chapter below).

4. Repeating steps 2 and 4 for pairs of channels and , and .

As it was mentioned in the Chapter 5.2.1, , ,

correspond to the change in the component of fluid momentum according to the

reorganization of channel occupation. If is a change in the component of

momentum at a single lattice node as a result of fluid particle's shifting from the channel

to the channel , then:

 — ,

Where is a mass (i.e. the number of particles, the mass of each particle is equal to 1) is

a component of total velocity in a lattice node and its consists of

 ; ... are component of velocity in accordance of channels

occupation.

Similarly, the change in the component of momentum at a single lattice node after

shifting the fluid moving particle from the channel to the channel is:

Figure 38: An example of the forced reorganization of channel occupation. Propagation of moving
particle form the channel i1 to i4

CHAPTER 5: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR POISEUILLE FLOW

93

The change in the component of momentum at a single lattice node after shifting

the fluid moving particle from the channel to the channel is:

Thus, parameters , , reflect an increasing of the value

 by increment equal to 1 or 2. In contrast to and the change in the

component of momentum is equal to 2.

5.2.4.2. Code fragment 6-C – Propagation phase

The propagation phase is implemented separately in odd and even rows of the lattice

according to the basic FHP-1 LGCA algorithm. Furthermore, periodic boundary conditions

require the special subprograms for propagation phase implementation. So, propagation of

moving particles inside the channel occurs in subroutines and

 , while the propagation at left and right boundaries in the simulation

domain – in subroutines and ,

 and .

The principle of the propagation phase at boundaries of the channel does not differ from the

propagation inside the channel bulk. The principle of the propagation phase was described in

details in the Chapter 3.6.2. But the special conditions are defined at the left and right

boundaries of the lattice (see Figure 39).

a

b

Figure 39: Propagation of moving particles at the left (a) and at the right (b) boundaries of the
channel. Periodic boundary conditions are applied

CHAPTER 5: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR POISEUILLE FLOW

94

Lattice nodes which are located at the left boundary of the channel (i.e.), in all odd

rows of the lattice communicate through channels , and with lattice nodes at the

right boundary (i.e.). This communication realized through the channel in

even rows of the lattice. The ordering of channels according to the lattice geometry was

illustrated in Figure 28 (see Chapter 3.4.1). Similarly, at the right boundary of the channel

() lattice nodes communicates with their neighbours at the left boundary

() through channels , and in all even rows. It is channel in odd rows of the

lattice.

5.2.5. Code fragment 9 – Printout macro

This code fragment includes two parts. First, the component of the flow rate of the lattice

gas is calculated as a ratio between component of the velocity and a number of all moving

particles (i.e. their total mass). This computation takes place in every time step and the

output data is being recorded into the data file . The knowledge of the flow rate

is important to determination the steady state of the flow. An acquiring of fluid velocity

profile starts after the steady state of the flow is achieved.

Velocity profile of the fluid represents the component of the particle velocity averaged

over the length of the channel for each coordinate of the lattice and additionally averaged

over time during the steady state of the flow. A subprogram is used in order to

determine the velocity profile of the fluid. The calculation consists of following steps:

1. Coming through the simulation domain (excepting rows of the lattice with moveless

particles and lattice nodes where imaginary ventilator takes place) and calculating:

 the sum of component of particle’s velocity in a lattice row;

 the number of moving particles in a lattice row.

2. Calculation the average component of particle's velocity.

3. Repeating steps 1 and 2 for every lattice row of the simulation domain.

The velocity of the fluid is also averaged in time in order to obtain more accurate results.

After every time step its value is stored into the data array named as . The final value of the

velocity is calculated before final operations of the algorithm and is saved as an output data

file .

5.3. Simulation setup

The two-dimensional channel geometry is employed in order to suit all computer

simulations. Overhead and bottom channel sides are composed of solid walls (moveless

particles) that restrict the flow in a perpendicular direction of the channel. The length of the

channel is chosen to be lattice units (), but due to usage of the periodic boundary

conditions the infinitely long channel in direction is in fact created. Fluid particles are

generated into the free space between solid walls. Lattice gas density is chosen to be

CHAPTER 5: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR POISEUILLE FLOW

95

particles per node and this condition is used in each simulation. The bounce-back type of

reflective boundary conditions is used when collisions between moving and moveless

particles took place. This type of reflection was applied at overhead and bottom channel

sides. The behaviour of the flow as a function of scale is studied. The width of the channel

and the probability of force creation at the left boundary of the channel varied.

Different pressure gradients

 is created along the channel according to the value of

the . The exact simulation setups are presented in the Table 3.

Table 3: The list of Poiseuille flow computer simulations and their setups

 Size of the channel,

Average
density,
m.u./l.u

.

 / pfc Parameter

Time of
the

simulatio
n,

Steady
state of the
flow, The

length
The width

1. 550 25 26 2,5 100 / 1 2 10000 5000

2. 550 25 2,5 200 / 0,5 1,4 10000 5000

3. 550 25 2,5 1000 / 0,1 0,4 10000 5000

4. 550 25 2,5 2000 / 0,05 0,2 10000 5000

5. 550 25 2,5 10000 / 0,01 0,03 10000 5000

6. 550 50 2,5 100 / 1 2 10000 5000

7. 550 50 2,5 200 / 0,5 1,4 10000 5000

8. 550 50 2,5 1000 / 0,1 0,4 10000 5000

9. 550 50 2,5 2000 / 0,05 0,2 10000 5000

10. 550 50 2,5 10000 / 0,01 0,03 10000 5000

11. 550 75 2,5 100 / 1 2 10000 5000

12. 550 75 2,5 200 / 0,5 1,4 10000 5000

13. 550 75 2,5 1000 / 0,1 0,4 10000 5000

14. 550 75 2,5 2000 / 0,05 0,2 10000 5000

15. 550 75 2,5 10000 / 0,01 0,03 10000 5000

16. 550 100 2,5 100 / 1 2 10000 5000

17. 550 100 2,5 200 / 0,5 1,4 10000 5000

18. 550 100 2,5 1000 / 0,1 0,4 10000 5000

19. 550 100 2,5 2000 / 0,05 0,2 10000 5000

20. 550 100 2,5 10000 / 0,01 0,03 10000 5000

The table includes values of following parameters:

 Size of the channel - it is presented by its length and width ;

 Average density – corresponds to the average number of moving particles in the

lattice node;

 – parameter declared in the algorithm; value (probability of force

creation) is calculated according to the value of force;

26 The factor is applied to one of the orthogonal directions (the axis OY) because the lattice is triangular
in fact

CHAPTER 5: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR POISEUILLE FLOW

96

 - is calculated according to the simulation outputs , ,

 . This parameter is explained in Chapter 5.4.

 Time – it is the total time period of the simulation.

 Steady state of the flow – it is the number of time steps after the averaging of the

flow velocity is being started.

5.4. Results and discussion

According to the Table 3 settings for Poiseuille flow computer are varied due to the channel

width and pressure gradient created using probability of force creation at the left

boundary of the channel . The pressure gradient is imposed on the lattice by the

parameter applied equally along the left boundary of the channel. The similar method

was exploited for example in [79] and [83]. The pressure gradient is created here in terms of

reversing particle momentum vectors. Reversing of particles is done by the certain

probability. This process is applied for all nodes of one or more columns of the lattice

(according to the width of the imaginary ventilator). The length of columns is equal to the

channel width . The width of the imaginary ventilator is two columns of lattice nodes due

to the lattice geometry and is the same in all carried out simulations.

Probability of force creation is expressed below as . To be more concrete the parameter

expresses the average change of the component of the particle momentum at a particular

node during one time step (i.e.). From the Figure 36 it is evident, that fluid flows in the

channel to the right. The flipping mechanism impresses merely on particles with negative

components of velocity at the left side of the channel. The “total force” applied on the line

of nodes is then , where represents the number of nodes in the line that spans across

the channel width. Thus, the pressure applied at the left hand channel side is according to

(86) and (91) the force per unit area and is expressed as a . Here the physical unit

of is 27 , subsequently parameter has unit . When

pressure gradient value is obtained, the “total force” is being divided by the product of

the channel length and the channel width , then the unit of the pressure gradient is

 .

Results of the representative simulation are shown in Figures 40 and 41. The parameters of

the channel width and flow are as follows: the width and

 ; these parameters are chosen for that example. Figures 40 plots the flow rate as a

function of time. Flow rate is computed by calculating the average -component of velocity

of all particles in the lattice. The steady flow rate is achieved approximately after

The flow rate at the steady state is about (see Figures 40, the average value of

the flow rate in the region “The steady flow rate”).

27

CHAPTER 5: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR POISEUILLE FLOW

97

As it is evident from the Figure 41 the parabolic shape of the flow velocity profile is obtained.

The component of velocity was averaged over the whole channel length for each

horizontal row of the lattice nodes over in the steady state region of the flow in

order to obtain velocity profile. These computer simulation outputs exhibit a parabolic

velocity profile that is typical for a plane Poiseuille flow.

Figure 40: The flow rate as a function of time for , , . The
time period of the simulation measured in time units (t.u.) is given at the axis OX. Steady state of the

flow is achieved after about 5000 t.u.

Figure 41: The velocity profile of the flow. Values of the x component of flow velocity averaged over
the whole channel length (i.e. 550 l.u.) are at the axis OY. The vertical distance from the bottom wall

of the channel named here as a “axis OY” and it is presented at the axis OX of the graph

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0

fl
o

w
 r

at
e,

 l.
u

./
t.

u
.

time , t.u.

The steady flow rate

0

0,05

0,1

0,15

0,2

0,25

3 8 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93

ve
lo

ci
ty

, l
.u

./
t.

u
.

axis OY, l.u.

CHAPTER 5: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR POISEUILLE FLOW

98

Twenty independent experiments are carried out for values of , , , and

 . The width of the channel is ranging from to with

the increment (see Table 3). Similar results are obtained for all realized

computer simulations (see Appendix J). In order to evolve a steady state flow, the system

was left to relax after the start of each simulation trial. The steady flow rate is achieved

approximately after according to the applied pressure gradient, that is

being influenced by the parameter , and the width of the channel . The smaller the value

 is applied, the longer time period is needed for an achievement of a steady state flow

when the channel width is constant. The smaller the width of the channel is, the shorter

time period to reach the steady state of the flow it takes. Similarly to the representative

results presented in Figures 40 and 41, all velocity profiles were averaged over the time in a

steady state flow from to

The influence of the pressure gradient and the channel's width on a shape of velocity

profiles is evident and presented in Appendix K. If to compare fast and slow flow, the

smoother shapes of velocity profiles can be observed in a faster flow. The higher the value of

 is, the higher pressure gradient is applied on a channel. Subsequently, the higher value of

 is, the faster the flow is in a channel – if we compare results obtained for the channel of

the same width .

The relationship between channel width and the flow rate measured as where

is the average component of flow velocity per particle averaged over the entire lattice in a

steady period of the flow is presented in Appendix L. Three representative examples are

presented in that appendix: the fastest flow produced by the maximum pressure gradient

(i.e.), the slowest one () and the middle example

(). Each figure contains the plot of observed values (averaged over the

time period) as a function of the channel width compared to the

theoretical values of volumetric flow rate predicted by (38). The viscosity for the

theoretical curve was taken from Rothman [79], who simulated the lattice gas flow of the

same density i.e. particles per node. The best matches between the theory and

simulated results are presented in Figure 42 and obtained for .

Figure 42: Predicted and simulated volumetric flow rate as a function of channel width for a
pressure gradient created using and the range of the channel width d=25÷100 l.u.

0

0,05

0,1

0,15

0,2

0 25 50 75 100

fl
o

w
 r

at
e

, l
.u

./
t.

u
.

channel width, l.u.

simulated

predicted

CHAPTER 5: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR POISEUILLE FLOW

99

According to [79] good agreement between the theory and this type of computer simulation

experiment are in coincidence with each other. Only when the width of the channel is

small (less than – it is not a case of the computer simulations presented in this

chapter), or when both and are large, then the theory and computer simulation results

disagree. In a case of large value of the channel width the predicted flow rate is fasten (see

Figure 43).

Two more computer simulations were implemented and evaluated for verification of above

mentioned statement (i.e. for , and).

An anomalously slow flow and its contraposition with predicted flow rate took place

according to the limited range of possible velocities that Lattice Gas Cellular Automata is

being able to simulate (see Appendix L,). The limited value of the flow rate

is about The flow rates greater than that value are in contraposition with an

equation expressing the plane Poiseuille flow, because it is too fast for the assumption of

fluid incompressibility.

Verification of the Darcy's law is presented in Appendix M. The linear dependence between

flow rate in a steady state and pressure gradient is proved for all simulated channel widths

 . Values of the pressure gradient for various flow rates are close to the line of linear

regression. In graphs in Appendix M the relationship between geometry of the channel and

pressure gradient is presented. If we consider the same length of the channel (it is

in that series of simulations) and the same flow rate (for example), it is

obvious the wider is the channel width the smaller is the pressure gradient.

Thus, proposed by FHP-1 Lattice Gas Cellular Automata algorithm model is able to simulate

fluid flow between two parallel plates with periodic boundary conditions. Results, obtained

from twenty experiments had proven the parabolic velocity profile of the flow and the

Figure 43: Predicted and simulated volumetric flow rate as a function of channel width for a
pressure gradient created using and the range of the channel width d=25÷200 l.u.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 25 50 75 100 125 150 175 200

fl
o

w
 r

a
te

, l
.u

./
t.

u
.

channel width, l.u.

simulated

predicted

CHAPTER 5: VARIFICATION OF THE FHP-1 LGCA ALGORITHM FOR POISEUILLE FLOW

100

Darcy's law. Those simulation outputs are in a good agreement with results obtained by

Rothman [79]. The range of admissible dimensions of the space for fluid flow simulation is

obtained. First, the pressure gradient and the geometry of the porous media must be chosen

in accordance to the limit of the flow rate (). It is not recommended to use

maximum probability of force creation () when the plane Poiseuille flow is

simulated. An appropriate range of channel widths for that type of flow is obtained

().

Models of fluid flow in porous media under different conditions could be designed with the

same basic approach outlined in Chapter 5.

CHAPTER 6: COMPUTER SIMULATION OF THE TWO-DIMENSIONAL FLUID FLOW THROUGH
POROUS STRUCTURES

101

6. COMPUTER SIMULATION OF THE TWO-DIMENSIONAL FLUID
FLOW THROUGH POROUS STRUCTURES

In previous chapters Lattice Gas Cellular Automata were described from their essence. The

developing of the own LGCA model f or fluid flow simulation, its verification under different

conditions and comparison between particular theoretical assumptions and results obtained

by means of computer simulations was performed. As it was described in Chapter 4 Lattice

Gas Cellular Automata model is able to describe fluid movement at its molecular level. It can

be also expose that the individual particles moving, in a study of diffusion phenomenon for

example, can be studied using LGCA model. Experiments presented in the Chapter 5 have

proved that the same model using the same algorithm can describe also the fluid flow and

finally it can substitute the hydrodynamic equation including Navier-Stokes equations.

In this chapter I will try to verify the particular hypothesis related to the curious behaviour of

the fluid flow that was not proved yet. Let consider the filtration through assembled filter –

i.e. filter consists of many pleats. What directions the fluid flows inside the assembled filter?

In order to answer the question the developed FHP-1 Lattice Gas Cellular Automata model is

used as the numerical and visualization technique.

6.1. Theoretical assumption

Filtration is defined as a mechanical or physical operation used for the separation of solids

particles from fluid ones. Filtration is based on a fluid flow phenomenon, when fluid flows

from the high to the low pressure side of filter leaving some material behind. Nowadays,

many types of filters exist. There are, for example, granular filters, membrane filters and

filters based on fibrous materials.

According to [84] relationship between filtration characteristics and geometry of the porous

structure is given by Darcy's law, which is valid for the laminar regime of fluid flow. In

contrast to Equation (39), the Darcy's law includes geometric characteristics of filter:

(40)

where is a filtration area and is a filter thickness. The internal structure of porous

medium is given by the permeability coefficient . From the Equation (40) it is obvious, that

pressure gradient is linearly dependent on a filtration area.

Filters based on a pleated porous material are required because of their high efficiency,

durability and low pressure drop. These properties are obtained because of several times

bigger filtration area, which decreases the pressure gradient. Brown in his work [85] has

hypothesized that the good filtration characteristics of assembled filters are obtained

because the specific orientation of the fluid flow inside the pleats of filters. Brown explains

his assumption as following: “...the special profile of the fluid velocity field is given by the

CHAPTER 6: COMPUTER SIMULATION OF THE TWO-DIMENSIONAL FLUID FLOW THROUGH
POROUS STRUCTURES

102

minimization of kinetic energy dissipation due to the viscous friction”. In other words, fluid

moves the path towards the least resistance. For that reason, the flow of the filtered

dispersion tries to orient itself perpendicularly to the filter area in order to minimize the

distance, which has to be pass in a side of porous matter (see Figure 44).

Hrůza [84] has studied the filtration characteristics of assembled filters, produced from

nonwoven materials (spunbond or/and meltblown). Some experiments were focused on

using nanofibre layers in such type of filters. He has obtained the results that confirm the

Brown's idea, but do not demonstrate the fluid path through a assembled filters.

Unfortunately, no visual proofs of the phenomenon were found. Only theoretical

assumption, presented by Brown, was found in literature. Thus, the aim of the computer

simulation proposed by me is to prove the convolution of the flow direction at the boundary

with the random porous media imitating the structure of nonwoven textile.

6.2. FHP-1 Lattice Gas Cellular Automata algorithm for fluid
flow through porous medium simulation

The FHP-1 LGCA algorithm for Poiseuille flow simulation described in detail in the Chapter

5.2, is used for a simulation of the fluid flow through a porous medium. The newly

developed parts of the algorithm are described in this chapter. The full code of the algorithm

is presented in the Appendix N. Supplementary algorithms, which are used for averaging and

graphical representation of output data, are presented in the Appendix O.

6.2.1. Code fragment 1 – Header files and initialization of the
simulation domain

Compared to the FHP-1 LGCA algorithm, developed in accordance to Poiseuille flow

simulation, special variables and parameters are declared in this part of the algorithm:

 and corresponds to the and components of velocity vectors.

They are calculated in all lattice nodes, where moving particles are occurred.

Figure 44: Theoretical flow pattern through pleats at assembled filter

CHAPTER 6: COMPUTER SIMULATION OF THE TWO-DIMENSIONAL FLUID FLOW THROUGH
POROUS STRUCTURES

103

 , and are used for porous medium generation.

 is a parameter that determines the angle, at which porous medium crosses

the vertical channel axis.

 is a probability of moveless particles generation in a position of

porous medium

 – determines the one half of the porous medium thickness. Hense, the width of the

porous medium is .

 and correspond to the number of empty lattice nodes and moveless

particles respectively calculated in a position of porous medium.

 , , are parameters, which represent a colour of moving particles,

moveless ones and a colour of empty lattice nodes at a graphical output.

One more subroutine has to be declared compare to the FHP-1 LGCA algorithm, designed for

Poiseuille flow simulation. It is which calculates and components of the

moving particles velocity.

6.2.2. Code fragment 3 – Creation of the simulation domain

The channel with upper and bottom solid boundaries is created (see Figure 45). The length

of the channel is , the width First, the random porous

structure is generated in a whole area of the simulation domain. Frequency of moveless

particles occurrence is controlled by the parameter . Boundaries of the

porous medium are determined according to parameters and thickness of the porous

medium then. All lattice nodes behind lines and are kept at their original value, i.e.

zero. As a result, porous medium of a certain thickness and porosity is generated inside the

channel at a certain angle towards to the vertical channel axis.

Figure 45: The geometry of two-dimensional channel for fluid flow through porous medium
simulation: is the length and is the width of the channel, is an inclination angle of the porous
medium, is a one half of the porous medium thickness, 1 – periodic boundary conditions, 2 – the

imaginary ventilator. The vertical dot line presents the vertical axis of the channel

CHAPTER 6: COMPUTER SIMULATION OF THE TWO-DIMENSIONAL FLUID FLOW THROUGH
POROUS STRUCTURES

104

6.2.3. Code fragment 6 – The main cycle of the algorithm

The main cycle of the algorithm has the same structure as it was presented in the previous

algorithm (see Chapter 5.2.4, Figure 37). In contrast to previous algorithm the calculation of

the - and - components of particles velocity occurs in a steady state region of the flow.

This operation is described in details in following Chapter 6.2.4.

6.2.4. Code fragment 9-B – Distribution of velocity vectors of moving
particles

After the steady state of the flow is achieved, and components of a total velocity vector

in each lattice node starts. The subprogram is being used for this reason. It

is working according to following steps:

1. Selecting the lattice node with coordinates and (except lattice nodes occupied by

solid moveless particles).

2. Calculation of the component of the total velocity in the lattice node.

3. Calculation of the component of the total velocity in the lattice node.

4. Repeating previous steps for all lattice nodes systematically.

This calculation is carried out at every time step in a steady state of the fluid flow. This

approach allows to obtain a set of random states of the simulated system. Subsequently,

application of averaging over many random states provides more accurate estimation of

mean values.

Presented computer simulation allows to observe the distribution of velocity vectors. The

length of each observed vector corresponds to the time and space-averaged velocity of

moving particles in a node inside the simulation domain. Space-averaging is performed using

the first of supplementary algorithms in the direction of Appendix O. Velocities of particles

are space-averaged inside the squares. The last supplementary algorithm is

used for a graphical representation of data averaged in space and time. For every lattice

node the length of the velocity vector is calculated according to the Pythagorean theorem,

where sides of the right triangle are and components of the velocity vector.

6.3. Simulation setup

The two-dimensional channel geometry is employed for a chosen set of computer simulation

experiments. Overhead and bottom channel sides are composed of moveless particles which

imitated channel's walls, similarly to the simulation of fluid flow in a channel. The length of

the channel is lattice units () and due to the usage of the periodic boundary

conditions the infinitely long channel in direction is in fact created. The width of the

channel is

CHAPTER 6: COMPUTER SIMULATION OF THE TWO-DIMENSIONAL FLUID FLOW THROUGH
POROUS STRUCTURES

105

The design of the assembled filter is slightly simplified: fluid has flown only trough the one

part of a filter pleat. For that reason, porous medium is placed in the middle part of the

channel at the defined angle. Its thickness is Generated fluid particles are directed

into the free space of the simulation domain as well as between moveless particles of solid

walls and porous medium. In order to attend viscous flow (i.e. three particles collisions) the

average density of particles per node is used in each simulation. The bounce-back type of

reflective boundary conditions is pre-set for the fluid particle collisions with moveless

particles at channel walls as well as for fluid particle collisions with moveless particles of the

porous material. Pressure gradient is created in a same way as it was described in previous

computer simulation (see Chapter 5.1). The exact simulation setups are presented in the

Table 34.

Table 4: The list of fluid flow through porous medium computer simulations and their setups

 Size of the channel,

average
density,
m.u./l.u

.

 /
pfc28

Param
eter

 29

Porosity of
the porous

medium

α Time of
the

simulatio
n,

The
length

The width

1. 450 250 2 / 3 30 / 0,3 0,6 0,95 15° 10000

2. 450 250 2 / 3 30 / 0,3 0,6 0,9 15° 10000

3. 450 250 2 / 3 30 / 0,3 0,6 0,85 15° 10000

4. 450 250 2 / 3 30 / 0,3 0,6 0,7 15° 10000

5. 450 250 2 / 3 30 / 0,3 0,6 0,95 35° 10000

6. 450 250 2 / 3 30 / 0,3 0,6 0,9 35° 10000

7. 450 250 2 / 3 30 / 0,3 0,6 0,85 35° 10000

8. 450 250 2 / 3 30 / 0,3 0,6 0,7 35° 10000

9. 450 250 2 / 3 30 / 0,3 0,6 0,95 55° 10000

10. 450 250 2 / 3 30 / 0,3 0,6 0,9 55° 10000

11. 450 250 2 / 3 30 / 0,3 0,6 0,85 55° 10000

12. 450 250 2 / 3 30 / 0,3 0,6 0,7 55° 10000

This table includes value of the the following parameters:

 Size of the channel - it is presented by its length and width ;

 Average density – corresponds to the average number of moving particles in the

lattice node;

 – parameter declared in the algorithm; value (probability of force

creation) is calculated according to the value of force;

 - is calculated according to the simulation outputs , ,

 . This parameter was explained in details in the Chapter 5.4.

28 Parameter was declared in the algorithm; value (probability of force creation) is calculated.
29 Parameter was calculated according to the simulations outputs , ,

CHAPTER 6: COMPUTER SIMULATION OF THE TWO-DIMENSIONAL FLUID FLOW THROUGH
POROUS STRUCTURES

106

 Porosity of the porous medium – is calculated as a ratio between the number of

 nodes and sum of and nodes. Parameters and are

declared in the algorithm;

 α – it is an inclination angle of the porous medium relative to the axis OY of the

channel;

 Time of the simulation – it is the total time period of the simulation.

It is evident from the Table 3 that settings for these computer simulations vary in the value

of porosity of the porous medium and the angle, at which the porous medium crossed the

vertical channel's axis. Porosity values, chosen for this experiment, correspond to real

porosities of nonwoven materials (i.e. 0,85 – 0,95). Porosity 0,7 approximates the porosity of

nanofibre layers (porosity of nanofibre layers ranging between 0,5 and 0,85). Simulated

structures of porous media are shown in Figure 46.

6.4. Results and discussion

Twelve independent computer simulations were performed according to the Table 4. The

results of those simulations are obtained by specifying the parameter which

expresses an average change of the component of the particle momentum at a particular

node during one time step. Detailed explanation of the parameter was presented in

Chapter 5.4. Time evolution of the FHP-1 LGCA model for fluid flow in porous medium

modelled with a reduced simulation domain (,) is introduced in

Appendix P. The low probability of channels occupation is deliberately chosen for verification

Porosity 0,95 Porosity 0,9

Porosity 0,85 Porosity 0,7

Figure 46: Random structures of porous media generated in the computer simulation experiment.
Porosity ranging from 0,7 to 0,95

CHAPTER 6: COMPUTER SIMULATION OF THE TWO-DIMENSIONAL FLUID FLOW THROUGH
POROUS STRUCTURES

107

of particles collisions and periodic boundary conditions. The average density is 0,2 particles

per a lattice node here. Simulated system is monitored for

First, all simulated systems are left to achieve the steady state. The steady states of the fluid

flow are achieved after about (see Appendix Q). Achieving of a steady

flow inside the reduced simulation domain is obvious from the Appendix R. Simulation

domain of reduced size, where the length of the channel and the width

 are used. The average density is equal to 3 particles per lattice node.

System's configuration are recorded after every ten time steps for , i.e. when

the steady state of the flow is reached.

In real simulations the smaller value of the porosity the system has and the higher inclination

angle of the porous medium (i.e , see Figure 45) is simulated (i.e. the biggest surface area

of the porous medium), the longer time it takes to reach the steady flow. Flow rates

calculated in steady states as a function of the porosity and the inclination of porous

medium are presented in Figure 47. The increasing of both the porosity and fluid flow rate is

obvious from this figure.

From the Darcy's law (see Equation (40)), fluid velocity is linearly dependant on pressure

gradient applied at porous medium. It is obvious from the Chapter 5.4 that pressure gradient

in this type of simulation models is directly dependant on value of parameter and

decreases with surface area to which it is applied. Because is constant in all simulation

experiments, the pressure gradient is mainly influenced by the inclination of the porous

medium. With increasing α, surface area of the porous medium increased too. Relationship

between the inclination angle α and resulting pressure gradient is presented in Figure 48.

This relationship was introduced by Brown [85] and experimentally verified by Hrůza [84].

According to Brown, the pleating of assembled filters increases the area of the material that

can be accommodated in a fixed volume and so it reduces the filtration velocity. Therefore,

Figure 47: Fluid flow rate as a function of porosity and inclination of porous medium for pressure
gradient created using

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,6 0,7 0,8 0,9 1

fl
o

w
 r

a
te

, l
.u

./
t.

u
.

porosity

α=15°

α=35°

α=55°

CHAPTER 6: COMPUTER SIMULATION OF THE TWO-DIMENSIONAL FLUID FLOW THROUGH
POROUS STRUCTURES

108

the pressure drop at fixed volume flow is reduced too. That is why the pressure drop

decreases as the number of pleats per unit length grows” [85].

Velocity fields are monitored and expressed by graphical manner for all setups of the

simulated system for better understanding of the phenomenon which was introduced in

Chapter 6.1. Velocity vectors are obtained by averaging over squares on the

lattice and over of the steady flow state. In this way the velocity vector

arrays are obtained.

Several unique features of flow through a porous medium are illustrated in Figure 49. For

better realization of the velocity vectors two colours are used. If the velocity vector points in

a first or second quadrants (i.e. it is from the interval), then it obtains green colour,

other way, it turns into red. It is evident that on the interface between the free channel area

and the porous structure appears a reorganization of fluid velocity directions. The flow

makes an impact on a solid parts of the porous medium, thus fluid particles do try to stream

to the pores inside the porous material. It is possible to see (see Figure 49), that the fluid

enters into the porous material perpendicularly. The same results are obtained when the

inclination angle of porous medium is 15o, 35o and 55o and the porosity is 0,95 or 0,9 or

0,85. Some regions of the porous medium was relatively stagnant. The local fluid flow in

“blind pores” close to channels walls is zero.

An interesting behaviour of the flow is monitored for porous structure with porosity 0,7 (see

Figure 50). The same uniform body force at the left boundary of the channel () is

created, but local velocity vectors are smaller compared to three previous results. Stagnant

area covers here the whole space of the porous medium. The local fluid flow in such a dense

porous structure is close to zero. It is obvious from previous results, that flow rate for this

Figure 48: Pressure gradient created using as a function of inclination angle α indicates the
orientation of the porous medium in a channel

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0 15 30 45 60

p
re

ss
u

re
 g

ra
d

ie
n

t,
 m

.u
.*

(l
.u

.)
-1

*(
t.

u
.)

-2

α, °

CHAPTER 6: COMPUTER SIMULATION OF THE TWO-DIMENSIONAL FLUID FLOW THROUGH
POROUS STRUCTURES

109

value of porosity is almost zero. Winding paths are evident in front of, and behind the

porous medium. Circulating eddies are evident in those parts of the channel.

α=15°

α=35°

α=55°

Figure 49: Fluid velocity directions inside the declined porous material with random structure for
porosity 0,95 and α=15°, 35° and 55°. Region BP corresponds to “blind pores” of the porous medium

BP

BP

BP

BP

BP

CHAPTER 6: COMPUTER SIMULATION OF THE TWO-DIMENSIONAL FLUID FLOW THROUGH
POROUS STRUCTURES

110

The same results, as described in this chapter, were obtained for the whole range of porosity

and inclination angle α introduced in the Table 4 (see Appendix S). These computer

simulation results are qualitative only, but they show the nature of the phenomenon in

question.

The reorganization of fluid flow inside the declined porous structure using the designed FHP-

1 LGCA model was proved. Results obtained in this computer simulation sets are in a good

agreements with results obtained by Hrůza [84] and conform the hypothesis of Brown [85].

Figure 50: Fluid velocity directions inside the channel and declined porous material with random
structure for porosity 0,7 and α= 35°

CONCLUSIONS

111

CONCLUSIONS

In a frame of this work a two-dimensional non-deterministic Lattice Gas Cellular Automata

algorithm based on the FHP-1 LGCA model was developed and described in detail. Algorithm

was created in a C++ programming language, Borland version 4.0. Basic skeleton of the

algorithm and function of its particular code fragments were minutely described. The full

text of the algorithm including all technical aspects was introduced in the appendix part of

the thesis. The basic Lattice Gas Cellular Automata algorithm has an universal structure and

was easily modified for various versions. Phases of the LGCA evolution process (collision and

propagation) take place in subroutines. If boundary conditions are changed, it does not

interfere into the main part of the algorithm. Due to adaptation of the hexagonal lattice to

the square one and using different arrangement of neighbourhood in add and even rows of

the lattice calculations were more complicated. On the other hand, this approach allows

productively to utilize all points of the simulation domain. The main feature of the algorithm

is its non-deterministic evolution in time. During the collision phase new state of a finite

automaton is always generated randomly according to the conservation of mass and

momentum in the lattice node. No predefined matrix of states changes was used. This

property allows to model the fluid flow in more realistic way.

The two-dimensional Lattice Gas Cellular Automata algorithm, developed in a frame of this

work, was verified using two independent tests. First of them, Brownian motion, simulates

steady flow and was aimed on a monitoring of the one moving particle among many other

fluid particles. Brownian motion was simulated inside the simulation domain of the size

 or for the period of time . By

mean of this test the set of Brownian particle's paths was obtained. It was noted that paths

walked by the Brownian particle are far from linear. Many movements round and round or

returning back to the starting point were monitored. There is a linear relationship between

the mean square distance of the Brownian particle and time according to theoretical

assumption. Based on two computer simulation experiments, varied in density of lattice gas,

the theoretical assumption was proved. It can be argued that algorithm is working in a right

way according to the results obtained in that test. Simulated system exhibits behaviour close

to the real one. To limit the degree of data fluctuation around the linear regression the

usage of biggest size of the simulation domain and extension of the simulation period were

suggested. This simulation can be used not only for the verification of a newly developed

algorithm. It allows the study of diffusion phenomena including calculation of the diffusion

coefficient. Another possible usage of the created algorithm is modelling of polymer

molecules shapes.

The Lattice Gas Cellular Automata algorithms, developed for fluid flow modelling, are

predominantly verified by means of Poiseuille flow simulation. It was noticed, Poiseuille flow

simulation is the most popular benchmark test in a case of a fluid flow study. The special

Lattice Gas Cellular Automata algorithm based on the FHP-1 LGCA model was designed for

that reason and described in details. The algorithm supposes the simulation of

CONCLUSIONS

112

incompressible fluid flow between two stationary parallel plates driven by constant body

force. The bounce-back type of free reflections was used along the walls of a channel and

periodic boundary conditions were applied at the both vertical boundaries of the channel.

Behaviour of the simulated system was studied under various simulation setups. The main

aim of the test was obtaining the parabolic profile of the flow. Settings for Poiseuille flow

computer simulations were varied due to the channel width and pressure gradient created

using certain probability of force creation at the left boundary of the channel. So, twenty

different parabolic profiles of flow velocity were obtained. The slower fluid flow was

simulated, the smoother velocity profile was obtained. The channel width had a little effect

on a shape of the velocity profile. The smaller the channel width was simulated, the more

peaked velocity profile was obtained. From physical point of view, correctness of the

developed LGCA algorithm for fluid flow simulation is noticeable not only from the shape of

velocity profiles but also from the graphs, where the predicted and simulated relationship

between flow rate and channel width were compared. Good agreement between prediction

and simulation results was here observed for a range of channel width

 , and flows created by the gradient as a result of .

These results provide information about the appropriate settings of future simulations.

Furthermore, based on a computer simulation outputs the Darcy's law was verified. The

linear dependence between flow rate in a steady state and pressure gradient was proved for

all simulated channel width. Finally, all outputs of the Poiseuille flow simulation are in a

good agreement with the Rothman's simulation experiment.

Computer simulation of a physical phenomenon, the existence of which has not been

demonstrated experimentally using accessible visualization techniques, was presented in the

last chapter of the thesis. It concerned to the fluid flow through assembled filters. The

theoretical assumption that special orientation of the fluid inside those filters leads to the

good filtration characteristics of them was founded in literature [85]. Relationship between

filtration characteristics and geometry of the internal structure of the filter was empirically

obtained by Hrůza [84]. But his experiments did not prove the convolution of the flow

direction at the boundary with porous media. Developed LGCA algorithm was modified for

that study. Based on twelve computer simulations the reorganization of the fluid flow inside

declined porous structure was obtained for different simulation setups. Influence of the

inclination angle and porosity of the porous medium was studied. The results obtained from

the computer simulation have shown, that proposed LGCA algorithm is suitable for a

theoretical prediction of a fluid flow inside porous structures and also it can be used as a

visualization tool.

Based on a study that was done in a frame of this work, the suitability of Lattice Gas Cellular

Automata approach for fluid flow in porous structure modelling was demonstrated. The fluid

flow in difficult multilayer textile structure is possible to study and visualize using modern

microscopic techniques and developed LGCA algorithm. However there are a number of

limitations in the current study. In a case of real porous media study is very difficult to

CONCLUSIONS

113

implement “good” boundary conditions for curved walls – always some degree of

approximation should be here because of using the regular type of lattice.

Future work

I would like to aim my future work toward those directions:

(i) There is a need to calibrate the developed LGCA model and to determine the

physical units of the simulation system for the fluid flow in porous media study.

The algorithm for Brownian motion simulation can be used for calibration. It is

possible to calibrate length unit of the system based on knowledge of a mean

free path of lattice gas particle [92].

(ii) The medical applications of nanofiber materials become topical with technical

progress, development and production of nanoporous structures. Monte Carlo

models and especially Lattice Bolzmann model begin to be popular. They are used

as a simulation tool for the study of cell proliferation in scaffolds or flow in 3D

porous scaffold materials.

REFERENCES

114

REFERENCES

[1] Hartmann, Stephan. The World as a Process: Simulations in the Natural and Social

Sciences. [book auth.] Rainer et al. (eds.) Hegselmann. Modeling and Simulation in the Social

Sciences from the Philosophy of Science Point of View, Theory and Decision Library.

Dordrecht : Kluwer, 1996, pp. 77-100.

[2] Stevenson, Timothy James. Simulation of the vehicle-pedesterian interaction. Ph.D

thesis: University of Canterbury, Mechanical Engineering, 2006. pp. 44-45.

[3] Nance, Richard E. and Sargent, Robert G. Perspectives on the evolution of simulation.

Operations Research. January-February 2002, Vol. 50, Issue 1, pp. 161-172.

[4] Rice, Stephen V.; Marjanski, Ana; Markowitz, Harry M.; Bailey, Stephen M. Object-

Oriented SIMSCRIPT. Proceedings of the 37th Annual Simulation Symposium. Arlington,

Virginia, 2004, pp. 178-186.

[5] Buxton, John N. a Laski, John G. Control and Simulation Language. The Computer

Journal. 5, 1962, Vol. 3, pp 194-199.

[6] Holmevik, Jan R. Compiling SIMULA: A Historical Study of Technological Genesis. IEEE

Annals Of the History of Computing. 16, 1994, Vol. 4, pp 25-37.

[7] Reitman, Julian. [ed.] Abrams, M., Haigh, P. and Comfort, J. Keynote Address: A concise

history of the ups and downs of simulation. Proceedings of the Winter Simulation

Conference. 1988.

[8] Shinde, Sagar. Introduction to Modeling and Simulation: Historical Perspective.

Simulation & Modeling Team. [Online] [Cited: 01.08.2008]

http://www.uh.edu/~lcr3600/simulation/historical.html.

[9] Maria, Anu. [ed.] Andradóttir, S. et al. Introduction to modeling and simulation.

Proceedings of the 29th conference on Winter simulation. Atlanta, Georgia, United States:

IEEE Computer Society, 1997. pp. 7-13. ISBN: 0-7803-4278-X.

[10] Fritzson, Peter. Principles of Objective-Oriented Modeling ans Simulation with Modelica

2.1. : Wiley-IEEE Press, 2004. pp. 3-18. ISBN 0-471-471631.

[11] Stochastic process. Wikipedia – The Free Encyclopedia. [Online] [Cited: 03.11.2008]

http://en.wikipedia.org/wiki/Stochastic.

[12] Jelen, J. Determinismus a nahoda. [book auth.] Adamova, L., Dudak, V., Jelen, J. Kapitoly

z filosofie vědy. Praha: ČVUT, 1993.

[13] Frigg, Roman and Hartmann, Stephan. Models in Science. Stanford Encyclopedia of

Philosofy. [Online] [Cited: 20.08.2008] http://plato.stanford.edu/entries/models-science/.

[14] Humphreys, Paul. Numerical Experimentation. [book auth.] Suppes, Patrick and

Humphreys, Paul. Patrick Suppes: Scientific Philosopher. Dordrecht: Kluwer Academic

REFERENCES

115

Publishers, 1994, Vols. 2. Philosophy of Physics, Theory Structure, and Measurement Theory,

pp. 103-121.

[15] Wikipedia - the Free Encyclopedia. Physical body. [Online] May 5, 2009. [Cited: May 9,

2009.] http://en.wikipedia.org/wiki/Physical_body.

[16] Zeng, X., et al. Computational Textile: Hardcover, 2007. ISBN: 978-3-540-70656-4.

[17] Lukas, David and Ocheretna, Larysa. The cellular automata lattice gas approach for fluid

flows in porous media. [ed.] N. Pan and P. Gibson. Thermal and moisture transport in fibrous

materials. Cambridge: Woohnead Publishing Limited, 2006, pp. 357-401.

[18] Leisen, Johannes, Beckham, Haskell and Farber, Peter. Micro-Flow in Textiles: National

Textile Center, 2005. Annual Report of NTC Project No. F04-GT05.

[19] Halasová, Andrea. Příspěvek k hodnocení prodyšnosti oděvních sendvičů v podmínkách

rychle proudicího vzduchu. Liberec: Textilní fakulta, Technická univerzita v Liberci, 2007.

8/2007.

[20] Roy, Subrata; Raju, Reni; Chuang, F. Helen; Cruden, A. Brett; Meyyappan, M. Modeling

gas flow through microchannels and nanopores. Journal of Applied Physics. Vol. 8, Issue 93,

2003, pp. 4870-4879.

[21] Truesdell, C. a Muncaster, R.G. Fundamentals of Maxwell's Kinetic Theory of a Simple

Monatomic Gas. New York: Academic Press, 1980. ISBN 0127013504.

[22] Brdička, Miroslav; Samek, Ladislav; Sopko, Bruno. Mechanika kontinua. Praha:

ACADEMIA, 2005. pp. 610-621. ISBN 80-200-1344-X.

[23] Ландау, Л.Д.; Лифшиц, Е.М. Гидродинамика. Москва: Наука, 1988. pp. 71-79. Vol.

том VI.

[24] Feynman, Richard P.; Leighton, Robert B; Sands, Matthew. Feynmanovy přednášky z

fizyky s řešenými přiklady: FRAGMENT, 2001. pp. 740-746. Vol. 2/3. ISBN 80-7200-420-4.

[25] Clay Mathematics Institute. The Millennium Prize Problems. [Online] [Cited: 05.08.2010]

http://www.claymath.org/millennium/.

[26] Киттель, Чарльз. Статестическая термодинамика. Москва : Наука, 1977. pp. 330-

331.

[27] Fredkin, Edward. Digital Mechanics - An informational process based on reversible

universal cellular automata. Physica D: Nonlinear Phenomena. 1990, Issues 1-3, 45. pp. 254-

270.

[28] Hillis, Daniel W. Richard Feynman and the Connection Machine. Physics Today, 1989,

pp. 78-83.

[29] Wolfram, Stephen. Statistical mechanics of cellular automata. Reviews of Modern

Physics, Vol. 55, Issue 3, 1983, pp. 601-644.

REFERENCES

116

[30] Тоффоли, Т. a Н., Марголус. Машины клеточных автоматов. Москва: Мир, 1991.

Пер. с англ. ISBN: 5-03-001619-8.

[31] Wolf-Gladrow, Dieter. Lattice gas cellular automata and lattice Boltzmann models: an

introduction. Berlin: Springer-Verlag, 2000. ISBN: 3-540-66973-6.

[32] Hyötyniemi, Heikki. Complex systems: science on the edge of chaos. Helsinki: Helsinki

University of Technology, Control Engineering Laboratory, Report 145, 2004, pp. 73-87,

[33] von Neumann, John. The general and logical theory of automata. [book auth.] Taub,

A.H. John von Neumann Collected Works. New York: Pergamon Press, Vols. Design of

Computers, Theory of Automata and Numerical Analysis, 1963, pp. 288-329.

[34] von Neumann, John. The theory of self-reproducing automata. [ed.] Burks A.W. Urbana:

University of Illionois Press, 1966.

[35] Zuse, Konrad. Rechnender Raum. Braunschweig: Vieweg & Sohn, 1969. ISBN 3-528-

09609-8.

[36] Translation, MIT Technical. Calculating Space - Konrad Zuse. Cambridge : Massachusetts

Institute of Technology , 1970.

[37] Sarkar, Palash. A brief history of cellular automata. ACM Computing Surveys. Vol. 32,

Issue 1, 2000, pp. 80-107.

[38] Gardner, Martin. Mathematical games: The fantastic combinations of John Conway's

new solitaire game "Life". Scientific American. Vol. 223, Issue 4, 1970, pp. 120-123.

[39] Lindenmayer, Aristid. Mathematical models for cellular interaction in development I.

Filaments with one-sided inputs. Journal of Theoretical Biology. Vol. 18, Issue 3, 1968, pp.

280-315.

[40] Rosen, Robert. Pattern Generation in Networks. Progress in Theoretical Biology. Vol. 6,

1981, pp. 497-525.

[41] Stanley, H. Eugene. Introduction to Phase Transitions and Critical Phenomena. Oxford:

Oxford University Press, 1971. ISBN: 01995014588.

[42] Kadanoff, P. Leo and Swift, Jack. Transport coefficients near the critical point: a master-

equation approach. Physical Review. Vol. 165, Issue 1, 1968, pp. 310-322.

[43] Rothman, Daniel H. and Zaleski, Stéphane. Lattice-gas models of phase separation:

interfaces, phase transitions, and multiphase flows. Reviews of Modern Physics. Vol. 66,

Issue 4, 1994, pp. 1417-1479.

[44] Hardy, J., Pomeau, Y. and de Pazzis, O. Time evolution of a two-dimensional model

system. I. Invariant states and time correlation functions. Journal of Mathematical Physics.

Vol. 14, Issue 12, 1973,pp. 1746-1759.

[45] Lawson, Mark V. Finite automata. Chapman & Hall / CRC Press, 2003. ISBN: 1-58488-

255-7.

REFERENCES

117

[46] Rivet, Jean-Pierre and Boon, Jean Pierre. Lattice Gas Hydrodynamics. Cambridge:

Cambridge University Press, 2001. ISBN: 0-521-41944-1.

[47] Кудрявцев, В.Б., Алёшин, С.В. и Подколзин, А.С. Введение в теорию автоматов.

Москва: Наука, 1985.

[48] Chytil, M. Automaty a gramatiky. Praha: SNTL - Nakladatelství technické literatury,

1984. pp. 15-21.

[49] Chopard, Bastien and Droz, Michel. Cellular Automatata Modeling of Physical Systems.

Cambridge: Cambridge University Press, 2005. ISBN 13-978-0-521-67345-7.

[50] Frisch, U, Hasslacher, B and Pomeau, Y. Lattice-gas automata for Nevier-Stokes

Equation. Physical Review Letters. Vol. 56, Issue 14, 1986, pp. 1505-1508.

[51] Chen, Shiyi, Doolen, Cary D. and Eggert, Kenneth G. Lattice-Boltzmann fluid dynamics.

A versatile tool for multiphase and other complicated flows. Los Alamos Science. Vol. 22,

1994, pp. 99-111.

[52] Boublík, Tomáš. Statistická termodynamika. Praha : Academia, 1996. ISBN 80-200-0566-

8.

[53] Discretization. Wikipedia – the free encyclopedia. [Online] [Cited: 28.01.2008]

http://en.wikipedia.org/wiki/Discretization.

[54] Diskretizace. COTOJE. [Online] [Cited: 01.02.2008] Zdroj: Malá Československá

encyklopedie. www.cotoje.cz.

[55] Cetin, Nurhan. Discretization methods. Ph.D thesis, ETH Zurich, 2000. [Online] [Cited:

28.01.2008] http://www.inf.ethz.ch.

[56] Cetin, Nurhan. Mesh generation. ETH Zurich. [Online] [Cited: 28.01.2008]

http://www.inf.ethz.ch/personal/cetin/thesis/thesis/node18.html.

[57] Edelman, Alan. Lecture notes in Applied Parallel Computing. MITOPENCOURSEWARE

Massachusetts Institute of Technology. [Online] 2004. [Cited: 29.1.2008] Chapter 11: Mesh

generation. http://ocw.mit.edu/OcwWeb/Mathematics/18-337JSpring-2005/LectureNotes/.

[58] Cho, W. and Patrikalakis, N.M. Computational geometry. Lecture 23. [Online] 2003.

[Cited: 29.1.2008] www.ocw.mit.edu.

[59] Wang, Z. J., et al. An enriched hybrid grid approach for unsteady multi-body flow

computation. AIAA Applied Aerodynamics Conference, 12th. 1994.

[60] Lattice (group). Wikipedia - the free encyclopedia. [Online] [Cited: 16.02.2008]

http://en.wikipedia.org.

[61] Lattice. The Free Dictionary. [Online] [Cited: 18.02.2008] www.thefreedictionary.com.

[62] Bravais lattice. Wikipedia - the free encyclopedia. [Online] [Cited: 18.02.2008]

http://en.wikipedia.org.

REFERENCES

118

[63] N. Mermin, David. Copernican Crystalography. Physical Review Letters. 1992, Vol. 68, 8,

pp. 1172-1175.

[64] Square lattice. Wikipedia - the free encyclopedia. [Online] [Cited: 01.05.2009]

http://en.wikipedia.org.

[65] Ali, S. Mustafa. Games of Proto-Life in Masked Cellular Automata (MCA). [book auth.]

R.J. Stonier and X.H. Yu. Complex Systems - Mechanism of Adaptation: IOS Press, 1994, pp.

77-84.

[66] Mersereau, Russell M. The processing of hexagonally sampled two-dimensional signals.

Proceedings of the IEEE. 67, 1979, pp. 930-949.

[67] Staunton, Richard C. a Storey, Neil. A comparison between square and hexagonal

sampling methods for pipeline image processing. Proc. SPIE. 1194, 1989, pp. 142-151.

[68] Weimar, Jörg R. Simulation with Cellular Automata. Berlin: Logos-Verlag, 1997. ISBN 3-

89722-026-1.

[69] Wolfram, Stephen. Cellular automata fluids 1: Basic theory. Journal of Statistical

Physics. Vol. 45, 3/4, 1986,pp. 471-526.

[70] Kroc, Jiri. Effect of lattice anisotropy on simulations of grain boundary movement in

two-dimensions. [ed.] Bacroix, B. and other. Materials Science Forum. Recrystallization and

Grain Growth, Vols. 467-470, 2004, pp. 1069-1074.

[71] Chen, S., Doolen, G.D. and Eggert, K.G. Lattice-Boltzmann fluid dynamics. Los Alamos

Science. 22, 1994, pp. 100-109.

[72] Nenadál, Karel; Václavíková, Dana. Turbo C: popis jazyka. Praha: Grada, 1991. ISBN 80-

85424-08-8.

[73] cplusplus.com. C Library. [Online] 2012. [Citace: 08.05.2012]

http://www.cplusplus.com/reference/clibrary/.

[74] Wolfram, Stephen. A New Kind of Science: Wolfram Media, Inc., 2002. ISBN 1-57955-

008-8.

[75] Roache, Patrick J. Verification and Validation in Computational Science and Engineering:

Hermosa Publishers, 1998. ISBN-10: 0913478083.

[76] Brownian motion. Wikipedia. The Free Encyclopedia. [Online] 2012. March 1. [Cited:

10.08.2012] http://en.wikipedia.org/wiki/Brownian_motion.

[77] Xing, Keqiang. Numerical Investigation on the Heat Transfer Enhancement Using

Micro/Nano Phase-Change Particular Flow. FIU Electronic theses and dissertations. [Online]

2007. [Cited: 11.03.2012.] http://digitalcommons.fiu.edu/etd/28/.

[78] Bespalko, Dustin John. Validation of the Lattice Boltzmann Method for Direct Numerical

Simulation of Wall-Bounded Turbulent Flows. PhD thesis. Kingston, Ontario, Canada:

Queen’s University, 2011.

REFERENCES

119

[79] Rothmann, Daniel H. Cellular automata fluids: a model for fluid flow in porous media.

Geophysics. 53, 1988, pp. 509-518.

[80] Chen, Shiyi, Doolen, G. D. and W.H., Matthaeus. Lattice gas automata for simple and

complex fluids. Journal of Statistical Physics. 64, 1991, Vol. No. 5/6, pp. 1133-1162.

[81] Yang, Z.L., et al. Evaluation of the Darcy's Law performance for two-fluid flow

hydrodynamics in a particle debris bed using lattice-Boltzmann model. Heat and Mass

Transfer. Vol. 36, 2000, pp. 295-304.

[82] Kadanoff, L.P., McNamara, G.R. and Zanetti, G. From automata to fluid flow:

comparison of simulation and theory. Physical Review A. Vol. 40, 1989, pp. 4527-4541.

[83] McNamara, G. and G., Zanetti. Direct measure of viscosity in a lattice gas model . MIT

Lab for Comp: Cellular Automata '86 (abstract), 1986.

[84] Hrůza, Jakub. Zlepšování filtračních vlastností vlákenných materiálů. Liberec: Fakulta

textilní, Technická Universita v Liberci, 2005. Disertační práce.

[85] Brown, R.C. Air filtration. An Integrated Approach to the Theory and Applications of

Fibrous Filters: Pergamon Press, 1993, pp. 62-64. ISBN 0 08 041274 2.

[86] Unit of time (second). BIPM metrology portal. [Online] [Cited: 11.01.2009]

http://www.bipm.org/en/si/si_brochure/chapter2/2-1/second.html.

[87] Regular grid. Wikipedia - the free encyclopedia. [Online] [Cited: 16.02.2008]

http://en.wikipedia.org.

[88] Unstructured grid. Wikipedia - the free encyclopedia. [Online] [Cited: 16.02.2008]

http://en.wikipedia.org.

[89] Meyer, Peter. Lattice Geometries. Hermetic Systems. [Online] 17 02 2001. [Cited: 11.11.

2008] http://www.hermetic.ch/compsci/lattgeom.htm.

[90] Hermann, Andreas, Lein, Matthias and Schwerdtfeger, Peter. The Search for the

Species with the Highest Coordination Number. Angewandte Chemie. Vol. 46, 2007, pp.

2444 –2447.

[91] Basis. Wikipedia- the free encyclopedia. [Online] [Cited: 12.02.2008]

http://en.wikipedia.org.

[92] Ocheretna, L., Lukas, D. Fluid modelling: from molecular level to continuum behaviour

in porous materials. 8 pages, Proceedings edited by Riitta Salonen & Pirjo Heikkilä, Autex

2007, Tampere, Finland, 26-28 June, ISBN 978-952-15-1794-5.

PUBLICATIONS OF AUTHOR

120

PUBLICATIONS OF AUTHOR

1. Ocheretna, L. Computer simulation of fluid flow through porous media. Strutex 03,
Liberec – Česká republika, 2003, pp. 65-69, ISBN 80-7083-769-1.

2. Očeretná, L. Teorie buněčných automatů. Klas modelu FHP. Písemná práce ke
zkoušce „Vybrané partie z teorie oboru“, FT TUL, Liberec 2003.

3. Ocheretna, L. Modelling of textile materials’ physical properties: usage of cellular
automata method. Strutex 04, Liberec – Česká republika, 2004, pp. 159-163, ISBN 80-
7083-891-4.

4. Lukáš, D., Košťáková, E., Chaloupek, J., Očeretna, L., Pociute, M. Instability of Liquid
Jets. Strutex 04, Liberec – Česká republika, 2004.

5. Očeretná, L. Testování generátoru pseudonáhodných čísel použitého v simulačním
modelu FHP. Písemná práce ke zkoušce „Přírodovědecký základ. Základy
matematické statistiky“, FT TUL, Liberec 2004.

6. Ocheretna, L. Modeling of generation and propagation of harmonic waves based on
a FHP lattice gas model. MOSIS'05, Hradec nad Moravicí, Česká republika, 2005, pp.
313-318.

7. Ocheretna, L., Lukáš, D. Modeling of ultrasound wave motion by means of FHP
lattice gas model. AUTEX'05, Portorož, Slovinsko, 2005, pp. 634-639.

8. Košťáková, E., Grégr, J., Očeretna, L. Nanovlákna a možnosti jejich uplatnění v
kompozitních materiálech. Vyztužené plasty 2005, Karlovy Vary, Česká republika
2005.

9. Ocheretna, L., Košťáková, E. Ultrasound and Textile Technology – Cellular Automata
Simulation and Experiments. Proceedings of ForumAcusticum, Budapest, Hungary,
29 Aug-2 Sep, 2005, pp. 2843-2848 .

10. Ocheretna, L. Using of lattice gas cellular automata for textile material’s physical
properties modelling. International Summer Conference-School “Advanced Materials
and Technologies”, Palanga, Lithuania, 27-31 August 2006, ISBN 9955-25-101-8.

11. Lukas, D., and Ocheretna, L. The cellular automata lattice gas approach for fluid
flows in porous media. [ed.] N. Pan and P. Gibson. Thermal and moisture transport in
fibrous materials. Cambridge: Woohnead Publishing Limited, 2006, pp. 357-401.

12. Ocheretna, L., Lukas, D. Fluid modelling: from molecular level to continuum
behaviour in porous materials. 8 pages, Proceedings edited by Riitta Salonen & Pirjo
Heikkilä, Autex 2007, Tampere, Finland, 26-28 June, ISBN 978-952-15-1794-5.

13. Ocheretna, L., Lukáš, D. Modelling of diffusivity by means of 2-D lattice gas cellular
automata model. Book of abstracts, 6th international conference Textile Science
(TEXSCI) 2007, Liberec, Czech Republic, 5-7 June, ISBN 978-80-7372-207-4.

14. Ocheretna, L. Diffusivity and diffusion coefficient in two-dimensional lattice gas
cellular automata. The 9-th International Conference-School “Advanced materials
and technologies”, Palanga, Lithuania, 27-31 August 2007, ISSN 1822-7759.

15. Ocheretna, L. Lattice gas cellular automata as an alternative for fluid flow modelling.
Písemná práce k SDZ, FT TUL, Liberec 2009.

PUBLICATIONS OF AUTHOR

121

16. Lukas ,D., Pan, N., Sarkar, A., Weng, M., Chaloupek, J., Kostakova, E., Ocheretna, L.,
Mikes, P., Pociute, M., Amler, E. Auto-model based computer simulation of Plateau–
Rayleigh instability of mixtures of immiscible liquids. Physica A: Statistical Mechanics
and its Applications, Volume 389, Issue 11, 1 June 2010, pp. 2164-2176.

LIST OF APPENDIXES

122

LIST OF APPENDIXES

Appendix A: The FHP-1 Lattice Cellular Automata model. The list of possible pre- and post-collision states of an

individual automaton .. 123

Appendix B: The FHP-2 Lattice Cellular Automata model. The list of possible pre- and post-collision states of an

individual automaton ... 129

Appendix C: Basic FHP-1 Lattice Gas Cellular Automata algorithm ... 139

Appendix D: Time evolution of the FHP-1 Lattice Gas Cellular Automata model... 148

Appendix E: The FHP-1 Lattice Gas Cellular Automata algorithm for Brownian motion simulation 152

Appendix F: Computer simulation of the Brownian motion. Evolution in time for 20 time steps 165

Appendix G: Computer simulation of the Brownian motion. Paths of the Brownian particle after 4000 time

steps. Experiment 1 ... 170

Appendix H: Computer simulation of the Brownian motion. Paths of the Brownian particle after 4000 time

steps. Experiment 2 ... 173

Appendix I: The FHP-1 Lattice Gas Cellular Automata for Poiseuille flow simulation 176

Appendix J: Verification of the FHP-1 Lattice Gas Cellular Automata algorithm for Poiseuille flow. Flow rate as a

function of time and velocity profiles for various width of the channel .. 190

Appendix K: Verification of the FHP-1 Lattice Gas Cellular Automata algorithm for Poiseuille flow. Parabolic

velocity profiles of the flow for various width of the channel and for various values of the parameter
 .. 195

Appendix L: Verification of the FHP-1 Lattice Gas Cellular Automata algorithm for Poiseuille flow. Flow rate as a

function of channel width for pressure gradient created by various .. 199

Appendix M: Verification of the FHP-1 Lattice Gas Cellular Automata algorithm for Poiseuille flow. Validation of

the Darsy's law for various width of the channel ... 201

Appendix N: The FHP-1 Lattice Gas Cellular Automata algorithm for simulation of the fluid flow through porous

media .. 203

Appendix O: The FHP-1 Lattice Gas Cellular Automata algorithm for simulation of the fluid flow through porous

media. Algorithms for daat processing and their graphical representation.. 219

Appendix P: Computer simulation of the fluid flow through declined porous media. Evolution in time for a

period of 20 time steps .. 224+

Appendix Q: Computer simulation of the fuid flow through declined porous media. Flow rate as a function of

time for various inclination angle .. 228

Appendix R: Computer simulation of the fluid flow through declined porous media. Time evolution of the

systém with reduced simulation domain .. 229

Appendix S: Computer simulation of the fluid flow through declined porous media. Fields of velocity vectors.

 .. 233

APPENDIX A

123

APPENDIX A

The FHP-1 Lattice Gas Cellular Automata model
The list of possible pre- and post-collision states of
an individual automaton

In the table corresponds to six channels of the particular individual automaton (lattice

node). Values “0” and “1” are in accordance with the channel occupation. When the channel

is occupied it gets value 1, other way it remains “0”.

APPENDIX A

124

G
ra

p
h

ic
al

in

te
rp

re
ta

ti
o

n
 o

f
pr

e
-

co
lli

si
o

n
 s

ta
te

s
in

 a

n
o

d
e

Representation of the pre-collision
state

G
ra

p
h

ic
al

in

te
rp

re
ta

ti
o

n
 o

f
p

o
st

-c
o

lli
si

o
n

 s
ta

te
s

in
 a

 n
o

d
e

Representation of the post-collision
state

Ef
fi

ci
en

cy
 o

f
th

e
co

lli
si

o
n

 Binary representation of the
state

C
o

d
in

g
o

f
th

e
st

at
e

u
si

n
g

d
ec

im
a

l s
ys

te
m

 Binary representation of the
state

C
o

d
in

g
o

f
th

e
st

at
e

u
si

n
g

d
ec

im
a

l s
ys

te
m

 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1 0 0 0 0 0 1 0 0 0 1 0 0 8

 0 1 0 0 0 0 2 0 0 0 0 1 0 16

 1 1 0 0 0 0 3 0 0 0 1 1 0 24

 0 0 1 0 0 0 4 0 0 0 0 0 1 32

 1 0 1 0 0 0 5 0 0 0 1 0 1 40

 0 1 1 0 0 0 6 0 0 0 0 1 1 48

 1 1 1 0 0 0 7 0 0 0 1 1 1 56

 0 0 0 1 0 0 8 1 0 0 0 0 0 1

 1 0 0 1 0 0 9 0 1 0 0 1 0 18
Efficient
collision

 0 0 1 0 0 1 36

 0 1 0 1 0 0 10 1 0 0 0 1 0 17

 1 1 0 1 0 0 11 1 0 0 1 1 0 25

 0 0 1 0 1 1 52

 0 0 1 1 0 0 12 1 0 0 0 0 1 33

 1 0 1 1 0 0 13 1 0 0 1 0 1 41

 0 1 0 0 1 1 50

APPENDIX A

125

 0 1 1 1 0 0 14 1 0 0 0 1 1 49

 1 1 1 1 0 0 15 1 0 0 1 1 1 57

 0 0 0 0 1 0 16 0 1 0 0 0 0 2

 1 0 0 0 1 0 17 0 1 0 1 0 0 10

 0 1 0 0 1 0 18 0 0 1 0 0 1 36
Efficient
collision

 1 0 0 1 0 0 9

 1 1 0 0 1 0 19 0 1 0 1 1 0 26

 0 0 1 1 0 1 44

 0 0 1 0 1 0 20 0 1 0 0 0 1 34

 1 0 1 0 1 0 21 0 1 0 1 0 1 42
Efficient
collision

 0 1 1 0 1 0 22 0 1 0 0 1 1 50

 1 0 0 1 0 1 41

 1 1 1 0 1 0 23 0 1 0 1 1 1 58

 0 0 0 1 1 0 24 1 1 0 0 0 0 3

 1 0 0 1 1 0 25 1 1 0 1 0 0 11

 0 1 1 0 0 1 38

 0 1 0 1 1 0 26 1 1 0 0 1 0 19

 1 0 1 0 0 1 37

 1 1 0 1 1 0 27 1 0 1 1 0 1 45

 0 1 1 0 1 1 54

APPENDIX A

126

 0 0 1 1 1 0 28 1 1 0 0 0 1 35

 1 0 1 1 1 0 29 1 1 0 1 0 1 43

 0 1 1 1 1 0 30 1 1 0 0 1 1 51

 1 1 1 1 1 0 31 1 1 0 1 1 1 59

 0 0 0 0 0 1 32 0 0 1 0 0 0 4

 1 0 0 0 0 1 33 0 0 1 1 0 0 12

 0 1 0 0 0 1 34 0 0 1 0 1 0 20

 1 1 0 0 0 1 35 0 0 1 1 1 0 28

 0 0 1 0 0 1 36 1 0 0 1 0 0 9
Efficient
collision

 0 1 0 0 1 0 18

 1 0 1 0 0 1 37 0 0 1 1 0 1 44

 0 1 0 1 1 0 26

 0 1 1 0 0 1 38 0 0 1 0 1 1 52

 1 0 0 1 1 0 25

 1 1 1 0 0 1 39 0 0 1 1 1 1 60

 0 0 0 1 0 1 40 1 0 1 0 0 0 5

 1 0 0 1 0 1 41 1 0 1 1 0 0 13

 0 1 1 0 1 0 22

 0 1 0 1 0 1 42 1 0 1 0 1 0 21
Efficient
collision

 1 1 0 1 0 1 43 1 0 1 1 1 0 29

APPENDIX A

127

 0 0 1 1 0 1 44 1 0 1 0 0 1 37

 1 1 0 0 1 0 19

 1 0 1 1 0 1 45 1 1 0 1 1 0 27

 0 1 1 0 1 1 54

 0 1 1 1 0 1 46 1 0 1 0 1 1 53

 1 1 1 1 0 1 47 1 0 1 1 1 1 61

 0 0 0 0 1 1 48 0 1 1 0 0 0 6

 1 0 0 0 1 1 49 0 1 1 1 0 0 14

 0 1 0 0 1 1 50 0 1 1 0 1 0 22

 1 0 1 1 0 0 13

 1 1 0 0 1 1 51 0 1 1 1 1 0 30

 0 0 1 0 1 1 52 0 1 1 0 0 1 38

 1 1 0 1 0 0 11

 1 0 1 0 1 1 53 0 1 1 1 0 1 46

 0 1 1 0 1 1 54 1 0 1 1 0 1 45

 1 1 0 1 1 0 27

 1 1 1 0 1 1 55 0 1 1 1 1 1 62

 0 0 0 1 1 1 56 1 1 1 0 0 0 7

 1 0 0 1 1 1 57 1 1 1 1 0 0 15

 0 1 0 1 1 1 58 1 1 1 0 1 0 23

APPENDIX A

128

 1 1 0 1 1 1 59 1 1 1 1 1 0 31

 0 0 1 1 1 1 60 1 1 1 0 0 1 39

 1 0 1 1 1 1 61 1 1 1 1 0 1 47

 0 1 1 1 1 1 62 1 1 1 0 1 1 55

 1 1 1 1 1 1 63 1 1 1 1 1 1 63

APPENDIX B

129

APPENDIX B

The FHP-2 Lattice Gas Cellular Automata model.
The list of possible pre- and post-collision states of
an individual automaton

In the table corresponds to seven channels of the particular individual automaton

(lattice node). Values “0” and “1” are in accordance with the channel occupation. When the

channel is occupied it gets value 1, other way it remains “0”.

APPENDIX B

130

G
ra

p
h

ic
al

in

te
rp

re
ta

ti
o

n
 o

f
p

re
-c

o
lli

si
o

n

st
at

es
 in

 a
 n

o
d

e Representation of the pre-collision state

G
ra

p
h

ic
al

in

te
rp

re
ta

ti
o

n
 o

f
p

o
st

-c
o

lli
si

o
n

st

at
es

 in
 a

 n
o

d
e Representation of the post-collision state

Ef
fi

ci
en

cy
 o

f
th

e
co

lli
si

o
n

Binary representation of the state

C
o

d
in

g
o

f
th

e
st

at
e

u
si

n
g

d
ec

im
a

l
sy

st
em

 Binary representation of the state

C
o

d
in

g
o

f
th

e
st

at
e

u
si

n
g

d
ec

im
a

l
sy

st
em

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 8

 0 1 0 0 0 0 0 2 0 0 0 0 1 0 0 16

 1 1 0 0 0 0 0 3 0 0 0 1 1 0 0 24

 0 0 1 0 0 0 0 4 0 0 0 0 0 1 0 32

 1 0 1 0 0 0 0 5 0 0 0 0 1 0 1 80
Efficient
collision

 0 1 1 0 0 0 0 6 0 0 0 0 1 1 0 48

 1 1 1 0 0 0 0 7 0 0 0 1 1 1 0 56

 0 0 0 1 0 0 0 8 1 0 0 0 0 0 0 1

 1 0 0 1 0 0 0 9 0 1 0 0 1 0 0 18
Efficient
collision

 0 0 1 0 0 1 0 36

 0 1 0 1 0 0 0 10 0 0 0 0 0 1 1 96
Efficient
collision

 1 1 0 1 0 0 0 11 1 0 0 1 1 0 0 25

 0 0 1 0 1 1 0 52

 0 0 1 1 0 0 0 12 1 0 0 0 0 1 0 33

 1 0 1 1 0 0 0 13 1 0 0 1 0 1 0 41

 0 1 0 0 1 1 0 50

 0 1 1 1 0 0 0 14 1 0 0 0 1 1 0 49

APPENDIX B

131

 1 1 1 1 0 0 0 15 1 0 0 1 1 1 0 57

 0 0 0 0 1 0 0 16 0 1 0 0 0 0 0 2

 1 0 0 0 1 0 0 17 0 0 1 0 0 0 1 68
Efficient
collision

 0 1 0 0 1 0 0 18 0 0 1 0 0 1 0 36
Efficient
collision

 1 0 0 1 0 0 0 9

 1 1 0 0 1 0 0 19 0 1 0 1 1 0 0 26

 0 0 1 1 0 1 0 44

 0 0 1 0 1 0 0 20 1 0 0 0 0 0 1 65
Efficient
collision

 1 0 1 0 1 0 0 21 0 1 0 1 0 1 0 42
Efficient
collision

 0 1 1 0 1 0 0 22 0 1 0 0 1 1 0 50

 1 0 0 1 0 1 0 41

 1 1 1 0 1 0 0 23 0 1 0 1 1 1 0 58

 0 0 0 1 1 0 0 24 1 1 0 0 0 0 0 3

 1 0 0 1 1 0 0 25 1 1 0 1 0 0 0 11

 0 1 1 0 0 1 0 38

 0 1 0 1 1 0 0 26 1 1 0 0 1 0 0 19

 1 0 1 0 0 1 0 37

 1 1 0 1 1 0 0 27 1 0 1 1 0 1 0 45

 0 1 1 0 1 1 0 54

 0 0 1 1 1 0 0 28 1 1 0 0 0 1 0 35

APPENDIX B

132

 1 0 1 1 1 0 0 29 1 1 0 1 0 1 0 43

 0 1 1 1 1 0 0 30 1 1 0 0 1 1 0 51

 1 1 1 1 1 0 0 31 1 1 0 1 1 1 0 59

 0 0 0 0 0 1 0 32 0 0 1 0 0 0 0 4

 1 0 0 0 0 1 0 33 0 0 1 1 0 0 0 12

 0 1 0 0 0 1 0 34 0 0 0 1 0 0 1 72
Efficient
collision

 1 1 0 0 0 1 0 35 0 0 1 1 1 0 0 28

 0 0 1 0 0 1 0 36 1 0 0 1 0 0 0 9
Efficient
collision

 0 1 0 0 1 0 0 18

 1 0 1 0 0 1 0 37 0 0 1 1 0 1 0 44

 0 1 0 1 1 0 0 26

 0 1 1 0 0 1 0 38 0 0 1 0 1 1 0 52

 1 0 0 1 1 0 0 25

 1 1 1 0 0 1 0 39 0 0 1 1 1 1 0 60

 0 0 0 1 0 1 0 40 0 1 0 0 0 0 1 66
Efficient
collision

 1 0 0 1 0 1 0 41 1 0 1 1 0 0 0 13

 0 1 1 0 1 0 0 22

 0 1 0 1 0 1 0 42 1 0 1 0 1 0 0 21
Efficient
collision

 1 1 0 1 0 1 0 43 1 0 1 1 1 0 0 29

 0 0 1 1 0 1 0 44 1 0 1 0 0 1 0 37

APPENDIX B

133

 1 1 0 0 1 0 0 19

 1 0 1 1 0 1 0 45 1 1 0 1 1 0 0 27

 0 1 1 0 1 1 0 54

 0 1 1 1 0 1 0 46 1 0 1 0 1 1 0 53

 1 1 1 1 0 1 0 47 1 0 1 1 1 1 0 61

 0 0 0 0 1 1 0 48 0 1 1 0 0 0 0 6

 1 0 0 0 1 1 0 49 0 1 1 1 0 0 0 14

 0 1 0 0 1 1 0 50 0 1 1 0 1 0 0 22

 1 0 1 1 0 0 0 13

 1 1 0 0 1 1 0 51 0 1 1 1 1 0 0 30

 0 0 1 0 1 1 0 52 0 1 1 0 0 1 0 38

 1 1 0 1 0 0 0 11

 1 0 1 0 1 1 0 53 0 1 1 1 0 1 0 46

 0 1 1 0 1 1 0 54 1 0 1 1 0 1 0 45

 1 1 0 1 1 0 0 27

 1 1 1 0 1 1 0 55 0 1 1 1 1 1 0 62

 0 0 0 1 1 1 0 56 1 1 1 0 0 0 0 7

 1 0 0 1 1 1 0 57 1 1 1 1 0 0 0 15

 0 1 0 1 1 1 0 58 1 1 1 0 1 0 0 23

 1 1 0 1 1 1 0 59 1 1 1 1 1 0 0 31

APPENDIX B

134

 0 0 1 1 1 1 0 60 1 1 1 0 0 1 0 39

 1 0 1 1 1 1 0 61 1 1 1 1 0 1 0 47

 0 1 1 1 1 1 0 62 1 1 1 0 1 1 0 55

 1 1 1 1 1 1 0 63 1 1 1 1 1 1 0 63

 0 0 0 0 0 0 1 64 0 0 0 0 0 0 1 64

 1 0 0 0 0 0 1 65 0 0 1 0 1 0 0 20
Efficient
collision

 0 1 0 0 0 0 1 66 0 0 0 1 0 1 0 40
Efficient
collision

 1 1 0 0 0 0 1 67 0 0 0 1 1 0 1 88

 0 0 1 0 0 0 1 68 1 0 0 0 1 0 0 17
Efficient
collision

 1 0 1 0 0 0 1 69 0 0 0 1 0 1 1 104

 0 1 1 0 0 0 1 70 0 0 0 0 1 1 1 112

 1 1 1 0 0 0 1 71 0 0 0 1 1 1 1 120

 0 0 0 1 0 0 1 72 0 1 0 0 0 1 0 34
Efficient
collision

 1 0 0 1 0 0 1 73 0 1 0 0 1 0 1 82
Efficient
collision

 0 0 1 0 0 1 1 100

 0 1 0 1 0 0 1 74 1 0 0 0 1 0 1 81

 1 1 0 1 0 0 1 75 1 0 0 1 1 0 1 89

 0 0 1 0 1 1 1 116

 0 0 1 1 0 0 1 76 1 0 0 0 0 1 1 97

 1 0 1 1 0 0 1 77 1 0 0 1 0 1 1 105

APPENDIX B

135

 0 1 0 0 1 1 1 114

 0 1 1 1 0 0 1 78 1 0 0 0 1 1 1 113

 1 1 1 1 0 0 1 79 1 0 0 1 1 1 1 121

 0 0 0 0 1 0 1 80 1 0 1 0 0 0 0 5
Efficient
collision

 1 0 0 0 1 0 1 81 0 1 0 1 0 0 1 74

 0 1 0 0 1 0 1 82 0 0 1 0 0 1 1 100
Efficient
collision

 1 0 0 1 0 0 1 73

 1 1 0 0 1 0 1 83 0 1 0 1 1 0 1 90

 0 0 1 1 0 1 1 108

 0 0 1 0 1 0 1 84 0 1 0 0 0 1 1 98

 1 0 1 0 1 0 1 85 0 1 0 1 0 1 1 106
Efficient
collision

 1 0 1 0 1 0 1 85

 0 1 1 0 1 0 1 86 0 1 0 0 1 1 1 114

 1 0 0 1 0 1 1 105

 1 1 1 0 1 0 1 87 0 1 0 1 1 1 1 122

 0 0 0 1 1 0 1 88 1 1 0 0 0 0 1 67

 1 0 0 1 1 0 1 89 1 1 0 1 0 0 1 75

 0 1 1 0 0 1 1 102

 0 1 0 1 1 0 1 90 1 1 0 0 1 0 1 83

 1 0 1 0 0 1 1 101

APPENDIX B

136

 1 1 0 1 1 0 1 91 1 0 1 1 0 1 1 109

 0 1 1 0 1 1 1 118

 0 0 1 1 1 0 1 92 1 1 0 0 0 1 1 99

 1 0 1 1 1 0 1 93 1 1 0 1 0 1 1 107

 0 1 1 1 1 0 1 94 1 1 0 0 1 1 1 115

 1 1 1 1 1 0 1 95 1 1 0 1 1 1 1 123

 0 0 0 0 0 1 1 96 0 1 0 1 0 0 0 10
Efficient
collision

 1 0 0 0 0 1 1 97 0 0 1 1 0 0 1 76

 0 1 0 0 0 1 1 98 0 0 1 0 1 0 1 84

 1 1 0 0 0 1 1 99 0 0 1 1 1 0 1 92

 0 0 1 0 0 1 1 100 1 0 0 1 0 0 1 73
Efficient
collision

 0 1 0 0 1 0 1 82

 1 0 1 0 0 1 1 101 0 0 1 1 0 1 1 108

 0 1 0 1 1 0 1 90

 0 1 1 0 0 1 1 102 0 0 1 0 1 1 1 116

 1 0 0 1 1 0 1 89

 1 1 1 0 0 1 1 103 0 0 1 1 1 1 1 124

 0 0 0 1 0 1 1 104 1 0 1 0 0 0 1 69

 1 0 0 1 0 1 1 105 1 0 1 1 0 0 1 77

 0 1 1 0 1 0 1 86

APPENDIX B

137

 0 1 0 1 0 1 1 106 1 0 1 0 1 0 1 85
Efficient
collision

 1 1 0 1 0 1 1 107 1 0 1 1 1 0 1 93

 0 0 1 1 0 1 1 108 1 0 1 0 0 1 1 101

 1 1 0 0 1 0 1 83

 1 0 1 1 0 1 1 109 1 1 0 1 1 0 1 91

 0 1 1 0 1 1 1 118

 0 1 1 1 0 1 1 110 1 0 1 0 1 1 1 117

 1 1 1 1 0 1 1 111 1 0 1 1 1 1 1 125

 0 0 0 0 1 1 1 112 0 1 1 0 0 0 1 70

 1 0 0 0 1 1 1 113 0 1 1 1 0 0 1 78

 0 1 0 0 1 1 1 114 0 1 1 0 1 0 1 86

 1 0 1 1 0 0 1 77

 1 1 0 0 1 1 1 115 0 1 1 1 1 0 1 94

 0 0 1 0 1 1 1 116 0 1 1 0 0 1 1 102

 1 1 0 1 0 0 1 75

 1 0 1 0 1 1 1 117 0 1 1 1 0 1 1 110

 0 1 1 0 1 1 1 116 1 0 1 1 0 1 1 109

 1 1 0 1 1 0 1 91

 1 1 1 0 1 1 1 119 0 1 1 1 1 1 1 126

 0 0 0 1 1 1 1 120 1 1 1 0 0 0 1 71

APPENDIX B

138

 1 0 0 1 1 1 1 121 1 1 1 1 0 0 1 79

 0 1 0 1 1 1 1 122 1 1 1 0 1 0 1 87

 1 1 0 1 1 1 1 123 1 1 1 1 1 0 1 95

 0 0 1 1 1 1 1 124 1 1 1 0 0 1 1 103

 1 0 1 1 1 1 1 125 1 1 1 1 0 1 1 111

 0 1 1 1 1 1 1 126 1 1 1 0 1 1 1 119

 1 1 1 1 1 1 1 127 1 1 1 1 1 1 1 127

APPENDIX C

139

APPENDIX C

Basic FHP-1 Lattice Gas Cellular Automata
algorithm

APPENDIX C

140

//Basic FHP-1 LGCA algorithm

/* Code fragment 1: Header files and initialization of a simulation box */

//Definition of standard library functions

include <graphics.h>

include <stdlib.h>

include <stdio.h>

include <conio.h>

include <math.h>

include <float.h>

include <time.h>

define DIRX 300

define DIRY 300

//Declaration of variables

int x, y, xmax=299, ymax=299;

float vx[DIRX][DIRY], nvx[DIRX][DIRY];

float vy[DIRX][DIRY], nvy[DIRX][DIRY];

int m[DIRX][DIRY], nm[DIRX][DIRY];

int i1[DIRX][DIRY], i2[DIRX][DIRY], i3[DIRX][DIRY], i4[DIRX][DIRY],

i5[DIRX][DIRY], i6[DIRX][DIRY];

float sinangle=0.866025403, print=5.5;

int pco=20;

int sig=15;

char str[25];

int I1, I2, I3, I4, I5, I6;

int cycle, cmax=20, series;

//Declaration of subroutines

int collision(void);

float propagationodd(void);

float propagationeven(void);

/*---*/

/* Beginning of a main part of the program */

int main()

{

/* Code fragment 2: Graphic outputs setting */

int gdriver = DETECT, gmode, errorcode;

//initialize graphics and local variabls

initgraph (&gdriver, &gmode, "c:\\TC\\BGI");

//read rezult of initialization

 errorcode = graphresult();

 //an error occurred

 if (errorcode != grOk)

 {

 printf ("Graphics error: %s\n", grapherrormsg(errorcode));

 printf ("Press any key to halt:");

 getch();

 exit(1);

 }

/* Code fragment 3: Creation of the simulation domain and initial state of

the simulated system */

APPENDIX C

141

//Data arrays resetting

for (x=0; x<xmax+1; x++)

 {

 for (y=0; y<ymax+1; y++)

 {

 m[x][y]=0;

 nm[x][y]=0;

 vx[x][y]=0;

 nvx[x][y]=0;

 vy[x][y]=0;

 nvy[x][y]=0;

 }

 }

//Creation of solid boundaries of the simulation box

for (x=1; x<xmax; x++)

{

m[x][1]=7;

m[x][2]=7;

m[x][ymax-1]=7;

m[x][ymax-2]=7;

nm[x][1]=7;

nm[x][2]=7;

nm[x][ymax-1]=7;

nm[x][ymax-2]=7;

putpixel (x, 1, m[x][1]*print);

putpixel (x, ymax-1, m[x][ymax-1]*print);

}

for (y=1; y<ymax; y++)

{

m[1][y]=7;

m[2][y]=7;

m[xmax-1][y]=7;

m[xmax-2][y]=7;

nm[1][y]=7;

nm[2][y]=7;

nm[xmax-1][y]=7;

nm[xmax-2][y]=7;

putpixel (1, y, m[1][y]*print);

putpixel (xmax-1, y, m[xmax-1][y]*print);

}

randomize();

/* Code fragment 4: Occupation of cannels by fluid moving particles */

//odd rows of the lattice

for (x=3; x<xmax-2; x++)

 {

 for (y=3; y<ymax-2; y=y+2)

 {

 if (m[x][y]!=7)

 {

 m[x][y]=0; vx[x][y]=0; vy[x][y]=0;

 if (m[x-1][y-1]<7) {I1=random(pco);}

if (I1==1) {m[x][y]=m[x][y]+1; i1[x][y]=1;} else {i1[x][y]=0;}

 if (m[x-1][y]<7) {I2=random(pco);}

if (I2==1) {m[x][y]=m[x][y]+1; i2[x][y]=1;} else {i2[x][y]=0;}

APPENDIX C

142

 if (m[x-1][y+1]<7) {I3=random(pco);}

if (I3==1) {m[x][y]=m[x][y]+1; i3[x][y]=1;} else {i3[x][y]=0;}

 if (m[x][y+1]<7) {I4=random(pco);}

if (I4==1) {m[x][y]=m[x][y]+1; i4[x][y]=1;} else {i4[x][y]=0;}

 if (m[x+1][y]<7) {I5=random(pco);}

if (I5==1) {m[x][y]=m[x][y]+1; i5[x][y]=1;} else {i5[x][y]=0;}

 if (m[x][y-1]<7) {I6=random(pco);}

if (I6==1) {m[x][y]=m[x][y]+1; i6[x][y]=1;} else {i6[x][y]=0;}

 //the total particles velocity in the node

 vx[x][y]=vx[x][y]+0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-

0.5*i4[x][y]-i5[x][y]-0.5*i6[x][y];

 vy[x][y]=vy[x][y]+sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y];

 }}

 }

//even rows of the lattice

for (x=3; x<xmax-2; x++)

 {

 for (y=4; y<ymax-2; y=y+2)

 {

 if (m[x][y]!=7)

 {

 m[x][y]=0; vx[x][y]=0; vy[x][y]=0;

 if (m[x][y-1]<7) {I1=random(pco);}

 if (I1==1) {m[x][y]=m[x][y]+1; i1[x][y]=1;} else

{i1[x][y]=0;}

 if (m[x-1][y]<7) {I2=random(pco);}

 if (I2==1) {m[x][y]=m[x][y]+1; i2[x][y]=1;} else

{i2[x][y]=0;}

 if (m[x][y+1]<7) {I3=random(pco);}

 if (I3==1) {m[x][y]=m[x][y]+1; i3[x][y]=1;} else

{i3[x][y]=0;}

 if (m[x+1][y+1]<7) {I4=random(pco);}

 if (I4==1) {m[x][y]=m[x][y]+1; i4[x][y]=1;} else

{i4[x][y]=0;}

 if (m[x+1][y]<7) {I5=random(pco);}

 if (I5==1) {m[x][y]=m[x][y]+1; i5[x][y]=1;} else

{i5[x][y]=0;}

 if (m[x+1][y-1]<7) {I6=random(pco);}

 if (I6==1) {m[x][y]=m[x][y]+1; i6[x][y]=1;} else

{i6[x][y]=0;}

 // the total particles velocity in the node

 vx[x][y]=vx[x][y]+0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-

0.5*i4[x][y]-i5[x][y]-0.5*i6[x][y];

 vy[x][y]=vy[x][y]+sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y];

 }}

 }

APPENDIX C

143

/* Code fragment 5: Craphical outputs of the initial systém configuration

*/

for (x=1; x<xmax+1; x++)

 {

 for (y=1; y<ymax+1; y++)

 {

 putpixel (x, y, m[x][y]*print);

 }

 }

/*---*/

/* Code fragment 6: The main cycle of the algorithm */

for (cycle=0; cycle<cmax+1; cycle++)

{

/* Code fragment 6-A: Collision phase */

for (x=3; x<xmax-2; x++)

 {for (y=3; y<ymax-2; y++)

 {

 if ((m[x][y]>0)&&(m[x][y]!=7)) {collision();}

 }

 }

/* Code fragment 6-B: Propagation phase */

//odd rows of the lattice

for (x=3; x<xmax-2; x++)

 {

 for (y=3; y<ymax-2; y=y+2)

 {

 if ((m[x][y]>0)&&(m[x][y]!=7))

 {

 propagationodd();

 }

 }

 }

//even rows of the lattice

for (x=3; x<xmax-2; x++)

 {

 for (y=4; y<ymax-2; y=y+2)

 {

 if ((m[x][y]>0)&&(m[x][y]!=7))

 {

 propagationeven();

 }

 }

 }

/* Code fragment 7: Recording of a new sytem’s state */

for (x=1; x<xmax+1; x++)

 {

 for (y=1; y<ymax+1; y++)

 {

 m[x][y]=nm[x][y]; vx[x][y]=nvx[x][y]; vy[x][y]=nvy[x][y];

 putpixel (x, y, m[x][y]*print);

 }

 }

APPENDIX C

144

/* Code fragment 8: Data arrays resetting */

for (x=3; x<xmax-2; x++)

 {

 for (y=3; y<ymax-2; y++)

 {

 if (nm[x][y]<7)

 {nm[x][y]=0; nvx[x][y]=0; nvy[x][y]=0;

 i1[x][y]=0; i2[x][y]=0; i3[x][y]=0;

 i4[x][y]=0; i5[x][y]=0; i6[x][y]=0;}

 else {nm[x][y]=7;}

 }

 }

/* Code fragment 9: Printout macro */

setfillstyle(1,0);

bar(getmaxx()-90,getmaxy()-90,getmaxx(),getmaxy()-70);

outtextxy(getmaxx()-120,getmaxy()-80,"cycle");

outtextxy(getmaxx()-70,getmaxy()-80,gcvt(series,sig,str));

series=series+1;

getch();

} //The end of the main cycle

/* Code fragment 10: Final operations */

getch();

closegraph();

return (0);

} //The end of the main part of the algorithm

/*---*/

//SUBROUTINES

/*---*/

//Collision phase

int collision(void)

{

int cannel=0;

int mas=0;

float velx=0;

float vely=0;

nav2:

velx=vx[x][y]; vely=vy[x][y]; mas=m[x][y];

i1[x][y]=0; i2[x][y]=0; i3[x][y]=0; i4[x][y]=0; i5[x][y]=0; i6[x][y]=0;

nav1:

cannel=0;

cannel=random(6);

 if (cannel==0)

 {if (i1[x][y]==1) {goto nav1;}

 i1[x][y]=1; mas=mas-1;}

 if (cannel==1)

 {if (i2[x][y]==1) {goto nav1;}

 i2[x][y]=1; mas=mas-1;}

 if (cannel==2)

 {if (i3[x][y]==1) {goto nav1;}

 i3[x][y]=1; mas=mas-1;}

APPENDIX C

145

 if (cannel==3)

 {if (i4[x][y]==1) {goto nav1;}

 i4[x][y]=1; mas=mas-1;}

 if (cannel==4)

 {if (i5[x][y]==1) {goto nav1;}

 i5[x][y]=1; mas=mas-1;}

 if (cannel==5)

 {if (i6[x][y]==1) {goto nav1;}

 i6[x][y]=1; mas=mas-1;}

//change of mass and velocity in the cell – has to be zero

 if (mas!=0) {goto nav1;}

 velx=velx+(0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-0.5*i4[x][y]-i5[x][y]-

0.5*i6[x][y]);

 if (velx!=0) {goto nav2;}

 vely=vely+(sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y]);

 if (vely!=0) {goto nav2;}

return(0);

}

/*---*/

//Propagation phase in odd rows of the lattice (bounce-back reflection)

float propagationodd(void)

{

if (i1[x][y]==1)

 {

 if (nm[x-1][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x-1][y-1]=nm[x-1][y-1]+1; nvx[x-1][y-1]=nvx[x-1][y-1]-0.5;

 nvy[x-1][y-1]=nvy[x-1][y-1]-sinangle;}

 }

if (i2[x][y]==1)

 {

 if (nm[x-1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1;

 nvy[x][y]=nvy[x][y]+0;}

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1;

 nvy[x-1][y]=nvy[x-1][y]-0;}

 }

if (i3[x][y]==1)

 {

 if (nm[x-1][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x-1][y+1]=nm[x-1][y+1]+1; nvx[x-1][y+1]=nvx[x-1][y+1]-0.5;

 nvy[x-1][y+1]=nvy[x-1][y+1]+sinangle;}

 }

if (i4[x][y]==1)

 {

 if (nm[x][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]+0.5;

 nvy[x][y+1]=nvy[x][y+1]+sinangle;}

 }

APPENDIX C

146

if (i5[x][y]==1)

 {

 if (nm[x+1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1;

 nvy[x][y]=nvy[x][y]-0;}

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1;

 nvy[x+1][y]=nvy[x+1][y]+0;}

 }

if (i6[x][y]==1)

 {

 if (nm[x][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]+0.5;

 nvy[x][y-1]=nvy[x][y-1]-sinangle;}

 }

return(0);

}

/*---*/

//Propagation phase in even rows of the lattice (bounce-back reflection)

float propagationeven(void)

{

if (i1[x][y]==1)

 {

 if (nm[x][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]-0.5;

 nvy[x][y-1]=nvy[x][y-1]-sinangle;}

 }

if (i2[x][y]==1)

 {

 if (nm[x-1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1;

 nvy[x][y]=nvy[x][y]-0;}

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1;

 nvy[x-1][y]=nvy[x-1][y]+0;}

 }

if (i3[x][y]==1)

 {

 if (nm[x][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]-0.5;

 nvy[x][y+1]=nvy[x][y+1]+sinangle;}

 }

if (i4[x][y]==1)

 {

 if (nm[x+1][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x+1][y+1]=nm[x+1][y+1]+1; nvx[x+1][y+1]=nvx[x+1][y+1]+0.5;

 nvy[x+1][y+1]=nvy[x+1][y+1]+sinangle;}

 }

if (i5[x][y]==1)

APPENDIX C

147

 {

 if (nm[x+1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1;

 nvy[x][y]=nvy[x][y]+0;}

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1;

 nvy[x+1][y]=nvy[x+1][y]-0;}

 }

if (i6[x][y]==1)

 {

 if (nm[x+1][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x+1][y-1]=nm[x+1][y-1]+1; nvx[x+1][y-1]=nvx[x+1][y-1]+0.5;

 nvy[x+1][y-1]=nvy[x+1][y-1]-sinangle;}

 }

return(0);

}

/*---*/

APPENDIX D

148

APPENDIX D

Time evolution of the FHP-1 Lattice Gas Cellular
Automata model

APPENDIX D

149

Initial state ()

Figure D-1: Evolution of the developed FHP-1 LGCA model in time. Particle system is monitored for 20
time steps with an interval of 1 t.u. The size of the simulation domain is ,

average lattice gas density is

APPENDIX D

150

Figure D-1 (continuation): Evolution of the developed FHP-1 LGCA model in time. Particle system is
monitored for 20 time steps with an interval of 1 t.u. The size of the simulation domain is

 , average lattice gas density is

APPENDIX D

151

Figure D-1 (continuation): Evolution of the developed FHP-1 LGCA model in time. Particle system is
monitored for 20 time steps with an interval of 1 t.u. The size of the simulation domain is

 , average lattice gas density is

APPENDIX E

152

APPENDIX E

The FHP-1 Lattice Gas Cellular Automata algorithm
for a Brownian motion simulation

APPENDIX E

153

//Basic FHP-1 LGCA algorithm - Brownian motion simulation

/* Code fragment 1: Header files and initialization of a simulation box */

//Definition of standard library functions

include <graphics.h>

include <stdlib.h>

include <stdio.h>

include <conio.h>

include <math.h>

include <float.h>

include <time.h>

define DIRX 300

define DIRY 300

//Declaration of main variables

int x, y, xmax=299, ymax=299;

float vx[DIRX][DIRY], nvx[DIRX][DIRY];

float vy[DIRX][DIRY], nvy[DIRX][DIRY];

int m[DIRX][DIRY], nm[DIRX][DIRY];

int i1[DIRX][DIRY], i2[DIRX][DIRY], i3[DIRX][DIRY], i4[DIRX][DIRY],

i5[DIRX][DIRY], i6[DIRX][DIRY];

float sinangle=0.866025403;

int pco=6;

int sig=15;

char str[25];

int I1, I2, I3, I4, I5, I6;

int cycle, cmax=20, series;

int i=25, print=4;

int fluid=3, boundary=4, hole=0, brownian=14;

//Declaration of variables of Brownian particle

int x1, y1, x2, y2;

int brownx, browny, collide=0;

int code1[DIRX][DIRY], code2[DIRX][DIRY], code3[DIRX][DIRY],

code4[DIRX][DIRY], code5[DIRX][DIRY], code6[DIRX][DIRY];

float distance=0;

//Declaration of subroutines

int collision(void);

int collisionbrown(void);

float propagationodd(void);

float propagationeven(void);

float propagationoddbrown(void);

float propagationevenbrown(void);

FILE *output0;

/*---*/

/* Beginning of a main part of the program */

int main()

{

/* Code fragment 2: Graphic outputs setting */

int gdriver = DETECT, gmode, errorcode;

//initialize graphics and local variabls

initgraph (&gdriver, &gmode, "c:\\TC\\BGI");

//read rezult of initialization

APPENDIX E

154

 errorcode = graphresult();

 //an error occurred

 if (errorcode != grOk)

 {

 printf ("Graphics error: %s\n", grapherrormsg(errorcode));

 printf ("Press any key to halt:");

 getch();

 exit(1);

 }

/* Code fragment 3: Creation of the simulation domain and initial state of

the simulated system */

//Data arrays resetting

for (x=0; x<xmax+1; x++)

 {

 for (y=0; y<ymax+1; y++)

 {

 m[x][y]=0;

 nm[x][y]=0;

 vx[x][y]=0;

 nvx[x][y]=0;

 vy[x][y]=0;

 nvy[x][y]=0;

 }

 }

//Creation of solid boundaries of the simulation box

for (x=1; x<xmax; x++)

{

m[x][1]=7;

m[x][2]=7;

m[x][ymax-1]=7;

m[x][ymax-2]=7;

nm[x][1]=7;

nm[x][2]=7;

nm[x][ymax-1]=7;

nm[x][ymax-2]=7;

putpixel (x, 1, boundary);

putpixel (x, ymax-1, boundary);

}

for (y=1; y<ymax; y++)

{

m[1][y]=7;

m[2][y]=7;

m[xmax-1][y]=7;

m[xmax-2][y]=7;

nm[1][y]=7;

nm[2][y]=7;

nm[xmax-1][y]=7;

nm[xmax-2][y]=7;

putpixel (1, y, boundary);

putpixel (xmax-1, y, boundary);

}

randomize();

/* Code fragment 4: Occupation of cannels by fluid moving particles */

APPENDIX E

155

//odd rows of the lattice

for (x=3; x<xmax-2; x++)

 {

 for (y=3; y<ymax-2; y=y+2)

 {

 if (m[x][y]!=7)

 {

 m[x][y]=0; vx[x][y]=0; vy[x][y]=0;

 if (m[x-1][y-1]<7) {I1=random(pco);}

if (I1==1) {m[x][y]=m[x][y]+1; i1[x][y]=1;} else {i1[x][y]=0;}

 if (m[x-1][y]<7) {I2=random(pco);}

if (I2==1) {m[x][y]=m[x][y]+1; i2[x][y]=1;} else {i2[x][y]=0;}

 if (m[x-1][y+1]<7) {I3=random(pco);}

if (I3==1) {m[x][y]=m[x][y]+1; i3[x][y]=1;} else {i3[x][y]=0;}

 if (m[x][y+1]<7) {I4=random(pco);}

if (I4==1) {m[x][y]=m[x][y]+1; i4[x][y]=1;} else {i4[x][y]=0;}

 if (m[x+1][y]<7) {I5=random(pco);}

if (I5==1) {m[x][y]=m[x][y]+1; i5[x][y]=1;} else {i5[x][y]=0;}

 if (m[x][y-1]<7) {I6=random(pco);}

if (I6==1) {m[x][y]=m[x][y]+1; i6[x][y]=1;} else {i6[x][y]=0;}

 //the total particles velocity in the node

 vx[x][y]=vx[x][y]+0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-

0.5*i4[x][y]-i5[x][y]-0.5*i6[x][y];

 vy[x][y]=vy[x][y]+sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y];

 }}

 }

//even rows of the lattice

for (x=3; x<xmax-2; x++)

 {

 for (y=4; y<ymax-2; y=y+2)

 {

 if (m[x][y]!=7)

 {

 m[x][y]=0; vx[x][y]=0; vy[x][y]=0;

 if (m[x][y-1]<7) {I1=random(pco);}

 if (I1==1) {m[x][y]=m[x][y]+1; i1[x][y]=1;} else

{i1[x][y]=0;}

 if (m[x-1][y]<7) {I2=random(pco);}

 if (I2==1) {m[x][y]=m[x][y]+1; i2[x][y]=1;} else

{i2[x][y]=0;}

 if (m[x][y+1]<7) {I3=random(pco);}

 if (I3==1) {m[x][y]=m[x][y]+1; i3[x][y]=1;} else

{i3[x][y]=0;}

 if (m[x+1][y+1]<7) {I4=random(pco);}

 if (I4==1) {m[x][y]=m[x][y]+1; i4[x][y]=1;} else

{i4[x][y]=0;}

 if (m[x+1][y]<7) {I5=random(pco);}

 if (I5==1) {m[x][y]=m[x][y]+1; i5[x][y]=1;} else

APPENDIX E

156

{i5[x][y]=0;}

 if (m[x+1][y-1]<7) {I6=random(pco);}

 if (I6==1) {m[x][y]=m[x][y]+1; i6[x][y]=1;} else

{i6[x][y]=0;}

 // the total particles velocity in the node

 vx[x][y]=vx[x][y]+0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-

0.5*i4[x][y]-i5[x][y]-0.5*i6[x][y];

 vy[x][y]=vy[x][y]+sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y];

 }}

 }

//Determination of the Brownian particle

signal11:

brownx=random(xmax); browny=random(ymax);

if ((brownx<=xmax/2+i)&&(brownx>=xmax/2-i))

 {if ((browny<=ymax/2+i)&&(browny>=ymax/2-i))

 {if ((m[brownx][browny]>0)&&(m[brownx][browny]<7))

 {m[brownx][browny]=m[brownx][browny]+13;}

 }

 else {goto signal11;}

 }

else {goto signal11;}

/* Code fragment 5: Graphical and data outputs */

//Graphical outputs of the initial system configuration

for (x=1; x<xmax+1; x++)

 {

 for (y=1; y<ymax+1; y++)

 {

 putpixel (x, y, m[x][y]/print);

 }

 }

/* Code fragment 5-A: Data outputs */

//Opening the data file BROWN.CPP

if ((output0=fopen("C:\\Outputs\\Brownian\\brown00.cpp","w"))==NULL)

 {

 printf("output file error\n");

 exit(0);

 }

fprintf (output0, "cycle, brownx, browny, x2, y2, distance\n");

/*---*/

/* Code fragment 6: The main cycle of the algorithm */

for (cycle=0; cycle<cmax+1; cycle++)

{

/* Code fragment 6-A: Collision phase */

for (x=3; x<xmax-2; x++)

 {for (y=3; y<ymax-2; y++)

 {

 if ((m[x][y]>0)&&(m[x][y]<7)) {collision();}

 if (m[x][y]>13) {collisionbrown();}

APPENDIX E

157

 if (m[x][y]>14) {collide=collide+1;}

 }

 }

/* Code fragment 6-B: Propagation phase */

//odd rows of the lattice

for (x=3; x<xmax-2; x++)

 {

 for (y=3; y<ymax-2; y=y+2)

 {

 if ((m[x][y]>0)&&(m[x][y]<7)){propagationodd();}

 if (m[x][y]>13) {propagationoddbrown(); x1=x; y1=y;}

 }

 }

//even rows of the lattice

for (x=3; x<xmax-2; x++)

 {

 for (y=4; y<ymax-2; y=y+2)

 {

 if ((m[x][y]>0)&&(m[x][y]<7)){propagationeven();}

 if (m[x][y]>13) {propagationevenbrown(); x1=x; y1=y;}

 }

 }

/* Code fragment 7: Recording of a new sytem’s state */

for (x=1; x<xmax+1; x++)

 {

 for (y=1; y<ymax+1; y++)

 {

 m[x][y]=nm[x][y]; vx[x][y]=nvx[x][y]; vy[x][y]=nvy[x][y];

 if ((m[x][y]>0)&&(m[x][y]<7)) {putpixel (x, y, fluid);}

 if (m[x][y]==7) {putpixel (x, y, boundary);}

 if (m[x][y]==0) {putpixel (x, y, hole);}

 if (m[x][y]>13) {putpixel (x, y, brownian);}

 }

 }

/* Code fragment 8: Data arrays resetting */

for (x=3; x<xmax-2; x++)

 {

 for (y=3; y<ymax-2; y++)

 {

 nm[x][y]=0; nvx[x][y]=0; nvy[x][y]=0;

 i1[x][y]=0; i2[x][y]=0; i3[x][y]=0;

 i4[x][y]=0; i5[x][y]=0; i6[x][y]=0;

 }

 }

/* Code fragment 9: Printout macro */

setfillstyle(1,0);

bar(getmaxx()-90,getmaxy()-90,getmaxx(),getmaxy()-70);

outtextxy(getmaxx()-120,getmaxy()-80,"cycle");

outtextxy(getmaxx()-70,getmaxy()-80,gcvt(series,sig,str));

//Outputs - BROWN.CPP

distance=sqrt(pow(x2-brownx,2)+pow(y2-browny,2));

fprintf(output0,"%8d %8d %8d %8d %8d %8.3f\n", series, brownx, browny, x2,

y2, distance);

APPENDIX E

158

//Collision with solid boundaries - the end of the simulation

if ((x2==3)||(x2==xmax-3)) {goto signalend;}

if ((y2==3)||(y2==ymax-3)) {goto signalend;}

series=series+1;

getch();

} //The end of the main cycle

signalend:

/* Code fragment 10: Final operations */

getch();

closegraph();

fclose (output0);

return (0);

} //The end of the main part of the algorithm

/*---*/

//SUBROUTINES

/*---*/

//Collision phase - fluid

int collision(void)

{

int cannel=0;

int mas=0;

float velx=0;

float vely=0;

signal2:

velx=vx[x][y]; vely=vy[x][y]; mas=m[x][y];

i1[x][y]=0; i2[x][y]=0; i3[x][y]=0; i4[x][y]=0; i5[x][y]=0; i6[x][y]=0;

signal1:

cannel=0;

cannel=random(6);

 if (cannel==0)

 {if (i1[x][y]==1) {goto signal1;}

 i1[x][y]=1; mas=mas-1;}

 if (cannel==1)

 {if (i2[x][y]==1) {goto signal1;}

 i2[x][y]=1; mas=mas-1;}

 if (cannel==2)

 {if (i3[x][y]==1) {goto signal1;}

 i3[x][y]=1; mas=mas-1;}

 if (cannel==3)

 {if (i4[x][y]==1) {goto signal1;}

 i4[x][y]=1; mas=mas-1;}

 if (cannel==4)

 {if (i5[x][y]==1) {goto signal1;}

 i5[x][y]=1; mas=mas-1;}

 if (cannel==5)

 {if (i6[x][y]==1) {goto signal1;}

 i6[x][y]=1; mas=mas-1;}

//Change of mass and velocity in the node – has to be zero

 if (mas!=0) {goto signal1;}

APPENDIX E

159

 velx=velx+(0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-0.5*i4[x][y]-i5[x][y]-

0.5*i6[x][y]);

 if (velx!=0) {goto signal2;}

 vely=vely+(sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y]);

 if (vely!=0) {goto signal2;}

return(0);

}

/*---*/

//Collision phase - Brownian particle

int collisionbrown(void)

{

int cannel=0;

int mas=0;

int brownp=0;

float velx=0;

float vely=0;

signal2:

velx=vx[x][y]; vely=vy[x][y]; mas=m[x][y]-13;

i1[x][y]=0; i2[x][y]=0; i3[x][y]=0; i4[x][y]=0; i5[x][y]=0; i6[x][y]=0;

code1[x][y]=0; code2[x][y]=0; code3[x][y]=0; code4[x][y]=0; code5[x][y]=0;

code6[x][y]=0;

signal1:

cannel=0;

cannel=random(6);

 if (cannel==0)

 {if (i1[x][y]==1) {goto signal1;}

 i1[x][y]=1; mas=mas-1;}

 if (cannel==1)

 {if (i2[x][y]==1) {goto signal1;}

 i2[x][y]=1; mas=mas-1;}

 if (cannel==2)

 {if (i3[x][y]==1) {goto signal1;}

 i3[x][y]=1; mas=mas-1;}

 if (cannel==3)

 {if (i4[x][y]==1) {goto signal1;}

 i4[x][y]=1; mas=mas-1;}

 if (cannel==4)

 {if (i5[x][y]==1) {goto signal1;}

 i5[x][y]=1; mas=mas-1;}

 if (cannel==5)

 {if (i6[x][y]==1) {goto signal1;}

 i6[x][y]=1; mas=mas-1;}

//Change of mass and velocity in the node – has to be zero

 if (mas!=0) {goto signal1;}

 velx=velx+(0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-0.5*i4[x][y]-i5[x][y]-

0.5*i6[x][y]);

 if (velx!=0) {goto signal2;}

 vely=vely+(sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y]);

 if (vely!=0) {goto signal2;}

//Marking of the Brownian particle

signal111:

brownp=random(6);

APPENDIX E

160

if ((brownp==0)&&(i1[x][y]==1)){i1[x][y]=13; code1[x][y]=13; goto

signal112;} else {code1[x][y]=0;}

if ((brownp==1)&&(i2[x][y]==1)){i2[x][y]=13; code2[x][y]=13; goto

signal112;} else {code2[x][y]=0;}

if ((brownp==2)&&(i3[x][y]==1)){i3[x][y]=13; code3[x][y]=13; goto

signal112;} else {code3[x][y]=0;}

if ((brownp==3)&&(i4[x][y]==1)){i4[x][y]=13; code4[x][y]=13; goto

signal112;} else {code4[x][y]=0;}

if ((brownp==4)&&(i5[x][y]==1)){i5[x][y]=13; code5[x][y]=13; goto

signal112;} else {code5[x][y]=0;}

if ((brownp==5)&&(i6[x][y]==1)){i6[x][y]=13; code6[x][y]=13; goto

signal112;} else {code6[x][y]=0; goto signal111;}

signal112:

return(0);

}

/*---*/

//Propagation phase in odd rows of the lattice (bounce-back reflection)-

fluid

float propagationodd(void)

{

if (i1[x][y]==1)

 {

 if (nm[x-1][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x-1][y-1]=nm[x-1][y-1]+1; nvx[x-1][y-1]=nvx[x-1][y-1]-0.5;

 nvy[x-1][y-1]=nvy[x-1][y-1]-sinangle;}

 }

if (i2[x][y]==1)

 {

 if (nm[x-1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1;

 nvy[x][y]=nvy[x][y]+0;}

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1;

 nvy[x-1][y]=nvy[x-1][y]-0;}

 }

if (i3[x][y]==1)

 {

 if (nm[x-1][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x-1][y+1]=nm[x-1][y+1]+1; nvx[x-1][y+1]=nvx[x-1][y+1]-0.5;

 nvy[x-1][y+1]=nvy[x-1][y+1]+sinangle;}

 }

if (i4[x][y]==1)

 {

 if (nm[x][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]+0.5;

 nvy[x][y+1]=nvy[x][y+1]+sinangle;}

 }

if (i5[x][y]==1)

 {

 if (nm[x+1][y]==7)

APPENDIX E

161

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1;

 nvy[x][y]=nvy[x][y]-0;}

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1;

 nvy[x+1][y]=nvy[x+1][y]+0;}

 }

if (i6[x][y]==1)

 {

 if (nm[x][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]+0.5;

 nvy[x][y-1]=nvy[x][y-1]-sinangle;}

 }

return(0);

}

/*---*/

//Propagation phase in even rows of the lattice (bounce-back reflection) –

fluid

float propagationeven(void)

{

if (i1[x][y]==1)

 {

 if (nm[x][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]-0.5;

 nvy[x][y-1]=nvy[x][y-1]-sinangle;}

 }

if (i2[x][y]==1)

 {

 if (nm[x-1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1;

 nvy[x][y]=nvy[x][y]-0;}

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1;

 nvy[x-1][y]=nvy[x-1][y]+0;}

 }

if (i3[x][y]==1)

 {

 if (nm[x][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]-0.5;

 nvy[x][y+1]=nvy[x][y+1]+sinangle;}

 }

if (i4[x][y]==1)

 {

 if (nm[x+1][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x+1][y+1]=nm[x+1][y+1]+1; nvx[x+1][y+1]=nvx[x+1][y+1]+0.5;

 nvy[x+1][y+1]=nvy[x+1][y+1]+sinangle;}

 }

if (i5[x][y]==1)

 {

APPENDIX E

162

 if (nm[x+1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1;

 nvy[x][y]=nvy[x][y]+0;}

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1;

 nvy[x+1][y]=nvy[x+1][y]-0;}

 }

if (i6[x][y]==1)

 {

 if (nm[x+1][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x+1][y-1]=nm[x+1][y-1]+1; nvx[x+1][y-1]=nvx[x+1][y-1]+0.5;

 nvy[x+1][y-1]=nvy[x+1][y-1]-sinangle;}

 }

return(0);

}

/*---*/

//Propagation phase in odd rows of the lattice (bounce-back reflection)-

Brownian particle

float propagationoddbrown(void)

{

if ((i1[x][y]==13)||(i1[x][y]==1))

 {

 if (nm[x-1][y-1]==7)

 {nm[x][y]=nm[x][y]+1+code1[x][y]; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle; x2=x; y2=y;}

 else {nm[x-1][y-1]=nm[x-1][y-1]+1+code1[x][y]; nvx[x-1][y-1]=nvx[x-

1][y-1]-0.5;

 nvy[x-1][y-1]=nvy[x-1][y-1]-sinangle; x2=x-1; y2=y-1;}

 }

if ((i2[x][y]==13)||(i2[x][y]==1))

 {

 if (nm[x-1][y]==7)

 {nm[x][y]=nm[x][y]+1+code2[x][y]; nvx[x][y]=nvx[x][y]+1;

 nvy[x][y]=nvy[x][y]+0; x2=x; y2=y;}

 else {nm[x-1][y]=nm[x-1][y]+1+code2[x][y]; nvx[x-1][y]=nvx[x-1][y]-1;

 nvy[x-1][y]=nvy[x-1][y]-0; x2=x-1; y2=y;}

 }

if ((i3[x][y]==13)||(i3[x][y]==1))

 {

 if (nm[x-1][y+1]==7)

 {nm[x][y]=nm[x][y]+1+code3[x][y]; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]-sinangle; x2=x; y2=y;}

 else {nm[x-1][y+1]=nm[x-1][y+1]+1+code3[x][y]; nvx[x-1][y+1]=nvx[x-

1][y+1]-0.5;

 nvy[x-1][y+1]=nvy[x-1][y+1]+sinangle; x2=x-1; y2=y+1;}

 }

if ((i4[x][y]==13)||(i4[x][y]==1))

 {

 if (nm[x][y+1]==7)

 {nm[x][y]=nm[x][y]+1+code4[x][y]; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]-sinangle; x2=x; y2=y;}

 else {nm[x][y+1]=nm[x][y+1]+1+code4[x][y];

nvx[x][y+1]=nvx[x][y+1]+0.5;

 nvy[x][y+1]=nvy[x][y+1]+sinangle; x2=x; y2=y+1;}

APPENDIX E

163

 }

if ((i5[x][y]==13)||(i5[x][y]==1))

 {

 if (nm[x+1][y]==7)

 {nm[x][y]=nm[x][y]+1+code5[x][y]; nvx[x][y]=nvx[x][y]-1;

 nvy[x][y]=nvy[x][y]-0; x2=x; y2=y;}

 else {nm[x+1][y]=nm[x+1][y]+1+code5[x][y]; nvx[x+1][y]=nvx[x+1][y]+1;

 nvy[x+1][y]=nvy[x+1][y]+0; x2=x+1; y2=y;}

 }

if ((i6[x][y]==13)||(i6[x][y]==1))

 {

 if (nm[x][y-1]==7)

 {nm[x][y]=nm[x][y]+1+code6[x][y]; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]+sinangle; x2=x; y2=y;}

 else {nm[x][y-1]=nm[x][y-1]+1+code6[x][y]; nvx[x][y-1]=nvx[x][y-

1]+0.5;

 nvy[x][y-1]=nvy[x][y-1]-sinangle; x2=x; y2=y-1;}

 }

return(0);

}

/*---*/

//Propagation phase in even rows of the lattice (bounce-back reflection) -

Brownian particle

float propagationevenbrown(void)

{

if ((i1[x][y]==13)||(i1[x][y]==1))

 {

 if (nm[x][y-1]==7)

 {nm[x][y]=nm[x][y]+1+code1[x][y]; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle; x2=x; y2=y;}

 else {nm[x][y-1]=nm[x][y-1]+1+code1[x][y]; nvx[x][y-1]=nvx[x][y-1]-

0.5;

 nvy[x][y-1]=nvy[x][y-1]-sinangle; x2=x; y2=y-1;}

 }

if ((i2[x][y]==13)||(i2[x][y]==1))

 {

 if (nm[x-1][y]==7)

 {nm[x][y]=nm[x][y]+1+code2[x][y]; nvx[x][y]=nvx[x][y]+1;

 nvy[x][y]=nvy[x][y]-0; x2=x; y2=y;}

 else {nm[x-1][y]=nm[x-1][y]+1+code2[x][y]; nvx[x-1][y]=nvx[x-1][y]-1;

 nvy[x-1][y]=nvy[x-1][y]+0; x2=x-1; y2=y;}

 }

if ((i3[x][y]==13)||(i3[x][y]==1))

 {

 if (nm[x][y+1]==7)

 {nm[x][y]=nm[x][y]+1+code3[x][y]; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]-sinangle; x2=x; y2=y;}

 else {nm[x][y+1]=nm[x][y+1]+1+code3[x][y]; nvx[x][y+1]=nvx[x][y+1]-

0.5;

 nvy[x][y+1]=nvy[x][y+1]+sinangle; x2=x; y2=y+1;}

 }

if ((i4[x][y]==13)||(i4[x][y]==1))

 {

 if (nm[x+1][y+1]==7)

APPENDIX E

164

 {nm[x][y]=nm[x][y]+1+code4[x][y]; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]-sinangle; x2=x; y2=y;}

 else {nm[x+1][y+1]=nm[x+1][y+1]+1+code4[x][y];

nvx[x+1][y+1]=nvx[x+1][y+1]+0.5;

 nvy[x+1][y+1]=nvy[x+1][y+1]+sinangle; x2=x+1; y2=y+1;}

 }

if ((i5[x][y]==13)||(i5[x][y]==1))

 {

 if (nm[x+1][y]==7)

 {nm[x][y]=nm[x][y]+1+code5[x][y]; nvx[x][y]=nvx[x][y]-1;

 nvy[x][y]=nvy[x][y]+0; x2=x; y2=y;}

 else {nm[x+1][y]=nm[x+1][y]+1+code5[x][y]; nvx[x+1][y]=nvx[x+1][y]+1;

 nvy[x+1][y]=nvy[x+1][y]-0; x2=x+1; y2=y;}

 }

if ((i6[x][y]==13)||(i6[x][y]==1))

 {

 if (nm[x+1][y-1]==7)

 {nm[x][y]=nm[x][y]+1+code6[x][y]; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]+sinangle; x2=x; y2=y;}

 else {nm[x+1][y-1]=nm[x+1][y-1]+1+code6[x][y]; nvx[x+1][y-

1]=nvx[x+1][y-1]+0.5;

 nvy[x+1][y-1]=nvy[x+1][y-1]-sinangle; x2=x+1; y2=y-1;}

 }

return(0);

}

/*---*/

APPENDIX F

165

APPENDIX F

Computer simulation of the Brownian motion.
Evolution in time for 20 time steps

APPENDIX F

166

Initial position ()

Figure F-1: Simulation of the Brownian motion presented on the reduced simulation domain of a size
 The lattice gas average density is The simulation domain is

bounded by solid walls (red lines), blue regions corresponds with moving particles, black squares
present empty lattice nodes. The Brownian particle is yellow one. It is monitored for 20 time steps
with an interval of 1 t.u. The developed FHP-1 LGCA is used for the simulation

APPENDIX F

167

Figure F-1 (continuation): Simulation of the Brownian motion presented on the reduced simulation
domain of a size The lattice gas average density is The

simulation domain is bounded by solid walls (red lines), blue regions corresponds with moving
particles, black squares present empty lattice nodes. The Brownian particle is yellow one. It is
monitored for 20 time steps with an interval of 1 t.u. The developed FHP-1 LGCA is used for the
simulation

APPENDIX F

168

Figure F-1 (continuation): Simulation of the Brownian motion presented on the reduced simulation
domain of a size The lattice gas average density is The

simulation domain is bounded by solid walls (red lines), blue regions corresponds with moving
particles, black squares present empty lattice nodes. The Brownian particle is yellow one. It is
monitored for 20 time steps with an interval of 1 t.u. The developed FHP-1 LGCA is used for the
simulation

APPENDIX F

169

Figure F-1 (continuation): Simulation of the Brownian motion presented on the reduced simulation
domain of a size The lattice gas average density is The

simulation domain is bounded by solid walls (red lines), blue regions corresponds with moving
particles, black squares present empty lattice nodes. The Brownian particle is yellow one. It is
monitored for 20 time steps with an interval of 1 t.u. The developed FHP-1 LGCA is used for the
simulation

APPENDIX G

170

APPENDIX G

Computer simulation of the Brownian motion.
Paths of the Brownian particle after 4000 time
steps. Experiment 1

APPENDIX G

171

simulation 1 (BROWN03.CPP) simulation 2 (BROWN04.CPP)

simulation 3 (BROWN05.CPP) simulation 4 (BROWN06.CPP)

Figure G-1: Paths of the Brownian particle after 4000 time steps. The size of the simulation domain is Lattice gas average

density is

-120

-70

-20

30

80

-80 -30 20 70 120

l.u.

l.u.

-120

-70

-20

30

80

-80 -30 20 70 120

l.u.

l.u.

-120

-70

-20

30

80

-80 -30 20 70 120

l.u.

l.u.

-120

-70

-20

30

80

-80 -30 20 70 120

l.u.

l.u.

APPENDIX G

172

simulation 5 (BROWN08.CPP) simulation 6 (BROWN11.CPP)

simulation 7 (BROWN12.CPP)

Figure G-1 (continuation): Paths of the Brownian particle after 4000 time steps. The size of the simulation domain is Lattice

gas average density is

-120

-70

-20

30

80

-80 -30 20 70 120

l.u.

l.u.

-120

-70

-20

30

80

-80 -30 20 70 120

l.u.

l.u.

-120

-70

-20

30

80

-80 -30 20 70 120

l.u.

l.u.

APPENDIX H

173

APPENDIX H

Computer simulation of the Brownian motion.
Paths of the Brownian particle after 4000 time
steps. Experiment 2

APPENDIX H

174

simulation 1 (BROWN01.CPP) simulation 2 (BROWN02.CPP)

simulation 3 (BROWN04.CPP) simulation 4 (BROWN05.CPP)

Figure H-: Paths of the Brownian particle after 4000 time steps. The size of the simulation domain is Lattice gas average

density is

-200

-150

-100

-50

0

50

100

150

200

-120 -70 -20 30 80 130

l.u.

l.u.

-200

-150

-100

-50

0

50

100

150

200

-120 -70 -20 30 80 130

l.u.

l.u.

-200

-150

-100

-50

0

50

100

150

200

-120 -70 -20 30 80 130

l.u.

l.u.

-200

-150

-100

-50

0

50

100

150

200

-120 -70 -20 30 80 130

l.u.

l.u.

APPENDIX H

175

simulation 5 (BROWN07.CPP) simulation 6 (BROWN08.CPP)

simulation 7 (BROWN09.CPP)

Figure H-1 (continuation): Paths of the Brownian particle after 4000 time steps. The size of the simulation domain is Lattice

gas average density is

-200

-150

-100

-50

0

50

100

150

200

-120 -70 -20 30 80 130

l.u.

l.u.

-200

-150

-100

-50

0

50

100

150

200

-120 -70 -20 30 80 130

l.u.

l.u.

-200

-150

-100

-50

0

50

100

150

200

-120 -70 -20 30 80 130

l.u.

l.u.

APPENDIX I

176

APPENDIX I

The FHP-1 Lattice Gas Cellular Automata algorithm
for Poiseuille flow simulation

APPENDIX I

177

//FHP-1 LGCA for Poiseuille flow simulation

/* Code fragment 1: Header files and initialization of the simulation box

*/

//Definition of standard library functions

include <graphics.h>

include <stdlib.h>

include <stdio.h>

include <conio.h>

include <math.h>

include <float.h>

include <time.h>

define DIRX 550

define DIRY 200

//Declaration of variables

int x, y, xmax=549, ymax=199;

float vx[DIRX][DIRY], nvx[DIRX][DIRY];

float vy[DIRX][DIRY], nvy[DIRX][DIRY];

int m[DIRX][DIRY], nm[DIRX][DIRY];

int i1[DIRX][DIRY], i2[DIRX][DIRY], i3[DIRX][DIRY], i4[DIRX][DIRY],

i5[DIRX][DIRY], i6[DIRX][DIRY];

int mass=0, node=0;

float velocity=0;

int ventilator=5, force=1;

float sinangle=0.866025403, print=5.5, step=0;

float flow, V[DIRY];

int pco=3;

int transfer14=0, transfer25=0, transfer36=0;

int sig=15;

char str[25];

int I1, I2, I3, I4, I5, I6;

int cycle, cmax=10000, series;

//Declaration of subroutines

int collision(void);

float propagationodd(void);

float propagationeven(void);

float propagationleftsideodd(void);

float propagationleftsideeven(void);

float propagationrightsideodd(void);

float propagationrightsideeven(void);

float turnright(void);

float profile(void);

FILE *output0;

FILE *output1;

/*---*/

/* Beginning of a main part of the program */

int main()

{

/* Code fragment 2: Graphic outputs setting */

int gdriver = DETECT, gmode, errorcode;

//initialize graphics and local variabls

initgraph (&gdriver, &gmode, "c:\\TC\\BGI");

//read rezult of initialization

 errorcode = graphresult();

APPENDIX I

178

 //an error occurred

 if (errorcode != grOk)

 {

 printf ("Graphics error: %s\n", grapherrormsg(errorcode));

 printf ("Press any key to halt:");

 getch();

 exit(1);

 }

/* Code fragment 3: Creation of the simulation domain and initial state of

the simulated system */

//Data arrays resetting

for (x=0; x<xmax+1; x++)

 {

 for (y=0; y<ymax+1; y++)

 {

 m[x][y]=0;

 nm[x][y]=0;

 vx[x][y]=0;

 nvx[x][y]=0;

 vy[x][y]=0;

 nvy[x][y]=0;

 }

 }

//Creation of solid boundaries of the simulation box

for (x=1; x<xmax; x++)

{

m[x][1]=7;

m[x][2]=7;

m[x][ymax-1]=7;

m[x][ymax-2]=7;

nm[x][1]=7;

nm[x][2]=7;

nm[x][ymax-1]=7;

nm[x][ymax-2]=7;

putpixel (x, 1, m[x][1]*print);

putpixel (x, ymax-1, m[x][ymax-1]*print);

}

//randomize();

/* Code fragment 4: Occupation of cannels by fluid moving particles */

//odd rows of the lattice

for (x=3; x<xmax-2; x++)

 {

 for (y=3; y<ymax-2; y=y+2)

 {

 if (m[x][y]!=7)

 {

 m[x][y]=0; vx[x][y]=0; vy[x][y]=0;

 if (m[x-1][y-1]<7) {I1=random(pco);}

if (I1==1) {m[x][y]=m[x][y]+1; i1[x][y]=1;} else {i1[x][y]=0;}

 if (m[x-1][y]<7) {I2=random(pco);}

if (I2==1) {m[x][y]=m[x][y]+1; i2[x][y]=1;} else {i2[x][y]=0;}

 if (m[x-1][y+1]<7) {I3=random(pco);}

APPENDIX I

179

if (I3==1) {m[x][y]=m[x][y]+1; i3[x][y]=1;} else {i3[x][y]=0;}

 if (m[x][y+1]<7) {I4=random(pco);}

if (I4==1) {m[x][y]=m[x][y]+1; i4[x][y]=1;} else {i4[x][y]=0;}

 if (m[x+1][y]<7) {I5=random(pco);}

if (I5==1) {m[x][y]=m[x][y]+1; i5[x][y]=1;} else {i5[x][y]=0;}

 if (m[x][y-1]<7) {I6=random(pco);}

if (I6==1) {m[x][y]=m[x][y]+1; i6[x][y]=1;} else {i6[x][y]=0;}

 //the total particles velocity in the node

 vx[x][y]=vx[x][y]+0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-

0.5*i4[x][y]-i5[x][y]-0.5*i6[x][y];

 vy[x][y]=vy[x][y]+sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y];

 }}

 }

//even rows of the lattice

for (x=3; x<xmax-2; x++)

 {

 for (y=4; y<ymax-2; y=y+2)

 {

 if (m[x][y]!=7)

 {

 m[x][y]=0; vx[x][y]=0; vy[x][y]=0;

 if (m[x][y-1]<7) {I1=random(pco);}

if (I1==1) {m[x][y]=m[x][y]+1; i1[x][y]=1;} else {i1[x][y]=0;}

 if (m[x-1][y]<7) {I2=random(pco);}

if (I2==1) {m[x][y]=m[x][y]+1; i2[x][y]=1;} else {i2[x][y]=0;}

 if (m[x][y+1]<7) {I3=random(pco);}

if (I3==1) {m[x][y]=m[x][y]+1; i3[x][y]=1;} else {i3[x][y]=0;}

 if (m[x+1][y+1]<7) {I4=random(pco);}

if (I4==1) {m[x][y]=m[x][y]+1; i4[x][y]=1;} else {i4[x][y]=0;}

 if (m[x+1][y]<7) {I5=random(pco);}

if (I5==1) {m[x][y]=m[x][y]+1; i5[x][y]=1;} else {i5[x][y]=0;}

 if (m[x+1][y-1]<7) {I6=random(pco);}

if (I6==1) {m[x][y]=m[x][y]+1; i6[x][y]=1;} else {i6[x][y]=0;}

 // the total particles velocity in the node

 vx[x][y]=vx[x][y]+0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-

0.5*i4[x][y]-i5[x][y]-0.5*i6[x][y];

 vy[x][y]=vy[x][y]+sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y];

 }}

 }

/* Code fragment 5: Craphical outputs of the initial systém configuration

*/

for (x=1; x<xmax+1; x++)

 {

 for (y=1; y<ymax+1; y++)

 {

 putpixel (x, y, m[x][y]*print);

APPENDIX I

180

 }

 }

//Opening the data file FLOW.CPP

if ((output0=fopen("C:\\Outputs\\Poiseuil\\Flow02.cpp","w"))==NULL)

 {

 printf("output file error\n");

 exit(0);

 }

fprintf (output0, "trasfer14, transfer25, transfer36, cycle, node, mass,

flow\n");

/*---*/

/* Code fragment 6: The main cycle of the algorithm */

for (cycle=0; cycle<cmax+1; cycle++)

{

/* Code fragment 6-A: Collision phase */

for (x=3; x<xmax-2; x++)

 {for (y=3; y<ymax-2; y++)

 {

 if ((m[x][y]>0)&&(m[x][y]!=7)) {collision();}

 }

 }

/* Code fragment 6-B: Pressure gradient */

transfer14=0; transfer25=0; transfer36=0;

for (x=3; x<ventilator; x++)

 {for (y=3; y<ymax-2; y++)

 {

 if ((m[x][y]>0)&&(m[x][y]!=7))

 { if (random(force)<100) {turnright();}}

 }

 }

/* Code fragment 6-C: Propagation phase */

//odd rows of the lattice

for (x=3; x<xmax-2; x++)

 {

 for (y=3; y<ymax-2; y=y+2)

 {

 if ((m[x][y]>0)&&(m[x][y]!=7))

 {

 if (x==3) {propagationleftsideodd();}

 if (x==xmax-3) {propagationrightsideodd();}

 if ((x>3)&&(x<xmax-3)){propagationodd();}

 }

 }

 }

//even rows of the lattice

for (x=3; x<xmax-2; x++)

 {

 for (y=4; y<ymax-2; y=y+2)

 {

 if ((m[x][y]>0)&&(m[x][y]!=7))

 {

 if (x==3) {propagationleftsideeven();}

APPENDIX I

181

 if (x==xmax-3) {propagationrightsideeven();}

 if ((x>3)&&(x<xmax-3)){propagationeven();}

 }

 }

 }

/* Code fragment 7: Recording of a new sytem’s state */

for (x=1; x<xmax+1; x++)

 {

 for (y=1; y<ymax+1; y++)

 {

 m[x][y]=nm[x][y]; vx[x][y]=nvx[x][y]; vy[x][y]=nvy[x][y];

 putpixel (x, y, m[x][y]*print);

 }

 }

/* Code fragment 8: Data arrays resetting */

for (x=3; x<xmax-2; x++)

 {

 for (y=3; y<ymax-2; y++)

 {

 if (nm[x][y]<7)

 {nm[x][y]=0; nvx[x][y]=0; nvy[x][y]=0;

 i1[x][y]=0; i2[x][y]=0; i3[x][y]=0;

 i4[x][y]=0; i5[x][y]=0; i6[x][y]=0;}

 else {nm[x][y]=7;}

 }

 }

/* Code fragment 9: Printout macro */

setfillstyle(1,0);

bar(getmaxx()-90,getmaxy()-90,getmaxx(),getmaxy()-70);

outtextxy(getmaxx()-120,getmaxy()-80,"cycle");

outtextxy(getmaxx()-70,getmaxy()-80,gcvt(series,sig,str));

//Code fragment 9-A: Output FLOW.CPP

node=0; mass=0; velocity=0;

for (x=3; x<xmax-2; x++)

 {for (y=3; y<ymax-2; y++)

 {mass=mass+m[x][y]; node++;

 velocity=velocity+vx[x][y];

 }

 }

flow=velocity/float(mass);

fprintf(output0,"%8d %8d %8d %8d %8d %8d %8.5f\n", transfer14, transfer25,

transfer36, cycle, node, mass, flow);

//Code fragment 9-B: Velocity profile of the flow

if (cycle>5000) {profile();}

series=series+1;

//getch();

} //The end of the main cycle

//Opening the data file PROFILE.CPP. Output

if ((output1=fopen("C:\\Outputs\\Poiseuil\\Profile2.cpp","w"))==NULL)

 {

 printf("output file error\n");

 exit(0);

APPENDIX I

182

 }

for (y=3; y<ymax-2; y++)

 {fprintf(output1, "%5i %3.5f\n", y, V[y]/float(step));}

/* Code fragment 10: Final operations */

getch();

closegraph();

fclose (output0);

fclose (output1);

return (0);

} //The end of the main part of the algorithm

/*---*/

//SUBROUTINES

/*---*/

//Collision phase

int collision(void)

{

int cannel=0;

int mas=0;

float velx=0;

float vely=0;

nav2:

velx=vx[x][y]; vely=vy[x][y]; mas=m[x][y];

i1[x][y]=0; i2[x][y]=0; i3[x][y]=0; i4[x][y]=0; i5[x][y]=0; i6[x][y]=0;

nav1:

cannel=0;

cannel=random(6);

 if (cannel==0)

 {if (i1[x][y]==1) {goto nav1;}

 i1[x][y]=1; mas=mas-1;}

 if (cannel==1)

 {if (i2[x][y]==1) {goto nav1;}

 i2[x][y]=1; mas=mas-1;}

 if (cannel==2)

 {if (i3[x][y]==1) {goto nav1;}

 i3[x][y]=1; mas=mas-1;}

 if (cannel==3)

 {if (i4[x][y]==1) {goto nav1;}

 i4[x][y]=1; mas=mas-1;}

 if (cannel==4)

 {if (i5[x][y]==1) {goto nav1;}

 i5[x][y]=1; mas=mas-1;}

 if (cannel==5)

 {if (i6[x][y]==1) {goto nav1;}

 i6[x][y]=1; mas=mas-1;}

//change of mass and velocity in the cell – has to be zero

 if (mas!=0) {goto nav1;}

 velx=velx+(0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-0.5*i4[x][y]-i5[x][y]-

0.5*i6[x][y]);

 if (velx!=0) {goto nav2;}

 vely=vely+(sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y]);

 if (vely!=0) {goto nav2;}

return(0);

APPENDIX I

183

}

/*---*/

//Propagation phase in odd rows of the lattice (bounce-back reflection)

float propagationodd(void)

{

if (i1[x][y]==1)

 {

 if (nm[x-1][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x-1][y-1]=nm[x-1][y-1]+1; nvx[x-1][y-1]=nvx[x-1][y-1]-0.5;

 nvy[x-1][y-1]=nvy[x-1][y-1]-sinangle;}

 }

if (i2[x][y]==1)

 {

 if (nm[x-1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1;

 nvy[x][y]=nvy[x][y]+0;}

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1;

 nvy[x-1][y]=nvy[x-1][y]-0;}

 }

if (i3[x][y]==1)

 {

 if (nm[x-1][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x-1][y+1]=nm[x-1][y+1]+1; nvx[x-1][y+1]=nvx[x-1][y+1]-0.5;

 nvy[x-1][y+1]=nvy[x-1][y+1]+sinangle;}

 }

if (i4[x][y]==1)

 {

 if (nm[x][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]+0.5;

 nvy[x][y+1]=nvy[x][y+1]+sinangle;}

 }

if (i5[x][y]==1)

 {

 if (nm[x+1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1;

 nvy[x][y]=nvy[x][y]-0;}

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1;

 nvy[x+1][y]=nvy[x+1][y]+0;}

 }

if (i6[x][y]==1)

 {

 if (nm[x][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]+0.5;

 nvy[x][y-1]=nvy[x][y-1]-sinangle;}

 }

return(0);

}

APPENDIX I

184

/*---*/

//Propagation phase in even rows of the lattice (bounce-back reflection)

float propagationeven(void)

{

if (i1[x][y]==1)

 {

 if (nm[x][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]-0.5;

 nvy[x][y-1]=nvy[x][y-1]-sinangle;}

 }

if (i2[x][y]==1)

 {

 if (nm[x-1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1;

 nvy[x][y]=nvy[x][y]-0;}

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1;

 nvy[x-1][y]=nvy[x-1][y]+0;}

 }

if (i3[x][y]==1)

 {

 if (nm[x][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]-0.5;

 nvy[x][y+1]=nvy[x][y+1]+sinangle;}

 }

if (i4[x][y]==1)

 {

 if (nm[x+1][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x+1][y+1]=nm[x+1][y+1]+1; nvx[x+1][y+1]=nvx[x+1][y+1]+0.5;

 nvy[x+1][y+1]=nvy[x+1][y+1]+sinangle;}

 }

if (i5[x][y]==1)

 {

 if (nm[x+1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1;

 nvy[x][y]=nvy[x][y]+0;}

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1;

 nvy[x+1][y]=nvy[x+1][y]-0;}

 }

if (i6[x][y]==1)

 {

 if (nm[x+1][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x+1][y-1]=nm[x+1][y-1]+1; nvx[x+1][y-1]=nvx[x+1][y-1]+0.5;

 nvy[x+1][y-1]=nvy[x+1][y-1]-sinangle;}

 }

return(0);

}

APPENDIX I

185

/*---*/

//Propagation phase in odd rows of the lattice (bounce-back reflection)

float propagationleftsideodd(void)

{

if (i1[x][y]==1)

 {

 if (nm[xmax-3][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[xmax-3][y-1]=nm[xmax-3][y-1]+1; nvx[xmax-3][y-1]=nvx[xmax-

3][y-1]-0.5;

 nvy[xmax-3][y-1]=nvy[xmax-3][y-1]-sinangle;}

 }

if (i2[x][y]==1)

 {

 if (nm[xmax-3][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1;

 nvy[x][y]=nvy[x][y]+0;}

 else {nm[xmax-3][y]=nm[xmax-3][y]+1; nvx[xmax-3][y]=nvx[xmax-3][y]-1;

 nvy[xmax-3][y]=nvy[xmax-3][y]-0;}

 }

if (i3[x][y]==1)

 {

 if (nm[xmax-3][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[xmax-3][y+1]=nm[xmax-3][y+1]+1; nvx[xmax-3][y+1]=nvx[xmax-

3][y+1]-0.5;

 nvy[xmax-3][y+1]=nvy[xmax-3][y+1]+sinangle;}

 }

if (i4[x][y]==1)

 {

 if (nm[x][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]+0.5;

 nvy[x][y+1]=nvy[x][y+1]+sinangle;}

 }

if (i5[x][y]==1)

 {

 if (nm[x+1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1;

 nvy[x][y]=nvy[x][y]-0;}

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1;

 nvy[x+1][y]=nvy[x+1][y]+0;}

 }

if (i6[x][y]==1)

 {

 if (nm[x][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]+0.5;

 nvy[x][y-1]=nvy[x][y-1]-sinangle;}

 }

return(0);

}

APPENDIX I

186

/*---*/

//Propagation phase in odd rows of the lattice (bounce-back reflection)

float propagationrightsideodd(void)

{

if (i1[x][y]==1)

 {

 if (nm[x-1][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x-1][y-1]=nm[x-1][y-1]+1; nvx[x-1][y-1]=nvx[x-1][y-1]-0.5;

 nvy[x-1][y-1]=nvy[x-1][y-1]-sinangle;}

 }

if (i2[x][y]==1)

 {

 if (nm[x-1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1;

 nvy[x][y]=nvy[x][y]+0;}

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1;

 nvy[x-1][y]=nvy[x-1][y]-0;}

 }

if (i3[x][y]==1)

 {

 if (nm[x-1][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x-1][y+1]=nm[x-1][y+1]+1; nvx[x-1][y+1]=nvx[x-1][y+1]-0.5;

 nvy[x-1][y+1]=nvy[x-1][y+1]+sinangle;}

 }

if (i4[x][y]==1)

 {

 if (nm[x][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]+0.5;

 nvy[x][y+1]=nvy[x][y+1]+sinangle;}

 }

if (i5[x][y]==1)

 {

 if (nm[3][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1;

 nvy[x][y]=nvy[x][y]-0;}

 else {nm[3][y]=nm[3][y]+1; nvx[3][y]=nvx[3][y]+1;

 nvy[3][y]=nvy[3][y]+0;}

 }

if (i6[x][y]==1)

 {

 if (nm[x][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]+0.5;

 nvy[x][y-1]=nvy[x][y-1]-sinangle;}

 }

return(0);

}

APPENDIX I

187

/*---*/

//Propagation phase in even rows of the lattice (bounce-back reflection)

float propagationleftsideeven(void)

{

if (i1[x][y]==1)

 {

 if (nm[x][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]-0.5;

 nvy[x][y-1]=nvy[x][y-1]-sinangle;}

 }

if (i2[x][y]==1)

 {

 if (nm[xmax-3][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1;

 nvy[x][y]=nvy[x][y]-0;}

 else {nm[xmax-3][y]=nm[xmax-3][y]+1; nvx[xmax-3][y]=nvx[xmax-3][y]-1;

 nvy[xmax-3][y]=nvy[xmax-3][y]+0;}

 }

if (i3[x][y]==1)

 {

 if (nm[x][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]-0.5;

 nvy[x][y+1]=nvy[x][y+1]+sinangle;}

 }

if (i4[x][y]==1)

 {

 if (nm[x+1][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x+1][y+1]=nm[x+1][y+1]+1; nvx[x+1][y+1]=nvx[x+1][y+1]+0.5;

 nvy[x+1][y+1]=nvy[x+1][y+1]+sinangle;}

 }

if (i5[x][y]==1)

 {

 if (nm[x+1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1;

 nvy[x][y]=nvy[x][y]+0;}

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1;

 nvy[x+1][y]=nvy[x+1][y]-0;}

 }

if (i6[x][y]==1)

 {

 if (nm[x+1][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x+1][y-1]=nm[x+1][y-1]+1; nvx[x+1][y-1]=nvx[x+1][y-1]+0.5;

 nvy[x+1][y-1]=nvy[x+1][y-1]-sinangle;}

 }

return(0);

}

/*---*/

APPENDIX I

188

//Propagation phase in even rows of the lattice (bounce-back reflection)

float propagationrightsideeven(void)

{

if (i1[x][y]==1)

 {

 if (nm[x][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]-0.5;

 nvy[x][y-1]=nvy[x][y-1]-sinangle;}

 }

if (i2[x][y]==1)

 {

 if (nm[x-1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1;

 nvy[x][y]=nvy[x][y]-0;}

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1;

 nvy[x-1][y]=nvy[x-1][y]+0;}

 }

if (i3[x][y]==1)

 {

 if (nm[x][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]-0.5;

 nvy[x][y+1]=nvy[x][y+1]+sinangle;}

 }

if (i4[x][y]==1)

 {

 if (nm[3][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[3][y+1]=nm[3][y+1]+1; nvx[3][y+1]=nvx[3][y+1]+0.5;

 nvy[3][y+1]=nvy[3][y+1]+sinangle;}

 }

if (i5[x][y]==1)

 {

 if (nm[3][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1;

 nvy[x][y]=nvy[x][y]+0;}

 else {nm[3][y]=nm[3][y]+1; nvx[3][y]=nvx[3][y]+1;

 nvy[3][y]=nvy[3][y]-0;}

 }

if (i6[x][y]==1)

 {

 if (nm[3][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[3][y-1]=nm[3][y-1]+1; nvx[3][y-1]=nvx[3][y-1]+0.5;

 nvy[3][y-1]=nvy[3][y-1]-sinangle;}

 }

return(0);

}

/*---*/

APPENDIX I

189

//Pressure gradient

float turnright(void)

{

 if ((i1[x][y]==1)&&(i4[x][y]==0))

 {i1[x][y]=0; i4[x][y]=1; m[x][y]=m[x][y];

 transfer14++;}

 if ((i2[x][y]==1)&&(i5[x][y]==0))

 {i2[x][y]=0; i5[x][y]=1; m[x][y]=m[x][y];

 transfer25=transfer25+2;}

 if ((i3[x][y]==1)&&(i6[x][y]==0))

 {i3[x][y]=0; i6[x][y]=1; m[x][y]=m[x][y];

 transfer36++;}

return(0);

}

/*---*/

//Velocity profile

float profile(void)

{

float velocity;

int particles;

 for (y=3; y<ymax-2; y++)

 { velocity=0; particles=0;

 for (x=7; x<xmax-2; x++)

 {velocity=velocity+vx[x][y];

 particles=particles+m[x][y];}

 V[y]=V[y]+velocity/float(particles);

 }

 step++;

return (0);

}

/*---*/

APPENDIX J

190

APPENDIX J

Verification of the FHP-1 Lattice Gas Cellular
Automata algorithm for Poiseuille flow. Flow rate as
a function of time and velocity profiles for various
width of the channel

APPENDIX J

191

Figure J-1: Computer simulation of the Poiseuille flow: a – the flow rate as a function of time for the

channel of the size , and various ; b - the velocity profile of the flow
presented by values of the component of flow velocity averaged over the whole channel length in a
steady state region of the flow

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0

fl
o

w
 r

at
e,

 l.
u

./
t.

u
.

time, t.u.

a

fx=2

fx=1,4

fx=0,4

fx=0,2

fx=0,03

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

3 5 7 9 11 13 15 17 19 21

ve
lo

ci
ty

, l
.u

./
t.

u
.

axis OY, l.u.

b

fx=2

fx=1,4

fx=0,4

fx=0,2

fx=0,03

APPENDIX J

192

Figure J-2: Computer simulation of the Poiseuille flow: a – the flow rate as a function of time for the

channel of the size , and various ; b - the velocity profile of the flow
presented by values of the component of flow velocity averaged over the whole channel length in a
steady state region of the flow

0

0,05

0,1

0,15

0,2

0,25

0,3

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0

fl
o

w
 r

at
e,

 l.
u

./
t.

u
.

time, t.u.

a

fx=2

fx=1,4

fx=0,4

fx=0,2

fx=0,03

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

3 10 17 24 31 38 45

ve
lo

ci
ty

, l
.u

./
t.

u
.

axis OY, l.u.

b

fx=2

fx=1,4

fx=0,4

fx=0,2

fx=0,03

APPENDIX J

193

Figure J-3: Computer simulation of the Poiseuille flow: a – the flow rate as a function of time for the

channel of the size , and various ; b - the velocity profile of the flow
presented by values of the component of flow velocity averaged over the whole channel length in a
steady state region of the flow

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0

fl
o

w
 r

at
e,

 l.
u

./
t.

u
.

time, t.u.

a

fx=2

fx=1,4

fx=0,4

fx=0,2

fx=0,03

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

3 10 17 24 31 38 45 52 59 66

ve
lo

ci
ty

, l
.u

./
t.

u
.

axis OY, l.u.

b

fx=2

fx=1,4

fx=0,4

fx=0,2

fx=0,03

APPENDIX J

194

Figure J-4: Computer simulation of the Poiseuille flow: a – the flow rate as a function of time for the

channel of the size , and various ; b - the velocity profile of the flow
presented by values of the component of flow velocity averaged over the whole channel length in a
steady state region of the flow

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0

fl
o

w
 r

a
te

, l
.u

./
t.

u
.

time, t.u.

a

fx=2

fx=1,4

fx=0,4

fx=0,2

fx=0,03

0

0,1

0,2

0,3

0,4

0,5

0,6

3 15 27 39 51 63 75 87

ve
lo

ci
ty

, l
.u

./
t.

u
.

axis OY, l.u.

b

fx=2

fx=1,4

fx=0,4

fx=0,2

fx=0,03

APPENDIX K

195

APPENDIX K

Verification of the FHP-1 Lattice Gas Cellular
Automata algorithm for Poiseuille flow. Parabolic
velocity profiles of the flow for various width of the
channel and for different pressure gradient
created by various values of the parameter

APPENDIX K

196

Figure K-1: Parabolic velocity profiles for various width of the channel and for pressure gradient
criated by . The length of the channel is

Figure K-2: Parabolic velocity profiles for various width of the channel and for pressure gradient
criated by . The length of the channel is

0

0,1

0,2

0,3

0,4

0,5

0,6

3 13 23 33 43 53 63 73 83 93

ve
lo

ci
ty

, l
.u

./
t.

u
.

axis OY, l.u.

fx=2

d=25√3/2 l.u.

d=50√3/2 l.u.

d=75√3/2 l.u.

d=100√3/2 l.u.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

3 13 23 33 43 53 63 73 83 93

ve
lo

ci
ty

, l
.u

./
t.

u
.

axis OY, l.u.

fx=1,4

d=25√3/2 l.u.

d=50√3/2 l.u.

d=75√3/2 l.u.

d=100√3/2 l.u.

APPENDIX K

197

Figure K-3: Parabolic velocity profiles for various width of the channel and for pressure gradient
criated by . The length of the channel is

Figure K-4: Parabolic velocity profiles for various width of the channel and for pressure gradient
criated by . The length of the channel is

0

0,05

0,1

0,15

0,2

0,25

3 13 23 33 43 53 63 73 83 93

ve
lo

ci
ty

, l
.u

./
t.

u
.

axis OY, l.u.

fx=0,4

d=25√3/2 l.u.

d=50√3/2 l.u.

d=75√3/2 l.u.

d=100√3/2 l.u.

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

3 22 41 60 79

ve
lo

ci
ty

, l
.u

./
t.

u
.

axis OY, l.u.

fx=0,2

d=25√3/2 l.u.

d=50√3/2 l.u.

d=75√3/2 l.u.

d=100√3/2 l.u.

APPENDIX K

198

Figure K-5: Parabolic velocity profiles for various width of the channel and for pressure gradient
criated by . The length of the channel is

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

3 13 23 33 43 53 63 73 83 93

ve
lo

ci
ty

, l
.u

./
t.

u
.

axis OY, l.u.

fx=0,03

d=25√3/2 l.u.

d=50√3/2 l.u.

d=75√3/2 l.u.

d=100√3/2 l.u.

APPENDIX L

199

APPENDIX L

Verification of the FHP-1 Lattice Gas Cellular
Automata algorithm for Poiseuille flow. Flow rate as
a function of channel width for a pressure
gradient created by various

APPENDIX L

200

Figure L-1: Predicted and simulated flow rate as a function of channel width for a pressure gradient
created by (a), (b) and (c). The range of the channel width is
 The length of the channel

0

0,1

0,2

0,3

0,4

0,5

0,6

0 25 50 75 100

fl
o

w
 r

at
e

, l
.u

./
t.

u
.

channel width, l.u.

a

simulated

predicted

0

0,1

0,2

0,3

0,4

0,5

0,6

0 25 50 75 100

fl
o

w
 r

a
te

 ,
l.u

./
t.

u
.

channel width, l.u.

b

simulated

predicted

0

0,1

0,2

0,3

0,4

0,5

0,6

0 25 50 75 100

fl
o

w
 r

a
te

, l
.u

./
t.

u
.

channel width, l.u.

c

simulated

predicted

0

0,01

0,02

0,03

0 25 50 75 100

APPENDIX M

201

APPENDIX M

Verification of the FHP-1 Lattice Gas Cellular
Automata algorithm for Poiseuille flow. Validation
of the Darcy’s law for various width of the channel
 .

APPENDIX M

202

Figure M-1: Verification of the Darcy's law. The flow rate as a function of the pressure gradient for variuos channel width: (a), ;

(b), (c) and (d)

0

0,03

0,06

0,09

0,12

0 0,02 0,04 0,06 0,08 0,1

pressure gradient, m.u.*(l.u.)-1*(t.u.)-2

a

0

0,05

0,1

0,15

0,2

0,25

0,3

0 0,05 0,1 0,15

pressure gradient, m.u.*(l.u.)-1*(t.u.)-2

b

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 0,05 0,1 0,15 0,2 0,25 0,3

pressure gradient, m.u.*(l.u.)-1*(t.u.)-2

c

0

0,1

0,2

0,3

0,4

0,5

0 0,05 0,1 0,15 0,2

pressure gradient, m.u.*(l.u.)-1*(t.u.)-2

d

APPENDIX N

203

APPENDIX N

The FHP-1 Lattice Gas Cellular Automata algorithm
for simulation of the fluid flow through porous
media.

APPENDIX N

204

/FHP-1 LGCA for fluid flow through porous media simulation

/*Code fragment 1: Header files and initialization of the simulation box */

//Definition of standard library functions

include <graphics.h>

include <stdlib.h>

include <stdio.h>

include <conio.h>

include <math.h>

include <float.h>

include <time.h>

define DIRX 450

define DIRY 250

//Declaration of variables

int x, y, xmax=449, ymax=249;

float vx[DIRX][DIRY], nvx[DIRX][DIRY];

float vy[DIRX][DIRY], nvy[DIRX][DIRY];

int m[DIRX][DIRY], nm[DIRX][DIRY];

int i1[DIRX][DIRY], i2[DIRX][DIRY], i3[DIRX][DIRY], i4[DIRX][DIRY],

i5[DIRX][DIRY], i6[DIRX][DIRY];

int mass=0, node=0;

float velfieldx[DIRX][DIRY], velfieldy[DIRX][DIRY], velocity=0;

int ventilator=5, force=1;

float sinangle=0.866025403, step=0, pi=3.14, alfa, b1, b2;

float flow, V[DIRY];

int pco=2;

int porousmedium=5, i=45, angle=35;

int pore=0, fibre=0;

int transfer14=0, transfer25=0, transfer36=0;

int fluid=3, obstacle=4, hole=0;

int sig=15;

char str[25];

int I1, I2, I3, I4, I5, I6;

int cycle, cmax=10000, series;

//Declaration of subroutines and output files

int collision(void);

float propagationodd(void);

float propagationeven(void);

float propagationleftsideodd(void);

float propagationleftsideeven(void);

float propagationrightsideodd(void);

float propagationrightsideeven(void);

float turnright(void);

float profile(void);

float velocityfield(void);

FILE *output1;

FILE *output2;

FILE *output3;

FILE *output4;

FILE *output5;

FILE *output6;

/*---*/

/* Beginning of a main part of the program */

int main()

{

/* Code fragment 2: Graphic outputs setting */

APPENDIX N

205

int gdriver = DETECT, gmode, errorcode;

//initialize graphics and local variabls

initgraph (&gdriver, &gmode, "c:\\TC\\BGI");

//read rezult of initialization

 errorcode = graphresult();

 //an error occurred

 if (errorcode != grOk)

 {

 printf ("Graphics error: %s\n", grapherrormsg(errorcode));

 printf ("Press any key to halt:");

 getch();

 exit(1);

 }

/* Code fragment 3: Creation of the simulation domain and initial state of

the simulated system */

//Data arrays resetting

for (x=0; x<xmax+1; x++)

 {

 for (y=0; y<ymax+1; y++)

 {

 m[x][y]=0;

 nm[x][y]=0;

 vx[x][y]=0;

 nvx[x][y]=0;

 vy[x][y]=0;

 nvy[x][y]=0;

 }

 }

//Creation of solid boundaries of the simulation box

for (x=1; x<xmax; x++)

{

m[x][1]=7;

m[x][2]=7;

m[x][ymax-1]=7;

m[x][ymax-2]=7;

nm[x][1]=7;

nm[x][2]=7;

nm[x][ymax-1]=7;

nm[x][ymax-2]=7;

putpixel (x, 1, m[x][1]);

putpixel (x, ymax-1, m[x][ymax-1]);

}

//randomize();

//porous medium

for (x=3; x<xmax-2; x++)

 {for (y=3; y<ymax-2; y++)

 {if (random(101)<porousmedium)

 {m[x][y]=7; nm[x][y]=7;}

 }

 }

//declined porous medium

alfa=angle*pi/180;

APPENDIX N

206

b1=cos(alfa)+0;

b2=cos(alfa)+b1+2*i;

for (x=1; x<xmax; x++)

{for (y=3; y<ymax-2; y++)

 {

 if (y>(x*cos(alfa)-b1)) {m[x][y]=0; nm[x][y]=0;}

 }

}

for (x=1; x<xmax; x++)

{for (y=3; y<ymax-2; y++)

 {

 if (y<(x*cos(alfa)-b2)){m[x][y]=0; nm[x][y]=0;}

 }

}

//porosity calculation

for (x=1; x<xmax; x++)

 {for (y=3; y<ymax-2; y++)

 {

 if ((y>(x*cos(alfa)-b2))&&(y<(x*cos(alfa)-b1)))

 {if (m[x][y]!=7) {pore++;} else {fibre++;}}

 }

 }

/* Code fragment 4: Occupation of cannels by fluid moving particles */

//odd rows of the lattice

for (x=3; x<xmax-2; x++)

 {

 for (y=3; y<ymax-2; y=y+2)

 {

 if (m[x][y]!=7)

 {

 m[x][y]=0; vx[x][y]=0; vy[x][y]=0;

 if (m[x-1][y-1]<7) {I1=random(pco);}

if (I1==1) {m[x][y]=m[x][y]+1; i1[x][y]=1;} else {i1[x][y]=0;}

 if (m[x-1][y]<7) {I2=random(pco);}

if (I2==1) {m[x][y]=m[x][y]+1; i2[x][y]=1;} else {i2[x][y]=0;}

 if (m[x-1][y+1]<7) {I3=random(pco);}

if (I3==1) {m[x][y]=m[x][y]+1; i3[x][y]=1;} else {i3[x][y]=0;}

 if (m[x][y+1]<7) {I4=random(pco);}

if (I4==1) {m[x][y]=m[x][y]+1; i4[x][y]=1;} else {i4[x][y]=0;}

 if (m[x+1][y]<7) {I5=random(pco);}

if (I5==1) {m[x][y]=m[x][y]+1; i5[x][y]=1;} else {i5[x][y]=0;}

 if (m[x][y-1]<7) {I6=random(pco);}

if (I6==1) {m[x][y]=m[x][y]+1; i6[x][y]=1;} else {i6[x][y]=0;}

 //the total particles velocity in the node

 vx[x][y]=vx[x][y]+0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-

0.5*i4[x][y]-i5[x][y]-0.5*i6[x][y];

 vy[x][y]=vy[x][y]+sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y];

 }}

 }

APPENDIX N

207

//even rows of the lattice

for (x=3; x<xmax-2; x++)

 {

 for (y=4; y<ymax-2; y=y+2)

 {

 if (m[x][y]!=7)

 {

 m[x][y]=0; vx[x][y]=0; vy[x][y]=0;

 if (m[x][y-1]<7) {I1=random(pco);}

if (I1==1) {m[x][y]=m[x][y]+1; i1[x][y]=1;} else {i1[x][y]=0;}

 if (m[x-1][y]<7) {I2=random(pco);}

if (I2==1) {m[x][y]=m[x][y]+1; i2[x][y]=1;} else {i2[x][y]=0;}

 if (m[x][y+1]<7) {I3=random(pco);}

if (I3==1) {m[x][y]=m[x][y]+1; i3[x][y]=1;} else {i3[x][y]=0;}

 if (m[x+1][y+1]<7) {I4=random(pco);}

if (I4==1) {m[x][y]=m[x][y]+1; i4[x][y]=1;} else {i4[x][y]=0;}

 if (m[x+1][y]<7) {I5=random(pco);}

if (I5==1) {m[x][y]=m[x][y]+1; i5[x][y]=1;} else {i5[x][y]=0;}

 if (m[x+1][y-1]<7) {I6=random(pco);}

if (I6==1) {m[x][y]=m[x][y]+1; i6[x][y]=1;} else {i6[x][y]=0;}

 // the total particles velocity in the node

 vx[x][y]=vx[x][y]+0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-

0.5*i4[x][y]-i5[x][y]-0.5*i6[x][y];

 vy[x][y]=vy[x][y]+sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y];

 }}

 }

/* Code fragment 5: Craphical outputs of the initial system configuration

*/

for (x=1; x<xmax+1; x++)

 {

 for (y=1; y<ymax+1; y++)

 {

 putpixel (x, y, m[x][y]);

 }

 }

//Opening the data file FLOW.CPP

if ((output1=fopen("C:\\Outputs\\Filter\\Flow01.cpp","w"))==NULL)

 {

 printf("output file error\n");

 exit(0);

 }

//Opening the data file INFO.CPP

if ((output2=fopen("C:\\Outputs\\Filter\\Info01.cpp","w"))==NULL)

 {

 printf("output file error\n");

 exit(0);

 }

/*---*/

/* Code fragment 6: The main cycle of the algorithm */

APPENDIX N

208

for (cycle=0; cycle<cmax+1; cycle++)

{

/* Code fragment 6-A: Collision phase */

for (x=3; x<xmax-2; x++)

 {for (y=3; y<ymax-2; y++)

 {

 if ((m[x][y]>0)&&(m[x][y]!=7)) {collision();}

 }

 }

/* Code fragment 6-B: Pressure gradient */

transfer14=0; transfer25=0; transfer36=0;

for (x=3; x<ventilator; x++)

 {for (y=3; y<ymax-2; y++)

 {

 if ((m[x][y]>0)&&(m[x][y]!=7))

 { if (random(force)<100) {turnright();}}

 }

 }

//Porous medium

for (x=3; x<xmax-2; x++)

 {for (y=3; y<ymax-2; y++)

 {

 if (m[x][y]==7) {nm[x][y]=7;}

 }

 }

/* Code fragment 6-C: Propagation phase */

//odd rows of the lattice

for (x=3; x<xmax-2; x++)

 {

 for (y=3; y<ymax-2; y=y+2)

 {

 if ((m[x][y]>0)&&(m[x][y]!=7))

 {

 if (x==3) {propagationleftsideodd();}

 if (x==xmax-3) {propagationrightsideodd();}

 if ((x>3)&&(x<xmax-3)){propagationodd();}

 }

 }

 }

//even rows of the lattice

for (x=3; x<xmax-2; x++)

 {

 for (y=4; y<ymax-2; y=y+2)

 {

 if ((m[x][y]>0)&&(m[x][y]!=7))

 {

 if (x==3) {propagationleftsideeven();}

 if (x==xmax-3) {propagationrightsideeven();}

 if ((x>3)&&(x<xmax-3)){propagationeven();}

 }

 }

 }

/* Code fragment 7: Recording of a new sytem’s state */

APPENDIX N

209

for (x=1; x<xmax+1; x++)

 {

 for (y=1; y<ymax+1; y++)

 {

 m[x][y]=nm[x][y]; vx[x][y]=nvx[x][y]; vy[x][y]=nvy[x][y];

 if ((m[x][y]>0)&&(m[x][y]<7)) {putpixel (x, y, fluid);}

 if (m[x][y]==7) {putpixel(x, y, obstacle);}

 if (m[x][y]==0) {putpixel(x, y, hole);}

 }

 }

/* Code fragment 8: Data arrays resetting */

for (x=3; x<xmax-2; x++)

 {

 for (y=3; y<ymax-2; y++)

 {

 if (nm[x][y]<7)

 {nm[x][y]=0; nvx[x][y]=0; nvy[x][y]=0;

 i1[x][y]=0; i2[x][y]=0; i3[x][y]=0;

 i4[x][y]=0; i5[x][y]=0; i6[x][y]=0;}

 else {nm[x][y]=7;}

 }

 }

/* Code fragment 9: Printout macro */

setfillstyle(1,0);

bar(getmaxx()-90,getmaxy()-90,getmaxx(),getmaxy()-70);

outtextxy(getmaxx()-120,getmaxy()-80,"cycle");

outtextxy(getmaxx()-70,getmaxy()-80,gcvt(series,sig,str));

//Code fragment 9-A: Output FLOW.CPP

node=0; mass=0; velocity=0;

for (x=3; x<xmax-2; x++)

 {for (y=3; y<ymax-2; y++)

 {mass=mass+m[x][y]; node++;

 velocity=velocity+vx[x][y];

 }

 }

flow=velocity/float(mass);

fprintf(output1,"%8d %8d %8d %8d\n", transfer14, transfer25, transfer36,

node);

fprintf(output2,"%8d %8.5f %8d\n", cycle, flow, mass);

//Code fragment 9-B: Distribution of velocity vectors of moving particles

if (cycle>2000)

 {profile();

 velocityfield();}

series=series+1;

//getch();

} //The end of the main cycle

/*---*/

//Opening the data file PROFILE.CPP. Output

if ((output3=fopen("C:\\Outputs\\Filter\\Profile1.cpp","w"))==NULL)

 {

 printf("output file error\n");

APPENDIX N

210

 exit(0);

 }

for (y=3; y<ymax-2; y++)

 {fprintf(output3, "%5i %3.5f\n", y, V[y]/float(step));}

//Opening the data file POROUS.CPP. Output

if ((output4=fopen("C:\\Outputs\\Filter\\Porous1.cpp","w"))==NULL)

 {

 printf("output file error\n");

 exit(0);

 }

 fprintf(output4, "%5i %5i\n", fibre, pore);

//Opening the data file VELFIEL.CPP. Output

if ((output5=fopen("C:\\Outputs\\Filter\\Velfiel1.cpp","w"))==NULL)

 {

 printf("output file error\n");

 exit(0);

 }

for (x=3; x<xmax-2; x++)

 {for (y=3; y<ymax-2; y++)

 {fprintf(output5, "%5i %5i %5.5f %5.5f\n", x, y,

velfieldx[x][y]/float(step), velfieldy[x][y]/float(step));}

 }

//Opening the data file FIGURE.CPP. Output

if ((output6=fopen("C:\\Outputs\\Filter\\Figure1.cpp","w"))==NULL)

 {

 printf("output file error\n");

 exit(0);

 }

for (x=3; x<xmax-2; x++)

 {for (y=3; y<ymax-2; y++)

 {fprintf(output6, "%5i %5i %5i\n", x, y, m[x][y]);}

 }

/*---*/

/* Code fragment 10: Final operations */

getch();

closegraph();

fclose (output1);

fclose (output2);

fclose (output3);

fclose (output4);

fclose (output5);

fclose (output6);

return (0);

} //The end of the main part of the algorithm

/*---*/

//SUBROUTINES

/*---*/

//Collision phase

int collision(void)

{

int cannel=0;

int mas=0;

float velx=0;

APPENDIX N

211

float vely=0;

nav2:

velx=vx[x][y]; vely=vy[x][y]; mas=m[x][y];

i1[x][y]=0; i2[x][y]=0; i3[x][y]=0; i4[x][y]=0; i5[x][y]=0; i6[x][y]=0;

nav1:

cannel=0;

cannel=random(6);

 if (cannel==0)

 {if (i1[x][y]==1) {goto nav1;}

 i1[x][y]=1; mas=mas-1;}

 if (cannel==1)

 {if (i2[x][y]==1) {goto nav1;}

 i2[x][y]=1; mas=mas-1;}

 if (cannel==2)

 {if (i3[x][y]==1) {goto nav1;}

 i3[x][y]=1; mas=mas-1;}

 if (cannel==3)

 {if (i4[x][y]==1) {goto nav1;}

 i4[x][y]=1; mas=mas-1;}

 if (cannel==4)

 {if (i5[x][y]==1) {goto nav1;}

 i5[x][y]=1; mas=mas-1;}

 if (cannel==5)

 {if (i6[x][y]==1) {goto nav1;}

 i6[x][y]=1; mas=mas-1;}

//change of mass and velocity in the cell – has to be zero

 if (mas!=0) {goto nav1;}

 velx=velx+(0.5*i1[x][y]+i2[x][y]+0.5*i3[x][y]-0.5*i4[x][y]-i5[x][y]-

0.5*i6[x][y]);

 if (velx!=0) {goto nav2;}

 vely=vely+(sinangle*i1[x][y]-sinangle*i3[x][y]-

sinangle*i4[x][y]+sinangle*i6[x][y]);

 if (vely!=0) {goto nav2;}

return(0);

}

/*---*/

//Propagation phase in odd rows of the lattice (bounce-back reflection)

float propagationodd(void)

{

if (i1[x][y]==1)

 {

 if (nm[x-1][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x-1][y-1]=nm[x-1][y-1]+1; nvx[x-1][y-1]=nvx[x-1][y-1]-0.5;

 nvy[x-1][y-1]=nvy[x-1][y-1]-sinangle;}

 }

if (i2[x][y]==1)

 {

 if (nm[x-1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1;

 nvy[x][y]=nvy[x][y]+0;}

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1;

 nvy[x-1][y]=nvy[x-1][y]-0;}

 }

APPENDIX N

212

if (i3[x][y]==1)

 {

 if (nm[x-1][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x-1][y+1]=nm[x-1][y+1]+1; nvx[x-1][y+1]=nvx[x-1][y+1]-0.5;

 nvy[x-1][y+1]=nvy[x-1][y+1]+sinangle;}

 }

if (i4[x][y]==1)

 {

 if (nm[x][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]+0.5;

 nvy[x][y+1]=nvy[x][y+1]+sinangle;}

 }

if (i5[x][y]==1)

 {

 if (nm[x+1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1;

 nvy[x][y]=nvy[x][y]-0;}

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1;

 nvy[x+1][y]=nvy[x+1][y]+0;}

 }

if (i6[x][y]==1)

 {

 if (nm[x][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]+0.5;

 nvy[x][y-1]=nvy[x][y-1]-sinangle;}

 }

return(0);

}

/*---*/

//Propagation phase in even rows of the lattice (bounce-back reflection)

float propagationeven(void)

{

if (i1[x][y]==1)

 {

 if (nm[x][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]-0.5;

 nvy[x][y-1]=nvy[x][y-1]-sinangle;}

 }

if (i2[x][y]==1)

 {

 if (nm[x-1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1;

 nvy[x][y]=nvy[x][y]-0;}

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1;

 nvy[x-1][y]=nvy[x-1][y]+0;}

 }

APPENDIX N

213

if (i3[x][y]==1)

 {

 if (nm[x][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]-0.5;

 nvy[x][y+1]=nvy[x][y+1]+sinangle;}

 }

if (i4[x][y]==1)

 {

 if (nm[x+1][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x+1][y+1]=nm[x+1][y+1]+1; nvx[x+1][y+1]=nvx[x+1][y+1]+0.5;

 nvy[x+1][y+1]=nvy[x+1][y+1]+sinangle;}

 }

if (i5[x][y]==1)

 {

 if (nm[x+1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1;

 nvy[x][y]=nvy[x][y]+0;}

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1;

 nvy[x+1][y]=nvy[x+1][y]-0;}

 }

if (i6[x][y]==1)

 {

 if (nm[x+1][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x+1][y-1]=nm[x+1][y-1]+1; nvx[x+1][y-1]=nvx[x+1][y-1]+0.5;

 nvy[x+1][y-1]=nvy[x+1][y-1]-sinangle;}

 }

return(0);

}

/*---*/

//Propagation phase in odd rows of the lattice (bounce-back reflection)

float propagationleftsideodd(void)

{

if (i1[x][y]==1)

 {

 if (nm[xmax-3][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[xmax-3][y-1]=nm[xmax-3][y-1]+1; nvx[xmax-3][y-1]=nvx[xmax-

3][y-1]-0.5;

 nvy[xmax-3][y-1]=nvy[xmax-3][y-1]-sinangle;}

 }

if (i2[x][y]==1)

 {

 if (nm[xmax-3][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1;

 nvy[x][y]=nvy[x][y]+0;}

 else {nm[xmax-3][y]=nm[xmax-3][y]+1; nvx[xmax-3][y]=nvx[xmax-3][y]-1;

 nvy[xmax-3][y]=nvy[xmax-3][y]-0;}

 }

APPENDIX N

214

if (i3[x][y]==1)

 {

 if (nm[xmax-3][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[xmax-3][y+1]=nm[xmax-3][y+1]+1; nvx[xmax-3][y+1]=nvx[xmax-

3][y+1]-0.5;

 nvy[xmax-3][y+1]=nvy[xmax-3][y+1]+sinangle;}

 }

if (i4[x][y]==1)

 {

 if (nm[x][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]+0.5;

 nvy[x][y+1]=nvy[x][y+1]+sinangle;}

 }

if (i5[x][y]==1)

 {

 if (nm[x+1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1;

 nvy[x][y]=nvy[x][y]-0;}

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1;

 nvy[x+1][y]=nvy[x+1][y]+0;}

 }

if (i6[x][y]==1)

 {

 if (nm[x][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]+0.5;

 nvy[x][y-1]=nvy[x][y-1]-sinangle;}

 }

return(0);

}

/*---*/

//Propagation phase in odd rows of the lattice (bounce-back reflection)

float propagationrightsideodd(void)

{

if (i1[x][y]==1)

 {

 if (nm[x-1][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x-1][y-1]=nm[x-1][y-1]+1; nvx[x-1][y-1]=nvx[x-1][y-1]-0.5;

 nvy[x-1][y-1]=nvy[x-1][y-1]-sinangle;}

 }

if (i2[x][y]==1)

 {

 if (nm[x-1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1;

 nvy[x][y]=nvy[x][y]+0;}

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1;

 nvy[x-1][y]=nvy[x-1][y]-0;}

 }

APPENDIX N

215

if (i3[x][y]==1)

 {

 if (nm[x-1][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x-1][y+1]=nm[x-1][y+1]+1; nvx[x-1][y+1]=nvx[x-1][y+1]-0.5;

 nvy[x-1][y+1]=nvy[x-1][y+1]+sinangle;}

 }

if (i4[x][y]==1)

 {

 if (nm[x][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]+0.5;

 nvy[x][y+1]=nvy[x][y+1]+sinangle;}

 }

if (i5[x][y]==1)

 {

 if (nm[3][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1;

 nvy[x][y]=nvy[x][y]-0;}

 else {nm[3][y]=nm[3][y]+1; nvx[3][y]=nvx[3][y]+1;

 nvy[3][y]=nvy[3][y]+0;}

 }

if (i6[x][y]==1)

 {

 if (nm[x][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]+0.5;

 nvy[x][y-1]=nvy[x][y-1]-sinangle;}

 }

return(0);

}

/*---*/

//Propagation phase in even rows of the lattice (bounce-back reflection)

float propagationleftsideeven(void)

{

if (i1[x][y]==1)

 {

 if (nm[x][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]-0.5;

 nvy[x][y-1]=nvy[x][y-1]-sinangle;}

 }

if (i2[x][y]==1)

 {

 if (nm[xmax-3][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1;

 nvy[x][y]=nvy[x][y]-0;}

 else {nm[xmax-3][y]=nm[xmax-3][y]+1; nvx[xmax-3][y]=nvx[xmax-3][y]-1;

 nvy[xmax-3][y]=nvy[xmax-3][y]+0;}

 }

if (i3[x][y]==1)

APPENDIX N

216

 {

 if (nm[x][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]-0.5;

 nvy[x][y+1]=nvy[x][y+1]+sinangle;}

 }

if (i4[x][y]==1)

 {

 if (nm[x+1][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x+1][y+1]=nm[x+1][y+1]+1; nvx[x+1][y+1]=nvx[x+1][y+1]+0.5;

 nvy[x+1][y+1]=nvy[x+1][y+1]+sinangle;}

 }

if (i5[x][y]==1)

 {

 if (nm[x+1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1;

 nvy[x][y]=nvy[x][y]+0;}

 else {nm[x+1][y]=nm[x+1][y]+1; nvx[x+1][y]=nvx[x+1][y]+1;

 nvy[x+1][y]=nvy[x+1][y]-0;}

 }

if (i6[x][y]==1)

 {

 if (nm[x+1][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x+1][y-1]=nm[x+1][y-1]+1; nvx[x+1][y-1]=nvx[x+1][y-1]+0.5;

 nvy[x+1][y-1]=nvy[x+1][y-1]-sinangle;}

 }

return(0);

}

/*---*/

//Propagation phase in even rows of the lattice (bounce-back reflection)

float propagationrightsideeven(void)

{

if (i1[x][y]==1)

 {

 if (nm[x][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[x][y-1]=nm[x][y-1]+1; nvx[x][y-1]=nvx[x][y-1]-0.5;

 nvy[x][y-1]=nvy[x][y-1]-sinangle;}

 }

if (i2[x][y]==1)

 {

 if (nm[x-1][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+1;

 nvy[x][y]=nvy[x][y]-0;}

 else {nm[x-1][y]=nm[x-1][y]+1; nvx[x-1][y]=nvx[x-1][y]-1;

 nvy[x-1][y]=nvy[x-1][y]+0;}

 }

if (i3[x][y]==1)

 {

APPENDIX N

217

 if (nm[x][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]+0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[x][y+1]=nm[x][y+1]+1; nvx[x][y+1]=nvx[x][y+1]-0.5;

 nvy[x][y+1]=nvy[x][y+1]+sinangle;}

 }

if (i4[x][y]==1)

 {

 if (nm[3][y+1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]-sinangle;}

 else {nm[3][y+1]=nm[3][y+1]+1; nvx[3][y+1]=nvx[3][y+1]+0.5;

 nvy[3][y+1]=nvy[3][y+1]+sinangle;}

 }

if (i5[x][y]==1)

 {

 if (nm[3][y]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-1;

 nvy[x][y]=nvy[x][y]+0;}

 else {nm[3][y]=nm[3][y]+1; nvx[3][y]=nvx[3][y]+1;

 nvy[3][y]=nvy[3][y]-0;}

 }

if (i6[x][y]==1)

 {

 if (nm[3][y-1]==7)

 {nm[x][y]=nm[x][y]+1; nvx[x][y]=nvx[x][y]-0.5;

 nvy[x][y]=nvy[x][y]+sinangle;}

 else {nm[3][y-1]=nm[3][y-1]+1; nvx[3][y-1]=nvx[3][y-1]+0.5;

 nvy[3][y-1]=nvy[3][y-1]-sinangle;}

 }

return(0);

}

/*---*/

//Pressure gradient

float turnright(void)

{

 if ((i1[x][y]==1)&&(i4[x][y]==0))

 {i1[x][y]=0; i4[x][y]=1; m[x][y]=m[x][y];

 transfer14++;}

 if ((i2[x][y]==1)&&(i5[x][y]==0))

 {i2[x][y]=0; i5[x][y]=1; m[x][y]=m[x][y];

 transfer25=transfer25+2;}

 if ((i3[x][y]==1)&&(i6[x][y]==0))

 {i3[x][y]=0; i6[x][y]=1; m[x][y]=m[x][y];

 transfer36++;}

return(0);

}

/*---*/

//Velocity profile

float profile(void)

{

float velocity;

int particles;

APPENDIX N

218

for (y=3; y<ymax-2; y++)

 {

 velocity=0; particles=0;

 for (x=7; x<xmax-2; x++)

 {

 if (m[x][y]!=7)

 {velocity=velocity+vx[x][y];

 particles=particles+m[x][y];}

 }

 V[y]=V[y]+velocity/float(particles);

 }

 step++;

return (0);

}

/*---*/

//The field of velocities vectors

float velocityfield(void)

{

for (x=3; x<xmax-2; x++)

 {

 for (y=3; y<ymax-2; y++)

 {

 if (m[x][y]!=7)

 {velfieldx[x][y]=velfieldx[x][y]+vx[x][y];

 velfieldy[x][y]=velfieldy[x][y]+vy[x][y];}

 }

 }

return (0);

}

/*---*/

APPENDIX O

219

APPENDIX O

The FHP-1 Lattice Gas Cellular Automata model for
simulation of the fluid flow through porous media.
Algorithms for data processing and their graphical
representation.

APPENDIX O

220

/* FHP-1 LGCA for fluid flow in porous medium simulation */

/* X- and y- components of particles velocities - avareging in a space */

//Definition of standard library functions

include <stdlib.h>

include <stdio.h>

include <conio.h>

include <math.h>

//Declaration of variables

int x, y, xmax=0, ymax=0;

float velfieldx[450][250], velfieldy[450][250];

float xcomponent, ycomponent;

FILE *output, *output1;

/*---*/

/* Beginning of a main part of the program */

int main(void)

{

//Opening the data file VELFIEL.CPP

if ((output=fopen("C:\\Outputs\\Filter\\Velfiel1.cpp","r"))==NULL)

 {printf("input file error\n");

 exit(0);}

while(fscanf(output,"%i %i %f %f\n", &velfieldx, &velfieldy, &xcomponent,

&ycomponent)!=EOF)

 {

 velfieldx[x][y]=prx; velfieldy[x][y]=pry;

 if(xmax<x){xmax=x;}

 if(ymax<y){ymax=y;}

 }

//Opening the new data file VELFIEL.CPP. Averaging and saving outputs

if

((output1=fopen("C:\\Outputs\\Filter\\Graphic\\Velfiel1.cpp","w"))==NULL)

 {printf("output file error\n");

 exit(0);}

for (x=5; x<xmax-6; x=x+5)

 {for (y=5; y<ymax-6; y=y+5)

 {

 xcomponent=velfieldx[x-2][y+2]+velfieldx[x-

1][y+2]+velfieldx[x][y+2]+velfieldx[x+1][y+2]+velfieldx[x+2][y+2]

 +velfieldx[x-2][y+1]+velfieldx[x-

1][y+1]+velfieldx[x][y+1]+velfieldx[x+1][y+1]+velfieldx[x+2][y+1]

 +velfieldx[x-2][y] +velfieldx[x-1][y] +velfieldx[x][y]

+velfieldx[x+1][y] +velfieldx[x+2][y]

 +velfieldx[x-2][y-1]+velfieldx[x-1][y-1]+velfieldx[x][y-

1]+velfieldx[x+1][y-1]+velfieldx[x+2][y-1]

 +velfieldx[x-2][y-2]+velfieldx[x-1][y-2]+velfieldx[x][y-

2]+velfieldx[x+1][y-2]+velfieldx[x+2][y-2];

 ycomponent=velfieldy[x-2][y+2]+velfieldy[x-

1][y+2]+velfieldy[x][y+2]+velfieldy[x+1][y+2]+velfieldy[x+2][y+2]

 +velfieldy[x-2][y+1]+velfieldy[x-

1][y+1]+velfieldy[x][y+1]+velfieldy[x+1][y+1]+velfieldy[x+2][y+1]

 +velfieldy[x-2][y] +velfieldy[x-1][y] +velfieldy[x][y]

+velfieldy[x+1][y] +velfieldy[x+2][y]

APPENDIX O

221

 +velfieldy[x-2][y-1]+velfieldy[x-1][y-1]+velfieldy[x][y-

1]+velfieldy[x+1][y-1]+velfieldy[x+2][y-1]

 +velfieldy[x-2][y-2]+velfieldy[x-1][y-2]+velfieldy[x][y-

2]+velfieldy[x+1][y-2]+velfieldy[x+2][y-2];

 fprintf(output1,"%5i %5i %3.7f %3.7f\n", x, y, xcomponent,

ycomponent);}

 }

/*---*/

//Final operations

fclose(output);

fclose(output1);

getch();

return 0;

}//The end of the main part of the algorithm

/*---*/

APPENDIX O

222

/*FHP-1 LGCA for fluid flow in porous medium simulation.Graphical outputs*/

//Definition of standard library functions

#include <graphics.h>

#include <math.h>

#include <stdlib.h>

#include <stdio.h>

#include <conio.h>

/*---*/

/* Beginning of a main part of the program */

int main(void)

{

//Declaration of variables

float xcomponent, ycomponent, step=17.5;

int x, y, xstart, ystart, xend, yend;

FILE *output1;

/*---*/

 /* request auto detection */

 int gdriver = DETECT, gmode, errorcode;

 int xmax, ymax;

 /* initialize graphics and local variables */

 initgraph(&gdriver, &gmode, "C:\\TC\\BGI");

 /* read result of initialization */

 errorcode = graphresult();

 /* an error occurred */

 if (errorcode != grOk)

 {

 printf("Graphics error: %s\n", grapherrormsg(errorcode));

 printf("Press any key to halt:");

 getch();

 exit(1);

 }

/*---*/

 setcolor(getmaxcolor());

 setbkcolor(15);

 xmax = getmaxx();

 ymax = getmaxy();

/*---*/

//Opening the data file VELFIEL.CPP. Data graphical representation.

//Open file, testing for seccess

if((vystup1=fopen("C:\\Outputs\\Filter\\Graphic\\Velfiel1.cpp","r"))==NULL)

 {printf("input vfldx file error\n");exit(0);}

while(fscanf(output1,"%i %i %f %f\n", &x,&y,&xcomponent,&ycomponent)!=EOF)

 {xstart=1.4*x; ystart=1.4*y;

 xend=step*xcomponent; yend=step*ycomponent;

 if (pow(xstart,2)+pow(ystart,2)>0)

 {if(x/1==x/1.)

 {if(y/1==y/1.)

 {setcolor(12); if((xkon<0)||(ykon<0)){setcolor(2);}

 line(xstart, ystart, xend+xend, yend+yend);

 putpixel(xstart, ystart,1);}

 }}

APPENDIX O

223

 }

/*---*/

//Final operations

fclose(output1);

getch();

closegraph();

return 0;

}//The end of the main part of the algorithm

/*---*/

APPENDIX P

224

APPENDIX P

Computer simulation of the fluid flow through
declined porous media. Evolution in time for a
period of 20 time steps.

APPENDIX P

225

Geometry of the simulation domain and porous

medium
Initial state ()

Figure P-1: Computer simulation of the fluid flow through the declined porous medium presented
on the reduced simulation domain of a size The lattice gas average

density is , porosity of the random generated porous structure is 0,7. Movement of
fluid particles is monitored for a period of 20 time steps with an interval of 1 t.u.

APPENDIX P

226

Figure P-1 (continuation): Computer simulation of the fluid flow through the declined porous
medium presented on the reduced simulation domain of a size The

lattice gas average density is , porosity of the random generated porous structure is
0,7. Movement of fluid particles is monitored for a period of 20 time steps with an interval of 1 t.u.

APPENDIX P

227

Figure P-1 (continuaton): Computer simulation of the fluid flow through the porous medium
presented on the reduced simulation domain of a size The lattice gas

average density is , porosity of the random generated porous structure is 0,7.
Movement of fluid particles is monitored for a period of 20 time steps with an interval of 1 t.u.

APPENDIX Q

228

APPENDIX Q

Computer simulation of the fluid flow through
declined porous media. Flow rate as a function of
time for various inclination angle α.

APPENDIX Q

229

Figure Q-1: The flow rate as a function of time for various porosity and inclination angle

(a), (b) and (c). The length of the channel ,the width is

-0,02

-0,01

0

0,01

0,02

0,03

0,04

0,05

0
50

0

10
00

15

00

20
00

25

00

30
00

35

00

40
00

45

00

50
00

55

00

60
00

65

00

70
00

75

00

80
00

85

00

90
00

95

00

10
00

0

fl
o

w
 r

a
te

, l
.u

./
t.

u
.

time, t.u.

a

porosity=0,95

porosity=0,9

porosity=0,85

porosity=0,7

-0,02

-0,01

0

0,01

0,02

0,03

0,04

0,05

0
50

0

10
00

15

00

20
00

25

00

30
00

35

00

40
00

45

00

50
00

55

00

60
00

65

00

70
00

75

00

80
00

85

00

90
00

95

00

10
00

0

fl
o

w
 r

a
te

, l
.u

./
t.

u
.

time, t.u.

b

porosity=0,95

porosity=0,9

porosity=0,85

porosity=0,7

-0,02

-0,01

0

0,01

0,02

0,03

0,04

0,05

0

50
0

10

00

15
00

20

00

25
00

30

00

35
00

40

00

45
00

50

00

55
00

60

00

65
00

70

00

75
00

80

00

85
00

90

00

95
00

10

00
0

fl
o

w
 r

a
te

, l
.u

./
t.

u
.

time, t.u.

c

porosity=0,95

porosity=0,9

porosity=0,85

porosity=0,7

APPENDIX R

230

APPENDIX R

Computer simulation of the fluid flow through
declined porous media. Time evolution of the
system with reduced simulation domain.

APPENDIX R

231

Geometry of the simulation domain and porous

medium
Initial state ()

Figure R-1: Computer simulation of the fluid flow through the porous medium presented on the
reduced simulation domain of a size The lattice gas average density
is , porosity of the random generated porous structure is 0,7. Fluid flow is monitored
for a period of 150 time steps with an interval of 10 t.u.

APPENDIX R

232

Figure R-1 (continuaton): Computer simulation of the fluid flow through the porous medium
presented on the reduced simulation domain of a size The lattice gas
average density is , porosity of the random generated porous structure is 0,7. Fluid
flow is monitored for a period of 150 time steps with an interval of 10 t.u.

APPENDIX S

233

APPENDIX S

Computer simulation of the fluid flow through
declined porous media. Fields of velocity vectors.

APPENDIX S

234

Porosity is 0,95 Porosity is 0,9

Porosity is 0,85 Porosity is 0,7

Figure S-1: Fluid velocity directions inside the channel and declined porous media of various porosity. The inclination angle is

Inclination angle α=35°

APPENDIX S

235

Porosity is 0,95 Porosity is 0,9

Porosity is 0,85 Porosity is 0,7

Figure S-2: Fluid velocity directions inside the channel and declined porous media of various porosity. The inclination angle is

APPENDIX S

236

Porosity is 0,95 Porosity is 0,9

Porosity is 0,85 Porosity is 0,7

Figure S-3: Fluid velocity directions inside the channel and declined porous media of various porosity. The inclination angle is

