

HOCHSCHULE ZITTAU/GÖRLITZ

TECHNICKÁ UNIVERZITA V LIBERCI

Hardware and software development for a mobile

robot based on Raspberry Pi and OpenCV

Diploma thesis

Bc. Marek Valšík

Study course: Mechatronics

Assessor: Prof. Dr. rer. nat. Stefan Bischoff

Supervisor: Prof. Dr. rer. nat. Stefan Bischoff

Zittau 2015

 2

Zittau 2015

 3

Zittau 2015

 4

Assignment

Zittau 2015

 5

Declaration

Hereby I declare that I have written my master thesis myself using literature listed

therein and consulting it with my thesis supervisor. Also I declare that I have not used other

literature than listed.

Date:

Signature:

Zittau 2015

 6

Acknowledgement

I would like to thank Prof. Stefan Bischoff for leadership of this master thesis. Thanks

to him, I was able to work on a topic that I was interested.

I would also like to thank Dipl.-Ing. (FH) Egmont Schreiter for providing hardware

parts of the robot.

Zittau 2015

 7

The abstract

The aim of this work is to describe the possible solution of using Raspberry Pi as the

“brain” of the robot. The main intent was design one of these solutions. Next step was to

describe the parts of the constructed system (mechanics, electronics, and software) and provide

explanation of the system principles. In the final part there are written advantages and

disadvantages of this solution.

The key words:

Robot, OmniBot, Raspberry Pi, OpenCV

Zittau 2015

 8

Content

1 Introduction .. 12

2 Hardware .. 13

2.1. OmniBot .. 13

2.2. Motors ... 14

2.3. SoccerBoard .. 15

2.4. Sensors .. 16

2.5. Raspberry Pi 2 ... 17

2.6. Camera module.. 18

2.7. WiFi .. 19

2.8. DC/DC converter ... 19

2.9. Battery ... 20

2.10. Charger .. 20

2.11. Battery safety module... 21

2.12. Rest of parts ... 22

3 Software ... 23

3.1. Program for SoccerBoard .. 23

3.2. Preparation of Raspberry Pi and OpenCV .. 27

3.3. Usage of prepared image of SD card .. 38

3.4. Example programs used on Raspberry Pi ... 39

3.5. Main program called “Omnibot” .. 41

4 Conclusion.. 42

Zittau 2015

 9

List of figures

Pic. [1] Base plate of anodized aluminium with diameter 210 mm 13

Pic. [2] Motors with omni-directional wheels ... 14

Pic. [3] The SoccerBoard .. 15

Pic. [4] The distance sensors (left), proximity sensor (right) 16

Pic. [5] The Raspberry Pi 2 model B... 17

Pic. [6] The Raspberry Pi Camera module with opened case 18

Pic. [7] WiFi dongle with external antenna ... 19

Pic. [8] The DC/DC Converter ... 19

Pic. [9] The Li-Pol battery .. 20

Pic. [10] The charger .. 20

Pic. [11] The Li-pol battery checker ... 21

Pic. [12] The rest of parts ... 22

Pic. [13] Programming environment qfix Editor ... 23

Pic. [14] Win32 Disk Imager .. 27

Pic. [15] Raspberry Pi Software Configuration Tool ... 28

Pic. [16] Raspberry Pi - Desktop .. 29

Pic. [17] TightVNC – one of suitable VNC client ... 33

Pic. [18] noVNC – web interface of VNC client ... 35

Pic. [19] Qt Creator – tool chain ... 36

Pic. [20] Main window of the program “Omnibot” ... 41

Pic. [21] Picture of used 3D printer... 46

Pic. [22] Raspberry Pi diagram ... 47

Zittau 2015

 10

List of abbreviations

OpenCV open computer vision

mini-pc mini personal computer

DVD Digital Video Disc

Pic. picture

PWM pulse width modulation

DC direct current

V Volt

A Ampere

LED Light-Emitting Diode

I2C (IIC) Inter-Integrated Circuit

USB Universal Serial Bus

UART Universal Synchronous / Asynchronous Receiver

ARM Advanced RISC Machine

SDRAM Synchronous Dynamic Random Access Memory

OpenVG Open Vector Graphic

LPDDR2 Low power double data rate 2

GPU Graphic process unit

HDMI High-Definition Multimedia Interface

SDHC Secure Digital High Capacity

CSI Camera serial interface

DSI Display serial interface

CMOS Complementary metal–oxide–semiconductor

QSXGA Quad Super Extended Graphics Array

VGA Video Graphics Array

V4L2 Video4Linux2

CPU central processing unit

FPS frames per second

Zittau 2015

 11

WiFi Wireless fidelity

AP Access point

GHz Giga hertz

Li-pol lithium polymer

Li-Ion lithium-ion

LiFe lithium iron

NiCd nickel–cadmium

NiMH nickel–metal hydride

3D 3 dimensions

STL STereoLithography

MicroSD micro secure digital

AD analog-digital

IDE Integrated development environment

ASCII American Standard Code for Information Interchange

LCD liquid-crystal display

SSH Secure shell

SPI serial peripheral interface

VNC Virtual Network Computing

HTML5 HyperText Markup Language 5

GCC GNU Compiler Collection

SSID service set identifier

DHCP Dynamic Host Configuration Protocol

Zittau 2015

 12

1 Introduction

In the recent years the development of the robotics has increased. This is the reason why

it is necessary for the students to have a lot of possibilities to access the robots.

Nowadays, a lot of robotic platforms exist on the market. For our purposes we have

chosen a robotic platform “OmniBot”, which is described below. The main reason is that this

robotic platform has already been presented at the school (HOCHSCHULE

ZITTAU/GÖRLITZ). Another reason is that platform is based on the three omni-directional

wheels. It is much different than differential steering. Omnidrive has an advantage in unlimited

moves and it can move in all direction.

As the brain of the robot is a used Raspberry Pi 2 – it is cheap, powerful mini-pc, which

is worldwide known and sold over 4 million pieces. Raspberry Pi has a big community users

and programmers. Thanks to them the development is much easier. As a platform OmniBot,

Raspberry Pi is also part of equipment at the school.

Zittau 2015

 13

2 Hardware

In this chapter are described all parts of the robot. The pictures of all parts are also

included on the attached DVD. There are also photographed every steps of the construction of

the robot.

2.1. OmniBot

The OmniBot is robotic platform made by the company “qfix-robotics”. As shown in

the picture (Pic. [1]), all holes are already prepared for an assembling of the robot. Only a few

screws are needed of which are included in the package. In the picture you can see glued

velcro, which is used for the mounting of the battery. White velcros with the numbers are used

for the easier clearly programing and debugging. It represents a numbers of the motor in the

program.

Pic. [1] Base plate of anodized aluminium with diameter 210 mm

Zittau 2015

 14

2.2. Motors

The motors (Pic. [2]) provided by a company “qfix-robotics” are “qfix Motor Ceiec

RBAC008”. They can be powered by 6V - 12V DC power supply. In our case they are powered

by higher voltage (from the battery we can obtain about 16 V), but we use PWM for controlling

the speed. The gears attached to motors have ratio 30:1.

These wheels allow movements in all directions.

Pic. [2] Motors with omni-directional wheels

Zittau 2015

 15

2.3. SoccerBoard

The SoccerBoard (Pic. [3]) is an electronic board made by a company “qfix-robotics”. It

consist of Atmel ATmega128, USB Port (mini USB-B), 2 Buttons, 2 LEDs, 8 Analog inputs

(0-5 V), 8 Digital inputs (0/5 V), 6 Motor drivers with 600 mA each, 8 Power outputs 5 V / 100

mA, I2C interface and UART interface. Dimensions of the board are 98 x 48 mm.

In our case it is connected by USB cable with Raspberry Pi. In the computer

SoccerBoard is detected as Serial port. It can be used for the programming of this board and for

the communication. In our case is programmed only once and then it is only used for receiving

and transmitting data. The transmitted data are values from the sensors and received are desired

values for the motors.

Pic. [3] The SoccerBoard

Zittau 2015

 16

2.4. Sensors

The sensor (Pic. [4]) mounted on the robot are Sharp GP2D120X and CNY-70.

Sharp GP2D120X is the distance measuring sensor with signal processing and analog output

(0-3,1 V). This sensor can be used for avoidance of contact with obstacles. In our case it is not

implemented, because for autonomous driving a more sensors are needed. In a case of the face

tracking is the robot turning around and in the case of ball tracking we want to hit the ball, not

to avoid it. CNY-70 is the reflective optical sensor. This sensor is normally used for task of the

line following. It detects the difference between the white and black colour. White is reflecting

infrared beam and black absorbs it.

The sensors are mounted on the robot, but not used in the program. Values from them

are transmitted to the Raspberry Pi and prepared for future usage.

Pic. [4] The distance sensors (left), proximity sensor (right)

Zittau 2015

 17

2.5. Raspberry Pi 2

The Raspberry Pi 2 model B (Pic. [5]) is the most used platform for teaching and

learning embedded systems. It is based on the Broadcom BCM2836 900 MHz ARM Cortex-A7

quad-core processor with VideoCore IV dual-core GPU and 1GB LPDDR2 SDRAM. Graphic

process unit provides hardware accelerated OpenVG and 1080p30 H.264 decoding.

It has 4 USB ports, 1 Ethernet port, 40 pins of GPIO, 4-pin 3,5mm, jack for the stereo

audio output and one video output, CSI connector for camera module, DSI connector for

display module, HDMI connector and micro USB for power supply. The memory drive is made

by micro SDHC card. On this card is operating system. It should be at least class 10 if you want

a faster response of the system.

More information can be found in Appendix 1.

Pic. [5] The Raspberry Pi 2 model B

Zittau 2015

 18

2.6. Camera module

Raspberry Pi camera (Pic. [6]) contains 5 MPixes sensor. It is connected to the

Raspberry Pi by ribbon cable. This type of the camera has IR filter, but it is possible to get

camera without IR filter and use it as a “night vision”.

The sensor used in camera is OmniVision OV5647 Color CMOS QSXGA. It allows to

get video in Full HD with 30 frames per second or 90 frames per second at VGA.

There are many possibilities how to get an image from the camera. Just a few of them

are suitable for usage in OpenCV. Most of those possibilities were tested and best results came

from C++ library called “raspicam”. Second best results were reached with an official

Video4Linux2 (V4L2) driver. There was small delay and high CPU usage. This driver has been

developed. The advantage of this specific driver is that you can use this camera module as a

normal USB camera. Last usable access to the camera is through the unofficial V4L2 driver. It

is faster, and needs less CPU time for taking image. The problem is setting of the camera

(resolution, fps, colour space) and memory allocation. This driver is also still developed and

these problems could be solved out in a close future.

Pic. [6] The Raspberry Pi Camera module with opened case

Zittau 2015

 19

2.7. WiFi

WiFi adapter, which is based on Ralink RT5370 chipset, plugged into Raspberry Pi,

allows Raspberry Pi connect to WiFi AP or create a new one. It works on standard 2,4 GHz

frequency. At protocol 802.11n it can theoretically reach 150 Mbit/s. It is more than enough for

video transmission.

Pic. [7] WiFi dongle with external antenna

2.8. DC/DC converter

This DC/DC converter (Pic. [8]) is based on integrated circuit LM2577S. In this case is

connected as a buck boost adjustable 2A converter. It means that it can be connected to lower

voltage and convert it to the higher voltage, or opposite way. It is useful, if you need invariant

12V power supply from 12V lead acid battery. This type of battery can be used in 10,5 – 14,5V

range. However we used it just for power supply Raspberry Pi (5V).

Pic. [8] The DC/DC Converter

Zittau 2015

 20

2.9. Battery

For this robot we have chosen the Li-Pol battery (Pic. [9]) with 2200 mAh capacity,

which is the 4-cell battery (all cells are connected in series). Nominal voltage is 14,8 V and

battery can handle 66A discharge rate (2,2A*30=66A). This is more than enough, because

robot can take about 3 A at peak.

Pic. [9] The Li-Pol battery

2.10. Charger

The charger Power 80 (Pic. [10]) is an universal battery charger. It can charge LiPo,

LiIon, LiFe, NiCd, NiMH and Lead batteries. The charger has integrated voltage balancer,

which is necessary for proper charging of Li-pol batteries.

Pic. [10] The charger

Zittau 2015

 21

2.11. Battery safety module

If we use Li-Pol batteries, the most important part of the robot is the battery checker

BM-6810 (Pic. [11]). It is monitoring voltage of each cell of the battery, which is necessary for

the long life of the batteries. An ordinary Li-Pol cell can not resist voltage under 2,7 V. Default

value set in this device is 3,3 V for the cell. When a voltage drops under set value, the alarm

goes off. At 3¬digit LED segment display are shown all measured values of voltage. Voltages

of each cell and overall voltage are showed cyclically. It can be used for estimation of battery

capacity.

Pic. [11] The Li-pol battery checker

Zittau 2015

 22

2.12. Rest of parts

Rest of used parts can be seen in the picture (Pic. [12]).

Some screws and spacers are included in OmniBot kit.

Mounting plate for Raspberry Pi was designed in Google SketchUp and printed by

homemade 3D printer. STL file (3D model) of this mounting plate is included on attached

DVD.

MicroSD card for the Raspberry Pi has the 16GB storage. It is class 10, which means

that it has a guaranteed 10MB/s speed of reading and writing of data.

On attached DVD you can also find a picture of connections of the power switch.

Connections are too simple so there is no schema. Power switch is between battery and

the rest of the robot. The DC converter for Raspberry Pi, and resistive voltage divider for

measuring voltage of the battery (useless because SoccerBoard has only 8-bit AD converter)

are powered by this switch.

The zip ties are used for neat situation of cables.

Pic. [12] The rest of parts

Zittau 2015

 23

3 Software

In this chapter is described software part of the robot. Software for the SoccerBoard

consists only from reading values from sensors, sending them to the Raspberry Pi, receiving

commands for motors and setting PWM values for motors.

For the Raspberry Pi is made manual how to set up all necessary libraries, IDE (Qt

creator), WiFi, etc...

And the last thing in this chapter is example for Raspberry Pi and OpenCV.

3.1. Program for SoccerBoard

Program for the SoccerBoard is written in qfix Editor Pic. [13].

Pic. [13] Programming environment qfix Editor

Whole program is included on attached DVD.

Zittau 2015

 24

Program consists of few functions. First of them is

 USART1_Init(unsigned int ubrr)

This function initializes USART1 (universal synchronous/asynchronous receiver and

transmitter). “ubrr” is variable which determines Baud rate (divider for timer). USART1 is

communication interface of ATmega128. It is connected to integrated circuit CP2102. It is

USB to UART Bridge.

Basic functions for communication are

 USART1_Transmit(unsigned char data)

for transmission of data and

 USART1_Receive(void)

for receive data.

Higher function of this program is

 void Transmit(unsigned char len){

 for (int i=0; i<len; i++) {

 USART1_Transmit(tx_buffer[i]);

 }

 }

This function is for transmitting the whole message through USART1. Variable “len” is

length of the message. For the composition of the message was made a function

 void Concatenate(unsigned char len){

 tx_buffer[0]=0x02;

 tx_buffer[1]=len+2;

 tx_buffer[2]=message_number;

 for (int i=0; i<len; i++) {

 tx_buffer[3+i]=message[i];

 }

 tx_buffer[len+3]=CRC(&tx_buffer[1],len+1);

 Transmit(len+4); //send message

 }

First character of a message is “STX” (0x02), second is the length of the message and

third is the number of message – for easier identification of the problems in the communication.

Next is message and at the end is CRC.

Zittau 2015

 25

The function for checking properly received message is

 unsigned char CRC(unsigned char * buf, unsigned char len)

 {

 unsigned char CRC_byte = 0;

 for (int i=0; i < len; i++) {

 CRC_byte = CrcTable[CRC_byte ^ *buf++];

 }

 return CRC_byte;

 }

This function uses lookup table. It is much easier and faster than computing the

polynomial x8 + x2 + x + 1 with an initial value of zero.

 Finally the main function consists of waiting for received data. If the first character is a

the number, it means, it is received direct controlling of robot.

 rcv=USART1_Receive();

 if ((rcv>'0')&(rcv<'a')) {

 switch (rcv) {

 case '1':

 board.motor(0,speed_manual_forward);

 board.motor(1,-speed_manual_forward);

 board.motor(2,speed_manual_turn);

 break;

 case '2':

 board.motor(0,speed_manual_forward);

 board.motor(1,-speed_manual_forward);

 board.motor(2,0);

 break;

 …

 For manual driving are used three variables which declare speeds in each movement.

They are

 int speed_manual_forward=30;

 int speed_manual_turn=80;

 int speed_manual_rotate=20;

Commands for the robot are numbers (1-9). Eight is for straight forward, five for stop,

four for rotation to the right, etc.

If the first received character is equal to 2 (in ASCII it is “STX”) then is expected length

of message. This value is used for “FOR cycle” where is received whole message. After

receiving message, it is checked for the mistakes by mentioned checksum. If the message is

without the mistakes, it is decided what type of message it is.

 First type of message can be command Set Motors (characters ‘S’ and ‘M’ in message).

In this message are sent values for PWM and information about direction. Response on this

message is ‘R’ ‘M’ ‘O’ ‘K’.

Zittau 2015

 26

Second type of message is the request for the values from sensors (‘G’ and ‘S’).

Response for this request is generated by following part of code.

 if ((rx_buffer[2]=='G')&(rx_buffer[3]=='S')){//get sensors

 message[0]='R';//response

 message[1]='S';//sensors

 for (int i=0; i < 8; i++) {

 message[i+2]=board.digital(i);

 message[i+10]=board.analog(i);

 }

 Concatenate(18);

 }

First eight values are information from digital inputs and second part of message is

filled by values from analog inputs.

Zittau 2015

 27

3.2. Preparation of Raspberry Pi and OpenCV

There is described process of manual setting up and installation. It is not necessary if

you use included image on DVD of adjusted system. There is everything set as it is described

below.

a) Preparation of SD card

First what we need is an operating system for Raspberry Pi. It can be found on the

webpage https://www.raspberrypi.org/downloads/ . In our case we need RASPBIAN. It is

modified distribution of Debian Wheezy.

After downloading current version of RASPBIAN, we need to extract ZIP file and we

get the “.img” file. It is image of SD card. Next tool which we need is Win32 Disk Imager (Pic.

[14]) (http://sourceforge.net/projects/win32diskimager/). It is a software for Windows. If you

need to write an image to SD card on another operating system look for “image installations

guides” on the same webpage as RASPBIAN image.

Pic. [14] Win32 Disk Imager

After the setting up correct path to image file and SD card plugged into the computer. It

is necessary to press the button “Write”. It will take few minutes.

Next logical step is to put SD card into the Raspberry Pi. For the first booting up we

will use LCD monitor connected by HDMI cable. It is needed to have connected standard USB

keyboard and a mouse to the Raspberry Pi. The reason for this is easier setting up important

settings.

https://www.raspberrypi.org/downloads/
http://sourceforge.net/projects/win32diskimager/

Zittau 2015

 28

b) First setup

After powering on we will see Raspberry Pi Software Configuration Tool (Pic. [15]).

Pic. [15] Raspberry Pi Software Configuration Tool

First thing we need to set is “Expand File-system”. It will extend available storage to

whole SD card.

Second choice is “Change User Password”. We will set “pi” password for default user

“pi”. Now we have account “pi” with password “pi”. It is not secure, however it is faster for

logging in.

Third item is “Enable Boot to Desktop/Scratch”. There we choose “Desktop Log in as

user “pi” at graphical desktop.

Fourth entry is “Internationalization Options”. There can be changed time-zone,

keyboard layout, or language and regional setting. I did not make any changes.

Fifth entry is very important for future work with camera. It is “Enable Camera”. Of

course we want to enable it.

Sixth is “Add to Rastrack”. It is only for fun – it will add Raspberry Pi to the map of all

registered Raspberry Pi.

Seventh option is overclock. Here we choose last entry “Pi2”. It will overclock

Raspberry Pi to the 1 GHz.

Zittau 2015

 29

Eighth entry is “Advanced options”. Here we changed Overscan to disable, SSH to

enable, SPI to enable and I2C to enable.

In the end we will choose “Finish” and it will reboot Raspberry Pi with the new setting.

All choices can be changed in the future by command “sudo raspi-config” in the terminal.

c) Installation of the libraries

After rebooting of the Raspberry Pi we will see “classic” linux desktop (Pic. [16]).

Pic. [16] Raspberry Pi - Desktop

From this point we will need internet connection. It is possible by WiFi or Ethernet.

First commands before installing something should be

 sudo apt-get update

 sudo apt-get upgrade

 sudo rpi-update

 sudo apt-get dist-upgrade

It will update software and firmware in Raspberry Pi. Next step is to install all necessary

libraries and programs for the proper function of the OpenCV.

Zittau 2015

 30

sudo apt-get install ant bison build-essential cmake cmake-curses-gui

default-jdk ffmpeg firebird-dev freetds-dev g++ gcc gstreamer0.10-

plugins-bad gstreamer0.10-plugins-good gstreamer-tools guvcview

ipython-notebook libasound2-dev libavcodec53 libavformat53

libavformat-dev libcups2-dev libcv-dev libdbus-1-dev libdrm-dev

libeigen3-dev libfontconfig1-dev libfreetype6-dev libglib2.0-dev

libgraphicsmagick1-dev libgst-dev libgstreamer0.10-0-dbg

libgstreamer0.10-dev libgstreamer-plugins-base0.10-dev libgtkglext1-

dev libhighgui-dev libicu-dev libiodbc2-dev libjpeg8 libjpeg8-dbg

libjpeg8-dev libjpeg-progs libmysqlclient-dev libpng++-dev libpng12-0

libpng12-dev libpng3 libpnglite-dev libpulse-dev libqt4-core libqt4-

dev libraspberrypi-dev libsqlite0-dev libsqlite3-dev libssl-dev

libswscale-dev libtiff4 libtiff4-dev libtiff-tools libtiffxx0c2

libudev-dev libunicap2 libunicap2-dev libv4l-0 libv4l-dev libx11-dev

libx11-xcb1 libx11-xcb-dev libxcb1 libxcb1-dev libxcb-glx0-dev libxcb-

icccm4 libxcb-icccm4-dev libxcb-image0 libxcb-image0-dev libxcb-

keysyms1 libxcb-keysyms1-dev libxcb-randr0-dev libxcb-render-util0

libxcb-render-util0-dev libxcb-shape0-dev libxcb-shm0 libxcb-shm0-dev

libxcb-sync0 libxcb-sync0-dev libxcb-xfixes0-dev libxext-dev libxi-dev

libxine1-bin libxine1-ffmpeg python2.7-dev libxine-dev libxslt1-dev

libxt-dev python-pandas pkg-config pngtools python-matplotlib zlib1g

python-nose python-scipy qt4-dev-tools qtcreator subversion swig

synaptic v4l-utils xterm zlib1g-dbg zlib1g-dev

It will take some time. It is all what we need for proper function of OpenCV. Library

OpenCV can be downloaded by command

wget http://sourceforge.net/projects/opencvlibrary/files/opencv-

unix/2.4.11/opencv-2.4.11.zip/download -O opencv-2.4.11.zip

Now it is downloaded, but it is packed in “zip” file. For unpacking this file we will use

 unzip opencv-2.4.11.zip

Then we open created folder

 cd opencv-2.4.11

Create folder “build”

 mkdir build

Open created folder

 cd build

Create makefile

cmake -D CMAKE_BUILD_TYPE=RELEASE -D INSTALL_C_EXAMPLES=ON -D

INSTALL_CPP_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON -D

BUILD_EXAMPLES=ON -D WITH_QT=ON -D CMAKE_INSTALL_PREFIX=/usr/local -D

WITH_OPENGL=ON -D WITH_V4L=ON ..

Compilation – “-j3” will use 3 cores of CPU for compilation

sudo make -j3

Finally installation

sudo make install

Create file

Zittau 2015

 31

sudo nano /etc/ld.so.conf.d/opencv.conf

Put this line into the file and save it

/usr/local/lib

After closing the file run this command

sudo ldconfig

Open file bash.bashrc

sudo nano /etc/bash.bashrc

In the end add these two lines

PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig

export PKG_CONFIG_PATH

Save it and close the file. At this point should be OpenCV installed and configured.

Close the terminal and reboot Raspberry Pi.

Now we can open terminal and open folder with samples.

cd ~/opencv-2.4.11/samples/c

Set file access rights

chmod +x build_all.sh

Build all examples

./build_all.sh

And now can be executed for example facedetect

./facedetect

If it is not working, it is because you do not have plugged in USB camera or you did not

have loaded up official V4L2 driver which will make virtual USB camera from Raspberry Pi

Camera module.

It can be made by executing command

sudo modprobe bcm2835-v4l2

At this point we have installed OpenCV. For the basic operations (take one picture) it is

enough to have a v4l2 driver. But for the tracking of moving object we need faster access to the

image from camera. We will use user library. It is based on “mmal” access to the camera

Check your current directory. If you are still in the folder with the samples go back to

home directory by command

cd ~

Write command

wget http://sourceforge.net/projects/raspicam/files/raspicam-

0.1.3.zip/download -O raspicam.zip

Zittau 2015

 32

It will download “raspicam.zip” and we need to extract it. It does command

unzip raspicam.zip

Next command is for renaming folder

mv raspicam-0.1.3 raspicam

Go into the renamed folder

cd raspicam/

Make a build folder

 mkdir build

Open build folder

cd build

Run command

cmake ..

Complile it

make

Install it

 sudo make install

Update links to libraries

 sudo ldconfig

And the last not necessary library is well known “wiringPi”.

cd ~

Download folder “wiringPi”

git clone git://git.drogon.net/wiringPi

open folder “wiringPi”

cd wiringPi

start install script

./build

d) Setting up VNC connection

Download required programs

sudo apt-get install tightvncserver screen

Start VNC server. At first start-up it will ask for password

vncserver :1

 We have chosen “raspberr”. It is because of the maximal length of the password is 8

characters. Next step is for configuring automatic start of VNC server.

Zittau 2015

 33

Open hidden directory “config”

cd .config

Create folder “autostart”

 mkdir autostart

Open folder “autostart”

cd autostart

Create new file in text editor nano

 nano tightvnc.desktop

Enter following text

 [Desktop Entry]

 Type=Application

 Name=TightVNC

 Exec=vncserver :2

 StartupNotify=false

And save it. After reboot of Raspberry Pi it should start VNC server.

Connection Raspberry Pi with almost any VNC client program is possible by writing

“ip address:number of session” and password. At this case it was 10.0.0.28:2 and password is

“raspberr”

Pic. [17] TightVNC – one of suitable VNC client

Zittau 2015

 34

e) Setting up VNC connection with web browser

For remote control by any device without requirement of installing any program we will

set up web interface.

Open “/usr/local/share/”

 cd /usr/local/share/

Download prepared program for web interface

 sudo git clone git://github.com/kanaka/noVNC

Open downloaded folder

cd noVNC

And copy prepared html page vnc_auto.html as index.html

 sudo cp vnc_auto.html index.html¨

Open folder “utils”

cd utils

Launch script

sudo ./launch.sh

Terminate script by presing

CTRL+C

For automatic start of this, we need following script

Open “/etc/inid.d”

cd /etc/init.d/

And download mentioned script

sudo wget

https://raw.githubusercontent.com/raspberrypilearning/teachers-

classroom-guide/master/vncboot --no-check-certificate

Open configuration file in text editor

 sudo nano vncboot

And adjust “-geometry 1280x800” to wanted resolution. It was changed to 1366x768.

For registration of the script we need to run following commands

 sudo chmod 755 vncboot

 sudo update-rc.d vncboot defaults

Second part of this we get by

sudo wget

https://raw.githubusercontent.com/raspberrypilearning/teachers-

classroom-guide/master/vncproxy --no-check-certificate

And again registration of the script

sudo chmod 755 vncproxy

sudo update-rc.d vncproxy defaults 98

Zittau 2015

 35

Next command is for rebooting of Raspberry Pi.

sudo reboot

At this point we should be able to connect to Raspberry Pi by any web browser which

supports HTML5 (Pic. [18]). Into the address bar write ip address of Raspberry Pi. Then you

will be asked for the password. It is the same as for normal VNC connection (raspberr).

Pic. [18] noVNC – web interface of VNC client

And after entering of the password you will see Raspbian desktop.

f) Setting up Qt Creator

Unfortunately Qt Creator does not detect automatically installed compilers and it is

necessary to set tool chains manually.

First step is logically open Qt Creator. There open

Tools>Options>Build&Run>Tool chains

Add GCC complier and set the Compiler path

 /usr/bin/arm-linux-gnueabihf-gcc-4.8

And for the debugger

 /usr/bin/gdb

It should look like in the picture (Pic. [19])

Zittau 2015

 36

Pic. [19] Qt Creator – tool chain

Next problem is with the detection of the environment. We do not want to program

remote device so we need to disable this option. It can be done by tick off plugin, which

enables it.

Go to the

 Help>About plugins

And uncheck at Device support “RemoteLinux” and restart Qt Creator.

Go back to the

Tools>Options>Build&Run>Qt Versions

Add and set path to the

/usr/bin/qmake-qt4

Last thing we need to change is terminal. Go to

Tools>Options>Environment>General

And change path to the terminal to

/usr/bin/xterm -e

And it should be enough to run program written in Qt Creator.

Zittau 2015

 37

g) Download of prepared programs

For download of the prepared programs use command

 git clone https://github.com/MarekValsik/hszittau

It will download at least two directories (maybe I will add more examples in the future).

One directory is the final result of this master thesis and second is simple example of grabbing

image from camera.

h) Turn Raspberry Pi into the WiFi AP

If we want to be able to connect to the robot remotely we need wireless connection. If

we are still in the same area with WiFi AP there is no need to do this procedure. However in

our case we need to connect to the robot independent to the access to any WiFi AP. The most

logical solution is that the robot will create its own WiFi AP. First thing what we need is

compatible USB WiFi adapter. Our adapter with chipset RT5370 is compatible. Next step is to

install necessary services:

 sudo apt-get instal hostapd dnsmasq

We need to set static IP at Raspberry Pi. Open

sudo nano /etc/network/interfaces

And “wlan0” section rewrite with this

allow-hotplug wlan0

iface wlan0 inet static

 address 192.168.10.1

 netmask 255.255.255.0

#wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf

iface default inet manual

At this point I recommend to restart network interfaces:

sudo /etc/init.d/networking restart

And we should specify wireless network which we want to create. Create file by

command:

sudo nano /etc/hostapd/hostapd.conf

And fill it with these lines:

interface=wlan0

driver=nl80211

ssid=Omnibot

hw_mode=g

channel=6

macaddr_acl=0

auth_algs=1

ignore_broadcast_ssid=0

wpa=2

Zittau 2015

 38

wpa_passphrase=raspberr

wpa_key_mgmt=WPA-PSK

wpa_pairwise=TKIP

rsn_pairwise=CCMP

You can change SSID, password, WiFi channel (if channel 6 is already used by WiFi in

near area). And now we need to set path to this configuration file. Open file:

sudo nano /etc/default/hostapd

And at the end of this file add line

DAEMON_CONF="/etc/hostapd/hostapd.conf"

Because we want to have everything working after each booting up, it is required to run

this command:

update-rc.d hostapd enable

At this point we have created WiFi AP (after reboot). But for easy connecting with

Raspberry Pi we need also DHCP server. For configuration of DHCP server open file:

nano /etc/dnsmasq.conf

And at the end of the file put these lines

interface=wlan0

except-interface=eth0

dhcp-range=192.168.10.2,192.168.10.150,255.255.255.0,12h

It will set DHCP server for range 192.168.10.2 to 192.168.10.150 and assigned ip

address will be valid for 12 hours. Final step is to make start of DHCP server automatically.

 update-rc.d dnsmasq enable

All these changes will be used after reboot.

sudo reboot

3.3. Usage of prepared image of SD card

If you do not want to go through all previous steps, you can use prepared image of SD

card where are all these steps already made.

At attached DVD you will find file “Omnibot.rar”. In this archive is file

“Omnibot.img”. It is the image of SD card. Extract it and flash it to the SD card as in chapter

3.2a). Just short recapitulation: user name is “pi” password is also “pi”. For remote access

through VPN (both: client and web browser) is password “raspberr”. This password was chosen

because in one step was limitation of 8 characters and there is no more problem with “y” and

“z” placement on the keyboard. SSID of created WiFi AP is Omnibot and passphrase is also

“raspberr”. Static IP address is now set to 192.168.10.1.

Zittau 2015

 39

3.4. Example programs used on Raspberry Pi

It does not matter if you went through chapter 3.2 or 3.3. In both cases you have in

home directory folder named hszittau. In this folder are directories “Example”,

“Example_bcm2835 and “Omnibot”. In this chapter are described both examples.

First of them (“Example”) is based on “raspicam” library. Main attention should be

given to the content of file Example.pro.

QT = core

QT += gui

TARGET = Example

CONFIG += console

CONFIG -= app_bundle

TEMPLATE = app

SOURCES += main.cpp

INCLUDEPATH += /usr/local/lib/

LIBS += `pkg-config opencv --libs`

LIBS += -lraspicam_cv

LIBS += -lraspicam

If you want to use other libraries it is necessary to add some rows to this file. In this

case there are libraries for “raspicam”. The content of the program – file “main.cpp” is

following:

#include <QApplication>

#include <cstdio>

#include "opencv2/opencv.hpp"

#include <iostream>

#include <raspicam/raspicam_cv.h>

using namespace cv;

using namespace std;

raspicam::RaspiCam_Cv Camera;

Mat image;

int main(int argc, char *argv[])

{

 QApplication a(argc, argv);

 printf("Hello everyone :-)\n");

 Camera.set(CV_CAP_PROP_FORMAT, CV_8UC3);

 Camera.set(CV_CAP_PROP_FRAME_WIDTH, 640);

 Camera.set(CV_CAP_PROP_FRAME_HEIGHT, 480);

 //Camera.set(CV_CAP_PROP_FPS, 15);

if (!Camera.open()) {cerr<<"Error opening the camera"<<endl;return -

1;}

 namedWindow("main", WINDOW_AUTOSIZE);

 while(1) {

 Camera.grab();

 Camera.retrieve (image);

 imshow("main", image);

 if (waitKey(10)>=0) break;

 }

 cvDestroyWindow("main");

 return (0);

}

Zittau 2015

 40

This example shows how to take an image through the library “raspicam” and show it.

After many tests and tries of other libraries this library had the best results.

Second example is only for comparison with previous example. This uses “standard”

access to the camera.

It is necessary to run command “sudo modprobe bcm2835-v4l2” before running this

example. This command will load official driver v4l2 for Raspberry Pi Camera module. It

means we have an access to this camera same as for any camera connected to USB port.

#include <QApplication>

#include <cstdio>

#include "opencv2/opencv.hpp"

#include <iostream>

using namespace cv;

using namespace std;

//load driver!!!

// sudo modprobe bcm2835-v4l2

int main(int argc, char *argv[])

{

 QApplication a(argc, argv);

 VideoCapture cap(0);

 if(!cap.isOpened()) {

 printf("Camera failed to open!\n");

 return -1;

 }

 namedWindow("main", WINDOW_AUTOSIZE);

 Mat frame;

 for(;;)

 {

 cap >> frame;

 imshow("main", frame);

 if(waitKey(10) >= 0) break;

 }

 cvDestroyWindow("main");

 return (0);

}

Both examples take picture from camera module and shows on the display. First

example is faster than second one. Second example is also useful if we need simple solution

and does not matter the small delay (about 0,5 s).

Zittau 2015

 41

3.5. Main program called “Omnibot”

The main program consist of three functions. First of them is manual control. Manual

control uses numerical keyboard and the control is the same as described in chapter 3.1

(Commands for the robot are numbers (1-9). Eight is for straight forward, five for stop, four for

rotation to the right, etc.). Second function is the face detection. The face detection turns robot

to the direction where it sees the face. Main goal of this function is to get face into the centre of

image grabbed from camera. Last function is for the ball tracking. Goal of this function is

follow ball – have centre of the ball in centre of the picture grabbed from camera and get drive

close to it.

The program consists of threads. One thread is always used for communication with

“Soccer Board”. Another is for grabbing image from camera. Others depend on chosen

function. In this chapter there are no examples of written functions, because whole program is

too complex. Program is enough commented and placed on SD card in Raspberry Pi, internet

repository GitHub and naturally on attached DVD.

Pic. [20] Main window of the program “Omnibot”

Function of the program can be changed by track bar (Pic. [20]) (1-manual control, 2-

face detection, 3-ball tracking).

Zittau 2015

 42

4 Conclusion

The robot was developed due to requirements of the school. This is the reason why there

are included two examples. Main program fulfils given task. Robot is able to detect face and

follow it (keep it in the centre of picture from camera). Also is able to track colour balls –

follow them. Power consumption of the robot is at 15 V about 0,4 A at steady state and 1,2 A

while moving. Li-pol battery with capacity 2,2 Ah is able to keep robot moving almost an hour.

Usage of image of SD card is fastest way how to set up Raspberry Pi for programming

with OpenCV. To keep this system update are necessary only 4 commands:

sudo apt-get update

sudo apt-get upgrade

sudo rpi-update

sudo apt-get dist-upgrade

This will download and update system including firmware for camera module. Update

firmware for camera module is important for proper function of library “raspicam” used for

faster grabbing image from camera.

Raspberry Pi 2 with 4 cores overclocked to 1 GHz is able to process images from

camera very fast (with the possibility of multiprocessing). Communication with “Soccer board”

is via USB cable (emulated serial port) with baud rate 57600. Information from sensors and

commands for motors are updated 20 times per second. It is enough for this small robot. There

is a space for improvements of communication but in this solution it is clear and reliable.

Zittau 2015

 43

List of the References

There is a list of webpages where I get all information and inspiration. All of them have

been available on 23.8.2015.

https://docs.google.com/document/d/1bgVo24hCK0huoxm9zGC9djL6K0yy0z9GldzSy6SZ

UQY/pub

https://www.raspberrypi.org/forums/viewtopic.php?f=31&t=43545

http://www.raspberrypi.org/forums/viewtopic.php?f=43&t=63276#p468491

http://elinux.org/RPi-Cam-Web-Interface

http://elinux.org/RPi_Serial_Connection

https://theredblacktree.wordpress.com/2015/02/08/compiled-binaries-of-qt-5-

3-for-the-raspberry-pi-and-pi-2/

http://www.raspberry-projects.com/pi/programming-in-c/uart-serial-

port/using-the-uart

http://stackoverflow.com/questions/421860/capture-characters-from-standard-

input-without-waiting-for-enter-to-be-pressed

http://michael.dipperstein.com/keypress.html

http://www.raspberrypi.org/forums/viewtopic.php?f=31&t=43545

http://www.raspberrypi.org/forums/viewtopic.php?f=33&t=33881

http://wiringpi.com/wiringpi-updated-for-the-new-pi-v2/

http://raspi.tv/2013/how-to-stream-video-from-your-raspicam-to-your-nexus-7-

tablet-using-vlc

http://www.instructables.com/id/Create-an-internet-controlled-robot-using-

Livebots/step5/Get-the-webcam-streamer-for-Raspberry-Pi/

https://www.raspberrypi.org/forums/viewtopic.php?f=43&t=105019

https://www.raspberrypi.org/forums/viewtopic.php?f=33&t=81503

https://www.raspberrypi.org/an-image-processing-robot-for-robocup-junior/

https://robidouille.wordpress.com/2013/10/19/raspberry-pi-camera-with-

opencv/

http://www.jayrambhia.com/blog/capture-v4l2/

http://www.uco.es/investiga/grupos/ava/node/40

https://github.com/robidouille/robidouille/tree/master/raspicam_cv

https://wiki.qt.io/Native_Build_of_Qt_5.4.1_on_a_Raspberry_Pi

https://wiki.qt.io/Native_Build_of_Qt5_on_a_Raspberry_Pi

http://www.linux-

projects.org/modules/sections/index.php?op=viewarticle&artid=14

http://teycode.com/blog/raspberry-uv4l-opencv/

http://helloraspberrypi.blogspot.cz/2015/04/install-qt5-on-raspberry-

piraspbian.html

http://www.stemapks.com/opencv.html

https://github.com/neutmute/PiCamCV

https://github.com/robidouille/robidouille/issues/7

http://sourceforge.net/p/asrob/svn/1065/tree/rpc/projects/rpi/src/c++/cam/si

mpletest_raspicam.cpp

https://www.raspberrypi.org/learning/teachers-classroom-guide/vnc-browser-

guide/

https://www.raspberrypi.org/forums/viewtopic.php?f=99&t=81165

https://code.google.com/p/qt-opencv-multithreaded/

http://www.jayrambhia.com/blog/opencv-with-tbb/

http://www.bogotobogo.com/cplusplus/multithreading_pthread.php

https://www.raspberrypi.org/forums/viewforum.php?f=43&sid=6b58967a41999cf16c

01cec4394f8653

http://docs.opencv.org/modules/highgui/doc/qt_new_functions.html

http://opencv-srf.blogspot.cz/2011/11/mouse-events.html

http://docs.opencv.org/modules/highgui/doc/qt_new_functions.html

Zittau 2015

 44

https://github.com/robidouille/robidouille/tree/master/raspicam_cv

http://mintguide.org/tools/260-wifi-hostapd-ap-a-simple-application-to-

create-wifi-hotspot-on-linux-mint.html

https://help.github.com/articles/fork-a-repo/

https://github.com/oblique/create_ap

http://rpi.vypni.net/wifi-ap-rt5370-on-raspberry-pi/

http://www.qfix-robotics.de/

Zittau 2015

 45

Content of attached DVD

On DVD are placed 6 folders:

3D

In this folder there are two files, one of them is SketchUp model of mounting plate for

Raspberry Pi on Omnibot. Second one is exported STL file for printing on 3D printer.

Examples

In this folder there are two basic programs for testing installed OpenCV library and

connected Rasperry Pi camera module.

MainProgram

There is located final program for manual and autonomous driving of the robot. This

program includes function for communication with Soccer Board.

PIC

This folder consists of another two folders. One of them contains pictures used in

master thesis and second one all pictures of the robot.

RaspberryPi

There can be found an image of SD card (Omnibot.rar), program for formatting SD card

(SDFormat.exe) and program for flashing image of SD card to SD card (image writer).

SoccerBoard

Program for Soccer Board is included in this folder. Program receives commands from

Raspberry and can be used for manual driving over UART.

Zittau 2015

 46

Appendix 1 - Used 3D printer

Used 3D printer was developed as a part of bachelor thesis in 2013 by me (Marek

Valšík - Konstrukce 3D tiskárny / Construction of 3D printer)

Resolution in axes x, y: 1/160 mm

Resolution in axe z: 1/2560 mm

Diameter of the nozzle: 0,35 mm

Resolution of the extruder: 0,005 mm
3

Smallest height of layer: 0,05 mm

Pic. [21] Picture of used 3D printer

Zittau 2015

 47

Appendix 2 - Raspberry Pi

This diagram is for older version of Raspberry Pi. Raspberry Pi 2 used for robot has

better CPU. The rest of it is the same – GPIO Pinout Diagram.

Pic. [22] Raspberry Pi diagram

This picture is from web page:

http://www.jameco.com/Jameco/workshop/circuitnotes/raspberry_pi_circuit_note

_fig2a.jpg

http://www.jameco.com/Jameco/workshop/circuitnotes/raspberry_pi_circuit_note_fig2a.jpg
http://www.jameco.com/Jameco/workshop/circuitnotes/raspberry_pi_circuit_note_fig2a.jpg

