
APPLICATION FOR SYNCHRONIZATIONOF
EVENTS BETWEEN VERSIONONE AND ALM

Diploma thesis

Study programme: N2301 – Mechanical Engineering

Study branch: 3902T021 – Automated Control Systems

Author: Bc. Michal Říčan
Supervisor: Ing. Michal Moučka, Ph.D.

Liberec 2015

DeclaratioŶ

I hereby certify that I have been informed the Act 121/2000, the Copyright Act of the Czech Republic, namely § 6Ͳ - Schoolwork, applies to my master thesis in full scope.

I acknowledge that the Technical University of Liberec (TUL) does not infringe my copyrights

by using my master thesis for TUL's internal purposes.

I am aware of my obligation to inform TUL on having used or Iicensed to use my master

thesis; in such a case TUL may require compensation of costs spent on creating the work at

up to their actual amount.

I have written my master thesis myself using literature listed therein and consulting it with

my thesis supervisor and my tutor.

Concurrently I confirm that the printed version of my master thesis is coincident with an

electronic version, inserted into the IS STAG.

Date:

Signature:

AckŶoǁledgŵeŶt

 It would not have been possible to write this diploma thesis without the help and

support of the kind people around me, to only some of whom it is possible to give particular

mention here.

 First of all I would like to thank to my consultant Srdjan Nalis (Mr. Automation) for his

timely advice, meticulous scrutiny, support and friendship.)’m pleased to cooperate with

someone skilled like he is.

 Also) would like to thank to my mentor)ng. Michal Moučka, Ph.D., for his scholarly
advice and advices regarding the processing of the thesis.

 Last but not least I would like to thank to my whole family for their never ending

support not just in the school times. There is no room to give particular mention to every one

as my family is pretty big. But I would like to mention one person which is my girlfriend Markéta Pipková which is really tolerant to my coding passion and also gave me priceless
support in the times when I was working on the thesis.

ANOTACE

 Diplomová práce se zabývá tvorbou softwarových aplikací zlepšujících SDLC proces ȋSoftware development life cycleȌ. Teoretická část je věnována vybraným metodikám vývoje
softwaru, přináší pohled na evoluci těchto metodik a jejich srovnání. Dále jsou v teoretické části shrnuty klíčové vlastnosti nástrojů, pro které byly aplikace vyvíjeny. Větší část práce je věnována praktické části, kde pro každou vyvíjenou aplikaci jsou stručně popsány
nejdůležitější moduly a komponenty, včetně popisu chování těchto komponent.

Klíčová slova: metodika vývoje softwaru, agilní, Version One, Jenkins, (P Aplication
Lifecycle Management,REST API, synchronizátor, plugin, události

ANOTATION

 Diploma thesis deals with creation of software applications which improve SDLC

process(Software development life cycle). Theoretical part is devoted to selected

methodologies of software development also brings view to evolution of those

methodologies and their comparison. The thesis then summarize key features of tools for

which those application were developed. Most of the thesis is devoted to practical part where

for each of applications is brief description of most important modules and components

including a description of functionality.

Keywords: software development methodologies, agile, Version One, Jenkins, HP

Application Lifecycle Management, REST API, sychronizer, plugin, events

6

Table of contents

List of abbreviations ... 9

Introduction .. 10

1 Development methodologies ... 11

1.1 Waterfall model .. 11

1.2 Agile model ... 12

1.3 Agile vs. Waterfall Development Process .. 15

1.4 Continuous Delivery .. 18

1.5 Current Problems and Constrains .. 20

2 HP ALM (Application Lifecycle Management) .. 23

3 VersionOne (V1) ... 26

4 Jenkins .. 28

5 V1/ALM Synchronizer ... 31

5.1 Research .. 31

5.1.1 Limitations and bottlenecks .. 32

5.1.2 How to capture event on REST? .. 32

5.2 Architecture ... 33

5.3 REST Client ... 35

5.3.1 Version One REST Client .. 35

5.3.2 Application lifecycle management REST Client ... 40

5.4 Factories .. 47

5.4.1 Requirement factory .. 47

5.4.2 Defect factory .. 49

5.5 Synchronizer configuration ... 50

7

5.5.1 General information .. 51

5.5.2 OAuth2 settings ... 52

5.5.3 Project linkage .. 54

5.5.4 Entities customization .. 55

5.5.5 IDs and Requirements mapping ... 57

5.5.6 Subscribers ... 57

5.5.7 Summarization of the configuration .. 58

5.5.8 Read/Write of configuration file .. 59

5.5.9 Password encryption/decryption manager ... 60

5.6 Synchronizer core .. 60

5.6.1 Initializer Service .. 61

5.6.2 V1 Listener ... 63

5.6.3 ALM Listener .. 66

5.6.4 Controller ... 67

5.6.5 Mapper Service .. 71

5.6.6 Verify Service ... 73

5.6.7 Mail Service .. 74

5.6.8 Repository .. 75

5.6.9 GenericObject .. 76

5.6.10 Workflow .. 77

5.7 Synchronizer instance manager .. 78

5.7.1 Instance Process ... 78

6 Jenkins plugin – Dingo .. 82

6.1 Research .. 82

6.2 Architecture ... 83

6.3 Pre-defined structure .. 83

8

6.4 Dingo Core ... 86

6.4.1 ALM Client .. 87

6.4.2 ALM Factories .. 88

6.4.3 ALM Entities ... 90

6.4.4 ALM Parser ... 92

6.4.5 Configuration ... 93

6.4.6 Logger ... 94

6.4.7 Common entities .. 94

6.4.8 Common handler ... 96

6.4.9 JUnit entities .. 97

6.4.10 JUnit handler .. 97

6.4.11 NUnit entities ... 99

6.4.12 NUnit handler ... 99

6.4.13 Push service .. 100

6.5 Jenkins Dingo ... 102

6.5.1 Jelly config .. 102

6.5.2 Dingo plugin controller .. 104

Conclusion .. 106

References .. 107

9

List of abbreviations

HP – Hewlett-Packard

ALM – Application Lifecycle Management

V1 – Version One

SAFe – Scaled Agile Framework

REST – Representational State Transfer

OTA – Open Test Architecture

API – Application Programming Interface

SaaS – Software as a Service

AQMS – Automation & Quality Management Symposium

CRUD – Create, Read, Update and Delete operations

SSO – Single Sign-On

HTTP – Hypertext Transfer Protocol

HTTPS – Hypertext Transfer Protocol Secure

UI – User Interface

SAML – Security Assertion Markup Language

XML – Extensible Markup Language

URL – Uniform Resource Locator

JSON – JavaScript Object Notation

LINQ – Language Integrated Query

KPI – Key performance indicator

RC – Return code

DAO – Data access object

YAML – Ain’t Markup Language

MQAT – Mainframe Quality Automation Team

JUnit, NUnit, xUnit – Unit testing frameworks

SCM – Source Code Management

SAX – Simple API for XML

10

Introduction

Since the early days of software development, all the IT companies tried to answer the

following questions:

1. How do I deliver software that customers will use / need

2. How do I deliver software of the highest quality

3. How do I deliver software before the competition

There have been many methodologies and SLDC processes (the Systems Development Life

Cycle, also referred to as the application development life-cycle, is a term used in software

engineering to describe a process for planning, creating, testing, and deploying an information

system) put forward to address these questions. The methodology that prevailed and was used

(until recently) as a standard for all software development companies was called ǲWaterfallǳ

The brief entertainment of selected development methodologies will be described at the

theoretical part, and also selected tools which helps you to follow those methodologies in most

efficient way.

As the second part of the thesis will be developed software which helps companies working

by agile methodologies to hook up information from tools. The first software should hook up

information between project management tool and global test management tool. The second

software will shares results from CI server tool to global test management tool, because of

linked information we gets better overview about project health and we will be able to use

reporting features from the tools to track project health easily.

11

ϭ DeǀelopŵeŶt ŵethodologies

ͳ.ͳ Waterfall model

The Waterfall Model was one of the first Process Model to be introduced. It is also

referred to as a linear-sequential life cycle model. It is very simple to understand and use. In

a waterfall model, each phase must be completed fully before the next phase can begin. At the

end of each phase, a review takes place to determine if the project is on the right path and

whether or not to continue or discard the project. In this model the testing starts only after the

development is complete. In waterfall model phases (Figure 1) do not overlap.

Figure 1 – Waterfall model phase1

1 Source: http://learnaccessvba.com/images/application_development/Waterfall_model.png

12

Due to ever changing requests and customers’ needs there was a problem implementing

Waterfall approach to huge scaled projects where requirements and outcomes are not clear

from the very start. This opened the doors to new SDLC process to be put forward and the age

of ǲAgileǳ was born.

ͳ.ʹ Agile model

Agile development model (Figure 2) is a type of Incremental model. Software is

developed in incremental, rapid cycles (called Sprints). This results in small incremental

releases with each release building on previous functionality. Each release is thoroughly tested

to ensure software quality is maintained. It is used for time critical applications. Scrum is the

most widely recognized and adopted agile methodology. Each product team is divided in small

operational units called Scrum teams.

Figure 2 – Agile development model2

2 Source: http://seyekuyinu.com/file/2011/03/agile-scrum-process.jpg

13

Scrum

The term Scrum emerged as a rugby analogy where a self-organizing team moves down

the field – together. A key principle of scrum is its recognition that during a project the

customers can change their minds about what they want and need, and that unpredicted

challenges cannot be easily addressed in a traditional predictive or planned manner. As such,

scrum adopts an empirical approach—accepting that the problem cannot be fully understood

or defined, focusing instead on maximizing the team's ability to deliver quickly and respond to

emerging requirements.

Product Backlog

Product Backlog is simply a list of items / functionalities that needs to be done within

the project or a release. It replaces the traditional requirements specification artifacts.

Sprint

In Agile work is confined to a regular, repeatable work cycle, known as a sprints or

iterations. Sprints used to be 30 days long, but today many teams prefer shorter sprints, such

as one-week or three-week sprints.

Sprint Backlog

The sprint backlog is a list of tasks identified by the Scrum team to be completed during

the sprint. During the sprint planning meeting, the team selects some number of backlog items,

usually in the form of user Stories, and identifies the tasks necessary to complete each one.

Sprint Planning Meeting

During the sprint planning meeting, the product owner describes the highest priority

features to the team. The team asks enough questions that they can turn a high-level user story

of the product backlog into the more detailed tasks of the sprint backlog.

14

Daily Scrum Meetings

On each day of a sprint, the team holds a daily scrum meeting called the daily scrum or

daily stand-ups. Meetings are typically held in the same location and at the same time each day.

Ideally, a daily scrum meeting is held in the morning (where all the participants are standing up,

hence the name), as it helps set the context for the coming day's work or to resolve the problems

occurring during the previous day of the sprint.

Sprint Review Meeting

When the sprint ends, it's time for the team to present its work to the Product Owner.

This is known as the sprint review meeting. At this time, the Product Owner asks the team to

demonstrate a potentially customer shippable product components. The Product Owner

declares which items are truly done or not.

Product Owner

The Scrum product owner is typically a project's key stakeholder. Part of the product

owner responsibilities is to have a vision of what is to be building, and convey that vision to the

scrum team. The agile product owner does this in part through the product backlog, which is a

prioritized features list items for the product.

Scrum Team

A Scrum team in a Scrum environment does not include any of the traditional software

engineering roles such as programmer, designer, tester or architect. Everyone on the project

works together to complete the set of work they have collectively committed to complete within

a sprint.

15

ͳ.͵ Agile vs. Waterfall Development Process

Advantages of Agile model:

 Customer satisfaction by rapid, continuous delivery of useful software.

 People and interactions are emphasized rather than process and tools. Customers, developers

and testers constantly interact with each other.

 Working software is delivered frequently (weeks rather than months / year).

 Face-to-face conversation is with customers and stakeholders.

 Close daily cooperation between business people and developers.

 Continuous attention to technical excellence, good design and product quality.

 Regular adaptation to changing circumstances.

 Even late changes in requirements are welcomed

Advantages of waterfall model:

 This model is simple and easy to understand and use.

 It is easy to manage due to the rigidity of the model – each phase has specific deliverables and a

review process.

 In this model phases are processed and completed one at a time. Phases do not overlap.

 Waterfall model works well for small projects where requirements are very well understood and

are not changing.

Disadvantages of waterfall model:

 Once an application is in the testing stage, it is very difficult to go back and change something

that was not well-thought, faulty in development or out of concept.

 No working software is produced until late during the life cycle.

 High amounts of risk and uncertainty.

 Not a good model for complex and object-oriented projects.

 Poor model for long and ongoing projects.

 Not suitable for the projects where requirements are at a moderate to high risk of changing.

16

When and why o use Agile model:

 When new changes are needed to be implemented. The freedom agile gives to change is very

important. New changes can be implemented at very little cost because of the frequency of new

increments that are produced.

 To implement a new feature the developers need to lose only the work of a few days, or even

only hours, to roll back and implement it.

 Every deliverable tested to assure the highest quality product reaches the customer. Unlike in

Waterfall model where testing is done on the end of development cycle.

 Unlike the waterfall model in agile model very limited planning is required to get started with the project. Agile assumes that the end users’ needs are ever changing in a dynamic business and
IT world. Changes can be discussed and features can be newly added or removed based on

feedback. This effectively gives the customer the finished system they want or need.

 Both system developers and stakeholders alike, find they also get more freedom of time and

options than if the software was developed in a more rigid sequential way. Having options gives

them the ability to leave important decisions until more or better data or even entire hosting

programs are available; meaning the project can continue to move forward without fear of

reaching a sudden standstill.

Key takeaway from Agile SDLC approach is:

 ǲDeliver software quickly with highest quality that customers can use!ǳ

17

And we use the Agile SLDC approach to avoid the problems shown at figure 3:

Figure 3 – Problems of waterfall approach3

As we understood from comparing different SLDC models is that large software

development corporations (like CA technologies) must use agile methodology to stay competitive in today’s software market.)n the following chapters we will focus on how the
software can be continuously delivered and how the quality can be achieved during this process.

3 Source: https://astheqaworldturns.files.wordpress.com/2011/03/requirements.jpg

18

ͳ.Ͷ Continuous Delivery

Continuous Delivery is a software development discipline where you build software in

such a way that the software can be released to production at any time.

You’re doing continuous delivery when:

 Your software is deployable throughout its lifecycle.

 Your team prioritizes keeping the software deployable over working on new features.

 Anybody can get fast, automated feedback on the production readiness / quality of their systems

any time somebody makes a change to them.

 You can perform push-button deployments of any version of the software to any environment on

demand.

You achieve continuous delivery by continuously integrating the software done by the

development team, building executables, and running automated tests on those executables to

detect problems. Furthermore you push the executables into increasingly production-like

environments to ensure the software will work in production.

To achieve continuous delivery you need:

 A close, collaborative working relationship between everyone involved in delivery (DevOps

approach).

 Extensive automation / automation testing and integrations of all possible parts of the

delivery process, usually using a variety of Continuous Integration / Delivery tools and

methodologies.

19

What is DevOps approach?

DevOps ("development" and "operations") is a software development method that

stresses communication, collaboration, integration, automation, and measurement of

cooperation between software developers and other information-technology (IT) professionals.

The visualization of DevOps approach is shown at figure 4:

Figure 4 – DevOps approach4

4 Source: http://upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Devops.svg/2000px-Devops.svg.png

20

ͳ.ͷ Current Problems and Constrains

As organizations are rapidly changing to Agile methodology (after decades of Waterfall

development) many problems, legacy systems / process and other constrains are ǲcreepingǳ out
on daily bases.

One of the biggest problems is how to achieve high quality of a product during rapid

development cycles. As we explained earlier testing was a phase that traditionally was done

only when development cycles was finished, now in Agile every deliverable component needs

to be tests, each integration of the components needs to be tested, each new component needs

to be regression (regression testing) tested and etc.

In the Waterfall approach the general consensus is to build comprehensive manual test

plans and then have the team of QA engineers execute these (again manually) exercising the

software in search of errors and problems. Sometimes in Waterfall approach testing was as long

process as development, so testing of software last for months on time.

Let’s now take an Agile example: Team is delivering a software functional component

in 2 weeks development cycle (Sprint), one of deliverable for that component is a Story that

component needs to be fully tested from perspective of functionality and performance. Part

from that each stakeholder (Product Owner. Manager, etc.) must be informed about the quality

of each impacted Story, so he/she can make informed decision about done criteria for this and

other impacted components, eventually about the status of the complete software / application

release.

How to achieve that when almost all the testing traditionally is done in long cycles and

almost exclusive manually without any centralized repository? Before we answer this question, let’s first understand differences and advantages / disadvantages of manual and automated
testing?

21

What is manual testing?

Manual Testing is the process of testing software for defects, where testers exercise the

software behavior simulating the end user actions, to explain testing coverage; test engineers

usually create Test Plans containing a set of important test scenarios (aka. Test Cases) that they will follow during the tests ǲexecutionǳ.
What is automated testing?

Is use of software to control the test execution. The comparison of actual results to

predicted ones, setting up test control and test reporting functions is controlled by automation

tool / software. Test automation usually involves automating a manual process already in place

(Test Plans). There are three most common types of Automated Tests: Code – driven

automation, Headless / API layer automation and GUI (Graphical User Interface) test

automation.

Why Automate?

Figure 5 – Comparison of key attributes of manual/automated testing

There is no question that automation testing needs to be a big part of your Agile process,

if nothing else then due to the point that automation testing tools can execute and give accurate

result of 1000 of tests in the same time frame than human user can do for 1 test manually.

Now when we decided that automation is the way to go for our Agile project, next step is

choosing appropriate tools and frameworks to achieve different levels of product automation

22

(Functional, Regression, Performance, UI, Web, Client Side, Mobile, Unit, API, etc.), as well as

centralized repository where all the data of the testing process will be managed and a way how

we are going to incorporate / integrate testing data with backlog deliverable items that are

defined in our centralized tool for Agile project planning.

This document will focus on integrations / synchronization between test management and

Agile planning tools as used in MFBU (Mainframe Business Unite of CA technologies), and how

the gap between their integration is overcome in Continuous Delivery process.

Tool used for Test Management is HP ALM (Application Lifecycle Management), Agile

planning tool is VersionOne (V1). The V1/ALM Synchronizer tool is homegrown developed tool

(main theme of this master thesis) that made integration/ synchronization between these

entities possible.

23

Ϯ HP ALM ;ApplicatioŶ Lifecycle MaŶageŵeŶtͿ

HP ALM is web-based global test management solution that helps manage all information

about applications releases, testing cycles, requirements, test and defect from a central

repository. It manages the entire quality process with built-in traceability

HP ALM streamlines (Figure 6) the testing process—from release and requirements

(components) management through planning, scheduling and running tests to defect tracking—
in a single browser-based application. HP ALM offers integration with HP automation testing

tools as well as third-party and custom testing tools or requirement and configuration

management tools. HP ALM communicates seamlessly with the testing tool of choice, providing

a complete solution to fully automated application testing.

Figure 6 – HP ALM streamlines

24

Release (Testing) Management module

Release Management module is used to of managing software releases (from quality

perspective) from development stage to software release. It is a relatively new but rapidly

growing discipline within software engineering.

Requirements (Components) module

Is used to capture, manage and track requirements throughout the development and

testing cycle. Its key features are: Capture, manage and track requirements throughout the

development and testing cycle, manage different types of requirements, store requirements in

a central repository with native version control and base lining capabilities, reuse and share

application requirements and manage user stories for agile projects.

Test Plan module

Test Plan module is used to create and store manually or automation tests that will be

used to test applications readiness.

Test Resources

Test Resources module enables you to manage resources used by your tests.

Organization of resources is by defining a hierarchical test resource tree containing resource

folders and resources. In this module we keep our test function libraries, data sheets,

parameters, object definitions and more.

Test (execution) Lab module

Is used to create test set that contains a subset of the tests in an ALM project designed to

achieve specific testing goals. Run the manual and automated tests from the project to locate

defects and assess quality of the release or component.

25

Defect module

Locating and repairing application defects efficiently is essential to the development

process. Using the ALM Defects module, we can report design flaws in the application /

component and track data derived from defect records during all stages of the application

management process.

Dashboard module

Is used to do the analyze ALM data by creating graphs, project reports, and Excel reports.

You can also create dashboard pages that display multiple graphs side-by-side.

HP ALM offers OTA (Open Test Architecture) API architecture that allows customization

of components and modules, so that ALM can be tailored to follow individual organization SLDC

models or to be integrated / synchronized with any third party Agile planning tools.

Application Lifecycle Management tool is suitable out of the box for any kind of Waterfall

or Agile projects, the only predicament lays on customizations and integration that you wish to

follow.

26

ϯ VersioŶOŶe ;VϭͿ

Version One is an all in one agile project management platform / tool that supports

alignment between all three levels of enterprise agile project management (Portfolio, Program,

and Team). Built from the ground up to support agile software development methodologies

such as Scrum, Kanban, Lean, XP, SAF and hybrid, VersionOne is suite of right-sized product

editions help companies scale agile faster, easier, and smarter.

The flow of program and project management is shown at figure 7.

Figure 7 – Program & Project management flow

27

Agile Portfolio Management

Visualize, manage and report on your strategic, cross-project agile initiatives, keeping

business and management priorities aligned with delivery through effective enterprise-wide

project management.

Product Planning

Plan and track your agile requirements/components, epics, stories, goals, and defects

across multiple projects and teams.

Release Planning

Prioritize, forecast, and report progress on your releases and agile teams in a simple,

consolidated drag-and-drop environment. Coordinate multiple teams, increase team member

visibility into acceptance and regression testing progress and increase predictability of delivery

dates using interactive tools.

Sprint Planning

Iteratively plan user stories, defects, tasks, tests, and impediments in a single

environment.

Tracking

Easily track portfolio, project, and Scrum team progress.

28

ϰ JeŶkiŶs

Jenkins is an open source continuous integration tool, released under MIT license, forked

from Hudson after a dispute with Oracle. It provides continuous services for software

development.

 It is server-based system running in a servlet container such as Apache Tomcat and

supports SCM tools including CVS, Subversion, Git or RTC. Jenkins is able to execute Apache Ant

or Apache Maven base projects as well as arbitrary shell scripts and Windows batch commands.

 Builds can be started by various means, including being triggered by commit in a version

control system via cron-like system, building when other builds have completed, and by

requesting a specific build URL.

Current Jenkins focuses on the following two jobs:

 Building/testing software projects continuously, just like CruiseControl or DamageControl. In a

nutshell, Jenkins provides and easy-to-use so-called continuous integration system, making it

easier for developers to integrate changes to the project, and making it easier for users to obtain a

fresh build. The automated, continuous build increase the productivity.

 Monitoring executions of externally-run jobs, such as cron jobs and procmail jobs, even those

that are run on a remote machine. For example, with cron, all you receive is a regular emails that

capture the output, and it is to you to look at them diligently and notice when it broke. Jenkins

keeps those outputs and make it easy for you to notice when something is wrong.

Jenkins offers following features:

 Easy installation, it is distributed as java –jar jenkins.war or it is deployed in a servlet container.

 Easy configuration, because Jenkins can be configured entirely from web GUI with extensive on-

the-fly error checks and inline help.

 Change set support, Jenkins can generate list a list of changes made into the build from SCM tool,

also done in a fairly efficient fashion to reduce load on the repository.

 Permanent links, it gives clean and readable URLs for most of its pages, including some permalinks

like ͞latest ďuild͟/͟latest suĐĐessful ďuild͟, whiĐh ĐaŶ ďe liŶked froŵ elsewhere.

29

 RSS/E-mail/IM Integration, Jenkins monitor build results and offers to get real-time notification

through RSS, E-mail etc.

 After-the-fact tagging, build can be tagged long after builds are completed.

 Junit/TestNG test reporting, reports can be tabulated, summarized, and displayed with history

information, such as when it started breaking etc. History trend is plotted into a graph.

 Distributed builds, Jenkins can distribute build/test loads to multiple computer. This lets you get

the most of out of those idle workstations sitting beneath developers desks.

 File fingerprinting, it can keep track of which build produces which jars, and which builds using

which version of jars, and so on. This works even for jars that are produced outside Jenkins, and is

ideal for projects to track dependency.

 Plugin support, Jenkins can be extended via 3rd party plugins. You can write plugins to make

Jenkins support tools/processes that you team uses.

30

One of the biggest advantages of Jenkins compared to others CI servers is the

community of developers. To this day Jenkins CI project at GitHub offers 1366

plugin/project and 587 developers working on it.

 On the figure 8 Is shown the simple workflow of CI process with usage of Jenkins.

Figure 8 – CI workflow process 5

5 Source: http://1.bp.blogspot.com/-fwJu25d_4YQ/Up0u3Irlr4I/AAAAAAAAA6s/Z3pIIhZb_Ag/s640/Git-WorkFlow-Part3.JPG

31

ϱ Vϭ/ALM SyŶchroŶizer

 On building this software I went through all stages of software development process.

First of all research needs to be done, then build prototype based on specifications and

knowledge which I get from research part. Then I tried to run that prototype on development

environments with sandbox projects. As I was sure that prototype is working for me I send it to

chosen teams inside company to get their feedback. After I get feedback I can start with

expanding of prototype. Every step at process was also discussed with my consultant Srdjan

Nalis.

ϱ.ϭ Research

 At research part I started learning both tools more deeply. Firstly from the perspective

of user and then from perspective of a developer. From developer point of view I was most

interested in data manipulation. VersionOne offers only REST API or a direct connection to

database. HP Application Lifecycle Management offers REST API, OTA API and also direct

connection to database.

From options mentioned above for both tools I chose the REST API. For the Version One

mainly because direct connection to database needs special permission and VersionOne is

hosted as SaaS application, which means that application (database) is not hosted on CA servers.

For the ALM the reason why I chose REST API was the information that OTA API is at the end-

of-life and should not be available in newer versions of ALM and should be replaced with REST

API. Information about end-of-life of OTA API I got directly from HP engineers. Thanks to the CA

Technologies I was able to attend AQMS QA Automation symposium Prague 2014 at November

where those information were shared.

 After I know what can be achieved through REST APIs I need to talk with managers inside

company and discuss the software requirements also negotiate some compromises between

their expectations and what)’m able to achieve in given time and also knowledge level of

technologies, processes etc.

32

 As I was getting deeper and deeper I was able to identify that advanced knowledge of

some programming language will be needed. From this perspective I chose C# programming

language.

 With chosen language comes a restriction for used servers where the synchronizer can

run. Because application is written in C# with .NET support it can run only at Microsoft servers.

 Based on the research I was able to recognize limitations and also bottlenecks, about I

will be talking next.

5.1.1 Limitations and bottlenecks

 First limitation is caused by chosen APIs because ALM API does not offer any existing

REST client, so the creation of client was required. On the other hand I was able to design client

exactly to my purpose.

HP ALM REST API is just under development, so there is almost no documentation for it

and also provides limited functionality besides OTA API.

 Version one offers REST API client only for rest-1.v1 endpoint and does not support SSO

login and OAuth2 which is needed for connection to query.v1 endpoint. So the creation of client

or modification of existing client was required.

 As REST is used only for CRUD (Create, Read, Update, and Delete) actions I need to find

out a way how to capture events through it as there was no other usable API to go with.

 Whole process of synchronization needs to be easily modified by customer needs. Which

means to allow customer map existing fields, choose which entities will be shared, define where

to be system data for synchronization stored etc.

 Software needs to be designed in the easily expandable/modifiable way.

5.1.2 How to capture event on REST?

 That’s the question! But thanks to CA Technologies as subscriber to enterprise edition of

VersionOne I was able to talk with developers and service architects which are responsible for

33

Version One REST API. Thanks to information from them about internal Version One events,

processes, workflows and suggestions we managed that there should be chance to poll the

history and trigger my pseudo-events.

) found some articles that for the purpose of ǲscanningǳ is best long polling technique
which means that the client requests information from the server exactly as in normal polling,

except it issues it is HTTP/S requests (polls) at a much slower frequency. If the server does not

have any information available for the client when the poll is received, instead of sending an

empty response, the server holds the request open and waits for response information to

become available. Once it does, the server immediately sends an HTTP/S response to the client,

completing the open HTTP/S Request. In this way the usual response latency (the time between

when the information first becomes available and the next client request) otherwise associated

with polling clients is eliminated6.

The problem with long polling technique is that VersionOne is running on apache-like

servers and their thread-per-request model does not work well with long polling.

So I continued with classic requests which should not slowdown servers too much if

requests will be created carefully.

ϱ.Ϯ Architecture

 Architecture was designed with regards to limitations mentioned above. Software is

created by three main modules and those modules are Synchronizer configuration,

Synchronizer core and Synchronizer instance manager.

 Synchronizer configuration allows to user create configuration file, where information

like login credentials, URLs of applications, projects for synchronization, mapping of fields and

mapping of entities can be stored. This component is designed in the way of wizard UI which

will lead user step-by-step for creation of configuration file.

6 Source: http://en.wikipedia.org/wiki/Push_technology

34

 Synchronizer core is main part/feature, it is driving a synchronization based on

specifications from configuration file.

 Synchronizer instance manager is layer above synchronizer core for presentation of

the data from synchronizer process.

 Because Synchronizer configuration and Synchronizer instance manager consists mostly

from forms the architecture of synchronizer core will be shown only and can be seen on figure

9.

Figure 9 – The components of Synchronizer Core module

As shown at figure above the core consists of lot of smaller components. When I was

designing the architecture I tried to keep to the rule of single responsibility to create easy

maintainable and scalable software.

 The closer look to each component from core will be in the next sections but for overall

imagination of the process, the functionality of each component will be briefly mentioned here.

 Before own synchronization process, the project needs to be scanned, initialized and

missing entities loaded, that is the functionality of InitializerService, as initializing service

works and entities are continuously created, those links are stored inside the Repository.

Controller manages whole synchronization process, based on events created on one of the

35

Listeners (V1 Listener, ALM Listener). VerifyService checks if entity which should be

synchronized contains all the data required for successful synchronization. MapperService

works as a ǲbridgeǳ between an entities, it converts ALM entity to Vͳ entity and vice versa.
Factories are responsible for creating entities.

 Application needs to be developed as multi-threaded, each listener needs its own thread

to run properly also controller and services related to controller needs to run on separated

thread to be able to catch the events from the listener.

From that point of view we will need three thread for one synchronization instance just for core.

One thread will be needed for UI which is not depending on number of synchronization

instances.

ϱ.ϯ REST ClieŶt

5.3.1 Version One REST Client

 Version One REST Client should help us to make communication between synchronizer

and VersionOne. As I mentioned at limitations and bottlenecks section the REST Client for

VersionOne exists but does not fit to synchronizer purpose because missing SSO and OAuth2

authentication and authorization support.

Even with those missing parts I figured out that will be much easier for me to extend the

existing client then create whole client on my own and ǲreinvent wheelǳ.

36

REST Client for Version One is built on existing WebClient class inside .NET with some

modifications. First of all I need to extend functionality of WebClient to be able upload OAuth2

string to Version One server. This functionality was achieved by extension method

UploadStringOAuth2 on figure 10.

Figure 10 – Extension method for uploading the OAuth2 string

Then I try to find out how to extend client to SSO login which takes me lot of time and

research.

For authentication to Version One at CA Technologies is used SiteMinder SAML 2.0 post

binding protocol. I need to make sure that extended REST client will be able to login through

this protocol. For better understanding of SAML 2.0 protocol the description of the investigation

of protocol will be mentioned here, it will also help us to understand the implementation.

37

SAML 2.0 post binding protocol (Security Assertion Markup Language) is XML-based

protocol that uses security tokens containing assertions to pass information about end user

between SAML authority – identity provider (Idp) and SAML customer – service provider (sp).

On the figure bellow (figure 11) you can see scheme how SAML works.

Figure 11 – Scheme of SAML transactions 7

With usage of plugin for Firefox called HttpFox the transactions was traced down and the

authorities for logging in was recognized as identify Service provider is samlgwsm.ca.com and

Identity provider is iwassosm.ca.com.

7 Source: http://complispace.github.io/images/saml-transaction-steps.png

38

Files created for modification of existing REST client can be found in

SynchronizerInstance.VersionOne.REST.SSOExtension namespace. Those files are shown in

figure bellow (Figure 12).

Figure 12 – Files for modification of existing REST Client

Most of work, as can be seen on the figure 4, was to write parsers that will handle

responses and requests from service provider and identity provider.

For parsing the response I used combination of regular expressions and XPaths. That

depends on format of response if service is able to send response at XML format parsers works

with XPath (Figure 13) otherwise regular expressions (Figure 14) are used.

Figure 13 – XPath to get SAMLResponse

39

Figure 14 – Regular expression to get SAMLResponse

To invoke SSO authentication instead of basic one is used V1SsoConnector class (Figure

15) used. The class implements IAPIConnector, which is interface of connector from existing

REST client.

Newly created class V1SsoConnector handles only SSO login processes. Common login

process used by VersionOne left to the existing REST client.

Figure 15 – Class diagram of V1SsoConnector

40

5.3.2 Application lifecycle management REST Client

 REST API at ALM side is still under development so it does not offer as much functionality

as needed. Because of the development status is client pretty easy. On the figure bellow (Figure

16) you can see main three classes of client - RestConnector, ALMClient and Response.

Figure 16 – Class diagram of main client components

 RestConnector role is defines basic methods for HTTP requests - GET, POST, PUT,

DELETE, saving cookies with login information and QCSession token. The most important

method of RestConnector is DoHttp method Code snippet of the method is show on figure

bellow (Figure 17).

41

Figure 17 – DoHttp method

 Based on the parameters you just specify type of request, and to which URL you sending

request, if you are using filtering put filter query into queryString, parameter data holds data

which are send to server, header and cookies are stored at Dictionary because consists of key

and value.

On the figure bellow (Figure 18) you can see how this method is used for creating the

GET request to server. GET request does not allow to send any data to server, so we set them as

null.

42

Figure 18 – DoHttp method for GET request

 On the figure above function returns Response object which is just an object

representation of HTTP response from ALM and it is used for easier handling of responses.

Through the object can synchronizer easily extract information as response body, header, status

code and also failure if request fails.

 AlmClient connects request from RestConnector to functional blocks, through that client

so you are able to login, logout, checks if user is authenticated.

For authentication to ALM is used basic authentication. Authentication is done basically

through HTTP call GET with Authorization token. Authorization token should look like: ǲBasic base6Ͷencodedȋusername:passwordȌǳ . The example of authorization token used for basic

authentication:

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

43

The login functionality is shown at the figure below (Figure 19).

Figure 19 – ALM Client login functionality

There are two functions for login. Public function checks if user is authenticated and

returns null or URL of authentication point based on authentication state of user. If URL of

authentication endpoint is returned the second function which is private, it is not visible out of

class, create authentication token and send it to given authentication point.

 At the end CreateQCSession is invoked to create QCSession token which is at ALM 11

returned automatically but at newer ALM versions you will need to create that token on your

own. So as CA Technologies migrate to ALM 12 the synchronizer will still be able to reach REST

ALM endpoint.

For creating, reading, updating and deleting operations at ALM are used factories.

Factories differs just in few things so all factories are inherited from the BaseFactory where the

available operations to entities are defined. Available factories and also methods you can see on

class diagrams at figure 20. If synchronizer will be developed continuously new factories can

comes up. Those are just minimal to proof of concept.

44

Figure 20 – Class diagram of available factories

BaseFactory returns responses from server in XML format. REST API offers two formats

of response XML and JSON, this option is available through header Accept which needs to be set

for each request, and the available values for Accept header are application/xml or

application/json. XML format was chosen for synchronizer because)’m more familiar with the XML
processing then processing of JSON.

45

Example of response for GET request through ALM REST API is shown at figure bellow

(Figure 21).

URL of the request:

www.alm-dev.ca.com/qcbin/rest/projects/MAINFRAME/domains/AGILE/requirements/1

Figure 21 – XML returned to GET request

XML is converted to object by class called ResponseParser. Class diagram is shown on

figure 22.

Figure 22 – Class diagram ResponseParser

46

 ResponseParser extends existing XmlReader class available at .NET. Reader handles the

given XML file from top to bottom and trigger defined events. The events are defined by user,

mostly are events hooked on start and end elements of the XML file.

 Function which starts whole parsing process is called GetObjectFromXml and the body

of function is shown below on figure 23.

Figure 23 – Body of function GetObjectFromXml

 Through switch is managed whole parsing process. In function ProcessOpenTag (Figure

24) are handled opening elements and ProcessCloseTag handles the ending elements (Figure

24) of XML file.

Figure 24 – ProcessOpeTag function on the left side and ProcessClose tag on the right side

47

ϱ.ϰ Factories

 Factories allow to synchronizer or user, if he would like to use ALM REST Client to his

own purpose, do CRUD operations over entities without deep knowledge of HP ALM REST API.

As was mentioned before the number of factories is not final and it is just a minimum to proof

of concept that synchronization can be done.

 From available factories we have Release, Requirement, TestConfig and Defect

factory. The division of factories is based on REST entity endpoint and it also keeps the same

structure as modules inside HP ALM UI.

 As the most visible part of synchronization takes place at Requirements and Defect

module, those factories will be described.

5.4.1 Requirement factory

 The Requirements is the name of factory for entities at requirement module. The

requirement entities are specific because of the fact that they can be customized by user but

from the REST API endpoint perspective are stored at one endpoint. The type is specified by

type-id attribute of entity.

From the customization option of requirement types comes problems that factory needs

to know all available type-id of entities used for synchronization. This information comes from

configuration file and is stored in factory by SetConfiguration method (Figure 25).

Figure 25 – SetConfiguration method of Requirement factory

48

As you can see method have two input parameters. The first parameter is reqConfig

which specifies field where VersionOne ID will be stored inside ALM and the second one is called

reqTypes and specifies type-id of entities like Project, Release etc. The values are stored at

dictionary and LINQ expressions are used to search right requirement type-id.

The FirstOrDefault method is used for search of record x where key of record is named

as Project. Same for other type-ids with different names. The Dictionary with reqTypes is

created by configuration wizard and will be described in next section.

The methods for CRUD operations are created separately for each entity mainly for

better readability and usability of client as standalone module.

For better imagination of factory functions the AddStory function will be shown on

figure 26.

The AddStory function accepts AlmObject as input parameter and specifies the type-id

of the requirement entity and pass AlmObject to more generic function Add.

The Add function converts AlmObject to XML and passes the XML with name of entity

(requirement) to AddItem function (Figure 27) which is part of BaseFactory.

Figure 26 – AddStory and Add function of requirement factory

Figure 27 – AddItem function

49

 The AddItem function accepts as first input parameter the name of the entity and as

second parameter the string at XML format which represents body of request (entity

information in our case). Client builds URL of REST entity endpoint based on input parameter.

The URL is built by client so information about the domain and project, where the synchronizer

is hooked up, are populated to the request. Headers with all mandatory information like

content-type and authorization token are also populated from client. For creation of new entity

through REST is standardized to use the HTTP POST call so method HttpPost is used and sends

request to server.

On the successfully created entity server returns RC 201 and in the body of response is

XML file with the entity information. When creation was not successful server returns RC 40x

or 500. The overview of possible RC is shown at figure 28. In case of RC 500, which stands for

internal error, the body contains the XML file with specification off error.

Figure 28 – HP ALM REST return codes

5.4.2 Defect factory

 The Defects is the name of factory for entities at defect module. The difference from

Requirements is that defects module does not offer any option to modify the types of the

50

defects. To maintain consistency of factories, defects factory also implement AddDefect and Add

methods (Figure 29).

 As defect entity does not allow user to modify type AddDefect method just call Add

method where is AlmObject transformed into XML and passed to AddItem function which is

shown above at section about requirement factory (Figure 27).

Figure 29 – AddDefect and Add method of defect factory

ϱ.ϱ SyŶchroŶizer coŶfiguratioŶ

 To make synchronizer process customizable. There needs to be some configuration file

which will hold the customization data and also synchronizer should be able to load and save

the data so user does not need to create new synchronizer configuration after restart or reboot

machine also needs to be able to store many configurations not just one.

 As there is a lot of information which user needs to define and also there is much room

to make mistake in creation of configuration file. That is the reason why configuration wizard

was created. It guides user through the whole customization process and at the end will

generate file with configuration data.

File is at XML format and user can create as many configurations as he wants to, only

restriction is that configurations must have unique instance name.

 Configuration wizard is embedded into synchronizer software to opens it you just press

Add new instance button at main page (Figure 30) and wizard will pops up. Configuration

manager will be described from developer point of view. User point of view will be described at

user guide. Which will be created as standalone.

51

Figure 30 – Main page of synchronizer

 The customization process is divided into seven parts. The purpose of each wizard page

will be described below and also if any interesting process runs at background I will described

it a little. On many wizard pages are data extracted from tools site for user comfort.

5.5.1 General information

On the first page which is shown below (Figure 31) is general information about the

instance name, credentials and also the URLs of both tools. Because synchronizer is developed

mainly for CA Technologies internal usage and SSO login is used to access both tools the

credentials can be placed to this page, because both tools accepts same username and password.

 Instance name field is monitored so user is unable to set instance name which is already

in use also URL fields are checked to be in right format.

52

Figure 31 – General info page

5.5.2 OAuth2 settings

 After general info is stored we will be moved to next page where wizard helps user to set

up OAuth2 authentication against VersionOne.

For this page there are two possible scenarios, the first scenario appears as new

configuration file is created, the second one appears when the configuration file is modified.

Both possibilities are shown at figure below (Figure 32).

Figure 32 –Page for creation of new configuration is on the left side, for the modification on the right side

53

 On the new creation page you need to put path to client_secrets.json file which is

generated by VersionOne.

 The VersionOne does not allow to third-party programs connection to query.v1 endpoint

until the program gets permission to access this endpoint by user. The permission consist by

two files client_sercrets.json and secret_credentials.json.

 The OAuth2 settings page accepts the client_sercrets.json file and based on that

generates the secret_credentials.json file. This generation is done by GrantTool which is utility

program from VersionOne developers to generating secret_credentials.json file.

 GrantTool accepts token which can be obtained through the URL which is composed

from the information stored at client_secrets.json file.

 Wizard will do whole process programmatically so user just need to know path to the

client_sercrets.json file and put this path into prepared text box or can locate it through the

Browser button, which will invoke the file manager. As the path to the file is set ǲOpen browser

for tokenǳ button becomes available.

 Two possible scenarios can occur after clicking the button, first one is, that everything

runs without a problem and you will get noticed about success through the report box by message ǲSuccessfully saved credentials to stored_credentials.jsonǳ, this situation can be seen

on figure 33.

Figure 33 – Token was created successfully

54

 The second scenario occurs if synchronizer is unable to locate elements on page which

are used to process the first scenario. Browser with the page for token will be opened and user

just needs to allow (click Allow button) the connection of synchronizer to VersionOne and copy-

paste token from next page into input box which will pops up right after page is opened. The

second scenario is shown on figure 34.

Figure 34 – Manually accessing the OAuth2 token

5.5.3 Project linkage

 After the connection to VersionOne can be established we are able to choose which

projects should be synchronized. The data about available projects for authorized user are

extracted from the tools before the page is loaded.

Page is shown at figure 35 and allows to choose which project and release on VersionOne

side will be synchronized to which domain and project on the side of ALM.

Figure 35 – Page with available projects

55

5.5.4 Entities customization

 The next page of wizard is shown on figure 36 and user is able to set which entities

should be synchronized - Stories, Defects or Stories and Defects, the representation entity of

VersionOne release at ALM – Milestone, Cycle and create mapping between fields this option is

there because the naming convention in both tools can differ.

Entities have predefined default fields (Name, Id and version stamp/time stamp) for

synchronization, other fields can be added to synchronization process through ǲConfigureǳ
buttons. Configure buttons becomes available based on chosen entities for synchronization (e.g.

if I choose as synchronize entity just stories configure button for defect fields mapping will not

be available).

Figure 36 – Entity customization

Configure button opens form (Figure 37) with overview about mapped fields (default

fields does not appear).

Available actions for mapping are Add or Remove, for Add button next form pops up

(Figure 38) which allows us to map V1 fields to ALM field. The available fields are extracted

from each tool based on selected projects in previous steps, because each project can have

customization which suits best to the project.

56

 To save created mapping just click save button at overview form (figure 37) and mapping

will be added to configuration file. Save button also invokes action which extracts all data about

chosen fields.

Fields can have unique type, can be required or can be relation. Relation fields are special

to Version One and are represented by Value and ID. To make sure that synchronizer will be

able to ǲunderstandǳ to relation data. The information about relations needs to be extracted

from tools.

Example of field - status which is represented as relation (Table 1)

Statuses of Status field

Value ID

In Progress StoryStatus:134

Done StoryStatus:135

Accepted StoryStatus:137

Ready for Test StoryStatus:3913

Table 1 – Status relation field

Figure 38 – Add field form

Figure 37 – Overview of mapped fields

57

5.5.5 IDs and Requirements mapping

At top of the page (Figure 39) user specifies to which field in ALM will be the value of

VersionOne ID inserted. This option is allowed to user because there is lot of teams at CA

Technologies and every team use their own customization and also fields.

At the bottom of the page (Figure 39) user set how the entities from VersionOne (Project,

Release, Sprint etc.) will be represented inside the ALM requirement module. This option is

there because whole requirement module can be customized and also entities of that module

can be customized.

Figure 39 – Form for ID and requirement mapping

5.5.6 Subscribers

 Subscriber page (Figure 40) allows user to subscribe users for notifications if something

goes wrong with given instance of synchronization, as synchronizer is designed as server

application and should run on server machine.

 The subscriber consists of Name and Email address where notifications will be delivered,

those information are used by MailSerivice at Synchronizer Core module.

58

Figure 40 – Form for adding of subscribers

5.5.7 Summarization of the configuration

 Last page (Figure 41) just summarizes the information about configuration created in

previous steps. This page is there mainly for user to see all information at one place.

 The next button from previous pages was changed to save button which will generate

the SyncConfiguration object and also stores the configuration at local drive as XML file.

Figure 41 – Summarize of information

59

5.5.8 Read/Write of configuration file

 As was mentioned configuration is saved to XML file but inside the synchronizer is used

SyncConfiguration class for easier manipulation with customization/configuration information.

Class diagram is shown below on figure 42.

For creating XML file from SyncConfiguration class is used XMLWriter and for creating

SyncConfiguration object from XML file is used XMLReader. Class diagrams can be seen on

figure 42.

Figure 42 – Class diagrams

Right – XMLWriter | Middle – XMLReader | Left – SyncConfiguration

60

5.5.9 Password encryption/decryption manager

Because XML file is stored at local drive and contains user-sensitive data like password

it needs to be encrypted before it is saved to local drive and decrypted on loading of

configuration file.

Class responsible for password encryption/decryption is called PasswordManager,

class diagram is shown on figure 43.

PasswordManager consits only from two methods Decrypt and Encrypt. Code of

methods will not be published from security reasons inside the thesis. Class is designed as

wrapper class for RijndaelManaged class and also implements PasswordDeriveBits method

both methods are part of .NET framework.

Figure 43 – Password manager class diagram

ϱ.ϲ SyŶchroŶizer core

 It is the module responsible for the synchronization process. The core needs to be

configured by the configuration file created in previous section without the configuration file is

unable to start synchronization. The configuration file is passed to the entry point of core as

input parameter. Architecture of core is shown at section about architecture of whole

synchronizer (Section 5.2).

 In the next subsections will be each component of module described.

61

5.6.1 Initializer Service

 Used for initialization part of synchronization. Service passes through all existing entities

at projects which are currently synchronized and if it finds same entity in both tools checks the

date of entity and take the data of entity with later timestamp otherwise the entity is created in

VersionOne or ALM depends on tool where the entity comes from.

At the figure bellow (Figure 44) is described method for creating new entities.

Figure 44 – Body of generic CreateEntitiy method

 CreateEntity is generic method where generic parameter sets which factory will be used

for creation of entity, The reason why there is more factory options is that entity on ALM side

needs to be created at release module (Release factory) and also at requirement module

(Requirement factory).

Input parameters of method are:

 type – type of entity which should be created (story, defect and etc.)

 factory – generic parameter stands for Requirements or Releases (ALM modules).

 item – data model of entity from V1, entity which needs to be created at ALM

 parentNode – parent node for created entity (e. g. sprint node for story)

62

On the first line of code (GetMethod) gets the Add method for given entity type from

factory. This way of referencing the method was chosen because of standardized naming

convention.

The naming convention for factories looks like Add + name of entity (e. g. AddStory,

AddDefect). Switch logic just make sure that method will be invoked with the right parameters.

As the result of initializer service process is same structure of projects at both tools, that

structure can be seen on figure 45. The entities of project are at the same point, have same

attributes etc.

 Last step of initializer service is return collected information about entities to the

repository. The returned information contains the V1 ID, V1 version stamp, ALM ID and ALM

version stamp.

Figure 45 – Project structure after InitializerService run

63

 Left side of the figure shows VersionOne project Sandbox – QC and it have 4 sprints

planned for Release 1. On top right side can be seen requirements module of ALM where is

same structure created by InitializerService, all those entities are linked to release module

(bottom right of the figure) where is created same structure but that structure ends up with

sprints.

 It is because the module is used basically for measuring of project KPIs for whole project,

release or sprint.

5.6.2 V1 Listener

The V1 Listener component is responsible for monitoring the VersionOne and triggers

defined events if they occurs at VersionOne. Component is ǲlisteningǳ to Version One through REST at query.vͳ endpoint. The
comparison of available endpoints is shown below at table 2.

The requirements for listener are – fast, read-only. The query.v1 endpoint allow multiple

queries and it is read-only endpoint so it suits better to listener purpose.

query.v1 rest-1.v1

Read-only Read, write, and update

Multiple queries Single queries

JSON serialization XML serialization

Table 2 – Available endpoints

 V1 Listener defines 5 events that are monitored, those events are shown at figure 46.

Figure 46 – V1Listener events

64

 The first three events (V1ItemCreated, V1ItemDeleted and V1ItemUpdated) are self-

explanatory, occurs if entity is created, deleted or updated. ListenerInitialized event is

triggered as listener is initialized and ready to work. Last event V1ErrorOccured is thrown if

something goes wrong (e.g. listener lost connection to VersionOne server).

 Monitoring function for update event is called Update and it is shown on figure below

(Figure 47).

Figure 47 – Update function

In queryBody variable is defined YAML request to query.v1 endpoint. As YAML is human

readable format, we can read the request like: From (first parameter: entity) select name, ID

and moment for field where field with the name (third parameter: by) equals to the value

(second parameter: filter).

65

As you may notice the entity variable is defined as enum but method

GetV1Representation which is used is not definitely default enum method. The method is

defined as an extension method which is available from .NET 3.5 framework.

 Extension method GetV1Represenation is used because V1 using names project,

release and sprint just in UI and at backend are used special names and because of the fact that

in whole synchronizer are entities defined like project, release etc. this extension method is used

to convert synchronizer naming convention to V1 backend naming convention. Body of

extension method can be seen on figure 48.

Figure 48 – Definition of extension method GetV1Represention

Back to the figure 47 when resultSets is returned listener needs to resolve if changes

were made. It is passes through all returned entities and checks if entity exist in repository and

if exist checks if version number is same as in repository. If version number of returned entity

differs from the one at repository, OnItemUpdate (Figure 49) is invoked with EntityId event

arguments.

EntityId event extends EventArgs with properties of entity type (e.g. Story, Defect) and

ID of the entity.

Figure 49 – OnItemUpdated function

66

OnItemUpdated function just checks if event have defined any subscriber, if subscriber

is defined the handler is not null and event is raised. In our case the only one subscriber for

V1ItemUpdated event is Controller component.

5.6.3 ALM Listener

 The ALM listener have same responsibility as V1Listener but against ALM server. Defines

five events also and those events are shown at figure 50.

Figure 50 – ALMListener events

ALMListner class is almost same as V1Listener, but few requests need to be implemented

in another way.

 ALM offers only one REST endpoint so ALM listener is connected to endpoint called rest.

This endpoint is a bit similar to rest-1.v1 endpoint on VersionOne side, rest-1.v1 specifications

are introduced above at subsection about V1Listener (Subsection 5.6.2 - Table 2).

 The biggest problem is that endpoint supports only single query, so synchronizer needs

to run on machine with fast internet connection and good connectivity to both applications.

With high response times is reliability falling down.

 From single query ability another problem comes, we do not want to get responses from

listener with redundant data. It is the reason why requests from listener are as much specific as

can be. For that purpose is filtering done on server side through special query requests which

secures that we do not transfer redundant data. Data are filtered based on hierarchical path and

modification timestamp.

Requests created as is described above are able to resolve only new or update event. For

delete event needs to be send another request, this request gets number of entities under the

project and ID of the entities. Based on the comparison of returned list of IDs and list of IDs

stored at repository is synchronizer able to recognized deleted entities and trigger delete event.

67

5.6.4 Controller

)t is the ǲa brainǳ of synchronization. As synchronization starts, controller accepts
configuration file which is represented by SyncConfiguration object.

Based on information from the configuration file controller instantiate all components

needed for synchronization and specify the behavior of those components based on the data

from configuration file and then starts the process of synchronization.

This phase is called the initialization phase and it is shown at figure 51 just to make some

overview about what services are initialized before the process of synchronization is started.

Figure 51 – The Initialization phase

 As an example how the initialization of any service look like was chosen verify service

initialization (InitVerifyService). The body of the initialization of the function is shown at figure

52. From the figure we can see that first is extracted info about customization (required fields

at projects) and then service is initialized.

68

Figure 52 – Initialization of Verify service

 After the services are initialized the synchronization process can start (Figure 53).

Figure 53 – Start of synchronization process

 First of all we need to prepare the projects for synchronization, the entities needs to be

unified. The unification process is done by InitializerService (Subsection 5.6.1).

As the projects are unified we can pass information about created structure to MapperService.

69

Then is time to subsribe events from listeners. Subscription of events is shown on figure

54. The functions RegisterV1Events and RegisterALMEvent are responsible for creation of

listeners and also subscription of controller methods for listener events.

From the picture you can easily see what event argument is passed with event and which

method will be invoked for given event and also you can see that create, update and delete

events from listener invokes different functions from controller but events ListenerInitialized

and ALMErrorOccured and V1ErrorOccured points to same method.

Figure 54 – Creation of listeners and subscription to events from them

 The handling of event can be implemented in many ways. One general function can

collect all events and pass action as a property of event argument and based on the action

through switch invoke methods for this action.

The reason why this approach was chosen is just personal. It is easier to maintain and

understand the code at least for me as the developer of the code.

On the figure 55 is shown the code of V1Listener_Update method. The method is

subscribed for V1ItemUpdated event which comes from V1Listener component.

70

Figure 55 – Code of V1Listener_Update method

 To make sure that every event finishes without interrupts EventWaitHandle is

implemented. At the beginning of event the EventWaitHandle method WaitOne is called to make

sure that thread will be locked until the operation is not finished at the end of operation method

Set is called and thread is available for events. If there is more events raised at the same time,

controller will serve the first request and the other put into queue and as controller thread

became available it takes item from queue with priority until the queue is empty.

71

 The logic of locking and unlocking of thread is done through Lock and Unlock methods

which can be seen on figure 56.

Figure 56 – Methods for locking and unlocking of thread

5.6.5 Mapper Service

 Mapper service works as a bridge between objects of V1 (V1Object) and ALM

(ALMObject), mapper is able to transform V1Object to AlmObject and vice versa.

From given requirements, mapper needs to contain information about fields how they

are represented at both tools, which means that mapper needs be able to distinguish between

ID and name of the field on the V1 side and between label and database name on the ALM side.

Also needs to contain links between those fields to be able transform one object to another.

Methods for mapping values of one object to another are called ConvertToAlmObject

and ConvertToV1Object and can be seen at figure 57. Those methods are generic and used for

mapping of common fields. That is the reason why the access modifier is private.

Because most of the entities have some special attributes which needs to be mapped

specially for the entity there are public functions which implement this (e.g.

ConvertToAlmStory).

72

An example of mapping method for mapping of Story entity is shown below on figure 58.

Figure 57 – Common mapping methods

Figure 58 – Mapping method for story entity from V1 to ALM

With the transforming of fields comes few difficulties as was mentioned before V1 works

with type of field which is called relation. It needs to convert the field value to value ID and vice

versa depends on the direction of transforming. How this difficulty is handled can be seen at

figure 57 where if condition checks if field type is relation (IsRelation).

73

5.6.6 Verify Service

Verify service make sure that entities before it is own synchronization are properly filled

in and prepared for synchronization.

 What properly filled in means? On created or updated event are entities downloaded

with fields which are user-defined at configuration file. If user forgot to fill some field and this

field is required, the verify service throw exception with missing field.

 What properly prepared means? Objects are returned from mapper service as entities

of other type based on linkages of fields which are defined by user at configuration file, verify

service does not allow passing those uncompleted entities to factory.

 Idea behind creation of verify service is substitute REST API verify engine to get more

transparent view what is happening at synchronizer or why is synchronization process failing.

As REST is based on HTTP calls the user is notified about a failure through HTTP return

code. But those problems with not properly filled or prepared entity returns in most of the cases

just RC 500 which represents an internal error.

With response containing RC 500 VersionOne REST API and ALM REST API give you

information that there was some problems with parsing entity or that you are not able to create

entity, but no reason why. And there can be millions of reasons e.g. call to bad endpoint, parent

ID does not exists, not filled required field. So the transparency of synchronization was the point.

 At figure 59 are shown methods to check if entity is properly filled in. The first method

CheckStory just wraps the second method which is more general. The wrapping is done because

of usability. The method are created as generic because we can check the V1Object and

ALMObject depends on the synchronization flow. Based on the type of entity is chosen the list

of required fields for this entity.

74

Figure 59 – Method which checks if Story entity is properly filled in

5.6.7 Mail Service

 Mail service is responsible for sending emails to subscribed users. The subscription of

users is done at configuration part, for more information check subsection 5.5.6.

 The mail service should be able to inform user that something goes wrong with his

instance and that he needs to check synchronizer itself or just the entities.

 The service is implemented to catch exceptions which can abort whole synchronization

or abort a step of synchronization because synchronizer is designed as server application and

we do not suppose that it will run on user local machine.

This approach can cause some troubles to user because for user the synchronizer will

work like black-box and if something fails user will not recognize it until he notices that

information are not shared anymore.

75

To avoid this problem you can define subscribers at configuration part and those people

will receive emails on synchronizer errors and will be able to solve those problems.

 Right now is the email service hooked up to OnHistoryRecord event, because the

arguments of this event keep information if synchronization was successful.

The trigger of the mail service is shown at figure 60. Method used for sending the emails

is shown at figure 61.

Figure 60 – The trigger of mail service

Figure 61 – Method for sending emails

5.6.8 Repository

 The repository is place where synchronizer keeps entity information. Right now is stored

just information about IDs of linked entities and those information are stored in cache memory,

for refreshing those links if you turn synchronizer off is responsible Initialization service

described above at subsection 5.6.1.

76

 The repository class is prepared to be extended pretty easy because repository defines

just interface not the implementation behind. Which means that for adding the database just

DAO layer needs to be implemented behind this interface.

 The reason why repository was implemented with just caching of ID links is because both

tools stores entities inside its own database and those databases are pretty big. So there is no

reason to create another database with the same data.

5.6.9 GenericObject

 The GenericObject is abstract class which defines default properties and key/value

container which store field values based on the ID of field as key and field value as value of that

key. The class diagram is shown at figure 62.

Figure 62 – GenericObject abstract class

 From the GenericObject inherits objects which represent ALM and V1 entities. Class is

abstract because as mentioned before IDs of fields in both tools needs to be defined.

 The AlmObject represents ALM entities for synchronizer and is created by XML parser

which sits on the top of ALM REST Client and converts XML response to AlmObject.

 The V1Object represents V1 entities for synchronizer. The object is created by

JSONParser which parses the response from calls to query.v1 endpoint.

 The values are stored at Dictionary class which is part of GenericObject. Representing

objects above specify properties with the IDs of the fields. At the figure 63 are shown class

diagrams of objects.

77

Figure 63 – Class diagram of the objects

5.6.10 Workflow

 This section will provide us the general overview on event workflow (Figure 64) through

the synchronizer core components.

Figure 64 – Workflow through synchronizer core

At the diagram above can be seen the whole process of handling the information about

the changes which were made at VersionOne tool.

Everything starts at V1Listener which gets the information at JSON format about the

changes for last minute. V1Listener analyze the information and ask repository if this entity

78

already exist and needs to be updated or if it is the new entity or if the entity was deleted. Based

on that V1Listener prepares event with all needed event argument and triggers the event.

Triggered event is captured by controller which use the V1Connector to get all fields

specified by user at the configuration file. As controller gets response, converts it to V1Object.

Then the object is passed to MapperService where the transformation from V1Object to

ALMObject occurs. As controller receive the ALMObject from MapperService it will pass it to

VerifyService which checks if the ALMObject contains all fields and values needed for successful

interaction with ALM server.

If VerifyService checks the object and no problem was found then the object is passed to

the right factory, based on the entity type.

ϱ.ϳ SyŶchroŶizer iŶstaŶce ŵaŶager

5.7.1 Instance Process

 The InstanceProcess class collects data about synchronization process from all modules

and presents them through instance manager to the user. User is also able to start/stop

synchronization process.

 The class diagram of InstanceProcess is shown on figure 65

Figure 65 – Instance process class diagram

79

From class diagram is easy to find out what information are stored and available through

instance manager.

The most important stored information is configuration file (config variable), listener

threads (ALMThread and V1Thread variables), controller (Controller variable), ExceptionList

and HistoryItems.

The configuration file is input parameter to constructor (Figure 66) of InstanceProcess

class, so InstanceProcess is unique and defined by it is configuration. Other information are

passed to controller when synchronization is already running.

Figure 66 – Constructor of InstanceProcess class

The function responsible for starting of synchronization process is shown at figure 67.

Figure 67 – Function responsible for starting synchronization

80

At the figure 67 we can see that if synchronization process is not running new controller

is created with configuration file which is set to InstanceProcess at constructor.

After creation of controller InstanceProcess class subscribes to controller events

ListenerInitialized, LogEvent and HistoryRecord then synchronization starts.

 The ListenerInitialized event is raised from controller as listener threads are initialized

and calls SetListenerThead function (Figure 68) at InstanceProcess class.

Figure 68 – Function which sets listener thread to InstanceProcess class

The event argument is ListenerInitialized and class diagram of it is shown at figure 69.

Figure 69 – ListenerInitialized event argument

It contains only information about source, which listener was initialized and the thread

of the listener.

The LogEvent event is fired if any action needs to be logged and available to user. The

event invokes ProcessNewLog function (Figure 70) which stores the event at the right list. Right

now there is only one type of log and it is the ERROR type. But should not be problem to expand

it with another type of log in future if needed.

81

The AddErrorLog function just calls function with right list where should be error log

stored.

The AddLog function stores the log information and calls OnRefreshRequired event. This

event cause refresh of instance manager UI if it is opened and active.

Figure 70 – Functions to log actions

The HistoryItem event (Figure 71) is raised as synchronizer ends with synchronization

process. The arguments of the event holds information about it is own synchronization if was

successful or if not what can cause the problem. Also calls OnRefreshRequired event for

refreshing the instance manager UI.

Figure 71 – Function to store the synchronization attempts

82

ϲ JeŶkiŶs plugiŶ – DiŶgo

 The Jenkins is a tool for continuous integration which can interact with SCM (Source

Code Management tools) download the non-compiled code, compile code, invoke tests etc.

 Everything interaction is done in the form of plugins, so you are able to invoke maven,

ant and much more. The important for us is that Jenkins allows us to invoke JUnit, NUnit or xUnit

tests and store them. For more information about Jenkins checks chapter four.

 The idea was to share the results from tests invoked by Jenkins to HP ALM. This should

be done after the build is finished, if the build have assigned tests to it.

 The Jenkins supports Java language for development of backend actions and use jelly for

frontend.

 Dingo is the name of the plugin.

ϲ.ϭ Research

 As I have done some research of Jenkins tool and also other tool possibilities. I noticed

that there are some other tools with same functionality (TeamCity for example) and they are

also used at CA Technologies.

 So my idea was to create some generic part of the plugin which will work on collecting

the test results from the storage specified by implementation and the part where will be the

own implementation for given tool so if we would like to extend this plugin also for TeamCity

we will need to code just the implementation and not the part of extracting and sending the data.

83

ϲ.Ϯ Architecture

 From the idea above I came up with the two component architecture the first component

is Dingo_Core which is generic part of the plugin and the second is Jenkins_Dingo component

where the tool implementation is specified.

 The Dingo_Core component is responsible for collecting the results from Jenkins and

converting them to an object which ALMClient is able to understand. As those objects are

prepared the pre-defined structure is created inside ALM. This part is written in the Java

language and gets distributed as jar.

 The Jenkins_Dingo component specifies the implementation of the plugin inside

Jenkins. Plugin offers it is own functionality to user as post-build action, it means that

Dingo_Core process will be invoked after the build execution. This part is written also in Java,

the second responsibility of that component is implement the frontend of the plugin.

ϲ.ϯ Pre-defiŶed structure

 The term predefined structure was mentioned at subsection about the architecture of

plugin it is basically the conversion between the Jenkins test suites and test cases to HP ALM

TestPlan and TestLab structure.

 On the structure we co-worked with the various teams. We collect the information about

how they use the TestPlan and TestLab modules at ALM and also if they have any idea or request

how the predefined structure should look like.

84

The figure 72 shows how the test result report (NUnit) looks like.

Figure 72 – NUnit test result report

 The information which we are interested in are shown at table 3.

Path

(nodes taken from testResult)
Information

duration The duration of all tests at build

failCount Number of failed tests at build

passCount Number of passed tests at build

skipCount Number of skipped tests at build

suite Test suite of the whole build

Suite/duration Duration of the test suite

Suite/name Name of the test suite

suite/case Test case of the give test suite

85

suite/case/className Name of the test suite

suite/case/duration Duration of the test case

suite/case/errorStackTrace Error message for failed test case

Suite/case/failedSince Number of the build since test failing

Suite/case/name Name of the test case

Suite/case/status Status of the test case

Table 3 – Data from XML NUnit report

On the figure 73 will be shown creation of predefined structure. It means how are the

data from XML are converted to TestLab and TestPlan module at ALM.

Figure 73 – Conversion of XML to ALM structure

86

ϲ.ϰ DiŶgo Core

 The Dingo_Core functionality was described before, so I will just summarize it there for

better imagination. The component is responsible for picking up the test result reports from any

continuous integration tool which is able to present the results at XML format.

 Those result reports are converted to objects which are able to be represented by ALM

and as those presentable objects are prepared the pre-defined structure is created at ALM.

 On the figure 73 can be seen the structure of the project.

Figure 73 – The structure of Dingo_Core

Now the each package will be described with some overview about functionality and also

some code snippets. Right now the plugin support results only from JUnit, NUnit or xUnit

frameworks.

For xUnit are used the JUnit classes because the report is the same as for JUnit.

87

6.4.1 ALM Client

 The client package (Figure 74) contains classes responsible for interacting with ALM

server through REST calls.

Figure 74 – Classes of ALM client

The ALMClient allows to login, logout, createQCSession token (ALM 12 support), check

if user is authenticated (Figure 75) and also the factories are accessible through it.

The client is wrapping RestConnector class because for all operations mentioned above

are REST calls needed.

Figure 75 – Function to check if user is authenticated

The function use HTTP GET request to the rest/is-authenticated endpoint. If the user is

not authenticated function returns the URL of endpoint as a string where the user should

authenticate. If the user is authenticated function returns null.

88

The Response represents the XML response from server as object, so it is much easier

to get the data from response.

The RestConnector is able to create supported HTTP calls (Get, Put, Post and Delete)

with all mandatory parameters.

6.4.2 ALM Factories

The factories package (Figure 76) contains the classes responsible for creating objects

inside the ALM server through REST calls available from RestConnector class mentioned above.

Figure 76 – Classes of factories package

The BaseFactory is abstract class for all factories as the plugin works only at TestLab

and TestPlan module the factories for those modules are implemented only.

The abstract class wraps the RestConnector class and adds the headers which are related

to operations with entities. Also contains the parser for parsing the XML responses to objects

and entity builder which is responsible for creating the XML file from object in the format that

reflects the ALM XML standards.

The usage of base factory will be described on function getEntities (Figure 77).

Figure 77 – Function to get collection of entities

The function input parameter is entity which specifies the name of the collection we want

to reach. The URL of collection is returned from buildEntityCollectionUrl (Figure 78), headers

are created after the URL and are represented as HashMap by key (header name) and value

(header value).

89

Figure 78– Function to building the URL of REST endpoint

In our case the header specifies the format of the response which is set as XML format.

Then HTTP GET request is invoked to the URL of collection with no request body (GET request)

but with defined headers (e.g. Accept). Response is then parsed into collection of ALMObjects.

The TestLabFactory is responsible for CRUD operations at TestLab module at ALM. The

available entities inside the TestLab are shown in table 4.

Name
REST endpoint ȋrest/domains/$DOMA)N/projects/$PROJECT/…Ȍ

Test Set ../test-sets

Test Set folder ../test-set-folders

Test Instance ../test-instances

Run ../runs

Run Step ../runs/$RUN_ID/run-steps

Table 4 – Entities and endpoints available at TestLabFactory

At the BaseFactory the getEntities function was shown, but as BaseFactory is just

abstract class and cannot be instantiated the getTestSetFolders method (Figure 79) will

demonstrate the usage.

Figure 79 – Method to get all Test Set folder entities

90

The part of the factory also defines the endpoint of the entity. If you noticed small difference that the ǲsǳ is missing ȋtest-set-folder/test-set-folders) at definition you are right. But

if you check the functionality of buildEntityCollectionUrl function (Figure 78) you will see that

function automatically adds ǲsǳ at the end of the URL.
The feature is there to keep consistent name convention because the entity name is Test

Set Folder and not Test Set Folders. And the function just invokes the getEntities with the right

REST endpoint name.

 The TestPlanFactory is responsible for CRUD operations for TestPlan module at ALM.

The available entities to that module are shown at table 5.

Name
REST endpoint ȋrest/domains/$DOMA)N/projects/$PROJECT/…Ȍ

Test Folder ../test-folder

Test ../test

Test Configuration ../test-config

Table 5 – Entities and endpoints available at TestPlan factory

As for factory above the usage of inherited function getEntities from BaseFactory is

shown on figure 80.

Figure 80 – Method to get all Test Folder entities

6.4.3 ALM Entities

The Entities package (Figure 81) contains only one class ALMObject.

Figure 81 – Classes of entities package

91

The ALMObject is class that represents ALM entities for plugin. As ALMObject is written

in really generic way it is able to represent every entity of ALM. The values of fields are stored

at HashMap (Figure 82) which is defined with the key (field name) and value (value of the field).

Figure 82 – HashMap for ALM values

And the most important methods of the ALMObject class are setValues, getValue,

updateValue and getXml. All methods mentioned above can be seen on figure 83.

Figure 83 – Most important methods of ALMObject class

The set, get and update functions are pretty self-explanatory. The getXml function

generates the string in the XML format by ALM standards. For creation of ALM standardized XML format is used StringBuilder class, let’s take a look
at the code. The first append is for defining the entity type and opening the fields node then

there is foreach cycle through all HashMap values and at the end fields and entity node is closed.

92

The function functionality is visualized at figure 84.

Figure 84 – Visualization of getXml function

6.4.4 ALM Parser

The Parser package (Figure 85) contains the classes responsible for parsing the ALM

responses at XML format to ALMObject.

Figure 85 – Classes of parser package

The ALMEntitySAXHandler is class that inherits from existing java DefaultHandler

class, which defines the events that can be handled when reading the XML file.

ALMEntitySAXHandler class then defines the actions on those events. In our case we

mostly care just about the start and end of element event. The actions are shown on figure 86.

Figure 86 – Handling the start (left) and end (right) element events

93

The EntityParser class just implements the ALMEntitySAXHandler. In the example on

figure 87 is shown code snippet of method responsible for parsing of XML response.

Figure 87 – Code snippet of method for parsing the XML response

6.4.5 Configuration

 The Configuration package (Figure 88) consists of classes where the user and tool

information are stored.

Figure 88 – Content of configuration package

The Config class is placeholder for ConfigData, there are security reasons why the

sensitive data are stored in special class, and also guide for the Jenkins developers marks this

approach as best practice.

The ConfigData class stores information defined by user and extracted from tool. In the

table 6 are shown values stored in ConfigData for the Jenkins implementation.

Values defined by user Values from Jenkins

ALM URL Jenkins URL

ALM Username Project Name

ALM Password Build Number

ALM Domain Path to result report

ALM Project

Table 6 – Overview of data stored at ConfigData class

94

6.4.6 Logger

The Logger package (Figure 89) contains classes responsible for logging actions through

the process of collecting the result reports and pushing them to ALM.

Figure 89– Classes of Logger package

The Logger class is just general class which is prepared to be specified by the tool logging

service. As the most of web application log service is built around PrintStream.

Class is using method setLogger (Figure 90) for communication with tool logging service.

Figure 90 – Method sets reference of web log service to plugin log service

New logs are added through addLog method (Figure 91). The log is added to collection

and if any PrintStream is referenced the value is also printed to the web log service.

Figure 91 – Add new log to collection and stream

6.4.7 Common entities

 The Entities package (Figure 92) contains the abstract (general) definition of available

nodes from test result report hierarchy (Figure 93).

Figure 92 – Classes of entities package

95

Figure 93 – Test result report hierarchy

The TestResult class represents whole report and it can contains many of test suites

under.

Available attributes of TestResult class are shown at table 7.

Attributes

duration

empty

failCount

passCount

skipCount

suites

Table 7 – Attributes of TestResult class

 The Suite class represents test suites and it can contains many of test cases under.

Available attributes of Suite class are shown at table 8.

Attributes

duration

name

cases

Table 8 – Attributes of Suite class

96

 The Case class represents each test case and it is the node of test result report which the

plugin is most interested in.

 Available attributes of Case class are shown at table 9.

Attributes

age

className

duration

failedSince

name

skipped

status

Table 9 – Attributes to Case class

6.4.8 Common handler

 The Handler package (Figure 94) contains abstract class which defines the handler for

parsing the XML.

Figure 94 – Handler package

The SAXHandler is abstract handler which extends the existing java DefaultHandler. For

the parsing of XML file is used SAXParser (Simple API for XML).

In the SAXHandler (Figure 95) is just predefined what events are we interested in from

DefaultHandler and needs to be implemented for parsing the test result report.

Figure 95 – Events for parsing the test result report

97

6.4.9 JUnit entities

 The JUnit entities package (Figure 96) extends the classes from

dingo.parser.common.entities for the JUnit needs.

Figure 96 – Package with JUnit entities

The JUnitTestResult class extends the common TestResult class with the JUnit specific

attributes. As the TestResult of JUnit does not offer any specific attributes, the class is there to

keep consistent naming convention through the plugin.

The JUnitSuite and JUnitCase class extends the common Suite and Case class with JUnit

specific attributes.

At the table 10 are shown specific JUnit attributes for suite.

Attributes

stderr

stdout

Table 10 – JUnitSuite and JUnitCase specific attributes

6.4.10 JUnit handler

 The JUnit handler package (Figure 97) contains classes responsible for handling the

process of parsing JUnit test result report.

Figure 97 – Content of JUnit handler package

98

The JUnitSAXHandler class extends the SAXHandler class from

dingo.parser.common.handler which is abstract class with defined events without any action

assigned to defined events.

The most interesting events for the plugin are startElement (Figure 98) which is

invoked if a node is opened, then characters (Figure 99) for values stored at nodes and

endElement (Figure 100) if a node is closed.

Figure 98 – startElement event with defined action

Figure 99 – characters event with defined action

99

Figure 100 – endElement event with defined action

6.4.11 NUnit entities

 The NUnit entities package (Figure 101) extends the classes from

dingo.parser.common.entities to NUnit needs.

Figure 101 – Content of NUnit entities package

 All classes are almost the same as in the case of JUnit implementation. For more

information take a look for dingo.parser.junit.entities chapter.

6.4.12 NUnit handler

The NUnit handler package (Figure 102) contains classes responsible for handling the

process of parsing NUnit test result report.

Figure 102 – Content of NUnit handler package

100

Implementation is also pretty same as for JUnit handler. For more information take a

look for dingo.parser.junit.handler chapter.

6.4.13 Push service

 The Push service package (Figure 103) contains classes responsible for converting the

test result report to predefined structure and pushing it into ALM.

Figure 103 – Content of Pushservice package

The IPushService is the interface for upcoming pushers for other types of test results

then JUnit, xUnit and NUnit.

 The JUnitPusher and NUnitPusher class loads the results to ALM. As both pushers are

similar just NUnitPusher will be described deeply. With knowledge of NUnitPusher you will be

able to understand also to JUnitPusher.

 The NUnitPusher class is responsible for loading the results from NUnit rest result

report to ALM. Whole process of NUnitPusher can be divided into smaller parts – Parsing,

Connecting and Pushing (loading).

 The first phase is parsing process (Figure 104). There are created all mandatory items

for parsing - SAXParser (Simple API for XML Parser) and NUnitSAXHandler, InputStream with

test results is opened and content is passed to saxParser method parse together with handler.

Figure 104 – Process of parsing the result

101

If the parsing process ends without error the logger is noticed and connection phase

starts. The process of connecting to ALM is shown at figure 105.

Figure 105 – Process of connecting to ALM

 At the end of connecting phase the logger gets noticed about the result of this phase. On

successfully connection the phase of pushing results to ALM starts.

 The pushing phase code is shown on figure 106 and description is at table 11. The functionality of functions with prefix ǲsafeǳ is following - If item exists is returned

otherwise the item is created and returned.

Figure 106 – Process of pushing results into ALM

102

Row

number
Description

3 Safe creation of TestFolder at TestPlan with ǲproject nameǳ.
5 Safe creation of TestSetFolder at TestLab with ǲproject nameǳ.
7 Safe creation of TestSet with ǲbuild numberǳ under TestSetFolder created on row 5.

9 Cycle through all test suites

10 Safe creation of TestFolder with the ǲname of test suiteǳ under TestFolder created on row ͵.
12 Cycle through all test cases under given suite from row 9.

13 Safe creation of Test with the ǲname of test caseǳ under the TestFolder created at row ͳͲ.
15-17

Defining the conditions for filtering of existing test configs. Test configuration is

automatically created as test is created. So values from the test created on row 13 are used.

18 Get results of the test filtering.

19 Safe create TestInstance of TestConfig returned on row 18

20-22 Update values of test instance from selected test case.

Table 11 – Explanation of code at figure 95

ϲ.ϱ JeŶkiŶs DiŶgo

 The Jenkins_Dingo component connects the Jenkins with Dingo_Core. The UI is defined

here and also hooking up on events from Jenkins.

The plugin UI is stored at the file config.jelly which can be found at resources under

Jenkins_Dingo.Jenkins_Dingo.DingoPluginController and the hooking up part can be found at

Jenkins_Dingo.Jenkins_Dingo package and the class is name DingoPluginController.

6.5.1 Jelly config

The Jenkins supports Jelly framework for building UI. Jelly is framework which turns

XML file into executable code.

103

As we need from user just minimum information the configuration UI is very simple. The

content of the config.jelly file is shown on figure 107.

Figure 107 – Content of config.jelly

On the beginning the tag libraries are defined. We mostly use elements from /lib/form

which allows us to use form element. Elements used for creation of UI are – textbox, password

and select.

 How Jenkins interprets the code is shown on figure 108.

Figure 108 – Interpretation of config.jelly by Jenkins

104

6.5.2 Dingo plugin controller

The class controls the plugin actions in Jenkins. Request was to create plugin as post

build action which means that will be invoked after the build process.

For that purpose Jenkins offers the abstract class Recorder, description of recorder class

is shown at figure 109.

Figure 109 – Description of Recorder class

Recorder class by description perfectly suits to our plugin purpose. So

DingoPluginController extends Recorder class.

To get values defined by user at configuration part we can use annotation

@DataBoundConstructor as you may notice the package for config.jelly is same as for

DingoPluginController class. Also the names of variables are same as the field attribute of

entries at config.jelly. Because of those two restrictions we can easily pass the values to

controller through constructor marked as DataBoundConstructor at figure 110.

Figure 110 – Example of DataBoundConstructor

105

To invoke action at the end of the build, abstract method perform needs to be overridden

(Figure 111).

 This is the place where the Jenkins_Dingo gets linked with the Dingo_Core.

Figure 111 – Overridden perform method

The perform action notices the logger that action is started and configuration is created

with information needed for pusher class. Then based on the type of the test the pusher class is

instantiate and at the end the Push method (described at Dingo_Core section) which creates

predefined structure at the HP ALM is invoked.

106

CoŶclusioŶ

 The work on the thesis gave me a lot of experience in the whole software development

life cycle and because the tools was developed for company CA Technologies it gave me also

knowledge about how to develop software under the company rules. I had some knowledge and

experience with developing of tools before but tools were not developed for any company so I

did not need to follow any rules, so this way was new for me.

 The theoretical part gave me overview about existing SDLC methodologies and better

understanding of used methodology at CA Technologies also I started to work for CA

Technologies, for part-time right now but with possibility to switch to full-time as I graduate the

reason was that they were satisfied with my knowledge and passion about software

development and new technologies.

 One of the most interesting parts of the thesis was creation of requirements for software

because I need to get feedback from managers and then create requirements based on the

feedback. Based on those feedbacks I need to come up with model and present it to them and as

everyone was satisfied I started to develop it physically. This part was really new to me and I

would like to say big thanks to my consultant dipl. Ing. Srdjan Nalis because lot of really useful

advices about how to talk/present to managers.

 The coding part was really interesting to me because I never developed software of that

magnitude. I spent more than one year with the whole development process with all the

negotiations etc. at the end software contains more than 10,000 lines of code. What was also

new to me at coding phase was the refactoring of code. I found out that code refactoring is really

needed for project of this magnitude. Also at the beginning I was not able to write clean code

and I need to refactor it pretty often but with upcoming experiences I was able to write clean

code much faster and I really enjoyed to make the code as much simple and readable as can be.

But not always was coding just fun, there was a days that I really prey to have any other theme.

On the way of coding the tools I encountered lot of problem on which I spent much time to

resolve it and not always I was able to resolve it by myself. Like the problems how capture event

etc. but it is described in the thesis.

 At the end I would like to say thanks to CA Technologies for this opportunity.

107

RefereŶces

DUVALL, Paul M, Steve MATYAS a Andrew GLOVER. Continuous integration: improving

software quality and reducing risk. Upper Saddle River, NJ: Addison-Wesley, c2007, xxxiii, 283 p.

ISBN 0321336380.

User Guide. HP ALM Documentation. [online]. 1.11.2010 [cit. 2015-03-29]. Available

from: http://alm-dev.ca.com/qcbin/Help/doc_library/pdfs/UserGuide.pdf

Administration Guide. HP ALM Documentation. [online]. 1.11.2010 [cit. 2015-03-29]. Available

from: http://alm-dev.ca.com/qcbin/Help/doc_library/pdfs/AdminGuide.pdf

REST API Reference. HP ALM Documentation. [online]. 12.4.2013 [cit. 2015-03-29]. Available

from: http://alm-dev.ca.com/qcbin/Help/doc_library/api_refs/REST/webframe.html

OTA API Reference. HP ALM Documentation. [online]. 1.11.2010 [cit. 2015-03-29]. Available

from: http://alm-dev.ca.com/qcbin/Help/doc_library/api_refs/OTA_API_Reference.chm

Database Model. HP ALM Documentation. [online]. 1.11.2010 [cit. 2015-03-29]. Available

from: http://alm-dev.ca.com/qcbin/Help/doc_library/api_refs/alm_project_db.chm

Use Jenkins. Jenkins. [online]. 6.4.2007 [cit. 2014-11-10]. Available from: https://wiki.jenkins-

ci.org/display/JENKINS/Use+Jenkins

Plugins. Jenkins. [online]. 2.4.2007 [cit. 2014-11-10]. Available from: https://wiki.jenkins-

ci.org/display/JENKINS/Plugins

User Guide for Enterprise and Ultimate. VersionOne. [online]. 22.4.2014 [cit. 2015-02-15].

Available from: http://community.versionone.com/Help-Center/Getting-Started-Guides/

User_Guide_for_Enterprise_and_Ultimate

http://alm-dev.ca.com/qcbin/Help/doc_library/pdfs/UserGuide.pdf

108

Developer Library. VersionOne. [online]. 22.4.2014 [cit. 2014-09-04]. Available

from: http://community.versionone.com/Developers/Developer-Library

BECK, Kent. Test-driven development: by example. Boston: Addison-Wesley, c2003, xix, 220 p.

ISBN 0321146530.

MARTIN, Robert C, Michael C FEATHERS, Timothy R OTTINGER, Jeffrey J LANGR, Brett L

SCHUCHERT, James W GRENNING a Kevin Dean WAMPLER. Clean code: a handbook of agile

software craftsmanship. xxix, 431 stran. Robert C. Martin series. ISBN 978-0-13-235088-4.

EELES, Peter a Peter CRIPPS. Architektura softwaru. Vyd. 1. Brno: Computer Press, 2011, 328 s.

ISBN 978-80-251-3036-0.

 ROUDENSKÝ, Petr a Anna (AVLÍČKOVÁ. Řízení kvality softwaru: průvodce testováním. ͳ. vyd.
Brno: Computer Press, 2013, 208 s. ISBN 978-80-251-3816-8.

