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Abstract

The equations of motion of the coupled thickness-shear.
thickness-length flexure, width-shear and width-length flex-
ure deduced by neglecting of the piezoelectric coupling de-
duced from a system of one-dimensional equations of motion
for AT-cut quartz strip resonators (by Lee and Wang. 1992)
is employed for the study of the frequency temperature char-
acteristics of the x-length AT-cut quartz strip resonators.
The computed dispersion curves, frequency spectrum and
the thicknes-shear resonance frequency-temperature curves
(the last two as a function of dimensions ratios) are given.

Introduction

The analysis of the vibrations of AT-cut quartz strip-
s of narrow width and finite length has been published by
Lee and Wang [1] in 1992. In the mentioned paper, one-
dimensional equations for the modes of vibration in strip
width and for frequencies upto and including the funda-
mental thickness-shear have been deduced from the two-
dimensional, first-order equations for piezoelectric crystal
plates, given by Lee, Syngellakis, and Hou [2], by expanding
the mechanical displacements and electric potentials in se-
ries of trigonometric functiouns of the width coordinate. The
neglecting of the piezoelectric properties and elastic stiff-
ness csg of the plate made it possible to select four groups
of the modes of vibrations. They were the thickness-shear
and thickness length flexure vibration and their first twist-
overtone, the length-extension, width-stretch, and symmet-
ric width-shear vibrations and the width-shear, width-length
flexure and antisymmetric width-stretch vibrations.

The thickness-shear resonance is the main resonance of
the strip for applications. The thickness-shear resonance
frequency temperature dependence can be predicted from
the frequency equation of the coupled thickness-shear and
thickness-length flexure vibration of the strip given by Lee
and Wang in [1] when the temperature changes of the elas-
tic stiffnesses and thermal expansion coeflicients are includ-
ed. But the more precise analysis of the effect of length-
to-thickness (a/b) and width-to-thickness (¢/b) ratios of the
strip on the resonance frequency temperature dependence
requires to consider also the influence of the coupling with
the other modes of vibrations.

523

0-7803-0905-7/93 $3.00 © 1993 IEEE

By neglecting the coupling of the anti-symmetric width-
stretch mode with width-shear and width-length flexure
modes of vibrations for c/b less then 3.78 Lee deduced a
set of four coupled displacement equations of motion from
the one-dimensional equations for strip resonator given in
f1]. These four displacement equations of motion accommo-
date the coupling of thickness-shear. thickness-length flex-
ure, width shear and width-length flexure vibrations.

In the present paper, the frequency equation of the four
coupled displacement equations for AT-cut quartz crystal
strip is obtainedby setting piezoelectric constants ejs = 0.
The temperature dependent material properties are includ-
ed in the dispersion relation and frequency equation. The
resonance frequency temperature dependences as the func-
tions of a/b and ¢/b ratios are computed.

Temperature Dependent Material Properties

The AT-cut quartz strip resonators shown with its co-
ordinates and dimensions in Fig. 1 is considered in sub-
sequent discussion. Similarly as in references [4), [5] and [6]
we express the influence of the thermally biased homogenius
strain by means of terms B and Djju.

The term 4 is given by the relation [4], {5]
Bri = bii + a5, (1)
where &; is a Kronecker delta and
af = o006 + 6% + oY el (2)

In (2} ai’:) are n-th order thermal expansion coefficients
{(measured by Bechmann, Ballato and Lukaszek [6] and cor-
rected by Kosinski, Gualtieri and Ballato [7]} and © is the
temperature change, @ =T — Tg.

The tensors 0‘?.‘ and [y, are predominantly diagonal ten-
sors with the off-digonal terms in the order of magnitude
of 107% as compared with the diagonal terms. Therefore,
by neglecting the off-diagonal terms, we have (3, = 0 for
k=1)

Be = B = 1 + 0fy, (nosum). (3)

The term D;ji is given by the relation

Diju = Ciju + D}}LG + foi

9% + D.('ﬁzea» 4)



where 1

= HC.‘,-“L + Cijiirn Ol (s
and Cjju and Cijumn are the second and third order elastic
stiffness of quartz, while Cf; ,Z,, ng, and Ci(;z, are respectively
the first temperature derivatives, second effective tempera-
ture derivatives and third effective temperature derivatives.
Values of the temperature derivatives were calculated and
reported in reference [5] and [6]. The magnitudes of Djju
where reported in reference [5).

Coupled Thickness-Shear, Thickness-Length Flexure,
Width-Shear and Width-Length Flexure Vibrations

The displacement equations of motion of the coupled
TSh, tIF, WSh and wlF modes of vibrations including of
the thermal expansion coefficients j3; are
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We choose the modes of vibrations to have the form
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which satisty (6), provided
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The normalized frequency and wave number are defined

by
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The dispersion relation

[a;]=0 (12)

yield four frequency branches as shown in Fig. 2.

Q=

2b
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For traction-free ends of the strip, we required, at z; =
+a
Tl(ol) = 709 — 700 _ 7 _ (13)

Substitution of (8) into (7) and, in turn, into (13) results
in
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where
ﬂ:ﬁf; §=1,2,3,4 (15)
Ayj

are the amplitude ratios which can be computed from (14).

The vanishing of the determinant of the coefficients ma-
trix of (14) gives the frequency equation which must be
solved in conjunction with dispersion relation (12).

The elastic stiffnesses used in equations given above de-
pend on the temperature and are defined by the relations
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We note that in (16) no summation over the repeated

indices.

Frequency-Temperature Characteristics of Thickness-Shear
Resonance

Computational result of resonance frequency as a function of
the length-to-thickness ratio a/b for a fixed width-to-thick-
ness ratio ¢/b = 3.78, R = 0 and AT-cut (§ = 35.167") is
shown in Fig. 3.

It can be seen from the frequency spectrum of the strip
given in Fig. 3 that for predominant thickness-shear vibra-
tions, the strip resonators must have the a/b ratios near
the values 11.05, 12.91, 14.64, 16.36 and 18.05. The thick-
ness shear resonance frequency-temperature characteristic
for these a/b ratios are given in Fig. 4. The influence of the
a/b ratio is greater for the small values of the a/b ratio.
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The resonance-frequency temperature characteristics for
a few ratios a/b near the value a/b = 11.05 are given in
Fig. 5. The resonance-frequency temperature dependence

changes very rapidly if the a/b ratio is far from the inflexion
point of the frequency vs a/b ratio curve.
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Fig. 1. An x-length AT-cut quartz strip resonator.
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Fig. 2. Dispersion curves of coupled thicness-shear (TSh)
thickness-length flexure (tIF), width-shear (WSh) and ,
width-length flexure (wIF) vibrations of an AT-cut strip
with c/b = 3.78.
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Fig. 3. 2 vs. a/b of coupled thicness-shear, thickness-length

flexure, width-shear and width-length flexure vibrations in
an AT-cut quartz strip with ¢/b = 3.78.
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Fig. 4. Predict thickness-shear resonance frequency
temperature curves for AT-cut (§ = 35.167°) quartz strip
for a/b ratio variable and c/b = 3.78.
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Fig. 5. Predict thickness-shear resonance frequency
temperature curves for AT-cut (8 = 35.167°) quartz strip
for three values of the ratio a/b near a/b = 11.05
and c/b = 3.78.



