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Abstract

The thesis presents a survey of the main achievements in the Blind Source Sep-
aration (BSS) area to which the author has been contributing since 2006, that is,
since he finished his PhD studies. It is organized as a proceedings of six important
articles, which were published in journals or in proceedings of distinguished con-
ferences, accompanied by introductory parts and overviews putting each paper in
the right context.

The thesis consists of three parts. The first part is devoted to the underlying
problem of Independent Component Analysis (ICA), that is, to the instantaneous
mixture model where the number of sensors 1s equal to the number of original sig-
nals. A special emphasis is put on Cramér-Rao bounds that limit the performance
of given ICA models. The bounds reveal strengths and limitations of ICA and
provide thus a general theoretical insight into its applicability within BSS.

The second part of the thesis deals with the blind separation of mixtures of
real-world audio signals based on the ICA. The mixtures are described through the
convolutive model, which needs to be ranstformed into one or more instantaneous
problems so that standard ICA algorithms can be applied to it (them). The main
result in this context is a time-domain method named T-ABCD. The method is
introduced by a brief description while the articles attached to the part describe
the method and its variants, including a subband variant, in full details.

The thesis 1s concluded by the third part that outlines present and future re-
search topics. This encompasses further extensions of T-ABCD in audio BSS
applications such as speech enhancement and dereverberation. Next, a brief intro-
duction to the problem of tensor decompositions is given, and their application for
underdetermined BSS is described briefly. The Appendix summarizes the main
achievements of the author.
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Chapter 1

Blind Source Separation

1.1 Introduction

Blind Source Separation (BSS) represents a wide class of models and algorithms
that have one goal in common: to retrieve unknown original signals from their
mixtures when only the mixtures are observed, and the mixing system, whose
input are the original signals, is also unknown [1]. In other words, the methods
aim at separating mixed signals with as little knowledge about the signals and the
mixing process as possible. This is, in fact, a general goal of the Signal Processing
field: To retrieve signal or information from a signal that is distorted by noise,
interferences or other unwanted artifacts, so it is observed as a mixture of the
signals. The target signals and artifacts cannot be observed independently nor
predicted in most real-world situations, and very little can be assumed about their
properties. BSS therefore provides powerful tools since it requires very weak
assumptions that are satisfied in various scenarios.

Such general assumptions or properties of signals, which are focused by recent
research, are the independence, non-negativity and sparseness. Figure 1.1 shows
an example of three recordings of drum instruments. These three signals can be
assumed to be independent as they originate from different instruments that be-
have as independent sound generators (we can neglect the fact that the instruments
play according to notes that are organized to a rhythm, which means certain de-
pendence). They are sparse in the time-domain but also in the frequency-domain
as can be seen from Fig. 1.2 where an amplitude spectrogram of the single-channel
composition of signals is shown. The amplitude spectrogram is an example of a
non-negative signal.

Now consider the situation when only the composed signal is available and
should be separated into individual instruments without any further knowledge.
This is a BSS problem. Since the instruments do not overlap much in time, the

3
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Figure 1.1: Signals of three drum instruments mixed into a single-channel com-
position.

simplest way would be to split the signal into particular hits and then to assign the
separated hits to instruments and reconstruct their signals. This approach relies
on the sparsity of the original signals in time. Similarly, the sparsity of the signals
in time-frequency domain could be exploited if they were not sparse in time. A
discipline that encompasses methods decomposing signals based on their sparsity
is called Sparse Component Analysis (SCA) and serves as a tool for BSS.

The amplitude spectrogram in Fig. 1.2, taken as a matrix with non-negative
elements, can be decomposed by means of an algorithm for Non-Negative Matrix
Factorization (NMF). NMF is recognized as a further method for BSS [2], because
it has the favourable ability to blindly identify individual parts of signals or images
(the spectrogram can be considered for an image whose parts correspond to the
hits of individual drum instruments).

The last property of the drum signals, their independence, can be utilized by
Independent Component Analysis (ICA). ICA has become very popular in last two
decades, because the independence assumption is physically plausible in many
real-world scenarios and provide a strong ability to identify some hidden signals
[3]. ICA provides a powerful tool for BSS, and is addressed by this thesis.

SCA, NMF and ICA may also be closely related in miscellaneous situations
and applied together since many natural signals embody several of the desired
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Figure 1.2: A spectrogram of the mixture of drum signals. The sampling rate was
44.1kHz, the length of the Discrete Fourier Transform was 1024 samples, and the
length of window overlap was 512 samples.



6 CHAPTER 1. BLIND SOURCE SEPARATION

properties at once.

In some situations, the measurement {recording) may be done by means of
several sensors simultaneously, which gives rise to a multi-channel signal. For
example, the individual drums can be mixed into a stereo signal in such way that
each instrument is added to each channel with a different gain in order to imitate its
location. The advantage of multi-channel signals consists in the diversity between
signals obtained by sensors, which can be exploited for the separation.

1.2 The Mixing System and Notations

This section introduces basic mixing models and relating notations. A mixing
model describes the mechanism how the original signals are mixed into the signals
that are observed by sensors. The mixing process proceeds in a linear way in most
real-world cases. Therefore, there are two basic linear models considered in the
literature: the instantaneous and the convolutive model.

1.2.1 Instantaneous Model

The instantaneous model assumes the environment where the speed of propaga-
tion of signals is fast enough so that any delays and reflections of signals can be
neglected. Each signal is just superposed on each sensor with an attenuation that
bears relation to the positions of the source and the sensor. An example is the
signal from Electroencephalogram (EEG), where the sampling frequency is very
small compared to the speed of propagation of electromagnetic signals from the
brain.

The model is described as
X = AS (1.1)

where X 1s a m X N matrix whose rows contains samples of the observed sig-
nals from sensors. Since the signals are observed simultancously, a column of
X corresponds to a time instant. Similarly, 8 is a d X N matrix containing the
original unknown signals. A is a 1 x d matrix of attenuations and is called the
mixing matrix as it parametrizes the whole mixing system. /N denotes the number
of available samples of signals. The subspace of R™ spanned by rows of X will
be called the observation space.

Individual signals of X will be denoted as z1{n), ..., xn(n}, so it holds that
r;{n) corresponds to the inth element of X, that is, X,,. Similarly, s;(n},. ..
..., 8q(n) denote the original signals from S.
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1.2.2 Convolutive Model

The convolutive model is more general than the instantaneous one, because it takes
the delays and reflections into account. The relation between the mixed and orig-
inal signals is described by

ﬂrfi i

d
x{n) = Z Z hij(T)s;(n — 7). (1.2)

j=1 =0

The mixing system is a MIMO (multi-input multi-output) linear filter with source-
sensor impulse responses hy;’s each of length M,;. If M;; = 0 for all 7 and
7. the simpler instantaneous model is obtained. The convolutive model will be
considered in the second part of this thesis.

1.2.3 Number of Signals and Sensors

When solving the BSS problem, it is either possible to aim at finding the parame-
ters characterizing the mixing system (the matrix A) or to find the original signals
themself. The former task is named the system identification and the latter names
the signal separation. The tasks may be equivalent depending on the number of
observed and original signals.

In general, two cases are distinguished under the assumption that A has full
rank (otherwise, the system could be reduced). The most studied case is the de-
termined one when m = d. Then, A is square, regular, its inversion exist, and it
holds that S = A='X. It follows that the finding of A and S are equivalent tasks,
in this case.

The mixture of signals is called underdetermined when m < d. This task is
more difficult, since the inversion of A does not exist. The identification of A and
the retrieval of the original signal are no more equivalent, in this case.

1.2.4 Additive Noise

The model with additive noise is described by
X=AS+N (1.3)

where N has the same size as X and contains samples of noise signals. In fact,
this model is an underdetermined one with d + m original signals (S and N) and
m observations given by X. However, the model is distinguished by the fact that
the primary goal is to retrieve S only, not N,
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Here, the case where m > d is sometimes considered, so there are more noisy
observations than the original signals. Such case is sometimes called overdeter-
mined, although the model itself is underdetermined. The most common approach
here consists in reducing the number of observations to d, e.g. by Principal Com-
ponent Analysis (PCA). The goal is to suppress the additive noise from the ob-
served signals so that the remaining data can be approximated as a determined

problem.



Chapter 2

Independent Component Analysis

In this chapter the determined instantaneous mixture model will be considered. It
is the underlying model applied in many situations. For example, the solution of
this task might be a building block for separation of more challenging convolutive
mixtures addressed in the second part of this thesis.

2.1 Definition

ICA solves the BSS task based on the assumption that the original signals S are
independent where the independence is understood as the term from probability
theory. Since the original signals are mixed through A, the observed signals X
are dependent, in general. The ICA task thus can be formulated as to estimate the

mixing matrix A or, equivalently, W = A~!, called the de-mixing matrix, so that
signals A~'X = WX are as independent as possible.

The beginnings of ICA can be dated to 1986 when Herault and Jutten pub-
lished their paper [6] on a learning algorithm that was able to separate indeped-
nent signals. Later, the concept of ICA was most clearly stated by Comon in [7],
which is one of the most cited paper on ICA. Presently, there are several books
and proceedings devoted to this important topic of signal processing [1, 3, 4, 5].

2.1.1 Indeterminacies

The solution of the ICA task is not uniquely determined. Any matrix W of the
form

W = APA™!, 2.1

where A is a diagonal matrix with nonzero diagonal entries and P is a permutation
matrix, separates the original signals from X up to their original order, scales, and

9



10 CHAPTER 2. INDEPENDENT COMPONENT ANALYSIS

signs. These features cannot be retrieved without any further knowledge. To a
certain extent, the indeterminacies entail a shortcoming of BSS approaches.

The scales of the original signals may be assumed to have arbitrary positive
values. Without loss on generality, it will be assumed that the mean value and
variance of each signal exist and are equal to zero and one, respectively'.

Any parameter or statistic that is determined up to the mentioned indetermi-
nacies will be said to be essentially unique.

2.1.2 Preprocessing

Let Z = CX where C is a preprocessing matrix to-be found. A necessary condi-
tion for the independence of Z is that they are not correlated. A consistent estimate
of the matrix of correlations of Z is ZZT /N (in most cases), so it may be required
that C is such that

ZZT/N =1 (2.2)

where I stands for the identity matrix. When searching for a matrix U that sepa-
rates Z, i.e. UZ = S ~ S, the transform should retain S uncorrelated since S are
independent. This is ensured whenever U is orthogonal, i.e., UUT = 1, and the
constraint is called the orthogonal constraint.

Applying C to X such that (2.2) is fulfilled, is a common preprocessing step
used by most ICA methods. Such C can be easily found as any orthogonalizing
transform of X a particular one is obtained by PCA, where Z correspond to
principal components of X.

Then, the separating matrix U may be searched under the orthogonal con-
straint. However, such constraint limits the accuracy of separation, since (2.2) i
an estimate of the true correlation matrix only. In other words, SS” /N is only ap-
proximately equal to I due to the estimation error, while the orthogonal constraint
requires exactly that SS7 /N = 1. Therefore, algorithms designed to achieve the
best possible accuracy try to avoid the constraint.

2.2 Performance Evaluation

To evaluate the accuracy of separation, the mixing matrix or the original signals
must be known. Such situation arises, for example, when doing simulations in
order to test some algorithms. Some original independent signals are mixed by a
known mixing matrix, the tested algorithms are applied to the mixed signals, and
the resulting separating matrices or separated signals can be compared with the

!In case of a nonstationary signal, its scale is assumed to be equal to one, which is the average
variance of all of its samples.
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mixing matrix or with the original signals, respectively. The major problem of the
evaluation to be overcame is that the order of separated signals is random, which
is called the permutation problem.

Let W be an estimated separating matrix produced by an ICA algorithm when
the original mixing matrix was A. The so-called gain matrix is defined as

G = WA. (2.3)

Owing to the indeterminacy of ICA, G should be ideally equal to AP from (2.1).
The Amari’s index was introduced in [8]. It evaluates the accuracy of separa-

tion as a whole by yielding a non-negative value that is equal to zero if and only
if G = AP. Itis defined as

d
roy (ZelGl ) s (ZhGl ) g
“— \ maxy |G|  \ max; |Gy,
The criterion reflects the fact that G should contain one and only one dominant
element in each row and column.

To evaluate each separated signal individually, it is possible to use standard
measures such as Signal-to-Interference ratio etc. However, the separated signals
must be reordered prior to the evaluation. This means to find the permutation
matrix P. A straightforward way is to match the separated and original signals
based on dominant elements of G under the condition that the matched pairs of
signals are disjoint. The most common approach, called greedy, finds the maximal
element of G in absolute value, assigns the corresponding signals, and repeats the
process until all signals are paired. A more sophisticated pairing based on the
Kuhn-Munkres pairing algorithm was proposed in [j1].

Once the permutation matrix is found, the separated signals and rows of G can
be reordered. Assume that the correct order was found. The kth separated signal,
denoted as sx(n), is equal to

gk_(ﬂa) — Gk_lsl(n) T Gkksk_(n) + e desd(n).

Since s1(n), ..., sq(n) are independent (uncorrelated) and are assumed to have
zero mean and unit variance, the ratio of energies of the kth (target) signal and
the other interfering signals in s (n), known as the Signal-to-Interference Ratio
(SIR), is equal to

G2
SIRy = —3 Bl 2 (2.5)
Ei:l,é#k |Gk'v;|
Its reciprocal value is named the Interference-to-Signal Ratio (ISR), that is
d :
S g G 2
ISR, — Ez_l,e,;ék |Gl _ (2.6)

|G |2
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In case that the additive noise is taken into account as in (1.3), Signal-to-
Interference-plus-Noise Ratio (SINR) of the Ath estimated signal is equal to

|Gre|?

SINR, — — S
Dk G2+ 02370 [Wil?

(2.7)

where o2 denotes the variance of the noise signals N (assumed to be the same for
each noise signal).

Monte Carlo Simulations

Many evaluation tests are based on repeated simulations with randomly selected
or generated signals, mixing matrices, initializations etc. Each trial is evaluated
by using some of the criteria mentioned above. The final criterion is usually the
average or median value computed over the trials. Itis worth to point out here that
the statistical properties of the criteria might or might not be different.

As an example, consider an experiment where three tests (trials) are done.
Artificially mixed signals are separated, and the first separated signal is evaluated
in terms of SIR. Assume that the algorithm works well in two trials and yields
very high SIR equal to A, but in the last trial it fails and gives very small SIR
equal to ¢, where ¢ < A. The final average is equal to

—A+A+€w:_:)A.
3 3

Since A is large, the average SIR is large as well so one might conclude that the
algorithm works well. However, when ISR is used as the main criterion, then it

is equal to 1/A in two experiments, which is a small value, and to 1 /e in the last
experiment, which is a large value. The average ISR is equal to

Ll L 1y 244 1
3\A T A" ) 34 3¢

which is a large number revealing failures of the algorithm. From this point of
view, SIR is a more optimistic criterion than ISR.

On the other hand, when using the median instead of the average as the final
value, both criteria give the same conclusion (A in STR and 1/4 in ISR) showing a
good performance of the algorithm. It is a well-known feature of the median that
it avoids outlying observations such as the SIR or ISR achieved in the last trial of
the hypothetical experiment.
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Figure 2.1: Characteristics of the bass drum signal. (a) Histogram compared with
that of a standard Gaussian random variable. (b) Variances of the signal in parti-
tioning to 70 blocks of equal length. (c) Power spectral density of the signal.

2.3 Models of Signals

When the original signals come from nature, it is often hard to characterize them.
For example, if these signals are speech signals, it is possible to model them in
several ways. For different models, the condition of their statistical independence
has various forms, which leads to miscellaneous separation principles and meth-
ods. It is no wonder that signals possessing several features simultaneously may
be separated on the basis of different principles.

There are three basic ICA approaches coming from different statistical models
of signals [9]. The first one assumes that a signal is a sequence of identically and
independently distributed random variables. The condition of separability of such
signals requires that one signal is Gaussian at most, so the approach is said to
be based on the non-Gaussianity. The second approach takes the nonstationarity
of signals into account by modeling them as independently distributed Gaussian
variables whose variance is changing in time. The third basic model considers
weakly stationary Gaussian processes. These signals are separable if their spectra
are distinct, therefore, it is said to be based on the spectral diversity.

For example, the basic three features, i.¢., the non-Gaussianity, nonstationarity
and spectral non-whiteness, can be observed on the bass drum signal from Fig. 1.1.
This is demonstrated by diagrams in Fig. 2.3 where the histogram verifies the non-
Gaussianity, the variance profile proves the nonstationarity, and the power spectral
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density shows a non-uniform power spectrum.
The following subsections describe the basic three models and corresponding
separation principles in details and provide surveys of several existing algorithms.

2.3.1 Non-Gaussianity

The non-Gaussianity-based model assumes that each original signal is a sequence
of i.i.d. random variables [11]. It means that each sample of the ith original signal
s;(n) has the probability density function (PDF) f;,. Since the signals are assumed
to be independent, the joint density of s;(n), ..., sg(n) is equal to the product of
the corresponding marginals

d
Foc=| | 52 (2.8)
i=1

This equation gives a concrete form of the independence condition that the PDFs
of separated signals should satisfy.

Most generally it can be said that the ICA algorithms based on the non-
Gaussianity optimize a criterion that measures the degree of equality in (2.8) be-
tween the PDFs of separated signals. A common criterion used in theory is the
Kullback-Leibler divergence that is equal, by definition, to the mutual information
of the separated signals. Let the separated signals be denoted by Y. The mutual
information of Y is defined as

I(Y) - 44 fyl,...,yd (&1, s ,&d) In fyl""‘yd(gl’ - ’gd)

d
If Y are not correlated and normalized to have variance equal to one (which is

usually achieved by a preprocessing), the mutual information is equal to the sum
of entropies of individual signals plus a constant, i.e.,

UE yrsns HER: (2.9)

d
I(Y) =) H(y) + const., (2.10)
i=1
where H (y;) is the entropy of the ith separated signal defined as

H) = - [ fu(©n (. @11

Hence, the minimization of (2.9) is equivalent to the minimization of the entropies
of all signals. This clarifies why this approach is called “non-Gaussianity-based”,
because the entropy of the Gaussian distribution is maximal among all distribu-
tions.
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In practice, the PDFs of signals are not known and should be either replaced by
an appropriate nonlinear function or estimated from the available data. An anal-
ogous problem arises when the maximum likelihood estimation (MLE) approach
is used, since the densities must be known to build up the likelihood function.
Other approaches rely on some necessary (but not sufficient) conditions for the
independence following, e.g., from the properties of cumulants.

2.3.2 Nonstationarity

Let the original signals and the mixture be partitioned into M blocks of the same
length Ny = N/M, where N, is an integer,

S = [SW ... 8 (2.12)
X = [XWU ..., X)) (2.13)
Assume that each signal in each block S is Gaussian i.i.d., with zero mean and
a variance crﬁ(e), where k = 1,...,distheindex of the signaland ¢ = 1,..., M is

the index of the block. It means that each signal is parameterized by A (unknown)
parameters corresponding to variances on blocks. Since the variance may vary
from block to block, the model embodies the nonstationarity of signals [10].

The received data are, by assumption, Gaussian distributed, so the sufficient
statistics for estimating A and the variances is the set of sample covariance matri-
ces i

R,= —XOXNT, ¢=1,...,M. (2.14)
M
Theoretical covariance matrices obey the relation

R = Adiag [02, ... ,oﬁ“’}] AT (2.15)

where diag|-] is a diagonal square matrix containing the elements of argument on
its diagonal. In fact, diag[o2"”, ..., 02\”] is the covariance matrix of S©), because
the signals are independent.

This gives rise to the idea how to separate such signals: The covariance ma-
trices on blocks of transformed signals Y = WX are equal to WR,WT, ¢ =
l,..., M. Hence, the separating matrix W can be found as such that provides a
approximate joint diagonalization of the matrices {R,}, i.e. has the property that
the matrices { WR,W? '} are all approximately diagonal.

The joint approximate diagonalization (JAD) of a set of matrices can be per-
formed in several ways, optimizing several possible criteria. A straightforward
one is

M
Cis(W) = 3 Jloff (WRWT) |, (2.16)

=1
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where the operator “off” nullifies the diagonal elements of a matrix, and || - ||p
stands for the Frobenius norm. A minimization of this criterion must be con-
strained, so as to evade trivial minimization by W = 0. For instance, the orthog-
onal constraint entails that W cannot be zero.

It can be shown, that the maximum likelihood estimator of the separating ma-
trices is realized by minimizing the criterion

M-1 a o
det ddiag( WR, W7’
C‘LL(W) _ Z ]Ug g(A £ ) )

where the operator “ddiag” nullifies the off-diagonal elements of a square matrix.
This criterion is meaningful only for positive definite matrices {R,}.

The condition that W jointly diagonalizes {R;} is a sufficient condition for
the independence of separated signals, because the model considered here as-
sumes their distribution to be Gaussian. However, in a more general manner,
the condition is necessary only. Some authors therefore do not consider methods
based on the joint diagonalization of correlation matrices for ICA methods, but
rather for more general-purpose BSS methods. The following example reveals
more in this respect.

Assume that r original signals (without loss on generality, let they be the first
r signals) have the same dynamic profiles, so it holds that 02(9) = W M}.
foreach £ = 1,..., M. It can be easily verified that any orthogonal transform of
these signals keeps their covariance matrices diagonal on all blocks. It follows that
the joint diagonalization of {R,} is then essentially unique up to an orthogonal
transform of the subspace spanned by the signals.

In summary, signals having the same dynamic profiles cannot be separated
through the joint diagonalization of covariance matrices. Note, however, that the
subspaces of signals having different dynamics can be separated each from the
other, which is a fact addressed in the next chapter.

(2.17)

2.3.3 Spectral Diversity

The third signal model assumes that the original signals are independent weak
stationary Gaussian processes [12]. As will be shown, it relies on the fact that
such signals are distinguishable in the frequency domain. It is practical to limit
the theoretical considerations to autoregressive (AR) processes with known order.

A sufficient statistic for joint estimation of the separating matrix and autore-
gressive parameters of the signals is the set of the estimated time-lagged correla-
tion matrices,

R[r] = —Zx[’n x'[n+ 7], a1 (N S I (2.18)
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where x|n| denotes the nth column of X, R — 1 is the order of the AR model, and
T denotes the matrix/vector transposition. The true covariance matrices are equal
o

R[r] = A diag[ri[7],...,rq[r]] AT, (2.19)

where 77| is the autocorrelation of si(n). The time-lagged correlation ma-
trix of the original signals is diag[ri[r],...,ra[r]]. which is diagonal thanks to
their independence. Therefore, the approach here is the same as in the previous
nonstationarity-based model. The separating matrix W is estimated as a joint
diagonalizer of the set of matrices {R|[r]}.

Analogously to the previous model, signals having the same autocorrelations
cannot be separated via the joint diagonalization of {R|[r|}. The autocorrelations
determine the signal spectra and are the same if and only if the spectra are the
same. Therefore, the model here is said to rely on the spectral diversity of signals.

2.3.4 Hybrid Models

Since natural signals usually embody several features such as the non-Gaussianity,
nonstationarity and spectral non-whiteness simultaneously, it is meaningful to
combine the above models in order to derive more flexible and accurate I[CA meth-
ods. However, the complexity of models increases by combining more properties
of signals, so only two models are usually put together to provide a reasonably
complex theoretical background.

The other way is to derive an algorithm heuristically without deep theoretical
considerations. For instance, it i possible to built up a separating criterion that is
a weighted sum of particular contrasts which reflect various properties of signals.
Similarly it is possible to do JAD of covariance and cross-covariance matrices and
cumulant and cross-cumulant slices based on a weighted criterion of diagonality.

Piecewise Stationary Non-Gaussian Signals

Many audio signals, especially speech signals, are known to exhibit both the non-
Gaussianity and nonstationarity. The composite model taking both features into
account considers each sample of a signal as an independent zero-mean random
variable that need not have a fixed distribution (nor a fixed variance) [10]. To allow
the estimation of the distribution, it is practical to assume a piecewise stationarity
so that the distribution is fixed within time intervals of a certain length. Let the
number of intervals (blocks of data) be M and their length be N;, which is the
same partitioning as that in Section 2.3.2.

The model introduced here provides a generalization of the non-Gaussianity
and nonstationarity-based models described in previous subsections. While the
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former model coincides with the piecewise stationary one when the number of
blocks is M = 1, the latter model corresponds with the case when signals are
restricted to have Gaussian distributions on all blocks.

In notations a superscript in parentheses, e.g. (. will be used to denote quan-
tities, data or probability density functions that are related to the ¢th block.

Piecewise Stationary Autoregressive Processes

The model based on spectral diversity of signals can be generalized in an analo-
gous way. It results in a hybrid model that involves the nonstationarity [25]. The
data are partitioned into M blocks of the same length. In each block, the signals
are modeled as Gaussian AR processes of the order /7 with zero mean and arbi-
trary variance. A sufficient statistic is the set of time-lagged correlation matrices
computed on all blocks, that is,

NI—T

Z x [n] (xD[n + ]) (2.20)

=1

1

Nl—T

R[] =

where x('[n] is the nth column of X}, 7 = 0,...,R—land ¢ = 1,..., M.
The separating matrix W is searched as a joint approximate diagonalizer of these
matrices.

2.4 Performance Bounds

2.4.1 Cramér-Rao-Induced Bounds for Residual Interference-
to-Signal Ratio

Section 2.2 introduces performance measures that can be used to evaluate the ac-
curacy of particular data separated by a given algorithm. To see how the algorithm
performs in a more general manner, the experiment can be repeated (Monte Carlo
trials). If the average of a selected criterion converges, its value is indicative of
some statistical properties of the algorithm. On the other hand, a theoretical anal-
ysis of the algorithm can be done by deriving closed-form formulas of the true
mean value of the criterion under a given model of signals.

The common criterion considered in this section is the mean ISR defined in
(2.6). To this end, the ISR matrix is introduced as such that its elements are defined
as

2 2
ISR;; — E Hg”r } —;? (2.21)
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where E stands for the expectation operator, and W is the separating matrix esti-
mated by the algorithm, G = WA is the gain matrix, and o2 is the variance of
the sth signal, or, more generally, its scale (the average of variances over blocks,
in case of piecewise stationary signals).

Cramér-Rao lower bound (CRLB) is a general bound for the variance of un-
biased estimators [39]. Consider a vector of parameters € being estimated from
a data vector x, having probability density fxe(x|@). Let @ be some unbiased
estimator of 0. If the following Fisher information matrix (FIM) exists

|1 afe(xle) (8.fx.e(x|e)ﬂ
Fg =Eq | — : : 2.22)
o l 2o 00 00 :

then under mild regularity conditions [39], it holds that
cov @ > CRLBg = Fgl,

where cov 0 is the covariance matrix of 6.

The Cramér-Rao theory can be used to derive algorithm-independent bounds
for elements of the ISR matrix (2.21). It is assumed that G = I + € where € is
a “small” matrix of errors, so it is assumed that the indeterminacies of ICA were
correctly resolved. Then the elements of ISR matrix can be approximated as

ISRQ;_?' ~ E“Gt'jlz]g—';, (223)
and the lower bound can be defined as the CRLB for €. The problem of trans-
forming the CRLB of € to the bound of ISR matrix is analyzed in more details in
[36].

Piecewise Stationary Non-Gaussian Signals

The CRLB bounds were already derived in [10, j6] for the hybrid models de-
scribed in Section 2.3.4, which gives also the bounds for the basic models as
special cases. For the piecewise stationary non-Gaussian signals the CRLB bound
says that

1 Ai' 0'2. . ]
ISRq‘.j > Wﬁ J—”;a L7 g, (2.24)
4hiqilqy 4
where
M o)
1 0'23; ()
Ay = e L (2.25)
=1 07y

| M .
2 2(

o2 — — § a _ 9.0

’ a.n,.'? E ] ?' ( 6)
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K.EE) is defined as

PO [(wgf’) (x)ﬂ 2.27)

where zj)@ = — ( w)) i f(m is the score function of the density f; Fo . which is the

PDF of the 7th signal on the ¢th block, i.e. f; 9, but normalized to the unit variance
(the variance of f; ) is involved in crz{ )) It can be shown that r.,,E ) > 1 where the
equality holds if and only if fi( ) is Gaussian.

Two key properties of the CRLB can be seen from the expression (2.24). First,
the bound is independent of the mixing matrix A, which could be expected, be-
cause ISR is also independent of A. Second, ISR;; depends on the characteristics
of the 7th and jth signal only, which means that the minimum residual interfer-
ence of one source in another depends on properties of the two signals only, and
1s independent of the other signals in the mixture.

The bound for the basic non-Gaussianity based model [c1] is obtained by tak-
ing M = 1. The superscript signifying the index of block can be omitted, and
then (2.24) reduces to

g

IS _—
Rij 2 N ki — 17

= (2.28)

The denominator of (2.28) becomes equal to zero only if both ; and r; are equal
to one, which means that both the 2th and jth signals have Gaussian distribution.
In such case the bound signifies that the two signals cannot be separated by any
unbiased estimator. This is in accordance with the primary requirement that one
original signal has the Gaussian PDF at most so as the mixture be separable. It
can also be seen, that the bound is minimized when x; — +o0 and k; — +o0,
which can be interpreted as that the signals are non-Gaussian as much as possible.

The basic nonstationarity-based model assumes Gaussian distributions of sig-
nals on all blocks, which means that £\ = 1 for all ; and ¢. This simplifics the
expression (2.25), and the bound becomes the form

1 M nz(t?)

1 M 2ui=1 ,,(g) é”l 2(0)
an —_— J 1 'I
ISRy; 2 N 1 M o2 1 M o2 E g v
M 2ut=1 30 rimtn | =1 2
(2.29)

Remind that the condition of separability requires that the variance profiles of
signals are different. This can be seen from (2.29), because the denominator is
equal to zero if 02 = O - 02( 9, where C' > 0, for all /.
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Piecewise Stationary Autoregressive Processes
The expression for the bound of the hybrid model connecting nonstationarity and
spectral diversity principles is similar to (2.24). It was derived in [c16] in the form

ISRy > L. — % Tl

2.30
- N (f)’?}(f)‘}"& —1 'Fi[O] ( )
where
- 1 M 2(3) (g)
b =17 Z o o (2.31)
w) (£) LE) (f)
iJ' 2(;5) Z A p%sqTs Q] (2.32)
ag; pg=0
M
(£) :
7il0] = - Zr [0]. (2.33)
The parameters ail po P =1,..., R, are the AR coefficients of the ith signal in the
¢th block with afg = 14,8 LEE} (n] =~ Zf i E?} EE}(n p) —|—w”) (n). Note that

here crf(e) denotes the variance of the Gaussian innovation wE )(-n.) that generates
the AR process.

For the basic model purely based on the spectral diversity, the number of
blocks is M = 1, and (2.30) simplifies to

ISR;; > — - E et (2.34)
! N (f)éjq()ij —1 '?"i[O]
where
bij = Z a;p0547i[p — ql- (2.35)
“ p,q=0
An alternative expression of (2.35) is
' A () A (L) !
hij = ! DA (2.36)

om [ AR)AND)

where A;(z) = EP o @ipz~ T, * denotes the complex conjugation, and ¢ denotes
the imaginary unit. Since A;(z) and A,(z) determine spectra of the signals, it is
easily seen that ¢;; = 1 if and only if Ai(,:-) = A;(2),1.e., the spectra are the same.
It also follows that the denominator in (2.34) is zero if and only if the spectra of
the 7th and jth signal are proportional.

For R = 0, the model corresponds with the basic nonstationarity-based one.
Then q‘;&? = 1 and T,EE} [0] = cr'f(f) for all 4, j, and ¢, and the same expression as
(2.29), which was derived from (2.24), is obtained.
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2.4.2 Minimum Signal-to-Interference-plus-Noise Ratio

In this section, the mixing model with the additive noise (1.3) will be considered.
The noise signals, i.e. the rows of N, are assumed to be Gaussian and uncorre-
lated, which simultaneously means that they are independent.

The common criterion used for the evaluation of separated noisy signals [c6] is
the SINR defined by (2.7). While SIR, Wl}j?h ignores the noise, can be arbitrarily
large as the estimated separating matrix W approaches A~! (up to indetermina-
cies), SINR is bounded provided that the variance of additive noise o > 0. The
maximum SINR is achieved for

o

W = WMMSE — AT(AAT 4 521) 1, (2.37)

which simultaneously minimizes the mean square distance between the original
and separated signals, i.e.

WYMSE — are min B[S — WX]2. (2.38)
W

By putting WMMSE into (2.7), the ultimate bound for the SINR of the kth signal
is obtained as
Vik
d d T
Zi#k‘ Vﬁi + o2 Ei:l(VA l)ﬁu;

where V = (I+02(ATA)~1)~!. In contrast to the Cramér-Rao bounds where the
additive noise was not considered, (2.39) depends on the mixing matrix A and,
naturally, on the noise variance o2.

A special case is when A is an orthogonal matrix satisfying AAT = 1. In
such case, the model X = AS + N can be rewritten as

X=AS+AN=A(S+N),

min SINR,, = (2.39)

since the noisy signals AN are statistically equivalent to IN. It follows that the
model behaves like the ordinary instantaneous model without the additive noise
where the original independent sources are S = S + IN. Therefore, in this case
the noise 1s sometimes called the source noise.

The asymptotic expansion of (2.39) for “small” o2 gives

) B 1 5 :
min SINR;, — Zwel? — B+ Oc*), (2.40)

where

d d
B2+ ”wl E (Z(WWT)@ —2)" Wki(WWTW)ki) |
k : :
ik i=1
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W — A-! and w} denotes the kth row of W. The first term in the asymp-
totic expansion reveals that if the rows of A~! have the same norm, the ultimate
bound (2.39) is approximately the same for each signal (provided that A is well
conditioned).

2.4.3 Bias

If the additive noise is present in the mixed signals as in (1.3), the estimation of A
or A~! may be biased. To get an unbiased estimate, the covariance matrix of the
noise, which is oI, must be known a priori [43]. However, the optimum signals
in terms of SINR (2.7), which is more natural criterion than ISR when the noise
18 present, are
QMMSE _ ywMMSEy 2.41)
It is thus legitimate to aim at finding WMMSE rather than identifying A or A1
Consequently, the bias of an estimated separating matrix W is studied as the
difference of =
E[W] (WM =1 (2.42)
from a diagonal matrix. Owing to the indeterminable scale of separated signals,
it is common practice to estimate W so that it yields normalized signals. Then,
the bias should be defined as the difference between (2.42) and D, which is the
diagonal matrix that normalizes S™"5¥_ Tt can be shown that

D=1+ %o2diag[V11, oy V] + O(c?), (2.43)

where V = (ATA)~1,

Bias of algorithms using the orthogonal constraint
The orthogonal constraint requires that

EWX(WX)T] = WAAT + o2T)WT = 1. (2.44)
It follows that the bias of all constrained algorithms is lower bounded by

min |[W (WMMSE)=1 _ D||,

. _ 2.45
W(AAT | ?2HWT = I e

where the minimization proceeds for W. It was shown in [m6] that the minimizer
W of (2.45) fulfills that W(WMMSEY=1 — T4 52" 4 O(¢%), where I is a nonzero
matrix obeying T+T7 = V. It follows that the average bias® of all ICA algorithms
that use the orthogonal constraint has the asymptotic order O(c?).

*The average bias computed over all separated signals.
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2.5 Algorithms

This section provides a brief survey of several ICA algorithms. It is organized into
subsections each corresponding to a given model of signals.

2.5.1 Methods Based on the Non-Gaussianity
FastICA

A reasonably accurate and fast ICA algorithm can be obtained by minimizing a
contrast function, which can be quite arbitrary nonlinear and non-quadratic statis-
tic of the data, such as kurtosis. The statistic works as an approximation or a
subrogate of the entropy. An example of this approach is the popular FastICA
algorithm [15].

The finding of the kth row of the de-mixing matrix W, denoted as wf, in
FastICA proceeds by optimizing the contrast function

c(wy) = E[G(wlZ)], (2.46)

where E stands for the sample mean estimator, and Z is the preprocessed matrix
X such that rows of Z are orthogonal. ' is a properly chosen nonlinear function
whose derivative will be denoted by ¢. The signals obtained by the current (and
final) W will be denoted by Y, 1.e. Y = WZ.

Ideally, c(wy) should be an estimate of the entropy of v, which is achieved
when G is equal to —In f,,, and g is the score function ¢, = —f; /f, . The
original FastICA utilizes fixed choice of G, e.g., such that g(x) = 2° or g(x) =
tanh(x). The version of the algorithm that estimates one signal only is called
one-unit FastICA. The estimation of the whole W proceeds by finding all local
extrema of ¢(wy) on the unit sphere. The deflation approach estimates W row by
row so that each row must be orthogonal to the previous ones. Another approach,
called Symmetric FastICA, orthogonalizes all rows of W after each iteration by
means of the symmetric orthogonalization. It means that both the deflation and
symmetric approach apply the orthogonal constraint.

From the analysis [j2] of the statistical and global convergence properties fol-
lows that the theoretical accuracy of the one-unit and symmetric algorithms, in
terms of the residual ISR, is expressed, respectively, by

# 1 r}r,

it i .
it . T WY

ISRSYM o BT 705 (2.48)

N (T.J; + Tj)z
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where
i = E[s:g:(s;)] (2.49)
pi = Elgi(s,)] (2.50)
B = Eg; (s:)] (2.51)
Vi = B — 1 (2.52)
i = s — )O!L|1 (2.53)

provided that the expectations exist. Here, s; denotes the random variable of the
same distribution as the ith original signal. g; is the nonlinearity used to substitute
the score function of the 2th signal. In the original FastICA, a common nonlinear-
ity, denoted without the index, is used for all signals.

The results of the analysis reveal several interesting facts. The accuracy of
the one-unit algorithm given by (2.47) depends on the distribution of the signal
being estimated (the ith one) but independent of the other signals. On the other
hand, (2.48) depends on distributions of the ith and jth signal, where the same
property have the Cramér-Rao bounds. The nonlinearity ¢ has an influence on the
residual ISR through the quantities y¢;, p; and j3; defined above. It can be shown
that both (2.47) and (2.48) are minimized when ¢ is equal to the score function
of the signals’ PDF (assuming that all signals have the same distribution). Then,
w; = 1 and p; = 3; = k; = K, where & is defined through (2.27), and

1 1
1 g ;
ISR} ~ e (2.54)
. L1 1 i
T SYM 2,2
ISR} Ml (4+2%_1). (2.55)

Remind that the corresponding CRLB (2.28) when all signals have the same PDF
says that

I w
Ng2-1’
from which it follows that none of the versions of FastICA achieves the bound. A
comparison of the expressions is given by Fig. 2.2. Finally, it is worth to point to
the first term in (2.55). It is a constant independent of x limiting the ISR, which is
caused by the orthogonal constraint applied within Symmetric FastICA.

ISR;; > (2.56)

Infomax

The Infomax algorithm was first published in [35] and then its extended version
in [14]. It is derived on the basis of MLE. A model-log-likelihood function is
maximized, which, in principle, also leads to the minimization of approximated
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one-unit
0.8} = = = Symmetric |
------- CRLB
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Figure 2.2: A comparison of the best theoretical accuracy of one-unit FastICA,
Symmetric FastICA and the corresponding CRLB given by expressions, respec-
tively, (2.54), (2.55) and (2.56). The expressions are plotted as functions of £k > 1
with N = 1.

entropies of signals like in FastICA. The main difference is that the optimization
proceeds by a different iterative algorithm. There are two nonlinearities g(x) =
x + tanh(z) approximating the score functions. They differ in the sign before
the term tanh(z), where one is for sub-Gaussian and the other for super-Gaussian
sources. The optimization rule switches the sign according to a stability criterion.

JADE

Joint cumulants of random variables of higher order than two provide higher-order
statistics with appealing properties. For example, a cumulant of a set of random
variables is equal to zero if the random variables can be divided in two indepen-
dent non-empty sets. The cumulants are multilinear, which allows to derive such
cumulant matrices that have analogous property like the correlation matrices in
(2.15), which means that the separation can be based on the joint diagonalization
of these matrices.

JADE was proposed in [13]. It is an algorithm based on the joint diagonal-
ization of cumulant matrices involving all the cumulants of order two and four.
The joint diagonalization algorithm utilizes Jacobi rotations and the orthogonal
constraint. The residual ISR achieved by JADE was shown to be given by [38]

RS T (237
i 2
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where

kt' = E[Sf] -3
l: = E[s{] — B[s]].

Note that k; is the kurtosis of the ¢th original source, which is equal to zero if
the ¢th distribution is Gaussian. If all signals have the same distribution, (2.57) is
lower bounded by 1/(4 /'), which is in accordance with the fact that JADE applies
the orthogonal constraint (see (2.55) also).

An optimized variant of JADE, called OFORIA, was proposed in [37]. It relies
on a non-orthogonal weighted joint approximate diagonalization of the cumulant
matrices. The weights are optimized (the weights correspond to elements of the
inverse covariance matrix of estimates of the cumulant matrices), and the resulting
performance of OFORIA is

1 il + lu;*‘i’-:f

[SROFORIA o, 1 .
Ry N 1:k2 + 1;k2 4 kK2

(2.58)

Non-Parametric and Parametric Algorithms

A well known fact following from various theories and analyses is that the most
accurate separation can be achieved if correct models of signal PDFs are used.
For example, the best nonlinearity ¢ that can be used in FastICA is the score func-
tion of the PDF of signals (assuming that all signals have the same distribution,
since FastICA applies one nonlinearity only). Therefore, some methods aim at
estimating the PDFs or score functions either in a parametric or non-parametric
way.

Examples of non-parametric algorithms are NPICA [17] or RADICAL [34].
While NPICA estimates PDF using a Gaussian mixture model, RADICAL utilizes
order statistics. The advantage of non-parametric methods is their flexibility, since
they can separate signals of arbitrary non-Gaussian distribution. This is in contrast
to parametric approaches, since for any fixed nonlinearity, it is quite easy to find a
non-Gaussian distribution which FastICA (and likely other algorithms), endowed
by the nonlinearity, fails to separate [c8].

Although the non-parametric separation methods are usually accurate, they
are computationally very complex and cannot be used to separate more than few
(10-20) signals, in practice.

Some other separation methods use a parametric modeling of the score func-
tions of the separated signals. For instance, Pham et al. proposed mean square
fitting of the score functions by linear combinations of fixed nonlinear functions
in [18], to derive a blind separating algorithm. Another parametric estimator com-
ing from the maximum entropy principle was proposed in [19].
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EFICA

The analysis of FastCA gave rise to a new, more sophisticated, algorithm named
EFICA [j3]. EFICA is initialized by the outcome of Symmetric FastICA. Then,
a special technique called a test of saddle points is applied to make sure that the
global minimum of the contrast function was found. The partly separated signals
are used to select optimal nonlinearities ¢;, 2 = 1, ..., d, for each separated signal,
and used in a fine tuning of rows of W. Finally, the whole W is refined from
the version with fine-tuned rows. The refinement entails the avoidance of the
orthogonal constraint. It is done in an optimum way so that the variance of the
estimate of W is minimized.

Theoretical analysis based on [j2] shows that the residual ISR due to the sep-
aration by EFICA is

1 vwly+r)
Nriyn+ iy +73)

ISR ~ (2.59)

If the nonlinearities ¢;, ¢ = 1,...,d, match the score functions of the signals,
the right side of (2.59) becomes equal to the CRLB (2.28), which means that
EFICA is asymptotically efficient in the special case. In this respect, the adaptive
(parametric) choice of the nonlinearities was designed to work efficiently with
signals having a generalized Gaussian distribution®.

On principle, EFICA does not differ much from FastICA in terms of compu-
tational complexity, so it retains its popular property, which is high speed. On the
other hand, it outperforms FastICA in terms of accuracy and global convergence
(stability), which was demonstrated by various experiments even with real-world
signals. Some further improvements of EFICA in terms of speed and accuracy
were proposed in [¢8] and [c11].

1FICA

EFICA is an optimal estimator of the separating matrix in terms of the estimation
variance when the mixed signals do not contain any noise. However, if the noise
is present, the estimate by EFICA is biased and need not be optimal, e.g., in terms
of SINR. The bias was discussed in Section 2.4.3. In [m6], the asymptotic bias
of EFICA and Symmetric FastICA was derived, and it was shown that both the
algorithms have bias of the asymptotic order O(c?), where oI is the covariance
matrix of the noise in (1.3). On the other hand, the bias of one-unit FastICA was
shown to have the order O(c?), at least.

3PDF of the generalized Gaussian distribution is proportional to exp(—|=|*/3), where « is a
shape parameter and 3 controls the variance. The distribution include standard normal distribution
for a = 2, Laplacean distribution for o = 1 and a uniform distribution as a limit for & — oc.
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However, one-unit FastICA estimates one original signal only, and it depends
on its initialization which of the d signals is being estimated. The 1FICA algo-
rithm was designed to have the same performance as the one-unit algorithm, but
the global convergence to all original signals is ensured. Under mild conditions,
it follows that the bias of 1FICA has the same asymptotic order as that of one-unit
FastICA.

The bias is one aspect of the quality of an estimator; the other one is its vari-
ance. When the noise is present, both should be taken into account to select the
best algorithm for separation. In the noise-free case, it was shown that the vari-
ance is small when the distribution of signals is highly non-Gaussian. Such prop-
erty have, for instance, finite-alphabet signals used in wireless communications.
IFICA was shown to separate these signals disturbed by noise better than the
other FastICA-based variants (including EFICA) for large enough 02 > 0. This is
thanks to the lower bias, because the variance is small and less important is such
cases.

The 1FICA algorithm and its version for complex-valued signals was proposed
in paper [¢9], whose reprint is included as a part of this thesis.

2.5.2 Methods Based on Approximate Joint Diagonalization of
(Cross-)Covariance Matrices

As explained in Sections 2.3.2, 2.3.3, and 2.3.4, the utilization of nonstationar-
ity and/or spectral diversity of signals leads to an JAD of covariance and cross-
covariance matrices computed either over the whole data or their blocks. In gen-
eral, the methods differ in the criterion of the joint diagonality and in a way to
optimize it. While the criterion has mainly the influence on statistical perfor-
mance of the algorithm, the optimization approach affects its speed and stability.
An important role plays the constraint that restrains the algorithm to converge to
the trivial solution W = 0.

Several algorithms for the JAD have been proposed and applied to derive ICA
methods; a survey of JAD approaches is given, e.g., in [28]. Earlier papers propos-
ing methods based on the nonstationarity are, for instance, [33] and [32]. These
methods apply the orthogonal constraint, especially, due to the computational and
implementation simplicity. More recent methods apply different constraints to
improve the accuracy of separation, e.g. [30] and [31]. The methods in [28] incor-
porate weights into the criterion to optimize statistical properties of the resulting
joint diagonalizer for given models of signals.
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BGSEP

In [28], a method for JAD was proposed, which is asymptotically equivalent to the
Pham’s estimator from [29], but is more appealing computationally. It bears the
name BGWEDGE (Block Gaussian Weighted Exhaustive Diagonalization with
Gauss itErations), and the corresponding separation algorithm is called BGSEP
(Block Gaussian separation). The performance of BGSEP was shown to attain the
CRLB (2.29) when signals obey the given statistical model.

Although theoretical computational complexity of Pham’s algorithm and BG-
WEDGE is the same, O(d? M) operations per iteration, the latter algorithm is eas-
ier to parallelize. In matlab implementation, BGWEDGE 1is realized with fewer
embedded “for” cycles, and, therefore, it is faster in higher dimensions.

WASOBI

One of the first algorithms assuming the spectral diversity of signals was AMUSE
proposed in [27]. It is based on the diagonalization of one cross-correlation ma-
trix R[7] (r > 0) under the orthogonal constraint. Later, a popular algorithm
doing the JAD of a set of matrices based on Jacobi rotations was proposed in [12]
and is known under the acronym SOBI (Second Order Blind Identification). The
algorithm became quite popular in biomedical applications.

SOBI, however, is not statistically efficient, if the original signals obey the
assumed AR model. Statistically efficient estimators of the mixing or separat-
ing matrix attaining the CRLB (2.34) were independently proposed by Pham,
Degerine and Zaidi, and Tichavsky and Yeredor. The latter algorithm is called
WASOBI (weight adjusted SOBI) [26]. The weights in WASOBI are derived
from AR modeling of partially separated signals. WASOBI was shown to allow
an approximately efficient separation even in high (100+) dimensional datasets.

BARBI

The abbreviation BARBI [c16] stands for the Block AutoRegressive Blind Identi-
fication. It is a hybrid method that relies both on the nonstationarity and spectral
diversity. Like BGSEP, the method assumes that the mixture can be partitioned
into M blocks, and in each of them, the separated signals are Gaussian stationary
and autoregressive of order it — 1. Therefore, it can be viewed as an extension of
BGSEP and WASOBIL

Similarly to the SONS algorithm from [25], it does an JAD of the cross-
covariance matrices computed at each block separately. The number of these ma-
trices is M x R. Unlike other ICA algorithms that are based on an JAD of some
matrices, the JAD in BARBI incorporates a data dependent weighting, which re-
flects the statistical model of the separated data. Therefore BARBI outperforms
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other separation methods in terms of accuracy, if the assumed model is in accor-
dance with the reality. Then it achieves the CRLB bound given by (2.30). The
JAD method is similar to that in BGSEP and WASOBI, so BARBI is computa-
tionally effective and allows separation of high-dimensional data.

2.5.3 Block EFICA: A Method Combining the Nonstationarity
and Non-Gaussianity

Block EFICA is an ICA/BSS algorithm that relies both on the non-Gaussianity
and nonstationarity [j6]. Like the BGSEP algorithm, Block EFICA assumes that
the separated signal can be partitioned in a set of M blocks, so that the signals
are stationary in each block. The signals may have different variances and even
different distributions on distinct blocks. This model of data is also considered by
Pham in [24], who suggests an asymptotically efficient (CRLB attaining) estima-
tor based on the maximum likelihood approach. The latter algorithm, however,
appeared not to be as stable as Block EFICA, and its performance is problematic
in difficult scenarios and in high dimensions.

The concept of Block EFICA is similar to that of EFICA. The main differ-
ence consists in that the optimal nonlinearities approximating score functions are
estimated separately in each block of signals. The Pham’s parametric estimator
from [18] is used for adaptive selection of the best linear combination of the func-
tions from [c¢8]. The second main difference is that the optimum weights for the
refinement of the final estimate of W are computed accordingly, respecting the
piecewise stationary model.

Block EFICA asymptotically approaches CRLB (2.24) under common as-
sumptions when variance of the signals is constant over blocks, which is ex-
pressed by X

pBEF ., + Kj i i
ISR?;J- Y NTT = D Nt (2.60)
where ®; = ),‘—11, é‘i] K.EE}. In case that the variance of signals is changing, the
algorithm is not optimal in theory, but its performance is close to the CRLB (2.24)
in practice. This was demonstrated by experiments with both synthetic and real-
world signals.
The reprint of [j6] is included as a part of this thesis.

2.5.4 Towards Combining the Non-Gaussianity and Spectral
Diversity: the MULTICOMBI algorithm

MULTICOMBI is an algorithm that combines EFICA and WASOBI to separate
mixtures of signals that are either non-Gaussian or can be well resolved in the
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spectral domain. It is based on the fact that these algorithms allow to estimate not
only the separating matrix, but also the separation performance measured in terms
of the estimated ISR matrix.

The ISR matrix is estimated by examining the statistical properties of the sep-
arated signals using the formulas (2.59) for EFICA and (2.34) for WASOBI. For
instance, if some separated component is highly non-Gaussian, ISR of EFICA
with respect to other components will be low, and vice versa: If there is a group of
components that have nearly Gaussian distribution and cannot be well separated
one from the other, the corresponding ISR submatrix will have large entries. Sim-
ilarly WASOBI produces an estimated ISR matrix which reveals the structure of
the mixture, i.e. which components have mutually similar spectra (and therefore
they are hard to separate one from the other) and vice versa.

MULTICOMBI applies both algorithms to the input data, which gives two dif-
ferent sets of independent components. The clusters of components are identified
separately for each algorithm by a clustering method in which a similarity of clus-
ters is defined through the estimated ISR matrices. MULTICOMBI then accepts
the clusters of one algorithm only such that yield better estimated ISR than the
best cluster of the other algorithm. The other clusters of the first algorithm are
accepted as one merged cluster, unless it is empty. The procedure is applied re-
cursively to each non-singleton cluster until all clusters are singletons, 1.e., contain
one component only and provide the output of MULTICOMBL.

In simulations, MULTICOMBI was shown to outperform other existing meth-
ods that rely on non-Gaussianity and spectral diversity, for instance, JADETp [21],
JCC [20] and ThinICA [22]. These methods are mostly based on a joint approx-
imate diagonalization of either cross-covariance, cumulant and cross-cumulant
matrices. The (cross-)cumulants represent higher-order statistics taking the non-
Gaussianity into account. Neither of these methods optimize the separation crite-
rion to achieve the statistical efficiency given by the combined model.

The reprint of the paper [j5] where MULTICOMBI was proposed is included
as a part of this thesis.



Chapter 3

Independent Subspace Analysis

3.1 Definition

One possible extension of the ICA is the so-called Independent Subspace Analysis
(ISA). The goal here is to decompose the signal space spanned by rows of X to a
direct sum of independent subspaces. It means that an element of a given subspace
should be statistically independent of elements of the other subspaces but need
not be independent of elements within the subspace. Due to proper definition
of the solution (uniqueness) it is required that no independent subspace can be
further decomposed into independent subspaces (maximal decomposition). The
exception could be a subspace of Gaussian components that can always be made
uncorrelated, thus, independent.

ICA can be seen as a special case of ISA where the dimension of each subspace
is equal to one. Therefore, ISA is also known under the name Multidimensional
ICA [40].

ISA can be applied in situations where not all original signals can be separated
from each other. In many cases, the ISA problem can be approached by applying
an ICA algorithm, because the algorithm aims at finding components that are
mutually independent as much as possible. This is followed by a clustering of the
obtained components according to some similarity measure that reflects, e.g., their
mutual dependence. The identified clusters of components then should correspond
to the desired subspaces.

The following section considers several important examples where the ISA
problem arises.

33
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3.2 Examples

3.2.1 Invisible Independent Sources

Some signals cannot be separated by a given ICA algorithm in spite of being
independent, but can be separated by another algorithm. This occurs when not all
signals meet the separability conditions of the given model, in particular, when

1. Non-Gaussianity-based model: there are signals whose marginal distribu-
tions are Gaussian,

2. Nonstationarity-based model: there are signals having the same variance
profiles, or

3. Spectral diversity-based model: some signals have the same spectra.

A key question is how the given ICA algorithm behaves when applied to a mixture
containing such signals. It is desired that the algorithm separates the subspace of
undistinguishable signals from the other signals. Fortunately, the answer whether
this is fulfiled is positive in most situations.

A theoretical justification is provided by the Cramér-Rao bounds introduced
in Section 2.4.1. Under the given models, the attainable residual ISR between
two separated signals was shown to be independent of properties of the other
signals. The behavior of algorithms is expected to be the same, which is usually
corroborated experimentally. The analyses of the FastICA-based methods, e.g.
given by (2.47), (2.48) or (2.59), or of JADE in (2.57), have confirmed the property
in theory. The MULTICOMBI algorithm described in Section 2.5.4 relies on this
property of the EFICA and WASOBI algorithms.

3.2.2 Dependent Sources

An ISA problem is defined if some of the original signals are assumed to be de-
pendent. This is motivated by some natural signals such as recordings from elec-
trocardiogram (ECG) from a pregnant woman, where the goal is to separate the
maternal signal and the fetal signal [41]. It is believed that each individual ECG
signal consists of several dependent components. Since the maternal and fetal
signals should be independent, they form two independent subspaces in the mixed
data.

General ISA algorithms aim at restoring the independence of subspaces while
they leave out the dependence of signals within the subspaces. For example, this
can be done by doing an approximate joint-block diagonalization of a set of co-
variance matrices [42]. It differs from the JAD task in that the covariance matrices
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of separated signals need not be diagonal, but it suffices if they are block-diagonal.
This means that some signals are allowed to be correlated (dependent) after the
separation. The drawback is that the dimensions of subspaces (blocks) must be
known or estimated. Furthermore, the criterion of block-diagonality might have
local minima.

As pointed early in this chapter, the other approach is to separate the mixture
into components by an ICA algorithm and perform a clustering of the compo-
nents. To solve the ISA problem this way, it is necessary that components con-
taining the dependent signals are separated from the independent ones. Since ICA
algorithms aim at restoring the independence of all signals, it is highly expectable
that the condition is fulfilled. The only redundant effect should be that the depen-
dent signals are mutually transformed to be “as independent as possible”. Some
practical experiments confirming this feature of some ICA methods were done,
e.g., in [c15].

The paper [c15] is included in the second part of this thesis.

3.2.3 Underdetermined and Noisy Mixtures

The underdetermined (more signals than sensors) or noisy mixtures can some-
times be regarded as such where the original signals are “slightly” dependent.
Consider a case where each signal of a regular mixture of d signals is contami-
nated by an unwanted signal s;,1(n). The mixed signals can be written as

X = AS + bsgy 3.1)

where s;, 1 denotes a 1 x N vector containing N samples of sy, ;(n), and b is a
d x 1 vector of coefficients determining the level of contamination on channels.
Assume that b is “small enough” and s, 1(n) is not a target signal to be separated
(not a further original signal).

To separate the original signals S each from the other, the mixed signals should
be multiplied by A~! (up to the indeterminacies), and the resulting signals are

S=A"1X=S+A'bsg. (3.2)

It is seen that these signals are dependent, which is caused by the common ad-
ditive term A~'bsy, ;. As discussed in Section 2.4.3, a contamination of mixture
by additive noise (of arbitrary distribution) causes bias in the mixing matrix esti-
mation provided that b is small enough. Consequently, the example here points to
the behavior of ICA algorithms when applied to slightly dependent signals: They
are biased but estimate the target signals correctly.
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3.3 Pseudo-Convolutive Mixtures

A pseudo-convolutive mixture of signals is the instantaneous mixture X = AS
where the matrix of original signals S is defined in a special way as

Sl(Nl) Sl(Ng)
Sl(Nl = 1) Sl(NQ — 1)
_ S](N]—L+l) S](NQ—L—|—J_)
S — s2(N1) s2(V2) (3.3)
Sg(N] — 1) SQ(NQ — 1)
| sl B4 sa(Wr— L1 |

where Ny and Ny, Ny > Ny, determine the block of samples of original signals
s1(n),...,sq(n), and L is a free integer parameter.

The point here is that the rows of S corresponding to the same original signal
are dependent unless each original signal is a sequence of independent samples
(for example, an i.i.d. signal). Nevgrmeless, s1(n),...,sq(n) are still assumed to
be independent, so the blocks of S form L-dimensional independent subspaces,
and the separation of the instantaneous mixture of S poses an ISA problem.

The mixture is called “pseudo-convolutive”, because the matrix X = AS has

several features that are common to a matrix defined through

l’](N]) l‘l(Nz)
:I‘-l(Nl — 1) 1‘1(N2 = 1)
;Ifl(Nl—L+1) x](N2_L+].)
= 22(Ny) x2(Na) ? (3.4)
:I‘-Q(Nl — 1) E‘Q(Ng — 1)
_l‘d(Nl—L—I-]) :I‘-d(NQ—L—I—l) ]
when z1(n), ..., x4(n) are convolutive mixtures of s,(n), ..., sqs(n), i.e., they are

mixed according to the model (1.2)". In fact, the signals X = AS corresponds

'The matrix defined through (3.4) is considered in Section 6.2 on time-domain methods for
separation of convolutive mixtures of audio signals.
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to dL outputs of MIMO filters of the length L whose inputs are s1(n), ..., sa(n).
Nevertheless, note that E cannot be decomposed in the form E = AS where A is
square. In other words, the matrices AS and = are not equal, in general. A special
case when a convolutive mixture matrix = can be rearranged into an instantaneous
(overdetermined) mixing problem is described, e.g., in [57].

The pseudo-convolutive mixtures can be used for testing and comparing ICA
and ISA algorithms. It is the subject of article [c15], where the original signals
are audio signals (speech) that have significant temporal structure. Hence, the
signals are dependent within the subspaces but the subspaces are independent,
which means an ISA problem. The conclusions of [c15] are important for the
selection of appropriate ICA algorithm that is applied within the method described
in Section 6.2.1.

The article [¢15] is included as a part of this thesis.
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Abstract. In this paper, a variant of the well known algorithm Fas-
tICA is proposed to be used for blind source separation in off-line (block
processing) setup and a noisy environment. The algorithm combines a
symmetric FastlICA with test of saddle points to achieve fast global con-
vergence and a one-unit refinement to obtain high noise rejection ability.
A novel test of saddle points is designed for separation of complex-valued
signals. The bias of the proposed algorithm due to additive noise can be
shown to be asymptotically proportional to ¢® for small o, where ¢ is
the variance of the additive noise. Since the bias of the other methods
(namely the bias of all methods using the orthogonality constraint, and
even of recently proposed algorithm EFICA) is asymptotically propor-
tional to o2, the proposed method has usually a lower bias, and con-
sequently it exhibits a lower symbol-error rate, when applied to blind
separation of finite alphabet signals, typical for communication systems.

1 Introduction

The noisy model of Independent Component Analysis (ICA) considered in this
paper, is
X =AS+0oN, (1)

where S denotes a vector of d independent random variables representing the
original signals, A is an unknown regular d x d mixing matrix, and X represents
the observed mixed signals. The noise N denotes a vector of independent vari-
ables having the covariance matrix 3. Without loss of generality, we will further
assume that X equals to the identity matrix I. Consequently, o2 is the variance
of the added noise to the mixed signals. All signals considered here are i.i.d.
sequences, i.e., they are assumed to be white in the analysis.

It is characteristic for most ICA methods that they were derived for the noise-
less case, so to solve the task of estimating the mixing matrix A or its inversion

* This work was supported by Ministry of Education, Youth and Sports of the Czech
Republic through the project 1IM0572 and through the Grant 102/07/P384 of the
Grant Agency of the Czech Republic.

M.E. Davies et al. (Eds.): ICA 2007, LNCS 4666, pp. 730-737, 2007.
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W = A~!. Then, abilities to separate noised data are studied experimentally,
and the non-vanishing estimation error as N — +oo, NV being length of data,
is taken for a bias caused by the noise. To compensate such bias, several tech-
niques were proposed [6]. Unfortunately, these methods have a drawback that
the covariance structure of the noise needs to be known a priori [4].

In accord with [7], we suggest to measure the separation quality not through
accuracy of estimation of the mixing mechanism but through the achieved in-
terference + noise to signal ratio (INSR) or its inverse SINR. In separating the
finite alphabet signals, the ultimate criterion should be the symbol error rate
(SER). Computation of the INSR or the SER assumes that the permutation,
scale, and sign or phase ambiguities were resolved by minimizing the INSR.

In the case 3 =1, the INSR of a k-th estimated signal can be computed as

Zf#(BA)i:; +0° Zf:l Bi-@ 2)
(BA)Z, ’

INSRy =

where B is the separating transformation [7]. The solutions that minimize (2)
are known to be given by the MMSE separating matrix, denoted by WMMSE
that takes the form

WN[N[SE . AH(AAH 4+ 0_21)—1 (3)

where ¥ denotes the conjugate (Hermitian) transpose. Signals given by WMMSEX
will be further called the MMSFE solution. Note that these signals may not be nec-
essarily normalized to have unit variance, unlike outcome of common blind separa-
tion methods, that produce normalized components. For exact comparisons, we
introduce a matrix WNMMSE gych that WNMMSEX are the normalized MMSE
signals.

The paper is organized as follows. In section 2, we briefly describe several
variants of algorithm FastICA and the proposed method, including a novel test
of saddle points for separating complex-valued signals. Section 3 presents an-
alytic expressions for an asymptotic bias of solutions obtained by real domain
FastICA variants [5,8] from the MMSE solution. Specifically, we study the biases
of estimates of de-mixing matrix W from WNMMSE "and the one-unit FastICA
and the proposed algorithm is shown to be less biased than the other methods.
Simulations in Section 4 demonstrate drawbacks of the unbiased algorithm [6]
(further referred to as unbiased FastICA) following from required knowledge of
3} and/or o. Conversely, the proposed algorithm with one-unit FastICA-like per-
formance is shown to be the best blind MMSE estimator when separating noisy
finite-alphabet signals.

2 FastICA and Its Variants

Common FastICA algorithms work with the decorrelated data Z = C~1/2X,
where C = E[XX!] is the data covariance matrix. Only the unbiased FastICA
(6] that aims at unbiased estimation of A~! assuming that the noise has a known
covariance matrix X, uses the preprocessing Z = (C — 3)~1/2X.



732 7. Koldovsky and P. Tichavsky

One-unit FastICA in real domain [5] estimates one de-mixing vector w}"

iteratively via the recursion
uT
wl + EZgwi" 2)]} - wi'E{g (Wi 2))},  wi¥ e wl/|wi] (@)

until convergence is achieved. Here g(—) is a smooth nonlinear function that
approximates/surrogates the score function corresponding to the distribution of
the original signals [11]. The theoretical expectation values in (4) are, in practice,
replaced by their sample-based counterparts.

Similar recursion was proposed for one-unit FastICA in the complex domain
[1]. The symmetric (real or complex) variant performs the one-unit iterations in
parallel for all d separating vectors, but the normalization in (4) is replaced by
a syminetric orthogonalization.

The algorithm EFICA [8] combines the symmetric approach with the test of
saddle points, an adaptive choice of nonlinearity gx(-) for each signal separately,
and it does the refinement step that relaxes the orthogonal constraint introduced
by the symmetric approach and is designed towards asymptotic efficiency.

The unbiased FastICA [6] uses the recursion

wi  E[Zg(wi™ Z)] — (1+ Z)wi™ E[g/(wi™ 7)),

where 3 = (C — 2)~1/25(C — 2)~/2. Both approaches (one-unit and sym-
metric) can be considered; in simulations, we use the one-unit variant, and the
resulting de-mixing matrix will be denoted by WYNB, In order to compare per-
formance of the unbiased FastICA by means of (2) with the other techniques
fairly, it is necessary to consider a MMSE estimate derived from WYNB namely

WMMSE—UNB _ E—I(WUNB)—T % [(WUNB)—IE—I(WUNB)—T .8 0.21]—1 (5)

2.1 Proposed Algorithm

The proposed algorithm is a combination of symmetric FastICA, test of saddle
points, and one-unit FastICA as a refinement. Usually, one unit FastICA is used in
a deflation way, when the estimated components are subtracted from the mixture
one by one. This is computationally effective method, but accuracy of the later
separated components might be compromised. Therefore, we propose to initialize
the algorithm using symmetric FastICA, that is known for having very good global
convergence and allows equal separation precision for all components.

The test of saddle points was first proposed in [11] to improve probability
of the symmetric FastICA to converge to the true global maximum of the cost
function [E{G(w”Z)} — Go]?> where G(-). is a primitive function of g(-) and
Go = E{G(&)}, where £ is a standard Gaussian random variable.

In short, the test of saddle points consists in checking all pairs of the estimated
components (uy, uy), whether or not other pair of signals (u}, u}) gives a higher
value of the cost function

c(uk, ue) = [E{G(uk)} — Go]* + [E{G(w)} — Go]*, (6)
where uf, = (uy + uy)/v/2 and v} = (ux — uy)/v2.
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The motivation is that a random initialization of the algorithm may begin
at a point of zero gradient of the cost function (a saddle point / an unstable
point of the iteration) and terminate there, despite being not the desired stable
solution. See [11] for details.

In the complex domain, the situation is a bit more tricky, because if (uy, uy) is
the pair of valid independent components in the mixture, not only their weighted
sum and a difference represent a false (unstable) point of the iteration. All pairs
(u},u}) of the form u} = (up + e “uy)/v2 and u), = (uy — e**uy)/v/2 are
stationary but unstable for any phase factor e, a € R.

Therefore we propose to do a phase shift of each separated component so
that the real part and the imaginary part of the signal are as much independent
each of other as possible before the test of the saddle points. This phase shift
can be easily performed using a two-dimensional symmetric FastICA in the real
domain applied to the real and imaginary part of the component. After this
preprocessing, it is sufficient to perform the test of saddle points exactly as in
the real-valued case, i.e. to check all pairs (u},, u)) with u} = (ux +u)/v2 and
u, = (u — ug)/V2, whether they give a higher value of the cost function (6)
or not.

Validity of the above described complex domain test of the saddle points
can be easily confirmed in simulations by starting the algorithm from the pairs
u, = (0 +euy)/v2 and v, = (g — e*“uy)/+/2 with an arbitrary o € R
where u; and uy are the true independent sources. We have successfully tested
this approach on separation of complex-valued finite alphabet sources known in
communications (QAM, V27).

The resultant algorithm (symmetric FastICA + test of saddle points + one
unit refinements) will be referred to as 1FICA.

3 Bias of the FastICA Variants

In this section, asymptotic expressions for bias of algorithms described in previ-
ous section working in the real domain will be presented. (The complex-domain
FastICA exhibits a similar behavior in simulations.) For details of analysis, the
reader is referred to [9] due to lack of space.

In brief, the theoretical analysis is done for “small” o and infinite number of
samples. Similarly to [11], for theoretical considerations, it is assumed that the
analyzed method starts from the MMSE solution and stops after one iteration.
This assumption is reasonable due to the following facts: (1) deviation of the
global maximizer W of the FastICA cost function from WMMSE ig of the order
O(0?), and (2) convergence of the algorithm is at least quadratic [10]. Therefore,
after performing the one iteration, the deviation of the estimate from the global
maximizer W is of the order O(c?) and, hence, is negligible.

The bias of the algorithm will be studied in terms of the deviation of
W (WMMSEY=1 141 o diagonal matrix. More precisely, the bias is equal to the
difference between E[W](WMMSE)=1 anq D = WNMMSE[WMMSE| -1 where D
is the diagonal matrix that normalizes the MMSE signals SMMSE — ywMMSEx
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It holds that i
D=I+ éazdiag[Vu, ..., Vaa] + 0(a*). (7)

From here we use the notation W = A=! and V = WW7 Finally, for a matrix
W that separates the data SMMSE the bias is E[W] — D.

3.1 Bias of the One-Unit FastICA and 1FICA

It can be shown that the de-mixing vector wi' resulting from the one-unit

FastICA (applied to the data SMMSE) for N — 400, is proportional to
1 . .
wil = e + §szkk(m + di)ex, + O(c®) (8)

where 7. = E[srg(sk)—¢'(sx)], and &y, is a scalar that depends on the distribution
of s; and on the nonlinear function g and its derivatives to the third order.
Since (8) is a scalar multiple of e (the k-th column of the identity matrix), it
follows that the asymptotic bias of the one-unit approach is O(c*). Prospectively,
the separating matrix W' given by the proposed 1FICA has the same bias.
Simulations confirm this expectation [9].

3.2 Bias of the Inversion Solution

It is interesting to compare the previous result with the solution that is given
by exact inversion of the mixing matrix, i.e. WX =S + ¢ WN; the signals will
be called the inversion solution. From

W(WMMSEY=L — W(AAT + 2 W' =1+ 0%V

it follows that the “bias” of the inversion solution is proportional to o2 and
in general it is greater than that of 1IFICA. In other words, the algorithm
1FICA produces components that are asymptotically closer to the
MMSE solution than to the inversion solution.

3.3 Bias of Algorithms Using the Orthogonal Constraint

Large number of ICA algorithms (e.g. JADE [2], symmetric FastICA, etc.) use
an orthogonal constraint, i.e., they enforce the separated components to have
sample correlations equal to zero. Since the second-order statistics cannot be
estimated perfectly, this constraint compromises the separation quality [3,11].
Here we show that the bias of all ICA algorithms that use the constraint has the
asymptotic order O(o?).

The orthogonality constraint can be written as

EWX(WX)T] = WAAT + 1) WT =1.. (9)
It follows that the bias of all constrained algorithms is lower bounded by

min W (WMMSEY-1 _ D] o = O(02)

= " 10
W(AAT +0?T)WT =1 (10)



Blind Instantaneous Noisy Mixture Separation 735

where the minimization proceeds for W. The matrix D in (10) is the same as in
(7). For the minimizer W of (10) it holds that W(WMMSE)—1 — 14 52T 4 O(53),
where T is a nonzero matrix obeying T' + T'7 = V; see [9] for details. This
result can be interpreted in the way that the algorithms using the orthogonality
constraint may prefer some of the separated components to give them a zero
bias, but the total average bias for all components has the order O(o?).

3.4 Bias of the Symmetric FastICA and EFICA

The biases of the algorithms can be expressed as

— . 1
E[W](W"E) ™ —D = 26°V © (Laxa — I+ H) + O(c”), (11)
where Hy, = %%'r for the symmetric FastICA, and Hy, = ]% for
EFICA, where cpy = If_k%‘;%’? for k # ¢ and ¢, = 1. Here, v = E[g2(sx)] —
f

E*[skgr(sk)], and g is the nonlinear function chosen for the k-th signal.
It can be seen that the bias of both of the algorithms has the order O(o?).

4 Simulations

In this section, we present results of two experiments to demonstrate and com-
pare the performance of the proposed algorithm 1FICA with competing methods:
The symmetric FastICA (marked by SYMM), the unbiased FastICA (unbiased
FICA), EFICA, and JADE [2]. Results given by “oracle” MMSE solution and
the inversion solution are included as well. Examples with complex signals are
not included due to lack of space.

In the first example, we separate 10 randomly mixed [7] BPSK signals with
added Gaussian noise, first, for various length of data NV (Fig. 1(a)) and, second,
for varying input signal-to-noise ratio (SNR) defined as 1/02 (Fig. 1(b)). The
experiment encompasses several extremal conditions: In the first scenario, where
SNR=5dB (0 = 0.56), N goes from 100, which is quite low for the dimension
d = 10. The second situation examines N = 200 and SNR going down to 0dB.

Note that the bias may be less important than the estimation variance when
the data length N is low. Therefore, in simulations, we have included two slightly
changed versions of 1IFICA and EFICA algorithm, denoted by “1FICA-biga” and
“EFICA-biga”, respectively. The modifications consist in that the used nonlinear
function ¢ is equal to the score function of marginal pdfs of the signals to-be
estimated (i.e., noisy BPSK that have bimodal Gaussian distribution, therefore,
“biga” in the acronym). Adopted from the noiseless case [11], better performance
of the modified algorithms may be expected.

Figure 1 shows superior performance of the proposed algorithm 1FICA and of
its modified version. The same performance is achieved by the modified EFICA
for N < 200, but it is lower due to the bias when N is higher. The unbiased
FastICA achieves the same accuracy for N > 500 but is unstable when N is low.
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The average performance of an algorithm is often spoiled due to poorer sta-
bility, which occurs in high dimensions and low N cases, mainly. In this issue, we
highlight positive effect of the test of saddle points that is included in the pro-
posed 1FICA or in EFICA. For instance, the results achieved by the symmetric
FastICA would be significantly improved if the test was included in it.

The second example demonstrates conditions when the covariance of the noise
is not exactly known or varying. To this end, the noise level was changed ran-
domly from trial to trial. Five BPSK signals of the length N = 50000 were
mixed with a random matrix and disturbed by Gaussian noise with covariance
01, where o was randomly taken from interval [0, 1], and then blindly separated.
The mean value of the noise covariance matrix, i.e. I/3, was used as the input
parameter of the unbiased FastICA. Note that INSR and BER of this method
were computed for solutions given by WMMSE-UNB defined in (5).

The following table shows the average INSR and bit error rate (BER) that
were achieved in 1000 trials. The performance of the proposed 1FICA is al-
most the same like that of “oracle” MMSE separator, because, here, N is very
high, and the estimation error is caused by the bias only. The unbiased FastICA
significantly suffers from inaccurate information about the noise intensity.

algorithm average INSR [dB] | BER [%]
1FICA -5,98 3,19
Symmetric FastICA -5,68 3,55
unbiased FastICA 6,79 1)
EFICA -5,79 3,41
MMSE solution -5,98 3,19
inversion solution -4.76 4,71
JADE -5,68 3.55
& ' —— 1FICA-tanh °
v B 1FICA-biga o
20 A SYMM-tanh || i
s ° .4 E:Ei-biga i, R
S oow e MMSE iR T
et 10 % inversion o e
L = v Jade w —— 1FICAtanh
DZ'-\ A o Unbiased FICA o B 1FICA-biga
A =
R s Ew"- x croa
= = EFIGA-bi
E B Eh i"l';., I T N RRTEY RRRRRRLRIERY RECCIIIIIT E """'MMSE_ i \
SR ¥ 10" B Unbiased FICA g3
10° 10* 0 2 4 6 8 10
N SNR [dB]
(a) (b)

Fig. 1. Average BER of 10 separated BPSK signals when (a) SNR is fixed to 5dB
and (b) a fixed number of data samples is N = 200. Averages are taken from 1000
independent trials for each settings.
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5 Conclusions

This paper presents novel results from analysis of bias of several FastICA vari-
ants, whereby the one-unit FastICA was shown to be minimally biased from the
MMSE solution, i.e., it achieves the best interference-plus-noise rejection rate
for N — 4o00.

By virtue of the theoretical results, a new variant of FastICA algorithm, called
1FICA, was derived to have the same global convergence as symmetric FastICA
with the test of saddle points, and a noise rejection like the one-unit FastICA.
Computer simulations show superior performance of the method when separating
binary (BPSK) signals. Unlike the unbiased FastICA, it does not require prior
knowledge of covariance of the noise to achieve the best MMSE separation.The
Matlab codes for 1FICA in real and in complex domains can be downloaded from
the first author’s homepage, http: //itakura.kes.tul.cz/zbynek /downloads.htm.
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1. Introduction

ABSTRACT

We address independent component analysis (ICA) of piecewise stationary and non-
Gaussian signals and propose a novel ICA algorithm called Block EFICA that is based on
this generalized model of signals. The method is a further extension of the popular non-
Gaussianity-based FastICA algorithm and of its recently optimized variant called EFICA.
In contrast to these methods, Block EFICA is developed to effectively exploit varying
distribution of signals, thus, also their varying variance in time (nonstationarity) or,
more precisely, in time-intervals {piecewise stationarity). In theory, the accuracy of the
method asymptotically approaches Cramér-Rao lower bound (CRLB) under common
assumptions when variance of the signals is constant. On the other hand, the
performance is practically close to the CRLB even when variance of the signals is
changing. This is demonstrated by comparing our algorithm with various methods that
are asymptotically efficient within ICA models based either on the non-Gaussianity or
the nonstationarity. The benefit of our algorithm is demonstrated by examples with
real-world audio signals.

© 2009 Elsevier B.V. All rights reserved.

thus, the number of rows of X and S is the same and equal
to d, and the mixing matrix A is a d x d regular matrix.

The instantaneous linear mixture model is the basic
configuration considered in blind source separation (BSS)
[1]. The relation between unobserved original signals and
observed measured signals is here given by equation

X = AS, (1)

where X and S are matrices with N columns, each of which
represents samples of the measured and the original
signals, respectively. We will consider the regular case,
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Estimating the mixing matrix A or equivalently the
original signals S from the data X is the general task of
BSS. To solve this problem, a principle giving some
assumption about the original signals should be intro-
duced. The most popular one is based on the assumption
of their statistical independence, which is used by a
certain class of models that fall within a popular
BSS discipline called independent component analysis
(ICA) [2].

Since Comon's pioneering paper [3], numerous suc-
cessful algorithms have been proposed using basic models
based either on non-Gaussianity [4-6], nonstationarity
[7-9] or spectral diversity (coloration) [10,11] of the
original signals. Later, various improvements of the earlier
methods were developed [12]. The most recent algorithms
provide fast and reliable solutions while attaining the best
possible accuracy fundamentally limited by the respective
Cramér-Rao lower bound (CRLB) [13,15-17].
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While methods assuming non-Gaussianity of signals
require computation of higher-order statistics (HOS), the
methods using nonstationarity or spectral diversity
usually need second-order statistics (SOS) only, which
provides faster implementations usually through joint
approximate diagonalization of a set of matrices; see e.g.,
[14,17-19]. On the other hand, each approach cannot
separate sources if the respective assumptions are not
met, which means certain limitations. For instance, the
nonstationarity-based methods cannot separate signals
having the same dynamics. In this respect, the non-
Gaussianity-based methods are popular thanks to their
widest application area, e.g., in telecommunications,
biomedical signal processing, or speech and audio
processing.

Since real signals may often exhibit both non-
Gaussianity, nonstationarity or temporal structure, there
are attempts to derive methods that combine two or more
models to enhance the application area and to improve
the performance [20,21]. However, the theoretical back-
ground of combined models is much more complex. Most
methods therefore rely on various heuristically chosen
criteria [22-24] or decision-driven combinations of basic
algorithms [20,25], rather than optimizing the perfor-
mance in a straightforward way through the theory.

This paper focuses on the model combining the non-
Gaussianity and the nonstationarity assumptions through
the so-called piecewise stationary model. The optimum
solution of this model was discussed in [26], but few
methods were proposed for finding it. The fully general
framework was considered by Pham [27]. He proposed an
algorithm, from here on named as NSNG, that performs
(quasi)-maximum likelihood estimation (MLE), which
yields excellent performance in theory. However, in our
experimental tests [28], we have observed cases of
instability and misconvergence of NSNG. Specifically, the
algorithm seems to work well in simple scenarios, e.g.,
where “few” signals are separated and their properties
perfectly fit the model. By contrast, the method failed
with nonnegligible probability in more difficult examples
or when separating real-world signals such as EEG data or
real audio mixtures.

To provide a reliable algorithm with lower computa-
tional burden and comparable performance with that of
NSNG, we here introduce a further extension of the very
popular FastICA algorithm [5], which was originally
developed for non-Gaussian signals. The method is called
Block EFICA! as it is an extension of the EFICA algorithm
[16] (a theoretically optimized FastICA variant for non-
Gaussian signals) for piecewise stationary signals.

The paper is organized as follows. The following
section introduces the piecewise stationary model and
basic notations used throughout the paper. Section 3
surveys Cramér-Rao bounds that were derived for several
levels of generalizations of the basic non-Gaussianity-
based ICA model. The proposal of the Block EFICA
algorithm is given in Section 4 after short descriptions of

! The primary version of Block EFICA introduced in [28] was referred
to as Extended EFICA.

its forgoers: FastICA [5] and EFICA [16]. Section 5 provides
performance analysis of behavior of FastICA under the
assumption of piecewise stationary signals, and intro-
duces optimized selection of important parameters of
Block EFICA to achieve the best performance. Finally,
experimental results demonstrating performance of the
Block EFICA in comparison with other methods are
presented by Section 6.

2. Piecewise stationary model

The basic ICA model exploiting non-Gaussianity of the
sources is defined by

X = As, (2)

where s = [sy,....54]" is a vector of independent random
variables (RVs),®> and each of them represents one of the
unknown original signals. In practice, this means that the
data matrices X and S consist of N i.i.d. realizations of x
and s, respectively, whose relation is given through the
transform A. The very assumption of independence of
S1....,54 is used for finding the de-mixing transform A ',
which can be achieved only up to an indeterminable order,
scales, and signs of its rows.

Compared to the basic ICA model (2), the piecewise
stationary model consists in that the samples of the
original signals need not be identically distributed. The
probability density function (pdf) f,(x) of s, thus may be
different at each time instant/interval.

However, to allow practical estimation of signal
statistics on data blocks, we will assume that there are
M blocks of S of the same integer length N/M, where,
within each block, the distribution of the signals is
unchanging. Therefore, we will use the superscript () to
denote quantities, RVs or functions that are related to the
I-th block. For instance, this means that for each block of
data X, say for the I-th block X, it holds X = AS", which
corresponds to N/M i.i.d. realizations according to model

x = As?, (3)

where xP and s are vectors of corresponding RVs.

A particular case of the piecewise stationary model,
which will be called Block Gaussian model [14], is when all
the distributions of all RVs in (3) are Gaussian. This means
that all signals are white and Gaussian within each block,
and the piecewise stationarity consists only in that their
variances vary block-by-block.

3. Cramér-Rao lower bounds for independent
component analysis

We discuss several bounds that limit the accuracy
achievable by blind separation. Such limitation may be
given by the Cramér-Rao lower bound that is related to
the theoretical model of the original signals. In other
words, the bound is different for different models
requiring various assumptions about the original signals,

? For simplicity, all RVs considered in the paper are assumed to have
zero mean and finite variance.
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whereby the separation principles are determined.
Although the bounds presented here may all be derived
as particular cases of the bound given for the most general
piecewise stationary model, for convenience, we start the
description with the basic ICA bound and then generalize
it gradually.

In general, CRLB is defined for an unbiased estimator of
some (multivariate) parameter #, which is being estimated
from a data vector x that has the probability density
fro(x16). CRLB is the lower bound for the covariance matrix
of any unbiased estimator Hof 6, ie.,

covgd = Eg[(@ — 6) — &)]. (4)

If the following Fisher information matrix (FIM) and its
inverse exist

1 fex10) (afxlemm)"“
F=E ; 5
0 [riemﬂ) 20 a0 (5)

under the regularity conditions [29] it holds that

covy 0 =F ' = CRLB[#),

where the matrix inequality means that the matrix
covg  — F ! is positive semidefinite.

In case of the instantaneous linear mixture X = AS, the
parameters intended for the estimation are the elements
of A”'. Let W be an unbiased estimator of A~'. Instead of
considering CRLB of W, it is useful to derive the bound for
the so-called gain matrix G = WA. Without loss of
generality, the indeterminacies of order, signs, and scales
of the original signals can be assumed to be resolved. G
should then be close to the identity, and the variances of
its nondiagonal elements, var[Gy,], k # ¢, reflect mean value
of residual interference between the separated signals
WX. Such a criterion, which is commeonly used in signal
processing, reflects well the accuracy of the estimator W.

The CRLB for the basic ICA model (2) has been well
known since the 1990s [30,31]. We will denote the bound
by CRLB4, and it is given by
CRLB1[Gy] = Nﬁ’ k#t, (6)
where K = E[d/k(x)] with 1, (x) = —f,(%)/f(x) being the
score function of the probability density function f;(x) of
the k-th RV s;,. Here s; is assumed to have unit variance,
thus, note that x’s are defined for unit-variance score
functions.

The bound for the piecewise stationary model (3) with
constant (unit) variance signals, denoted by CRLB,, is
given by [28]

CRLB[Gee] = - —¢ ky2e, (7)
Nir,—1°
where 7, € (1/M> M k.

Now we introduce the most general bound, i.e., for the
piecewise stationary model (3) where the varlance of
the signals is not assumed to be constant. Let cr " be the
variance of s\, k = I i =005 M, but 1’ is still
defined for pclff (-) normalized so as to correspond to RV
normalized to unit variance. Then, the bound could be

U‘l

written in the form

- ] Bk{
CRLB3[Gy,] = NAB, T k¢, (8)
where

O_z{'ﬂ
Ape = MZ zm k ! (9)

1 2”]
{i}

Bkt’ - M 2”‘. (10)

This result was previously derived, e.g., in [26]. In
Appendix A, we provide a simple derivation of the bound
using the derivation of FIM from [32].

For the sake of completeness, we introduce the CRLB
for the Block Gaussian model, i.e., when all distributions
of signals are Gaussian. The bound easily follows from (8)
by taking K‘}:) =1 in (9) and (10). We will denote this
bound by CRLB,.

4. Block EFICA algorithm

We here describe our novel algorithm that is an
extension of its previous variants FastICA and EFICA. First,
the underlying methods are reminded in short as they
were proposed for solving the model (2). Second, the
building block of the proposed algorithm is given, which is
a straightforward extension of the one-unit FastICA
algorithm to the piecewise stationary signals. Finally, we
introduce the proposed algorithm.

4.1. FastlCA and EFICA algorithms

The FastICA algorithm [5] was originally derived as a
method for solving the basic ICA problem (2). It is based
on optimization of a contrast function

c(wy) = E[G(w]z)], (11)

subject to the vector w}:, whose optimum value is
the k-th row of de-mixing transform. The function G(),
which applies elementwise, is a properly chosen non-
linear function whose derivative will be denoted by g(-).
The vector z is derived by transforming signals x
so that the components of z are not correlated and
have unit variance. After this preprocessing, which is
commonly referred to as sphering, it holds that
E[zz'] =1
The optimization of c(wy) is based on the iteration

w, <« E[zg(w]z)] — w E[g'(W]2Z)]. (12)

In practice, i.e, when working with a finite number
of signal samples, the theoretical expectations are re-
placed by respective sample means, thus the resulting
de-mixing vectors/matrices are respective estimates
thereof.

The original FastlCA was developed in two basic
versions: the one-unit and the symmetric one. While
the one-unit FastICA completes each iteration by normal-
izing the vector w;, the symmetric FastiCA com-
putes d iterations (12) in parallel and does a symmetric
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orthogonalization® of [wy, ..., w/]" to yield all rows of the
de-mixing matrix, whose practical estimate will be
denoted by W.

The theoretical (asymptotic) performance [32] of the
one-unit FastICA is characterized by

var[GY] ~ —ng, k¢, (13)

where G'Y = WA is the gain matrix, each of its rows
corresponds to the estimation of one de-mixing vector,
and V) = y,/77 with

1y = ElSeg(s0). 7 = P — 13
Ve =E[g'(s)], Tk = Vi — Uy
B = Elg¥(sp)l. (14)

In case that the expectations do not exist it may signify
either bad choice of the function G(.) or zero leading term
in the asymptotic expansion of the variance (13). It is a
well-known feature in ICA that the optimum choice of G(.)
comes up to g(-) being the score function of s, ()
[13,31].

Among other things, this knowledge is taken into
account by the recently published EFICA algorithm [16],
which is designed to attain the best possible performance
limited by (6). The method proceeds in three steps: (1) it
preestimates all the original signals by means of the
symmetric FastICA with the test of saddle points [32], (
for each lo="Tooy d, it adaptively chooses a nonlmearlty
g g that approximates the score function y,(-), and (3)
it does fine-tunings and a refinement.

The fine-tunings consist in further one-unit FastICA
iterations for each signal separately, using the nonlinea-
rities found in step 2. The resulting de-mixing vectors
from the fine-tunings wy,..., w; are then optimally
combined by the refinement.

The refinement utilizes optimum weights computed
according to

Vie
. ke,
=4 V941 (15)
1, k=¢

We remark that we use slightly different definition of the
weights from that in [16] since it is handier for forth-
coming description of the Block EFICA. The modification
simply consists in normalizing the vectors wi,... w},
which was not done in [16]; see [33] for details. The
weights are used to form matrix

Wi = [caw /W Il,..... cawg /Wy [IT"- (16)
The k-th row of symmetrlcally orthogonalized version of
W/, ie., of (W; W} )‘“2W+, yields the final estimate of
wy. This is done for each k=1.,..., d separately, which
relaxes the orthogonality constraint [31] introduced by
the symmetric FastlCA.

? We use the well-established term “symmetric orthogonalization”
although “symmetric orthonormalization” would be more accurate.

The asymptotic performance of EFICA is given by

Pl L1y
var[GE'] ~ ——,
(Gl ~ Ny +viia1
The particular case when g;, = i, reveals superior prop-
erty of EFICA. It holds, then, that f, = vy =y, i, = 1, and
ViY = 1/(x, — 1). Substituting this into (17) gives

k£t (17)

1 Ky
Nf LKy — 1’
Compared to the CRLB; given by (6), the asymptotic

efficiency of EFICA in the framework of the basic ICA
model (2) follows.

va r[G k#¢.

4.2. One-unit FastICA for piecewise stationary signals

To take into account the piecewise stationary model,
we introduce a new definition of the contrast function
(11), which is

c(wy) = AL EIGWEZD) + -+ APEIGH (wlz),
(18)

where G",...,GM are properly chosen nonlinear func-
tions, and 2\",..., A denote some weights.

It should be noted that this contrast cannot be viewed
as the contrast (11) with G(.) being a linear combination of
G",....G™, because each expectation in (18) depends on
different distributions from corresponding block of the
signals. Also, an important fact is that each term in (18) is
a valid contrast function itself. Since the mixing matrix is
the same in all blocks, (18) is a valid contrast function as
well. In other words, all the contrasts represented by the
terms in (18) have the same optimum points.

One-unit FastICA using the contrast function (18), from
here on referred to as block one-unit FastICA, works in the
way that it applies a different nonlinearity g(-) on each
block of signals. Thus, the iteration (12) changes to

AR A“‘(E[z“) g wiz) - wiElgy” wiz)
o 2 (B g (wiz ™))
—mmWMWWD (19)

and the expectations are replaced by sample means in
practice.

As can be seen, the original one-unit FastICA is, when
setting /1y’ =1/M and g’ =g, for all I=1,....M, a
particular case of the block version introduced here.
Theoretical conclusions derived later in this paper, there-
fore, yield an insight into the behavior of the original
FastICA (and also of other variants of FastICA) when
distributions of signals are different from one block to the
other.

4.3. Proposed Block EFICA algorithm

The Block EFICA algorithm takes into account the
piecewise stationarity of signals. The approach consists of
the following three steps that are similar to those in the
original EFICA up to the difference that consists in linking
the choice of nonlinearities with the fine-tuning into a
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common step due to higher precision. Also a different
approach for the choice of nonlinear functions is used,
because variance of signals in blocks need not be equal to
one as assumed by the approach used in EFICA.

BEF1 Separation by the symmetric FastlCA with the test of
saddle points in order to obtain a preestimate of the
de-mixing matrix W. -

BEF2 Fine-tuning of each row of W by means of the
block one-unit FastICA (Section 4.2). The weights
and the nonlinearities in (19) are simultaneously
updated as described below. The simplified version
of the algorithm, called Uniform Block EFICA,
selects all the weights equal to an arbitrary nonzero
value.

BEF3 The refinement to get the most accurate and final
estimate of the whole de-mixing matrix.

A simplified illustration of the flow of Block EFICA is
shown in Fig. 1. In the following, we provide more details
on the steps of the algorithm.

The pre-estimation of the whole de-mixing matrix in
BEF1 could be done by any ICA method, which opens up
possible variations of the Block EFICA. Nevertheless, our
selection, the symmetric FastICA with the test of saddle
points, proves being suitable for wide variety of scenarios
[16]. The method allows fast and reliable separation of
non-Gaussian signals. Moreover, in practice it generally
allows significant separation of piecewise stationary
signals as well, which follows from the fact that the
symmetric FastICA is a special variant of the block one-
unit FastlCA introduced in the previous subsection.
However, it has limited accuracy due to the nonoptimal
choice of the nonlinearity that is fixed for all signals and
blocks, and also due to the orthogonality constraint [31]
introduced by the symmetric orthogonalization. There-
fore, it is a suitable initialization for the fine-tuning done
by step BEF2.

In the fine-tunings (BEF2), the estimation of the k-th
signal, k = 1,...,d, is improved by starting the block one-
unit FastICA using appropriately chosen functions g}{”(‘)

and the weights A", 1=1,..., M. Since the best choice of
1

tion by Pham’s estimator from [13]. The details are given
below in the extra subsection.

The choice of the weights 2{ has an influence on the
performance of fine-tunings as well. Since it should be
analyzed first, the choice is given afterwards in Section 5
by the expression (27). In that section, we also justify the
introduction of the Uniform Block EFICA algorithm, which
sets all the weights to a constant.

Finally, the refinement step is done in the similar way
as in the original EFICA [16]. The fine-tuned and normal-
ized rows of the separating matrix resulting from BEF2,
wWi,..., wy, and the weights ¢;, are used to form matrix

T
W, = [cawi,..., CrdWy] .

Then, the k-th row of the matrix (W, W; )~ 12W; yields
the final estimate of wy,. The difference compared to EFICA
is that the weights ¢, should be computed accordingly.
Namely, (15) is in fact a function of the performance
achieved by the fine-tuning in EFICA, i.e., by that of the
one-unit FastICA given by (13). However, the fine-tuning
in the Block EFICA is done by means of the block one-unit
FastICA algorithm, whose performance is different. The
performance is analyzed in Section 5, where the analytical
expression (28) for the weights follows.

4.4. Parametric estimation of score functions

Parametric estimation of score functions is a well-
established problem in statistical theory [34]. The para-
metric estimator proposed in [13] is suited for the
problems tackled by ICA algorithms. It is defined as the
minimizer of the mean square distance between a score
function y(-) and a linear combination of K basis functions
hy(x),..., hg(x), i.e.,

K 2
e{['_{gk E [(lﬁ(x) - ;6,-!1;(;()) l ) (20)

The merit consists in the fact that E[y(x)h(x)] = E[h'(x)] for
any function h(x). Thanks to this, the minimization is
possible without knowledge of (-) and is fast, because it

g, () is the score function u’/}?(-), we use the approxima- only requires estimation of E[h(x)h;(x)] and E[h;(x)],
BEFI BEF2 BEF3
preestimated
original convergence? B
sources 4
. . block one-unit
—_ ‘l—.“ score function estimator I—D— FastICA iteration i.—. -
signals | Symmetric -
FastICA with block one-unit separated
» = :
the test of » , score function estimator [ o 1o 4 seration (o) i sources
saddle points -

—l—b—l score function estimator |—&

block one-unit 2
FastICA iteration i -
-

Fig. 1. Flow of the Block EFICA algorithm.
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i,j=1,...,K. The minimizer is then given by the solution
of a set of K linear equations.

In our implementation, we have decided for two
(K = 2) basis functions: hy(x) = x3, that is good for sub-
Gaussian sources, and hy(x) = x/(1 + 6|x))> working well
with super-Gaussian sources [37]. This choice turns out to
be appropriate for a wide class of distributions and offers
a good trade-off between accuracy, speed, and flexibility.
For instance, when considering signals with generalized
Gaussian distributions, the estimator (20) with our
settings used within EFICA yields comparable results with
the adaptation originally used thereby [35].

Another advantage of this estimator consists in
computational savings: once the moments E[h;(x)h;(x)]
and Efhj(x)] are estimated, the results can be used where
corresponding moments occur, which is, e.g., in the
iteration (19). The burden due to the solution of
minimizing equations is, for K = 2, negligible, thus, the
main slowing-down compared to the adaptation used in
EFICA consists in that two nonlinear functions h; and h;
must be evaluated.

Here, we should point out that it is relevant to take into
account the identity function f;(x) = x for the third basis
function in (20). Unlike in case of the original FastICA/
EFICA, this is meaningful in Block EFICA, because each
block z» of the sphered data z may not be sphered.
Specifically, when considering g(x) = ox + h(x) in (12) with
an arbitrary o and a nonlinearity h(x), the effect of the
term ox is zeroed no matter how « is chosen since
E[zz"] = L. It is not so in case of the “block-iteration” (19)
due to nonsphered blocks z®.

Inclusion of the identity function into the score
function estimator, in fact, conveys direct utilization of
second-order statistics of signals. The consideration is
worthwhile especially when separating signals with
changing variance. Therefore, we consider this as an
option in the Block EFICA, which is slightly more
computationally expensive.

4.5, Choice of the number of blocks

The correct number of blocks M is usually not known
in practice. The goal is to choose M such that the
distribution of § may be regarded as constant within each
block. On the other hand, M should not be overestimated,
because overparametrization may cause higher estima-
tion error. Luckily, Block EFICA is not highly sensitive to
this parameter, which is demonstrated by results shown
in Fig. 4 in Section 6. It is shown that significant
overestimations of M as well as its underestimations do
not decrease the performance seriously.

Usually, the choice of optimum M is done by taking
into account characteristics of signals to be separated. For
example, when separating speech signals, it is worth to
select M such that the length of blocks corresponds to
20-25 ms where speech is almost stationary.

Blind selection of M may be based on estimation of
residual inter-signal interference (signal-to-interference
ratio—SIR) using analytical expressions (29) where corre-
sponding statistics are estimated from separated signals.

It is thus possible to see the estimated SIR of separated
signals as a function of M. At the beginning, SIR usually
improves with growing M, but for larger M the growth is
slower and slower. We would select M where the increase
of SIR becomes slow; see Fig. 4. A similar approach but
more computationally demanding would be when Block
EFICA was started with different M's taken from a
reasonable range, and the optimum M or its effective
value was selected subject to the resulting estimate of SIR.
Another possible approach for automated choice of M can
be found, e.g., in [36].

5. Performance analysis

In this section, we analyze performance of the
proposed Block EFICA algorithm to reveal influence of its
parameters on accuracy of separation. Optimization of the
theoretical performance subject to the parameters gives
their final definition, which also completes the description
of the algorithm.

The starting point of the analysis is the derivation of
the performance of the block one-unit FastICA, which is
achieved by the fine-tunings in BEF2. We generalize the
analysis of the original one-unit FastiCA from [32] that
considers the basic ICA model (2) to the piecewise
stationary model with M blocks. The analysis yields the
result summarized in the following proposition.

Proposition 1. Fork=1,...,dandI =1, ..., M, assume that

(i) the RVs s}f’ have zero mean and finite variance aﬁm such
that it holds that (unit scale)

1 M 2l
MZO’,( - 1,
=1

(ii) the functions g}{“ are twice continuously differentiable,

(iii) the following expectations exist:

1 = Els0g )

v = Elg )l
B0 = Eigt s (21)

and

(iv) the block one-unit FastICA algorithm is started from the
correct de-mixing matrix and stops after a single
iteration (19).

Then, the normalized gain matrix elements N'/2GE}Y have

asymptotically Gaussian distribution A7(0, VE}”), where

s 5 _
Bre + 03, Ghe — 20kellye

Vie) = (22)
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k= Vi — Hy

=32 P LR

=

= 1 & 20, 520
ke =31 Z K
=
T 195 0 ,m, 20
Vie =737 _ A
M,§
M
b
Tp = foﬁ a,
M=
Oe = Hy + (Ve — Vi) /2. (23)

Proof. See Appendix B.

The practical conclusion of this proposition is that the
variance of the gain matrix elements obtained from the
block one-unit FastICA is approximately

SVES, ke, (24)
Consequently, the aim is to minimize VB”" subject to
free parameters (weights) to achieve the best performance
in practice. Note that M need not be necessarily equal
to a particular value. The proposition is valid if M is such
that distributions of signals are constant within each
block.

As will be shown later, all the expectations (21), and
consequently (23), are important for computing optimum
weights (A's and later the weights for the refinement)
needed to achieve the optimum performance. In practice,
the expectations are estimated from estimated signals
by sample means. Estimation errors are therefore intro-
duced into the weights. Then, the need is that the weights
are not much sensitive to the estimation errors so as not
to worsen the final performance of the algorithm in
practice.

Here we arrive at the problem with the fully general
piecewise stationary model. We have found that the
resulting formulas for the weights (not shown here to
simplify the text) are overparametrized, which causes the
higher sensitivity of the weights to the estimation errors
of (21) and of the variances &7 20 . Therefore, to reduce the
number of parameters, we introduce an important
simplification by assuming the same (unit) variance of
signals in all blocks, i.e.,

var[GE1Y] ~

[0
2 _ 1,

a2 k=T o D=1, M. (25)

Although the assumption restricts our theoretical conclu-
sions to constant-variance signals, we will show by
simulations that the performance of the method is not
depressed in practice when the variance of signals is
changing. The main reason is that the expectations in (21)
depend on the distribution of signals and reﬂect thus the
variance sufficiently, and the parameters 0' ' become
redundant. This is yet more apparent when the identity
function is considered in the score function estimator. The
variances are then involved in the moments (21) because
the functions g have the form g\"(x) = ax + h{(x), where
h‘“(x) is a combination of nonlinearities.

By using the constant-variance assumption, (22)
simplifies to

VRl = Be=Bi k¢, (26)
Tk

where F,(_(LHM)ZJI L (ADy ﬁ‘” Now, we derive the

optimal choice of ,1‘ ), A " by minimizing (26). The

result is described by the followmg proposition.

Proposition 2. For a fixed k < {1,...,d}, minimization of
VEIU given by (26) subject to 13", ..., is achieved for all
t=1,....d, {#k, when

a1 (T}P HE])
)1 T —+AB_ El jz]‘!"“’M' (27)
k kL
M ﬁ}{ﬂ kJ
where
M }.g} .
A = (ZT;)
=1 Fg
and
M (DD
Hy Ty
Bk:z Iy
= Py

Proof. See Appendix C.

After knowing the performance achieved by the fine-
tunings stage BEF2, the final performance of the Block
EFICA is given after the refinement step BEF3. The
refinement, in the original EFICA, utilizes weights cy,
given by (15), which, in fact, are functions of the
performance achieved by the fine-tunings characterized
by Vil. Thanks to this relation, the weights that are
optimal for the Block EFICA are simply given when
inserting VE!Y into (15) instead of V},

Namely, the optimum weights ¢, for the Block EFICA
refinement are given by

VBIU

B k Ea
Ce=14 VBV +1 “ (28)

1, k=¢

Similarly, the performance of the Block EFICA is analogous
to (17), i.e., for G**F being the resulting gain matrix,
B1U(VBlU o 1)

BEF ~

5.1. Optimal performance

Here, we study the special case when the nonlinea-
rities selected by the score function estimator (20) equal
the true score functions, ie., g’ =y, for k=1,....d,
F=T M,

Similarly to the equations above after (17), it holds that
B = v =P, 1 =1, and 1 =9 = k¥ — 1. Next, the
formula for A's (27) simplifies to a constant namely,
A}P =1/M, but we may consider all A's equal to
one, because then f, =7V, =%, and [, = 1. Now, the
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performance (26) becomes equal to

1
V' =7 (30)

Inserting (30) into (29) we get

var[Ger] ~ %ﬂ%% k8. (31)
As compared to the CRLB, given by (7), it follows that the
Block EFICA is asymptotically efficient within the piece-
wise stationary model with constant variance signals.
Although this does not mean the asymptotic efficiency of
Block EFICA for the fully general model, we will show by
simulations that its performance is usually very close to
the CRLB even when variances of signals are not constant.

The uniformity of the weights (27) for the particular
case studied here gives rise to the Uniform Block EFICA, as
defined in Section 4.3, because d - M parameters 4’ need
not be estimated when g}:)(!) are assumed to be the score
functions. This means further reduction of parameters,
which may be useful, for instance, when the number of
blocks M is unknown and may be overestimated.

6. Experimental results

We have done several experiments simulating various
scenarios to demonstrate good performance and versati-
lity of the proposed Block EFICA algorithm [45]. In
comparisons, we select algorithms that are supposed to
be the most competitive for a given scenario. Thus, the
original symmetric FastICA algorithm [5] with the non-
linearity g(-) = tanh(:) and the original EFICA algorithm
[16,37] are considered as competitive methods within
non-Gaussianity-based approaches. In several examples,
we also consider the BGL algorithm from [14] that is
designed for Gaussian nonstationary signals.

The NSNG algorithm [27] stands for a method belong-
ing to the same class of algorithms as Block EFICA. As
stated in Section 1, the method performs well in simple
examples with “few” signals, but it is considerably
unstable in more realistic scenarios. Therefore, we show
its performance only in cases where the method yields
meaningful results (Figs. 2 and 6).

A common criterion used in experiments is the
interference-to-signal ratio (ISR), for the k-th separated
signal defined as

d 2
Z£=1.£#k ka’
2

ISR, =
Gik

' (32)

where G=WA is the gain matrix computed as the
product of the separation matrix W obtained by an
algorithm and the known mixing matrix A. Prior to the
computation, the rows of G are permuted to avoid the
indeterminacy of their original order. Such permutation is
naturally chosen to yield the best value of the criterion.

For each experiment, we show the average computa-
tional loads of methods in legends of the corresponding
figures. All simulations were running in Matlab™ on a PC
with 3 GHz processor and 2 GB of RAM.
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Fig. 2. Mean interference-to-signal ratio of separated signals in the first
experiment computed over 100 Monte Carlo trials. Note that CRLB is not
defined here, because, in the mixture of 20 signals, some of them are
distributed according to RVs with generalized Gaussian distribution with
%=0.5, which have x = +o0; see e.g., Appendix B in [16].

6.1. Validation of the analysis

The examples presented in this subsection aim at
validating theoretical conclusions derived in Section 5 and
at demonstrating the performance of the Block EFICA in
the framework of the piecewise stationary model with
constant-variance signals.

To this end, we compare the proposed Block EFICA with
the original EFICA algorithm, which performs efficiently
when working with signals with generalized Gaussian
distributions [16] with parameter o, GGD(u), obeying the
basic ICA model (2). However, in the experiments
presented here we consider signals with varying distribu-
tion from one block to the other. Then, the behavior of
EFICA is explained by the analysis of Block EFICA: using
the same nonlinear functions in all blocks, the functions
cannot match the varying score functions nor the weight
for fine-tunings and refinements, thus, the performance of
EFICA is suboptimal. The same holds for the other FastICA
variants.

In the first example, we separate 20 artificial signals of
length N = 10? mixed by a random matrix. Each signal
consists of four blocks of the same length N/4. The first
and the third blocks have Gaussian distribution, which is
equivalent with GGD(2), and the second and the fourth
blocks have the distribution GGD(x). The parameter « is
fixed for each of 20 signals, where its values are uniformly
chosen from [0.1, 10]. The variance of all the distributions
is one, thus, the signals have constant variance.

Theoretical performance, marked in figures by “theo-
ry” in the legend, was estimated from separated signals
using (26) and (29). Results of this experiment corroborate
validity of the analysis due to proximity of the theoretical
results with the empirical ones. They also demonstrate the
improved performance of the proposed method compared
to EFICA thanks to considering different distributions on
the four blocks of signals. We do not demonstrate the
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Fig. 3. Mean interference-to-signal ratio of 10 signals of length N = 10*
averaged over 1000 Monte Carlo trials. The first k - N/10 samples of the
k-th signal are uniformly distributed, and the remainder is Gaussian.

performance of the NSNG algorithm here, because its
original implementation? is designed for sub-Gaussian
signals only, and the method fails to converge in this
experiment.

To test a scenario with sub-Gaussian signals, we show
in Fig. 3 the performance achieved by separation of 10
signals composed of M = 10 blocks. The k-th signal,
k=1,...,10, is uniformly distributed (with variance
one) in the first k blocks and Gaussian elsewhere.

Similarly to the previous experiment, this example
demonstrates the strongest point of the Block EFICA,
which consists in its ability to adapt to varying signal
distribution. The same performance was achieved by the
NSNG algorithm, and it performed yet better when
smaller length of data was considered, which is likely
thanks to lower number of parameters compared to Block
EFICA. However, also in this scenario, NSNG failed to
converge in a few trials. To allow presentation of its
performance, the trials where the divergence occurred
had to be skipped.

Fig. 4 shows the overall performance averaged over all
sources when changing the input parameter M in Block
EFICA from 1 to 40. Although performance is optimum for
the correct value of M = 10, the deterioration of the
performance due to overestimation or underestimation of
M is not high. For M close to 1 the performance of Block
EFICA approaches that of EFICA, which is as expected.
Certain local maxima can be observed for M being
multiple of 10, which is thanks to fitting the boundaries
of blocks exactly to the instants where the distributions of
signals are switched. Nevertheless, the negligible im-
provement demonstrates lower importance of the correct
fitting.

The theoretical performance computed using (29)
monotonically grows with M. It therefore becomes slightly
overoptimistic for higher values of M, because it does not
take the practical effect of overparametrization into
account. Nevertheless, it may be used in order to choose
an effective value of M.

4 The implementation of the NSNG algorithm was obtained from
web-site http:{/www-lmc.imag.fr/SMS/SASI/bliss.html.

34 | correct number of blocks ]

32 ¢

30+

28 | % 1
H ¥r Block EFICA
26 F% e Block EFICA —theory

(mean ISR)™! [dB]

24 L ]

22 t+ 1

20 4

13T : : : : : : :

5 10 15 20 25 30 35 40
number of blocks

Fig. 4. Average interference-to-signal ratio of 10 sub-Gaussian signals
achieved by Block EFICA when changing the number of blocks M
considered by the algorithm.

6.2. Signals with changing variance

Since the proposed Block EFICA exploits the piecewise
stationary modelling concept, we test its ability to
separate nonstationary signals with varying variance. For
that purpose, we design a simple experiment where a
signal having variable variance is separated from another
signal that is stationary. The first (nonstationary) signal
has variances, respectively, equal to 1, ¢, and ¢2 in the
three consecutive blocks of the same length, and the
second signal is Gaussian having the constant variance
equal to one. An example of the signals for a particular
value of the parameter g, which is considered on interval
(0, 1], is shown in Fig. 5.

We consider two situations that differ in selected
distribution of the first nonstationary signal. In the first
setup, the distribution is Gaussian in all blocks. Then, for ¢
close to one, where the two signals are almost stationary,
the mixture cannot be separated due to Gaussianity of the
signals. In the second setup, the distribution is Laplacian,
which makes the mixture separable even for ¢ close to
one. The signals can be separated for both cases when ¢ is
close to zero. Then, the first signal is strongly nonsta-
tionary and has a different variance-envelope than the
second signal, which is the general requirement of the BGL
algorithm. Fig. 6 shows results obtained for both settings
of the experiment.

The first scenario with Gaussian signals fits the Block
Gaussian model. In such a case, the theoretical perfor-
mance of the BGL algorithm attains corresponding
Cramér-Rao bound, here, given by CRLB; = CRLB,. There-
fore, its performance should be optimal, which is
confirmed by the results shown by Figs. 6(a) and (b).
Similar performance was achieved by the NSNG algorithm
without yielding any instability, which reveals its ex-
cellent ability to utilize the nonstationarity of signals in
simple examples such as the two-dimensional one
considered here.

The proposed Block EFICA algorithm achieves compar-
able results up to ¢ € [0.7,1], where the Gaussian signals



Z. Koldovsky et al. / Signal Processing 89 (2009) 2570-2584 2579
signal #1
5 T T T T
0 a . e
_5 1 1 1 1
0 2000 4000 6000 8000 10000
signal #2
5 | T T T
0
_5 1 1 1 1
0 2000 4000 6000 8000 10000
N

Fig. 5. Illustration of the Gaussian signals of length N = 10* when the parameter ¢ that controls the nonstationarity of the first signal equals 0.1.

are almost stationary, which makes them hardly distin-
guishable for non-Gaussianity-based methods. Hence, the
breakdown of the performance is caused by failures of the
initialization provided by the symmetric FastlCA in
the first step BEF1. In our experiments not shown here
due to space, we observed that if “good” initialization is
guaranteed, the final performance of Block EFICA is
comparable with that of the BGL algorithm. Therefore,
Block EFICA may be initialized by another method that
performs well in this particular case. Nevertheless, our
selection, the symmetric FastICA with the test of saddle
points, appears to be suitable for most applications as
discussed in Section 4.3.

The plots marked by “Block EFICA (identity)” demon-
strate further improvement of Block EFICA done via
involving the identity function in the score function
estimator (see Section 4.4). The better performance shows
that the option allows a more effective exploitation of
nonstationarity of signals.

The second scenario simulates the case when the
original signals exhibit both the non-Gaussianity and the
nonstationarity since the distribution of the first signal is
Laplacian. Here, the Block EFICA yields performance that is
superior to the other methods. The BGL algorithm suffers
from stationarity of the signals as & is approaching one.
Conversely, the original EFICA does not utilize effectively
their nonstationarity for ¢ close to zero. The implementa-
tion of the NSNG algorithm lacks the ability to accurately
estimate the score function of the Laplacian distribution.
It has significantly lower performance than EFICA and
Block EFICA, nevertheless, its ability to profit both from
nonstationarity and non-Gaussianity is confirmed.

6.3. Separation of noisy instantaneous mixtures of
speech signals

In this example, we compare performances of algo-
rithms in a noisy scenario. Fig. 7 shows results of

separation of 10 speech signals randomly selected from
a database, each of length 5000 samples. The signals were
mixed by a random matrix, Gaussian noise was added to
each mixed channel with the variance corresponding to a
given signal-to-noise ratio (input SNR), and the mixture
was separated and evaluated in terms of signal-to-
interference-plus-noise ratio (SINR). The experiment was
designed according to the rules proposed in [39].

Since speech signals often exhibit, beside nonstatio-
narity and non-Gaussianity also spectral diversity, we
compare the performance of Block EFICA with the
SOBI-RO algorithm from [40] that utilizes the spectral
diversity, and ThinICA [11] using also their non-Gaussian-
ity. As can be seen from the results, Block EFICA is not
sensitive to the additive noise as inherited from EFICA and
FastICA. The achieved SINR decreases smoothly with input
SNR. In our example, Block EFICA outperforms the
compared algorithms; however, note that the perfor-
mance strongly depends on properties of the to-be-
separated signals.

6.4. Separation of natural convolutive mixture of
speech signals

To demonstrate strengths of Block EFICA on real-world
data, we present an example where a convolutive mixture
of two speech signals recorded by two microphones is
separated. The mixture is separated using the procedure
from [38] as follows.” The first and the most important
stage relies on an ICA decomposition of a subspace
spanned by delayed signals from microphones, i.e.,

x(m,xyn—=1),....xy(n=L+1),

Xa(n),xa(n—1),...,x9(n—L+ 1), (33)

® The method from [38] is available at http:/fitakura.ite.tul.cz/
zbynelk/tddeconv.htm.
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Fig. 7. Results of separation of noisy mixtures of speech signals averaged
over 100 independent trials.

where L is the length of separating filters. Note that this
way the convolutive mixture problem is transformed into
an instantaneous one, thus, we can apply any ICA
algorithm that is originally designed for instantaneous
mixtures (including Block EFICA). The algorithm thus
yields independent components of the subspace (33) that,
in fact, correspond to outputs of d-L multiple-input
single-output filters of length L. The key objective is that
each independent component should contain a contribu-
tion of one original source only, which is, in an ideal case,
a filtered copy of the source [41-43].

The procedure from [38] continues by grouping the
components into clusters that correspond to the same
original source. Finally, the clusters (the components in
the clusters) are used to reconstruct the original sources;
see [38] for further details. Anyway, the idea of this
experiment comes from the fact that the final results of
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a Mixed signals

b Separated signals by using the BGL algorithm

C  Separated signals by using the Block EFICA algorithm

Fig. 8. Results of separation of real-world convolutive mixture of two
speech signals recorded by two microphones. Respective ICA methods
were applied to the subspace generated by selected data segment of
6000 samples. The segment is delimited by vertical lines in the graphs.
(a) Mixed signals. (b) Separated signals by using the BGL algorithm. (c)
Separated signals by using Block EFICA algorithm.

the separation provide a benchmark for testing ability of
different ICA methods for instantaneous mixtures to
separate convolutive audio mixtures, ie., to yield such
independent components that correspond to particular
original sources.

Fig. 8(a) shows Lee’s data® containing real recordings of
two speakers (played over loudspeakers) simultaneously
saying the digits from one to 10 in English and in Spanish,
respectively. The loudspeakers were placed closely to the
microphones (60 cm), so direct-path signals and possibly
early reflections from the closest objects are much
stronger than the other reverberations in the recorded

S Lee's data are available online at http:/jwww.cnl.salk.edu/~tewon/
Blind/blind_audio.html.

convolutive mixture. Hence, very short separating filters
applied through [38] (of the length L) may separate these
signals efficiently.

Since the rhythms of the speech signals are similar and
synchronized, there occur many short segments (say of
length 6000 samples—the sampling frequency is 16 kHz)
where the dynamics of the speech signals are very close.
Owing to possible changing mixing conditions (e.g.,
moving sources), the aim is to separate as short segments
of signals as possible. However, the similar dynamics of
sources in short segments cause malfunctioning of
nonstationarity-based methods. From this point of view,
the methods that use not only the nonstationarity but also
the non-Gaussianity of speech are more flexible, because
they do not fail in such situations.

To demonstrate this, Figs. 8(b) and (c) show results of
separation with L=20 via BGL’ and Block EFICA,
respectively, when only using a short segment of data
for the mixture identification (learning data). Then, the
resulting separating filters are applied to the whole
signals. Since the mixture is here stationary (the loud-
speakers and microphones remain in their positions
during the whole recording), the separated signals reveal
ability of the ICA methods to separate them using data
from the given data segment only.

Since the dynamics of signals are too similar in the
chosen segment, the nonstationarity-based BGL algorithm
yields poorly separated components of (33), so that
average SIR of the finally separated sources is 3.3dB}2
while the original SIR of the mixed signals is 3.4dB. By
contrast, the Block EFICA algorithm succeeded to separate
the signals yielding average SIR of 12.2dB, which means
“good” result in this convolutive audio source separation
task.

7. Conclusions

We have proposed the Block EFICA algorithm that
effectively exploits both the non-Gaussianity and the
nonstationarity of original signals to separate them. The
method efficiently solves the ICA task defined by the
piecewise stationary model. It yields comparable perfor-
mance as methods only intended for marginal cases: the
non-Gaussianity-based model or the Block Gaussian
model. Namely, it has about the same performance as
the EFICA algorithm if the separated signals are stationary
and non-Gaussian. In case of Gaussian piecewise station-
ary signals, Block EFICA is not claimed to be optimum in
theory, but in our simulations we have shown that its
performance may be close to that of the BGL algorithm
that performs optimally in this case.

In so doing, Block EFICA performs best in case
of compound scenarios involving non-Gaussian and

7 In fact, the method from [38)] utilizes a fast variant of BGL named
BG_WEDGE. The algorithm is based on a fast joint diagonalization
algorithm with adaptive weights proposed in [17].

% The signal-to-interference ratio was evaluated by means of the
BSS_EVAL toolbox from [46] that uses projections of signals to avoid
indeterminacies due to arbitrary filtering of separated signals. Lee's
separated signals were used as the reference “correct” signals.
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nonstationary signals. The considered number of blocks M
need not be precisely determined, as the method is not
highly sensitive to it. Moreover, it yields equivalent
performance with that of EFICA when M is equal to one.
Finally, Block EFICA provides an appealing alternative to
the theoretically optimum NSNG algorithm in terms of
better stability and lower computational complexity,
especially, when applied to high-dimensional data and,
therefore, may be successfully applied to real-world BSS
problems.
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Appendix A. Derivation of CRLB;

In this appendix, we provide a simple derivation of
CRLBs based on results from [32] and the corrections [44].

We start from Eq. (36) of [32] that, for N = 1, gives the
mn-th element of the Fisher information matrix® of an
independent observation of (2)

(FDmn = Ojubui + 0ji0u0ui(1; — Ki — 2) + diudyjkci, (34)

where m=(i—Td+j and n=(u-hd+v with
PR AL T =" s d, n;= E[s%n{;?(s.-)]. and §; is Kronecker’s
delta. This result can be easily extended for signals with
general variance o7 = E[s?] ([32, p. 1201], the first column,
the fourth line of the second item in the enumeration),
which gives

G2 o G2

Fi)n = t(511!:‘(511: +01151'u0w (?’,l', _ Ki 2) +0iuouj_;?ci'

o7 Gj

(35)

where x; and #; are defined for normalized pdfs of the
sources in order to be scale-invariant.

Now it follows that the FIM of an observation
from the I-th block of the piecewise stationary
model (3) should have the block-dependent quantities
labelled by the superscript (I), and the FIM of
all N independent observations has the mn-th element
equal to

o X 1 M 0_2{1} i@
F)mn =N [qu Oyi + 0jiOpu tsw'm 2. (?L = OT}}}K; = 2)

1 62”)
M 2(“

+oiudvitr (36)

The structure of the FIM (36) is the same as in case of the
basic ICA model (2), i.e., it can be written in a form F; =
P+ X with P being a special permutation matrix and X

2 In the corrections [44], it is shown that the first term in (36) of [32]
should be removed. This means that, for N = 1, the relation is correct.

being diagonal
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(37)

Therefore, the inversion of Fi can be derived using
Appendix D of [32]; see the simplification due to the
corrections. Using appropriate substitutions according to
(90) in [32], the resulting CRLB; given by (8) readily
follows.

Appendix B. Proof of Proposition 1

We will follow the easiest way by generalizing proof of
analogous proposition in [32] (see the Appendix A there-
from). Similar notations will be used, namely, s, will be
N x 1 vector of samples of the k-th original signal, i.e., the
k-th row of S, with the difference that the I-th block of
N/M samples is distributed according to RVs’) Owing to
the indeterminacy of scale of original sugnals the
variances of s}f’ can be assumed to be such that s; has
unit scale (assumption (i) of the proposition).

Next, the vector u, contains normalized elements of s;,
so that u; has the second-order sample-moment exactly
equal to one. The vectors z; and x;, denote samples of the
respective signals. The nonlinearity g(-) used for the k-th
signal will be distinguished by the subscript k, i.e., g.(-). It
applies to the vectors elementwise, so that function
2 g"() applies to the I-th block of N/M elements.

Now using the third assumption of Proposition 1 given
by (21), Egs. (40) and (41) from [32] change, respectively,
to

el N—r + B
N'sTg (i) — i (38)
Ngl sty —57 . (39)

Note that v denotes the same expectations that are in [32]
denoted by p. 1y stands for N x 1 vector of ones.

Using this, all Eqgs. (42)-(64) in [32] change according
to the substitutions

M < T (40)

pk - ?k' (41)

The only exceptions are Eqgs. (42), (45), and (62), which
should be revised due to different variance in blocks, and
it gives, respectively,

N-'g, T (s)(s0 © 80) =" Vi, (42)
g ©ug) = Nvi, + 0,(N), (43)
El(giu,)*] = N, (44)

where g, is the simplified notation of g,(u;). Recomputa-
tion of (65), (71), and (75) in [32] using the above
substitutions readily yields the result of the proposition
given by (22).
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Appendix C. Proof of Proposition 2

The criterion (26) can be written in the form

T
o w

with

b= s 20N (46)

; 1

Iy = cllag[ﬁ}c”, ces kM}] M mkmzr (47)

my = [, ..., T, (48)

by =m0, (49)

7D =y D g (50)

The goal is to minimize (45) subject to elements of [,
which is equivalent with maximizing

letetil
maxw_
g ukrkl]k

Let y;, = I',"*l, where the matrix I';’? obeying I',°I'}/* =
I, exists thanks to positive semidefiniteness of T’y
(VPIY denotes variance, which must be always nonnega-
tive). Since (45) is invariant subject to nonzero multiple of
I, we can introduce a constraint ||| = const., and (51)
can be written in the form of classical eigenvalue problem

(51)

max yﬁr;?lfzﬁkﬁ{rimm_
Ivel=1 A

The rank of the matrix I','?1 11, '/* is one, thus, the
eigenvector corresponding to the only nonzero eigenvalue,
i.e, the solution of (52), is v, = I', *1;. Hence, [, that
minimizes (45) is

(52)

=Tk (53)

Using the matrix inversion lemma for computation of I‘,;l,
(27) follows.
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Abstract—Blind inversion of a linear and instantaneous mixture
of source signals is a problem often encountered in many signal
processing applications. Efficient fastICA (EFICA) offers an
asymptotically optimal solution to this problem when all of the
sources ohey a generalized Gaussian distribution, at most one of
them is Gaussian, and each is independent and identically dis-
tributed (i.i.d.) in time. Likewise, weighis-adjusted second-order
blind identification (WASOBI) is asympiotically optimal when all
the sources are Gaussian and can be modeled as autoregressive
(AR) processes with distinct spectra. Nevertheless, real-life mix-
tures are likely to contain both Ganssian AR and non-Gavssian
iii.d. sources, rendering WASOBI and EFICA severely subop-
timal. In this paper, we propose a novel scheme for combining the
strengths of EFICA and WASOBI in order to deal with such hy-
brid mixtures. Simulations show that our approach outperforms
competing algorithms designed for separating similar mixtures.

Index Terms—Blind source separation, independent component
analysis (ICA).

I. INTRODUCTION

N THIS PAPER, we address the classical real-valued square
{invertible) instantaneous linear independent components
analysis (ICA) model x = As, where s,x € R**" contain
the d unknown independent source signals and their observed
mixtures (respectively), each of length N, and A € R*** is
the unknown mixing matrix.
The goal is to estimate the mixing matrix A or, equivalently,
the demixing matrix W £ ALy, equivalently, the original
source signals 5. We employ an assumption of zero-mean unit
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variance sources, and we assume for simplicity of the exposition
that the remaining permutation ambiguity can be arbitrated (¢.g.,
using the reordering method proposed in [25], which is also used
in our simulations),

At least three classes of source models have been considered
in the literature (see, e.g., [5]) with associated separation ap-
proaches based on either “non-Gaussianity,” “nonwhiteness,”
or “nonstationarity” of the source signals.! For each of these
models, there exist algorithms which are asymptotically op-
timal (in some sense, to be discussed in Section III} under the
following conditions; 1) efticient fastICA (EFICA, [18]) for
independent white generalized-Gaussian-distributed sources, 2)
weights-adjusted second-order blind identification (WASOBI,
[33). [9], [28]) for wide sense stationary (WSS) parametric
Gaussian sources with spectral diversity, and 3) block Gaussian
likelihood (BGL, [22]) for Gaussian sources with tinte-varving
variances. Note that EFICA is a recently developed moditi-
cation of the popular fastICA [13]. A speed enhancement of
fastICA/EFICA using rational nonlinear functions (used in this
paper) was proposed in [30]. The WASOBI is an enhanced ver-
sion of the popular algorithm second-order blind identification
{SOBI) [2].

Often in cases of real-data processing, no single model of
these three classes offers a correct representation of all sources,
For example, in biomedicine, both non-Gaussianity-based and
spectral diversity-based blind separation methods are currently
studied; see [16] and [27]. Merits in combining these two kinds
of methods were already demonstrated on an example with an
electroencephalography (EEG) data in [12).

The aim of this paper is to develop a method that can ac-
count for a combination of the first two model classes, by com-
bining the strengths of EFICA and WASOBI, There is no claim
of inherited asymptotic optimality of the resulting algorithm,
However, simulations show that our approach outperforms pre-
vious attempts to address combinations of those two source
classes, namely, the algorithms joint approximate diagonaliza-
tion of eigenmatrices (JADErp) [23], joint cunulant and cor-
relation-based separation (JCC) [12]. and thinlCA (TICA, [8]).
Another, ad hoc algorithm, addressing combinations of all three
classes, was proposed by Hyvirinen in [15], an extension of a
complexity pursuit algorithm [14]. Unfortunately, however, this
algorithm was not developed in sufficient generality. In partic-
ular, the implementation that is available so tar is only suitable

IThis terminology is uite “loose™ for instance, the essence of the “nonwhite-
ness” property should better be termed “spectral diversity.” Note that colored
sources cannot be separated using second-order statistics blindly, unless their
spectra are distinct.

1045-9227/$25.00 © 2007 IEEE
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10 separate first-order autoregressive (AR) sources. With certain
parametrization of such first-order AR sources, Hyvirinen's al-
gorithm has been observed (in our simulations) to outperform
our proposed algorithm.

A previous, more basic method for combining EFICA and
WASOBI was recently presented (by us) in [29). As explained
in the sequel, the algorithm presented in here considerably
enhances that method by properly accounting for multidimen-
sional independent components within the observed mixtures
[11,[31, [7]. Note that unlike [11, [3], and [7], we do not consider
multicomponents associated with dependent sources, but only
linear mixtures of independent sources which either EFICA or
WASOBI fails to separate properly.

The key to successful combination of the two methods lies
with the ability to predict {(estimate) their resulting performance
from their outputs, This information can in turn be used for
successive data-adaptive “matching” of each algorithm to the
subset(s) of sources for which it outperforms the other, To
elaborate, we briefly address the issue of performance assess-
ment in Section I In Section III, we provide a brief overview
of the “building blocks™ of the algorithm, which is outlined
in Section IV. Extensive simulation results are presented in
Section V and some conclusions are drawn in Section VI

II. QUTPUT-BASED PERFORMANCE ASSESSMENT

A common measure for evaluating the separation accuracy
is the intcrference-to-sig_gal ratio (ISR). For a given estimate
of the demixing matrix W, the “realization-ISR™ matrix rISR
is given (elementwise) by rISRyr = G,/Gj,. where G £
WA The total “realization-ISR™ of the kth estimated signal
can also be defined as risr;, 2 Zle‘f# rISR.;.. Naturally,
evaluation of both requires knowledge of the true mixing matrix
A, which is normally unavailable (except in simulations).

If the signal separation experiment is repeated in a Monte
Carlo fashion, a general key property of any separation algo-
rithm is its “mean-ISR™ (or simply its “ISR™ tor short), given by
the expected value of its “realization-ISR,” ISR £ E[rISR]
{with a similar definition for the isr vector). This ISR depends,
in general, on the statistical model of the data generating
Process,

For some algorithms, the ISR can be determined by analysis,
and thanks to the well-known equivariance property (e.g., [4]),
this ISR usually does not depend on the unknown A, but only on
statistical properties of the sources, which, although unknown
as well, may sometimes be estimated empirically trom the sep-
arated (estimated) sources.

The ability to assess the ISR of an algorithm from simple
empirical estimates of statistical properties of its outputs is a
desirable but rare feature, shared by very few ICA algorithms.
Fortunately, both EFICA and WASOBI do share that attractive
feature, which will prove instrumental in the sequel.

Moreover, as we will show in simulation, the validity of the
mean ISR estimates for both EFICA and WASOBIT is maintained
even when the data generating process is somewhat modified. In
particular, the following will be shown.,

+ The EFICA ISR expression, derived assuming temporally

white sources, remains approximately valid when the
sources are mildly colored.
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+ The WASOBI ISR expression, derived assuming Gaussian
AR sources, remains approximately valid when the
Gaussian driving noise is replaced with non-Gaussian
noise, as long as the AR coefficients (namely, the spectral
shapes of the sources) are maintained.

A partial intuitive explanation may be that EFICA is based only
on the marginal distributions of the sources, ignoring any time
structures, whereas WASOBI is based only on second-order
statistics, ignoring any higher order statistical information, We
elaborate on this issue in Section II1.

In addition, note the following arguments supporting the idea
of the output performance assessment, even for poorly separated
sources.

When EFICA fails to separate some of the sources, they re-
main mixed together and the mixtures’ probability distributions
would usually be close to Gaussian, thanks to the central limit
theorem (hecause each unseparated observation would still be a
linear combination of several independent inputs). As a result,
the estimate of the EFICA mean-isr would be relatively high, as
the true mean-isr of EFICA is well known to be high for sources
with nearly Gaussian distributions.

Similarly, when WASOBI fails to separate some of the
sources, if the remaining mixtures are poorly separated, they
are prone to have fairly similar spectra {(some kind of slightly
differently weighted "average” spectra of the sources involved).
As a result. the estimate of the WASOBI mean-isr would be
high, as the true mean-isr of WASOBI is well known to be high
tor sources with nearly similar spectra.

Admittedly, these arguments cannot be regarded as rigorous
justification of our claim, However, they indicate that the gen-
eral trend of the estimated mean-isrs can usually be expected
to conform with the true situation, even when the separation is
poor,

III. BUILDING BLOCKS

In this section, we briefly describe the essential building
blocks of the proposed algorithm. These building blocks are
the EFICA and WASOBI separation algorithms, as well as a
previously proposad, more basic combination scheme.

The Cramér-Rao lower bound (CRLB) on the (unbiased) esti-
mation of W induces a different type of lower bound (see, e.g.,
[11]) on the attainable ISR, in the form of an ISR-like matrix
with elementwise bounds, We would refer to that bound as the
Cramér-Rao-induced bound (CRIB). A separation algorithm is
said to be “optimal” (for a specified mixing model) when its ISR
matrix equals the respective CRIB. Both EFICA and WASOBI
have been shown to be asymptotically optimal (under some mild
conditions} for their respective model classes [18], [9].

A. EFICA

EFICA is essentially a modification of the popular fastICA
algorithm [13], belonging to a wide family of ICA algorithms
which exploit non-Gaussianity of the sources’ distributions (ig-
noring any time structure). In its general form, fastICA requires
a user-defined choice of a set of nonlinear functions g (-} (£ =
1.2,...,d) for extracting each of the 4 sources. EFICA en-
hances fastICA by offering an elaborate data-adaptive choice
of these nonlinearities, followed by a refinement step.
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Under the assumption that each row s (k = 1,...,d)of s
contains N independent realizations of non-GGaussian® random
variables £, it is shown in [1&] that the asymptotic ISR matrix
has as elements

1 v +7d)

ISR, = — — 5 5 {1
BTN e + 72 (ve +77) )
where
a4 e e = Elegr{éi)]
WD = Eg&)
B = E[gi(&)]

and where E|[-] denotes the expectation operator and g {-) de-
notes the derivative of g;.(-). In the best possible case, obtained
by EFICA for sources with generalized Gaussian distributions,
{1} equals the respective CRIB [26].

B, WASOBI

WASOBI [33], [9], [28] is a weighted version of the
well-known SOBI [2] algorithm, belonging to a wide family
of second-order-statistics-based ICA algorithms, which rely
on time structures in the sources’ correlations. Both SOBI and
WASOBI are based on approximate joint diagonalization (ATD)
of several (say M) time-lagged estimated correlation matrices

N—r
Z x[nlxln+7lr=0,..., M -1 (2)

=1

1
N-r

x[7] =

where x[r] denotes the nth column of x,

Unlike SOBI, WASOBI incorporates proper weighting (in-
versely proportional to the covariance in the correlation esti-
mates) into the AJD process. The weighting is asymptotically
optimal for the case of Gaussian sources.

In particular, if all sources are Gaussian AR of order Af — 1,
then under asymptotic conditions the ISR matrix attained by
WASOBI can be shown to equal the respective CRIB [11]

l re J%R; [ﬂ]

I
SRt = N ¢retder — 1 a7 R[0]

3)

where o is the variance of the innovation sequence of the kth
source and ¢ye are given by

A1
Pre = = Z tigtje Re[E — j)
T

where {a; ﬁ_o ! are the AR coefficients of the £th source with
aop = Lfork,é=1,.... d. and Ry[m)] is the autocorrelation
of the kth source at time lag e (We 1se a unit-variance scaling
assumption R [0] = R[0] = 1 in our model),

C. Combined WASOBI and EFICA (COMBI)

An intuitively appealing selection approach would be to apply
both EFICA and WASOBI to x and select for each source the re-
constructed version that has the best total realization-ISR of the
two. This basic selection approach can then be turned into a suc-
cessive scheme, such that in each iteration only the “best” sepa-
rated sources are “accepted,” and the remaining signals (which

2To be precise, at most one of the random variables is allowed to be Gaussian.

are still weakly separated mixtures of the remaining sources) are
subjected to an additional iteration of separation and selection.

The “realization-ISR” matrices are obviously unknown {(nor
can they be consistently estimated from the data). However, it
is possible to substitute these with the “mean-ISRs,” thereby at-
taining a selection strategy which implies proper selection “on
the average Conmtent estimates of the mean-ISR matrices

ISR and ISR for both EFICA and WASOBI can indeed
be obtained from (1) and (3), respectively, by substituting the
true sources with the estimated sources and the true expecta-
tions withEthe empil;iic__:il means. Then, all individual isrs esti-
mates ﬁk and ﬁk " (for all k) can be extracted from these
matrices. The COMBI algorithm [29] employs these estimates
in the following procedure.

DNletz = x

2) Apply both EFICA and WASOBI to z; denote the estimated
sources as s&F and E; A rcspecnvely, and the respective

estimated isrs as isr  and i 1sr

A

—~EF
3) Let F = ming isr;, and W = ming sy,

4HIFE <« W

. . e EF
a) accept those signals sZ¥ for which isr, < W and

redefine z as the rejected signals of s% else

. va L WA
b) accept those signals s™*'4 for whichisr, = < E and

redefine z as the rejected signals of ™4

3) If there are more than one rejected signal remaining, go to
(2), Otherwise, if any, accept the rejected signal,

Each of the two ISR expressions (1) and (3) was derived under
the assumption that all of the sources comply with their respec-
tive model assumption, However, when the mixture consists of
both non-Gaussian i.i.d, and Gaussian time-structured sources,
neither of the model assumptions can be satisfied by all sources,
Strictly speaking, this mismatch may undermine the theoretical
reliability of the output-based ISR estimates. However, as al-
ready mentioned, it has been empirically verified (and will be
demonstrated in simulation) that the ISR estimators usually re-
main reasonably accurate even when the respective model as-
sumptions are mildly violated and when the separation is not
perfect.

Moreover, it has to be emphasized that exact ISR values are of
little or no interest here, since only their comparative relations
are used in the selection process. We note, in addition, that other
empirical methods tor assessing the resulting ISRs could be con-
sidered, such as bootstrap resampling [20]. However, these ap-
proaches usually involve a computationally extensive repeated
resampling and separation scheme, and may be more suited for
iid. sources than for time-structured sources, Thus, the possi-
bility to exploit the analytical expressions (1) and (3) for EFICA
and WASOBI is rather appealing and serves as one of the cor-
nerstones of the proposed approach.

Still, a remaining major drawback of the COMBI algorithm
described previously is the following. Suppose that one of the
two algorithms (EFICA or WASOBI) can attain a nearly block-
diagonal ISR matrix, namely, can well separate the mixture into
groups of sources, but still with poor separation within each
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group, Then, subsequent application of the other algorithm to
each group (separately) may be able to eventually attain good
separation of all of the sources. Unfortunately, COMBI would
not be able to exploit such potential “two-stage cooperation™
between the two algorithms. This is because COMBI is essen-
tially unaware of the group-separation ability of the first algo-
rithm (because only the individual sources’ isrs are accounted
for),

We, therefore, propose (in Section IV} an enhanced version of
COMBI, aimed at applying a more “systematic” approach, ca-
pable of accounting for such cases. A simple demonstration of
the sources constellation in question, presenting both the draw-
back and its solution, would appear in Example 4 in Section V.

IV. PROPOSED METHOD:; MULTI-COMBI

A “multidimensional component” is a cluster of signal
components that can together be well separated from the other
components in the mixture, yet are difficult to separate from
one another [1], [3). For EFICA, only components that have
{nearly) Gaussian distributions might form such a cluster,
hence at most one such cluster may exist, For WASOBI, any
components sharing similar correlation structures (i.e., power
spectra) are hardly separable from one another, but may be
easily separated as a cluster, hence several such clusters might
Coexist.

Each cluster is characterized by the set of indices of the
sources it contains, denoted 7. T < {1,...,d}. Using an
estimate of the ISR matrix in (1} or in (3), the isr of a cluster 7
{with respect to all the other sources) can be defined as

ST =7 > ISRy
keT £gT

4)

where a7 is some normalization coefficient depending on the
cluster’s cardinality (dimension) |Z| and on d. We propose to
take

o d-1
Izl - 12

so that isr(7) has the meaning of d — 1 times the average of
the entries in the sum in (4), This choice is compatible with the
basic definition of isr for Z = {k}.

The proposed “multi-COMBI™ algorithm works recursively
with a stack of clusters S. In each step, one of the clusters in the
stack, that is not a singleton, i.e., does not have dimension 1, is
decomposed into two or more smaller clusters, until all clusters
are singletons. The algorithm can be summarized as follows.

To initialize, let the stack of clusters & be comprised of a
single cluster containing the entire set § := {x}.

ar

1) Pick any cluster in S that is not a singleton, and denote this
cluster as z (obviously, z = x in the first step).

2) Apply both EFICA and WASOBI to z; obtain the separated

signals sEF and s 4 and the corresponding estimated ISR
e e A

matrices ISR, and ISR, estimated from the separated

data using (1) and (3).

3) Construct a set C of possible clusters 7 C {1,.. .. dim(z)}.

For example, if z contains three signals, then
C = {{1}.{2}.{3}. {1, 2}, {1.3}. {2, 3} }. Note that
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C does not have to include gl possible clusters—see
Section IV-A for a further discussion.

4} Based on tlgepestimated IS§ matrices, compute
—— A
(using (4)) isr  (Z) and 1sr  (Z) for each
T < C. Namely, in the same example, compute
~EF ~mEF . ~FEF —EF
isr ({1}),isr  ({2}),isr  ({3}),isv  ({1,2}),elc.

~—~EF —~W
5)Let E:=mingzisr {(Z)and W := ming isr A(I)

6y If ' < W, pick up the set of “best” EFIC A-separated
clusters as follows:

i ~~EF
I, := argmingqist (7}

and then, for & = 1,2, .., repeat the following;

~EF

Tt »= argiingee(7.3ec k)z,nz20yisr  (7)

until either

S (Tear) > W
or C —{ZI;3 € [L,k]: I, N T # ¥} is empty. This procedure
picks up the “best” {lowest isr} EFIC A-separated clusters one
by one; At each step, the best remaining cluster in C (among
those disjoint with the clusters picked up so far) is picked up
(such a scheme is sometimes called a greedy algorithm). The
procedure stops either when all clusters have been picked up,
or when the best remaining cluster is already worse than the
best WASOBI-separated cluster. The value of & upon exit is
denoted M.

Let 7 := {1....,diin{z}} — UZ}. If 7 is not empty. let
M:=M+1and Iy := 7.

The new clusters s;,. . ., sas are extracted from s&F according

to the partitioning 77, ... Ty,

else (for £ > W) extract sq,...,sss similarly from s -4
A

using isr
Ty update S by substituting z with 81,....8a7
S:=(S-{zhU{s,....5m}

8) If all clusters in & are already singletons. stop. Otherwise
return to 1).

A simplified demonstration of the progress of the algorithm
can be found in the context of Example 4 in Section V.

A. Alternative (Proposed) Construction of the Set C'

When d is not large, then the set C of the cluster candidates
in Step 3) can contain all 27"™(=} — 2 nontrivial subsets of
{1,...,dim(z)}. However, when 4 is large, say d > 20,
computing isrs of all of these subsets can be prohibitively slow.
We, therefore, propose, in high-dimensional cases, considering
a smaller set of relevant cluster candidates C. The set C can be
constructed using any well-established clustering method such
as K-means, hierarchical clustering and many others (see, e.g.,
[24]).

For the EFIC A-separated signals s&¥ no clustering is actu-
ally required, as € can be simply determined as the set of all
singletons. This is because, for EFICA, we know 4 priori that at
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Fig. 1.

most one cluster of nondistinguishable (nearly Gaussian) com-
ponents can exist. This cluster would be found as the remainder
set 7 in Step 5). Therefore, a clustering method is needed only
to process the WASOBI-separated signals s,

To apply such Llustermg note that we may regard any esti-

mated ISR matrix (ISR e in our case) as describing inverse
distances between nodes on a graph, where the nodes are the
source signals. A high value in ISR ¢ means that sources k and
£ are “close,” namely, not well separated and should, therefore,
belong to the same cluster. Conversely, a low ISRy, implies
that sources & and ¢ are well separated and should, therefore,
belong to different clusters. However, since we are not inter-
ested in clustering a directed graph (namely, we do not distin-
guish between ISR, and ISR, for the clustering), we can
base the clustermg on a b¥mmemzed version of the ISR ma-

trices, D 2 ISR + ISR .

In this paper, we suggest to construct the set of cluster can-
didates C using a hierarchical clustering with a single linking
strategy [24]. Here, the set C is built recursively, so that in the
beginning it contains all singletons. At each step, we look for
the couple (k, £} for which Dy, obtains its maximum value, and
then create and add a new cluster to C, formed by the union
of the most recently created cluster containing signal & and the
most recently created cluster containing signal £. In addition,
we zero-out the (&, £) and (£, k) entries in D, so as not to reuse
the same couple in subsequent steps. The update of C termi-
nates after dim(z) — 1 steps and contains 2dim(z) — 2 en-
tries at the end.? Note that the cardinality of C would usually
be{ si((gl}iﬁcantly smaller than the number of all possible clusters
t)( mni & 2

Once the set C of candidate clusters is obtained, the “leading
clusters™ can be selected, ¢.g., using a greedy algorithm based
on each cluster’s isr(Z) [calculated using (4)]. This selection is
required in Step 5).

31t is because, in each update, the number of the clusters available for further
fusion decreases by one.

B OO WN OO0 A=

Iy

1017 71315 9121618201 4 8192 3 5 61114
(b)

Example of hierarchical clustering of a WASOBI ISR matrix (in grayscale). (a) Before. (b) After.

The clustering scheme described previously is an ad hoc algo-
rithm, which can be replaced by a more sophisticated method in
the future. However, in our simulations, this scheme works well
and seems more accurate than the spectral clustering method ad-
vocated in [20] in a similar context.

We illustrate a typical clustering result of this clustering algo-
rithm in Fig. 1. On the left-hand side, we show the ISR matrix for
20 sources in grayscale colors, where lighter colors denote low
ISR (good separation} and darker colors denote high ISR (poor
separation). The resulting reordering and partition into clusters
is clearly observed on the right-hand side.

B. Ciuster Issues

We note in passing that under poor separation conditions
(e.g.. short data length V), situations containing poorly distin-
guishable (overlapping) clustering might also occur. Indeed,
theoretically (and asymptotically), for the EFICA model, there
can only be one cluster of inseparable sources, namely, a cluster
of Gaussian sources. For WASOBI, there can be several clusters
that group sources with identical spectra (different between
clusters). Therefore, strictly speaking, the residual clusters pro-
duced by each method separately should not overlap. However,
in reality (especially under nonasymptotic conditions), this
might not hold true in some situations, e.g., if there are some
similarities in spectra between sources in different clusters of
WASOBI or if there are sources which are “roughly”™ Gaussian
(for EFICA). In such cases, the clusters might not be strictly
disjoint. However, the algorithm relies on some thresholding
of the ISR, which would eventually yield some (possibly in-
accurate) disjoint clustering, hopefully (but not necessarily) a
“good” one. Nevertheless, under the specified model assump-
tions, as the observation length N increases, the clusters are
guaranteed to become well distinguishable.

V. SIMULATION RESULTS

We conducted a series of simulation experiments aimed
at comparative evaluation of the proposed multi-COMBI
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approach, as well as at verifying the validity of the interme-
diate ISR estimates. As discussed earlier, the analytic ISR
expressions were obtained under their respective “nominal”
homogeneous model assumptions, which are deliberately
breached in our experiments’ setup. Moreover, when using
these expressions, some true (unknown) quantities are replaced
by their empirical estimates from the output signals, which
might not be well separated. It is, therefore, essential to verify
(at least empirically) that the output-based ISR estimates, on
which the entire multi-COMBI approach is based, are indeed
valid.

Thus, the first three simulation examples in this section
demonstrate the remarkable agreement (under mild deviations
from the model assumptions) between the empirical perfor-
mance of EFICA and WASOBI and their theoretical predictions
obtained using (1) and (3) (with empirical quantities). In ad-
dition, we compare the resulting multi-COMBI and COMBI
performance to some competing algorithms,

The fourth example illustrates the advantages of multi-
COMBI with respect to the less sophisticated COMBI in the
presence of clusters. The last three examples challenge the
robustness of all algorithms, demonstrating the maintained su-
periority of multi-<COMBI in larger scale problems (containing
several large clusters) and in the presence of additive noise.

Example 1—Fig. 2

In the first experiment, we consider the separation of five
colored non-Gaussian sources versus a parameterized variation
of their spectral diversity. N = 1000 samples of each source
were generated by filtering statistically independent random bi-
nary phase-shift keying (BPSK) sequences using all-pole fil-
ters. For each & = 1,2,...,5, the kth filter was constructed
of k poles, located at all & roots of the real-valued parameter p.
In other words, the filters” AR coefficients were [L. p], [1.0, p].
[1,0,0,p], [1,0,0,0, p], and [1,0,0,0,0, p], for 0 < p < 1.

For small values of p, the sources are strongly non-Gaussian,
having a weak (and rather similar) temporal correlation struc-
ture, so EFICA should be superior to WASOBI. Conversely,
as p approaches 1, the sources can be equivalently reproduced
with effectively very long finite impulse response (FIR) filters,
and, therefore (by the central limit theorem), have nearly
Gaussian marginal distributions, yet with strong different
temporal correlation structures, so WASOBI should clearly
outperform EFICA.

Since the obtained ISR values in each experiment were
roughly similar for all of the sources, we merely display the
performance in terms of a single, average ISR (inverted, for
convenience), averaged over all sources and over all trials.
In each trial, all elements of the mixing matrix were redrawn
independently from a standard Gaussian distribution.

The theoretically predicted ISRs were obtained empirically
in each trial, by substituting the unknown statistical properties
in (1) and (3) with their empirically obtained values from the
separated sources. These ISR values were also averaged over
all sources and over all trials and their inverted values were dis-
played versus the spectral-shape parameter p.

We note the remarkable agreement of the performance of both
EFICA and WASOBI with their theoretical prediction over the
entire range of p, except for the extreme cases p =~ ( and p =~ 1,
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Fig. 2. Inverted average ISR achieved in separation of five AR signals ob-
tained by passing BPSK ii.d. sequences of length & = 1000 through all-
pole filters with AR coefficients [1, p], [1.0, p]. [1,0.0,p0], [1.0,0,0, p], and
[1,0,0,0.0, p]. respectively, and the theoretically predicted ISR (1) and (3), es-
timated using the separated signals, versus varying p. Each simulation point is
an average of 100 trials.

where the deviation is more significant. In the higher region of p,
the predicted ISR of EFICA is slightly overoptimistic, i.e., the
inverted mean predicted ISR is slightly higher than the actual
inverted ISR (yet the relative order is evidently maintained).

The performance of COMBI and multi-COMBI is compared
in this and in subsequent experiments with the other following
algorithms: JADErp [23] with parameters 0:5, JCC [12] with
parameters p = 5 and 7 = [2,3,4,5,6], and TICA [6] with
parameters (d1. d2, d3) = (5,0, 5).

Example 2—Fig. 3

In this experiment, we fed the all-pole filters described in
the previous example with (super-Gaussian) i.i.d. samples taken
from a generalized Gaussian distribution with parameter a.4
For easy reference, the distribution is denoted GG(«). Fig. 3(a)
shows the result for « = 0.5 as a function of parameter p and
Fig. 3(b) shows the result for p = 0.5 and varying «. Each sim-
ulation point is an average of 100 trials.

The general behavior in Fig. 3(a) is similar to that observed in
the previous example, with the difference that the performance
of all algorithms is statistically less stable than in the first ex-
periment, probably due to the long tail distribution of the data.

Fig. 3(b) shows that for « below 0.5, the non-Gaussian char-
acter of the data is the dominant key property for separation
and, therefore, EFICA is more accurate than WASOBI. For «
higher than 0.5, WASOBI is more accurate since the temporal
correlation structure becomes the dominant key property for
separation. As in the previous examples, both COMBI and
multi-COMBI are able to effectively combine the advantages
of EFICA and WASOBI and, at the same time, outperform the
other competing algorithms.

#This distribution has a density proportional to exp{—3|z|* ), where o« > 0
controls the shape of the distribution and /7 > 0 controls the variance. See, e.g.,
[18] for more details.
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Fig. 3. Inverted average ISR achieved in separation of five AR signals ob-
tained by passing white 1.i.d. GG(a) distributed sequences of length N =
1000 through all-pole filters with AR coefficients [1, p]. [1.0, p]. [1.0.0, p].
[1.0.0,0. p]. and [1.0.0,0,0. p], respectively, and the theoretically predicted
ISR (1) and (3}, estimated using the separated signals. (a) Result for a fixed
a = 1.3 versus varying p. (b) Result for p = 0.5 versus varying .

Example 3—Fig. 4

This experiment demonstrates the advantage of COMBI and
multi-COMBI in scenarios where neither EFICA nor WASOBI
are able to separate all signals, yet COMBI, multi-COMBI,
JADErp[23], TICA [6], JCC [12], and Hyvirinen's algorithm
“unified” [15] can. Moreover, we demonstrate how, due to its
ability to account for clusters, multi-COMBI can outperform
COMBI and almost all of the other competitors. We considered
four AR sources. The first source was generated by filtering
an independent BPSK sequence using an all-pole filter with
coefficients [1, p]. The second source was generated by feeding
the same filter with Gaussian i.i.d. samples. The third and fourth
sources were generated in the same way but the coefficients of
the filter were [1, — p|. Obviously, the first and second pairs are
each nonseparable by WASOBI, while the second and fourth
sources are nonseparable by EFICA.
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COMBI first separates the two non-Gaussian sources using
EFICA and subsequently separates the two remaining sources
with WASOBI. Note, however, that for large values of p the
initial separation of the non-Gaussian sources may be rather
poor, since the increased effective length of the filters renders
the marginal distributions of their outputs nearly Gaussian. Sig-
nificantly better separation is then achieved by multi-COMBI,
which is able to exploit the excellent ability of WASOBI to first
separate the pair (cluster) of components with one spectral den-
sity from the pair (cluster) with the other spectrum, leaving for
EFICA the remaining task of separating each pair internally. For
example, in one trial with p = 0.6, we got the following ISR ma-
trices (in natural ratio numbers, not in decibels):

[ = 0.5234 0.0004 0.0003 7
fg‘f{WA: 0.5716 - 0.0004 0.0004
0.0004 0.0004 = 0.0389
L0.0003  0.0003 0.0269 =
[ - 0.0013  0.0013  0.0008 7
IE-REF: 0.0022 - 0.1272  0.0019
0.0023 0.1281 = 0.0019
L0.0007  0.0009  0.0009 =

From these ISR matrices, we can see that the clusters of com-
ponents {1, 2} and {3, 4} in WASOBI are better separated from
one another (having lower residual presence of each in other)
than clusters {1}, {2,3}, and {4} in the EFICA result. More
specifically

— WA i — WA .
st ({1,2}) =isr ({3,4}) = 0.0004
and

B ({2,3)) ~0.0021 .

In this situation, WASOBI cannot accurately resolve individual
components but it separates the two 2-D clusters better than
EFICA. Contrary to COMBI, multi-COMBI detects this fact
and correctly chooses WASOBI for the initial separation,
yielding improved performance,

Note that multi-COMBI outperforms almost all of the com-
petitors for almost all values of p, with one significant exception:
Hyvirinen’s algorithm outperforms multi-COMBI (in all four
experiments) for p above 0.6-0.7. This means that there is still
room from improvement, as multi-COMBI does not (and is not
claimed to) inherit the optimality of its building blocks EFICA
and WASOBI. We note in passing, that the implementation of
Hyvirinen’s algorithm that is available so far is inapplicable to
separation of AR processes of higher orders and to separation
of sources of an unknown type (super-Gaussian/sub-Gaussian),
because each type requires a different built-in nonlinear func-
tion. (In this example, we have used “pow3” to achieve a good
performance.)

Example 4-Fig. 5

In this experiment, we mixed (and separated) 20 AR sources
comprised of four groups of five sources each. Each of the five
groups was generated with the same set of filters used in the
first experiment with p = 0.6. The only difference between the
groups was the distribution of the i.i.d. “driving noise,” which
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Fig. 4. Inverted average ISR achieved in separation of four AR signals obtained by passing BPSK, Gaussian, BPSK, and Gaussian i.i.d. sequences of length
N = 1000 through all-pole filters whose AR coefficients were [1, p]. [1, p]. [1, —p]. and [1, —p], respectively. Each simulation point is an average of 100 trials.
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Fig. 5. Inverted average ist (for each component separately) achieved in sep-
aration of 20 AR sources of length v = 3000, driven by i.i.d. sequences
of Gaussian, BPSK, Laplace, and Uniform distributions passing through all-
pole filters with AR coefficients [1, p|, [1.0, p]. [1.0.0.p]. [1,0,0.0. p]. and
[1,0.0,0,0, p] for p = 0.6. Each simulation point is an average of 100 trials.

was Gaussian for the first group, BPSK for the second, Laplace
(= GG(1)) for the third, and Uniform (= lim GG(«) for
« — oc) for the fourth. Thus, for EFICA, the first group of five
Gaussian signals comprises a nonseparable cluster, whereas
for WASOBI there are five different clusters, each comprised
of four signals with similar spectra (and different marginal
distributions).

The results are shown in terms of the inverted average ISR for
all 20 sources. Across-the-board superiority of multi-COMBI is
clearly evident.

Example 5-Fig. 6

In this experiment, the scenario of the previous experiment
is repeated with the exception that now the observations are

)

=,
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S —— JADETD !
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component number

Fig. 6. Inverted average INSR achieved in separation of the same mixtures of
20 AR sources as in Fig. 5. contaminated by AWGN at 0-dB SNR. MMSE
denotes the performance of a hypothetical “oracle” separator which uses the
known mixing matrix and noises’ variances.

contaminated by additive white Gaussian noise (AWGN). The
noises’ variances were set S0 as to maintain input signal-to-
noise ratio (SNR) of 0 dB for all sources. The mixing matrices
were taken at random with independent Gaussian distributed el-
ements, normalized such that each row of A~! had unit norm
[17], and censored so that their condition numbers lie in the in-
terval [10, 100]. The results are shown in terms of the inverted
averaged interference-plus-noise-to-signal ratio (INSR) and are
also compared to the empirical performance of an “oracle™ min-
imum mean square error (MMSE) separator, which uses the
known mixing matrix and noise variance. It is evident that the
superior performances of multi-COMBI with these sources is
maintained also in the presence of AWGN.
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Fig. 7. Inverted average ist (for each component separately) achieved in sep-
aration of 40 sources; 20 AR sources of Fig. 5 plus 20 white Gaussian sources.
Since the Gaussian sources are inseparable, they are excluded from the Figure.
Each simulation point is an average of 100 trials.

TABLE I
RUNNING TIMES {IN SECONDS) OF DIFFERENT SEPARATION ALGORITHMS

Algorithm 20 sources (ex. 5} 40 sources (ex. 7)
EFICA 2.5 6.7
WASOBI 0.5 21
MULTI-COMBI 52 226
JADETD 2.6 434.7
TICA 22.6 3782
Icc 224 712.7

Example 6-Fig. 7

In this experiment, 20 white Gaussian (unresolvable) sources
were added to the scenario considered in Example 5, yielding
40 mixtures of 40 sources, with only 20 being separable from
each other (as well as from the other 20). We display the results
for the separable sources only. Again, multi-COMBI is clearly
shown to outperform the other algorithms.

Computational Aspects

The computational load of each algorithm was compared
when operating on the large-scale mixtures of 20 sources
(Example 5) and of 40 sources (Example 7). Our hierarchical
clustering algorithm was used in multi-COMBI, as described in
Section IV. The average running times of each algorithm with
the parameters specified in Example 1 and running on the same
personal computer (PC; P4 3-GHz, 2-GB RAM, Windows XP)
in Matlab® version 7.0/R14 are summarized in Table 1.

VI. CONCLUSION
We have proposed a novel ICA algorithm? that effectively
combines the two powerful ICA methods, EFICA and WA-
SOBI, thereby allowing separation of mixtures of sources that
3The Matlab codes for EFICA, WASOBIL, COMBI, and multi-COMBI can

be downloaded from http://si.utia.cas.cz/Tichavsky html. A Matlab implemen-
tation of JADE 1, is available at http://www.cs.tut.fi/~omezher/software.htm

429

would be otherwise poorly separated by either one. Computer
simulations show good performance of the algorithm compared
to competing algorithms, such as JADErp, JCC, and TICA,
both in terms of separation quality and in terms of computa-
tional efficiency.
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ABSTRACT

Recent advances in separation of convolutive mixtures of au-
dio signals have shown that the problem can be successtully
solved in fime-domain in a multistep procedure including
an application of some method of instantaneous independent
component analysis (ICA) or independent subspace analysis
{ISA), as one of the steps. In this paper we propose a test that
allows a comparison of different ICA and ISA algorithms
from this perspective. The test consists in evaluating sepa-
ration of a pseudo-convolutive mixture of given independent
signals. The mixture has features of real-world convolutive
mixtures and of instantaneous mixtures simultaneously. We
apply the proposed test to compare performance of several
ICA and ISA algorithms in four different scenarios, taking in
mind that suitability of the algorithms depends on properties
of the separated signals.

1. INTRODUCTION

In this paper, we aim at comparing different ICA/ISA meth-
ods when applied to blind audio source separation {BASS),
which is a popular discipline in recent decade due to emerg-
ing applications in multi-microphone systems. The goal of
BASS is to separate simultaneously sounding audio sources
that are mixed in a natural acoustical environment through
the convolutive model

4 Mij—1

simy=Y Y hj(tisin—1), i=Ll...m, (1)

j=1 =0

where x1(n).....xn(n) are the observed signals on micro-
phones, s1(r},...,s2(n) are the unknown original sources,
and k;;’s are source-microphone impulse responses each of
length M;;. The original sources can be estimated by passing
the mixture through a separating (de-mixing) filter

m L1

Sn)=Y Y wylthxn—t), i=1...d (2
j=l=0

of a finite length L.

A popular way is to ground the separation on the agsump-
tion that the original sources are statistically independent.
The solution of the problem is then based on methods related

OThis work was supported by Ministry of Education, Youth and Sports
of the Czech Republic through the project 1MO572 and by Grant Agency of
the Czech Republic through the projects 102/07/P384 and 102/09/1278.
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to the ICA [1]. However, original ICA methods assume in-
stantaneous mixture, i.e., when M;; = 1 for all {, j, The prob-
lem given by (1), therefore, needs to be transformed. This
is usually done either in the frequency-domain [2] or in the
time-domain [3]. In general, performance of the BASS algo-
rithis can be evaluated e.g. by aid of the BSS_eval toolbox
[4]. In this paper, we propose a special method of compari-
son of different ICA and ISA algorithms, with respect to their
performance inside a time-domain BSS method.

In the time-domain methods, the convolution operation is
written in terms of a vector/matrix product. In particular, the
output of the separating filter in (2) corresponds to a direction
in the subspace spanned by rows of an mL x (N2 — N, + 1)
matrix

X1V} X (N2}
XNy =1} XA —1)
(M —L+1) N —L+1)
_ x2{N1) x2{Np}
X= XN -1} x(N: — 1) » 3
[ 5w L4+ 1) Ny —L+1) ]

where Ny and N>, No > Ny, determine part of recorded signals
used to define X.

Time-domain BASS methods seek for such a linear trans-
form that splits the row-space of X to independent subspaces
50 that each of them corresponds to a separated audio sig-
nal. To separate the subspaces, it is possible to use some al-
gorithm for Independent Subspace Analysis (ISA) [5, 6, 7].
Another way 1s to apply one of large number of known ICA
algorithms to estimate several one-dimensional components
of each original source [8, 3, 9], and the subspaces are ob-
tained by a suitable grouping (clustering) of the components
[6, 9]. It was shown in [9] that under some condition, even
quite short filters (L = 10...40) can produce effective sepa-
ration results.

Since the applied ICA/ISA algorithm is the hearth of the
time-domain separation, a natural question is which one is
suited best for that purpose. The objective evaluation of the
decomposition of X is however an infricate problem due to

1. unpredictable performance limitations caused by the fi-
nite length of separating filters (the finite number of rows
of X, and
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2. an ambiguity of optimal solution, because the original
signals can be retrieved up to unknown filterings [10].

Note that both the features affect the achieved signal-to-
interference ratio [4].

In the following section, we propose a test that is de-
signed so that the above problems are avoided, and the eval-
uation is done through a criterion tailored to the test. In Sec-
tion 3, we discuss usefulness of several ICA models and se-
lect representative methods for experimental comparison by
the proposed test that is described in Section 4. Sections 5-6
provide ranking of the methods and suggest conclusions.

2. TEST PROPOSAL

The main idea of the test is to define a source matrix of the

original sources s;{(n),....s54(n) as
SN s1{Nz}
s - 1) 51 (N — 1}
s = : : L@
salMy—L+1) stNa—L+1)
The mixture is then simply given by
X =AS, (3)

where A is aregular dL x dL matrix. The matrix can have the
block Sylvester structure as it exists in the true convolutive
mixtures [8, 3].

Unlike the true convolutive mixture in (3), the mixtire in
(5) can, in theory, be separated perfectly by W = AL, By
comntrast, the common feature is that ICA or ISA methods ap-
plied to (5) tend to produce arbitrarily filtered counterparts
of s1(n),...,354(n), because rows of S corresponding to de-
layed versions of the same source are not independent due to
temporal structures of original {audio) sources.

2.1 Choice of the mixing matrix A

Most of ICA and ISA algorithms (all that were included in
our comparative study) are equivariant. This means that out-
come of the separation is essentially the same {up to the order
of components or subspaces) if the input data are mixed by
an arbitrary regular mixing matrix, It follows that it makes
no difference if the mixing matrix in simulations has a cer-
tain structure or not, However, if someone wants to study a
separation algorithm that relies on the special structure of the

mixing matrix, a fair comparison would be obtained only if

the mixing matrix bas the same structure,

2.2 Grouping of components

Let ISA/ICA algorithms under the test be applied to the
mixture X, ISA algorithms produce 4 independent L-
dimensional subspaces, which only have to be properly re-
ordered to fit the original signal order. ICA algorithms yield
one-dimensional components that have yet to be grouped. In
our test, we do not want to let the choice of the grouping pro-
cedure interfere with the estimated guality of the separation.
Therefore we resort to the optimum grouping of the compo-
nents subject to the signal-to-interference ratio (SIR) both for
ICA and ISA algorithms.

Consider the SIR of the jth separated component, de-
noted by ¢;(r), with respect to the ith source. Since c;(n)
was obtained as the jth row of

C=WX=Was* gs, (6)

it can be written as a linear combination of s;(r) and its time
delays plus the remainder, which represents the interference.
Thus, the SIR can be defined as

. Byt G
IR, = = D:“
! E[

G —nryesin— £+ P
2 1Gonreesitn— ¢+ D

(7

where B stands for the sample mean operator, and G ;4 are
elements of the so-called gain matrix G.

Now, for each source s; we assign those L separated com-
ponents ¢; that have the largest SIR;.

2.3 Criteria

Once we have the components assigned to the sources, we
can judge quality of the separation. We propose two ways.
First, we measure the distance of the true and estimated sub-
spaces in terms of the angle of these subspaces in the vector
space spanned by all rows of the matrix S in (3). In Matlab
it is realized by the command subspace,

Second, we propose an alternative way which goes one
step further towards the estimation of the source signals, us-
ing the time-shift structure of the matrix S.

Let J; denote a set of the indices of components that were
assigned to the ith source. Then, an estimate of the ith source
delayed by ¢ samples, i.e. of s;{n— {}, can be obtained, avoid-
ing unknown permtations in G, through the inverse of G as

St(n) = Y (G Yonereei(n), (8)
jek
for £ =10,...,L— 1, and these estimates of s;{n — £) can be
combined together by simple time-shifting and averaging,
L
Ezﬁn+e (9)

The resultant reconstructed signal 5;(#) is then written in
the form signal-plus-interference, and the corresponding SIR
yields the final criterion for the overall estimation of the fth
source. Note that 5i(n) = s;(n) if and only if G is exactly
block-diagonal (up to the order of its rows). Therefore, the
SIR of 5i(n) reflects the error of the block blind separation in
a comprehensive way!

Another important point o note here is that the values
SIR’, J € J;, in (T) do not provide objective measures for
evaluating the overall separation of s;{#) because of an un-
known filtering of the respective components.

A third alternative of computing the SIR of the subspaces
was advocated in [8]. It consists in applying a SIMO blind
identification method to each subspace. This approach has
the disadvantage that it introduces another source of error in
the SIR computation.
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Figure 1: SIR of three separated artificial signals mixed via (4-5) with L = 3 averaged over 100 independent trials. Note that
both settings of BARBI (first and second-order block-AR model) yield good results in this example.,

3. REPRESENTATIVE METHODS

The main ICA algorithms for separation of instantaneous
mixtures are based either on non-Gaussianity, distinct col-
oration (spectral diversity), or non-stationarity. While the
first class uses higher-order statistics (nonlinear transforms)
of the data, the other two classes are based on second-order
statistics. Recently, combinations of the models have been
considered, also [3, 13, 14, 21].

We note that the non-Gaussianity based methods tend
to produce temporally whitened versions of s;(n),...,s4(n).
The whitened signals are sometimes called the partial inno-
vations. The reason is that the innovations of each sources
and their mutual time-shifted copies are usually the most
non-Gaussian signals that can be obtained by linear trans-
formations of the data,

In our experiments, we consider Extended Infomax [11],
FastICA [1] (the symmetric approach with “tanh” nonlinear-
ity), EFICA [15], and STADE [20] as the representatives for
this class. Unlike the other methods, SJADE is an ISA algo-
rithm,

Methods relying on nonstationarity divide mixed signals
in non-overlapping segments of a given length, compute sig-
nal covariance matrices on each segment, and do an approx-
imate joint diagonalization (AJD) of these matrices. These
methods cannot separate sources having the same variance
profiles, Hence, they cannot distinguish delayed copies of
the same source as the delays are negligible compared to
the length of segments. Separated components of (5) thus
form clusters of arbitrarily filtered original sources, which
is required for the separation. The class is represented by
BGL [12] and JBD [7] algorithms. While BGL searches one-
dimensional components, JBD is an ISA algorithm,

Methods relying on spectral diversity of the signals are
based on (block-)AJD of cross-covariance matrices of mixed
signals. In simulations, we shall consider the earlier and
popular SOBI algorithm [16] and its weight-adjusted version
WASOBI [17].

We will also consider methods that combine the basic
ICA models, namely, Block EFICA [18] combining the non-
Gaussianity with the nonstationarity, and the recently pro-
posed BARBI algorithm [19, 21] combining the nonstation-

arity and the spectral diversity principles via block AR mod-
eling of signals.

4. EXPERIMENTS

First, we present a simple example with three artificial sig-
nals obeying the basic ICA models: a non-Gaussian i.i.d.
signal that is uniformly distributed, a stationary (Gaussian
process with AR coefficients (1,0.7), and a nonstationary
block-Gaussian white signal whose each of four blocks has,
respectively, the variance 1, 0.09, 0.01, and 1.21. These sig-
nals were used to form (4) with L = 3, which was mixed by a
randomly generated mixing matrix via (5). Then, ICA meth-
ods were applied to separate the mixture and the resulting
signals were evaluated by the proposed SIR.

Results of this example shown in Fig. 1 confirm char-
acteristic features of the selected methods. Extended IN-
FOMAX, FastICA, STIADE, EFICA, and Block EFICA suc-
ceeded to roughly separate all signals, because the 15 signal
is non-Gaussian, the 3" nonstationary signal behaves like be-
ing non-Gaussian, and one signal is allowed to be Gaussian,
which is the 2" one. BGL and JBD failed to separate the 15
and 2" signals since they have the same dynamic profiles,
SOBI and WASOBI separated the 1°' and 3™ signals poorly
due to their similar spectra. Finally, BARBI succeeded to
separate all signals since the 1 and 2™ signals have differ-
ent spectra and different dynamics from that of the 3" signal.

In our main experiment, we did extensive testing of al-
gorithms by separating the convolutive-like mixtures of two
audio sources. Four different combinations of acoustical sig-
nals each of length 6.5s (10° samples) sampled at 16kHz
were considered. In two scenarios, we mixed a male and
a female speech and two speeches of the same male speaker,
respectively, which stands for the situation where speakers’
voices have different and similar spectra. In the fourth and
third scenario, the male speech was mixed with a musical sig-
nal: First, with a long synthesizer tone having almost static
variance, and, second, with a piece of a rhythmic music.

To simulate Monte-Carlo trials, we used the method of
sliding time-window gradually shifted throughout the whole
recordings. In each trial, the time-window of length 8000
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Figure 2: Example of course of the SIR averaged over two
separated signals.

samples (0.5s) was shifted by 200 samples (12.5ms, i.e.,
there are 461 trials in each scenario), and the matrix (4) was
constructed from the corresponding segment of signals with
L = 10 and multiplied by a random mixing matrix. Then, the
mixture was separated by the ICA and ISA methods men-
tioned in the previous section, with the following parame-
ters: Block EFICA, BGL, JBD and BARBI had the num-
ber of blocks set to 40 (so that each block had the length
200). The methods based on spectral diversity, computed the
separation by AJD of 11 covariance matrices with time lags
0,1,...,10.

Due to lack of space we present results in terms of the
SIR only; results obtained by angles between subspaces were
similar. An example of the resulting course of SIR is shown
in Fig. 2.

The evolutions of resulting SIRs are indicative of the be-
havior of respective algorithms when signals are changing in
time. Therefore, we use the three following characteristics
of the SIR for evaluation: (A) the mean value, (B) the stan-
dard deviation, and (C) the mean of absolute value of varia-
tion, which is the difference between SIRs achieved in two
successive time-windows. These characteristics of SIR are
shown in Table 1 in the form A & B(C).

Note that “good” performance must be characterized by
continuous behavior of the resulting SIR in time. The range
of SIR corresponds with the standard deviation B, and the
speed of changes is reflected by the mean variation C. Higher
value of the latter criterion signifies unstable performance.
Conversely, small C and B means stable performance that is
less dependent on signal characteristics.

5. DISCUSSION
5.1 Methods based on non-Gaussianity

Performances of algorithms using non-Gaussianity (INFO-
MAX, FastICA, EFICA, SJADE) appear to be not the best
of all algorithms, but are quite good in all scenarios. EFICA
slightly outperforms the other algorithms (INFOMAX, Fas-
tICA, and SJTADE) thanks to being more advanced. All these
four algorithms were outperformed by Block EFICA, which,
in addition to the non-Gaussianity, utilizes non-stationarity
of the signals as well.

5.2 Methods based on non-stationarity

These methods gave the best separation results in our study.
Among them, BGL and IBD are based on non-stationarity
only, BARBI combines it with the spectral diversity. Here,

BGL and BARBI with AR order 1 appear to be the most suc-
cessful algorithms. It is interesting to compare the results
in Table 1 with results in [19] that deals with a separation
of an instantaneous mixture of speech signals. In the latter
study, BARBI was a clear winner, outperforming the other
algorithms (including the BGL) by several dB. In this com-
parative study, both methods give similar results. Hence we
can see that there is a qualitative difference between the in-
stantaneous mixtures and the pseudo-convolutive mixtures,
BARBI with AR order 2 was less successful both in our study
and in separating the instantaneous mixtures of speech sig-
nals [19].

5.3 Methods based on spectral diversity

We observe that WASOBI fails in many trials in all scenar-
ios, the results of SOBI are stable, moreover, SOBI yields
surprisingly good results in the third scenario. This is an-
other example showing the difference between instantaneous
and pseudo-convolutive mixtures, because WASOBI is nor-
mally known to outperform SOBI in separating instanta-
neous mixtures [17]. In order to explain the failure of WA-
SOBI, we note that blocks of cross-covariance matrices of
(4) are not diagonally dominant except for the zero-lag cross-
covariance. Therefore the AID procedure in WASOBI might
terminate at transformed matrices that are “more diagonal”
in a sense but “less block-diagonal” than they should be.

5.4 Comparison of ICA and ISA algorithms

Our comparative study does not show any clear advantage of
subspace (ISA) algorithms (JBD, STADE) over the ICA al-
gorithms. In order to make sure that the difference between
the algorithms is not only in the separation criteria, we also
compared performance of the ISA algorithms with their ICA
versions. The ICA versions were obtained by setting the sub-
space dimensions equal to one. The separation results of the
ISA algorithms and their ICA variants were approximately
the same; the truly subspace algorithms were only faster.

6. CONCLUSION

We have proposed a method of comparing performance of
different ICA and ISA methods in time-domain separation of
convolutive mixtures of audio sources. In our test, the best
separation results were obtained by the BGL and BARBI al-
gorithms. Note, however, that the results depend, in general,
on properties of the to-be separated signals.
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Chapter 5

Introduction

Blind separation of audio signals that are simultaneously sounding in a natural en-
vironment has many potential applications. It allows to suppress noise, jamming
signals or other negative effects such as the reverberation from a targeted signal.
Blind processing of signals is popular since no prior knowledge about them or
about mixing conditions is required. There are also many emerging applications,
especially in speech processing [44], such as automatic speech recognition, hands-
free and distant-talking speech communication, human/machine interactions, mu-
sic, etc.

However, the problem is difficult, since acoustical signals are reflected by
walls and other obstacles, and their speed of propagation must be taken into ac-
count even when the sampling frequency of the measuring device is very small (<
8 kHz). Therefore, the mixed signals measured on microphones contain delayed
and colored versions of the original signals due to the reverberation. The mix-
ing system is therefore the convolutive one [45], which was already mentioned in
Section 1.2.2.

5.1 Problem Statement

5.1.1 Convolutive Model

The goal is to blindly retrieve d original audio signals (sources) from their convo-
lutive mixtures recorded by m microphones. The ¢th mixed signal is equal to

o )":{i‘?‘—l
Ti(n) = Z Z hij(1)s;{n — 1), io= Tguiu 00y (5.1)
=1 7=0
where s1(n),. .., sq¢(n) are the unknown original (audio) signals, h;; denotes the

impulse responses between the jth source and the ¢th microphone whose length is
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M;;. The responses characterize propagation of sound in the recording room and
are unknown. It will be assumed that the system is time-invariant. This requires
that positions of all objects in the mixing environment, including sources and
microphones, do not change within recording. The length of recorded data will be
denoted by V.

The mixing model (5.1) can be written in the form

d
xi(n) =Y si(n) (5.2)
j=1
where
ﬂrfg‘,j—]
i) = Y hij(r)s;(n—7) (5.3)
7=0

is called the response of the jth source on the ith microphone. It corresponds to
the jth original signal how it is heard in the position of the ith microphone when
all the other sources are silent. It also corresponds to a filtered version of s;(n) by
the filter represented by /5.

To separate the signals in a linear way, one has to find a MIMO filter whose
inputs are the mixed signals from microphones, and its outputs are the separated
(estimated) signals. For instance, an estimate of the jth original signal is

m Li—1
G =) Y wu@mln=71), F=L...,4, 5.4
i=1 T=0

where the filters wj;, each of the length L;, parametrize the separating system. The
number of parameters to-be estimated is thus equal to d(>_)" | L;). Since filters
that achieve (almost) exact inversion of (5.1) are usually long (L;s are large), the
task to find them is usually very difficult.

5.2 Separation through ICA

There are several approaches for finding the separating filters in a blind way. This
part of the thesis focuses on the use of ICA. The only assumption about the origi-
nal signals, therefore, is that they are independent. The goal is to restore the inde-
pendence of signals by transforming the mixed signals. Here, it will be assumed
that the number of microphones is the same as the number of sources, m = d, so
the mixing system is determined.
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5.2.1 Indeterminacies

As follows from the ambiguity of ICA, which was discussed in Section 2.1.1, the
original order, signs and scales of signals cannot be retrieved. Nevertheless, the
solution is yet more ambiguous in case of the convolutive mixing model. The rea-
son is that the original signals can each be arbitrarily filtered while being still mu-
tually independent. For instance, the responses of signals on a given microphone
defined by (5.3) are independent whenever s;(n), ..., sq¢(n) are independent. It
follows that, based on the independence assumption, signals can be retrieved up
to their original order and spectra.

Minimal Distortion Principle

The fact that the original spectra of signals cannot be determined entails an impor-
tant problem when separating audio signals. Fortunately, properly defined spectra
are (only) those of the responses (5.3), because they are observed through micro-
phones. It is therefore meaningful to aim at estimating the responses, because the
original spectra of sources cannot be retrieved without their prior knowledge.

Besides the advantage that the only ambiguity of this solution is the unknown
order of signals, there are also further appealing features that were described in
[46]. The approach is called Minimal Distortion Principle (MDP).

5.2.2 From Convolutive to Instantaneous Mixing Model

The original ICA algorithms assume the instantaneous mixing model, which is
equivalent to (5.1) only if M;; = 0 for all 7 and j. To enable the utilization of
ICA algorithms designed for instantaneous mixtures in processing of convolutive
mixtures, the model needs to be transformed first.

There are two basic approaches to transform the convolutive model. The
frequency-domain (FD) approach comes from the fact that the Fourier transform
converts the convolution operation in (5.1) between the original signals and room
impulse responses to the ordinary multiplication of their Fourier images. Then,
(5.1) is represented by instantaneous mixtures

X(0) = H(0)S(0), (5.5)

one for each frequency 6. Here, the elements of X () and S(#) are equal to
the Fourier transforms of the mixed and original signals, respectively, and H(#)
is the d x d matrix whose ¢jth element is the Fourier transform of h;;(n) at 6.
Consequently, complex-domain ICA methods could be applied separately to each
of the instantaneous mixture.
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The second basic approach works with signals directly in time-domain (TD).
Generally, it can be described by defining a data matrix constructed of the sam-
ples of mixed signals. It has a special structure different from that of X defined
in (1.1). The de-mixing transform is searched by an ICA algorithm as a separat-
ing matrix, because the ordinary matrix multiplication conveys the convolution
operation thanks to the special structure of the data matrix.

Both approaches will be described in more details in the next chapter.

5.3 Performance Measurement

It is difficult to evaluate the quality of separated audio signals in a definite way
using a single-valued criterion. The problem arises due to the ambiguity of the
spectra of separated signals. Standard measures like the Signal-to-Interference
ratio are not invariant to the filtering of signals [48].

On one hand, the Minimum Distortion principle defines the target spectra of
separated signals properly. On the other hand, it does not imply that these signals
provide the best solution in terms of other aspects like intelligibility, for example.
(The responses (5.3) are reverberated due to room acoustic.) Therefore, further
criteria reflecting other aspects of the quality should be introduced.

5.3.1 Signal Acquisition

To evaluate the separation, the mixing system or the original signals must be
known. However, it is difficult or even impossible to measure the room impulse
responses of acoustical environments with the required precision. On the other
hand, the original signals are easily provided in a testing scenario. The problem is
that the room impulse responses are usually very long, so it is difficult to decom-
pose any measured signal into the sum of target signal and interference.

A much easier way is to record each source separately, that is, when the other
sources are silent, that is, to record the responses (5.3) separately. Then, the mixed
signals can be obtained as the sum of responses according to (5.2).

The alternative and more realistic way is to record the mixed signals, that is,
when all sources are active. The latter approach requires perfect time synchro-
nization of recordings so that the recorded responses have no delay in comparison
with how they occur in the mixed signals. In other words, the relation (5.2) be-
tween recorded signals must be valid up to some noise. Then, it follows that the
difference between the left and right side of (5.2) provide information about the
additive noise, which will be specified below.
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5.3.2 Signal-to-Interference Ratio

Let the order of separated sources be the same as the original one. Next, let
% be the estimated response of the jth source on the ith microphone, and wy,

k =1,...,d, be the separating filters. The estimated response can be written as
d
§j(n) = Z{wk * 1 Hn) (5.6)
k=1

where x denotes the convolution operation. Using (5.2), the signal can be decom-
posed as

d d d
S0 = D {wexsi}m) + 30> {wex st} ), 57
£#j

where the first term corresponds to the contribution of the target signal, and the
second term 1is the residual interference. Signal-to-Interference Ratio (SIR) of
§%(n) is thus defined as
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SIR = (5.8)

where E stands for the sample mean operator. For further use, the average SIR of
the jth source will be denoted by SIR;, i.e.

d
SIR; = é > SIRY. (5.9)
i=1

As pointed above, SIR is nof invariant to a filtering of the evaluated signal.
Since the filtering can focus an arbitrary frequency band where the signal is or is
not active (and similarly the other signals), the SIR can be made arbitrarily high
or low by the filtering. Consequently, it should be noted that the criterion does not
reflect the audience quality of the signal.

5.3.3 Signal-to-Distortion Ratio

A criterion that reveals whether the spectrum of a separated response corresponds
with that of the original response is the Signal-to-Distortion ratio (SDR). For
5%(n), it is defined in [49] as
, E [si(n
SDR’ — max [ i )} Ty (5.10)
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The maximizations over o and 7 guarantee that the criterion is invariant to the
scale and delay of separated signals. The denominator, called the distortion, is
equal to zero if the first term in (5.7) is equal to a; (n). Tt is highly sensitive
to the filtering of the estimated response 37:';(11.), as required. On the other hand,
the criterion neglects any the residual interference in the evaluated signal. The
alternative definition is therefore

E [si(n)]
" 7 - .' ~i (. 2"
a€R7€Z E [¢i(n) — aSi(n — 7)]
This criterion is easier to implement, but it might be too sensitive to the filtering
and interference in 5% (n).

(5.11)

5.3.4 Signal-to-Noise Ratio

Assume that the second approach described in Section 5.3.1 for acquiring the
recordings was done. It means that the mixed signals and the responses were
obtained independently. In practice, each recording contains certain amount of
additive noise. Using the difference between the recordings, the noise level can
be evaluated.

[t is natural to assume that each recording is disturbed by a Gaussian white
noise with zero mean and variance o7 where 7 is the index of microphone. Let
n’(n) be the noise that was added to the recording of s%(n), and n;(n) be the noise
added to x;(n). The signals n%(n) and n;(n) can be seen as independent realiza-
tions of the same Gaussian noise with the variance o2. The difference between the
mixed signals and sum of responses on the ith microphone thus gives

d d
xi(n) — Z si(n) = ny(n) — Z g (n). (5.12)
k=1 k=1

Using the independence of noise realizations, the variance of (5.12) is (d + 1)o?.
By computing the sample variance of (5.12), o7 can be estimated as

d 2
U | e B _
0i=71 1E [.1.1(11.) kzz;sk(n.)] : (5.13)

Consequently, the Signal-to-Noise Ratio (SNR) of the recorded signals s%(n) and
x;(n) can, respectively, be defined as
 E[si(n)]? - 52
SNR! — % (5.14)
01‘

L~ . 2 _ A2
Blen)]" =5, (5.15)
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Chapter 6
Methods

6.1 Frequency-Domain Approaches

Separation in the frequency-domain [47] works with the signals obtained from mi-
crophones transformed by the Fourier transform. By applying the Discrete-Time
Fourier Transform (DTET) to the convolutive model (5.1), the problem is trans-
formed to complex-valued instantancous mixtures (5.5), one for each frequency.

In practice, where finite data are processed, the DTFT is replaced by Discrete
Fourier Transform (DFT) that is computed in a sliding time-windows. This trans-
form is commonly known as the Short-Time Fourier Transform (STFT). In this
way, X' instantaneous mixtures

X(0p) = H(O)S(0:), k=1,...,K, 6.1)

are obtained, where K corresponds to the half of the length of DFT. The number
of available samples of X (#) is equal to the number of time-windows where DFT
is computed.

Now, an ICA algorithm designed to work with complex-valued signals could
be applied to find the right sides of (6.1). Once H(#;) and S(f},) are estimated
for all k, the separated signals are obtained by the inverse STFT. The minimal
distortion principle is respected when each separated signal, thatis, a row of S(0y),
is multiplied by the corresponding column of H(#;). Specifically, for the jth
signal, the rows of

H(Qk):,j S(Gk)j,:?

which is a matrix of the same size as X(f}), contain Fourier coefficients of the
responses of the jth source for ¢;. Here, the subscripts -. ; and -;. denote, respec-
tively, the jth column and row of a given matrix.

The advantage of the FD approach is that the dimension of (6.1) is d, which
is reasonably low, and the ICA decomposition is fast. On the other hand, ICA

84
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requires sufficient length of data K due to the accuracy of separation. Therefore,
sufficiently long recordings should be provided.

The main difficulties of the FD approach consist in the indeterminacy of order
of original signals, which cause that the order of columns of H(f) and of rows of
S(0}) is random (thus different) for each 0. For the sake of successful separation,
it is necessary that the separated frequency components corresponds to the same
source. Otherwise, the sources would be mixed again after the inverse STEFT. The
goal is thus to re-order the separated frequency components. The task is named
the permutation problem.

6.1.1 Approaches to Solve the Permutation Problem

The permutation problem has been addressed by many researches, and various
methods have been proposed to solve it. Some earlier methods utilize the fact
that spectra of audio signals should be smooth. The frequency components are
permuted so that a criterion of smoothness is optimized. For instance, in [50], the
criterion requires that the length of separating filters in time-domain is limited.
The reason is that FIR filters have polynomial spectral characteristics, so they
are smoother when they are “short”, that is, they have as small number of free
parameters as possible.

Another way 18 to exploit the dependency between separated components across
frequencies. Many audio signals such as speech or tones of musical instruments
embody the dependencies thanks to being abundant in harmonics. The dependen-
cies can be measured by correlations [51] or even with the aid of higher-order
statistics.

Robust approaches utilize the directivity of sources through various propaga-
tion models [52]. In general, the models try to extract some hidden information
following from the structure of H(f)) or of its inverse matrix. For instance, the
time difference of arrival (TDOA) of sources can be utilized this way [51].

A recursive computation of the ICA is utilized in [58]. Also this approach
relies on the smoothness of frequency characteristics of separating filters. ICA
in a given frequency bin is computed by doing one optimization step of an itera-
tive ICA algorithm initialized by the resulting transform computed in the previous
frequency bin. The recursion can be repeated several times to achieve the conver-
gence. A smooth behavior of the ICA algorithm is needed.

6.2 Time-Domain Approaches

TD approaches consists in that the convolution operation is done through opera-
tions with data vectors or matrices of a special structure. Typically, a data matrix
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of mixed signals X is defined as

;Ifl(Nl) S B it .)"L'l(Ng)
xj(Nj_].) ;Ifl(Ng—l)
(N = L+1) ... ... z3(Na—L+1)
. x2(N1) e x2(N2) ’ (6.2)
J’Cz(Nj —= 1) ;ITQ(NQ— 1)
| Gl =BT o e il —EBED) |

where Ny and Np, 1 < N, < N, < N, determine a segment of recordings that is
used for computations, and L is a free integer parameter.

Consider a Ld x 1 vector w whose elements are equal to the entries of a MISO
filter of the length L

w = [w(0) ... wi(L— D)un(0) ... ... we(L—1)7.

The resulting signal from a multichannel convolutive operation

d
Z{wk*xk_}(n), n=>N,..., Ny,
k=1

can be represented (up to starting and ending effects) as the resulting row-vector
of the vector/matrix product
wlX, (6.3)

which holds thanks to the structure of X. Hence, time-domain methods can be de-
fined as those operating with X defined through (6.2). The subspace of RV2=V1 1
spanned by rows of X will be called the observation space and X the observation
matrix. It contains all signals that can be obtained from the mixed signals by a
MISO filtering by filter of the length L.

MISO filters that output independent signals could be searched as rows of a
separating matrix computed by an ICA algorithm that is applied to X. In other
words, ICA can be used to give the decomposition X = AS, where S are inde-
pendent components that can be used to reconstruct separated signals.

The decomposition can be either complete or partial, which corresponds, re-
spectively, to finding the whole regular A or some of its columns only. In the
former case, there are Ld independent components, but only d original signals
should be retrieved. Therefore, the components should form d independent sub-
spaces, which bears relation to ISA (Chapter 3). In the partial decomposition,
each original signal is represented by one component.
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Independent components usually do not provide useful estimates of audio sig-
nals by themselves, because their spectra are flat or randomly colored. A re-
construction procedure that retrieves the original spectra is therefore needed. A
different situation is, for example, when communication i.i.d. finite-alphabet sig-
nals are to-be separated. Such sources are temporarily white, which is a prior
knowledge about their spectra (this task is named the blind equalization [53]).

In partial-decomposition methods, the initialization determines what compo-
nent is going to be found. However, it is never known in advance which com-
ponent of what source is found unless any prior knowledge is given. To avoid
findings of two or more components of the same source, an efficient constraint
should be applied. An example of method for blind separation of audio sources
doing the partial decomposition is [54], where the paraunitary constraint on sep-
arating filters is used. The reconstruction of signal spectra relies on multichannel
spatio-temporal pre-whitening of the input signals prior to the separation and the
inverse operation after the separation.

The complete decomposition is computationally expensive when L is very
large. Many methods apply some constraint to allow the computation of longer
filters. An often used constraint is that the matrix A has a special structure, for
example block-Toeplitz or block-Sylvester [5S5]. An unconstrained decomposi-
tion is done by the T-ABCD algorithm that is briefly described by the following
subsection.

6.2.1 The T-ABCD algorithm

The abbreviation “T-ABCD” means Time-domain Audio sources Blind separa-
tion based on the Complete Decomposition of the observation space. It reflects
the fact that the ICA is used to decompose the whole observation matrix into all
independent components. A prototype of T-ABCD was first published in [¢7]. A
similar concept was proposed by Jafari et al. in [59].

Following the minimal distortion principle, T-ABCD estimates microphone
responses of the original signals by the four following steps:

I. The matrix X is formed, basically, according to (6.2).

2. X is decomposed into independent components by an ICA algorithm. Let
the separating (decomposing) matrix be W, which is a M x M matrix W
where M = dL.

3. The components (rows of) C = WX are grouped into clusters so that each
cluster contains components that correspond to the same original source.
Components of a cluster form an independent subspace. Each cluster, in
fact, represents an original source.
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4. For each cluster, only components of the cluster are used to estimate micro-
phone responses of a source.

Steps 2 and 3 can be done jointly through ISA (Chapter 3). The drawback of
ISA is that the dimensions of independent subspaces must be known in advance.
In this respect, the two-step procedure seems to be more robust and flexible.

A related issue is the choice of an appropriate ICA algorithm applied in step
2. It was shown experimentally that most ICA methods can be applied success-
fully, up to some methods using the spectral diversity principle thus doing the
joint diagonalization of cross-covariance matrices (WASOBI, BARBI). Since the
problem is, in fact, an ISA problem, the joint block-diagonalization of matrices
is needed rather than the diagonalization. Since cross-covariance matrices are
not diagonally dominant, their joint diagonalization might yield unwanted solu-
tions. On the other hand, this problem does not arise with methods based on the
non-stationarity where the requirement of the block-diagonality is not in conflict
with the diagonality. The experimental observations are in accordance with the
results of [¢15], which also serve as benchmarks for choosing the most efficient
algorithms in terms of accuracy and computational burden (BGSEP, EFICA).

The details of step 4 are as follows. For the £th cluster, a matrix

S, — W ldiag[ M}, ...

AW X = Wldiag My, .. 0] C (6.4)

is defined where \¥, ..., Ak, denote positive weights from [0, 1], reflecting degrees
of affiliation of components to the kth cluster. Sy should be, ideally, equal to

_Sﬁt(Nl)
sp(Ny—1)

SE(NI)

=
Sﬁ(Nl e 1)

| s#(Ni— L +1)

si(V2)
S}C(Ng — 1)

5p(Na)

sH{N; — L+ 1) |

; (6.5)

which is the contribution of the kth source to X, because X — S; + -+ + S, as

follows from (5.2).

Taking the structure of S; into account, the microphone responses are esti-

mated from S, as

. L

/\.?‘ ].

sk(n) = 7 Z Uk i-nrte(n + €= 1),
=1

(6.6)
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where 11 ,(n) is equal to the (p, n)th element of Si. To clarify, note that Yrp(n)
provides an estimate of si.(n — £ + 1) forp = (i — 1)L + £.

An extensive descriptions of T-ABCD and of its generalized version are pro-
vided by article [j7], which is included as a part of this thesis. A conference paper
on the generalized version was published in [c18].

6.3 Subband Separation

Subband processing is a standard approach of signal processing. In blind separa-
tion of audio signals, it provides a way between the FD and TD approaches. The
mixed signals are decomposed into subbands via a filter bank. Each subband is
processed by a TD separating method. The separated subbands must be re-ordered
since the order of separated signals is random and different in each subband (the
permutation problem). Finally, separated signals from subbands are synthesized,
which gives the full-band separated signals.

The subband approach provides a compromise [56]. Although the permuta-
tion problem exists here, if a moderate number of subbands is chosen, it becomes
less difficult than in FD methods. Next, the signals of each subband can be deci-
mated prior to the separation since their spectra are narrow. The effective length
of separating filters computed by the TD method and applied within subbands is
increased (multiplied), consequently.

A subband variant of T-ABCD was proposed in article [¢19], included in this
thesis.
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Abstract—Time-domain algorithms for blind separation of
audio sources can be classified as being based either on a
partial or complete decomposition of an observation space. The
decomposition, especially the complete one, is mostly done under
a constraint to reduce the computational burden. However, this
constraint potentially restricts the performance. The anthors
propose a novel time-domain algorithm that is based on a com-
plete unconstrained decomposition of the observation space. The
observation space may be defined in a general way, which allows
application of long separating filters, althongh its dimension is
low. The decompuosition is done by an appropriate independent
component analysis (ICA) algorithm giving independent com-
ponents that are grouped into clusters corresponding to the
original sonrces, Components of the clusters are combined by a
reconstruction procedure after estimating microphone responses
of the original sources. The authors demonstrate by experiments
that the method works effectively with short data, compared to
other methods.

I. INTRODUCTION

Blind separation of simultancously active audio sources
is a popular task of audio signal processing motivated by
many emerging applications, such as hands-free and distant-
talking speech communication, human/machine interactions,
and so on. The goal is to retrieve ¢ audio sources from their
convelutive mixtures recorded by wn microphones, which is
described by

o Mf,-j—l

x;(n) = Z Z hij(tlsgin—71), i=1L....m, (1
i=1 =0

where xi(n},...,x,(n) are the observed signals on micro-

phones and si(n),...,sz(n) are the original (audio) signals
unknown in the “blind” scenario,

In fact, the mixing system is a multi-input multi-output
(MIMO) linear filier with source-microphone impulse re-
sponses ky;, each of length M,;. The responses characterize

OParts of this work were presented at HSCMA 2008 [21]. The work was
supported by Grant Agency of the Czech Republic through the projects
102/07/P384 and 102/09/1278 and by Ministry of Education, Youth and Sports
of the Czech Republic through the project 1MO572.

propagation of sound in the recording room and are also
unknown. It is assumed that the system is time-invariant,
which usually means that positions of the sources and the
microphones do not change within recording of NV samples.

The separation through a linear processing consists in
secking a MIMO filter that inverts the mixing process (1).
Any estimate of the jth original signal s;(n), j = 1,...,4,
thus has the form

wm L—1

s;(n) = Z Z wyl{T)r(n — 7,

i=1 v=0

2

where L is the length of the separating filter. The blind
separation that is based on the assumption of statistical in-
dependence of the original signals is addressed here. The
separating filters will therefore be estimated via Independent
Component Analysis (ICA) [1], [2].

Indeterminacies that are inherent to the ICA cause that each
original signal is estimated up to an unknown filtering [3],
[4]. Without any prior knowledge, that is not available in the
blind scenario, an arbitrarily filtered source signal can also
be considered a source signal. It is therefore meaningful to
aim at estimating responses of sources at microphones, which
only have properly defined colorations. Following from (1), the
microphone response of the kth source at the ith microphone
is

Ma—1

si(n) = Z b (T)ee(n — 7). %
=0

Consequently, each source is estimated = times (all its
responses are estimated). Once the responses si(n), ¢ =
1,...,m, are estimated, it might be desirable to combine them
in one-chanmel estimate of the Ath signal denoted by ().
Basically, the blind audio source separation can be per-
formed either in the frequency-domain or in the time-domain
(TD). In the frequency-domain approach [5], [6], [7], the
signals are transtormed by the Discrete Fourier Transtorm
(DFT}, and the convolution operation in (1) changes to the

Copyright (¢) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissionsiédieee.org.
Authorized licensed use limited to; Technical University of Liberec. Downloaded on August 12,2010 at 13:13:28 UTC from |IEEE Xplore., Restrictions apply.
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ordinary multiplication!. This translates the convolutive model
into a set of complex-valued instantaneous mixtures, one for
each trequency, that can be separated by complex-domain ICA
methods. The frequency-domain approach allows eftective
computation of long separating filters, which is favorable in
audio applications. By contrast, the computation of long filters
requires long recordings to generate sufficient amount of data
for each frequency [8].

Time-domain approaches transform the convolutive model
into an instantaneous one by constructing data vectors or
matrices of a special structure, by which the convolution is
translated into the vector/matrix product. The data structures,
constructed from the only available signals from microphones,
define the observation space. Most often a matrix is defined
so that its rows contain the time-lagged copies of signals from
microphones, and the observation space is spanned by these
rows. In general, TD methods aim at finding subspaces of the
abservation space that correspond to separated signals [9].

Decomposition of the observation space can be either com-
plete or partial [10]. In the former case, the original signals
are represented by d independent subspaces spanming the
whole observation space. In the latter case, the signals are
estimated as one-dimensional subspaces (components) of the
observation space. A reconstruction procedure must follow
the decomposition to retrieve the microphone responses of
separated signals,

Performance of methods doing the partial decomposition
depends very much on initialization of a convergence scheme
[L1], [12], [13]. It might also happen that the method finds
two components of the same source and skips another source.
In this respect, the complete decomposition is more reliable,
however, at higher computational demand.

To alleviate these problems, the decomposition may be
done with some constraint. The complete decomposition is
usually constrained by an assumption that the inverse of
the decomposing transform (matrix) has a special structure,
for example block-Toeplitz or block-Sylvester; see articles of
Kellermann et al. and Belouchrani et al., e.g. [9], [14], [15].
Févotte et al. proposed a two-stage separation procedure in
[10] doing the complete decomposition by an algorithm for
the independent subspace analysis (ISA) through joint block
diagonalization (IBD} [9] utilizing the orthogonal constraint
[17]. The algorithm of Douglas et al. [18] is an example of a
constrained partial decomposition. It uses a para-unitary filter
constraint and is compared in experiments in this article.

A potential drawback of the constrained decomposition is
that it assumes all independent subspaces to have the same
dimension. The constraint might also cause some restrictions
due to the finite length of data or the limited length of
separating filters. In this respect, the complete unconstrained
decomposition provides an effective way to utilize the avail-
able data as effectively as possible, but it was considered to
be computationally too extensive [10]. For instance, the JBD
algorithm applied in [10] appeared to fail with L > 6, which,
in other words, means that this algorithm cannot work on

TMore precisely, the circular convolution changes o the ordinary multipli-
cation.

abservation spaces of higher dimension. It is known that the
stability and speed issues in high-dimensional spaces are the
shortcomings of many ICA/ISA algorithms.

In this article, a novel method based on the complete
unconstrained decomposition of the observation space is pro-
posed. It utilizes modern ICA methods that allow fast, accurate
and reliable separation of high-dimensional spaces. Especially,
very fast ICA algorithms that are based on approximate joint
diagonalization (AJD) by Tichavsky and Yeredor [20] are
used. Next, the method involves an effective reconstruction
step, which yields effective results even when separating filters
are much shorter than the mixing filter. Moreover, a general
construction of the observation space is proposed, which
allows the method to apply long {even infinite} separating
filters while preserving its computational complexity (dimen-
sion of the observation space). In real-world experiments, the
proposed method yields very good results in comparison with
its competitors. It has several attractive features such as the
ability to estimate the number of sources d, and it provides
room for further development of its variants in future, such as
a sub-band version or an on-line version.

The article is organized as follows. The following Section
IT provides a comprehensive description of a basic version of
the proposed methad, first introduced in [21], where classical
time-lag construction of the observation space is used. The
method is a five-step procedure, where each step can be
solved in many alternative ways. A few basic variants are
proposed. This also includes a novel oracle algorithm [8]
that utilizes known responses of the sources and provides a
reference solution that depends on the quality of the ICA
decomposition only. In Section III, an extension of the method
that comes from a generalized definition of the observation
space is proposed. A special case of the definition leads o
the application of infinite impulse response (IIR) Laguerre
separating filters. In Section IV, results of various real-world
experiments that demonsirate excellent performance of the
proposed method in comparison with other existing methods
are presented.

II. BASIC VERSION OF THE PROPOSED METHOD

In the following subsection, a brief description of main
steps of the basic variant of the proposed method is given,
and in the other subsections each step is further commented
and illustrated by an example.

A. Outline

Assume that N samples of simultaneously recorded signals
from microphones xi(n).....zn(n), n = 1,... N, are

available. The method proceeds in five consecutive steps.

1y Farm a M x (No — Ny + 1) data matrix X, whose
rows contain time-lagged copies of the signals from
microphones. Each signal is delayed L times, thus, L
rows correspond to each signal, and M = mL. The

Copyright (¢) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissionsiédieee.org.
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matrix X is given by

B :r:l(Nl) x:l(N?) T
x1(N1 — 1} x1(Na— 1)
oMy — L+ 1) 21(N2 — L+ 1)
X — xa(N1) xrz({Ng)

rz(Np -1} ra(Ng — 1) ’

L «Tm(Nl_L‘l‘])

Em(Na — L+ 1) ]
)

where Ny and Vo, 1 < Ny < Ny < N, determine
a segment of recordings that is used for computations.
The subspace of RY2~"+1 spanned by rows of X will
be called the observation space.

2y Apply an ICA method to the mixture given by X to obtain
all independent components of X. As there may be up to
M {independent) components, the output is a M x M de-
mixing (decomposing} matrix W, and the components
are given by C = WX, The rows of C will be denoted
cl, ..., cI; and the components (the signals) defined by
them will be denoted by cy(n)}, ..., cps(n).

3y Group the components ci(n), . ... car(n) into degr clus-
ters, so that each cluster contains components that
correspond to the same original source. The number
des 18 either estimated or equal to an apriori known (if
available) number of sources 4. The grouping is done
subject to a similarity measure between the components.

4y For each cluster and each component, a weight that
characterizes a measure of confidence of the component
to belong to the cluster is computed. Then for each clus-
ter, a reconstructed version of the matrix X is computed
using weighted components subject to the cluster, and
rows of the reconstructed matrix are used for estimation
of microphone responses of a source corresponding to
the cluster, Mathematically, the reconstructed mairix, for
the kth cluster, k=1, .., d.s, is

S, = Wldiag[M\r,. 2% C (5)
= Wldiagk, .. 25| WX,
where A%, ... XK, denote the weights, each one from

[0, 1], reflecting degrees of affiliation of components
to the #4th cluster. Their particular selection will be
described later in this section. Finally, microphone re-
sponses (3) of an original source corresponding to the
kth cluster are estimated as

£
w(n) = %Z"r"'"k,(-i—l)L+f(n +£-1), i=1,...,m,
= N {6)
where oy, ,(n) is the (p, »)th element of 8;. Obviously
@i p(n), p= (1—1)L+¢, provides an estimate of s} (n—
€+1).
3y Apply a beamformer to the estimated responses of each
source to get the one-channel estimate of the source.

In the following subsections, the steps of this method are
discussed in more details. To make the presentation clearer,

)

an accompanying example is given with three original sources
that were artificially mixed into three signals. The mixing sys-
tem consists of filters of the length My; =4, 4,5 =1, ..,3,
whose coefficients were randomly generated according to
Gaussian law with zero mean and unit variance. The original
and the mixed signals are, respectively, shown in Figs. 1 and
2.

original sources

10000
sample

a 5000 15000

Fig. 1. Original sources considered in the demonstration example. The signals
are, respectively, a man’s speech. a woman’s speech. and a typewriter sound.
recorded at the sampling frequency SkHz.

mixed signals

W o

0 5000 10000 15000
sample

Fig. 2. Three artificial convolutive mixtures of the sources from Fig. 1
simulating signals obtained by three microphones.

B. Step 1. Construction of X

As mentioned in the introduction, constructing X according
to (4) allows to convey the separating convolution operation
via multiplying X by a de-mixing matrix. X is usually
interpreted as an instantaneous mixture, X = AS, where 8 is
a matrix constructed of delayed original signals analogously
to X, and A is a mixing matrix that has the block-Sylvester
structure. However, such mixture is equivalent with (1) in full
if only A has more columns than rows, m > d and L is
sufficiently large; see [9], [10].

In this article, none of the above conditions is assumed. The
mixing or, equivalently, the de-mixing mamrix is considered
to be square without any special structure. The structure of
S 1s not specified either. Tt i1s only assumed that its rows
consist of the filtered versions of original signals and form
independent subspaces. Consequently, 8 can be estimated, up
to indeterminacies, as independent subspaces or components of
X via ISA or ICA. This approach proves to be more flexible,
among others, because X may be defined in different ways
than (4) as proposed in Section IIL

In the accompanying example, consider L = 4, Ny = L
and N; = 8000 + L — 1. This means that the length of
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separating filters is 4, and the matrix X is 12 x 8000. Note
that all computations made with X use data contained in first
8000 samples (the first second) of recordings only. Once the
separating MIMO filter is found, it can be applied to the entire
data set.

C. Step 2: ICA Decomposition

At the heart of the proposed separation procedure is a
suitable ICA algorithm to be applied to X. Because no
constraint is applied to the de-mixing matrix, many of the
known ICA and ISA algorithms can be considered including
those based on Non-Gaussianity, nonstationarity or spectral
diversity (distinct coloration) of signals; a survey of ICA
algorithms is provided, for example, by ICALAB [22].

The problem of the selection of ICA/ISA algorithm for
this purpose exceeds the scope of this paper. The study in
[23] showed that ISA algorithms do not have any obvious
advantage over ICA algorithms that are followed by clustering.
Potentially, ICA methods are computationally inefficient since
they not only separate independent subspaces, but also signals
within the subspaces. However, the ICA methods considered
here are computationally still much faster then up-to-date ISA
methods.

Owing to the need to separate mixtures whose dimension
is frequently 40 or more, two algorithms are considered: the
Non-Gaussianity based EFICA algorithm from [24] and the
nonstationarity based algorithm from [20] called BGSEP.

EFICA is an improved version of the well-known FastICA
algorithm [25]. BGSEP consists in a special approximate joint
diagonalization of a set of covariance matrices of signals in
data matrix divided in blocks. Both methods achieve asymptot-
ical optimality within respective models of signals and perform
very well in [23].

1 ittt oi ot
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S e e
€ 7 e -
8 : e
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a, e
g 10 o s g et o -
11 [l o i
12 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
sample
Fig. 3. Independent components obtained by the BGSEP algorithm in the

demonstration example. As can be seen by comparing signals from Fig. 1.
some components clearly correspond to separated signals.

D. Step 3: Clustering of Components

An independent component obtained by the ICA algorithm
equals, in an ideal case, to a filtered copy of an original source.
As the number of components is higher than the number of
sources, i.e. M > d, there should be d clusters of components

where each cluster contains components of one source. The
utilization of the ICA algorithm in the second step should be
therefore followed by the clustering of components.

As already discussed above, the alternative way is to apply
an ISA method instead of ICA, which does not need the
clustering step [19], [26], [27]. However, the “ICA+clustering”
approach used here has the following advantages.

« ICA methods work reliably without knowing or estimat-
ing the number of components of clusters.

« The approach is flexible because various criteria of simi-
larity of components and clustering methods can be used.

1} Similarity of components: If the ith and the jth compo-
nent belong to the same source and contain no interference, it
holds that there exists a filter f such that

+oa

ci(n) = Z f(mlej(n—=7)={fre;}n). (7N

T=—00

In practice, (7) holds approximately only, and f can be
searched by minimizing the mean square distance between the
two sides of (7). Therefore, the value of

minBle,(n) - {f x e;} ()], ®

where E denotes the sample mean operator, reveals whether
the two components belong to the same source. In practice,
the minimization in (8) proceeds over filters of length 2.

Therefore, the similarity of the ¢th and the jth component,
i # 7, is defined as the ijth element of matrix D, where

D.;'j = ]::[P.icj]'z + E[chilg, (9)

where P; denotes a projector on a subspace spanned by
delayed copies of the ith component, that is, by signals
ei(n—L+1),...,¢i(n+ L—1). Diagonal elements of D have
no significance here and are set to zero. The computation of
(9) can be done efficiently using the FFT and Levinson-Durbin
algorithm; see [21]. An example of the similarity matrix D is
shown in Fig. 4.
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# Independent component

1 2 3 4 5 & 7 8 9
# independent component

10 11 12

Fig. 4. Similarity matrix D between components from Fig. 3 computed
according to the definition (9).
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2) Clustering: The task now is to cluster the M compo-
nents subject to the similarity matrix D, This general task can
be solved by various methods. In this study, attention is re-
stricted to the agglomerative hierarchical clustering algorithm
that appears to perform well in this application,

The algorithm consists of M levels, each giving a parti-
tioning of components. In the beginning (the first level), each
compenent forms a cluster, called singleton, thus, there are
M clusters. At each subsequent level, the method merges two
clusters whose similarity is maximal. The number of clusters is
thus always equal to the level. In the last level, all components
form one cluster.

Finally, the most satisfactory level (partitioning) should be
chosen, If the number of sources 4 is known in advance,
the level giving the desired number of clusters is selected.
Otherwise, it is possible to select the level according to a
criterion such as

M — |KP| Zicxe jexr Dis
| K7

1
max

M—p+t1
P M-ptl 2iey jexy Dis

15
where p is the level index within M —m +1,.. M -1
(ie., the maximum number of estimated sources corresponds
to the number of microphones m), K% is a set of indices of
compenents in the Ath cluster of the pth partitioning level, and
|KT| is the number of those ndices. The argument of sum i
{10) evaluates the ratio between the average intra-similarity of
compenents of the &th cluster to the average inter-similarity of
compenents from the other clusters. The criterion thus reflects
the quality of the pth partitioning as it averages the argument
over all of its clusters.

Maximization of (10} can be interpreted as a method of
estimating the number of sources. However, since the results
are not always satisfactory in practice, there is room for further
improvement. In this paper we assume, for simplicity, that the
number of active sources is known a priori.

What is left is to define the similarity between clusters,
called the Xinkage strategy. A modified average linking strategy
is to be used, which is defined as follows. Let @ and K contain
indices of components of two different clusters. The similarity
of the clusters is given by

1 1 1
e TR AT B Dy,
min(|Q|, |R]) || | R| 2, 2. Do

g=drhR

d(Q, k) = (11)

where || is the number of indices in . The modification
of the average linkage strategy consists in the division by
min(|Q|, |R]). It penalizes mutual similarity of “large” clusters
and highlights the similarity of “small” clusters with “large”
ones, which is preferable to this application. Pseudocode 1
summarizes the clustering algorithm.

The clustering algorithm was applied to the components
from Fig. 3. Three clusters shown by Figs. 5(a)-3(c) were
found; reordered similarity matrix D according to the cluster-
ing is shown by Fig. 6. This example demonstrates clearly that
each source may consist of different number of components.
In other words, independent subspaces corresponding to the
original sources may have ditterent dimensions.

Pseudocode 1 Hierarchical clustering of components
Kl'={i},i=1,... M
Kl = {I\’il! ca Kr}»j’}
forp=1t0 M —1do
kg = argmink,g:l,m,M_p_H d(Krf, I\’g)
Ketl = [KP 3 £k 6y U {KE UK}

end for

if d is known then
p=M-—-d+1

else

Select p from M —m 4+ 1 to M — 1 according to {10}
end if
return KF = {K{’,”.,I{f{f_pﬂ}

It can also be seen that some components often exhibit
certain closeness to more than one cluster. This is because
of the residual interference between components caused by
various practical limitations such as the finite length of separat-
ing filters. The method takes this important phenomenon into
account in the reconstruction step discussed in the following
subsection.
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()
Fig. 5. Components assigned to the three founded clusters.

E. Step 4: Reconstruction

The goal of the reconstruction step is to obtain the responses
of sources on microphones defined by (3). The response is a
signal observed by the microphone if the source is sounding
solo, Since all sources sound simultaneously, it holds that

zi(n) =8 (n) 4+ -+ shn), r=1,... (12)

L

Copyright (¢) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissionsiédieee.org.
Authorized licensed use limited to; Technical University of Liberec. Downloaded on August 12,2010 at 13:13:28 UTC from |IEEE Xplore., Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

#independent component

i 0.2
8k
. . o
1 3 4 5 & 10 2 & 11 12 7 &
# independent component

Fig. 6. Reordered similarity matrix D from Fig. 4 after the hierarchical
agglomerative clustering. Three detected clusters can be markedly seen from
the picture.

Hence, X can be written as a sum of matrices Sq,...,S4,

where S;, is constructed in the same way as X but using
responses of the kth source only,

X=8+---+8,. (13)

First, the binary weighting that reflects the results of the
clustering of components is introduced by setting the weights
introduced in (5) to

I (14)
0 otherwise
where K contains indices of components assigned to the kth
cluster.

If there is no interference between components, and the
clustering proceeds without errors, then S; obtained by (5)
satisfies Sz = Sp, & = 1.....d.s, and rows of S;
contain delayed microphone responses of the kth source
s}c(n), ..., 8p(n). Equation (6) means that the pth response
is estimated as an average of (p — 1)L+ 1,...,pL rows of
S;, with restored delays.

It is worth noting here that the length of filters found by ICA
producing independent components is L. The reconstruction
formula (6) can be interpreted as a filtering by another FIR
filter of the length L. Therefore the final separating filter has
the length up to 2L — 1.

F. Computation of Weights
A natural extension of the “hard” weighting given by (14)

is to consider \f as positive numbers from [0,1] selected

according to an appropriate rule. The rule introduced in [21]

is used, which is given by

ZjE.Kk G7E ij

> i K e Dti

S hatsll (e s A?) ’

a3

p e (15)

where « is an adjustable positive parameter. The denominator
in (15) reflects the similarity of the fth component to compo-
nents from different clusters than the kth one. If the component

clearly belongs to the kth cluster, the denominator is close to
zero, and the value of (15) becomes large.

If &« — +oc, the reconstruction proceeds practically from a
single component with the maximum value of the fraction in
(15). On the other hand, with o close to zero the weighting
becomes uniform, which means no separation.

An example in Section I'V. indicates that a good choice of
e is o = 1. Figure 7 shows resulting weights obtained in the
demonstration example for this choice.
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Fig. 7. Weights of components from Fig. 3 computed according to the rule
(15 with ex = 1.

G. Oracle Weighting

It is interesting to know what would be the best possible
weights for separation in theory, given the ICA decomposition
of the observation space. In other words, what are the best
possible weights independent of the similarity given by D and
the clustering algorithm. Such weights can be derived using
known responses of sources. The authors call it an “oracle
weighting”, and the corresponding algorithm an “oracle algo-
rithm”, following the work of Vincent et al. [8].

The oracle weighting can be derived as the one that mini-
mizes ||Sy — Si|7, k= 1,..., des, given the true responses
of sources on the microphones forming the matrix S.. Here
Il - ||z denotes the Frobenius norm, and d.s; = d. Using (5),
the oracle weights are defined by

I, = argmin||Sy, - W ldiag(HWX |7, (16)
where 1, = [}, ..., \5,]7. After some computations it can
be shown that

L = (WXXTWT) o (WwT)—1) !
- diag (W8, X"WT'], (17

and @ denotes the Hadamard (element-wise) product. The
rest of the oracle algorithm (reconstruction and beamforming)
proceeds normally.

H. Step 5: Beamforming

A beamformer can be applied to the multi-channel estimate
of each source (microphone responses) to yield a mono-
channel estimate of the source. This problem is not addressed
here, because it exceeds the scope of this article. The beam-
forming requires an additional definition of a principle that is
not given in the blind scenario considered here. The reader is
referred to [16].

Results obtained in the demonstration example after delay-
and-sum beamforming of estimated microphone responses are
shown in Fig. 8. The order of estimated signals with respect
to the original ones is arbitrary.
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Fig. 8.  Estimates of original sources obtained by the delay-and-sum
beamformer applied to estimated microphone responses.

III. GENERALIZED OBSERVATION SPACE

In this section, the previous definition of the observation
space is altered (generalized) in order to enable the applica-
tion of long (IIR) separating filters while keeping the same
dimension of the observation space. This makes the method
computationally affordable even when long separating filters
are considered.

It is worth pointing out that maintaining a reasonable
dimension of the observation space 1$ also desirable from the
probabilistic theory point of view. The ICA is a stochastic
method whose accuracy measured in terms of the interference-
to-signal ratio is, in theory, proportional to the number of
components M see for example [24], [28], [29].

The original construction of X given by (4) means that
FIR filters are applied to the mixed signals, because the
outputs of FIR filters can be seen as linear combinations of
time-shifted versions of the input signals (rows of (4)). The
proposed generalization consists in constructing X so that
separating filters have a well-known generalized feed-torward
(FF) structure [30], [31], which also embodies FIR filters as
a special case.

The output of a generalized FF filter applied to an input
signal x(n) can be written as

L +an

y(n) = wa Z fe(7)x(n — 1)

=1 T=—20

(18)

L
= Z we { fex z}(n),
k=1

where ~ denotes the convolution, o, are the filter weights,
and the filters f, are called eigenmodes of the filter. The
definition of MIMO filters with the generalized FF structure
is analogous.

A. Generalized Observation Matrix X

For a given set of invertible eigenmodes fe, the #th block
of the observation matrix X can be defined as

{f1# 2 HN) {/1 %23 [ Na)
{f2 * 2 H{NY) {F2 % a3 }(Na)
{ferm}(ND) {fewwi}{(N2)

The whole X is then given by
X

X= (20)

X
If f; is the all-pass filter that realizes backward time-shift
by ¢ samples, the construction in (20) coincides with the one
in (4).
Example of perfect separation: Consider the general 2 x 2
scenario

z1(n) = {hi1 v s1}(n) + {hi2 * s2}(n)
x2{n) = {hay * s1}(n) + {haz * s2}(n).

Almost perfect separation can be achieved when taking L = 2
and applying special eigenmodes for each matrix X and X,
namely, fll = g* hgg, flg = —g* hgl, fgl = —g* hlg,
and fgg = g% ki1, where g = (hll * frag — hay hlg)_l
assuming that the inversion exists. A trivial verification shows
that combinations of signals { fiy+x1}(n) +{fay*x2}{(n) and
{ fi2 * 21 }(n) + { fou * a0} (n) are, respectively, equal to the
original mdependent sources s, and s2. In other words, s, and
52 can be found as independent components in the observation
space. [ |

The example demonstrates the great potential of the general
construction of X in theory. For instance, it is indicative of
the possibility to tailor the eigenmodes to room acoustics.

After the ICA decompasition of X the method proceeds
nomnally up to the fourth reconstruction step. Let ¢y »(n) be
the (p, n)th element of Sy. Then, Prp(n),p=0—1)L+¢
provides an estimate of {fe + s} }(n). Let ff_l be the inverse
of fr so that fe« fg_l = &. The authors estimate the response
of the kth separated source at the sth microphone as

(21
(22)

£
. 1 .
sp(n) = 7 ;{fe e g (i—1ynte (1) (23)

Obviously, (23} is a generalization of (6).

B. Laguerre Filters

A good example of FF filters for this study are Laguerre
filters parametrized by ¢ from (0, 2), which were considered
in [31]. They are defined recursively, through their transfer
functions

Fi(z)=1, (24)
Fyr)= — 7 25)
AT T -
Fo(2) = Foy(3)G(3), n=3,.. L, {26
where
T (;,;-1)4_;—1
G = @7

Note that f, is either a low-pass filter (for 0 < 4 < 1} ora

high-pass filter (for 1 < p < 2), and g is an all-pass filter.
The construction discussed here is a generalization of {4),

because for ;+ = 1, Fo(z) = G(2) = 271, that is fr(n) =
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g(n) = 6(n—1). This is the only case where separating filters
are FIR of the length L. For p 5 1, the filters are IIR.

The so-called memory depth denoted by L. is defined as
the minimum length needed to capture 90% of the total energy
contained in the impulse response. For the Laguerre filters it
approximately holds that [31]

L,=(14+04|p—1|logyqg L)L/ p. (28)

From here on, we will name the proposed method T-ABCD
(Time-domain Audio sources Blind separation based on the
Complete Decomposition of the observation space) keeping
in mind that its given variant must be specified at the place
where the acronym is used.

IV. EXPERIMENTS
A. Experiments with short recordings of two sources

The experiments described in this section were designed (o
compare T-ABCD in setups for which the method was special-
ized. Those are mainly situations where only short recordings
are available, and short separating filters (L = 3, ..., 40) are
used (more precisely, the dimension of the observation space
is in the range of tens).

Data used for testing of T-ABCD consist of nine recordings
of two simultaneously talking persons articulating short com-
mands. The length of each recording is 2 s, which gives 16000
samples at 8kHz sampling. Different genders are considered
so that there are three recordings of male/male, three of
female/male, and three of female/female speakers.

The recordings were obtained by two closely spaced mi-
crophones when playing the speakers’ commands over two
loudspeakers. Microphone responses of each source were
obtained by recording the source when the other sources were
silent’.

Three different positions of loudspeakers were considered
that differ in distance and angle between sources; see Fig. 9
and Table I. Each scenario was situated in an ordinary living
room with the reverberation time of about 300 ms.

Fig. 9. Illustration of positions of sources (loudspeakers) and microphones.

Two variants of T-ABCD were tested using the BGSEP
and the EFICA algorithm in the second step, respectively,
marked as T-ABCDb and T-ABCDe. For theoretical reasons
performances of the oracle algorithms (Section IL.G) based

2Equipment used for recordings consists of external sound device
EDIROL FA-101 and condenser omnidirectional microphones Audio-
technica AT831b.

TABLE I
TECHNICAL DETAILS OF SCENARIOS

scenario | 8 | V [em] | Average SNR [dB]

1 700 50 40.6
2 60~ 100 8.6
2 73° 200 359

on these ICA algorithms were also studied. They are denoted
as Oracle-b and Oracle-e, respectively. Finally, an ultimate
performance bound determined by the MMSE estimator [31]
is shown, which is computed for the separating filter length
2L —1.

Two other algorithms were used for comparisons. The
first one is the STFICA algorithm from [18] using two
stages of preprocessing (prewhitening) of the length 300. The
observation space separated by STFICA is set to have the
same dimension as the proposed method, that is, 2L for two
microphones. The second algorithm is that of Parra from [6]
with two lengths of FFT, respectively, 512 (Parra-1) and 128
(Parra-2); the other parameters had the default values.

Results of these experiments are evaluated by two standard
measures [32]: Signal-to-Interference ratio (SIR) and Signal-
to-Distortion ratio (SDR). The SIR determines the ratio of
energies of the desired signal and the interference in the
separated signal. SIR is highly influenced by a filtering of
the measured signal, which might be misleading, especially,
in audio separation. It is also influenced by the input SIR,
which is the SIR measured before the separation. In our
experiments, the input SIR was always about 0 dB, which
means that both sources were approximately equally loud. The
SDR provides a supplementary criterion of SIR that reflects
the difference between the desired and the estimated signal in
the mean-square sense. SDR is, by contrast, highly sensitive
to the filtering, which may yield a rigid evaluation of methods
applying long separating filter. It is therefore advisable to
consider both criteria.

Hereinafter, all results are evaluated in terms of averaged
SIR improvement and SDR over all separated sources and
over all their estimated microphone responses. The results are
also averaged over the nine recorded combinations of signals
to reduce the effect of statistical properties of the recorded
signals.

1) Performance versus L: Here, the separation is done
for different lengths of separating filter L, and the other
parameters are fixed. Namely, only 8000 samples of data (the
first second) are used for the computation. T-ABCD utilizes
the basic construction of the observation space corresponding
to p=1.

Figure 10 shows results of separation obtained by process-
ing signals from scenario 1. SDR of T-ABCD improves with
growing L, similar to the SDR of the MMSE estimator. SIR
does not improve with growing L, but is good for all L. This
is explained by the fact that for small L, few components are
used to reconstruct sources, and SIR remains good, but SDR
is poorer, because the reconstructed sources have different
coloration than the original responses. In this respect, the
behavior of oracle algorithms is different as they primarily
optimize SDR. The gap between the SIR/SDR of the oracle
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algorithms and T-ABCD indicates that there might still be a
room for improvements of the performance through clustering
and weighting.

Separated  signals obtained by the other algorithms,
STFICA, Parra-1 and Parra-2 are perceptually not bad, but not
as good as those of the proposed method. It does not improve
with growing L neither in terms of SIR nor in terms of SDR.
STFICA failed to converge for L > 20.

16

= -
fo g B

SIR improvement [dB]
=

4.

2l
= = = Cracle-B .

&r -a&-Orage-E | 4+ L
v MMBE Og.@. > g et
----- STFICA | 2 e

4t ke Parra-1 o
-4 Parra-2 0

10 20 30 4 0 20 30 40
L L

Fig. 10, SIR and SDR as functions of the length of separating filier L. The
results were obtained by using data from scenario 1.

2) Performance versus Length of Data: A similar experi-
ment to the previous one was repeated for a fixed L = 20 and
varying the length of data used for computations of separating
filter in scenario 2. This scenario is more difficult for the
separation because of the higher distance of sources and lower
ratio between the energy of the direct-path source signals and
the energy of their reflections. The results are shown in Fig. 11.

It is noted that for a fixed filter length, there is a certain
length of the data beyond which performance of the algorithms
does not improve at all. In this experiment, the length was
about 0.8-1s. T-ABCD performs better than the other algo-
rithms and demonstrates its superior capability to work with
short data.

3) Performance versus <. The parameter o was introduced
in (15), and provides some trade-off between SIR and SDR.
This is demonstrated by separating signals from scenario 2 by
T-ABCD with L = 20, 83000 samples of data for computations,
and various «. Results are shown in Fig. 12.

It is noted that SIR is an increasing function of «, whereas
SDR achieves its maximum at a certain value in the vicinity
of o = 1. This points to the need of using SIR and SDR
simultane¢ously to evaluate the separation fairly,

4) Performance of TTABCD using Laguerre filters versus p:
The signals recorded in scenario 3 were separated with L = 20
using the first second of data. The parameter 1o was gradually
decreased from 1.9 to 0.1, which corresponds to changing the
separating filter memory L, defined by (28) from 15 to 293
samples; see Fig. 13.

The results indicate a minor (about 0.7 dB) improvement
of performance of T-ABCD at the optimum value » = 0.2

Method-B

SIR improvement [dB]

—die— Mulhcd-E
== = Cracle—G
- & — Oracle-E
e MM3E

vides- Para=1

@+ Para=2
05 1 15 2 05 1 15 2
learning segment lenght (secs)  leaming segment lenght {secs)

a

Fig. 11.  SIR and SDR as functions of the length of data used for the
computation of separating filter. Results corresponds to data from scenario 2.
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Fig. 12, Pertormance of T-ABCD as a function of <. In this example.
STFICA, Parra-1 and Parra-2 performed, respectively, with 4.6dB, 4.4dB and,
1B of SIR improvement and 1dB, 1.8dB, and 2.2dB of SDR.

compared to g = 1. A higher potential improvement in
performance is indicated by increased SIR improvement of
the MMSE bound and of the oracle algorithms (about 2dB).
Again, it indicates a room for improvement through a different
clustering and weighting.

B. Experiments with Hirvoshi Sawada’s Recordings

In this subsection, the above methods were tested by
separating data available on the Internet®. These data were
recorded in a room with the reverberation time 130ms. A
linear microphone array with the distance of 4cm between
microphones was used to record 2-4 simultaneous speeches
coming from different directions from the distance of 1.2 m
at the sampling rate 8kHz. The length of the recordings is 7
s.

The data were processed by T-ABCD with Laguerre filters
with . = 0.2 and L = 30. Therefore, the dimension of the
observation space was equal to 30n:, where m is the number

htep:/Awww kecl.ntt.co pdiclfsignaltsawada/demo/bss2tod/index huml
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Fig. 13.  SIR and SDR as functions of the parameter ¢ of Laguerre filters.
Results corresponds to data from scenario 3. Note that for ¢+ = 1 the Laguerre
filters are FIR, and the generalized T-ABCD coincides with the original one
described in Section II.

of microphones (2-4). The algorithm used 8000 samples (1s)
to perform the separation, beginning at 4.6s of the recordings.
For the Parra’s algorithm, the whole (7 s long) recordings were
used, the length of the FFT was 1024 and the time-domain
filter had 400 taps (the same setting as in [18]). The STFICA
algorithm had the preprocessing length of 50 taps, and the
separating system had . = 15 taps. (The algorithm did not
converge with a larger L and longer preprocessing.)

Results of the comparison are summarized in Fig. 14. It
contains performance of the Sawada’s algorithm [7], which
works in the frequency domain, here, using the FFT length
2048 with the overlap of 512 samples.

It can be seen that T-ABCD outperforms STFICA and
the Parra’s algorithm, but is worse than that of Sawada’s
algorithm, whose results were taken from the web-site. The
latter algorithms take the advantage of utilizing the whole data
for the separation. In the case of four sources, performance of
the proposed algorithm and the Sawada’s algorithm are almost
equal in the terms of SDR.

The SIR and the SDR of the Sawada’s algorithm can
be higher than these quantities for the MMSE, because the
MMSE is computed for the filter length equal to 30m, while
the Sawada’s algorithm applies filters of the length 2048 taps.

V. CONCLUSIONS

The novel time-domain algorithm has been proposed for
blind separation of audio sources that is based on the complete
unconstrained ICA decomposition of the observation space.
The algorithm, named T-ABCD, is suitable for situations
where only short data records are available. In this respect,
it outperforms other known time-domain BSS algorithms.

T-ABCD consists of five steps, each one providing a room
for other variants and improvements. In particular, the selec-
tion of eigenmodes may lead to a more effective definition of
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Fig. 14. Performance of separation methods applied to Sawada’s data with
2-4 sources and microphones.

the observation space. The comparison with the oracle algo-
rithm showed that the measure of the similarity of components,
their clustering, and weighting might be still significantly
improved.

Finally, as T-ABCD works with short data segments, it has
great potential to be modified for online or batch processing
needed in situations with moving sources.
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Abstract. T-ABCD is a time-domain method for blind linear separa-
tion of andio sources proposed by Koldovsky and Tichavsky (2008). The
methad produces short separating filters (5-40 taps) and works well with
signals recorded at the sampling frequency of 3-16 kHz. In this paper, we
propose a novel subband-hased variant of T-ABCD, in which the input
signals are decomposed into subbands using a tree-structured QME fil-
ter bank. T-ABCD is then applied to each subband in parallel, and the
separated subbands are re-ordered and synthesized to vield the final sep-
arated signals. The analysis filter of the filter bank is carefully designed to
enable maximal decimation of signals without aliasing. Short filters ap-
plied within subbands then result in sufficiently long filters in fullband.
Using a reasonable mumber of subbands, the method vields improved
speed, stability and performance at an arbitrary sampling frequency.

1 Introduction

Blind separation (BSS) of simultaneously active audio sources is a challenging
problem within audio signal processing. The goal is to retrieve 4 audio sources
from their convolutive mixtures recorded by m microphones. The model is de-
scribed by

4 Mi;—1

xi(n)zz Z hi(risjin—1), i=1,... m, (1)
i=1 =i

where £1(n), ..., z,(n) are the obhserved signals on microphones and s;(n), ..., s4(n)
are the unknown original (audio) signals. This means that the mixing system

% This work was supported by Ministry of Education, Youth and Sports of the Czech
Republic through the project 1M0572 and by Grant Agency of the Czech Republic
through the project 102/09/1278,



is a MIMO (multi-input multi-output) linear filter with source-microphone im-
pulse responses hi;'s each of length M;;. Linear separation consists in finding
a MIMO filter that inverts the mixing process (1) and vields estimates of the
original signals s;(#n), ..., sq(n). It is convenient to assume the independence of
a1{n),...,sa(n), and the separation can be based on Independent Component
Analysis (ICA) [1]. Indeterminacies that are inherent to the ICA cause that the
original colorations of s;(n), ..., ¢4{n) cannot be retrieved. The goal is there-
fore to estimate their microphone responses (images), which only have properly
defined colorations. The response of the kth source on the ith microphone is

M —1

si{n) = Z fop(T)ap(n — 7). (2)

=i

To apply the ICA, the convolutive mixture (1) must be transformed into
an instantaneous one. This is done either directly in the time-domain (TD) by
decomposing a matrix usually constructed of delayed copies of signals from mi-
crophones, or in the frequency-domain (FD) where the signals are transformed
by the Short-Time Fourier Transform (STFT) that converts the convolution
operation inte the ordinary multiplication. Weaknesses of both approaches are
well known from literature. The FD approach meets the so-called permutation
problem [2] due to inherent indeterminacies in ICA and requires long data to
generate sufficient mumber of samples for each frequency bin. On the other hand,
TD methods are computationally more expensive due to simultaneous optimiza-
tion of all filter coefficients, which restrict their ability to compute long filters.

A reasonable compromise is the subband approach [3] that consists in de-
composing the mixed signals into subbands via a filter bank, separating each
subband by a TD method, permuting the separated subbands, and synthesizing
the final signals. If a moderate number of subbands is chosen, the permutation
problem becomes less difficult compared to the FD approach. Since the subband
signals are decimated, the length of separating filters is multiplied.

Several subband approaches have already been proposed in literature using
various filter banks. The method in [5] uses a uniform DFT filter bank. Araki
et al. [3] use a polyphase filter bank with a single side-band meodulation. In
[6,7], uniform FIR filter banks were used. All the referenced methods de not
apply the maximal decimation of sighals in order to reduce the aliasing between
subbands. This restrains both the computational efficiency and the effective
length of separating filters.

We propose a novel subband method designed to be maximally effective in
this respect. The signals are decomposed uniformly into 2™ subbands using a
two-channel QMF filter bank applied recursively in the full-blown 2-tree struc-
ture with M levels [4]. The signals are decimated by 2 in each level of the 2-tree
so they are finally decimated by 2, which means mazimal decimation. Through
a careful design of a halfband FIR filter, which determines the whole filter bank,
the aliasing is avoided. The blind separation within subbands is then carried
out independently by the T-ABCD method [10], which is robust and effective in
estimating short separating filters. The permutation problem due to the random
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Fig. 1. An illustration of the proposed subband BS5 algorithm using the QMF tree-
structured filter bank with M = 2. Here, two-microphone recording is separated into
two responses of each of two original sonrces.

order of separated signals in each subband is solved by comparing correlations
of absolute values of signals [2]. Finally, the reordered signals are synthesized to
vield the estimated responses (2). The flow of the method is illustrated in Fig. 1.

The following section gives more details on the proposed method, and Section
3 demonstrates its performance by experiments done with real-world signals.

2 Proposed Subband BSS Method

2.1 Subband Decomposition

The building block of the tree-structured subband decomposition applied in the
proposed method is a two-channel bank that separates the input signals into two
bands. In general, a two-channel bank consists of two analysis filters and two
synthesis filters whose transfer functions are, respectively, Gy(z), G1{z), Hy(z)
and Hi(z). The input sighal is filtered by Gp(z) and Gq(z) in parallel, and
the outputs are decimated by 2 giving the subband signals. After the subband
processing, the signals are expanded by 2 and passed through the synthesis filters
and are added to vield the output signal.
The analysis filters of a Quadrature Mirror Filter {QMF) bank satisfy

G1(z) = Go(—2). (3)

Gofz) should be a low-pass filter with the pass band [—7/2,7/2] so that the
decimated signals are not aliased. The synthesis filters may he defined as

Ho(z) = 2G(—=), Hy{z}) = —2Gy(—=z). (4)

Then the whole two-channel QMF bank is determined by Gy(z).

(4) is a sufficient condition for eliminating the aliasing from synthesized sig-
nals provided that no subband processing is done, i.e., when the signals are ex-
panded immediately after the decimation (equation (12.58) in [4]). In such special



case, the transfer function of the two-channel QMF bank is [Gy(2)]* — [Go(—2)]".
It follows that the bank does not possess the perfect reconstruction property in
general, which is nevertheless not as important in audio applications, While
phase distortions are avoided provided that Gy({z) has a linear phase, amplitude
distortions can be made inaudible by a careful design of the filter®.

To decompose the signal into more than two bands, the analysis part of the
two-channel QMF bank can he applied recursively to split each band into two
subbands etc. If the depth of the recursion is M, the filter hank splits the spec-
trum uniformly into 2¥ subbands. This approach is utilized in the proposed
method as demonstrated by Fig. 1. After the processing of subbands, the syn-
thesis is done baclkwards then the analysis.

2.2  Separation Algorithm: T-ABCD

T-ABCD is an ICA-based method for blind separation of audio sighals working in
time-domain. It is based on the estimation of all independent components {(ICs)
of an observation space by an incorporated ICA algorithm. The observation space
is spanned by rows of a data matrix X that may be defined in a general way [10].
For simplicity, we will consider the basic definition that is common to other TD
methods [12]: Rows of X contain L time-shifted copies of each observed signal
a(n), ...t (n). The mumber of rows of X is mL, which is the dimension of
the observation space. Linear combinations of rows of X correspond to outputs
of FIR MISO filters of the length L (hence also the ICs of X). The steps of
T-ABCD are as follows.

1. Find all mL independent components of X by an ICA algorithm.

2. Group the components into clusters so that each cluster contains components
corresponding to the same original source.

3. For each cluster, use components of the cluster to reconstruct microphone
responses (images) of a source corresponding to the cluster.

For more details on the method see [9] and [10].

A shortcoming of T-ABCD is that its computational complexity grows rapidly
with L. On the other hand, T-ABCD is very powerful when L is reasonably low
(L = 1,...,40). This is because all ICs of X are estimated without applying
any constraint to the separating MISO filters (step 1), and all ICs are used to
reconstruct the sources’ responses (steps 2 and 3). The performance of T-ABCD
is robust as it is independent. of an initialization provided that the applied ICA
algorithm in step 1 is equivariant. Consequently, the use of T-ABCD within the
subband separation is desirable, because the separating filters in subbands are
shorter than those in fullband [3].

¥ We have chosen G¢(z} as an equiripple FIR filter [4] with 159 taps having the min-
imum attenuation of 60 dB in the stopband. To eliminate the aliasing, the stop-
frequency was shifted slightly from #/2 to the left by ¢ = 0.01, which is small
enough so that the cut-off band around «/2 is very narrow and results in inaudible
distortions of signals,



2.3 The permutation problem

The estimated responses of sources by T-ABCD are randomly permuted due to
indeterminacy of ICA or, more specifically, due to the indeterminacy of the order
of clusters identified by step 2. Since the permutation might be different in each
subband, the estimated sighals in subbands must be alighed before synthesizing
them.

Let §ij (n), k =1,...,d he the not yet sorted estimates of responses of the
sources at the ith microphone in the jth subband. We wish to find permutations
n;(k), 7 = 1,..., M such that é;j(k)‘j (n) is the estimated response of the kth
source at the microphone in the subband. We shall assume, for convenience, that
the order of the components in one, say in the 71th subband (e.g. 71 = 1}, is
correct, Therefore we set m; (k) = & &k = 1,...,d. Permutations in all other
subbands can be found by maximizing the following criterion,

d(p.q.r,s) = _ |eov (|5} (n)], [SL ()])| =

=1

m T T
T L %Z(W@q(ﬂ)l - %; %,«{t”) (gi-s{”}l - %Z |3-“§)__3{t}|) )

1 n=1 t=1

[
that compares dynamic profiles (absolute values) of the signals [2], as follows,

. Put & = {4}, a set of already permuted subbands.
. Find j, = arg max,qs {max,  dip, 1,7, $)}.
. Use the greedy algorithm to find 7;, (-} by maximizing (-, 71, -, j2). Namely,
define P = 0 and R = 0, and repeat
{3'} {}’h (_,»} = ArgmMaXpg v rg R d{}”a jla v, 32)
(b} put 7, (p)=1r
(¢c) P=PuU{p}, R=RuU{r}
until P € {1,..., M}
4 8 =8U s} j=f.
LIS L. M), goto 2.

LI =l

&

3 Experiments

To demonstrate the performance of the proposed method, we test it on selected
data from the SiSEC 2010 campaign?. The data consists of two-microphone real-
world recordings of, respectively, two male and two female speskers played over
loudspeakers (signal combinations #1 and #2) placed in room #1 in position #1
shown in Fig. 2. Fach source was recorded separately to obtain its microphone
responses, and the signals were summed to obtain the mixed signals; the original
sampling rate was 44.1kHz.

* The task “Robust blind linear/non-linear separation of short two-sources
two-microphones recordings” in the “Audio source separation” category; see
http://sisec.wiki.irisa.fr/tiki-index.php



Fig. 2. The position of microphones and loudspeakers in the experiment.

For evaluation of the separation, we use the standard Signal-to-Interference
Ratio (SIR), as defined in [13]. The evaluation is computed using the full length
of recordings, which is about 2 seconds, but only the first second of the data was
used for computations of separating filters.

We compare the original T-ABCD from [9] working in fullband with the
proposed subband T-ABCD decomposing sighals into 2, 4, 8, and 16 subbands,
that is, with M =1,...,4. The fullband T-ABCD is applied with L = 20, while
in subbands L = 10 is taken. The other parameters of T-ABCD are the same
both in fullband and subband; namely, the weighting parameter is « = 1, and
the BGSEP algorithm from [11] is used for finding ICs of X

Fig. 3 shows the results of experiments done with signals resampled to the
sampling rates f; =8, 16, 32, and 44.1 kHz, respectively. The performance of
the fullband T-ABCD decreases with the growing fg. This is due to the fact
that the effective length of separating filters decreases as L is fixed to 20, A
comparable length of filters is applied in the 2-subbands method, where L = 10in
each subband. The performance of the 2-subbands method is either comparable
(fs = & and 32 kHz) to the fullband method or even better (f; = 16 and 44.1
kHz) and does not decrease until f; < 16. This points to the fact that the
fullband method suffers from increased bandwidth of signals when f, grows.

As can be seen from Fig. 3, the performance of the subband method does not
automatically increase with the number of subbands. This is mainly caused by
the permutation problem, which becomes more difficult with the growing number
of subbands. The results indicate that the optimal bandwidth of subbands is
hetween 2-5 kHz. Namely, (1) the 4-subbands method performs best at f, = 16
and 32 kHz, (2} the 8-subbands method provides the best results when f, = 32
and 44.1 kHz, and (3) the 16-subbands method seems to he effective if f, = 44.1
lkHz. On the other hand, the decomposition of signals into 16 subbands seerms
to be inadequate when f; = 8 or 16 kHz, as the 16-subbands method yields
unstable performance here,

3.1 Computational aspects
The methods were running on a PC' with quad-core i7 2.66 GHz processor in

MatlabT™ with Parallel Computing ToolboxT* . There were four running work-
ers, i.e. one for each core of the processor, which means that up to four T-ABCDs
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Fig. 3. SIR improvement achieved by the separation. Each value is an average over
both separated sources and estimated microphone responses.

may run simultaneously in subbands. The average computational burden sum-
marizes Table 1 in the form A/B, where A and B denote the time needed for
separation without and with the aid of parallel computations, respectively. The
parallelization was realized through the parallel for-cycle (parfor).

The values in Table 1 prove the advantage of the subband method consisting
in lower computational complexity. Although the parallelization by means of the
Parallel Computing Toolbox™* is not that effective, it points to the potential
improvement in terms of speed. For example, the 4-subband method should
be almost four-times faster when running in parallel, since about 80% of the
computational burden is caused by T-ABCD, while the permutation correction
takes about 3% and the rest is due to the filtering operations.

Table 1. Average time needed per separation without and with parallel computations.

computational time [s]
8kHz 16kHz 32kHz 44.1kHz
fullband 0.42/ - 0.90/ - 2.03/ - 2.84/ -
2-subband 0.25/0.17 0.46/0.31  0.90/0.69  1.35/0.97
4-subband 0.30/0.19 0.56/0.33  1.06/0.65 1.51/0.97
8-subband 0.40/0.25 0.66/0.42  1.26/0.83 1.83/1.13
16-subband 0.56/0.35 0.87/0.55  1.50/0.99 2.20/1.39

4 Conclusion

The proposed subband T-ABCD was shown to be an improved variant of T-
ABCD in terms of speed and separation performance, especially, when working



with signals sampled at sampling rates higher than 16 kHz. The method is able
to separate one second of data in a lower time, which points to its applicability
in a batch-online processing. The optimum number of subbands depends on the
sampling frequency, which was shown to correspond to the bandwidth of about
2-5kHz per subband. Experiments not shown here due to lack of space show that
the subband T-ABCD might be combined with other filter banks (e.g. [3]) as
well, but the analysis filters must be adjusted to avoid the aliasing in maximally
decimated signals.
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8.1 BSS Methods in Audio Signal Processing

) [T-ABCD: A Time-Domain Method for Blind Audio Source Separation E|@|g|

Chck signal to listen to!

Figure 8.1: An illustration of the Matlab graphical user interface designed for the
T-ABCD algorithm and its extensions.

Future works in the field of audio signal processing will be especially focused
on extensions and modifications of the T-ABCD method. The concept of T-ABCD
is flexible in that other BSS approaches can be applied for

1. a more adaptive construction of the observation matrix (6.2) [c18], espe-
cially for its dimension reduction, and

2. the decomposition of the observation matrix into components corresponding
to individual sources or directions of arrival.

For instance, methods for Non-negative Matrix or Tensor Factorization or Sparse
Component Analysis can be considered for a decomposition of a (transformed)
observation matrix as they are, like ICA, able to retrieve individual signals or
their parts. Another possibility here is to use methods that are able to work with



112

underdetermined models, thereby allow T-ABCD to separate more sources from
a lower number of microphones.

Another modification of T-ABCD aims at real-time processing of signals. Re-
cently, a prototype of an on-line version has been proposed in [c20] and its variant
implemented in C++ in [m9]. In this area, the main need is to simplify the algo-
rithm considerably owing to its computational burden and implementation com-
plexity. A great potential provide parallel computations that are possible within
T-ABCD. Other simplifications are possible when considering variants of the al-
gorithm that are tailored to particular applications (e.g. a separator working with
two microphones only assuming maximum two sources).

Finally, further audio applications such as speech enhancement and derever-
beration can also be considered. A motivation comes from the fact that inde-
pendent components possess interesting properties that can be measured, namely,
directivity, non-Gaussianity, sparsity or non-stationarity. Methods using these fea-
tures can be developed in order to reconstruct dereverberated and/or enhanced
signals.

A project P103/11/1947 devoted to these topics has already been accepted by
the Grant Agency of the Czech Republic and is going to start in 2011.

8.2 CP Tensor Decomposition

Recently, signal processing researchers have payed a lot of attention to tensor
decomposition techniques. In fact, it is a renewed topic of multi-linear algebra
whose origin comes from the beginning of the 20th century [60]. It was revisited
in the 1970s by psychometricians and chemometricians [61].

The goal is to analyze multidimensional (three-way and higher-way) data ar-
rays, usually called tensors, through decomposing them into a sum of low rank
arrays. The problem can be seen as an extension of a low rank decomposition of
matrices. The appealing feature of higher-way arrays is that, compared to matri-
ces, their such decompositions can be essentially unique (i.e. up to some scaling
and permutation ambiguities).

Let X be a three-way tensor of dimensions [ x J x K whose ijkth element
is X ;. Parallel factor analysis (PARAFAC), or Canonical decomposition (CAN-
DECOMP), or CP decomposition, consists in finding factor matrices A, B and C
of dimensions, respectively, I x R, J x R and K x R, whose ¢jth elements are
A;j, Bij, and Cy;, such that it holds

R
Xijk = ) AuBjrCr, 8.7)

i
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fore =1,...,1,5=1,...,J,and k = 1,..., K. The smallest 1 such that the
decomposition exist is the rank of A. The definition for higher-way tensors is
analogous.
There are several alternative notations of (8.7); see e.g. [62]. For example, it
can be written that
X=Ix;1Ax3Bx3C (8.8)

where 7 is the identity tensor of the dimensions i x I X R, and x; denotes the
matrix multiplication in the mode ¢, ¢ = 1, 2, 3, that is, the matrix multiplication
of columns, rows or tubes of A when these are unfolded as column vectors. It can
be shown that the order of operations x; can be arbitrary.

Another notation is

R
X = Z a,ob,oc,, (8.9)
r=1

where o denotes the tensor outer product, and a,, b,, and ¢, denote, respectively,
the rth column of A, B and C. The notation (8.9) reveals clearly that X is de-
composed into the sum of R rank-one tensors.

8.2.1 Essential Uniqueness

The CP decomposition is essentially unique if the factor matrices A, B and C are
unique up to rescaling and jointly permuting their columns. This definition comes
from the fact that (8.7) remains unchanged whenever changing A — APT,,
B — BPT; and C — CPT; where P is a R x R permutation matrix, and T,
T, and T are diagonal matrices such that T1T>T3 = Ig. Iz denotes the R x R
identity matrix.

The essential uniqueness of CP is an important issue as it entails identifiabil-
ity of the factor matrices from the tensor. A sufficient condition was derived by
Kruskal in [61]. He showed that if

ka+kp+ke>2R+2 (8.10)

then the CP decomposition is essentially unique. Here k4 is the so-called k-rank
(Kruskal rank) of A, which is the largest integer number & such that every sub-
set of k columns of A is linearly independent. Recently, Sidiropoulos and Bro
generalized the condition for higher than three-way arrays in [63]. The problem
has been addressed again, for instance, Stegeman et al. derived a condition that is
closer to the necessity in [64].

Lim and Comon recently pointed to a simple inequality between the k-rank
and the so-called coherence of a matrix in [68]. The coherence of A is defined as
pu(A) = max;; |(a;, a;)| where a; denotes the normalized column a; (assuming
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that there are no zero columns). It follows that 0 < p(A) < 1, and the coherence
is equal to zero if the columns of A are orthogonal and is equal to one if there are
two co-linear columns at least. The inequality says that, if the columns of A are
linearly dependent’, then

1
ka > ——, (8.11)
1(A)
so the Kruskal’s sufficient condition can then be approximated by
1 1 1 1
= (8.12)

3 A @) ()

Both conditions (8.10) and (8.12) point to the fact that the essential uniqueness of
the CP decomposition requires that the columns of factor matrices should be “as
linearly independent as possible”.

The author of this thesis is presently collaborating on a paper [¢22] that ad-
dresses stability of the CP decomposition. The study is done by deriving the
Cramér-Rao lower bound on variance of an unbiased estimate of the tensor pa-
rameters, i.e. elements of its factor matrices, from its noisy observation (the tensor
plus a random Gaussian i.i.d. tensor). The existence of the bound reveals neces-
sary conditions for essential uniqueness of the CP decomposition, moreover, for
identifiability of each column of each factor matrix separately.

8.2.2 Decomposition Algorithms

To compute the decomposition (8.7), i.e. the factor matrices, several algorithms
have been proposed. Given a tensor X', they mostly consist in minimizing a
quadratic criterion

| =T x1 A x; B x5 C||2 (8.13)

where | -||> denotes the quadratic norm (the square root of sum of squared elements
of the argument).

A basic approach is the alternative least square (ALS) algorithm that proceeds
iteratively, and minimizes the criterion with respect to individual factor matrices
one by one. Convergence of this approach is known to be usually slow, especially,
if some of the factor matrices contain nearly co-linear columns. There is also a
high risk that the algorithm converges to a local minimum of (8.13). There is a
modification of the ALS algorithm using a technique called Enhanced Line Search
(ELS), which was proposed in [65].

"The condition that columns of the matrix must be linearly dependent is missing in [68], but it
follows from the proof of the respective lemma (Lemma 5.5). Note that if the columns are linearly
independent, then the k-rank of the matrix is equal to its rank.
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More robust methods were derived by optimizing all factor matrices simul-
taneously. Paatero et al. proposed a method called PMFE3 in [66] for the CP
decomposition of three-way arrays. It comes from the damped Gauss-Newton
or Levenberg-Marquardt optimization algorithms designed for quadratic criteria
like (8.13). The problem of these optimization techniques consists in their com-
putational complexity. An iteration of these algorithms requires the computation
of the inversion matrix of an approximate hessian matrix whose dimensions are
R{(I+J+K)x R(I+J+ K). Some simplified versions of PMF3 were proposed in
[c21]. Further simplifications and generalizations of PMF3 to higher-way tensors
were proposed in [67].

8.3 Underdetermined BSS

The CP decomposition can be used to identify the mixing matrix in the basic
instantaneous ICA model X — AS. Let the number of columns of A (the number
of sources) be R. Consider a set of statistics Ty(X), ¢ = 1,..., T, that all satisfy

E[T:(X)] = AE[T(S)] A” (8.14)

and E[T(S)] are diagonal. Since (8.14) can be written in the form

R
E[T.(X)] = )Y Maal, (8.15)
r=1

where A\, = (E[T((S)]),, is the trth element of the matrix A, it is easily seen that
the matrices A and A might be identified as the factor matrices of the tensor

X:IX1AX2A><3A, (816)

whose tth frontal slice, in Matlab notation A&. .4, is equal to E[T(X)].

An important fact is that the identifiability of A and A is conditioned by the
essential uniqueness of the CP decomposition of X'. It follows that the number of
columns of A, which is R, can be higher then its number of rows. In other words,
there can be more sources than sensors in the ICA mixing model (see Section
1.2.3).

It is good to remind that the estimation of A and the separation of the original
sources S are not equivalent tasks in the underdetermined case, because A is not
invertible. To retrieve S, some other techniques must be applied, e.g., a beam-
forming. Note that some information about the sources is contained in the matrix
A, which can be used for the sources retrieval.
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In practice, the expectation values of the statistics T¢(X), ¢t = 1,...,T, are
not known. Therefore, the tensor is defined so that

V..o = Ti(X), (8.17)
which can be seen as a noisy observation of X, that is,
y=X+¢ (8.18)

where £ is a tensor whose entries contain random errors. The CP decomposition
of YV is done in an approximate way, where its rank (the number of sources) is
either known in advance or must be estimated. However, the estimation of the
rank is a difficult task, because the rank of ) is usually different from that of &,
and even the computation of the rank of A’ is likely NP hard [68].

8.3.1 Algorithms

The second-order statistics satisfying (8.14) are the covariance and cross-covariance
matrices considered in ICA methods based on the nonstationarity and spectral di-
versity principles (Sections 2.3.2 and 2.3.3). For example, the SOBIUM algorithm
from [69] can be seen as an extension of the SOBI algorithm from [12] to under-
determined mixtures.

Higher-order statistics satisfying (8.14) are the cumulants. For example, fourth-
order statictics are used by the FOBIUM algorithm from [70]. Cumulants can also
be used to define higher than three-way tensors, and thanks to the multi-linearity
of cumulants and their further features, the blind identification od A is possible
with higher number of sources K than in case of methods decomposing three-way
tensors only [72, 71].

Similarly to how the WASOBI, BGSEP or BARBI algorithms (Section 2.5.2)
were derived, it is possible to introduce weights into the quadratic criterion (8.13),
to make the identification of A and A optimum in a statistical sense. The author
of this thesis is a co-author of the paper [j9] where an algorithm that works with
underdetermined mixtures of nonstationary sources in the optimum way, is pro-
posed.
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Appendix: The Main Author’s Results

The following table provides a survey of the main results of the author achieved
in 2002-2010 that were already published or accepted for publication. This es-
pecially comprises algorithms, codes, theoretical and experimental analyses, and
applications. The entries are ordered chronologically and contain all relevant ref-
erences.

| Algorithms |
Online | Year of the first
Name References ..
code* publication
Optimum pairing [ml,j1] v 2002
EFICA i3, ¢2] v 2005
COMBI [c4] v 2006
MULTICOMBI [i5] v 2008
FCOMBI [c10] v 2007
1FICA [c9] v 2007
Block EFICA [c12, i6] v 2008
BARBI [c16] v 2009
Theoretical Results
FastICA performance [c3,j2] 2005
Cramér-Rao bound (2.28) [el] 2005
Bias analysis [e9] 2007
Rational nonlinearities [c8] 2007
Cramér-Rao bound (2.24) [c12] 2008
Cramér-Rao bound (2.30) [c16] 2009
Pseudoconvolutive mixtures [c15] 2009
Audio Applications
Time-frequency masking [c5] 2006
T-ABCD [c7, c13] v 2007
Generalized T-ABCD [c18, 7] v 2010
Subband T-ABCD [c19] v 2010
On-line T-ABCD [c20] v 2010

* The codes of algorithms are available at http: /fitakura.ite.tul.cz/zbynek/downloads. htm.
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Ing. Jifi Malek, zah4jeni studia 1.8.2006, studijni obor: Technicka kybernetika,
disertacni prace ma nazev Blind Audio Source Separation via Independent Component
Analysis, odevzdano v listopadu-prosinei 2010

*) Pozndamka: seznam fedrnotlivych projektii. bakaldfskych o diplomovich praci a studenta PGS
Je uveden v piiloze ., Prehled pedagogické praxe® a viemé kvantitativniho vyjadieni v pFiloze
. Kvantifikovana kritéria pro habilitani o jmenovaci Fizeni na Fakulté mechatronily TU
v Liberci

Podil na garantovani Be., Mgr. a PhD oboru

Piinos k profilu absolventa

Piipravou podkladii pro akreditaci jsem se podilel na Uspé&$nych akreditacich a re-
akreditacich studijnich oborfi na FMIMS a UZS. Jsem garantem jednoho piedmé&tu
doktorského studia: Metody digitalniho zpracovani vicerozmérnych signala.

Podilim se na pfipravé a vyuce mezinarodniho ¢esko-némeckého magisterského studijniho
programu ELECTRICAL ENGINEERING AND INFORMATICS, anglicka vyuka
piipravovaného pifedmétu DSP1 - Digital Signals Processing 1 (od letniho semestru 2011)

A3, Ostatni vyznamné aktivity

Jiné aktivity

1) Recenzent ¢lankii pro mezinarodni ¢asopisy 1IEEE (Trans. Signal Processing, Signal Processing
Letters, Trans, Neural Networks, Trans, Audio Speech and Language Processing, a dal$i),
Technometnics, Signal Processing, a daléi a ve sbomicich mezinarodnich konferenci (LVA/ICA
2010, ICASSP 2011).
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Publikaéni aktivity:

Publikace v mezinarodnich impaktovanych ¢asopisech

[1]  P. Tichavsky and Z. Koldovsky, "Fast and accurate methods of independent
component analysis: A Survey, " accepted for publication in Kybernetika, 2010.

[2] P. Tichavsky and Z Koldovsky, "Weight Adjusted Tensor Method for Blind
Separation of Underdetermined Mixtures of Nonstationary Sources, " IEEE Trans. on Signal
Processing, Vol 59, No. 3, pp. 1037-1047, ISSN:1053-587X, March 2011,

[3] Z. Koldovsky and P. Tichavsky, "Time-Domain Blind Separation of Audio Sources on
the basis of a Complete ICA Decomposition of an Observation Space", IEEE Trans. on
Speech, Audio and Langnage Processing, Vol. 19, No. 2, pp. 406-416, ISSN 1558-7916,
February 2011.

[4] Z. Koldovsky, J. Malek, P. Tichavsky, Y. Deville, and S. Hosseini, "Blind Separation
of Piecewise Stationary NonGaussian Sources", Signal Processing, Volume 89, Issue 12,
Pages 2570-2584, ISSN 0165-1684, December 2009,

[S]  P. Tichavsky, Z. Koldovsky, and E. Oja, "Corrections to 'Performance Analysis of the
FastICA Algorithm and Cramer-Rao Bounds for Linear Independent Component Analysis'
TSP 04/06," IEEE Tr. Signal Processing, Vol. 56, No 4, pp. 1715-1716, ISSN: 1053-587X,
April 2008.

[6]  P. Tichavsky, Z. Koldovsky, A Yeredor, G. G. Herrero, and E. Doron, "A Hybrid
Technique for Blind Separation of Non-Gaussian and Time-Correlated Sources Using a
Multicomponent Approach”, [EEE Trans. on Neural Networks, Vol. 19, No. 3, pp. 421-430,
ISSN: 1045-9227, March 2008,

[71  Z. Koldovsky, P. Tichavsky and E. Oja, "Efficient Vanant of Algorithm FastICA for
Independent Component Analysis Attaining the Cramér-Rao Lower Bound", IEEE Trans. on
Neural Networks, Vol. 17, No. 5, Sept 2006,

[8] P. Tichavsky, Z. Koldovsky and E. Oja, "Performance Analysis of the FastICA
Algorithm and Cramér-Rao Bounds for Linear Independent Component Analysis", IEEE
Trans. on Signal Processing, Vol. 54, No .4, April 2006.

[9] P. Tichavsky, Z. Koldovsky, "Optimal Pairing of Signal Components Separated by
Blind Techniques", IEEE Signal Processing Letters, Vol 11, No. 2, pp. 119-122, Feb 2004

Publikace v recenzovanych sbornicich mezinarodnich konferenci

[10] Z. Koldovsky, P. Tichavsky, and Anh Huy Phan, "Stability Analysis and Fast
Damped-Gauss-Newton Algorithm for INDSCAL Tensor Decomposition," IEEE Workshop
on Statistical Signal Processing, Nice, France, June 2011,

[11] P. Tichavsky and Z. Koldovsky, "Stability of CANDECOMP-PARAFAC tensor
decomposition," JCASSP 2011, Prague, Czech Republic, May 2011,
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[12] Z. Koldovsky, P. Tichavsky, and J. Malek, "Time-Domain Blind Audio Source
Separation Method Producing Separating Filters of Generalized Feedforward Structure," in
Latent Variable Analysis and Signal Separation, Lecture Notes in Computer Science Vol.
6365, pp. 17-24, ISBN: 978-3-642-15994-7, Springer, Heidelberg, Sept. 2010.

[13] Z. Koldovsky, P. Tichavsky, and J. Malek, "Subband Blind Audio Source Separation
Using a Time-Domain Algorithm and Tree-Structured QMF Filter Bank," in Latent Variable
Analysis and Signal Separation, Lecture Notes in Computer Science Vol. 6365, pp. 25-32,
ISBN: 978-3-642-15994-7, Springer, Heidelberg, Sept. 2010.

[14] J. Malek, Z. Koldovsky, and P. Tichavsky, "Adaptive Time-Domain Blind Separation
of Speech Signals," in Latent Variable Analysis and Signal Separation, Lecture Notes in
Computer Science Vol. 6365, pp. 9-16, ISBN: 978-3-642-15994-7, Springer, Heidelberg,
Sept. 2010,

[15] P. Tichavsky and Z. Koldovsky, "Simultaneous Search for All Modes in Multilinear
Models," ICASSP 2010, pp. 4114-4117, ISBN: 978-1-4244-4296-6, ISSN: 1520-6149, Dallas,
USA, March 2010.

[16] Z. Koldovsky and P. Tichavsky, "A Comparison of Independent Component and
Independent Subspace Analysis Algorithms," EUSIPCO 2009 |, pp. 1447-1451, Glasgow,
Scotland, August 24-28, 2009,

[17] P. Tichavsky, A. Yeredor, and Z. Koldovsky, "A Fast Asymptotically Efficient
Algorithm for Blind Separation of a Linear Mixture of Block-Wise Stationary Autoregressive
Processes,” ICASSP 2009, pp. 3133-3136, ISBN: 978-1-4244-2354-5, ISSN: 1520-6149,
Taipei, Taiwan, April 2009.

[18] J Petkov and Z. Koldovsky, "BSSGUI — A Package for Interactive Control of Blind
Source Separation Algorithms in MATLAB," in Cross-Modal Analysis of Speech, Gestures,
Gaze and Facial Expressions (Eds.: A. Esposito and R. Vich), pp. 386-398, ISBN: 978-3-
642-03319-3, ISSN: 0302-9743, Springer Berlin / Heidelberg, July 2009,

[19] 7T Malek, Z. Koldovsky, J. Zd'ansky and J. Nouza, "Enhancement of Noisy Speech
Recordings via Blind Source Separation", Proceedings of the 9th Annual Conference of the
International Speech Communication Association (Interspeech 2008), pp. 159-162, ISSN:
1990-9772, September 22-26, Brisbane, Australia, 2008,

[20] Z. Koldovsky and P. Tichavsky, "Time-domain Blind Audio Source Separation Using
Advanced Component Clustering and Reconstruction", Proc. of The Joint Workshop on
Hands-free Speech Communication and Microphone Arrays (HSCMA 2008), pp. 216-219,
ISBN: 978-1-4244-2338-5, May 6-8, Trento, Italy, 2008,

[21] Z. Koldovsky, J. Malek, P. Tichavsky, Y. Deville, and S. Hosseim, "Extension of
EFICA Algorithm for Blind Separation of Piecewise Stationary Non Gaussian Sources”, 33rd

International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2008), Las
Vegas, Nevada, pp. 1913-1916, ISBN: 1-4244-1484-9, April 2008.
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[22] Z. Koldovsky and P. Tichavsky, "Time-Domain Blind Audio Source Separation Using
Advanced ICA Methods", Proceedings of the 8th Annual Conference of the International
Speech Communication Association (Interspeech 2007), pp. 846-849, August 2007,

[23] P. Tichavsky, Z. Koldovsky and E. Oja, "Speed and Accuracy Enhancement of Linear
ICA Techniques Using Rational Nonlinear Functions", Proceedings of 7th International
Conference on Independent Component Analysis (ICA2007), pp. 285-292, Sept. 2007.

[24] Z. Koldovsky and P. Tichavsky, "Blind Instantaneous Noisy Mixture Separation with
Best Interference-plus-noise Rejection”, Proceedings of 7th International Conference on
Independent Component Analysis (ICA2007), pp. 730-737, Sept. 2007.

[25] G. G. Herrero, Z. Koldovsky, P. Tichavsky, and K. Egiazarian, "A Fast Algorithm for
Blind Separation of Non-Gaussian and Time-Correlated Signals", Proceedings of 13th
European Signal Processing Conference (EUSIPCO 2007), pp. 1731-1735, Sept 2007.

[26] T Malek, Z Koldovsky, S. Hosseini, and Y. Deville, "A Variant of EFICA Algorithm
with Adaptive Parametric Density Estimator”, 8th International Workshop on Electronics,
Control, Modelling, Measurement, and Signals (ECMS 2007), pp. 79-84, Liberec, Czech
Republic, May 2007,

[27] Z. Koldovsky, J. Nouza, and J. Koloren¢, "Continuous Time-Frequency Masking
Method for Blind Speech Separation with Adaptive Choice of Threshold Parameter Using
ICA", Interspeech 2006, Pittsburgh PA, USA, 17.-21. September, pp. 2578-2581, 2006.

[28] P. Tichavsky, Z. Koldovsky, E. Doron, A. Yeredor, and G. G. Herrero, "Blind signal
separation by combining two ICA algorithms: HOS-based EFICA and time structure-based
WASOBI", Proceedings of The 2006 FEuropean Signal Processing Conference
(EUSIPCO'2006), Florence, Sep. 2006,

[29] Z. Koldovsky, P. Tichavsky, "Methods of Fair Comparison of Performance of Linear
ICA Techniques in Presence of Additive Noise", Proc. of ICASSP 2006, Toulouse, no. V., pp.
873-876, May 2006.

[30] Z. Koldovsky, P. Tichavsky, "Efficient Variant of Algorithm FastICA for Independent
Component Analysis Attaining the Cramér-Rao Lower Bound", Proc. of SSP-2005,
Bordeaux, July 2005,

[31] P. Tichavsky, Z. Koldovsky and E. Oja, "Asymptotic Performance Analysis of the
Fixed-Point Algorithm (Fast-ICA) for Independent Component Analysis", Proc. of SSP-2005,
Bordeaux, July 2005,

[32] Z. Koldovsky, P. Tichavsky and E. Oja, "Cramér-Rao Lower Bound for Linear
Independent Component Analysis., Proc. of ICASSP-2005, Philadelphia, Vol. III, pp. 581 -
584, March 2005.
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Uchazeé: Ing. Zbynék Koldovsky, Ph.D.

Podpis:

Hodnocené obdobi: 2000-2010

B1. Védecko-vyzkumna ¢innost

Pracovisté: ITE

Typ kvantif, pocet body
aktivity koef.
monografie (vystava arch. praci) zahranié. B4 10-20
samostat, kapitola v mezinar, monografii 3-6
monografie (vystava arch. praci) CR 7-12
samostat. kapitola v Seské monografi 24
¢lanek v mezindr. recenzovaném asopise 3-10 9 37
pfispévek na mezinar, konf {ve shomiku) 2-4 23 46
prumyslem potvrzené pouZiti — zahr, 5-10
realiz, dilo vét§iho rozsahu — zahr. 5-10
pramyslem potvrzené pouziti - CR 2-5
realiz. dilo vét§iho rozsahu — CR 2-5
citace zahraniéni 6 68 204
citace CR 2 1 2
uvedeni realiz. dila v odb. publ. — zahr, 6
uvedeni realiz. dila v odb. publ. - CR 2
uspé&siny projekt uplat, v mezinar. soutézi 1015
uspésny projekt uplat. v éeské soutézi 7-12
puvodni ¢lanek v eském véd. a odb. &as. 3
odbomy ¢lanek referativni nebo populariza. 1
puav. piispévek na ées. konf, (ve sborniku) 2
oponovana vyzkumna zprava 1-3
ochranny dokument (vyn , pat., lic.) 5
udéleny grant zahraniéni 5-10
udéleny grant CR 24 5 12
spolufe$. zahramiéniho grantu 3-6
spolufes. grantu CR 1-2
realizované dilo 1-7 1 5
jina aktivita 1-4
Védecko-vyzkumna ¢innost celkem 107 306




B. Podklady pro habilita¢ni a jmenovaci Fizeni na Fakulté mechatroniky,
informatiky a mezioborovych studii TU v Liberci (kvantitativni hodnoceni)

Zbvnék Koldovsky

2/13

B2, Pedagogicka a vzdélavaci ¢innost

Typ kvantif. podet body
aktivity koef,
pfednadeni v fad. studiu min. 2 hod/tyd. 2/sem. 7 14
pravidelna cv. min. 2 hod/tyd. 0,5/sem. 31 15,5
vedeni studentskeho projektu 0,5/sem. 7 5
zavedeni nového predmétu v fad. studiu 4 3 16
Vysokoskolska u¢ebnice 6-10
Vysokoskolska skripta piedn./cviceni 6/4
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Jina kniZni publikace, didakt. pommicka 3-6 3 6
pieklad ucebnice 3
vyukovy film, video, vyukovy software 3
uspé$ny doktorand nebo aspirant 8
vedeni doktoranda pied/po dokt. zkousce 2/4 1 4
staZista se zavérefnou praci 1
vedeni ocenén¢ studentské prace 1
vedeni obhajene diplomové prace 1Adipl. 3
garant doktor. PGS, ¢len obor. radv PGS 3 1
vedouci vvzkumneho nebo projekt. tymu 4
vedouci katedry, feditel istavu 3
Pedagogicka a vzdélavaci ¢innost celkem 38 66,3
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Doporuceny limit pro zahajeni habilitaéniho fizeni: 60 — 70 bodt / 5 let.
Doporuceny limit pro zahajeni ymenovaciho fizeni: 150 — 170 boda / 10 let.
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Zduvodnéni bodového hodnoceni

Bl. Védecko-vyzkumna €innost

élanek v mezinar. recenzovaném casopise

P. Tichavskv and Z. Koldovsky, "Fast and accurate methods of independent component analvsis: A
Survey, " accepted for publication in Kybernetika, 2010, (bodové ohodnoceni publikace: 6 body, podil
40%, body: 2)

P. Tichavsky and Z. Koldovsky, "Weight Adjusted Tensor Method for Blind Separation of
Underdetermined Mixtures of Nonstationary Sources, " IEEE Trans. on Signal Processing, Vol. 59,
No. 3, pp. 1037-1047, ISSN:1053-5387X, March 2011. (bodov¢ ohodnoceni publikace: 10 body, podil
40%, body: 4)

Z. Koldovsky and P. Tichavsky, "Time-Domain Blind Separation of Audio Sources on the basis of a
Complete ICA Decomposition of an Observation Space", IEEE Trans. on Speech, Audio and
Language Processing, Vol. 19, No. 2, pp. 406-416, ISSN 1538-7916, February 2011. (bodové
ohodnoceni publikace: 10 body, podil 65%, body: 6,5)

Z Koldovsky, J. Malek, P. Tichavsky, Y Dewville, and S Hosseini, "Blind Separation of Piecewise
Stationarv NonGaussian Sources”, Signal Processing, Volume 89, Issue 12, Pages 2570-2584, ISSN
0165-1684, December 2009, (bodové ohodnoceni publikace: 10 body, podil 60%, body: 6)

P. Tachavsky, Z. Koldovsky, and E. Qja, "Corrections to 'Performance Analysis of the FastiCA
Algorithm and Cramer-Rao Bounds for Linear Independent Component Analysis' TSP 04/06," IEFE
Tr. Signal Processing, Vol. 56, Nod, pp. 1715-1716, ISSN: 1053-387X, April 2008, (bodové
ohodnoceni publikace: 5 body, podil 40%, body: 2)

P. Tichavsky, Z. Koldovsky, A. Yeredor, G. G. Herrero, and E. Doron, "A Hybnd Technique for
Blind Separation of Non-Gaussian and Time-Correlated Sources Using a Multicomponent Approach”,
IEEE Trans. on Neural Networks, Vol. 19, No., 3, pp. 421-430, ISSN: 1045-9227, March 2008
(bodove ohodnoceni publikace: 10 body, podil 30%, bodyv: 3)

Z. Koldovsky, P. Tichavsky and E. Oja, "Efficient Variant of Algorithm FastICA for Independent
Component Analysis Attaining the Cramér-Rao Lower Bound", IEEE Trans. on Neural Networks,
Vol. 17, No. 5, Sept 2006. (bodové ohodnoceni publikace: 10 body, podil 60%, body: 6)

P. Tichavsky, Z. Koldovsky and E. Oja, "Performance Analysis of the FastiCA Algorithm and
Cramér-Rao Bounds for Linear Independent Component Analvsis", IEEE Trans. on Signal
Processing, Vol. 54, No 4, April 2006, (bodové ochodnoceni publikace: 10 body, podil 35%, body: 3,5)

P. Tichavsky, Z. Koldovsky, "Optimal Pairing of Signal Components Separated by Blind Techniques"”,
IFEE Signal Processing Letters, Vol. 11, No. 2, pp. 119-122, Feb 2004. (bodové ohodnoceni
publikace: 10 body, podil 40%, body: 4)
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Pfispévek na mezinarodni konferenci {ve shorniku)

Z. Koldovsky, P. Tichavsky, and Anh Huy Phan, "Stability Analysis and Fast Damped-Gauss-Newton
Algorithm for INDSCAL Tensor Decompeosition," IEEE Workshop on Statistical Signal Processing,
Nice, France, June 2011. (bodové ohodnoceni publikace: 4 body, podil 60%, body: 2)

P. Tichavsky and Z. Koldovsky, "Stability of CANDECOMP-PARAFAC tensor decomposition,”
ICASSP 2011, Prague, Czech Republic, May 2011, (bodové ohodnoceni publikace: 4 body, podil
40%, body: 2)

Z. Koldovsky, P. Tichavsky, and J. Malek, "Time-Domain Blind Audio Source Separation Method
Producing Separating Filters of Generalized Feedforward Structure," in Latent Variable Analvsis and
Signal Separation, Lecture Notes in Computer Science Vol. 6363, pp. 17-24, ISBN: 978-3-642-
15994-7, Springer, Heidelberg, Sept. 2010. (bodové ohodnoceni publikace: 4 body, podil 60%, body:
3)

Z. Koldovsky, P. Tichavsky, and J. Malek, "Subband Blind Audio Source Separation Using a Time-
Domain Algornthm and Tree-Structured QMF Filter Bank," in Latent Variable Analysis and Signal
Separation, Lecture Notes in Computer Science Vol. 6363, pp. 25-32, ISBN: 978-3-642-15994-7,
Springer, Heidelberg, Sept, 2010. (bodové chodnoceni publikace: 4 body, podil 60%, body: 3)

J. Miélek, Z. Koldovsky, and P, Tichavsky, "Adaptive Time-Domain Blind Separation of Speech
Signals," in Latent Variable Analysis and Signal Separation, Lecture Notes in Computer Science Vol.
6365, pp. 9-16, ISBN: 978-3-642-15994-7, Springer, Heidelberg, Sept. 2010. (bodové ohodnoceni
publikace: 4 body, podil 30%, body: 1)

P. Tichavsky and Z. Koldovsky, "Simultaneous Search for All Modes in Multilinear Models," ICASSP
2010, pp. 4114-4117, ISBN: 978-1-4244-4296-6, ISSN: 1520-6149, Dallas, USA, March 2010.
{bodové ohodnoceni publikace: 4 body, podil 30%, body: 1)

Z. Koldovsky and P. Tichavsky, "A Comparison of Independent Component and Independent
Subspace Analvsis Algorithms," EUSIPCO 2009 , pp. 1447-1451, Glasgow, Scotland, August 24-28,
2009, (bodové ohodnoceni publikace: 4 body, podil 60%, body: 3)

P. Tichavsky, A. Yeredor, and Z. Koldovsky, "A Fast Asymptotically Efficient Algornithm for Blind
Separation of a Linear Mixture of Block-Wise Stationary Autoregressive Processes," JCASSP 2009,
pp. 3133-3136, ISBN: 978-1-4244-2354-5, ISSN: 1520-6149, Taipei, Taiwan, April 2009. (bodové
ohodnoceni publikace: 4 body, podil 15%, bodv: 1)

J. Petkov and Z. Koldovsky, "BSSGUI - A Package for Interactive Control of Blind Source
Separation Algorithms in MATLAB," in Cross-Modal Analysis of Speech, Gestures, Gaze and Facial
Expressions (Eds.: A. Esposito and R. Vich), pp. 386-398, ISBN: 978-3-642-03319-3, ISSN: 0302-
9743, Springer Berlin / Heidelberg, July 2009, (bodové ohodnoceni publikace: 4 body, podil 50%,
body: 2)

J. Malek, Z. Koldovsky, J. Zd’ansky and J. Nouza, "Enhancement of Noisy Speech Recordings via
Blind Source Separation”, Proceedings of the 9th Annual Conference of the International Speech
Communication Association (Interspeech 2008), pp. 159-162, ISSN: 1990-9772, September 22-26,
Brisbane, Australia, 2008 (bodové ohodnoceni publikace: 4 body, podil 30%, body: 2)

Z.. Koldovsky and P. Tichavsky, "Time-domain Blind Audio Source Separation Using Advanced
Component Clustering and Reconstruction”, Proc. of The Joint Workshop on Hands-free Speech
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Communication and Microphone Arravs (HSCMA 2008), pp. 216-219, ISBN: 978-1-4244-2338-3,
May 6-8, Trento, Italy, 2008 (bodové ohodnoceni publikace: 4 body, podil 60%, body: 2)

Z. Koldovsky, J. Malek, P. Tichavsky, Y. Deville, and S. Hosseini, "Extension of EFICA Algorithm
for Blind Separation of Piecewise Stationarv Non Gaussian Sources", 33rd International Conference
on Acoustics, Speech, and Signal Processing (ICASSP 2008), Las Vegas, Nevada, pp. 1913-1916,
ISBN: 1-4244-1484-9, April 2008 (bodove ohodnoceni publikace: 4 body, podil 60%, body: 2)

Z. Koldovsky and P. Tichavsky, "Time-Domain Blind Audio Source Separation Using Advanced ICA
Methods", Proceedings of the 8th Annual Conference of the International Speech Communication
Association (Interspeech 2007), pp. 846-849, August 2007. (bodoveé ohodnoceni publikace: 4 body,
podil 70%, body: 3)

P. Tichavsky, Z. Koldovsky and E. Oja, "Speed and Accuracy Enhancement of Linear [CA
Techniques Using Rational Nonlinear Functions”, Proceedings of 7th International Conference on
Independent Component Analysis (ICA2007), pp. 285-292, Sept. 2007 (bodové ohodnoceni
publikace: 4 body, podil 30%, body: 1)

Z. Koldovsky and P. Tichavsky, "Blind Instantancous Noisy Mixture Separation with Best
Interference-plus-noise Rejection", Proceedings of 7th International Conference on Independent
Component Analysis (ICA2007), pp. 730-737, Sept. 2007. (bodové ohodnoceni publikace: 4 body,
podil 70%, body: 3)

G. G. Herrero, Z. Koldovsky, P. Tichavsky, and K. Egiazanan, "A Fast Algorithm for Blind
Separation of Non-Gaussian and Time-Correlated Signals”, Proceedings of 15th European Signal
Processing Conference (EUSIPCO 2007), pp. 1731-1735, Sept 2007. (bodové chodnoceni publikace:
4 body, podil 20%, bodv: 1)

J. Malek, Z. Koldovsky, S. Hosseini, and Y. Deville, "A Varant of EFICA Algorithm with Adaptive
Parametric Density Estimator”, 8th International Workshop on Electronics, Control, Modelling,
Measurement, and Signals (FCMS 2007), pp. 79-84, Libere¢, Czech Republic, May 2007 (bodové
ohodnoceni publikace: 2 body, podil 40%, body: 1)

Z. Koldovsky, J. Nouza, and J. Koloreng, "Continuous Time-Frequency Masking Method for Blind
Speech Separation with Adaptive Choice of Threshold Parameter Using ICA", Interspeech 2006,
Pittsburgh PA, USA, 17.-21. September, pp. 2578-2581, 2006. (bodove ohodnoceni publikace: 4
body, podil 75%, body: 3)

P. Tichavsky, Z. Koldovsky, E. Doron, A Yeredor, and G. G, Herrero, "Blind signal separation by
combining two ICA algorithms: HOS-based EFICA and time structure-based WASOBI", Proceedings
of The 2006 Furopean Signal Processing Conference (EUSIPCO'2006), Florence, Sep. 2006, (bodové
ohodnoceni publikace: 4 body, podil 30%, body: 2)

Z. Koldovsky, P. Tichavsky, "Methods of Fair Comparison of Performance of Linear [CA Techniques
in Presence of Additive Noise", Proc. of ICASSP 2006, Toulouse, no. V., pp. 873-876, May 2006
(bodove ohodnoceni publikace: 4 body, podil 60%, body: 2)

Z. Koldovsky, P. Tichavsky, "Efficient Variant of Algorithm FastICA for Independent Component
Analysis Attaining the Cramér-Rao Lower Bound", Proc. of SSP-2005, Bordeaux, July 2005, (bodové
ohodnoceni publikace: 4 body, podil 60%, body: 2)
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P. Tichavsky, Z. Koldovsky and E. Oja, "Asvmptotic Performance Analysis of the Fixed-Point
Algorithm (Fast-ICA) for Independent Component Analysis", Proc. of SSP-2003, Bordeaux, July
2005, (bodove ohodnoceni publikace: 4 body, podil 30%, body: 2)

Z. Koldovsky, P. Tichavsky and E. Oja, "Cramér-Rao Lower Bound for Linear Independent
Component Analysis., Proc. of ICASSP-2005, Philadelphia, Vol. III, pp. 581 - 584, March 2005.
(bodove ohodnoceni publikace: 4 body, podil 50%, body: 2)

Citace zahraniéni

Citace vISI Web of Knowledge po vyloudeni viech piimych a nepfimvch autocitaci. Bodové
ohodnoceno 3 body / citace, vzhledem k primémému 50 % podilu na élancich.

Citujici publikace:

Sui, I; Adali, T; Pearlson, G; Yang, HH; Sponheim, SR; White, T; Calhoun, VD A CCA plus ICA based model
for multi-task brain imaging data fusion and its application to schizophrenia, NEUROGIMAGE, MAY 135, 2010

Li, HL; Adali. T, A class of complex ICA algorithms based on the kurtosis cost function, IEEE
TRANSACTIONS ON NEURAL NETWORKS, MAR, 2008

Novey, M; Adali, T; Roy, A, A Complex Generalized Gaussian Distribution-Characterization, Generation, and
Estimation, IEEE TRANSACTIONS ON SIGNAL PROCESSING, MAR, 2010

Chan, TH; Ma, WK; Chi, CY; Wang, Y, A convex analysis framework for blind separation of non-negative
sources, IEEE TRANSACTIONS ON SIGNAL PROCESSING, OCT, 2008

Shimizn, §; Hover, PO, Hyvarinen, A; Kerminen, A, A linear non-Gaussian acyclic model for cansal discovery,
JOURNAL OF MACHINE LEARNING RESEARCH, OCT, 2006

Vrins, F; Lee, JA; Verleysen, M A minimnm-range approach to blind extraction of bounded sources, IEEE
TRANSACTIONS ON NEURAL NETWORKS, MAY, 2007

Taghia, J; Doostari, MA; Taghia, J, A new algorithm in blind source separation for high dimensional data sets
such as MEG data, PROCEEDINGS OF THE WSEAS INTERNATIONAL CONFERENCE ON CIRCUITS,
SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING - SELECTED TOPICS ON CIRCUITS,
SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING , 2007

Karvounis, EC; Tsipouras, MG; Papaloukas, C; Tsalikakis, DG; Naka, KK Fotiadis, DI A Non-invasive
Methodology for Fetal Monitoring during Pregnancy METHODS OF INFORMATION IN MEDICINE, 2010

Li, XL; Adali, T, A NOVEL ENTROPY ESTIMATOR AND ITS APPLICATION TO ICA, 2009 IEEE
INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2009

Xue, YF; Ju, F; Wang, YJ. Yang. J, A source adaptive independent component analysis algorithm through
solving the estimating equation, EXPERT SYSTEMS WITH APPLICATIONS, DEC 2009,

Hild. KE; Attias, HT; Nagarajan, S5, An expectation-maximization method for spatio-temaporal blind source
separation using an AR-MOG source model, I[EEE TRANSACTIONS ON NEURAL NETWORKS, MAR,
2008

Phlypo, R; Zarzoso, V; Lemahien, I, Atrial activity estimation from atrial fibrillation ECGs by blind source
extraction based on a conditional maxinum likelihood approach MEDICAL & BIOLOGICAL
ENGINEERING & COMPUTING, MAY, 2010

Du, Q; Kopriva, 1. Automated target detection and discrimination using constrained kurtosis maximization,
IEEE GEQSCIENCE AND REMOTE SENSING LETTERS, JAN, 2008
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Shan, XM; Apley. DW, Blind Identification of Manufacturing Variation Patterns by Combining Source
Separation Criteria, TECHNOMETRICS, AUG, 2008

Cabras, G; Carniel, R; Wassermann, J, BLIND SOURCE SEPARATION: AN APPLICATION TO THE MT.
MERAPI VOLCANO, INDONESIA, FLUCTUATION AND NOISE LETTERS, DEC, 2008

Frolov, AA; Husek, D; Muraviev, IP; Polvakov, PY, Boolean factor analysis by autractor neural network, IEEE
TRANSACTIONS ON NEURAL NETWORKS, MAY, 2007

Olhla, E; Kim, HI; Koivunen, V, Compact Cramer-Rao bound expression-for independent component analysis,
IEEE TRANSACTIONS ON SIGNAL PROCESSING, APR, 2008

Zarzoso, V; Comon, P, Comparative speed analvsis of FastICA, Independent Component Analysis and Signal
Separation. Proceedings, 2007

Novey, M; Adali, T, Complex ICA by negentropy maximization, [IEEE TRANSACTIONS ON NEURAL
NETWORKS, APR, 2008

Adali, T; Li, HL; Novey, M. Cardoso, JF, Complex ICA using nonlinear functions, IEEE TRANSACTIONS
ON SIGNAL PROCESSING, SEP, 2008

Li, XL; Adali, T, Complex Independent Component Analysis by Entropy Bound Minimization, IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, JUL, 2010

Lv, JC; Tan, KK; Yi, Z; Huang, SN, Convergence Analysis of a Class of Hyvarinen-Oja's ICA Learning
Algorithms With Constant Learning Rates, TEEE TRANSACTIONS ON SIGNAL PROCESSING, MAY, 2009

Wibral, M; Turi, G; Linden, DEJ; Kaiser, J; Bledowski, C, Decomposition of working memory-related scalp
ERPs: Crossvalidation of fMRI-constrained source analysis and ICA, INTERNATIONAL JOURNAL OF
PSYCHOPHY SIOLOGY, MAR, 2008

Yao. ZX: Zhang, K. Lin, HB; Su. H, Eliminate indeterminacies of independent component analysis for
chemometrics, PROGRESS IN NATURAL SCIENCE, AUG 10, 2008

Filippi, C; Romanin-Jacur, G, Exact and approximate algorithms for high-multiplicity parallel machine
scheduling, JOURNAL OF SCHEDULING, OCT, 2009

Wang, Y; Chi, YL; Wu, X; Lin, C, Extracting Acoustical Impulse Signal of Fanlty Bearing Using Blind
Deconvolution Method, ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT
COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS, 2009

Kopriva, I; Jeric, I, Smrecki, V, Extraction of multiple pure component H-1 and C-13 NMR spectra from two
mixtures; Novel solntion obtained by sparse component analysis-based blind decomposition, ANALYTICA
CHIMICA ACTA, OCT 27, 2009

Solvang, HK; Nagahara, Y; Araki, S; Sawada, H; Makino, 8, Frequency-Domain Pearson Distribution
Approach for Independent Component Analvsis (FD-Pearson-ICA) in Blind Source Separation, IEEE
TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, MAY, 2009

Cantero, JL; Atienza, M; Gomez-Herrero, G; Cruz-Vadell, A; Gil-Neciga, E; Rodriguez-Romero, R; Garcia-
Solis. D Functional Integrity of Thalamocortical Circuits Differentiates Normal Aging from Mild Cognitive
Impairment, HUMAN BRAIN MAPPING, DEC, 2009

Tiilikainen, J; Bosund, V; Tilli, IM; Sormunen, J; Mattila, M; Hakkarainen, T; Lipsanen, H, Genetic algorithm
using independent component analysis in x-ray reflectivity curve fitting of periodic layer structures, JOURNAL
OF PHYSICS D-APPLIED PHYSICS, OCT 7, 2007
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Lin, CJ; Yang, J, ICA Color Space for Pattern Recognition, IEEE TRANSACTIONS ON NEURAL
NETWORKS, FEB, 2009

Fadili, MJ; Starck, JL; Bobin, J; Moudden, Y, Image Decomposition and Separation Using Sparse
Representations: An Overview, PROCEEDINGS OF THE IEEE, JUN, 2010

Sarmiento, A; Cruces, S; Duran, I, Improvement of the Initialization of ICA Time-Frequency Algorithms for
Speech Separation, INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION,
PROCEEDINGS, 2009

Cantero, JL; Atienza, M; Criz-Vadell, A; Suarez-Gonzalez, A; Gil-Neciga, E, Increased synchronization and
decreased neural complexity undetlie thalamocortical oscillatory dynamics in mild cognitive impairment,
NEUROIMAGE, JUL 15, 2009

Xue, YF; Wang, YJ; Yang, J. Independent component analysis based on gradient equation and kernel density
estimation, NEUROCOMPUTING, MAR, 2009

Nath, MK; Sahambi, IS  Independent Component Analysis of Functional MRI Data, 2008 IEEE REGION 10
CONFERENCE; TENCON 2008, VOLS 1-4, 2008

Nath, MK, Independent Component Analysis of Real Data, ICAPR 2009: SEVENTH INTERNATIONAL
CONFERENCE ON ADVANCES IN PATTERN RECOGNITION, PROCEEDINGS, 2009

Gomez-Herrero, G; Atienza, M; Egiazarian, K; Cantero, JL, Measuring directional coupling between EEG
sources, NEUROIMAGE, NOV 15, 2008

Haufe, S; Tomioka, R; Nolte, G; Muller, KR ; Kawanabe, M, Modeling Sparse Connectivity Between
Underlying Brain Sources for EEG/MEG, IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING,
AUG, 2010

Wang, FY; Chi. CY; Chan, TH; Wang, Y, Nonnegative Least-Correlated Component Analvsis for Separation of
Dependent Sources by Volume Maximization, [IEEE TRANSACTIONS ON PATTERN ANALYSIS AND
MACHINE INTELLIGENCE . MAY, 2010

Erdogan, AT, On the Convergence of ICA Algorithms With Symetric Orthogonalization, IEEE
TRANSACTIONS ON SIGNAL PROCESSING, JUN, 2009

Zayyani, H; Babaie-zadeh, M; Haddadi. F; Jutten, C. On the Cramer-Rao Bound for Estimating the Mixing
Matrix in Noisy Sparse Component Analysis, [EEE SIGNAL PROCESSING LETTERS, 2008

Taghia, J; Taglia, J, One-Channel Audio Source Separation of Convolutive Mixture, ADVANCES IN
COMPUTER AND INFORMATIOM SCIENCES AND ENGINEERING, 2008

Yang, XN; Yao, JL; Li, JID; Li, Z, PERFORMANCE ANALYSIS OF THE FASTICA ALGORITHM IN ICA-
BASED CO-CHANNEL COMMUNICATION SYSTEM, 2009 5TH INTERNATIONAL CONFERENCE ON
WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-8, 2009

Chen, HB; Tse, CK. Feng, JC, Performance evalnation of source extraction in wireless sensor networks,
COMPUTER COMMUNICATIONS, OCT 25, 2008

Pokharel, PP; Ozertem, U; Erdogmus, D; Principe, JC, Recursive complex BSS via generalized
eigendecomposition and application,in image rejection for BPSK, SIGNAL PROCESSING, JUN, 2008
Sadeghi, MH; Aghabozorgi, MR; Sadeghi, MT, Removing Reflection from Image Using ICA, 2008
INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS, VOLS 1 AND 2, 2008
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Kopriva, I; Persin, A; Puizina-Ivic, N; Miric, L, Robust demarcation of basal cell carcinoma by dependent
component analysis-based segmentation of multi-spectral flnorescence images, JOURNAL OF
PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, JUL 2, 2010

Zarzoso, V, Comon, P, Robust Independent Component Analysis by Iterative Maximization of the Kurtosis
Contrast With Algebraic Optimal Step Size, [IEEE TRANSACTIONS ON NEURAL NETWORKS, FEB, 2010

Zarzoso, V;, Comon, P, Robust Independent Component Analysis for Blind Source Separation and Extraction
with Application in Electrocardiography, 2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE
IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008

Cabras, G; Camniel, R; Wasserman, J, Signal enhancement with generalized ICA applied to Mt. Etna volcano,
Italy, BOLLETTINO DI GEQFISICA TEORICA ED APPLICATA, MAR, 2010

Petrochilos, N; Hafner. N: Host-Madsen, A; Boric-Lubecke, O; Lubecke, V, Source separation applied to
heartbeat Doppler radar, PROCEEDINGS OF THE NINTH IASTED INTERNATIONAL CONFERENCE ON
SIGNAL AND IMAGE PROCESSING, 2007

Gaito, S; Grossi. G, Speeding up FastICA by mixture random pruning, Independent Component Analysis and
Signal Separation, Proceedings, 2007

Herrmann, JM; Theis, FJ, Statistical analysis of sample-size effects in ICA, INTELLIGENT DATA
ENGINEERING AND AUTOMATED LEARNING - IDEAL 2007, 2007

Huang, B; Yan, GZ; Zan, P; Li, QR, Study on gastric interdigestive pressure activity based on phase space
reconstruction and FastICA algorithm, MEDICATL ENGINEERING & PHYSICS, APR, 2009

Ollila, E, The Deflation-Based FastICA Estimator; Statistical Analysis Revisited, IEEE TRANSACTIONS ON
SIGNAL PROCESSING, MAR, 2010

Kleffner, MD; Jones, DL, Tighter mean-squared error bounds on kurtosis-based fast-ICA, IEEE/SP 14TH
WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007

Sadeghi, MH; Aghabozorgi, MR; Sadeghi, MT, Using Basis Vectors of ICA for Blind Separation of Reflection
from a Single Image, ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING,
VOLS 1-5, PROCEEDINGS, 2008

Sui, J; Adali, T; Li, YO, Yang, HH; Calhoun, VD, A review of multivariate methods in brain imaging data
fusion, MEDICAL IMAGING 2010: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL,
AND FUNCTIONAL IMAGING Proceedings of SPIE-The International Society for Optical Engineering,
Conference on Medical Imaging 2010 - Biomedical Applications in Molecular, Structural, and Functional
Imaging, FEB 14-16, 2010

Kim, J; Yang, HJ; Jung, BW; Chun, J, Blind Calibration for a Linear Array With Gain and Phase Error Using
Independent Component Analysis, [IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2010

Yeredor. A, Blind Separation of Gaussian Sources With General Covariance Structures: Bounds and Optimal
Estimation, IJEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010

Li, XL; Adali. T, Independent Component Analysis by Entropy Bound Minimization, IEEE TRANSACTIONS
ON SIGNAL PROCESSING, 2010

Kopriva, I; Cichocki, A. Nonlinear Band Expansion and 3D Nonnegative Tensor Factorization for Blind
Decomposition of Magnetic Resonance Image of the Brain, LATENT VARIABLE ANALYSIS AND SIGNAL
SPARATION, Lecture Notes in Computer Science, 9th International Conference on Latent Variable Analysis
and Signal Separation, SEP 27-30, 2010
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Adamo, A; Grossi, G, Random Pruning of Blockwise Stationary Mixtures for Online BSS, LATENT
VARIABLE ANALYSIS AND SIGNAL SPARATION, Lecture Notes in Computer Science, 9th International
Conference on Latent Variable Analysis and Signal Separation, SEP 27-30, 2010

Sadeghi, MH; Aghabozorgi, MR; Sadeghi, MT, Removing Reflection from Image Using ICA, 2008
INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS, VOLS 1 AND 2, International
Symposinm on Telecommunications, AUG 27-28, 2008

Araki, S; Ozerov, A; Gowreesunker, V; Sawada, H; Theis, F; Nolte, G; Lutter, D; Duong, NQK, The 2010
Signal Separation Evaluation Campaign (SiSEC2010). Audio Source SeparationLATENT VARIABLE
ANALYSIS AND SIGNAL SPARATION, Lecture Notes in Computer Science, 9th International Conference on
Latent Variable Analysis and Signal Separation, SEP 27-30, 2010

Oja, E; Yuan, ZJ, The FastICA algorithm revisited: Convergence analysis, IEEE TRANSACTIONS ON
NEURAL NETWORKS, 2006

Granegger, M; Werther, T, Gilly, H, Use of independent component analysis for reducing CPR. artefacts in
human emergency ECGs. RESUSCITATION, 2011

Citace CR (po vyloudeni véech pfimych a nepfimych autocitaci):

L. RUCKAY, J. STASTNY, P. SOVKA, _ICA Model Order Estimation Using Clustering Method,*
RADIOENGINEERING, VOL. 16, NO. 4, DECEMBER 2007.

citovana publikace:
Z. Koldovsky, Fast and Accurate Methods for Independent Component Analysis. Ph.D. thesis, CTU

Prague, Faculty of Nuclear Sciences and Physical Engineering, Dept. of Mathematics, 2006.
(bodv: 2)

Udéleny grant CR

GACR 102/07/P384, Pouziti pokrolilych metod pro analyzu nezavislych komponent na slepou
separaci realnych signdla (ukonéeny 2009), (body: 4)

GACR P103/11/1947, Metody analyzy latentnich proménnych ve slepém zpracovani fedovych a
akustickych signalu (schvalen od roku 2011). (body: 4)

CTU0508214 (interni grant CVUT v Praze), Analvza nezavislvch komponent (ukondeny 2003) (body:
1)

Interni grant na rok 2007 FM, TUL, V¥vo) rychlych a eficienmich ICA algontmi a jejich aplikace na
slepou separaci audio signalil v ¢asove oblasti (ukonéeny 2007). (body: 1)

SGS TUL 2010, Pokrocilé metodv zpracovani signalu a navrhu elektronickych systému (probihajici
do listopadu 2010) (body: 2)

Realizované dilo
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T-ABCD - Algoritmus pro slepou separaci realnvch nahravek akustickvch signalu byl implementovan
v Matlabu a bylo vytvofeno grafické uzivatelské rozhrani pro jeho ovladani Jeho on-line varianta byla
implementovana v C++ a publikovana v;

O Hnili¢ka, J. Malek, K. Palecek, Z. Koldovsky, “A Fast C++ Implementation of Time-domain Blind
Speech Separation Algonithm, ™ Proc. of the 20th Czech-German WorkShop on Speech Processing,
Oct. 2010,

{(body: 5)
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Zduvodnéni bodového hodnoceni

B2. Pedagogicka a vzdéliavaci innost

Prednaseni v fadném studiu minimainé 2 hod/tyd.

Biologicke a akustické signaly (BSI) — garant pfedmétu, zavedeni pfedmétu, piiprava a vedeni
piednasek 1 ¢videni; pro paty roénik v poslednim semestru magisterského studia na FM (10 tydna),
oduceny 2 semestry: LS 2009, LS 2010. (body: 4)

Vvpocty, simulace a vizualizace Matlab (MATLB) - garant pfedmétu, zavedeni pfedmétu, pfiprava a
vedeni prednasek 1 ¢vi€eni; pro druhy semestr bakaldfského studia na FM (14 tydna), odudeny 2
semestry: LS 2009, LS 2010. (body: 4)

Pocitacove zpracovani signalil (PZS) - pfiprava a vedeni poloviny piednasek a cviceni; pro dvouleté
navazujici magisterské studium na FM, odudeny 2 semestry: LS 2007, LS 2008 (body: 2)

Zaklady matematické statistiky — zavedeni pfedmétu, pfiprava a vedeni pfednasek i cviéeni; pro druhy
ro¢nik bakalaisk¢ho studia na FIFL, oduceny 2 semestry: ZS 2003, ZS 2004. (body: 4)

Pravidelna cvi¢eni minimainé 2 hod/tyd.

Signaly a informace (SGI) — vedeni ¢vi¢eni (minimalné jeden kruh); pro tiileté bakalafské studium na
FM, ZS 2006-2010. (body: 2.5)

Biologicke a akustické signalv (BSI) —pfiprava a vedeni cvideni, pro paty ro¢nik v poslednim semestru
magisterského studia na FM (10 tydni), oduéeny 2 semestry; LS 2009, LS 2010 (body: 1)

Vypoéty, simulace a vizunalizace Matlab (MATLB) —ptiprava a vedeni ¢cvideni; pro druhy semestr
bakalafského studia na FM (14 tydnii), oduceny 2 semestry: LS 2009, LS 2010. (bodv: 1)

Pocitacove zpracovani signalli (PZS) -vedeni cvideni; pro dvoulete navazujici magisterské studium na
FM, oduceny 2 semestry: LS 2007, LS 2008, (body: 0.5)

Matematické hry —vedeni cvifeni; pro prvni roénik bakalaiského studia na FJFL, oduéen 1 semestr; ZS
2002. (body: 0.5)

Linearni algebra Al a A2 — vedeni cvideni; pro prvni roénik magisterského studia na FJFI, 1x ZS
2000, 1x ZS a LS 2001, 1x LS 2002, 2x ZS 2002, 2x ZS a LS 2003 a 2004 a 2x LS 2005. (body: 8)

Vvbrané partie z matematiky — vedeni cvi¢eni; pro druhy ro¢nik magisterského studia na FJFI, LS
2004 a LS 2005 (body: 1)

Zaklady matematické statistiky — vedeni ¢wvideni; pro druhy roénik bakalafského studia na FIFI,
oduceny 2 semestry: ZS 2003, ZS 2004, (body: 1)

Vedeni studentského projekiu

Martin Marek: Odstranovani artefakta z EEG zaznami pomoci metod slepé separace, 2007,

Jakub Petkov: Advanced Control of Blind Source Separation Algorithms in Matlab (BSSGUI), 2008.
Daniel Hanéil: Databaze zvukn pro slepou separaci, 2008,

Petr Schovanec a Jan Pista: Vyhodnocovani hluénosti zvukoveho signalu, 2009. (2 semestrv)

Radek Hlavka: Realizace audioefekti v C#, 2010
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Augustin Bernard: Detekce zakladni frekvence v akustickém signalu, 2010. (2 semestry)
David Botka: Navrh a realizace audio efektu, 2010, (2 semestry)
(celkem body: 5)

Zavedeni nového predmétu v radném studiu

Biologické a akustické signaly (BSI) — garant pfedmétu, zavedeni pfedmétu pro paty roénik
v poslednim semestru magisterského studia na FM (10 tvdnu). (body: 4)

Vvpocty, simulace a vizualizace Matlab (MATLB) — garant pfedmétu, zavedeni pfedmétu pro druhy
semestr bakalarského studia na FM (14 tvdnu). (body: 4)

Pocitacové zpracovani signalu (PZS) — priprava poloviny pfednasek a cviceni: pro dvouleté navazujici
magisterské studium na FM. (body: 2)

Zaklady matematické statistiky — zavedeni pfedmétu pro druhy roénik bakalaiského studia na FIFI.
(body: 4)

Matematické hry — zavedeni pfedmétu, pro prvni roénik bakalafského studia na FJFI. (body: 2)
Jina kniZni publikace, didakt. pomucka

Odborna kniha z oblasti zpracovani a rozpoznavani feci:

Nouza, J. a kol.: Re¢ a pogitag: principy hlasové komunikace, ulohy, metody a aplikace. vydavatel:
Technicka univerzita v Liberci, editofi: Jan Nouza, Zbynék Koldovskyv, Robert Vich, cislo
publikace: 55-110-09, prvni vydani, pocet stran: 238, ISBN 978-80-7372-548-8, 2009.

kapitola — Zpracovani zaznamu fe¢i z vice mikrofontii metodami pro feseni inverzniho problému™, str.
201-216 (80%)

(body: 2)

Poznamky k pfedmétu Pocitacove zpracovani signalu (PZS) zvefejnéné na internetu
(http://itakura.ite tul cz/zbvnek/teaching htm), 31 stran. (body: 2)

Poznamky k pfedmétu Biologické a akustické signaly (BSI), zvefejnéné na internetu
(http://itakura.ite.tul.cz/zbvnek/teaching htm), 32 stran. (body: 2)

Vedeni doktoranda pred/po zkousce

Ing. Jifi Malek, zahajeni studia 1.8.2006, studijni obor: Technicka kybemetika, disertaéni prace ma
nazev Blind Audio Source Separation via Independent Component Analysis, odevzdano listopad-
prosinec 2010.

(body: 4)

Vedeni obhajené diplomové prace

Filip Zizka: Aplikace metod pro slepou separaci dat ve zpracovani EKG zaznama, 2007.

Michal Kuna: Slepa separace fe€i ze stereofonniho zaznamu, 2007.

Lud¢k Svitak: Zpracovani EEG zaznamu s pouzitim nejnovéjsich technik pro slepou separaci, 2009,
(body: 3)

Garant doktor. PGS, ¢len obor. rady PGS

Garant pfedmétu: Metody digitalniho zpracovani vicerozmérnych signalu (body: 3)




Coauthors’ Approval of Zbynék Koldovsky’s Contributions
in Joint Papers (Since 2006)

Journal papers

Z. Koldovsky and P. Tichavsky, "Time-Domain Blind Separation of Audio Sources on the
basis of a Complete ICA Decomposition of an Observation Space", accepted for publication
in IEEE Trans. on Speech, Audio and Language Processing, April 2010. & & %

7. Koldovsky, J. Malek, P. Tichavsky, Y. Deville, and S. Hosseini, "Blind Separation of
Piecewise Stationary NonGaussian Sources", Signal Processing, Volume 89, Issue 12, Pages
2570-2584, ISSN 0165-1684, December 2009. £ %

P. Tichavsky, Z. Koldovsky, A. Yeredor, G. G. Herrero, and E. Doron, "A Hybrid Technique
for Blind Separation of Non-Gaussian and Time-Correlated Sources Using a Multicomponent
Approach", IEEE Trans. on Neural Networks, Vol. 19, No. 3, pp. 421-430, ISSN: 1045-9227,
March 2008. 40 %

Conference papers

P. Tichavsky and Z. Koldovsky, "Simultaneous Search for All Modes in Multilinear Models,"
ICASSP 2010, pp. 4114-4117, ISBN: 978-1-4244-4296-6, ISSN: 1520-6149, Dallas, USA,
March 2010. 30 %

Z. Koldovsky and P. Tichavsky, "A Comparison of Independent Component and Independent
Subspace Analysis Algorithms," EUSIPCO 2009 , pp. 1447-1451, Glasgow, Scotland, August
24-28,2009. 60 %

P. Tichavsky, A. Yeredor, and Z. Koldovsky, "A Fast Asymptotically Efficient Algorithm for
Blind Separation of a Linear Mixture of Block-Wise Stationary Autoregressive Processes,"
ICASSP 2009, pp. 3133-3136, Taipei, Taiwan, April 2009. 15~ %

Z. Koldovsky and P. Tichavsky, "Time-domain Blind Audio Source Separation Using
Advanced Component Clustering and Reconstruction”, Proc. of The Joint Workshop on
Hands-free Speech Communication and Microphone Arrays (HSCMA 2008), pp. 216-219,
ISBN: 978-1-4244-2338-5, May 6-8, Trento, Italy, 2008. 60 %

Z. Koldovsky, J. Malek, P. Tichavsky, Y. Deville, and S. Hosseini, "Extension of EFICA
Algorithm for Blind Separation of Piecewise Stationary Non Gaussian Sources", 33rd
International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2008), Las
Vegas, Nevada, pp. 1913-1916, ISBN: 1-4244-1484-9, April 2008. _ €O %
Z. Koldovsky and P. Tichavsky, "Time-Domain Blind Audio Source Separation Using
Advanced ICA Methods", Proceedings of the 8th Annual Conference of the International
Speech Communication Association (Interspeech 2007), pp. 846-849, August 2007.

10 %



P. Tichavsky, Z. Koldovsky and E. Oja, "Speed and Accuracy Enhancement of Linear ICA
Techniques Using Rational Nonlinear Functions", Proceedings of 7th International
Conference on Independent Component Analysis (ICA2007), pp. 285-292, Sept. 2007.

30 %

7. Koldovsky and P. Tichavsky, "Blind Instantaneous Noisy Mixture Separation with Best
Interference-plus-noise Rejection”, Proceedings of 7th International Conference on
Independent Component Analysis (ICA2007), pp. 730-737, Sept. 2007. 70 %

G. G. Herrero, Z. Koldovsky, P. Tichavsky, and K. Egiazarian, "A Fast Algorithm for Blind
Separation of Non-Gaussian and Time-Correlated Signals", Proceedings of 15th European
Signal Processing Conference (EUSIPCO 2007), pp. 1731-1735, Sept 2007. 20 %

7. Koldovsky, J. Nouza, and J. Koloren¢, "Continuous Time-Frequency Masking Method for
Blind Speech Separation with Adaptive Choice of Threshold Parameter Using ICA",
Interspeech 2006, Pittsburgh PA, USA, 17.-21. September, pp. 2578-2581, 2006. 3 %

P. Tichavsky, Z. Koldovsky, E. Doron, A. Yeredor, and G. G. Herrero, "Blind signal
separation by combining two ICA algorithms: HOS-based EFICA and time structure-based
WASOBI", Proceedings of The 2006 European Signal Processing Conference
(EUSIPCO2006), Florence, Sep. 2006. 50 %

Z. Koldovsky, P. Tichavsky, "Methods of Fair Comparison of Performance of Linear ICA
Techniques in Presence of Additive Noise", Proc. of ICASSP 2006, Toulouse, no. V., pp.
873-876, May 2006. &0 %

Coauthors

Yannick Deville mbkx\é))
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Prof. Ing. Vaclav Kopecky, CSc.

dékan Fakulty mechatroniky, informatiky a mezioborovych studii
Technicka univerzita v Liberci

Studentska 2

461 17 Liberec

Vazeny pane dékane,

na zakladé zakona o vysokych Skolach — 111/98 Sb., dle §72 ¢l 2 zadam timto o zahajeni
habilita¢niho fizeni pro obor Technicka kybemetika. K zadosti prikladam materidly vyzadované
vyse uvedenym zakonem.

S pozdravem

Ing. Zbyn&k Koldovsky, Ph.D.

Ptilohy:

1. Zivotopis obsahujici prehled o odborné a pedagogické &innosti

2. Doklady o dosazeném vysokoskolském vzdélani a ziskanych piislusnych titulech

3. Piehled pedagogické praxe

4. Seznam védeckych a odbornych praci

5. Piehled absolvovanych védeckych a odbornych stazi

6. Habilita¢ni prace (4x)

7. Podklady pro habilitatni a ymenovaci fizeni na Fakulté mechatroniky, informatiky a
mezioborovych studii TU v Liberci {A-kvalitativni hodnoceni)

8. Podklady pro habilita¢ni a ymencvaci fizeni na Fakulté mechatroniky, informatiky a
mezioborovych studii TU v Liberci (B-kvantitativni hodnoceni)

9. Potvrzeni podilu spoluautorstvi

10. CD s elektronickou verzi viech vyse uvedenych dokumentu

V Liberci dne 30.11.2010



Zbyn¢k Koldovsky

Zivotopis

Ing. Zbynék Koldovsky, Ph.D.

Narozen:
Narodnost:

Pracovisté:

Vedlejsi pracovisté:

Telefon:
Fax:
E-mail:

Ing.

Ph.D.

2000 - 2002
1éto 2001

léto 2000
2002 - 2005
2002 —dosud

2005 — dosud

25.4.1979 v Jablonci nad Nisou, Zenaty
Ceska

Ustav informagnich technologii a elektroniky

Fakulta mechatroniky, informatiky a mezioborovych studii
Technicka univerzita v Liberci

Studentska 2

46 117, Liberec

Ustav teorie informace a automatizace AV CR v.v.i.
Akademie veéd Ceské republiky

Pod vodarenskou vézi 4

182 08, Praha 8

+420 48 535 3534
+420 48 5353112
zbynek koldovsky@tul .cz

VZDELANI

rok 2002

Fakulta jaderna a fyzikalné inzenyrska

Ceské vysoké udeni technické v Praze

Skolitel: Ing. Petr Tichavsky, CSc.

diplomova prace: Analyza nezavislych komponent v EEG datech
rok 2006

disertacni prace: Fast and Accurate Methods for Independent
Component Analysis

Fakulta jaderna a fyzikalné inZzenyrska

Ceské vysoké udeni technické v Praze

skolitel: Ing. Petr Tichavsky, CSc.

VEDECKA A PEDAGOGICKA PRAXE

Lektor cvi€eni z linearni algebry Al a A2 na FJFI CVUT.

Pomocny védecky pracovnik v Ustavu termodynamiky AV CR. Reseni
diferencialnich rovnic mezni vrstvy atmosféry.

Dohoda o provedeni prace v Ustavu teorie informace a automatizace
AV CR. Implementace algoritmu FastICA a algoritmu pro odhad
vzajemné informace nahodnych proménnych v C++.

VS asistent na Katedfe matematiky FIFI, CVUT v Praze

Odborny pracovnik VaV

Ustav teorie informace a automatizace AV CR v.v.i. (0.3 Givazek)
VS asistent na Katedfe elektroniky a zpracovani signal{i

(dnes Ustav informaénich technologii a elektroniky, ITE), FM, TUL.



Zivotopis
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OBLASTI VYZKUMU

Digitalni zpracovani signalli, metody slepé separace, analyza nezavislych komponent, linearni
a multilinearni algebra

Pedagogické aktivity (VS pFedméty)

Soucasné: Biologické a akustické signaly (garant, pfednasky, cvi¢eni, FM, TUL)
Vypocty, simulace a vizualizace Matlab (garant, pfednasky, cviceni,
FM, TUL)

Digital Signal Processing 1 (garant, piednasky, cviceni, FM, TUL)

Minulé: Pocitacové zpracovani signalli (piednasky, cviceni, FM, TUL)
Signaly a informace {cvi¢eni, FM, TUL)
Linearni algebra A1,A2 (cvigeni, FIFL, CVUT)
Vybrané partie z matematiky (cvi¢eni, FJFI, CVUT)
Matematické hry (cvi¢eni, FJFL, CVUT)
Zaklady matematické statistiky (piednasky a cvigeni, FJFL, CVUT)

vedeni obhajenych 3 diplomovych a 3 bakalarskych praci a 7 projektu

Ucast na FeSeni projekti
Felitel:

e CTU0508214 (interni grant CVUT v Praze), Analyza nezavislych komponent (ukondeny
2005).

o GACR 102/07/P384, Pouziti pokrotilych metod pro analyzu nezavislych komponent na
slepou separaci realnych signald (ukonéeny 2009).

¢ Interni grant na rok 2007 FM, TUL, Vyvoj rychlych a eficientnich ICA algoritmi a jejich
aplikace na slepou separaci audio signali v ¢asové oblasti (ukonceny 2007).
Projekt pro Skoda a.s., Vyhodnocovani hluku piednich stéradi (2008-2010).
GACR P103/11/1947, Metody analyzy latentnich prom&nnych ve slepém zpracovani
feCovych a akustickych signalt (schvalen od roku 2011).

¢ SGS TUL 2010 a 2011, Pokrotilé metody zpracovani signalii a navrhu elektronickych
systémil (bfezen-listopad 2010 a 2011).

spolupracovnik:

1M0572, Data-Algoritmy-Rozhodovani (2005-dosud).
GACR 102/09/1278, Pokro¢ilé metody slepé separace signalu a slepé dekonvoluce (2009-
2013).

o GACR 102/05/0278, Nové sméry ve vyzkumu a vyuziti hlasovych technologii (2005-
2007).

e GAAV (PPCV) 1QS108040569, Asisten¢ni, informacni a komunikac¢ni sluzby s podporou
vyspélych hlasovych technologii (2005-2009).
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Zahraniéni navstévy

e Cerven 2004, Navstéva Neural Networks Research Centre na Technické univerzit€é v
Helsinkach v ramei vyménnych meziakademickych dohod.

s Dbiezen 2005, Navstéva Neural Networks Research Centre na Technické univerzité
v Helsinkach s pfednaskou na téma Efficient Version of Algorithm FastICA Attaining the
Cramer-Rao Lower Bound, seminaf Laboratory of Computer and Information Science.

¢ listopad a prosinec 2009, navsteva oddéleni Unmiverzity ve Stuttgartu (Némecko),
International doctorate School in Information and Communication Technology of Trento
(Italie) a Laboratoire Astrophysique de Toulouse (Francie)

¢ prosinec 2010, navitéva Lab. for Advanced Brain Signal Processing, RIKEN, Tokyo
(Japonsko)

Publikaéni aktivity

V obdobi 2005-2010 autorstvi a spoluautorstvi 8 ¢lanka v impaktovanych zahraniénich ¢asopisech, 23
pfispévkil v recenzovanych sbomicich mezinarodnich konferenci, kapitola v odbomé knize.

Reference

Ing , Petr Tichavsky, CSc¢., UTIA AV CR, Pod vodarenskou véxi 4, 182 08 Praha 8.
Prof. Ing. Jan Nouza, CSc., FM TUL, Studentska 2, 461 17 Liberec 1.
Doc. RNDr. Jan Mares, CSc., FIFI CVUT, Trojanova 13, 120 00 Praha 2.

V Liberci dne 30.11.2010 Ing. Zbynék Koldovsky, Ph.D



CESKA REPUBLIKA

Vysoka Skola CESKE VYSOKE UCENI TECHNICKE V PRAZE
Fakulta FAKULTA JADERNA A FYZIKALNE INZENYRSKA

Cislo diplomu 003532 C.  2800/2002

VYSOKOSKOLSKY DIPLOM

Zbynék Koldovsky

(jméno a pfijmeni)

narozen(a) dne 25. dubna 1979 v Jablonci nad Nisou okres Jablonec nad Nisou

ukon¢il(a) studium vykondnim statni zavérecné zkousky a ziskal(a) vysokoSkolské vzdélani v magisterském studijnim programu

Aplikace prirodnich véd

T Matematické inzenyrstvi

Podle § 46 odst. 4 pism. a) zdkona ¢. 111/1998 Sb. o vysokych §koldch se mu (ji) udéluje akademicky titul ,

inZenyr
ve zkratce :—m.

V Praze dne  17. ¢ervna 2002

rektor vysoké Skoly

VSP/2524



CESKA REPUBLIKA

Vysokd kola CESKE VYSOKE UCENI TECHNICKE VPRAZE  Cislo 2800/2002
Fakulta JADERNA A FYZIKALNE INZENYRSKA

Pifloha k diplomu &islo 003532

VYSVEDCENI

o statni zavérecné zkousce
Zbynék Koldovsky
(yjméno a pfijmeni)
narozen(a) dne 25. dubna 1979 v Jablonci nad Nisou okres Jablonec nad Nisou

ukoncil(a) podle § 46, odst. 3 zdkona ¢. 111/1998 Sb. o vysokych Skolach studium

v magisterském studijnim programu Aplikace pFirodnich véd

zaméreni Matematické modelovani

studijni obor  Matematické inZenyrstvi

Vykonal(a) stitni zavére¢nou zkousku
1. z funkcionalni analyzy

dne 17. 6. 2002 s prospéchem  vyborné
2.7z teorie pravdépodobnosti a matematické statistiky

dne 17.6.2002 s prospéchem  vyborné
3. z stochastickych procesi

dne 17. 6. 2002 s prospéchem vyborné
4.7 ---

dne == s prospéchem ---

a obhijil(a) diplomovou préci na téma Analyza nezavislych kromponent v EEG datech, slepa
separace konvolutornich smési

dne 17. 6. 2002 s prospéchem vyborné&
Celkovy vysledek statni zavére¢né zkousky: vyborm & Vi /
V Praze dne 17. 6. 2002 (/2’/(/ Lol

dekan fakulty
jednotlivé zkousky vyborng velu (obF [ dobre nevyhovel
celkovy vysledek vyborné velmi dobfe dobfe nevyhovél
statni zkouSky

004110 VSP/2525
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CESKE VYSOKE UCENIiI TECHNICKE V PRAZE
CZECH TECHNICAL UNIVERSITY IN PRAGUE

DODATEK K DIPLOMU / DIPLOMA SUPPLEMENT

Diplom ¢&. / Diploma No: HF 0007607

Tento dodatek k diplomu odpovida modelu vytvorenému
Evropskou  komisi, Radou Evropy a organizaci
UNESCO/CEPES. Uéelem dodatku je poskytnout odpovidajici
nezavislé udaje, které prispéji ke zlepseni mezindarodni
"prithlednosti" a spravedlivosti akademického a profesniho
uznavani kvalifikaci (diploma, titulii, osvédceni atd.). Dodatek
Jje urcen pro popis podstaty, obsahu, urovné a postaveni studii,
ktera byla uskutecnéna a uspésné dokoncena drZitelem
kvalifikace, ke které je tento dodatek pripojen. Dodatek nema
obsahovat Zadné ocenéni, prohlaseni o rovnocennosti nebo
doporuceni k uznani. Je tieba, aby vsech osm casti dodatku
bylo vypinéno. Tam, kde informace poskytnuty nebudou, mélo
by byt uvedeno vysvétleni proc.

This Diploma Supplement follows the model developed by the
European Commission, Council of Europe and UNESCO/CEPES.
The purpose of the supplement is to provide sufficient independent
data to improve the international "transparency" and fair
academic and professional recognition of qualifications
(diplomas, degrees, certificates etc.). It is designed to provide a
description of the nature, level, context, content and status of the
studies that were pursued and successfully completed by the
individual named on the original qualification to which this
supplement is appended. It should be free from any value
Jjudgements, equivalence statements or suggestions about
recognition. Information in all eight sections should be provided.
Where information is not provided, an explanation should give
the reason why.

1. Informace o totoZnosti drzitele kvalifikace / Information identifying the holder of the qualification

1.1 Pfijmeni, titul / Family name, title:

Koldovsky, Ing.
1.2 Rodné jméno (jména) / First name (names): Zbynék

1.3 Datum narozeni (den/mésic/rok) / Date of birth (day/month/year): 25/04/1979

Misto narozeni / Place of birth: Jablonec Nad Nisou

1.4 Identifikaéni &islo (kod) studenta / Student identification number or code: 138179

2. Informace o druhu kvalifikace / Information identifying the qualification

2.1 Nazev kvalifikace a propijéeny titul (v pivodnim jazyce) v plném znéni a ve zkratce / Name of the qualification and title conferred
(full, abbreviated): doktor - ve zkr. Ph.D. / Doctor - in abbr. Ph.D.

2.2 Hlavni studijni obor(y) v ramci kvalifikace / Main field(s) of study for qualification: Aplikace pfirodnich véd - Matematické
inZenyrstvi / Applied Natural Sciences - Mathematical Engineering

2.3 Nazev a postaveni udélujici instituce (v piivodnim jazyce/ v angliétin€) / Name and status of awarding institution (in original
language/ in English): Ceské vysoké uéeni technické v Praze, ve zkratce CVUT v Praze, vefejna vysoké Skola / Czech Technical
University in Prague, in abbr. CTU in Prague, public higher education institution

2.4 Nizev a postaveni instituce (pokud je jiny, neZ v bodé 2.3) zaji§t'ujici studium/ Name and status of institution providing study
(if different from 2.3):

2.5 Studijni jazyk nebo jazyky, ve kterém je realizoviana vyuka a zkou§ky / Language(s) of instruction / examination: ¢estina / Czech

3. Informace o rovni kvalifikace / Information on the level of the qualification

3.1 Uroveii kvalifikace / Level of qualification: vysokoskolské vzdélani - doktorské studium / higher education - doctoral study programme

3.2 Standardni délka programu / Official length of programme: 6 semestrii / 6 semesters

3.3 Pozadavky pro pfistup ke studiu / Access requirements: magistersky stupefi a isp&sna pfijimaci zkouska / master degree and successful
entrance exam

4. Informace o obsahu a dosaZenych vysledcich / Information on the contents and results gained

4.1 Forma studia / Mode of study: prezenéni / full-time study
4.2 PoZadavky v ramci programu / Programme requirements: pfedmétové zkousky, statni doktorska zkouska a disertaéni prace / subject
examinations, state doctoral examination and dissertation



4.3 Podrobné udaje o programu a o jednotlivych dosaZenych hodnocenich / Programme details and individual grades / ECTS

obtained:
Kéd Nizev pfedmétu / Subject Znimka / | Datum zkou3ky | Kredity /
piedmétu / Exam / Date of exam ECTS
Code Mark
11 Metody MCMC / Markov Chain Monte Carlo methods 1 22.01.2003
12 Robustni a neparametrické metody / Robust and nonparametric methods 1 05.02.2003
13 Zaklady waveletové transformace / Introduction to the wavelet transformations 1 30.04.2003
14 Linearni problémy s nepfesnymi daty / Linear problems with inexact data 1 21.05.2003
15 Cislicové zpracovani signali / Digital signal processing 1 27.04.2004
16 Anglicky jazyk / English language 2 23.09.2003

Celkem krediti / Total ECTS 0

Diplom ¢é. / Diploma No.: HF 0007607



Statni doktorska zkouska/

State doctoral examination

Znamka / Grade

Datum / Date

Ustni statni doktorska zkouska / Oral state doctoral examination 1 25.11.2004
Disertaéni prace / Dissertation Vysledek / Result Datum / Date
Fast and Accurate Methods for Independent Component Analysis / Fast and Accurate obhajil / defended 17.01.2006

Methods for Independent Component Analysis

4.4 Klasifika¢ni stupnice a vysvétleni jejiho vyznamu / Grading scheme and grade distribution guidance:

Vysledek pfedmétové zkousky / Result of subject examination

ECTS stupnice /
grading scale

A-B B-C-D-E

FX-F

stupnice CVUT / CTU grade

1 2

3

slovni hodnoceni /
verbal assessment

vyborné / excellent | prospél / passed | neprospél / not passed

Vysledek statni doktorské zk

oudky / Result of state doctoral examination

ECTS stupnice /

verbal assessment

< A-B B-C-D-E FX-F
grading scale
stupnice CVUT / CTU grade 1 2 3
slovni hodnoceni / prospél s vyznamenéanim / passed with honours | prospél / passed | neprospél / not passed

4.5 Celkova klasifikace kvalifikace/ Overall classification of the qualification: prospél / graduated

5. Informace o funkci kvalifikace / Information on the function of the qualification
5.1 PFistup k dal§imu studiu / Access to further study: nejvyssi stupefi vysokoskolského vzdélani / top level of higher education
5.2 Profesni postaveni / Professional status conferred: doktor / Doctor

6. Dopliiujici informace / Additional information
http://www.cvut.cz / http://www.cvut.cz/en
http://www.msmt.cz, http://www.naric.cz
adresa / address: Ceské vysoké uéeni technické v Praze

Zikova 4

166

36 Praha 6

Czech Republic

7. Potvrzeni dodatku / Certification of the supplement

7.1 Datum / Date: 09.05.
7.2 Podpis / Signature: Prof. Ing. Viclav Havlicek, CSc.
7.3 Funkce / Capacity: Rektor / Rector

2006

7.4 Oficialni razitko nebo pecet’ / Official stamp or seal:

A 000734

/)
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8. Informace o narodnim vysokoSkolském systému
vCR

YVinrenk nkl aloled T i T
¥ 1 5¥

Vysoké skoly predstavuji nejvy3si trovei vzd&lavaciho systému v Ceské republice. Nabizeji
akreditované studijni programy tfi typli — bakalifské, magisterské a dokiorské a také
celoZivotni vzd&lavani. Vysoké Skoly jsou univerzitniho a neuniverzitniho typu.

Vysoka $kola univerzitni uskuteéfiuje viechny tfi typy studijnich programi a v souvislosti s
tim védeckou a vyzkumnou, vyvojovou, uméleckou nebo dalsi tviirdi Einnost, Vysoké Skola
neuniverzitni fuje pfevazné bakalafské, mize téZ uskutecfiovat magisterské studijni
programy a v souvislosti s tim vyzkumnou, vyvojovou, uméleckou nebo daldi tviiréi éinnost.
Vysoka skola neuniverzitni se ne¢leni na fakulty.

Vysoké Skoly jsou vefejné, stitni a soukromé. Vefejné a soukromeé vysokeé Skoly spadaji do
plisobnosti Ministerstva Skolstvi mladeZe a télovychovy, stitni instituce (vojenské vysoké
Skoly a policejni akademie) spadaji do plsobnosti Ministerstva obrany a Ministerstva vnitra,
Seznamy vysokych skol jsou k dispozici na: http://www.msmt.cz/files/htm/Vswwwser | .htm
2 N2 WWW.CSVS.CZ.

Vysokoskolské vzdélani se ziskava studiem v rimci akreditovaného studijniho programu
podle studijniho plinu stanovenou formou studia. Forma studia miiZze byt prezendni, distanéni
nebo jejich kombinace.

Podminkou piijeti ke studiu v bakalifském a magisterském studijnim programu je dosaZeni
tplného stfedniho nebo Gplného stfedniho odbomého vzdélani. Ke studiu v oblasti uméni
mohou byt piijati té uchazedi s vyiiim odbormym vzdélinim poskytovanym na
konzervatofich. Podminkou pfijeti ke studiu v isterském studijnim p ktery
navazuje na bakalafsky studijni program, je rovnéZ fadné ukongeni studia v bakalafském
studijnim programu. Podminkou piijeti ke studiu v doktorském studijnim programu je fadné
ukonéeni studia v magisterském studijnim programu a v oblasti uméni téZ ziskini
akademického titulu. Vysoka 3kola nebo fakulta miZe stanovit daldi podminky pfijeti ke
studiu tykajici se urgitych znalosti, i nebo nadéni apod.

Vysokoskolské kvalifikace

Kvalifikaéni struktura rozlisuje tfi typy studijnich programi — bakalafsky studijni program,
magistersky studijni program a doktorsky studijni program.

Bakalifsky studijni program je zaméfen na pfipravu k vykonu povolini nebo ke studiu
magisterského studijniho programu. Standardni doba studia je 3 aZ 4 roky (180-240 ECTS
kreditit). Studium se fadné ukonéuje stitni zdvéretnou zkouSkou, jejiZ soutisti je zpravidla
obhajoba bakalifské prace. Absolventi ziskaji akademicky titul

= v oblasti uméni "bakalaf uméni” ("BcA."),

* v ostatnich oblastech "bakalaf" ("Bc.").
Tituly se uvadéji pfed jménem.
Magistersky studijni program navazuje na bakalafsky studijni program. Standardni doba
studia je | aZ 3 roky (60-180 ECTS kreditil). V pfipadech, kdy to vyZaduje charakter studijniho
programu, mize byt udélena akreditace magisterskému studijnimu programu, ktery nenavazuje
na bakalafsky studijni program. Standardni doba studia je potom 46 let (240-360 ECTS
kreditit). Studium se fadné ukonéuje stitni zdvéreénou zkouskou, jejiz soucasti je obhajoba
diplomové price. V oblasti [ékafstvi, zubniho lékafstvi a veterindarniho I€kafstvi a hygieny
se studium fadné ukoncuje stitni rigorézni zkouskou.
Absolventiim se ud&luji tyto akademické tituly:

= v oblasti ekonomie, technickych véd a technol

"inZenyr" (ve zkratce "Ing"),

+ v oblasti architektury "inZenyr architekt” (ve zkratce "Ing. arch.”),

* v oblasti lékafstvi "doktor mediciny” (ve zkratce "MUDr."),

» v oblasti zubniho lékafstvi "zubni lékai" (ve zkratce "MDDr."),

+ v oblasti veterindmiho 1ékafstvi a hygieny "doktor veterindmi mediciny” (ve zkratce

"MVDr"),
+ v oblasti uméni "magistr uméni" (ve zkratce "MgA."),

i ¥ Fo o h "magistr” (ve zkratce "Mgr.").

ii, zemédélstvi, lesnictvi a vojenstvi

Absolventi magisterskych studijnich programi, ktefi ziskali ak icky titul "magistr”,

Information on national higher education system

Higher Education System in the Czech Republic
Higher Education Institutions

Higher education institutions form the highest level of Czech education. They offer accredited study
programmes at three levels - bachelor, master, and doctoral, as well as lifelong learning. Higher
education institutions are either university-type or non university-type.

University-type higher education institutions may offer all three types of study programmes (bachelor,
master and doctoral) and carry out associated scholarly, research, developmental, artistic or other
creative activities. Non university-type higher education institutions offer mainly bachelor study
programmes, but may also provide master study programmes and carry out associated scholarly,
research, developmental, artistic or other creative activities. Non university-type higher education
are not d to faculti

inst

There are public, state and private higher education institutions. The public and private higher
education institutions come under the responsibility of the Ministry of Education, Youth and Sports,
while state institutions (military universities and the police academy) are under the responsibility
of the Ministry of Defence and the Ministry of the Interior. The list is available at:
http:/fwww.msmt.cz/files/htm/Vswwwser] .htm or www.csvs.cz.

Higher education is realised within the framework of accredited study programmes in accordance
with their curriculum and given form of studies. The form of study can be full-time, part-time
(distance) or a combination of both.

Access to a bachelor study programme is conditional on leting a full dary g | or
vocational education with a GSCE - "maturita” examination and a "maturita” school-leaving general
certificate of education (maturitni vysvédéeni). In respekt to studies of arts also applicants with
completed academy education at the conservatoires are eligible for enrolment. Admission for the
master study programme as continuation of the bachelor study is conditioned also by regular
completion, i.e. graduation at the bachelor study programme level, while admission for doctoral
study prog is condiotional on graduating from a master study programme, and in sphere of
arts also award of degrese. University or college may determine another conditions for admission
for study in respekt to certain knowledge, skills, talent or endowment etc.

Higher Education Qualifications
The qualification structure recognises bachelor, master and doctoral levels.

A bachelor study programme aims at qualifying to enter a profession or a master study programme.
It takes from 3 to 4 years (180-240 ECTS credits). The study prog| must be completed in due
form with a final state examination, which usually includes the presentation and defence of a bachelor
thesis. Graduates receive the academic degree

+ "bakalaf uméni” ("BcA.") - Bachelor of Arts in the field of art,

+ "bakalif" ("Be.") — Bachelor in other fields.
Degrees are denoted in front of the name.

A master study programme follows a bachelor study programme. The length is 1-3 years (60-180
ECTS credits). In selected fields, where the nature of the study programme so requires, a master
study programme need not follow on from a bachelor programme. In this case, the programme lasts
46 years (240-360 ECTS credits). Graduates in a master study programme have to take a final state
examination and publicly present and defend a master thesis. Studies in the field of medicine,
veterinary medicine and hygiene are completed by passing a rigorous state examination including
the pr ion and defi of a rigs thesis.
The studies in a master programme graduate with academic degrees classified as follows:
+ "inZenyr" (abbreviated "Ing".) — Engineer in the field of economics, technical sciences and
technologies, agriculture, forestry and in military fields of study;
= "inZenyr architekt" ("Ing. arch.") — Engineer Architect in the field of architecture;
» "doktor mediciny" ("MUDr.") — Doctor of Medicine in the field of medicine;
+ "zubni lékaf" ("MDDr.") — Doctor of Dental Medicine in the field of dental medicine,
+ "doktor veterinimi mediciny" ("MVDr.") — Doctor of Veterinary Medicine in the field of
veterinary medicine and hygiene.
= "magistr uméni" ("MgA.") — Master of Arts in the field of art;
= "magistr” ("Mgr.") — Master in humanities, sciences, law, teacher education, pharmacy and
theology;
[NB: Courses in human medicine and veterinary medicine last 6 years. They are run by the university
medical faculties and faculties of veterinary medicine.]

Graduat of the ic degree " / Master" can pass a rigorous state examination

hold

mohou vykonat v téZe oblasti studia statni rigorézni zkousku, jejiz souéasti je obhajoba
rigordzni prace. Po jejim vykondni se udéluji tyto akademické tituly:
* v oblasti priva "doktor prav" (ve zkratce "JUDr."),
* v oblasti humanitnich, pedagogickych a spolegenskych véd "doktor filozofie” (ve zkratce
"PhDr."),
= v oblasti pfirodnich véd "doktor pifrodnich véd" (ve zkratce "RNDr."),
* v oblasti farmacie "doktor farmacie" (ve zkratce "PharmDr."),
* v oblasti teologie "licenciit teologie” (ve zkratce "ThLic.") nebo "doktor teologie” (ve
zkratce "ThDr." ), pro oblast katolické teologie "licenciat teologie”.
Viechny dosud zmin&né tituly se uvadéji pfed jménem.
Standardni doba doktorského studijnihe programu je tfi roky. Doktorské studium se fadné
ukonéuje statni doktorskou zkouskou a obhajobou disertagni price. Absolventim doktorského
studijniho programu se pfiznava akademicky titul:
« "doktor" (ve zkratce "Ph.D."),
+  "doktor teologie" (ve zkratce "Th.D.") v oblasti teologie.

Zkratky téchto titull se uvadéji za jménem.

Akademicky rok
Akademicky rok zatind obvykle 1. zafi a kon&i 31. srpna nasledujiciho roku. Sestava ze
zimniho a letniho semestru. Organizace akademického roku je uréena statutemn vysoké Skoly.

Kreditni systém
Kreditni systém (ECTS nebo srovnatelny systém) je uZivin vétiinou vysokych kol

Diplom & / Diploma No.: HF 0007607

in the same field and present and defend a rigorous thesis. If completed successfully the following
academic degrees are awarded:
+  "doktor prav" ("JUDr.") in the field of law;
+  "doktor filozofie" ("PhDr.") in the field of humanities, teacher education and social sciences;
= "doktor pirodnich véd" ("RNDr.") in the field of natural sciences;
+ "doktor farmacie” ("PharmDr.") in the field of pharmacy;
= "licenciat teologie" ("ThLic.") in the field of Catholic theology; "licencit teologie” ("ThLic.")
or "doktor teologie” ("ThDr.") in the field of theology except Catholic theology.

All above mentioned academic titles are at master level and are written in front of the name.

The standard length of a doctoral study programme lasts for 3 years. Doctoral studies are completed
by the state doctoral examination and the public presentation and defence of a doctoral thesis
(dissertation), based on original results, which must be published. Graduates of a doctoral study
programme are awarded the academic degree of:

+ "doktor” ("Ph.D.")

+ "doktor teologie" ("Th.D.") in the field of theology.
These academic titles in abbreviated form are written behind the name.

Academic year

The academic year starts on September 1 and ends on August 31 of the following year. It comprises
a winter and a The organization of academic years is regulated by statute.
Credit system

A credit system (ECTS or a comparable system) is used at most of the higher education institutions.




Prehled pedagogické praxe

Zbyn¢k Koldovsky 1/2
Uchaze¢: Ing. Zbynék Koldovsky, Ph.D. Pracovisté: ITE, FM, TUL
Podpis:

Pedagogicka praxe uchazece na FM, TU Liberec, v letech 2006 az 2010

Vedeni pirednasek v fadném studiu:

Biologické a akustické signaly (BSI) — garant predmétu, zavedeni piedmétu, piiprava a vedeni
prednasek i cviCeni, pro paty ro¢nik v poslednim semestru magisterského studia na FM (10
tydnt), oduéeny 2 semestry: LS 2009, LS 2010,

Vypoéty, simulace a vizualizace Matlab (MATLB) — garant pfedmétu, zavedeni pfedmétu,
ptiprava a vedeni prednasek i cviceni, pro druhy semestr bakalafského studia na FM (14
tydnt), oduéeny 2 semestry: LS 2009, LS 2010,

Pocitaové zpracovani signalll (PZS) — priprava a vedeni poloviny piednasek a cvi€eni; pro
dvouleté navazujici magisterské studium na FM, oduceny 2 semestry: LS 2007, LS 2008.

Digital Signal Processing 1 (DSP1) — garant piedmétu, zavedeni pfedmétu, pfiprava a vedeni
pfednasek i1 cvi€eni; Cesko-némecky magistersky studyni program, vyu€ovani v anglicting,
planovanona LS 2011,

Vedeni cvifeni v Fadném studiu:

Signaly a informace (SGI) — vedeni cvieni (minimalné jeden kruh), pro tiileté bakalatské
studium na FM, ZS 2006-2010.

Vedeni dokonéenych studentskych projekti:

Martin Marek: Odstraniovani artefaktli z EEG zaznami pomoci metod slepé separace, 2007.
Jakub Petkov: Advanced Control of Blind Source Separation Algorithms in Matlab
{BSSGUI), 2008.

Daniel Hancil: Databaze zvuki pro slepou separaci, 2008.

Petr Schovanec a Jan Pista: Vyhodnocovani hlucnosti zvukového signalu, 2009.

Radek Hlavka: Realizace audioefekt v C#, 2010,

Augustin Bernard: Detekce zakladni frekvence v akustickém signalu, 2010,

David Botka: Navrh a realizace audio efektii, 2010.

celkem 7 projektii

Vedeni obhijenych diplomovych praci:

Filip Zizka: Aplikace metod pro slepou separaci dat ve zpracovani EKG zaznami, 2007.
Michal Kuna: Slepa separace feéi ze stereofonniho zaznamu, 2007,

Ludék Svitak: Zpracovani EEG zaznamu s pouzitim nejnovéjSich technik pro slepou separaci,
2009,

celkem 3 diplomové prace
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Vedeni obhajenych bakalarskych praci:

Daniel Handil: Jednoducha lokalizace zvukového zdroje, 2007.

Jakub Petkov: Interaktivni ovladani algoritmi pro slepou separaci signald v Matlabu, 2007.
Martin Ceska: Slepa separace akustickych zdroji pomoci lokalizace, 2009.

celkem 3 bakalarské prace

Vedeni doktorandu:

Ing. Jifi Malek, zahajeni studia 1.8.2006, studijni obor: Technicka kybernetika, disertatni
prace ma nazev Blind Audio Source Separation via Independent Component Analysis,
odevzdana v listopadu-prosinci 2010.

Vyuka v doktorském studiu

Garant predmétu: Metody digitalniho zpracovani vicerozmérnych signali, tento pfedmét do

roku 2010 absolvovali: Ing. Lukas Zedek, Ing. Milo§ Kodejska

Pedagogicka praxe uchaze&e na FJFI, CVUT v Praze, v letech 2000 aZ
2005

Vedeni prednasek v Fadném studiu:

Zaklady matematické statistiky — zavedeni predmétu, piiprava a vedeni pfednadek 1 cviCeni;
pro druhy roénik bakalaiského studia na FJFI, odudeny 2 semestry: ZS 2003, ZS 2004,

Vedeni cvifeni v Fadném studiu:

Matematické hry — zavedeni pfedmétu, pfiprava a vedeni cvileni; pro prvni rocnik
bakalai'ského studia na FJFI, oducen 1 semestr: ZS 2002.

Linearni algebra Al a A2 — vedeni cvifeni, pro prvni roénik magisterského studia na FJFI, ZS
a LS 2000-2005.

Vybrané partie z matematiky — vedeni cviceni; pro druhy ro¢nik magisterského studia na
FJFI, LS 2004 a LS 2005,
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Podpis:

Publikaéni ¢innost za obdobi 2005 az 2010

Publikace v mezinarodnich impaktovanych ¢asopisech

[1]  P. Tichavsky and Z. Koldovsky, "Fast and accurate methods of independent component
analysis: A Survey, " accepted for publication in Kybernetika, 2010.

[2]  P. Tichavsky and Z. Koldovsky, "Weight Adjusted Tensor Method for Blind Separation
of Underdetermined Mixtures of Nonstationary Sources, " IEEE Trans. on Signal Processing,
Vol. 59, No. 3, pp. 1037-1047, ISSN:1053-587X, March 2011.

[3] Z. Koldovsky and P. Tichavsky, "Time-Domain Blind Separation of Audio Sources on
the basis of a Complete ICA Decomposition of an Observation Space", IEEFE Trans. on Speech,
Audio and Language Processing, Vol. 19, No. 2, pp. 406-416, ISSN 1558-7916, February
2011

[4] Z. Koldovsky, J. Malek, P. Tichavsky, Y. Deville, and S. Hosseini, "Blind Separation of
Piecewise Stationary NonGaussian Sources", Signal Processing, Volume 89, Issue 12, Pages
2570-2584, ISSN 0165-1684, December 2009.

[5] P. Tichavsky, Z. Koldovsky, and E. OQja, "Corrections to 'Performance Analysis of the
FastICA Algorithm and Cramer-Rao Bounds for Linear Independent Component Analysis' TSP
04/06," IEEE Tr. Signal Processing, Vol. 56, No.4, pp. 1715-1716, ISSN: 1053-587X, April
2008.

[6] P. Tichavsky, Z. Koldovsky, A. Yeredor, G. G. Herrero, and E. Doron, "A Hybrid
Technique for Blind Separation of Non-Gaussian and Time-Correlated Sources Using a
Multicomponent Approach”, JEEE Trans. on Neural Networks, Vol. 19, No. 3, pp. 421-430,
ISSN: 1045-9227, March 2008,

[71  Z. Koldovsky, P. Tichavsky and E. Oja, "Efficient Variant of Algorithm FastICA for
Independent Component Analysis Attaining the Cramér-Rao Lower Bound", IEEE Trans. on
Neural Networiks, Vol. 17, No. 5, Sept 2006.

[8] P. Tichavsky, Z. Koldovsky and E. Oja, "Performance Analysis of the FastICA
Algorithm and Cramér-Rao Bounds for Linear Independent Component Analysis", [EEE
Trans. on Signal Processing, Vol. 54, No 4, April 2006.

[9] P. Tichavsky, Z. Koldovsky, "Optimal Pairing of Signal Components Separated by
Blind Techniques", IEEE Signal Processing Letters, Vol. 11, No. 2, pp. 119-122, Feb 2004
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Publikace v recenzovanych sbornicich mezinarodnich konferenci

[10] Z. Koldovsky, P. Tichavsky, and Anh Huy Phan, "Stability Analysis and Fast Damped-
Gauss-Newton Algorithm for INDSCAL Tensor Decomposition," [EEE Workshop on
Statistical Signal Processing, Nice, France, June 2011

[11] P. Tichavsky and Z. Koldovsky, "Stability of CANDECOMP-PARAFAC tensor
decomposition,” JCASSP 2011, Prague, Czech Republic, May 2011

[12] Z. Koldovsky, P. Tichavsky, and J. Malek, "Time-Domain Blind Audio Source
Separation Method Producing Separating Filters of Generalized Feedforward Structure,” in
Latent Variable Analysis and Signal Separation, Lecture Notes in Computer Science Vol.
6365, pp. 17-24, ISBN: 978-3-642-15994-7, Springer, Heidelberg, Sept. 2010,

[13] Z. Koldovsky, P. Tichavsky, and J. Malek, "Subband Blind Audio Source Separation
Using a Time-Domain Algorithm and Tree-Structured QMF Filter Bank," in Latent Variable
Analysis and Signal Separation, Lecture Notes in Computer Science Vol. 6365, pp. 25-32,
ISBN: 978-3-642-15994-7, Springer, Heidelberg, Sept. 2010.

[14] ). Malek, Z. Koldovsky, and P. Tichavsky, "Adaptive Time-Domain Blind Separation
of Speech Signals," in Latent Variable Analysis and Signal Separation, Lecture Notes in
Computer Science Vol. 6365, pp. 9-16, ISBN: 978-3-642-15994-7, Springer, Heidelberg, Sept.
2010.

[15] P. Tichavsky and Z. Koldovsky, "Simultaneous Search for All Modes in Multilinear
Models," ICASSP 2010, pp. 4114-4117, ISBN: 978-1-4244-4296-6, ISSN: 1520-6149, Dallas,
USA, March 2010.

[16] Z. Koldovsky and P. Tichavsky, "A Comparison of Independent Component and
Independent Subspace Analysis Algorithms," EUSIPCO 2009 |, pp. 1447-1451, Glasgow,
Scotland, August 24-28, 2009.

[17] P. Tichavsky, A. Yeredor, and Z Koldovsky, "A Fast Asymptotically Efficient
Algorithm for Blind Separation of a Linear Mixture of Block-Wise Stationary Autoregressive
Processes," [CASSP 2009, pp. 3133-3136, ISBN: 978-1-4244-2354-5, ISSN: 1520-6149,
Taipei, Taiwan, April 2009.

[18] J. Petkov and Z. Koldovsky, "BSSGUI — A Package for Interactive Control of Blind
Source Separation Algorithms in MATLAB," in Cross-Modal Analysis of Speech, Gestures,
Gaze and Facial Expressions (Eds.: A. Esposito and R. Vich), pp. 386-398, ISBN: 978-3-642-
03319-3, ISSN: 0302-9743, Springer Berlin / Heidelberg, July 2009.

[19] J. Malek, Z. Koldovsky, J. Zd'ansky and J. Nouza, "Enhancement of Noisy Speech
Recordings via Blind Source Separation”, Proceedings of the 9th Annual Conference of the
International Speech Communication Association (Interspeech 2008), pp. 159-162, ISSN:
1990-9772, September 22-26, Brisbane, Australia, 2008.

[20] Z. Koldovsky and P. Tichavsky, "Time-domain Blind Audio Source Separation Using
Advanced Component Clustering and Reconstruction”, Proc. of The Joint Workshop on Hand's-
free Speech Communication and Microphone Arrays (HSCMA 2008), pp. 216-219, ISBN: 978-
1-4244-2338-5, May 6-8, Trento, Italy, 2008.
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[21] Z. Koldovsky, J. Malek, P. Tichavsky, Y Deville, and S. Hosseini, "Extension of
EFICA Algorithm for Blind Separation of Piecewise Stationary Non Gaussian Sources”, 33rd
International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2008), Las
Vegas, Nevada, pp. 1913-1916, ISBN: 1-4244-1484-9, April 2008.

[22] Z Koldovsky and P. Tichavsky, "Time-Domain Blind Audio Source Separation Using
Advanced ICA Methods", Proceedings of the 8th Annual Conference of the Imternational
Speech Communication Association (Interspeech 2007), pp. 846-849, August 2007,

[23] P. Tichavsky, Z. Koldovsky and E. Oja, "Speed and Accuracy Enhancement of Linear
ICA Techniques Using Rational Nonlinear Functions", Proceedings of 7th International
Conference on Independent Component Analysis (ICA2007), pp. 285-292, Sept. 2007,

[24] Z. Koldovsky and P. Tichavsky, "Blind Instantaneous Noisy Mixture Separation with
Best Interference-plus-noise Rejection”, Proceedings of 7th International Conference on
Independent Component Analysis (ICA2007), pp. 730-737, Sept. 2007,

[25] G. G. Herrero, Z. Koldovsky, P. Tichavsky, and K. Egiazarian, "A Fast Algorithm for
Blind Separation of Non-Gaussian and Time-Correlated Signals", Proceedings of 13th
European Signal Processing Conference (EUSIPCO 2007), pp. 1731-1735, Sept 2007,

[26] T Malek, Z. Koldovsky, S. Hosseini, and Y. Deville, "A Variant of EFICA Algorithm
with Adaptive Parametric Density Estimator", 8th International Workshop on Electronics,
Control, Modelling, Measurement, and Signals (ECMS 2007), pp. 79-84, Liberec, Czech
Republic, May 2007.

[27] Z. Koldovsky, J. Nouza, and J. Koloreng, "Continuous Time-Frequency Masking
Method for Blind Speech Separation with Adaptive Choice of Threshold Parameter Using
ICA", Interspeech 2006, Pittsburgh PA, USA, 17.-21. September, pp. 2578-2581, 2006.

[28] P. Tichavsky, Z Koldovsky, E. Doron, A. Yeredor, and G. G. Herrero, "Blind signal
separation by combining two ICA algorithms: HOS-based EFICA and time structure-based
WASOBI", Proceedings of The 2006 FEuwropean Signal Processing Conference
(EUSIPCO'2006), Florence, Sep. 2006,

[29] Z. Koldovsky, P. Tichavsky, "Methods of Fair Comparison of Performance of Linear
ICA Techniques in Presence of Additive Noise", Proc. of ICASSP 2006, Toulouse, no. V., pp.
873-876, May 2006.

[30] Z. Koldovsky, P. Tichavsky, "Efficient Variant of Algorithm FastICA for Independent
Component Analysis Attaining the Cramér-Rao Lower Bound", Proc. of SSP-2005, Bordeaux,
July 2005.

[31] P. Tichavsky, Z. Koldovsky and E. Oja, "Asymptotic Performance Analysis of the
Fixed-Point Algorithm (Fast-ICA) for Independent Component Analysis", Proc. of SSP-2003,
Bordeaux, July 2005,

[32] Z. Koldovsky, P. Tichavsky and E. Oja, "Cramér-Rao Lower Bound for Linear
Independent Component Analysis., Proc. of ICASSP-2005, Philadelphia, Vol. III, pp. 581 -
584, March 2005,
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Kapitola v odborné knize:

[33] J. Nouza a kol.: Re¢ a potitaé: principy hlasové komunikace, ulohy, metody a aplikace,
vydavatel: Technickd univerzita v Liberci, editofi: Jan Nouza, Zbyné€k Koldovsky, Robert
Vich, ¢Cislo publikace: 55-110-09, prvni vydani, pocet stran: 238, ISBN 978-80-7372-548-8,
kapitola , Zpracovani zaznamu fe¢i zvice mikrofoni metodami pro fefeni inverzniho
problému*, str. 201-216, 2009.

Clanky  jsou s vyjimkou [16], [25-26] a [28] zahrnuty v mezindrodni databazi ISI nebo
SCOPUS.

Citace:

Po vylou€eni autocitaci a citaci od spoluautori zhruba 69 citaci v databazi ISI a 112 citaci
v databazi Scopus (bfezen 2011}).

Ocenéni:
Ocenéni publikace [7] jako nejlepsi publikace roku 2006, UTIA AV CR v.v.i.
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Zahraniéni navstévy

o Cerven 2004, Navstéva Neural Networks Research Centre na Technické univerzité v
Helsinkach v ramei vyménnych meziakademickych dohod s prednaskou na téma
LAsymptotic Analysis of the Symmetric Fast-ICA and Cramer-Rao Lower Bound for
Independent Component Analysis.*

¢ Dbiezen 2005, Navsitéva Neural Networks Research Centre na Technické univerzité
v Helsinkach s pfednaskou na téma ,Efficient Version of Algorithm FastICA Attaining
the Cramer-Rao Lower Bound,” seminaf Laboratory of Computer and Information
Science.

e listopad a prosinec 2009, navstéva oddéleni Univerzity ve Stuttgartu (Né&mecko),
International doctorate School in Information and Communication Technology of Trento
(Italie) a Laboratoire Astrophysique de Toulouse (Francie).

e prosinec 2010, navstéva Laboratory for Advanced Brain Signal Processing, RIKEN,
Tokyo (Japonsko).

Odborné prednasky a vystoupeni

e Cerven 2003, , Optimalni parovani signalovych komponent separovanych slepymi
metodami, v¥jezdni seminaf UTIA AV CR, Zlenice.

¢ prosinec 2003, , Slepa dekonvoluce,” seminaf Katedry matematiky FJFI CVUT, Praha.

e duben 2006, , Uvod do analyzy nezavislych komponent a jinych metod pro slepou separaci
dat,“ 668. kolokvium teorie obvodd, systémi a signalé, URE AV CR.

¢ duben 2008, "Slepa separace promluv soucasné hovoficich osob”, seminaf Katedry
matematiky FJFI CVUT, Praha.

e zaii 2008, , Analyza nezavislych komponent a jeji uzZiti pro slepou separaci akustickych
signal(,” seminaé VUT Brno.

e Unor 2011, , Slepa separace signalii pomoci rozkladu tenzori,” seminai VUT Brno.



