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Summary-Hybrid least-squares algorithm MINOPT for a nonlinear regression is introduced. MINOPT 
from CHEMSTAT package combines fast convergence of the Gauss-Newton method in a vicinity of 
minimum with good convergence of gradient methods for location far from a minimum. Quality of 
minimization and an accuracy of parameter estimates for six selected models are examined and compared 
with different derivative least-squares methods of five commercial regression packages. 

In literature many regression algorithms and 
program packages for non-linear regression are 
described and classified.’ According to their 
practical applicability in the chemical labora- 
tory the program’s modus operandi may be 
elucidated using a block structure classifi- 
cation:233 regression program may be divided 
into functional blocks as INPUT, RESIDUAL 
SUM OF SQUARES, MINIMIZATION, 
STATISTICAL ANALYSIS, DATA SIMU- 
LATION, ADDITIONAL SUBROUTINES, 
etc. An amount of useful information achieved 
from program application, efficiency and re- 
liability of results can be deduced from 

(i) a numerical point-of-view which concerns 
ability to reach a minimum of the regression 
criterion (subroutines of a MINIMIZATION 
block); 

(ii) a statistical point-of-view which concerns 
quality of statistical information (subroutines of 
STATISTICAL ANALYSIS block) . 

According to these two blocks the commonly 
used programs are not always reliable. Due to 
a great variability of regression models, re- 
gression criteria and data the effective algor- 
ithms enabling sufficiently fast convergence to a 
global extreme are not available. Some algor- 
ithms and programs often fail, i.e., converge 
very slow or diverge. 

*Part XIII, Talanta, 1988, 3!5, 981. 

In this paper we concentrate on procedures 
of derivative methods for the least-squares 
(LS) criterion which represents a very large 
group of methods today.4 Some numerical 
aspects of the algorithm MINOPT are pre- 
sented. Its numerical quality is examined and 
compared with other derivative methods on 
selected mathematical models usually found 
in problems of reaction kinetics and solution 
equilibria studies. 

RESIDUAL SUM OF SQUARES BLOCK 

In the classical setting the additive model of 
measurements is adopted 

ri=f(Xi;fi)+ci, i=l,...,n (1) 

In model (1) the yi is the response (experimental 
quantity), Xi are non-stochastic explanatory 
variables (without detriment to generality, x 
is supposed to be scalar), f(Xi, j3) is a 
regression model containing the (m x 1) 
parameter vector fi and Li is the so called 
(experimental) error. 

The main task of regression is to find estima- 
tors, 6, of an unknown parameter vector j?. A 
process of parameter estimation is based on 
assumptions about errors 6: classical presump- 
tion requires the errors e to be independent and 
identically distributed random variables having 
normal distribution N(0, a*) with zero mean 
and constant variance a2. Based on these 
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assumptions the sufhcient estimates 6 = 

@, 3 . . . , b,,,} can be obtained minimizing the 
least-squares criterion 

Ut6) = i [Yi - ftxi; 6)_129 n>m (2) 
i-1 

MINIMIZATION BLOCK 

For minimization of U(6) criterion a lot of 
various derivative and non-derivative algor- 
ithms exist.4-8 Derivative algorithms are useful 
for all model functions which are twice differen- 
tiable. In a sequel we concentrate on derivative 
methods and LS criterion only. 

The main disadvantage of derivative methods 
is a local convergence which depends on a 
choice of an initial guess 6(O). All algorithms of 
this group are of iterative nature. In the i-th 
iteration a procedure starts from the estimates 
6(‘) to which a suitable increment vector de) is 
added: 

&i+ 1) = J(i) + d(i) (3) 

The vector d(‘) is considered acceptable if 

v(&i) + d”‘) < u@i’) (4) 

Here, the increment vector can be expressed by 
relation 

d(‘) = fxi v (4a) 

where V is directional vector and a is scalar. 
Some algorithms admit equality or even a small 
increase of u(~U+ I)) against ~(b(‘)). Procedure 
of a search of minimum ~(6) consists of the 
following four steps: 

1. Determination of initial guess of parameters 
@x 

This step is decisive for many algorithms 
for successful minimization. From a good 
initial guess 6” the simple algorithms usually 
converge. For a very poor initial guess a mini- 
mum cannot be found by any methods of 
this group. 

2. Determination of direction vector V 

Derivative of a LS criterion function ~(6) 
in a point (6 + av) according a scalar a has 
form 

For a-+0 we get from equation (5) so called 
directional derivative 

s ~wu -- 
D- da a-+o 

= gv (6) 

where g is the gradient vector of ~(6) whose 
elements gj are equal to SU(6)/Sb,. The steepest 
decrease of a criterion function is in the direc- 
tion -g. The condition of acceptability of the 
directional vector V requests that the directional 
derivative is not positive. Any direction for 
which an inequality gTV > 0 holds is therefore 
inconvenient. Moreover, if the directional vec- 
tor V is acceptable the positive regular definite 
matrix R exists so that 

v=-Rg (7) 

The directional derivative S, is then equal to 

S,= -gTRg (8) 

For a positive definite matrix R their quadrative 
forms are always positive so that S, in equation 
(8) is negative. 

3. Calculation of minimization step aV 

For calculation of the minimization step (also 
called the optimal increment or the correction 
vector) d = a V in direction V the approximation 
of ~(6) by the Taylor series up to a quadratic 
term can be used. It leads to form 

U(6+aV)ssU(6)+agTV+gVTHV (9) 

where H is symmetric Hessian (matrix) having 
as elements the second derivatives of ~(6). 
Equation (9) assumes a to be approximately 
quadratic so that the optimal value of a may be 
estimated by putting the tirst derivative 
~(6 + av) according to a to zero. Solving this 
equation will give 

~(6) s2u(6) a*=_- 
I 

-= -gTV[VTHV]-’ (10) 
8a 6a2 

and after substitution from equation (8) we 
obtain the so called Raleigh coefficient 

a* =gTRg[gTRTHRg]-’ (11) 

The suitability of Raleigh coefficient a* is re- 
stricted for a region in which the approximation 
(9) can be used. 

For LS criterion ~(6) the gradient g can be 
expressed in the form 

g = 2JT&! (12) 

and the Hessian H in the form 

H = 2[JTJ - WTi] = 2[JTJ - B] (13) 

Here t? is the residual vector having components 

e, = yr -j-(x,; 6) (14) 



M~~~mmet~c curve fitting 271 

J is the Jacobian (matrix) of dimension (n x m) 
with elements 

J. 6f(x,,6) j= 1 

zj=-9 
ah 

,***, n; 

criterion function U(6) may be used which also 
corresponds to equation (9) for b! = 1. From 

(19) 

k=l,...,m (15) the optimal direction vector V; = Ni in the form 

and W is a three-dimensional array of dimen- 
sion (n x m x m) which is composed from PI 
layers where the ith one is formed by the matrix 
Wj having elements 

Ni = -H-‘g = (J=J + B)-‘Jr& (20) 

is evaluated. Substituting into equation (11) we 
estimate that a* = 1. Therefore Nj is directly a 
minimization step d, and the method is called 
the Newton-Raphson method. It is obvious that 
when the criterion U(6) is a quadratic function 
(i.e., an elliptic paraboloid) the minimum 6 will 
be reached in one step, For other forms of 
criterion function U(6) and estimates 6”’ far 
from fl, this method does not converge too fast. 
Moreover it requires knowledge of an array of 
second derivatives Wi for a determination of a 
matrix B in equation (13). 

w, _s2f(xi,6) 
8th k) - 6b, 6bk 

(16) 

4. Termination of iteration process 

The natural criterion of an optimal estimate 
6 is a zero value of the gradient g. Many 
methods of a minimum search terminate the 
iterative process when the norm of gradient 

(17) 
j=l 

is sufficiently small. It is possible to select a 
critical value of this norm, for example, equal to 
lo-* i.e., the limit under which the point 6@ is 
considered as a local extreme. Often iterations 
terminate when too small changes of parameter 
estimates appear. None of these criteria enable 
a termination in a minimum. Minimization may 
terminate less heuristically. From the geometry 
of LS we get termination criterion as follows: 
the residual vector C is approximately perpen- 
dicular on columns of the matrix J. This is 
equal to condition Jr2 = 0. For cosines of 
angle u, between the residual vector t; and the 
j-th column Ji of a matrix J a simple relation is 
valid 

cos a, = 8r~[~;+?‘t+]-“2 (18) 

When a maximal value of cos aj is sufficiently 
small, e.g., smaller than lo-’ it is supposed that 
a minimum U(6) was reached. Some other 
termination criteria may be found in Ref. 7. 

The follo~ng derivative algo~thms seem to 
be dominant in nonlinear regression analysis 
today: 

(a) Gauss-Newton methods; 
(b) Marquardt methods; 
(c) dog-leg method. 

Gauss-Newton methods 

For determination of a convenient directional 
vector V the quadratic approximation of a 

Neglecting matrix B is equivalent to a lin- 
earization of regression model and is theoreti- 
cally acceptable for a case when a residual 
vector @ is negligible. The corresponding direc- 
tional vector Li has the form 

Li = (JrJ)-‘J& (21) 

and methods are called Gauss-Newton 
methods. They belong to the simple and the 
most frequently used procedures of nonlinear 
regression. When H x (J’J) is supplied into 
equation (11) it leads to a* = 1. From the 
practical point it is important that the 
Gauss-Newton method will work well, if some 
of the following conditions are fulfilled: 

I. Residuals CI = yi - f(x,, 6) are small. 
II. The model function f(x, 8) is nearly linear 

i.e., the Hessian H has a small norm and its 
elements are nearly zero. 

III. Residuals i& have alternate signs so that 
B is approximately a zero matrix. It is valid in 
a vicinity of optimum 6. 

Extending a region of convergence of this 
very simple method is possible to reach by 
different ways: 

(a) The technique of an inversion of the 
matrix JTJ and solution of a set of linear 
equations 

(JTJ)L = Jr& (22) 

(b) Improving a matrix (J’J) in order to be 
close to Hessian H. 

(c) Choice of a suitable length of the step a. 
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Marquardt methods A 

The natural selection of a directional vector 
V, is the direction of steepest descent -g. It 
corresponds to a matrix option R = E. For 
optimal coefficient ct * in this direction it is from 
equation ( 11) that 

a* =grg[g%g]-’ % grg[gr(JTJ)-‘g]-’ (23) 

The minimization step dj = --a *g corresponds 
to the gradient method. 

The gradient methods converge often slowly 
in a vicinity of an optimum. On the other hand, 
in cases when 6(‘) is far from /I it enables a 
direction leading to a minimum to be found. It 
is effective to use a combination of directions of 
the Newton method Ni or a direction of lin- 
earization L,. together with a direction -g to a 
construction of the more robust procedures 
which are also called the hybrid procedures. 
Known representative is here the Marquardt 
method which calculates the directional vector 
V,(n) by relation 

Fig. 1. Geometrical interpretation of dog-leg strategy. The 
circle shows admissible range of increments. Solid hy- 
potenuse is Vb) for IX, = 1 and dotted hypotenuse is V+) 

for a, = I. 

Dog-leg fathom 

Among the main disadvantages of the Mar- 
quardt method are: 

(a) a necessity of matrix inverse at change of 
parameter 2; 

V,(n) = (JrJ + IDTD)-‘Jr& (24) 

where 1 is the parameter and Di is the diagonal 
matrix which eliminates an influence of various 
magnitudes of components of the matrix J. 
Usually the diagonal elements D, are equal to 
diagonal elements of matrix (JrJ). Convenient 
selection of a parameter A: ensures: 

(1) positive definiteness of a matrix 
R = (JrJ + ID*D) which is necessary for its 
invertibility; 

(2) a shortening step Vi(n) moving from a 
direction of linearization L,; 

(3) a possibility of a selection between a 
direction Li and approximate direction -g. Step 
length in direction -g is however equal to zero; 

(4) a restriction of a magnitude of the incre- 
mental vector Vi to the certain “admissible” 
region in a vicinity of @I. 

(b) a small length of vector V(n) for a large 1. 

Both these disadvantages are removed in hybrid 
methods when the optimal directional vector 
V(p) is the convex combination of vectors L 
and the vector - cx *gi. It holds that 

V(p) = 6”’ + (1 - p)Liar - /&LcL *gi (25) 

Here a* is estimated from equation (23) and 
condition 0 < p g 1 is valid. The function V(p) 
for cases a, = 1 and a, < 1 on Fig. 1 hypotenuses 
of right angle triangles with dotted line for 
01~ < 1 and solid line for cr, = 1. Classical strategy 
of the Powell dog-leg method estimates an 
optimal vector V,(p) on the abscissa TB 
of a triangle defined by vertices 0 = 6”); 
T = @) + ,$; B -_ 6~‘) - ~1 *gi where ~1* is defined 
by equation (23). 

The necessity of repeated matrix inversion for 
each 1 is a disadvantage of this procedure which 
is rather time-consuming. Moreover a situation 
may happen that for large il a magnitude Vi is 
too small. Therefore the maximal magnitude of 
1 is limited. Individual modifications of the 
Marquardt method differ especially in strategy 
of the adaptive setting of parameter 1. 

It is obvious that for p = 0 the vector V(p) 
is identical with a linearization direction Li 
and for p = 1 with a direction of negative 
gradient -g. The magnitude of a total incre- 
ment in direction *-g correspond to the optimal 
value CL *. 

Dennis and Mei” used the “shorter” vector 
o?i L, instead of a vector Li. The parameter a, is 
determined that the increment in a linearization 
direction approximately corresponds to a 
Raleigh point, c$ Ref. 10. 

o$ = 0.2 + 0.8 ]]g# 
Generally it is valid that methods of Mar- 

quardt type are for their robustness a standard 
part of library programs of most computer 
packages. 

X [gT(JTJ)-‘giSf(JTJlg,l-’ (26) 
From Fig. 1 it is obvious that shortening L,cx, 

leads to a directional vector V:@) which is 
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closer to a linearization direction than the vec- 
tor V@) calculated at option a, = 1. MINOPT 
algorithm” uses V: (p) directional vector. For 
solution of matrix inverse problems a rational 
rank technique (i.e., special pseudoinversion) is 
adopted. A special heuristic strategy for con- 
straining a maximum step length based on 
quality of quadratic approximation of V(6) is 
used here. 

Other blocks as STATISTICAL ANALYSIS, 
GOODNESS-OF-FIT TEST, DATA SIMU- 
LATION, etc. will be described in the next 
contributions of this series. 

Software 

Program MINOPT from CHEMSTAT pack- 
age carries out the numerical and statistical 
analysis of a non-linear regression model f(x ; /3) 
with use of modified “double dog-leg” strategy. 
Input consists from the experimental data 
(Xi,ri), i=l,..., n, and the initial guess of 
parameters estimates 6 (O). The user supplies the 
regression model. All required derivatives are 
calculated numerically. 

Program CHEMSTAT is available from 
authors on request. 

Model I. 

RESULTS AND DlSCUSSION 

Comparison of some commercial packages for 
nonlinear regression 

In a study of reaction kinetics and solution 
equilibria, the regression analysis of frequently 
used nonlinear models requires an estimation of 
unknown parameters of exponentials or par- 
ameter powers. To examine the reliability of 
MINOPT algorithm six testing problems have 
been chosen. Models I, II, and III are selected 
from literature. Models IV and VI are based on 
simulated data and Model V is based on exper- 
imental data. Testing models with their data and 
available initial guess of parameters are sum- 
marized below. To compare parameter esti- 
mates 6 and V(6), no restart or repeated 
determination with new initial guess of par- 
ameters in divergence or failing were allowed. 
Commercial packages BMDP (i.e., BMDP PC- 
90), SAS (i.e., SAS version 6.03) SYSTAT (i.e., 
SYSTAT version 5.01) SPSS (i.e., SPSS PC+ 
version 3.1), ASYST (i.e., ASYSTANT+ 
version 1.5) STATGR (i.e., STATGRAPHICS 
version 5.0) and CHEMSTAT (i.e., CHEM- 
STAT version 1.25) were used,“*‘2 CJ Table 3. 

Six tested models with data: 

Y = PI + B2 ev(/-W 

x 1 5 10 15 20 25 30 35 40 50 

1 y 11 16.7 1 16.8 1 16.9 1 17.1 1 17.2 1 17.4 1 17.6 1 17.9 1 18.1 1 18.7 1 

Model II. Y = exp(b+) + exp(B2x) 

X 1 2 3 4 5 6 7 8 9 10 

y 4 6 8 10 12 14 16 18 20 22 

X 

Y 

Y = BI exp 
82 

Model III. [ 1 83+x 

50 55 60 65 70 75 80 85 

34780 28610 23650 19630 16370 13720 11540 9744 

1 
90 95 100 105 ; 110 115 120 125 

8261 7030 6005 5147 4427 3820 3307 2872 
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Model IV. y = B1 exp(/%x) + P2 ewW) 

x 7.448 7.448 7.969 8.176 9.284 9.439 7.552 

Y 57.544 53.546 19.498 16.444 4.305 3.006 45.290 

7.877 8.552 9.314 7.607 7.847 8.176 8.523 
I I I I I I 

27.952 11.803 4.764 51.286 31.623 21.777 13.996 

Model V. y = 81 xf13 + /&x@ 

X 12 13 14 15 16 17 18 19 20 

Y 7.31 7.55 7.80 8.05 8.31 8.57 8.84 9.12 9.40 

Model VI. Y = h [ev( - B2 xl ) + exp(8, x211 

XI 0 0.6 0.6 1.4 2.6 3.2 0.8 1.6 2.6 4.0 

X2 0 0.4 1.0 1.4 1.4 1.6 2.0 2.2 2.2 2.2 

Y 40 10 5.0 2.5 2.5 2.0 1.0 0.7 0.8 0.7 

1.2 2.0 4.6 3.2 1.6 4.2 4.2 3.2 2 !.8 

2.6 2.6 2.8 3.0 3.2 3.4 3.4 3.8 4.2 

0.4 0.4 0.3 0.22 0.22 0.1 0.05 0.07 0.03 

0.03 0.03 0.02 0.01 
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Table 1. Initial guess of parameters estimated for six tested models 

Model 

:I 
III 
IV 
V 

fi\O’ 6:p, Sf’ sy U(l3Q) 

0.3 1 1 
& 

- 1 - - 2.W 4.10’ 
0.02 250 - 1.7.109 
103 lo5 - 1.679 -1.31 1.12. l(r 
100 0.1 2 10 2.68 * lo’ 

VI 12 1.0 25 - 226.9 

Model 

I 

::I 
IV 
L 

Table 2. Best estimate of parameters of six various tested models 

6, 6, 6, 6, ~(6) 

15.67 0.994 0.0222 - 5.98.10-S 

0.005618 0.2578 0.2578 6180 3G2 q 124.34 87.9 
8.315. 10’ 5.088 . 10’ -1.95 -0.7786 134 

3.802 31.5 4.141.10-j 1.51 0.223 19.9 2.061 - 2.98. 1.25 lO-5 

Model 1 
Table 3. Results of six analyxed models 

PrOgWU 

BMPD 

SAS 

SPSS 

STATGR 
ASYST 

SYSTAT 

Method Solution 

3R-Gauss False 
AR(DUD) False 

Gauss-Newton False 
Marquardt o.k. 
Gradient False 
DUD False 

Marquardt o.k. 

Marquardt Aborted 
Gauss-Newton False 
Var. metric False 
Hybrid. method. Aborted 

Var. metric False 
Simplex False 

Note 

Local minimum 
Local minimum 

Local minimum 

Local minimum 
Local minimum 

Overflow 
Local minimum 
Divergence 
System error 

Local minimum 
Local minimum 

RSS 

3.68 
3.68 

1.903 
5.987E-03 
1.903 
2.036 

5.986E-03 

4.011 
67.76 

3.68 
3.68 

CHEMSTAT 
MINOPT 

o.k. 28 iterations 5.986E-03 

Model II 

Program 

BMDP 

Method Solution Note RSS 

3R-Gauss False Local minimum 259.28 

SAS 

AR(DUD) 

Gauss-Newton 
Marquardt 
Gradient 
DUD 

SPSS 

STATGR 

ASYST 

SYSTAT 

Marquardt 

Marquardt 

Gauss-Newton 
Var. metric 
Hybrid. method 

Var. metric 
Simplex 

False 

False 
o.k. 
False 
DUD 

o.k. 

o.k. 

False 
False 
o.k. 

False 
o.k. 

Local minimum 

Localminimum 
10 iterations 
Very slow converg. 
Nearly o.k. 

10 iterations 

Program error 
Program error 

Local minimum 
5 iterations 

1063.0 

‘3400 
124.36 
245.4 
127.0 

124.4 

124.36 

124.36 

2WO 
124.36 

CHEMSTAT 
MINOPT 

o.k. 10 iterations 124.36 

continued 
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Model III 
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Table 3-conthued 

ROgrilIll Method Solution Note RSS 

BMDP 

SAS 

SPSS 

STATGR 

ASYST 

SYSTAT 

CHEMSTAT 
MINOPT 

Model IV 

PrOpIll 

BMDP 

3R-Gauss 
AR(DUD) 

Gauss-Newton 
Marquardt 
Gradient 
DUD 

Marquardt 

Marquardt 

Gauss-Newton 
Var. metric 
Hybrid. method 

Var. metric 
Simplex 

o.k. 
o.k. 

False 
False 
False 
o.k. 

o.k. 

False 

False 
False 
False 

False 
o.k. 

o.k. 

11 iterations 
160 iterations 

No convergence 
No convergence 
No convergence 
2.66 iterations 

Local minimmn 

No convergence 
Program error 
Program error 

Slow converg. err. 
160 iterations 

47 iterations 

87.95 
87.95 

1.6E + 09 
6.9E + 06 
6.9E + 06 

87.95 

87.95 

9.OE + 04 

6.9E + 06 

1.7E + 03 
87.95 

87.95 

Method Solution Note RSS 

3R-Gauss False No converaence 1.8E+o4 

SAS 

AR(DUD) 

Gauss-Newton 
Marquardt 
Gradient 
DUD 

SPSS 

STATGR 

ASYST 

Marquardt 

Marquardt 

Gauss-Newton 
Var. metric 
Hybrid. method 

False 

False 
False 
False 
False 

o.k. 

o.k. 

False 
False 
False 

Stack oveGow 

Local minimum 
No convergence 
No convergence 
No convergence 

28 iterations 

No convergence 
Program error 
Program error 

9.59 
1.8E + 04 
1.3E+O4 
1.8E + 04 

3.18E -04 

3.179E-04 

6.9E + 06 

SYSTAT 

CHEMSTAT 
MINOPT 

Model V 

Program 

Var. metric o.k. 44 iterations 3.179E-04 

o.k. 37 iterations 3.179E-04 

Method Solution Note RSS 

SPSS 
CHEMSTAT 

MINOPT 

Marquardt False Underflow error 
o.k. 47 iterations 128.98 

Model VI 

PrOgClUll Method Solution Note RSS 

SPSS 
CHEMSTAT 

MINOPT 

Marquardt False Very slow converg. 97.8 
o.k. 5 1 iterations 2.98E - 05 

Table 4. Performance index PI for tested packages 

Package 

BMDP 

~~TAT 
STATGR 
ASYST 
SPSS 
CHEMSTAT 

PI[%] (tests l-4) 

;: 
37.5 
50 
8.3 

:: 

PI]%] (tests l-4) 

- 
- 
- 
- 
- 
66.6 

100 



Initial guess of parameters (Table l), par- U(b) function can often cause failure of the 
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