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ABSTRACT 

Cotton is a leading textile fibre due to its unique properties such as hydrophilicity, 

biodegradability, durability, good dyeability, and relatively low cost. However, now a day’s 

people want cotton fabric to be smart, which can give comfort according to weather conditions. 

Self-cleaning, antibacterial, antifungal and permanently stiff textiles are becoming important 

due to market demand, and broad research is being done in this areas. Nanoparticles such as 

Titanium dioxide (TiO2), Zinc oxide (ZnO), Copper oxide (CuO), Silver (Ag), Carbon 

nanotubes (Singlewalled carbon nanotubes (SWCNTs), Multiwalled carbon nanotubes 

(MWCNTs) show excellent functional activity towards light. Nano TiO2 is the most 

environment-friendly and relatively cheap among all other nano particles. TiO2 can be applied 

on different substrates such as activated carbon, stainless steel and glass. Researchers have 

coated TiO2 on cotton fabric by various methods such as in-situ suspension polymerization 

with nano TiO2-acrylatecopolymer and functionalizing cotton fabric with nano sized TiO2. 

However, they do not claim that fabric is stable against washing.  

In this thesis, a new route to make cotton fabric self-cleaning and permanently stiff by coating 

cellulose-TiO2 on its surface is demonstrated. Cellulose solution was prepared by dissolving 

10% cellulose in aqueous sulphuric acid (60%) or Sodium hydroxide-Urea-Thiourea solvent 

system. TiO2 with different concentrations (1, 3, 5 and 10 % TiO2 on the weight of cellulose) 

was dispersed in cellulose solution and coated on the surface of cotton fabric by padding 

machine. The surface morphologies of pure cotton fabric, cellulose and cellulose-TiO2 coated 

cotton fabric were observed on scanning electron microscope (SEM). Simulation method was 

developed to quantify amount of cellulose II by using X-ray diffraction patterns on Mercury 

software. Effect of cellulose coating on dyeing was investigated with Reactive dyes.  

Self-cleaning ability of cellulose-TiO2 coated cotton fabric was investigated with Orange II 

dye and wine stain under UV light. Antibacterial and antifungal activity was studied according 

to international standards. Results revealed that samples coated with more than 3% TiO2 

showed strongest inhibition efficiency against Staphylococcus aureus (SA), Methicillin 

resistant Staphylococcus aureus (MRSA) bacteria’s. Antifungal testing results showed that the 

photo-catalytic activity of titanium dioxide nanoparticles allows a disinfection of cotton fabric 

from fungal colonization. The amount of cellulose II in cotton fabric increased slightly after 

solvent treatment. However, breaking strength also increased by cellulose coating. Air and 

water vapor permeability were hardly affected. The stiffness of cellulose coated cotton fabric 

increased substantially. Degradation of orange II dye was increased with increasing TiO2 
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concentration and irradiation time. The samples coated with 1, 3 and 5% TiO2 were stable 

against washing up to 20 washing cycles for both self-cleaning and stiffness properties. 

However, 10% TiO2 coated sample does not show similar stability against washing due to poor 

dispersion of TiO2 in cellulose solution.  

 
Keywords: Cotton fabric, cellulose, self-cleaning, stiffness, antibacterial, antifungal, Titanium 

dioxide.   
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ABSTRAKT 

Bavlna je díky svým jedinečným vlastnostem jako je hydrofilita, biodegradabilita, trvanlivost, 

dobrá barvitelnost a relativně nízká cena významným textilním materiálem. Dnes však lidé 

očekávají od bavlněné tkaniny i další vlastnosti, díky nimž poskytuje bavlna komfort podle 

počasí. Vzhledem k požadavkům trhu roste význam samočisticích, antibakteriálních, 

antimykotických a nemačkavých textilií, které jsou předmětem rozsáhlého výzkumu. 

Nanočástice jako TiO2, ZnO, oxid měďnatý, Ag nebo uhlíkové nanotrubice (SWCNTs nebo 

MWCNTs) vykazují vynikající funkcionalizační aktivitu na světle. Nanočástice oxidu 

titaničitého jsou nejšetrnější k životnímu prostředí a ve srovnání s ostatními nanočásticemi i 

relativně levné. TiO2 lze aplikovat na různé substráty jako je aktivní uhlí, nerezová ocel nebo 

sklo. Výzkumníci aplikují TiO2 na bavlněné tkaniny různými způsoby, jako je in situ suspenzní 

polymerace s nano TiO2-akrylátovým kopolymerem a funkcionalizace bavlněné tkaniny 

nanočásticemi TiO2. Nicméně tyto tkaniny nejsou odolné v praní.  

Tato práce se zabývá přípravou samočisticí ztužené bavlněné tkaniny potažené celulózou a 

TiO2.. Celulózový roztok se připraví rozpuštěním 10% celulózy ve vodném roztoku 60% 

kyseliny sírové a nebo v rozpouštěcí směsi z hydroxidu sodného, močoviny a thiomočoviny. 

TiO2 o různých koncentracích (1, 3, 5 a 10% TiO2 z hmotnosti celulózy) se disperguje v 

roztoku celulózy a nanese na povrch bavlněných tkanin klocováním. Povrchová morfologie 

čisté bavlněné tkaniny a bavlněné tkaniny povrstvené celulózou a celulózou s TiO2 byla 

pozorována rastrovacím elektronovým mikroskopem (SEM). Pro kvantifikaci celulózy II byla 

vyvinuta simulační metoda s použitím rentgenové difrakce na softwaru Mercury. Vliv 

celulózového povrstvení na barvitelnost byl zkoumán pomocí reaktivních barviv. 

Samočisticí schopnost bavlněné tkaniny potažené celulózou a TiO2 byla zkoumána pomocí 

barviva Orange II a skvrn od vína pod UV světlem. Antibakteriální a protiplísňový účinek byl 

testován podle mezinárodních norem. Výsledky ukázaly, že vzorky potažené více než 3% TiO2 

vykazovaly nejsilnější inhibiční účinek na bakterie Staphylococcus aureus (SA) a methicillinu 

rezistentní Staphylococcus aureus (MRSA). Protiplísňové testy ukázaly, že fotokatalytická 

aktivita nanočástic oxidu titaničitého umožňuje dezinfikovat bavlněnou tkaninu od kolonií 

plísní. Množství celulózy II v bavlněné tkanině se po ošetření rozpouštědlem mírně zvýšilo. 

Celulózový povlak také zvýšil pevnost do přetrhu bavlněné tkaniny. Prodyšnost a 

paropropustnost prakticky nebyly ovlivněny. Tuhost bavlněné tkaniny potažené celulózou se 

podstatně zvýšila. Degradace barviva Orange II se zvyšuje s rostoucí koncentrací TiO2 a dobou 

ozařování. Pokud jde o tuhost i samočisticí vlastnosti, vzorky potažené 1, 3 a 5% TiO2  byly 
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odolné v praní do 20 pracích cyklů. Nicméně vzorek potažený 10% TiO2 nevykazoval 

podobnou stabilitu v praní v důsledku špatné dispergovatelnosti TiO2 v roztoku celulózy. 

 
Klíčová slova: bavlněná tkanina, celulóza, samočištění, tuhost, antibakteriální, protiplísňový, 

oxid titaničitý 
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CHAPTER 1 
INTRODUCTION 

1.0 Prologue 

This chapter briefly describes the interest in the use of functional nanoparticles coating on 

cotton. It goes further by revealing the statement of the problem. 

 
1.1 Background 

Cotton fibre is one of the most common natural and leading textile fibre due to its unique 

properties such as hydrophilicity, biodegradability, durability, good dyeability, and relatively 

low cost [1]. Despite the excellent properties of cotton fabrics, some characters like the 

inherently hydrophilic property, impotent antimicrobial activity, low strength and poor 

sensitivity to the UV light, confine their wide applications, especially in some high-end areas 

for medicine, personal healthcare, functional textile and self-cleaning [2-4]. Therefore, value 

addition to cotton by functionalization has generated considerable academic and industrial 

attention, not only due to their potential use in physical, thermal, biological and medical 

protection, but also to meet the constantly evolving demand from consumers for advanced 

materials. Self-cleaning fabric materials are a research area that has accumulated huge interest 

over the years. The original idea of self-cleaning textiles envisioned a scenario where 

tablecloths and men’s suits shrug off coffee, tea, wine and other stains; or where large awnings, 

tents and other architectural structures stay spotlessly clean without requiring any washing or 

cleaning. Due to the remarkable developments made in this field during the last few decades, 

the concept of self-cleaning widened to include apparel that cleanses itself of body odour, 

curtains that rid themselves of tobacco odours to stay ‘ever fresh’, and hospital sheets that 

disinfect themselves to reduce the incidence of cross infections[5].  

A strategy that is commonly adopted for the purpose of self-cleaning is to modify the textile 

surface with photocatalytic nanoparticles such as Titanium dioxide (TiO2) and Zinc oxide 

(ZnO) [6, 7]. TiO2 as a cheap, nontoxic, highly efficient, stable, and ecologically friendly photo 

catalyst, has been proved to be an excellent catalyst in the degradation of organic pollutants 

[8]. Cotton fabric is widely used in the apparel and household fields because of its good 

hygroscopicity, moisture regain and heat-resistant quality [9]. However, because of its poor 

stiffness and crease recovery, its application is restricted in some situations. As a differential 

fabric, stiff cotton fabric is important to many industries, such as applications to suit jackets, 

curtains and luggage. For comfort in hot environment people prefer to have some distance 
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between skin and cloth and that why most of the Asian and African countries use stiff cotton 

fabric due to high temperature. Starch is mainly being used to make cotton fabric stiff. 

However, it does not give permanent effect. Cellulose is not soluble in water so it can replace 

starch if it is coated on the surface. 

Antibacterial activity is very interesting and demanding properties of cotton fabrics [10-13]. In 

recent years, the commercial market for antibacterial fibers has grown rapidly due to the 

increased need of consumers. Polymeric materials, such as cotton, wool and flax, provides an 

excellent substrate for bacteria growth because they are contaminated easily with 

microorganisms under the appropriate environmental conditions [14]. Microbial proliferation 

eventually causes damage to the fiber materials and induces human infections [15]. Nano 

particles like TiO2, ZnO, CuO, Ag, carbon nanotubes etc. show excellent antibacterial activity. 

TiO2 is most environment-friendly [16] among all other nano particles and shows 

multifunctional ability, that‘s why it was selected for coating with cellulose. There are several 

methods and techniques researchers have introduced to make cotton fabric functional by 

coating nanoparticles on the surface, in-situ polymerization, depositing nanoparticles on the 

surface etc. However, these methods lacking in durability. To overcome with this proplem, the 

new route has been introduced herein to make cotton fabric multifunctional by coating 

cellulose-TiO2 nanoparticles on the surface of cotton fabric.  

 

1.2 Research Problem 

Self-cleaning and permanently stiff textiles are becoming important due to market demand, and 

broad research is being done in this area [5, 17, 18]. TiO2 can be applied on different substrates 

such as activated carbon, stainless steel and glass [19]. TiO2 shows extraordinary photocatalytic 

activity since it has a high sensitivity to light [20]. Nano TiO2 has the ability to decompose dye 

pollutant such as Acid Orange [21], Methylene Blue [22], C.I. Acid Blue-9 [23], Methyl 

Orange [24, 25], Ethyl violet dye [26], C.I. Reactive Red 2 [27] and photocatalytic 

decomposition of some air pollutants [28]. Recently some researches have coated TiO2 on 

cotton fabric by in-situ suspension polymerization with nano TiO2-acrylate copolymer [29] and 

functionalizing  cotton fabric with nano sized TiO2 [30]. However, durability is major concern 

with these methods.  

Starching is commonly used for increasing stiffness of cotton fabric by applying starch [31, 

32] to them. Application of starch is widely used for increasing the bending rigidity of collars 

and sleeves of men’s shirts and the ruffles of girl’s petticoats. However, that notwithstanding, 
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the stiffness arising from starching isn’t permanent due to the fact that when the fabrics are 

washed, starch dissolves in water [33] therefore leading to loss of  fabric stiffness, and hence a 

need to reapply starch after each washing cycle. Cellulose is insoluble in water, therefore 

coating fabrics with cellulose leads a lasting and permanent stiffness effect unlike starch which 

is soluble in water whose stiffness is temporary [34]. In recent years, researchers have been 

trying to make cotton fabric self-cleaning and antibacterial in different ways such as: 

antibacterial finishing of cotton by microencapsulation[12], by synthesizing Photo bactericidal 

porphyrin-cellulose nanocrystals [35], Treating cotton fabric by SBA-15-NH2/polysiloxane 

hybrid containing tetracycline [36], plasma treatment and ZnO/Carboxymethyl chitosan 

composite finishing [37], self-cleaning by copper (II) porphyrin/ TiO2 visible-light 

photocatalytic system [20],  coating with nano TiO2-acrylate copolymer [29], Nano TiO2 

coating after treatment of cotton fabric with carboxylic acids such as oxalic, succinic, and 

adipic acids [38], functionalizing cotton fabric with p-BiOI/ n-TiO2 heterojunction [39], 

bleaching and cationized cotton using nanoTiO2 [10]. However, these methods do not give 

durable ability to kill bacteria’s.  

Research elsewhere has utilized various cellulose coated substrates for various applications 

such as high oxygen barrier and targeted release properties cellulose [34, 40], extension of the 

shelf life of rainbow trout fillets [41], bioactive composite coating [42], wood coatings [43] for 

active packaging [44] etc. Cellulose does not melt before decomposition and is insoluble in 

common organic solvents. Cellulose is a highly stable compound and its stability  is primarily 

attributed to strong intra- and intermolecular hydrogen bonding leading to a remarkably stable 

fibrillar structure [45].  Solvents like 60% Sulfuric acid (H2SO4) [46], Ionic Liquid [47, 48], 

N-Methylmorpholine N-oxide (NMMO)[49], Sodium hydroxide-carbon disulfide (NaOH-

CS2) [50], Dimethyl acetate/ Lithium chloride (DMAc/ LiCl) [51] can readily dissolve 

cellulose. Thus, there is a scope for cellulose coating on cotton fabric after dissolution since 

both the molecules are same and there will be exchange of hydrogen bonding for permanent 

change. Due to interlinkage between coated celluose and cotton cellulose, coated cellulose will 

not be washed away unlike starch.  Hypothesis is that cellulose can carry nanoparticles and 

hold for long duration after coating with help of hydrogen bonding between coated cellulose 

and cotton fabric cellulose.  

Coating with cellulose-TiO2 addresses four main uses: self-cleaning, antibacterial, antifungal 

and stiffness. For coating cellulose-TiO2, Urea-Thiourea-NaOH solvent system and 60 % 

H2SO4 solution were selected for cellulose dissolution. Urea-Thiourea-NaOH solvent system 

dissolves cellulose directly at -12°C [52] and 60 % H2SO4 is powerful and has the ability to 
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breakdown cellulose chains directly. The Degree of Polymerization of cellulose decreases after 

dissolution in 60% H2SO4 [46]. This report, therefore, presents the findings of the investigation 

of the microstructural, self-cleaning, antimicrobial, stiffness and comfort properties of 

cellulose-TiO2 coated cotton fabric for possible applications. 
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CHAPTER 2 
AIM AND OBJECTIVES 

Overall aim of this study is to develop a cellulose-TiO2 coated cotton fabric and its 

characterization for organic stain degradation, inhibition efficiency against bacteria’s, 

disinfection of cotton fabric from fungal colonization, stiffness, mechanical properties, X-ray 

diffraction, durability of cellulose-TiO2 against washing and comfort properties such as air and 

water vapor permeability for multifunctional applications. Orange II dye and wine have been 

selected for investigation of self-cleaning propeties and ImageJ software has been used to 

analyze stain degradation under UV light. The bacterias such as Escherichia coli (EC), 

Klebsiella pneumonia (KP), Staphylococcus aureus (SA), Methicillin resistant staphylococcus 

aureus (MRSA) have been used to study antibacterial activity of coated fabric. X-ray 

diffraction patterns based simulation model was used to understand the effect of solvent on the 

structure of cellulose.    

 

The specific objectives are as follows, 

a) investigation of morphology of cellulose-TiO2 coated cotton fabric 

b) investigation of photocatalytic self-cleaning ability by degradation of orange II dye and 

wine stain under UV light. 

c) evaluation of antibacterial and antifungal properties of cellulose-TiO2 coated cotton fabric 

d) investigation of stiffness, mechanical and comfort properties of cellulose coated cotton 

fabric 

e) effect of cellulose coating on dyeing, colour strength and related parameter with reactive 

dyes  

f) durability of cellulose-TiO2 coated cotton fabric against washing. 

g) development of simulation method to quantify amount of cellulose I, II and amorphous 

content by X-ray diffraction.  
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CHAPTER 3 
LITERATURE REVIEW 

3.0 Prologue 

This chapter gives a broad overview of the field of research, background, underlying theories 

and up-to-date research that has been made in the field. The reader will familiarize him/herself 

to the experimental procedures which follow in the next section. 

3.1 Cotton 

Cotton is a soft, fluffy staple fiber that grows in a boll, or protective case, around the seeds of 

the cotton plants of the genus Gossypium in the family of Malvaceae. The fiber (figure 1) is 

almost pure cellulose. Under natural conditions, the cotton bolls will tend to increase the 

dispersal of the seeds. The plant is a shrub native to tropical and subtropical regions around the 

world, including the Americas, Africa, and India. The greatest diversity of wild cotton species 

is found in Mexico, followed by Australia and Africa [53].  

 
Figure 1. Cotton bolls ready for harvest [54] 

3.2 Functional cotton fabric 

Cotton is one of the most abundant and widely used natural fibers on the Earth. Due its strong 

absorption capability, high specific surface, porous structure, biodegradabality and less cost, 
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use of cotton has been extended from wear to technical textiles [55-57]. However, some 

characters like the inherently hydrophilic property, impotent antimicrobial activity, low 

strength and poor sensitivity to the UV light, confine their wide applications, especially in some 

high-end areas for medicine, personal healthcare, functional textile and self-cleaning [2-4]. 

Therefore, value addition to cotton by functionalization has generated considerable academic 

and industrial attention, not only due to their potential use in physical, thermal, biological and 

medical protection, but also to meet the constantly evolving demand from consumers for 

advanced materials (figure 2). Apart from the esthetic purpose of cotton, the value-added cotton 

materials have become a basis for many industrial and technical applications [58-62]. 

 

                       
 

Figure 2. Functional fabric [63] 

 

3.3 Self-cleaning materials 

In 1975 discovered the botanists Barthlott and Neinhuis from the University of Bonn the self-

cleaning capability of the Lotus flower [64]. The scientists observed that Lotus flowers get rid 

of mud and dirt while unfolding their leaves in the morning [65]. So they examined the leave 

surface structure of the Lotus with a scanning electron microscope discovering a not as 

expected smooth but a very rough structure (10-9 nano and 10-6 micro). This rough structure 
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is responsible for the super hydrophobic ability of the leaves. The leave’s surface has a double 

layer structure first it is covered by little pimples (papillae) whereupon a layer of hydrophobic 

wax lies. The wax prevents raindrops from getting into the pimples interspaces resulting in 

only 2% – 3% of the drops surface being in contact with the leaf. Additional is the contact 

angle at which a liquid or vapor meets a solid surface responsible for the water-repellent.  

 

 
 

 

Figure 3. Lotus effect [66] 

The smaller the contact angle (<90°), the flatter the droplets and the wetter the surface (figure 

3). The larger the contact angle (>90°) the less the area of contact between the liquid or vapor 

and the solid interface, leading to a closer to dry surface. The Lotus pimples create a contact 

angle of over 150° [67]. These effects reduces the strength of adhesion and vests the lotus 

flower with a super hydrophobic surface. As the Lotus effect has been introduced into Bionics 

it has found its way to commercial use. Today we can find the Lotus effect in the textile industry 

producing hydrophobic cloth. Other fields of use include glass, plastics, painted surfaces, 
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metals and ceramics and equipped with a hydrophobic ability these products outpace 

competitors [68]. 

After understanding the phenomenon, scientists start thinking how one can mimic this "Lotus 

effect" (figure 3) and apply Lotus effect to our daily technology. For example, raincoats and 

umbrella will perform much better if one can apply Lotus effect [67]. In addition, paints 

incorporating the Lotus effect could keep houses and buildings clean and dry. Self-cleaning 

textiles are becoming important due to market demand, and broad research is being done in 

this area. With the increase of environment protection awareness recently, issues of the 

environmental pollution have become major concerns. Among these issues, the water 

consuming and release of wastewater during washing of materials is very important. Self-

cleaning materials have attracted increasing attention. For example, the self-cleaning cotton 

fabrics with a life cycle of 25–50 times of washing are a class of new products classified as 

intelligent fabrics. About 14 million meters/year of such kind of fabrics are demanded in 

European Union market [69]. There is an even larger potential market in the area of Asia and 

Pacific. One benefit of using these self-cleaning fabrics is the resource savings on cleaning 

such as water and chemicals. On the other hand, the lifetime of the fabrics can be prolonged 

because the continuous self-cleaning of fabrics decreases the washing times of them. Such an 

innovation was made by depositing thin films of photoactive component on the surface of 

fabric. At present, the main photoactive component of self-cleaning fabrics is nano TiO2 [70]. 

 

3.4 Antibacterial cotton fabric 

Bacterial resistance to antibiotics is a significant public health challenge, as infections caused 

by antibiotic-resistant bacteria claim the lives of nearly 23,000 people each year in the United 

States alone [71]. Recently, textiles with antiviral activity or antibaterial activity have become 

extremely important in the health protection of human body. The antibacterial activity of 

textiles can be obtained through the antibacterial finishing of textile using antibacterial agents 

or by incorporating them into synthetic fibers during extrusion [72]. A single pathogen, 

Methicillin-resistant staphylococcus aureus (MRSA), is responsible for nearly half of these 

fatalities. MRSA has been linked to invasive diseases including pneumonia [73] and sepsis 

[74], that affect a diverse population of patients including individuals with a compromised 

immune system such as young children. While a powerful arsenal of antibiotics was once 

capable of treating Staphylococcus aureus (S. Aureus) based infections, clinical isolates of 

MRSA have emerged to numerous antibiotics, including agents of last resort such as linezolid 
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and vancomycin [75, 76]. Researcher elsewhere has developed the antibacterial textile 

materials by incorporating, coating, depositing, treating, functionalizing, modifying with 

nanomaterials such as Titanium dioxide, copper, silver etc nanoparticles. The number of 

antibacterial agents that are suitable for textile applications on the market has increased 

dramatically in the past decades.  

The main antibacterial agents include metals or metal salts [77-79], quaternary ammonium 

compounds (QACs) [80, 81] polybiguanides, [82] N-halamine, [83] chitosan, [84, 85] and 

triclosan [86].  These antibacterial agents have expanded greatly the use of textiles in 

pharmaceutical, medical, engineering, agricultural and food industries. However, most of the 

antibacterial agents still have some disadvantages, which limit their applications greatly. For 

instance, the uptake and durability of metals in textiles are the two big problems of treatment 

for the metal antibacterial agents. Many heavy metals are even toxic to environment. The QACs 

also have some inherent weakness, such as leaching from the textiles, incompatibility with the 

anion surfactant [87].  Dow Corning Company had produced one kind of QACs antibacterial 

finishing agent with alkoxysilanes (AEM 5700) for covalently binding onto the textile surface, 

imparting durable antibacterial activity [88]. However, the antibacterial activity of these 

durable QACs was also decreased or even expired because of the absorption of dirt,  deadly 

microorganisms or complex formation between the positively charged QACs and the 

negatively charged anionic detergent during repeated laundering. In addition, the low 

antibacterial activity to epiphyte and the weak light tolerance influences the applications of 

polybiguanides greatly.  

The bacterial resistance to triclosan has been well-documented and is of great concern. 

Triclosan has been banned in textiles and some other products by many countries because of 

its produced toxic polychlorinated dioxins upon exposure to sunlight. The chitosan tends to be 

environmentally friendly in the antibacterial applications. However, the antibacterial activity 

of chitosan is pH sensitive and limits to acidic conditions [89]. The chitosan also shows weak 

adhesion to cellulose fibers and is leached gradually from the fiber surface by repeated 

laundering. These disadvantages motivate researchers to actively explore new antibacterial 

agents and technologies for antibacterial textiles finishing. In addition, antibacterial 

efficiencies and durability, environmental friendliness, health, and safety are also important to 

the antibacterial agents. TiO2 shows excellent photocatalytic activity towards light and has 

ability kill bacteria, fugi and clean the surface of material [16, 17, 90].  
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3.5 Antifungal cotton fabric  

Textile fabrics by virtue of their physicochemical characteristics and proximity to the human 

body are susceptible to microbial attack, as these provide large surface area and absorb 

moisture that aid microorganisms to grow, transfer and propagate infection. Ubiquitous 

microorganisms cover all surfaces in natural and artificial environments. Textiles are appealing 

materials for use in several medical applications, including hospital uniforms and linens; 

prosthetic valves; and wound dressings [91]. Microorganisms can cause problems in textile 

raw materials, process chemicals, during wet textile treatments, in textile and textile product 

warehouses during transportation, and even during the everyday usage of textile products [92]. 

Fungi produce at least three enzymes (‘cellulase complex’) of extra cellular activity during 

growth on exoglucanase or ß-D-glucosydases cellulose, respectively to remove disaccharide 

units from the chain ends of endoglucanases or ß-D-glucanohydrolases cellulose, respectively. 

And randomly break the ß-1,4 bonds of cellulose chains; the third component is ß-D-

glucosidases, hydrolyzing cellobiose into glucose units, which are then used as a carbon source 

for fungal growth [93].  

With the growing awareness about cleaner surroundings and healthy lifestyle, the demand for 

protective clothing has increased among consumers. This has created significant challenges for 

textile researchers and industrialists to address the issue through innovative ways. 

Consequently, the competitive and textile market is globally witnessing a rapid growth in the 

development of technical textiles and their end-uses that have generated many opportunities 

for the application of innovative finishes. Textiles with an antimicrobial finish and improved 

functionality find a variety of applications such as health, hygiene, and medical products, apart 

from healthy clothing. Among all textile finishes, antimicrobial finishing has become a very 

promising, high-growth research area due to their potential to provide quality and safety 

benefits to different kinds of textile materials [94].  

Natural colorants from plant sources have been recently discovered as novel agents in 

imparting multifunctional properties to textiles such as antimicrobial, insect repellent, 

deodorizing, and UV protective besides imparting attractive shades. Application of natural 

colorants offers promise in developing antimicrobial textiles for aesthetic, hygienic, and 

medical applications owing to the presence of potent bioactive phytochemicals in their extracts. 

Substances and extracts isolated from different natural resources especially plants have always 

been a rich arsenal for controlling the fungal infections and spoilage. In the recent past, 

considerable research work has been undertaken on the application of natural dyes in coloration 
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and antimicrobial finishing of textiles around the globe and use of natural dyes for 

antimicrobial finishing of textiles has been widely reported [94].  

On cotton fabric, fungal contamination starts on the cutting edge where the spores can easily 

reach the fibre’s lumen. Hyphaes sprout in the lumen and form a mycelium, which grows 

toward the fibre’s wall, causing its degradation. The damage caused by microorganisms 

becomes visible with changes on the textile or fibre surface, mostly in the form of de-coloration 

and stains; in most cases, these changes are followed by a typically musty smell. De-coloration 

is mainly caused by chemical reactions between metabolites secreted by the microorganism 

and finishing agents or dyes in the textile material. In many cases, this leads to the production 

of pigment-like substances. One promising innovation is to impart these textiles with 

antimicrobial properties. Noble metals such as copper, gold, and silver have broad-spectrum 

antimicrobial activity. For example, silver has several effects on microorganisms, including 

impeding the electron transport system and preventing DNA replication [93].   
 

3.6 Stiff cotton fabric 

Cotton fiber poor stiffness and crease recovery restricted its application in some situations. As 

a differential fabric, stiff cotton fabric is important to many industries, such as applications to 

suit jackets, curtains and luggage. Therefore, there are many reports on anti-crease finishing 

and stiffness finishing [9]. Starch, cyanaldehyde resin, urea formaldehyde resin, poly vinyl 

alcohol (PVA) and polyacrylate are widely used to improve stiffness of cotton fabric. The 

starch is being used for increasing the bending rigidity of collars and sleeves of men’s shirts 

and the ruffles of girl’s petticoats. However, such stiffness is not permanent, because starch 

dissolves in water during washing and the fabric loses its stiffness, resulting in the need to 

reapply starch after each laundering. Cotton fabric treated by starch slurry has poorer elasticity 

than the original fabric, and is not durable. Grafting of starch onto cotton fabric has been 

reported. Cotton fabric treated with PVA softens easily when exposed to heat, and is also not 

durable.  

Cyanaldehyde resin and urea formaldehyde resin release formaldehyde, which is a health 

hazard, and the fabric strength decreases with these types of resin. In addition, the treated cotton 

fabric has a harsh feel, poor elasticity and high shrinkage rate. Polyacrylate is also applied to 

stiffness finishing of cotton. However, the finishing effect is inferior to that of cyanaldehyde 

resin. The treated cotton fabric is inelastic and has poor freezing  resistance [95]. Currently, 

resin is always used as the stiffness agent for cotton fabric finishing. The stiffness agent is left 
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on the fabric; this increases health concerns. Thus, it is important to develop a finishing 

technique that can make cotton fabric stiff but leaves no auxiliary chemicals on the fabric to 

meet upmarket consumer demand [9]. 

 

3.7  Functional nanoparticles 

Recent years have witnessed the rapid development of inorganic nanomaterials for medical 

applications. Within the broad field of nanotechnology, which has developed rapidly over the 

last two decades, colloidal nanoparticles containing primarily inorganic components (herein 

inorganic NPs) have emerged as rich and versatile systems whose specific properties aid in 

medicine, be it as novel therapeutics or diagnostic tools [96]. Nanotechnology, a high-tech 

science and technology rapidly developed in the late 1980s, has been widely used in many 

fields such as raw material, chemical, textile, medicine, traffic, energy and so on. In recent 

years, many dyeing and finishing auxiliaries with special function and new textiles with high 

effective function have been produced due to the nanotechnology application in textile industry 

[97]. Because of this biocidal activity, metals have been widely used for centuries as 

antimicrobial agents in agriculture, healthcare, and industry in general.  

Chemical structures of some nanoparticles which is being commonly used for functionality of 

material such as Titanium dioxide (TiO2), Zinc oxide (ZnO), Copper oxide (CuO), Silver (Ag), 

Carbon nanotubes (Singlewalled carbon nanotubes (SWCNTs) are shown in figure 4. Metal, 

oxide, or salt compounds based on copper and silver are among the most widely applied 

antimicrobial agents in this context. However, the use of these metals in industrial applications 

presents several challenges associated with the nature of the metal itself. Consequently, one of 

their first applications was in the form of salt-based additives, for instance as silver nitrate, 

avoiding its highly expensive metal form [97]. TiO2 shows excellent photocatalytic activity 

towards light. TiO2 is most environment-friendly among all other nano particles [16]. TiO2 is 

being used to to apply on materials such as glass, ceramics, textile etc for self-cleaning 

application. It is even being used as a whitener. Nanoparticles of TiO2 is stable in alkali and 

alkaline medium at room temperature that is why it is easy to process. Also TiO2nanoparticles 

has ability to kill bactrias and fungi. Due to these multiapplication approach it was selcted for 

coating on cotton fabric. 
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(a)                                                                 (b) 

 

 
 

                                        (c)                                                               (d) 

 

 

 
(e)                                                                  (f) 

 

Figure 4. Functional nanomaterials a) Copper oxide b) Titanium dioxide c) Zinc oxide d) 

Silver oxide e) Single walled carbon nanotube f) Multi-walled carbon nanotube 
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3.7.1 Titanium dioxide 

Titanium dioxide is the naturally occurring oxide of titanium. The chemical formula of titanium 

dioxide is TiO2. It is also known as titanium (IV) oxide or titania. When used as a pigment, it 

is called titanium white, Pigment White 6 (PW6), or CI 77891. It has a wide range of 

applications, from paint to sunscreen to food coloring [98]. When used as a food coloring, it 

has E number E171. World production in 2014 exceeded 9 million metric tons. Titanium 

dioxide (TiO2) exists as three different polymorphs; anatase, rutile and brookite [99].  

 

                   

 
 

 
Figure 5. Forms of Titanium dioxide [100] 

 

The primary source and the most stable form of TiO2 is rutile. All three polymorphs can be 

readily synthesised in the laboratory and typically the metastable anatase and brookite will 

transform to the thermodynamically stable rutile upon calcination attemperatures exceeding 

∼600°C [101]. In allthree forms, titanium (Ti4+) atoms are co-ordinated to six oxygen (O2−) 

atoms, forming TiO6 octahedra. Anatase is made up of corner (vertice) sharing octahedra which 

form (0 0 1) planes (figure 5) resulting in a tetragonal structure. In rutile the octahedra share 

edges at (0 0 1) planes to give a tetragonal structure (figure 5), and in brookite both edges and 

corners are shared to give an orthorhombic structure (figure 5). 

 

 

Brookite Anatase Rutile 
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3.7.2 Uses of Titanium dioxide 

 Titanium dioxide (TiO2) is the most widely used as a white pigment, for example in paints, 

food products, personal care products etc [98]. It has high brightness and a very high refractive 

index. The light passes through the crystal slowly and its path is substantially altered compared 

to air. If you have many small particles orientated in different directions, a high refractive index 

will lead to the scattering of light as not much light passes through. In lenses, high refractive 

index means high clarity and high polarising power. Titanium dioxide has a higher refractive 

index than diamond and there are only a few other substances that have a higher refractive 

index [102]. Cinnabar (mercury sulphide) is an example. Historically, cinnabar was used as a 

red pigment. In 2001, the first self-cleaning glass was brought onto the market. This type of 

glass is coated in a thin layer of transparent anatase. To make the coating, anatase is first 

combined with an organic complexing agent consisting of organic molecules which can act as 

ligands and bind to the titanium ion with co-ordinate bonds. This process is necessary to 

convert the titanium dioxide powder into a more soluble form so that it can be spread over the 

glass surface evenly. Once the coating is applied, the glass is heated to burn off the organic 

complexing agent, leaving the anatase coating.[103] 

The cleaning process works in two phases; 

 Photocatalytic breaking down of dirt. 

 Washing off breakdown products when it rains. 

The photocatalytic hydrophilic surfaces utilize sunlight/indoor light to decompose the dirt and 

other impurities [17]. TiO2 based photocatalysts have gained considerable attention as 

TiO2 exhibits significantly high physical and chemical stability, low cost, easy availability, low 

toxicity and excellent photo-activity [17]. In the presence of light of suitable energy (where, 

the energy of the excitation source is higher than the band-gap energy of the material), an 

electron (e−
CB) is excited from valence band of TiO2 to the conduction band, generating a 

positive electron hole (h+
VB) in the valence band (figure 6). The photoexcited electron (e−

CB) 

can in turn recombine with the electron hole (h+
VB) and reduce the overall efficiency of the 

photoprocess. The charge carriers, which can escape the charge-annihilation reaction, migrate 

to the surface, where the photoexcited electrons can reduce atmospheric oxygen to generate 

superoxide radicals (•O2
–) or hydroperoxyl radicals (HO2

•). The valence band hole can also 

oxidize surface adsorbed water or OH– and produce •OH. These reactive oxygen species (ROS) 

can convert organic pollutants into CO2 and water resulting in the cleaning of the surface. A 

major limitation in developing self-cleaning materials based on TiO2 is the wide band gap of 



Multifunctional Cotton Fabric with Nano TiO2 Loaded Cellulose 

17 
 

the semiconductor, limiting its absorption to the UV region of sunlight, which comprises only 

3–5% of the solar spectrum. Due to this wide band gap, utility of pure TiO2 is restricted in 

fabrication of self-cleaning materials (e.g., glass and tiles) for outdoor application [17].  

In photocatalysis, light of energy greater than the band gap of the semiconductor, excites an 

electron from the valence band to the conduction band (see figure 6). In the case of anatase 

TiO2, the band gap is 3.2 eV, therefore UV light ( ≤ 387 nm) is required. The absorption of a 

photon excites an electron to the conduction band (eCB
−) generating a positive hole in the 

valence band (hVB
+) (Eq. 1).  

 

 TiO2 + hv →  TiO2 (hVB+ + eCB− ) 

 
(1) 

Charge carriers can be trapped as Ti4+ and O2− defect sites in the TiO2 lattice, or they can 

recombine, dissipating energy. Alternatively, the charge carriers can migrate to the catalyst 

surface and initiate redox reactions with adsorbates. Positive holes can oxidize OH− or water 

at the surface to produce •OH radicals (Eq. (2)) which, are extremely powerful oxidants [104].  

 

 
 

Figure 6. Schematic illustration of various processes occurring after photoexcitation of pure 

TiO2 with UV light [104] 
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The hydroxyl radicals can subsequently oxidize organic species with mineralization producing 

mineral salts, CO2 and H2O (Eq.( 5)).  

 

 eCB− + hVB+ → energy (2) 

   

 H2O + hVB+ → •OH + H+ (3) 

   

Electrons in the conduction band can be rapidly trapped by molecular oxygen adsorbed on the 

titania particle, which is reduced to form superoxide radical anion (•O2−) (Eq. (4)) that may 

further react with H+ to generate hydroperoxyl radical (•OOH) (Eq. (6)) and further  

electrochemical reduction yields H2O2 (Eq. (7)). These reactive oxygen species may also 

contribute to the oxidative pathways such as the degradation of a pollutant (Eqs. (8) and (9). 

 

 
O2 + eCB − → • O2− 

(4) 

 

 
•OH + pollutant →  H2O + CO2 

(5) 

 

 
•O2 − + H+→ •OOH 

(6) 

 

 
•OOH + •OOH → H2O2 + O2 

(7) 

 

 
•O2

− + pollutant →  degradation products 
(8) 

 

 •OOH + pollutant → CO2 + H2O (9) 

 

3.7.3 Photo induced hydrophilicity by Generation of light induced surface vacancies 

 The initial and widely accepted mechanism for photo-induced hydrophilicity was proposed by 

Wang et al. which relies on the formation of surface defects upon UV light illumination [105]. 

Friction force microscopic studies suggested that UV irradiation resulted in a structural change 

at the TiO2 surface thereby influencing the interfacial force along the solid–liquid boundary 

and consequently changing the contact angle. The surface of TiO2 consists of five coordinated 

Ti atoms with the sixth position occupied by H2O or OH–. It is believed that UV irradiation 

creates oxygen vacancies at the two coordinated oxygen bridging sites at the surface, thereby 
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converting Ti4+ ions to Ti3+. These defects can in turn increase the affinity for hydroxyl ions 

formed by dissociation of chemisorbed water molecules and thereby forming hydrophilic 

domains (figure 7).  Moreover, crystal planes (1 1 0) and (1 0 0) of rutile TiO2 with bridging 

oxygen sites showed higher efficiency for hydrophilic conversion compared to the planes such 

as (0 0 1) without bridging oxygen sites [106]. Atomic force microscopic study of UV-

illuminated rutile TiO2 single crystal showed that TiO2 surface consists of microscopic 

hydrophilic and oleopholic domains, which are believed to generate capillary flow channels 

for oil and water.  

 

 
 

Figure 7. Schematic representation of photo-induced hydrophilicity. Electrons reduce the 

Ti(IV)–Ti(III) state and thereby the oxygen atoms will be ejected (creation of oxygen 

vacancies). Oxygen vacancies will increase the affinity for water molecules and thereby 

transforming the surface hydrophilic [17]. 

 

It was found that if the hydrophilic TiO2 material is stored in dark for a couple of days, the 

hydrophilic character gradually decrease due to slow replacement of the chemisorbed hydroxyl 

and water molecules by oxygen molecules from air. However, the hydrophilic nature of the 

surface can be retrieved by further UV illumination. Nakajima et al. demonstrated the 

photoinduced amphiphilic surface formation for polycrystalline anatase TiO2 thin films [107]. 
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However, prolonged UV irradiation was shown to convert the surface into a hydrophilic–

oleophobic one, which is considered to be due to variation in the rate of hydrophilic conversion 

of TiO2 grains. Rutile TiO2 exhibited photoinduced surface hardness correlated with the 

conversion of hydrophilic surface. This photo-induced change in surface hardness has been 

attributed to surface volume expansion resulting from the increase in distance between the 

adjacent Ti atoms arising from the dissociative adsorption of water molecules upon UV 

exposure. 

 

3.7.4 Mechanism of self-cleaning, antibacterial and antifungal by TiO2 

 

 
 

Figure 8. Mechanism of self-cleaning, antibacterial and antifungal by TiO2  [108]. 

 

Figure 8 shows the mechanism of self-cleaning, antibacterial and antifungal by TiO2 under UV 

light.  The titanium dioxide, in contact with water and oxygen molecules adsorbs some 

radiation with an intensity of energy that is larger than the characteristic band-gap. Electrons 

promoted from valence to conduction band create free electrons and electron holes’ pairs. 

These pairs produce reactive oxygen species like superoxide anions, hydroxyl radicals, and 

hydrogen peroxide molecules, which can oxidize organic compounds. These radicals can also 
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kill bacteria, viruses, fungi, and algae [109-113]. It is believed that the main cause of the 

biocidal effect of TiO2 is a damage of the cell membrane[114] and its polyunsaturated 

phospholipids [115]. Titanium dioxide can be applied on various substrates like glass, stainless 

steel, textile materials, composites, activated carbon etc. 

 

3.7.5 Methods to apply Titanium dioxide 

There are different methods to incorporate TiO2 such as facile synthesis of casein-based TiO2 

nanocomposite[116], Platinum (IV) chloride modified TiO2 and N-TiO2 coatings for self-

cleaning cotton fabrics[117], TiO2 doped withSnO2 thin films preparation by sol-gel 

method[118], Slightly carboxymethylated cellulose supported TiO2 nanoparticles[119], 

finishing self-cleaning material on cotton fabric[120], coating of TiO2 on cementitious 

materials[121]. Cellulose molecule is very stable in nature due to its strong inter and intra 

molecular hydrogen bonding. Solvents such as Ionic liquids[48], 60% sulfuric acid[46], 

Sodium Hydroxide-Carbon disulfide solvent system, can disturb hydrogen bonding and 

dissolve cellulose. Cellulose can be coated on cotton fabric by roller padding after dissolving 

in solvent. Sodium Hydroxide-Urea-Thiourea and 60% sulfuric acid were chosen to prepare 

the cellulose solution. TiO2 nanoparticles were dispersed in the cellulose solution by stirring in 

order to coat on cotton fabric. 

 

3.8 Starching 

Starch is the major carbohydrate reserve in plant tubers and seed endosperm where it is found 

as granules [122] each typically containing several million amylopectin molecules 

accompanied by a much larger number of smaller amylose molecules. By far the largest source 

of starch is corn (maize) with other commonly used sources being wheat, potato, tapioca and 

rice. Amylopectin (without amylose) can be isolated from 'waxy' maize starch whereas amylose 

(without amylopectin) is best isolated after specifically hydrolyzing the amylopectin with 

pullulanase [123]. Genetic modification of starch crops has recently led to the development of 

starches with improved and targeted functionality. Starch consists of two types of molecules, 

amylose (figure 9) normally 20-30% and amylopectin ( figure 10) normally 70-80%. Both 

consist of polymers of α-D-glucose units in the 4C1 conformation. In amylose these are linked 

- (1->4)-, with the ring oxygen atoms all on the same side, whereas in amylopectin about one 

residue in every twenty or so is also linked - (1->6)- forming branch-points. The relative 

proportions of amylose to amylopectin and - (1->6)- branch-points both depend on the source 
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of the starch, for example, amylomaizes contain over 50% amylose whereas 'waxy' maize has 

almost none (~3%) [124]. 

 

 

 
 

Figure 9. Representative partial structure of amylose 

 

 

 
 

Figure 10. Representative partial structure of amylopectin 
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Starch is a versatile and cheap, and has many uses as thickener, water binder, emulsion 

stabilizer and gelling agent. Its form and functionality have recently been reviewed [125]. 

Starch is often used as an inherent natural ingredient but it is also added for its functionality. It 

is naturally found tightly and radially packed into dehydrated granules (about one water per 

glucose) with origin-specific shape and size (maize, 2-30 μm; wheat, 1-45 µm; potato, 5-100 

μm). The size distribution determines its swelling functionality with granules being generally 

either larger and lenticular (lens-like, A-starch) or smaller and spherical (B-starch) with less 

swelling power a. Granules contain 'blocklets' of amylopectin containing both crystalline 

(~30%) and amorphous areas. As they absorb water, they swell, lose crystallinity and leach 

amylose. The higher the amylose content, the lower is the swelling power and the smaller is 

the gel strength for the same starch concentration. To a certain extent, however, a smaller 

swelling power due to high amylose content can be counteracted by a larger granule size. Starch 

is widely used for increasing bending rigidity of collars and sleeves of men’s shirts and the 

ruffles of girl’s petticoats by applying starch to them [9]. However, stiffness is not permanent 

because during washing starch dissolves in water and fabric loses its stiffness, and results in 

need to reapply starch after each laundering.  

 

3.9 Cellulose  

Cellulose can replace starch since it is insoluble in water and has similar kind of chemical 

structure like starch. Cellulose is the most abundant resource biosynthesized on earth with an 

annual production over 7.5 × 1010 tons, featuring sustainable, renewable, biodegradable, and 

carbon neutral [126, 127]. As a chemical raw material, cellulose and its derivatives have been 

widely utilized in many fields, such as papermaking, textile and pharmaceuticals [128, 129]. 

Generally, cellulose can be characterized as highly polymerized linear macromolecule 

consisting solely of 1–4--linked anhydro-d-glucose (figure 11). Particularly, the configuration 

at the anomeric carbon of glucose unit gives rise to a stretched chain conformation. Then, these 

chains are linked into flat sheets via hydrogen-bonds. The linear alignment of molecular chain 

enables the compact packing of numerous cellulose strands into crystalline fibrils, which makes 

it challenging to separate individual molecular chain and thus dissolve cellulose. Moreover, 

many other structural aspects have been identified, including the high molecular weight, the 

comparatively low flexibility of polymer chain, together with the hydrophobic surface 

attributed to the inferior solubility of cellulose in most solvents. Correspondingly, valorization 

of natural cellulose via physical and chemical conversion was severely restricted [130].  
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Figure 11. Chemical structure of cellulose 

 

This natural polysaccharide has become one of the most used biomaterials due to its fascinating 

structural and physical properties and biocompatibility. These properties arise from the 

multiple hydrogen bonding interactions resulting in a semi crystalline polymer containing 

highly structured crystalline regions, which form materials with high tensile strength. Although 

Anselme Paven described applications of cellulose in 1838, the Hyatt Manufacturing Company 

produced the first cellulose-based thermoplastic material in 1870. This material was 

manufactured by treating cellulose with nitric acid to form cellulose nitrate and commercialized 

under the trade name “Celluloid” [131]. Cellulose is the substance that makes up most of a 

plant's cell walls. Since all plants make it, it is probably the most abundant organic compound 

on Earth. Aside from being the primary building material for plants, cellulose has many others 

uses. According to how it is treated, cellulose can be used to make paper, film, explosives, and 

plastics, in addition to having many other industrial uses. For humans, cellulose is also a major 

source of needed fiber in our diet.  

In recent years, coating directly with cellulose, or its derivatives to achieve compatibility with 

the coated material, has been applied. Cellulose coating is being used for various applications 

such as high oxygen barrier and targeted release properties [40], extension of the shelf life of 

rainbow trout fillets [41], bioactive composite coating [42], wood coatings [43] for active 

packaging[44] etc., so cellulose can be coated on cotton fabric.  

 

3.10 Cellulose-TiO2 coating 

Cellulose has ability to form strong intramolecuar and intermolecular hydrogen bonding. 

However, it is possible when molecules are in one phase. After dissolution, cellulose molecules 

can come in one phase and form hydrogen bonding [132]. Using this theory it is possible coat 

cellulose on other cellulosic material. Since strong solvent being used to dissolve the cellulose, 

solvent molecules from cellulose solution try to interact with other cellulosic material and bring 
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it in one phase and form intermolecular hydrogen bonding. Due to this interchain linkage by 

hydrogen bonding, cellulose does not washed away with water. It is possible to disperse 

functional nanoparticles in cellulose solution and coat on cotton fabric so that cotton fabric 

becomes functional. figure 12 shows pictorial representation of this hypothesis. 

 

 
 

Figure 12. Graphical representation of cellulose-TiO2 coating. 

 

3.11 Solvents for cellulose dissolution 

Cellulose has a 2-fold screw axis along the chain direction. The degree of polymerization (DP) 

of the macromolecule can vary from 100 to 20,000 depending on the sources [133]. Cellulose 

possesses a highly crystalline structure due to the presence of extensive intra- and 

intermolecular hydrogen bonding [132], which has been examined in great detail. 

Consequently this natural polymer is insoluble in water and typical organic solvents and can 

only be dissolved if the intra- and intermolecular hydrogen bonds are effectively disrupted. 

Cellulose dissolution processes can be broadly classified in two categories as will be discussed 

below.  

(a) Cellulose dissolution with chemical modification 

A well-known method of cellulose dissolution is by prior chemical modification of the 

macromolecule. The main objective of this procedure is to functionalize the hydroxyl groups 

so as to disrupt the intra- and intermolecular hydrogen bonds but with minimal chain 

degradation. Functionalization reactions of cellulose include nitration, xanthation (figure 13 

(a)), esterification, (figure 13(c)) carbamation (figure 13 (b)) and etherification (figure 13 (d)). 
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Though the solubility of the derivatized cellulose depends on the type and degree of 

derivatization, most of the derivatives are soluble in common polar organic solvents like DMF, 

DMSO, dioxane etc. 

    

 
 

(a) (b) 

 

(c) (d) 

 

Figure 13. Chemical structure of (a) Cellulose xanthate (b) Cellulose carbamate (c) Cellulose 

acetate and (d) Methyl cellulose 

(b) Cellulose dissolution without chemical modification  

Solvents capable of dissolving cellulose without prior chemical modification are frequently 

described as non-derivatizing solvents. Such cellulose solvent systems are known to include 
ionic liquids (figure-14 (a)), organic solvents in the presence of an inorganic salt, amine oxides 

(figure 14 (b)), aqueous alkali solutions, aqueous complex solutions, and inorganic molten salt 

hydrates.  
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(a) 
(b) 

 

Figure 14. Chemical structure of (a) Ionic liquid and (b) N-methyl morpholine N-oxide 

(c) NaOH-Urea-Thiourea-Water solvent system 

It was found that NaOH/urea and NaOH/thiourea aqueous solutions can dissolve cellulose 

directly and quickly. Both solvent systems are inexpensive and less toxic, and good cellulose 

fibers can be prepared using simple technology. However, prepared dope with these two 

solvents is not stable. To overcome with this problem the NaOH-urea-thiourea solvent system 

was introduced [52]. NaOH-urea-thiourea solvent system can dissolve cellulose directly. The 

solvent system is of low toxicity and possesses higher solubility capacity for cellulose 

compared with NaOH/thiourea and NaOH/urea aqueous solutions. This simple technology is 

cheap and environmentally friendly thats why selected for cellulose coating.  

(d) Aqueous sulfuric acid solution 

Generally aqueous sulfuric acid is being used to prepare cellulose nanocrystals [134-137]. 60% 

sulfuric acid interacts with cellulose and try to breakdown the polymer chain. In the process of 

nanocrystal preparation in aqueous sulfuric acid solution, milled cotton linters were hydrolyzed 

by 64 % w/w sulfuric acid under vigorous stirring at 45 °C for 45 min (fibers/acid ratio 1:17.5 

g/mL) [138]. Cellulose is in dissolved form after 30 min of mixing in aqueous sulfuric acid 

solution at low[139] temperature. The solvent 60% H2SO4 is a powerful and has the ability to 

dissolve cellulose directly. The Degree of Polymerization of cellulose decreases after 

dissolution in 60% H2SO4 [46] but it is not highly important for coating.  
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CHAPTER 4 
EXPERIMENTAL 

 
4.0 Prologue 

The methods used to characterize the materials are herewith presented putting particular 

emphasis on the produced samples characterization methods. 

 

4.1 Materials 

Cotton plain weave fabric with the 0.28 mm thickness, 125.2 g/cm2, 97.3% porosity, density 

of 30warps/cm and 25 weft/cm was obtained from Tepna Nachod, Czech Republic (figure 15). 

TiO2 nanoparticles (Degussa-P25) were purchased from Evonik industries with the average 

particle size of 50 nm. Vian Biocel V Mg-bisulfite softwood pulp was supplied by Lenzing 

Biocel Paskov A.S. Urea was purchased from Pentachem. Thiourea, sulfuric acid, and NaOH 

were purchased from Lachner, Czech Republic. Reactive Red 240, Blue 49, and Yellow 95 

reactive dyes were purchased from Synthesia a.s. Sulfuric acid waspurchased from Lach-ner, 

Czech Republic. Sodium carbonate wasobtained from P-Lab a.s Czech Republic. The Orange 

II dye was usedas a stain and it was obtained from Sigma Aldrich. 

 

 

Figure 15. Cotton fabric used for study 
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4.2 Cellulose Coating 

4.2.1 Cellulose dissolution 

a) Dissolution in 60 % Sulphuric acid 

Viscose fibers were used as a sourse of cellulose to prepare cellulose solution. 60 % of 

sulphuric acid soltion was prepared by dissolving 60 g of sulphuric acid in 40 g of water. 

Prepared solution allowed to cool down at room temprature (20-25° C). 10 g of viscose fibers 

were dissolved in 90 g of 60 % Sulphuric acid solution at room temperature under continuous 

stirring for 30 min. 

b) Dissolution of cellulose in Urea-Thiourea-NaOH Solvent system 

The solvent system was prepared by mixing 8g of Urea, 6.5 g of Thiourea and 8g of NaOH in 

77.5g of water by stirring. Various concentrations of cellulose pulp (0, 1, 3, and 5 %) were 

dissolved in the urea–thiourea–NaOH–water solvent system at -12° C by mechanical stirring.  

4.2.2 Dispersion of TiO2 nanoparticles in cellulose solution 

 

 
Figure 16. Dissolution and dispersion of TiO2 

 

Cellulose solution was prepared by dissolving cellulose in direct solvents such as 60% Sulfuric 

acid and NaOH-urea-thiourea. Figure 16 shows the schematic representation of dissolution and 

Cellulose + Solvent Cellulose
Solution

Cellulose-TiO2
Dispersion
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dispersion process. TiO2 nanoparticles with diffrent concentration (1,3,5,and 10% on the 

weight of cellulose) were dispersed in cellulose solution. Mixture of Cellulose solution and 

TiO2 nanoparticles were stirred at room temperature for 5 min. Prepared cellulose-TiO2 soltion 

was used for coating.  

 

4.2.3 Padding 

The cellulose - TiO2 solution was applied on the surface of cotton fabric (4g) by roller padding 

machine (figure 17) at room temperature (15-20°C). The time used for padding was 20 seconds 

and same time used to treat fabric with solvent (60 % H2SO4).  

 

 
 

Figure 17. Padding machine 

 

Fabric was washed after padding by aqueous solution of 100 g/l Sodium carbonate, followed 

by water until neutralization. The coated fabrics were dried at 60°C for 30 min and pressed 



Multifunctional Cotton Fabric with Nano TiO2 Loaded Cellulose 

31 
 

using an electric iron. The concentration of cellulose added is as shown in Table 1. Starching 

to cotton fabric was done according to procedure given in US patent no 2,693,042 [140] to 

compare stiffness property with cellulose coated cotton fabric.   

 

Table 1. Amount of cellulose coating on 4 g of cotton fabric 

 

Sample description 
Weight of fabric after 

coating [g] 

Added cellulose-

TiO2/ g of fabric 

0 % (Without TiO2) 4.2415 0.0603 

1 % TiO2 4.2355 0.0588 

3 % TiO2 4.2366 0.0591 

5 % TiO2 4.2383 0.0595 

10 % TiO2 4.2392 0.0598 

 
4.3 Dyeing with reactive dyes 

Dyeing bath was prepared by dissolving NaCl (50 g/l), Na2CO3 (20 g/l) and reactive dye in 

distilled water. The dyeing was done at 70 °C for 60 min with fabric-liquor ratio 1:50.  The 

dyeing was carried out with 3 %, 9 % and 15 % of dye concentration (%w/w). Then dyed 

samples were washed with hot (80 °C) water and dried at 70 °C in hot air convection oven for 

30 min. 

 

4.3.1 Effect of cellulose coating on dyeing properties  

Reflectance of the coated and uncoated fabric samples were measured on spectrophotometer 

(Datacolor 110TM Switzerland) at λmax and Kubalka–Munk equation was used to determine 

K/S value of the both fabrics: 

ܭ 
ܵ =

(1 − ܴఒ௠௔௫)ଶ

2ܴఒ௠௔௫
 (10) 

where K is the coefficient of absorption; Rλ is the reflectance of the fabric at peak wavelength 

and S is the coefficient of scattering; 

The relative color strength and color difference between cellulose coated dyed samples and 

uncoated dyed samples were calculated by using following formula:  
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Relative color strength (%) =  

K/S of coated sample
K/S of uncoated sample   100 (11) 

 

ܧ∆  = ඥ(∆ܮ)ଶ + (∆ܽ)ଶ + (∆ܾ)ଶ (12) 

 

Where ∆ܮ = ௨௡஼௢௔௧௘ௗܮ -஼௢௔௧௘ௗܮ ;   ∆ܽ = ܽ஼௢௔௧௘ௗ - ܽ௨௡஼௢௔௧௘ௗ ;  ∆ܾ = ܾ஼௢௔௧௘ௗ- ܾ௨௡஼௢௔௧௘ௗ ;  L is 

lightness, ‘a’ explain redness or greenness and ‘b’ indicate yellowness or blueness [56]. 

 

4.3.2 Fastness properties 

The coated samples were washed according to the standard conditions given in the test method 

ISO 105-C06 [57] to assess staining of adjacent fabrics and change in the color after washing. 

Rubbing fastness of both coated and uncoated samples were evaluated according to the test 

method ISO 105-X12 [58]. The coated fabrics were evaluated for their perspiration fastness 

using the test method ISO 105-E04 [59]. 

 

4.4 Charactrization and measurements 

4.4.1 Scanning Electron Microscopy (SEM) 

 

 
 

Figure 18. TS5130 Vega-Tescan Scanning Electron Microscope 
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The surface morphologies of the control, cellulose coated and cellulose-TiO2 coated cotton 

fabric surfaces were investigated using a TS5130 Vega-Tescan Scanning Electron Microscope 

(figure 18) with accelerating voltage of 20kV. The samples were sputter coated with gold to 

increase the surface conductivity. 

 

4.4.2 Simulation method to calculate amount of cellulose II by x-ray diffraction 

PANalytical X'Pert³ X-ray powder diffractometer (figure 19) was used to analyze crystal 

structure of coated and control cotton fabric. The fabric samples were run at angle 8° to 70° in 

steps of 0.017. Cellulose II was estimated by following AD French’s simulation method [50-

52]. The published coordinates of the asymmetric units of cellulose Iβ and cellulose II 

containing crystallographic information file was downloaded from the supplementary material 

of the AD French paper [50-52].  

 

 
 

Figure 19. PANalytical X'Pert³ X-ray powder diffractometer 
 

The whole contents was copied into a note pad, and a = 7.784° A for Iβ unit cell was changed 

to 7.906°A for cotton fabric cellulose and saved in .cif file format. The Mercury 3.5.1 program 

[53] was used to simulate diffraction patterns. The Full Width Half Maximum (FWHM) was 



Multifunctional Cotton Fabric with Nano TiO2 Loaded Cellulose 

34 
 

set at 1.5° 2θ and the CuKα wavelength was set at 1.54056°A. For the preferred orientation, a 

March–Dollasefactor of 2.0 [54] was applied to the (0 0 1) plane. The pattern of cellulose II at 

9° FWHM [51] was used to incorporate amorphous fraction of cellulose. 

 
4.4.3 Mechanical properties 

In order to understand the effect of 60 % H2SO4 solvent on the mechanical properties of cotton 

fabric, samples with dimensions 15 X 5 cm were tested for the breaking strength, elongation 

and modulus of control and cellulose-TiO2 coated fabrics were measured according to ISO 

1924-2 [55] standard test method on Testometric M250-2.5 machine (UK). Five number of 

samples were tested and statistical treatment was done.  

4.4.4 Photocatalytic properties 

The Orange II dye and wine were used as a stain for the experiments. Stained samples were 

irradiated under UV light as a function of time to see the effect of TiO2 on degradation of stain. 

Philips TL 6W/05 CE UV tubes (400-320 nm) were used for irradiation of stain. After 

irradiation, the fabric samples were scanned on the scanner at 300 dpi and the scanned images 

were analyzed by ‘Image J’ software [141, 142]. ImageJ is an open source Java image 

processing program inspired by NIH Image[142]. It runs on any computer with a Java 1.8 or 

later virtual machine. Downloadable distributions are available for Windows, Mac OS X and 

Linux. ImageJ has a strong, established user base, with thousands of plugins and macros for 

performing a wide variety of tasks.  

ImageJ can display, edit, analyze, process, save and print 8-bit, 16-bit and 32-bit images. It can 

read many image formats including TIFF, GIF, JPEG, BMP, DICOM, FITS and "raw". It 

supports "stacks", a series of images that share a single window. It is multithreaded, so time-

consuming operations such as image file reading can be performed in parallel with other 

operations. It can calculate area and pixel value statistics of user-defined selections. It can 

measure distances and angles. It can create density histograms and line profile plots. It supports 

standard image processing functions such as contrast manipulation, sharpening, smoothing, 

edge detection and median filtering [143]. Ten number of samples were analyased for 

photocatalytic degradation. Blue colour intensity was taken into consideration since it was only 

changing. Figure 20 shows the process to analyze stain degradation by ImageJ.  
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Procedure of image analysis by ImageJ software 

 

                                                    
  

Figure 20. Method to analyze photocatalytic degradation of stain by ImageJ 

 

4.4.5 Stiffness of treated fabric 

The bending force of fabric was measured on TH-7 instrument [61]. The device TH-7 (figure 

21-a) was developed in Department of Textile Evaluation at Technical University of Liberec 

by Dr. Ludmila Fridrichova. It was developed by means of innovation of device TH-5 on which 
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only rectangle samples sized 2.5 cm 5 cm could be measured. The differences between model 

of device TH-5 and TH-7 and the essential innovations that were realized on the older device 

TH-5 is given below.  

 

 
Figure 21(a). Device TH-7 [144]. 

 

1. The clamping and sensor jaw was extended so that the device could be used for 

measuring rectangular, square and circular samples.  

2. The revolving clamping jaw was designed so that it could turn in both directions, which 

enabled one to draw the whole hysteresis loop of bending (figure 21-b).  

3. The sensor jaw was adjusted so that the bending power could be scanned in both 

directions: face– face and back–back. The sensor jaw is U-shaped.  

4. There are Teflon tubes on the sensor jaw that reduces the coefficient of friction between 

the tube and the bent fabric.  

5. To control the device and store the measured data, new software was developed. The 

output of the measuring is a hysteresis loop (curve). The data are stored in a data file 

(csv) and at the same time in a graphic file (png), as shown in figure 21-b.  

6. Device TH-7 also enables one to measure the cyclical strain of the sample. It is possible 

to set 10 cycles of automatic bending at maximum. The values of every cycle are 

recorded, as well as the final average value. 
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Figure 21 (b). Hysteresis loop of bending from device TH-7 [144]. 

 

The device enables the measuring of non-textile materials, for example paper, foils and 

membranes; however, it was constructed mainly for measuring fabrics. It has three ranges of 

measured bending force. The range of measuring force of bending is from 40 to 4000 mN. The 

output from the device is the value of bending force Fm [mN]. This value can be measured for 

various sample widths, with 50 mm being the maximum and the minimum being unlimited.  

 

 
 

Figure 22. Scheme and photography of bending sample on device TH-7. [144]. 

 

The suggested length of the sample is 50 mm; however, textiles of 25 mm minimum length can 

be measured, too. Materials whose thickness does not exceed 1.5 mm can be bent. The distance 

between the clamping and the sensor jaws is 14 mm. The scheme and photography of bending 

the fabric on device TH-7 is given in figure 22 [Cj: clamping jaw; Sj : sensor jaw, it is scanning 
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bending force (Fm= Fh horizontal force component); Fr: resultant force; Fv: vertical force. (a) 

Sample in zero position. (b) Sample turned to position +90 face–face. (c) Sample turned to 

position -90° back–back]. The output value from device TH-5 or TH-7 is bending force Fm. 

The calculation of bending moment Mo [Nm] is described for the older model, device TH-5, 

according to the standard CˇSN 80 0858, where Mo ¼ Fm k, k ¼ 0.604 for samples of 2.5 cm 

width. There is more information in the article by Naujokaityte et al- [145]. If we want to 

compare the mutual bending behavior of textiles that were measured only on device TH-7, it 

is possible to work only with the value of bending force Fm [Nm], so it is not necessary to 

convert Fm to the value of bending rigidity B [Nm2 /m], or to the bending moment M [Nm]. 

Stiffness was calculated by multiplying bending force to 0.008. Five number of samples were 

tested and standard deviation was calculated.  

 

4.4.6 Quantitative evaluation of anti-bacterial activity (AATCC–100)  

American Association of Textile Chemists and Colorists (AATCC) standard methods such as 

AATCC 147 and AATCC100 were used to investigate antibacterial activity of cellulose-TiO2 

coated cotton fabric. Four different bacterial strains, Escherichia coli (EC), Klebsiella 

pneumonia (KP), Staphylococcus aureus (SA), Methicillin resistant staphylococcus aureus 

(MRSA) respectively were used.  

 

AATCC 147: The sample with dimensions 18x18 mm was wetted in distilled water and placed 

on moist filter paper (in distilled water). Both sample and filter paper were placed together in 

petri dish and then dish was closed. After 15 minutes of UV radiation exposure, the sample 

was placed on blood agar. The blood agar plates were individually inoculated with bacterial 

stains at a concentration of 105 CFU / ml. The samples were cultivated in incubator at 37 °C 

for 24 hours. 

 

AATCC100: The sample wetted in distilled water with the dimension of 18x18 mm was placed 

on wet filter paper and then together placed in covered petri dish. The sample was placed into 

sterile container and exposed to UV radiations for 15 minutes. Thereafter 50µl of bacterial stain 

(inoculums) was applied on the sample and allowed to wick through the sample stack. The 

inoculated swatches incubated for 24 hours at 37oC; thereafter a neutralizing broth composed 

of 50ml of saline was added and container was shaken so as to release the inoculums from the 
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test swatches and into the neutralizing broth.  The bacteria present in this liquid was obtained 

as the percentage reduction [146].  

The percentage reduction of bacteria was calculated using the following formula: 

ܤ)  − (ܣ
100
ܤ = ܴ (13) 

Where R is the percentage reduction; A and B are the number of bacteria recovered from the 

inoculated treated and untreated fabrics. 

4.4.7 Evaluation of antifungal properties of coated fabric 

The antifungal properties were measured using the following fungi mixture in aqueous 

suspension at a concentration of 106 CFU/ml: Penicillium digitatum (CCM F-382), Rhizopus 

stolonifer (CCM F-445), Cladosporium sphaerospermum (CCM F-351), Chaetomium 

globosum (CCM 8156).  Three samples of cotton fabric coated with TiO2, each with area of 

about 4 cm2, with different concentrations of TiO2 (0, 1, 3, 5 and 10%) were placed on agar 

medium [Malt agar, Cadersky-Envitek, Ltd, Brno, Czech Rep.] and inoculated with a 

suspension of testing moulds. Incubation of the tested sample was conducted for two weeks at 

a temperature of 22 ± 3 °C, at daylight (near a window). After the test, evaluation of antifungal 

properties was done on the basis of visual assessment according to the EN 14119, 2003 

Standard [147] by determining degree of mould growth on the surface of fabric samples.  

 

The rating system for mold growth was as follows: 

0 – no visible growth evaluated microscopically,  

1 – no visible growth evaluated with the naked eye but clearly visible microscopically,  

1 – growth visible with naked eye, covering up to 25% of tested surface,  

2 – growth visible with naked eye, covering up to 50% of tested surface,  

3 – considerable growth, covering more than 50% of tested surface,  

4 – Very intense growth, covering all tested surface.  

 

4.4.8 Air and water vapor permeability 

The air permeability of control and coated cotton fabrics was analyzed using a Textest FX 

instrument according to the ASTM D2986 standard test method. The air permeability was 

measured at pressure of 200 Pa and range of 3. The measuring principle depends on 

measurement of the air flow through the fabric under a certain pressure gradient Dp. The water 
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vapor permeability was analyzed using a Permetest device (Sensora Instruments) with the fast 

skin model according to the ISO 11092 standard. 

 

4.4.9 Durability of stiffness and photocatalytic properties 

Durability of Cellulose-TiO2 coated fabrics for stiffness and photocatalytic properties against 

repeated washing were evaluated by washing TiO2-Cellulose coated cotton fabrics according 

to modified AATCC (American Association of Textiles Chemists & Colorists) test method 61 

(2A)-1996 [66]. After washing, samples were analyzed for stiffness and photocatalytic 

properties. The fabric was washed with 4g per liter (g/l) detergent at 40 °C for 1hr. Washed 

fabrics were further evaluated for stiffness and stain degradation.  

 

  



Multifunctional Cotton Fabric with Nano TiO2 Loaded Cellulose 

41 
 

CHAPTER 5 
RESULTS AND DISCUSSION 

5.1 Morphology of cellulose and cellulose-TiO2 coated cotton fabric 

To investigate the change in the surface morphology of the coated cotton fabric, scanning 

electron microscopy was used to estimate the influence of the modification process on the 

fabric. These images (figure 23) are of cellulose coated cotton fabric in which coating was done 

with dissolved pulp in NaOH-urea-thiourea solvent system. Cross sectional and surface images 

of cellulose-coated and uncoated cotton fabrics are presented in figure 23.  

 

 
 

Figure 23. SEM images of (a, c) uncoated cotton fabric and (b, d) cellulose-coated cotton 

fabric 
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These micrographs (figure 23) reveal that the applied cellulose formed a film on the surface of 

the cotton fabric, covering the spaces between yarns. This formed film is attached to the surface 

of cotton fabric by intermolecular hydrogen bonding. The hydrogen bonds from between 

coated cellulose and cotton fabric cellulose because strong solvent such as NaOH-urea-thiourea 

and 60% H2SO4 has been used to dissolve cellulose for coating. Solvent molecules interact 

with cotton fabric cellulose and try to dissolve and bring both cellulosic phase together. During 

this process coated cellulose and cotton fabric cellulose form intermolecular hydrogen bonding.  

This interchain linkage help coated cellulose to stay attached to fabric.  

 

 

Figure 24. SEM photographs of TiO2 - cellulose coated cotton fabric a) Control, b) 0% TiO2, 

c) 1 % TiO2, d) 3% TiO2, e) 5 % TiO2, f) 10% TiO2. 

Figure 24 (a–f) show the morphological changes inducted by the coating of cellulose-TiO2 on 

the surface of the cotton fabric. It isapparent from the micrographs that coated cellulose forms 

a thinfilm on the fiber surface. Figure 24 (c–f) show the white particles on the surface and these 

white particles in the micrographs confirm that TiO2 was successfully coated with the cellulose 

on the surface. Micro-graphs also reveal that coated cellulose holds the TiO2 particles by 
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forming the film on fabric surface. Solvent (60% H2SO4) molecules interact with cotton fabric 

cellulose therefore forming an interchain linkage between dissolved cellulose and coated 

cellulose as a result of this linkage, celluloseis not easily washed away by water. It is not 

possible to detect the interchain linkage by spectroscopic technique because both themolecules 

are same. X-ray diffraction pattern of solvent treated cotton fabric (figure 40) shows some 

changes in the structure of cellulose. Cellulose II content increases slightly and proves the 

interaction between solvent and cotton fabric during coating.   

 

5.2 Photocatalytic degradation of orange II under UV light  

 

 
 

Figure 25. Degradation of Orange II under UV-visible light irradiation on cellulose-TiO2 

coated samples. 
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Cotton fabrics coated with cellulose-TiO2 were analyzed for self-cleaning using photocatalytic 

degradation of orange II dye under UV light irradiation. Figure 25 shows scanned images of 

TiO2 coated cotton fabric with various concentrations after irradiation under UV light at 

diffrent time of intervals. In figure 26, the exponential curves are form of the equation 

B=B0+(B∞-B0) (1-e-kt). Here B is calculated intensity, B0 is observed highest intensity, B∞ is 

the intensity of pure cotton fabric without stain, k is constant and t is time. Significant 

discoloration of orange II dye was observed at 5 and 10 % TiO2 coated samples. Evaluation of 

Orange II by ImageJ software is shown in figure 26. ImageJ software measures the intensity of 

color by using the color histogram tool. Here when sample becomes whiter, the value (counts) 

of color intensity increases that means it is measuring the whiteness of the sample. It is clear 

from figure 25 and 26 that degradation rate increases with increasing concentration of TiO2 and 

time of irradiation. Coated samples with 1 and 3 % TiO2 showed some degradation too but low 

as compared to 5 and 10 %  due to low concentration. Figure 26 also shows that degradation 

of orange II increases with increasing irradiation time and TiO2 concentration. Undyed control 

sample gave 249.7 counts whereas the dyed sample gave 186.6 counts and all the samples were 

compared in this range. All the TiO2 coated samples show the photocatalytic properties and are 

therefore capable of stain degradation. 
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Figure 26. Evaluation of orange II degradation by ImageJ. 
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5.3 Wine stain degradation 

The photocatalytic self-cleaning ability of TiO2-cellulose coated cotton fabric with red wine 

stain was observed by irradiating samples under UV light. Irradiated coated cotton fabric 

samples were scanned on the scanner and then evaluated by using ImageJ software. Figure 27 

shows the scanned images of control, only cellulose coated and 1, 3, 5 and 10% TiO2-cellulose 

coated cotton fabric with red wine stain after 15 minutes of irradiation under UV light. It is 

clear from the figure 27 that red wine stain of 3, 5 and 10% TiO2-cellulose coated samples was 

degraded whereas control, only cellulose coated samples remained unaffected. Due to low 

concentration of TiO2 in 1% coating sample shows less degradation of wine stain. 

 

Figure 27. Scanned pictures of (a) Control (b) only cellulose coated and (c) TiO2-cellulose 

coated cotton fabric after irradiation of red wine stain under UV light 
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Figure 28. Effect of TiO2 concentration on wine stain degradation 

Effect of TiO2 concentration on wine stain degradation was evaluated by using ImageJ 

software. It is observed in figure 28 that degradation of stain increases with increasing 
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irradiation time and concentration of TiO2. Samples coated with 3, 5 and 10% TiO2 shows 

significant discoloration of stain after irradiation under UV light for 15 minute. 1% TiO2 coated 

cotton fabric shows least amount of degradation after UV light irradiation because of less 

concentration of TiO2. Thus, from these results it is clear that degradation of stain depends on 

amount of TiO2 in coating.  

 

5.4 Durability of cellulose-TiO2 coated cotton fabric for self-cleaning ability 

To study the effect of washing on the self-cleaning ability of cellulose-TiO2 coated cotton 

fabric, the fabric was washed with 4g per liter (g/l) detergent at 40 °C for 1hr. Figure 29 shows 

the effect of washing on self-cleaning ability of coated fabrics. In figure 29, the exponential 

curves are form of the equation B=B0+(B∞-B0) (1-e-kw). Here B is calculated intensity, B0 is 

observed highest intensity, B∞ is the intensity of pure cotton fabric without stain, k is constant 

and w is washing cycle. Coated samples with 1, 3 and 5% TiO2 show very good durability 

against washing up to 10 cycles.  
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Figure 29. Effect of washing on stain degradation 

The sample coated with 10% TiO2 showed poor durability because TiO2 was not dispersed 

homogeneously in cellulose solution due to the higher concentration and is illustrated in the 
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SEM images (figure 24 f). It is apparent from figure 29 that stain degradation starts decreasing 

after 1st washing for 3, 5, and 10 % TiO2 coated cotton fabric, however, the ability to degrade 

the orange II dye stain still persists upto 10 washing cycles with all cellulose-TiO2 coated 

samples. The fabric ability to degrade stain dropping after first cycle of washing because 

loosely attached cellulose was washed away with water. Therefore, this study confirms that 

significantly higher level of stain degradation is preserved as compared to uncoated fabric.  

 
5.5 Rubbing effect on wine stain degradation 

Textile materials frequently go through rubbing so it is neccesary to investigate its effect on 

self-cleaning ability of cellullose-TiO2 coated cotton fabric. The cellulose-TiO2 coated cotton 

fabric was tetsed against rubbing on abrasion and pilling tester for different cyles such as 0, 5, 

10, 50, 100 cyles. Samples coated with 5 and 10% TiO2 (on the weigth of cellulose) shows 

excellent results againt rubbing upto 100 cyles. 3% TiO2 coated sample shows significant 

decrease in self-cleaning ability.  

 

 

 

Figure 30. Scanned images of wine stain degradation of rubbed samples after 15 minuts of 

UV irradidition 
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The trend show that with increasing concentration of TiO2 the stablity against increasing of  

coated samples. Figure 30 shows the pictorial images of wine stain degradation after 15 minuts 

of UV irradiation. Evaluation of waine stain degradation after rubbing 100 cycles by ImageJ is 

shown in figure 31. The origin lab software was used to plot this graph and B-spline function 

used to draw curve for smotthness. There is some amount of drop in stain degradation between 

1-10 rubbing cycles in all samples but not very significant. This is happening because loosely 

attached cellulose-TiO2 ging away at initial abrasion. After 10 cycles of rubbing there is no 

substantial change on wine stain degradation under UV irradiation for 15 min. Trend shows 

that stain degradation decreases with decreasing concentration of TiO2 as rubbing cycles 

increases. Therefore, cellulose-TiO2 coated cotton fabric is stable against rubbing.  
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Figure 31. Evaluation of rubbing effect on wine stain degradation after 15 min of UV 

irradiation by ImageJ 

 
5.6 Stiffness  

5.6.1 Stiffness of cellulose coated cotton fabric in Urea–Thiourea–NaOH solvent system 

Different concentrations of cellulose solution were prepared by dissolving cellulose in the 

Urea–Thiourea–NaOH–Water solvent system. The cellulose concentration was increased up to 

5 % by decreasing the water concentration. This solvent can clearly dissolve a maximum of 6 
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% cellulose, but such 6 % solution has very high viscosity and is difficult to apply to fabric. 

The prepared cellulose solution was applied on cotton fabric by using roller padding to increase 

its stiffness permanently. The stiffness of the control as well as coated cotton fabrics was 

measured using a TH-7 instrument [144]. Figure 32 shows the effect of cellulose coating on 

the stiffness of the cotton fabric. The cotton fabric with 5 % cellulose coating showed very high 

stiffness compared with the other samples. From figure 33 it is also clear that the stiffness 

increased with increasing cellulose concentration. The SEM micrographs in figure 23 reveal 

that the coated cellulose was attached homogeneously to the fabric surface, which is why the 

stiffness was high and permanent. The coated cellulose was homogeneously distributed over 

the fabric surface because, during coating, the solvent molecules try to dissolve the fabric 

cellulose and link cellulose chains together. It is not easy to prove such linking by spectroscopic 

methods, because both molecules are the same. However, from the results of SEM imaging and 

the washing study, it is clear that there is a link between both kinds of cellulose chains, which 

is why the coated cellulose was not removed by the water during washing. 
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Figure 32. Stiffness of uncoated and coated samples. 
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Figure 33.  Effect of cellulose concentration on stiffness of cotton fabric 
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Figure 34. Durability of only cellulose coated cotton fabric against washing 
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Figure 34 shows the effect of washing on the stiffness of the cotton fabric. In figure 34, the 

exponential curves are form of the equation B=B0+(B∞-B0) (1-e-kw). Here B is calculated 

stiffness, B0 is observed highest stiffness in sample, B∞ is maximum stiffness (3 N.m), k is 

constant and w is washing cycle. This study was carried out with the 5 % cellulose-coated 

sample. Samples were washed with 4-gpl soap detergent at 40 °C. Figure 34 shows that the 

stiffness decreased slightly after the first washing, but thereafter there was no drastic change, 

and the stiffness remained high even after 10 washing cycles. There was no significant drop in 

stiffness after 5 washing cycles, because the stiffness decreased by only 0.29 N m between 5 

and 10 washing cycles. This indicates that there is no need to reapply cellulose solution like 

starch. This study confirms that the stiffness obtained after applying cellulose to the surface of 

cotton fabric is permanent. 

 
5.6.2 Stiffness of cellulose-TiO2 coated cotton fabric in 60% Sulfuric acid solution  

Stiffness is a special property of the fabric. It is a tendency of the fabric to keep standing 

without support. The bending force was measured to calculate the stiffness of the fabric on TH-

7 instrument. Figure 35 compares the stiffness of control fabric with cellulose-TiO2 coated 

cotton fabric. It is clear from figure 35 that the stiffness increases significantly when the cotton 

fabric is coated with cellulose. 

  

 
Figure 35. Stiffness of control, Solvent treated (Sol. Tr.), Starched, only cellulose (0% TiO2) 

and cellulose-TiO2 coated cotton fabric. 
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The stiffness was slightly decreased when TiO2 was added to the cellulose solution because 

viscosity of cellulose solution decreases after mixing TiO2. Xu et al explain how viscosity 

decreases after adding small amount of nanoparticles in to solution [148]. Viscosity decreases 

after adding TiO2 in cellulose solution because nanoparticles reduce the polymer chain 

entanglement. Stiffness of all coated samples was higher than the control cotton fabric sample 

and comparable to starched sample. Stiffness of coated samples is in the range of 1.07 - 1.22 

Nm. Solvent treated cotton fabric shows similar stiffness to control cotton fabric that means 

there was no effect of solvent treatment on stiffness of cotton fabric. Hence, cellulose coating 

increases the stiffness of cotton fabric significantly. 

 

5.7 Durability stiffness against washing of cellulose-TiO2 coated cotton fabric 

To study the effect of washing on stiffness of cellulose-TiO2 coated cotton fabric, the fabric 

was washed with 4 g/l detergent at 400C for 1 hr. Figure 36 shows the effect of washing on 

stiffness of coated fabrics. Coated samples with 1, 3 and 5 % TiO2 show very good durability 

against washing up to 20 cycles. It is apparent from the figure 36 that stiffness decreased after 

1st washing. However, the stiffness was stable after first washing with all cellulose-TiO2 coated 

samples as compare to starched fabric. The fabric stiffness dropped after first cycle of washing 

by 0.68 Nm because loosely attached cellulose was washed away with water. There is no 

significant drop in stiffness after first washing because the stiffness was slightly decreased until 

after the 20th cycle of washing. Therefore, there is no need to reapply cellulose solution unlike 

starch. This study confirms that significantly higher level of stiffness is preserved as compared 

to starched fabric.  
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Figure 36.  Durability of stiffness against washing 

 

5.8 Antibacterial activity of cellulose-TiO2 coated cotton fabric 

Effect of TiO2 coating on the growth of bacterias such as Escherichia coli G- CCM 2024, 

Klebsiella pneumoniae G- CCM 2318, Stapgylococcus aureus G+ CCM 226 a MRSA 

(methicillin-resistant Staphylococcus aureus) G+ CCM 4223 were investigated. Figure 37 

shows the pictures of bacterial growth on coated and uncoated cotton fabric against S. aureus 

(figure 37 (a)) and MRSA (figure (b). Table 2 reflects the observation of bacterial reduction by 

AATCC 100. Table 2 shows that compact bacteria’s were obtained in case of G-ve Escherichia 

coli (EC) and Klebsiella pneumonia (KP) bacterias. Table 3 gives the percentage 

reduction/multiplication of the test bacteria (G+ve S. aureus and MRSA) confirmed 

quantitatively utilizing the AATCC100 method. It is observed that the coating of fabrics with 

TiO2-cellulose had a positive reduction of S. aureus bacteria and MRSA bacteria. The 

effectiveness of the anti-microbial activity increased with increase in the concentration of the 

TiO2 coating.  
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Control 1% TiO2 

  
3% TiO2 5% TiO2 
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Figure 37. (a) Antibacterial activity against Staphylococcus aureus bacteria  
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Control 1% TiO2 
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10% TiO2 

Figure 37. (b) Antibacterial activity against Methicillin-resistant Staphylococcus aureus 
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Fabrics treated with 1% TiO2 had the lowest S. aureus bacterial reduction. However, with an 

increase in the concentration of TiO2, there was a high jump from 6.3% to 96.7% reduction of 

S. aureus bacteria on 3% TiO2 treated fabrics. These results confirm that sample coated with 3, 

5 and 10% TiO2-cellulose show strongest inhibition efficiency against bacteria’s. The 

effectiveness of the anti-microbial activity increased with increase in the concentration of the 

TiO2 coating. Fabrics treated with 1% TiO2 had the lowest S. aureus bacterial reduction, 

however with an increase in the concentration of TiO2, there was a high jump from 6.3% to 

96.7% reduction of S. aureus bacteria on 3% TiO2 treated fabrics. Therefore, sample coated 

with 3, 5 and 10% TiO2-cellulose show strongest inhibition efficiency against G+ bacteria’s 

and compact bacterias occurred against G- bacterias.  

 

Table 2. Observation of bacterial reduction by AATCC 100 

 

Method: 

AATCC100 

 

Control 
Cellulose 

coated 
1% TiO2 3% TiO2 5% TiO2 10% TiO2 

Escherichia 

coli 

105 CFU/ml 

Compact 

bacteria 

occurrence 

Compact 

bacteria 

occurrence 

Compact 

bacteria 

occurrence 

Compact 

bacteria 

occurrence 

Compact 

bacteria 

occurrence 

Compact 

bacteria 

occurrence 

Klebsiella 

pneumoniae 

105 CFU/ml 

Compact 

bacteria 

occurrence 

Compact 

bacteria 

occurrence 

Compact 

bacteria 

occurrence 

Compact 

bacteria 

occurrence 

Compact 

bacteria 

occurrence 

Compact 

bacteria 

occurrence 

Staphylococcus 

aureus 

105 CFU/ml 

960 900 68 32 22 17 

MRSA 

105 CFU/ml 
104 120 98 42 34 22 

 

Same samples were analysed according to AATCC147 standatrd method to investigate 

antibacterial activity.  Unlike AATCC100,  the results from  AATCC147 (Table 4) shows no 

effect of cellulose-TiO2 coating on G-ve bacterias such as Escherichia coli (EC) and Klebsiella 

pneumonia (KP). Also there is no effect of coating on G+ve Staphylococcus aureus (SA) and 

Methicillin resistant staphylococcus aureus (MRSA).  
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Table 3. Quantitative evaluation of bacterial reduction 

Test 

Sample 

Bacterial Reduction/Multiplication 

Staphylococcus aureus 

(SA) 

Methicillin-resistant Staphylococcus 

aureus (MRSA) 

Control - - 

1% TiO2 6.3 13.3 

3% TiO2 96.7 65.0 

5% TiO2 97.7 68.3 

10% TiO2 98.2 81.6 

 

Table 4. Evaluation of antibacterial testing by AATCC 147 

 

Method: 

AATCC147 

 

Control 

Cotton 

fabric 

Cellulose 

coated cotton 

fabric 

1 % TiO2 3 % TiO2 5 % TiO2 10 % TiO2 

Escherichia coli 

105 CFU/ml 
No effect No effect No effect No effect No effect No effect 

Klebsiella 

pneumoniae 

105 CFU/ml 

Halo zone 

not clear 

 1,74 mm 

No effect No effect No effect No effect No effect 

Staphylococcus 

aureus 

105 CFU/ml 

Halo zone 

not clear 

 4,93 mm 

No effect No effect No effect No effect No effect 

MRSA 

105 CFU/ml 
No effect No effect No effect No effect No effect No effect 

 

5.9 Evaluation of antifungal activity of cellulose-TiO2 coated cotton fabric 

Antifungal activity of TiO2 coated cotton fabric was evaluated with mixture of Penicillium 

digitatum (CCM F-382), Rhizopus stolonifer (CCM F-445), Cladosporium sphaerospermum 

(CCM F-351), Chaetomium globosum (CCM 8156) fungi’s in aqueous suspension at a 

concentration of 106 CFU/ml. Figure 38 (a, b, c, d and f) shows the results of antifungal test. 

The surface of agar in the Petri dishes was completely covered with fungi (filamentous hyphae 
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forming the mycelium) in the first 4 days. However, the filamentous hyphae (mycelium) started 

to lose from the surface over the second week.  

 

  
 

  
 

 
 

Figure 38. Antifungal activity of (a) Control (b) 1% TiO2 (c) 3% TiO2 (d) 5% TiO2 and (e) 10 

% TiO2 coated cotton fabric 

 

a) b) 

c) d) 

e) 
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Finally, the samples containing the titanium dioxide of 5 and 10% were most cleared. The 

reason of this antibacterial activity is photocatalytic effect of TiO2, but this effect occurred 

slowly and later (during the second week of cultivation). The amount of fungi decreased with 

increasing concentration of TiO2 from the beginning. Thus, long-term antifungal effect was 

observed on samples of cotton fabrics coated with TiO2 at concentration of 5% or higher and 

according to the EN 14119, 2003 Standard [147] the grow of fungi ranged between degree 2 

(high concentration of TiO2) and 4 (low concentration of TiO2) on the samples.    

 

5.10 Investigation the effect of cellulose-TiO2 coating and strong solvent on cellulose 

structure by X-ray diffraction patterns 

5.10.1 Effect of cellulose-TiO2 coating and 60% Sulfuric acid on structure of cellulose 

X-ray diffraction patterns were obtained to detect TiO2 and to investigate the effect of 60 % 

H2SO4 solvent on cotton fabric. Figure 39 shows the X-ray diffraction patterns of the control 

and cellulose-TiO2 coated cotton fabric. The characteristic peak at 2θ 25.4° shows the presence 

of TIO2 in 3, 5 and 10 % TiO2 coated cotton fabric. 1 % TiO2 coated cotton fabric does not 

show this peak presumably due to the lower concentration of TiO2. It can be seen from figure 

39 that the peak height of TiO2 at 25° increases with increasing concentration of TiO2. X-ray 

diffraction spectra of the control and cellulose-TiO2 coated cotton fabric exhibited main 

characteristic diffraction peaks at 14.7°, 16.3°, and 22.4° of cellulose I.  The small peak at 12.3° 

and the bigger shoulder at 20° confirm the presence of cellulose II in both control and the 

solvent treated samples. The control cotton fabric (figure 40) shows the peak of Cellulose II 

because of the chemical treatments used during the fabric processing to improve the properties 

of cotton, such as dimensional stability, reactivity, luster etc. The amount of cellulose II was 

estimated by simulation method [149-151]. The ‘a’ value (Iβ unit cell) was adjusted to 0.7906 

nm from 0.7784 nm, because less perfectly ordered cotton cellulose. 

The basic idea of this simulation is to fit combined x-ray diffraction patterns of cellulose I, II 

and amorphous fractions obtained from Mercury 3.0 program with diffraction pattern of treated 

sample to quantify cellulose fractions. Diffraction intensities, output by the Mercury program 

from the Cambridge Crystallographic Data Centre, have several uses including comparisons 

with experimental data. Calculated intensities from different polymorphs can be added in 

varying proportions using a spreadsheet program to simulate patterns such as those from 

partially mercerized cellulose or various composites. 
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Figure 39.  X-ray diffraction patterns of cellulose-TiO2 coated cotton fabric 

  

 

Figure 40. Diffraction pattern of Control (red curve) and solvent (without cellulose) treated 

(blue curve) cotton fabric 

Cellulose I 

Cellulose II 
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Figure 41. Diffraction pattern of control cotton fabric fitted with simulated pattern 

 

Figure 42. Diffraction pattern of 60 % H2SO4 treated cotton fabric fitted with simulated 

pattern. 
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Amorphous cellulose significantly influences the diffraction pattern and that is why it was 

included in the simulation. To incorporate amorphous fraction into the simulation, the 

diffraction pattern of Cellulose II at 9 deg. FWHM was used [150]. Figure 41and 42 are the 

diffraction patterns of 60 % H2SO4 solvent treated and control cotton fabrics respectively fitted 

with corresponding simulated pattern. Table 5 shows the composition of cellulose in 60% 

H2SO4 solvent treated and control cotton fabric. Solvent (60 % H2SO4) treated cotton fabric 

shows 22.2 % cellulose II, which slightly higher than the control sample (16.9 %), that means 

there is an effect of the solvent on cotton fabric during coating. The effect of solvent on 

structure of cotton fabric was negligible because the treatment time was of 20 sec duration at 

room temperature which was the same conditions used for cellulose coating.  

 

5.10.2 Effect of NaOH-Urea-Thiourea-Water solvent system on cellulose structure  

The effect of the urea–thiourea–NaOH–water solvent system on the cotton fabric was analyzed 

using X-ray diffraction analysis. Figure 43 shows an overlay of the X-ray diffraction spectra 

of the original (black) and regenerated (red) cellulose pulp, while figure 44 shows an overlay 

of the X-ray diffraction spectra of control (black) and urea–thiourea–NaOH–water-treated (red) 

cotton fabric. In figure 43, the characteristic peak of cellulose I at 16.20° is missing for the 

regenerated pulp cellulose while the peaks at 12.3° and 21.20° show that the structure of the 

pulp cellulose has been converted from cellulose I to II. The X-ray diffraction spectra and 

overlapping peak resolution of the control and solvent-treated cotton fabric show main 

characteristic diffraction peaks at 14.7°, 16.3°, and 22.4° for cellulose I. The small peak at 

12.3° and larger shoulder at 20° show the presence of cellulose II in both samples (figure 44 ) 

with slightly more in the solvent-treated (red curve) sample. The control cotton fabric showed 

peak of cellulose II because of the chemical treatments used during fabric processing to 

improve properties of cotton such as its dimensional stability, reactivity, luster, etc. [152]. The 

amount of cellulose II was estimated by the simulation method [149-151]. The ‘a‘ value was 

adjusted to 0.7906 nm because of the less perfectly ordered cotton cellulose. Amorphous 

cellulose significantly influenced the diffraction pattern and was therefore included in the 

simulation. The diffraction pattern of cellulose II with FWHM of 9° was used for amorphous 

cellulose[150]  in the simulation. Figures 45 and 46 show the diffraction pattern of the control 

and solvent-treated cotton fabrics, respectively, fit with the corresponding simulated pattern. 
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Figure 43. X-ray diffraction pattern and analysis of original (Black) and regenerated 

(Red) cellulose pulp. 

 

 

 

 

 

Figure 44. X-ray diffraction pattern and analysis of control (black) and solvent treated 

cotton fabric (Red). 
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Figure 45. Diffraction pattern of control cotton fabric fitted with simulated pattern. 

 

Figure 46. Diffraction pattern of solvent treated cotton fabric fitted with simulated 

pattern. 
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Table 5 presents the composition of cellulose in the control and solvent-treated cotton fabric. 

Solventtreated cotton fabric showed a slightly greater amount of cellulose II (21.5 %) compared 

with the control sample (16.9 %), indicating a solvent effect on the cotton fabric during coating. 

The effect of the urea–thiourea–NaOH–water solvent system on the structure of the cotton 

fabric was small because the treatment time was just 20 second at room temperature, with the 

same conditions used for cellulose coating. 

 

Table 5. Estimation of cellulose fractions 

Sample description Cellulose I [%] Cellulose II [%] 
Amorphous 

cellulose [%] 

Control cotton fabric 47.5 16.9 35.6 

NaOH-Urea-Thiourea-

Water 
45.2 21.5 33.3 

60 % H2SO4 treated cotton 

fabric 
44.7 22.2 33.1 

 

5.11 Colour strength and related parameter  

The K/S value of the dyed fabric was directly proportional to the amount of dye present in the 

fabric. The relative color strength (%) and K/S values of the cellulose-coated dyed samples are 

presented in Table 6 from which it is clear that the K/S values of the cellulose-coated dyed 

fabrics were lower than for control dyed samples. Dye uptake decreased as the cellulose 

concentration was increased, as reflected in the observed values. Reactive Blue 49 dye showed 

better dyeability than Reactive Red 240 or Reactive Yellow 95. The lower K/S values for the 

cellulose-coated cotton fabrics are related to the applied cellulose.The possible cause of this 

decrease is that the coated pulp cellulose was mercerized after dissolution, reducing dye uptake 

by the fabric because it was on the surface. Table 6 shows that the relative color strength (%) 

of the dyed samples decreased with increasing cellulose concentration for each shade % of the 

dye. These results further indicate that the cellulose coating decreased the dye uptake by the 

coated cotton fabric. 

 

 

 

 



Multifunctional Cotton Fabric with Nano TiO2 Loaded Cellulose 

66 
 

Table 6. Spectrophotometric analysis of dyed sample 

Dye 
Content 
[% owf] 

Dye 
Cellulose 

concentration 
[%] 

L* a* b* ΔE K/S 
Standard 
Deviation 
[σ]  K/S 

C.I. 
(Half 
size) 
K/S 

Relative 
color 

strength 
[%] 

3 

Reactive 

Red 240 

Control 53.22 61.15 2.25 0 7.29 0.65 0.81 100 

1 59.33 62.21 2.75 6.22 2.54 0.38 0.47 34.87 

3 61.34 62.98 3.23 8.38 2.36 0.25 0.31 32.45 

5 63.75 63.26 3.56 10.81 2.25 0.32 0.40 30.97 

Reactive 

Yellow 

95 

Control 81.51 16.63 66.91 0 8.15 0.45 0.56 100 

1 82.59 17.26 67.49 1.37 3.74 0.85 1.05 45.98 

3 82.87 15.14 61.93 5.37 3.07 0.63 0.78 37.72 

5 84.32 21.28 73.46 8.51 3.21 0.56 0.70 39.45 

Reactive 

Blue 49 

Control 24.91 -3.89 -18.1 0 20.47 0.25 0.31 100 

1 25.12 -3.45 -17.18 1.04 13.72 1.32 1.64 67.03 

3 27.25 -2.77 -15.99 3.34 13.3 1.25 1.55 64.98 

5 28.32 -2.45 -15.58 4.47 12.49 1.71 2.12 61.04 

9 

Reactive 

Red 240 

Control 42.17 59.55 13.72 0 20.75 0.61 0.76 100 

1 47.26 61.1 5.66 9.65 12.14 1.98 2.46 58.51 

3 48.37 61.85 5.72 10.37 8.79 1.59 1.97 42.36 

5 49.98 62.12 5.85 11.38 7.7 1.92 2.38 37.15 

Reactive 

Yellow 

95 

Control 73.32 15.53 69.91 0 21.73 0.31 0.38 100 

1 75.59 16.26 67.49 3.39 13.67 0.92 1.14 62.92 

3 80.87 16.64 66.93 8.19 12.1 1.45 1.80 55.69 

5 82.32 17.12 62.46 11.79 8.71 2.1 2.61 40.09 

Reactive 

Blue 49 

Control 16.11 -4.22 -15.1 0 26.63 1.21 1.50 100 

1 16.92 -3.35 -14.68 1.26 23.28 1.82 2.26 87.41 

3 17.25 -3.67 -14.09 1.61 22.59 1.61 2.00 84.83 

5 18.32 -3.75 -13.78 2.61 17.12 1.77 2.20 64.31 

15 

Reactive 

Red 240 

Control 37.94 57.92 14.72 0 24.91 1.10 1.37 100 

1 46.1 58.1 5.56 12.26 13.46 1.55 1.92 54.05 

3 47.21 58.98 5.61 13.04 12.4 1.20 1.49 48.32 

5 47.42 59.23 5.67 13.17 9.14 1.65 2.05 36.7 

Reactive 

Yellow 

95 

Control 69.32 14.63 66.91 0 25.74 0.85 1.05 100 

1 72.52 17.26 59.49 8.49 16.13 1.62 2.01 62.67 

3 74.38 15.14 58.93 9.46 15.46 1.23 1.53 60.05 

5 75.13 21.28 59.46 11.55 11.71 1.10 1.37 45.48 

Reactive 

Blue 49 

Control 12.11 -5.45 -13.01 0 29.68 0.52 0.65 100 

1 15.02 -4.55 -12.88 3.04 25.6 0.95 1.18 86.26 

3 15.95 -4.87 -12.19 3.96 24.78 1.09 1.35 83.49 

5 16.41 -3.95 -11.78 4.71 18.69 1.32 1.64 62.99 
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The Commission Internationale de l’Eclairage (CIE) Lab system was used to determine the 

color parameters and color variation, where L* indicates the darkness–lightness value with 0 

to 100 representing black to white, the a* value goes from negative (green) to positive (red), 

and the b* value goes from negative (blue) to positive (yellow); ∆E gives the total color 

difference. High L* values indicate that the dyed coated sample was lighter than the uncoated 

sample. Reactive Blue 49 dye showed lower L* values (Table 6) than Reactive Red 240 or 

Reactive Yellow 95. However, the L* value increased with increasing cellulose concentration, 

meaning that all the coated samples were brighter compared with uncoated cotton fabric. The 

color difference values (∆E) are presented in Table 6, showing that there was a significant color 

difference between the uncoated and coated cotton fabric samples with different cellulose 

concentrations, even though both samples were dyed with the same dye concentration. The ∆E 

values for the samples dyed with Reactive Blue 49 were better than for the other two dyes used 

for dyeing. Hence, Reactive Blue 49 showed better dyeability of coated cotton fabric compared 

with Reactive Red 240 or Reactive Yellow 95. ∆E for Reactive Blue 49 dyed samples are better 

than other two dyes which was used for dyeing. Hence the Reactive Blue 49 has better 

dyeability to coated cotton fabric as compare to Reactive Red 240 and Reactive Yellow 95. 

 

5.12 Evaluation of fastness properties 

During the use of textiles, they are frequently put through washing, rubbing & perspiration, 

therefore durability of coated cotton fabric to these conditions is very important and that's why 

it was evaluated and given in Table 7. Washing and rubbing fastness was evaluated for all the 

three types of dyed fabric. Washing fastness of cellulose coated cotton fabric for staining with 

adjacent fabrics (wool and cotton) for all dyed fabrics are excellent (4–5) & for change in color 

are also fine (2-3). Ratings against rubbing for cellulose coated cotton fabrics are good, 4 at 

dry rubbing and 3 at wet rubbing conditions. Thus, there is no significant impact of cellulose 

coating on washing and rubbing fastness properties of cotton fabric. Perspiration fastness at 

acidic & alkaline condition in terms of gray scale ratings for cellulose coated and uncoated 

samples are given in Table 8. The gray scale ratings in the case of cellulose coated dyed samples 

for change in color are 2-3 at both acidic and alkaline, that means dyed samples are sensitive 

towards pH.  Rating 4-5 for staining with wool as adjacent fabrics are excellent and with cotton 

as adjacent fabric are also good. Perspiration fastness was observed for all three kind of dyed 

samples and almost ratings are similar to all dyed samples. Hence the perspiration fastness after 

coating cellulose on the surface of cotton fabric remain good. 
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Table 7. Washing and Rubbing Fastness properties assessment of dyed samples 

Dye 
Content 
[% owf] 

Dye 
Cellulose 

Content [%] 

Wash Fastness Rubbing Fastness 

Evaluation of 

change in color 

Evaluation of staining Evaluation of staining 

Cotton Wool Dry Wet 

3 

Reactive Red 240 

Control 2-3 4-5 4-5 4-5 3-4 

1 2-3 4-5 4-5 4-5 3-4 

3 2-3 4-5 4-5 4-5 3-4 

5 2-3 4-5 4-5 4-5 3 

Reactive Yellow 95 

Control 2-3 4-5 4-5 4-5 3-4 

1 2-3 4-5 4-5 4-5 3-4 

3 2-3 4-5 4-5 4-5 3-4 

5 2-3 4-5 4-5 4-5 3 

Reactive Blue 49 

Control 2-3 4-5 4-5 4-5 3-4 

1 2-3 4-5 4-5 4-5 3-4 

3 2-3 4-5 4-5 4-5 3-4 

5 2-3 4-5 4-5 4-5 3 

9 

Reactive Red 240 

Control 2-3 4-5 4-5 4-5 3-4 

1 2-3 4-5 4-5 4-5 3-4 

3 2-3 4-5 4-5 4-5 3-4 

5 2 4-5 4-5 4-5 3 

Reactive Yellow 95 

Control 2-3 4-5 4-5 4-5 3-4 

1 2-3 4-5 4-5 4-5 3-4 

3 2-3 4-5 4-5 4-5 3-4 

5 2 4-5 4-5 4-5 3 

Reactive Blue 49 

Control 2-3 4-5 4-5 4-5 3-4 

1 2-3 4-5 4-5 4-5 3-4 

3 2-3 4-5 4-5 4-5 3-4 

5 2 4-5 4-5 4-5 3 

15 

Reactive Red 240 

 

Control 2-3 4-5 4-5 4 3-4 

1 2-3 4-5 4-5 4 3-4 

3 2 4-5 4-5 4 3 

5 2 4-5 4-5 3-4 3 

Reactive Yellow 95 

Control 2-3 4-5 4-5 4 3-4 

1 2-3 4-5 4-5 4 3-4 

3 2-3 4-5 4-5 4 3 

5 2 4-5 4-5 3-4 3 

Reactive Blue 49 

Control 2-3 4-5 4-5 4 3-4 

1 2-3 4-5 4-5 4 3-4 

3 2-3 4-5 4-5 4 3 

5 2 4-5 4-5 3-4 3 
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Table 8. Perspiration Fastness assessment of dyed samples 

Dye Content 
[% owf ] 

Dye 
Cellulose 

Content [%] 

Perspiration Fastness 

Evaluation of change in 

color 
Evaluation of staining 

Acidic Alkaline 

Acidic Alkaline 

With 

wool 

With 

cotton 

With 

wool 

With 

cotton 

3 

Reactive Red 240 

 

Control 2-3 2-3 4-5 4-5 4-5 3-4 

1 2-3 2-3 4-5 4-5 4-5 3-4 

3 2-3 2-3 4-5 4-5 4-5 3-4 

5 2-3 2-3 4-5 4-5 4-5 3-4 

Reactive Yellow 95 

Control 2-3 2-3 4-5 4-5 4-5 3-4 

1 2-3 2-3 4-5 4-5 4-5 3-4 

3 2-3 2-3 4-5 4-5 4-5 3-4 

5 2-3 2-3 4-5 4-5 4-5 3-4 

Reactive Blue 49 

Control 2-3 2-3 4-5 4-5 4-5 3-4 

1 2-3 2-3 4-5 4-5 4-5 3-4 

3 2-3 2-3 4-5 4-5 4-5 3-4 

5 2-3 2-3 4-5 4-5 4-5 3-4 

9 

Reactive Red 240 

 

Control 2-3 2-3 4-5 3-4 4-5 3-4 

1 2-3 2-3 4-5 3-4 4-5 3-4 

3 2-3 2-3 4-5 3-4 4-5 3-4 

5 2-3 2-3 4-5 3-4 4-5 3-4 

Reactive Yellow 95 

Control 2-3 2-3 4-5 3-4 4-5 3-4 

1 2-3 2-3 4-5 3-4 4-5 3-4 

3 2-3 2-3 4-5 3-4 4-5 3-4 

5 2-3 2-3 4-5 3-4 4-5 3-4 

Reactive Blue 49 

Control 2-3 2-3 4-5 3-4 4-5 3-4 

1 2-3 2-3 4-5 3-4 4-5 3-4 

3 2-3 2-3 4-5 3-4 4-5 3-4 

5 2-3 2-3 4-5 3-4 4-5 3 

15 

Reactive Red 

240 

Control 2-3 2-3 4-5 3-4 4-5 3-4 

1 2-3 2-3 4-5 3-4 4-5 3-4 

3 2-3 2-3 4-5 3-4 4-5 3-4 

5 2-3 2-3 4-5 3-4 4-5 3 

Reactive Yellow 95 

Control 2-3 2-3 4-5 3-4 4-5 3-4 

1 2-3 2-3 4-5 3-4 4-5 3-4 

3 2-3 2-3 4-5 3-4 4-5 3 

5 2-3 2-3 4-5 3-4 4-5 3 

Reactive Blue 49 

Control 2-3 2-3 4-5 3-4 4-5 3-4 

1 2-3 2-3 4-5 3-4 4-5 3-4 

3 2-3 2-3 4-5 3-4 4-5 3 

5 2-3 2-3 4-5 3-4 4 3 
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4.13 Mechanical properties 

Breaking strength of cotton and cellulose-TiO2 coated fabric was measured on Testometric 

M250 - 2.5 instrument. Breaking strength of coated and the uncoated cotton fabric is shown in 

figure 47.  It is clear from figure 47 that the tensile strength increased after coating of cellulose-

TiO2 on the surface of the cotton fabric. The breaking strength of cellulose-TiO2 coated fabric 

is increased by 65-83 N. The strength of coated fabric was increased because coated cellulose 

attaches on the surface in the form of thin layer and this attached cellulose provides additional 

strength to cotton fabric. Tensile strength was not decreased even though strong solvent was 

used for coating because while coating solvent does not interact strongly with cotton cellulose 

and was confirmed by analyzing X-ray diffraction patterns of solvent treated cotton fabric. 

Table 9 shows modulus and % elogation of coated and uncoated cotton fabric. Rresults show 

that modulus and elongation increases after cellulose coating. It also confirms that only 

cellulose coating increases the strength, elongation and modulus of cotton fabric. Hence the 

added strength due to cellulose made the fibrous material withstand more load with increase in 

elongation.  
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Figure 47. Breaking strength of control, Solvent treated (Sol. Treat.) and coated cotton 

fabrics. 
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Table 9. Mechanical properties 

Sample description Modulus (E) [Mpa] Elongation [%] 

Control 121.73 6.23 

Solvent treated 121.37 7.33 

Only cellulose coated 141.18 8.19 

1% TiO2 coated 142.17 8.23 

3% TiO2 coated 140.03 7.99 

5% TiO2 coated 137.83 7.40 

10 % TiO2 coated 140.27 8.39 
 

5.14 Air and water vapor permeability  

Air and water vapor permeability are the important comfort properties of textiles. It is necessary 

to analyze the effect of coating on comfort properties of textiles. Figure 48 shows the effect of 

cellulose coating on air (figure 48 (a)) and water vapor permeability (figure 48 (b)) of the cotton 

fabric. 

 
Figure 48. (a) Effect of cellulose-TiO2 coating on air permeability of cotton fabric 
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Figure 48. (b) Effect of cellulose coating on water vapor permeability of cotton fabric 

Air permeability of cotton fabric was decreased by 32.5 to 56.1 l/m2/s. However, there was no 

significant deterioration of air permeability. Water vapor permeability was also slightly 

decreased (3.94 %) but is acceptable. 10% TiO2 showed lower air and water vapor permeability 

as compared to other samples. Cellulose forms a thin film on the surface of the cotton fabric 

and covers the space between two yarns, which is the main cause that permeability was 

decreased slightly after cellulose coating. From the results, it can be concluded that there is no 

significant drop in both air and water vapor permeability after cellulose-TiO2 coating on the 

surface of the cotton fabric. 

 

  

Control cell. coat. 1%TiO2 3%TiO2 5%TiO2 10%TiO2
70

75

80

85

W
at

er
 V

ap
or

 P
er

m
ea

bi
lit

y 
[ %

 ]



Multifunctional Cotton Fabric with Nano TiO2 Loaded Cellulose 

73 
 

CHAPTER 6 
CONCLUSIONS  

This study has produced new route to make cotton fabric self-cleaning, antibacterial, antifungal 

and highly stiff. Cellulose-TiO2 nanoparticles were coated on the surface of cotton fabric by 

using roller padding. Novel method was developed for quantification of cellulose fractions by 

simulating X-ray diffraction patterns to investigate the effect of strong solvent during coating 

on cotton fabric. Degradation of Orange II dye under UV light was evaluated by using “Image 

J” software. Effect of cellulose coating on dyeing, color fastness, perspiration fasness, rubbing 

fastness and washing fastness was studied by using three reactive dyes. Antibacterial activity 

was analysed with four different bacterias such as Escherichia coli, Klebsiella pneumonia, 

Staphylococcus aureus and Methicillin resistant staphylococcus aureus. The following findings 

were drawn from the results; 

 
6.1 SEM and X-ray diffraction 

Surface morphology showed that coated cellulose is attached to cotton fibres and this is due to 

interchain linkage between coated cellulose molecules and cotton fabric cellulose molecules of 

cotton fabric by intermolecular hydrogen bonding. Since both the molecules are same and both 

have hydrogen bonding, it is difficult to prove by using spectroscopic measurements. However, 

SEM pictures and washing study confirms that coated cellulose is strongly attached to cotton 

fabric. Coated cellulose forms thin film on the surface of cotton fabric and it holds the TiO2 

nanoparticles. Presence of characteristic peak of TiO2 at 25.4° in x-ray diffraction pattern of 

cellulose-TiO2 coated cotton fabric confirms successful coating process. Since strong solvent 

is used for this study, the effect of solvent on cotton fabric has been studied by developing 

simulation model based on X-ray diffraction patterns. According to simulation amount of 

cellulose II was increased slightly after solvent treatment.  

 
6.2 Photocatalytic Self-cleaning  

Degradation of orange II dye was increased with increasing TiO2 concentration and irradiation 

time. Wine stain degradation evaluation proved that cotton fabric coated TiO2 and cellulose is 

capable for self-cleaning. The samples coated with 1, 3and 5% TiO2 were stable against 

washing up to 10 washing cyclesfor both self-cleaning and stiffness properties. However, 10% 

TiO2 coated sample does not show similar stability against washing dueto poor dispersion of 
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TiO2 in cellulose solution. We, therefore claim that cellulose-TiO2 coating makes cotton fabric 

self-cleaning.  

 
6.3 Stiffness 

Dissolved cellulose can be coated on cotton fabric to improve its stiffness permanently. 

Stiffness of cellulose coated cotton fabric increased with increasing cellulose concentration. 

Only coated cellulose is responsible to increase stiffness so there is no effect of TiO2 on 

stiffness of cotton fabric. Stiffness of cotton fabric can be controlled by changing cellulose 

concentration while coating according to requirement. The washing study confirmed that the 

stiffness of the cellulose-coated cotton fabric was permanent. 

 
6.4 Antibacterial and Antifungal activity 

Samples coated with TiO2 showed significant reduction of Staphylococcus aureus and 

Methicillin-resistant Staphylococcus aureus bacteria under UV light. Samples coated with 

more than 3% TiO2 showed strongest inhibition efficiency against these bacteria’s. Antifungal 

testing results showed that the photo-catalytic activity of titanium dioxide nanoparticles allows 

a disinfection of cotton fabric from fungal colonization. The antibacterial, self-cleaning, and 

antifungal properties of coated samples were increased with increasing amount of titanium 

dioxide. Therefore, we claim that Nano TiO2-cellulose coating makes cotton fabric self-

cleaning, antibacterial and antifungal.    

 

6.5 Mechanical and comfort Properties 

Coated cellulose provides additional strength to cotton fabric and hence tensile strength 

increased significantly after cellulose coating on the surface of cotton fabric. The comfort 

properties like air and water vapour permeability were hardly affected.  

 
6.6 Dyeing  

Reactive Blue 49 dye showed better dyeability towards the coated cotton fabric compared with 

Reactive Red 240 or Reactive Yellow 95 dye. However, the decrease in the K/S values indicates 

that cellulose coating decreased the dye uptake by the fabric. The L* value increased in the 

case of cellulose-coated samples, meaning that cellulose coating increased the lightness of the 

cotton fabric. The fastness properties of both control and coated cotton fabrics against washing, 

rubbing, and perspiration were similar and good. 
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CHAPTER 7 
APPLICATIONS AND FUTURE WORK 

7.0. Prologue 

After the success of this coating method, it has opened new doors to coat nanoparticles on the 

surface of cotton fabric for various applications such as flame retardant, thermoregulatory, 

antifungal, antibacterial, self-cleaning etc. This chapter introduces to the reader the proposed 

application of cellulose-TiO2 nanoparticles coated cotton fabric. 

 
7.1 Self-cleaning applications  

This coating method can be commercialised to make cotton fabric self-cleaning. This method 

can be used in suiting, shirting, women wear etc. kind of garments for self-cleaning. The 

limitation of this method is, it need UV light to work as a self-cleaning and antibacterial. 

However, it works under normal light for antifungal application. 

 

   
              

Figure 49. Cellulose-TiO2 coated cotton fabric self-cleaning applications 

 
7.2 Stiffness application 

This method easily can replace traditional starching method to make cotton fabric stiff 

permanently. Materials used for this method are not very expensive that is why this method is 

quite feasible and easy to commercialise. Cellulose coated cotton fabric can be used in 

garments such as mens’s shirts, collar, sleevs, girls peticoates, ruffels. Some examples of 

application are shown in figure 50. 
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Figure 50. Stiff fabric applications. 

            

7.3 Antibacterial and antifungal 

Cellulose-TiO2 coated cotton fabric could be used for antibacterial and antifungal applications. 

Figure 51 shows some example of antibacterial and antifungal application. This coated fabric 

can be used in bed sheets, towel, undergarments products.  
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Figure 51. Antibacterial and antifungal applicatios of cellulose-TiO2 coated cotton fabric. 

 

7.4 Future work 

This work has endeavored to introduce new route to coat functional nanoparticles with 

cellulose on cotton fabric to the scientific community. Due to the scope of the task, the 

following is recommended for follow-up work.  

1. Coating of Nano-clay with cellulose for fire retardant application.  

2. Coating of copper nanoparticles for antimicrobial application.  

3. Investigation the durability of cellulose-TiO2 coated cotton fabric against UV light.  

4. Investigation of superoxide radicals effect on mechanical properties of cotton fabric. 
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