ACC JOURNAL 2015, Volume 21, Issue 1 DOI: 10.15240/tul/004/2015-1-007

SYNTHESIS OF CONTROL SIGNAL FOR HYDRAULIC HEXAPOD

Vojtéch Kloucek
Center of Engineering Research Development, VUTS, a.s., Design of Machinery,
Svarovska 619, Liberec XI - Rizodol I, 460 01 Liberec, Czech Republic
e-mail: vojtech.kloucek@vuts.cz

Abstract

The article describes the hexapod with six linear hydraulic motors and six degrees of freedom.
The hexapod consists of a rigid base plate, movable platform and six linear hydraulic motors,
which are joined to the base plate and the movable platform by ball joints. In the first part of
the article hexapod kinematics is resolved by using matrix methods of investigation of spatial
multibody systems. The hexapod is used for the laboratory vibration excitation equivalent to
the vibration measured with accelerometers in the real part operation. The second part of the
article describes the synthesis of the control signal from the values measured by
accelerometers. The computation routines of the synthesis are programmed in Maple
interface.

Introduction

The object of study is a laboratory hydraulic hexapod used for dynamic testing of mechanical
components [1], [2] and subassemblies, e.g. car seats (Fig. 1). Dimensions of hexapod
described herein are known from drawing documentation.
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Source: a) Own using the CAD software, b) http://cxi.tul.cz/aktuality/aktualni-info-od-nas/B_Hexapod.JPG
Fig. 1: a) schematic CAD model of the hexapod, b) the hexapod with a car seat

The essence of the experiments performed on the hexapod is mounting an investigated object
to the movable platform and excite the desired movement or vibration by hydraulic motors of
the hexapod. Each experiment should simulate the real operation conditions of components as
precisely as possible. Therefore the desired movement is measured in the real operation by
accelerometers.

63


mailto:vojtech.kloucek@vuts.cz

64

Therefore the aim of the work is accelerometers’ signals conversion to control signals for
hydraulic motors of the hexapod. Since what is done is a processing of large amounts of
measured data, it requires the conversion to be simple and fast.

1 A description of the hexapod

The hexapod consists of the base plate, movable platform and six hydraulic linear motors,
which are joined to the base plate and platform by ball joints. The body of each hydraulic
motor is fixed against a rotary motion around its longitudinal axis. The movable platform has
six degrees of freedom towards the base plate [3]. There are two coordinate systems on the

hexapod: Fixed ones a:AXx,Y,z, (rigid fixed with the base plate) and movable ones

b:BX, Y,z (rigidly fixed with the movable platform). At a default position of the platform

both of the coordinate systems coincide and are at the middle point of the platform’s upper
surface (Fig. 2).

a) b)
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Source: Own using the CAD software

Fig. 2: a) hexapod at default position, b) hexapod at general position

2 Coordinate systems transformation

The hydro motors are numbered 1 to 6, ball joints on the base plate A, to Ay, ball joints on

the movable platform B, to B, (in Fig.1 only joints B, and B;) are identified. Augmented
radius vectors of the arbitrary point Q in the coordinate systems a and b during motion
b:a are constrained by the transformation equation

o= Tab Mo (1)

where r,, is the augmented position vector of point Q in the coordinate system a, r,, is the

augmented position vector of point Q in the coordinate system b and T, is a transformation
matrix of motion b:a.



Augmented radius vectors of joints A, i=1..6 in the coordinate system a and joints

B, i=1..6 in the coordinate system b are known from the dimensions of the hexapod and
they are

Ugapi Upgi
Faai :{ ;_A}l Mg :{ ;B}' uaAi:[XaAi’yaAi'ZaAi]T’ Up; :[XbBi’bei'ZbBi]T' )

Transformation matrix during general motion b:a is
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where S, is a directional cosines matrix and u,, radius vector of point B in the coordinate
system a.

3 Kinematic solution

Each hydraulic motor has a default length L, . The piston stroke of i -th hydraulic motor from
the default position is z,. The current length of the i -th hydraulic motor (distance of joints A,
and B))is L,+z, i=1..6.

There are six conditions for the current lengths of hydraulic motors in the arbitrary position
[3] of the movable platform

|Upgi —Upni| =L+ 2, 1=1..6. (4)

Using a scalar product for determination of the vector length, it is possible to convert (4) to
the equation

(uaBi_uaAi)(uaBi_uaAi)z(L0+Zi)2’ i=1..6. (5)

It applies for the augmented radius vectors B, in the coordinate system a the transformation

equation (1)
ua i Sa ua u i
i:TabrbBi:|: 18}:{013 f}[ ;B}- (6)

The physical meaning of variable (L0 + zi) (current length of i-th hydraulic motor) enforces

raB

a condition L,+z, >0. Since the left hand side of (5) is a sum of second powers, it holds that
(Uugi —Uas )- (U —Ugy ) > 0. The piston stroke of the i -th hydraulic motor therefore is

Z; =\/(uaBi _uaAi)(uaBi _uaAi) L. (7)



If the transformation matrix components are known, solving of hydraulic motors’ piston
strokes is easy.

4 Solving of transformation matrix components

The task is based in such a way that it is necessary to compute the components of the
transformation matrix from the measured signals of accelerometers (known radius vectors of
n points, where n is the number of triaxial accelerometers used). Since accelerometers’
signals are composed of the acceleration values in three mutually perpendicular directions, it
is necessary first to convert these values to the position values.

Let there be a coordinate system in the space of the studied body so that after mounting the
body to the hexapod movable platform the coordinate system coincides with the coordinate
system b. Let there be n triaxial accelerometers on the studied body so that the
accelerometers' axes are parallel with the axes of the coordinate system b and they do not lie
on the straight line. The augmented radius vector of j-th accelerometer in the coordinate

system b is known and it is

U\ T )
I‘ij =|: ;_ij|, Uij =|:Xij’ bej’ Zij} v =1..n. (8)

The coordinate systems a and b are chosen so that they coincide in the default position of
the movable platform. Let the components of the converted signal of j -th accelerometer be

X;, ¥;, Z;- The augmented radius vectors of the accelerometers in the coordinate system a are

Uy _
raM,-:{ ;-MJ}, Uasg = Xows + X Yoy + Y Zewg +2; |+ J =11, (9)

For the radius vectors of accelerometers the transformation equation (1) also applies, therefore
Fovi = Voo e J =101 (10)

4.1 Solving transformation matrix components using three accelerometers

The position of the body in the 3D space is definitely determined by the coordinates of its
three points which do not lie in a straight line. Of these nine coordinates only six are
independent because the assumption of a rigid body implies three conditions of constant
mutual distances of these points.

When using three accelerometers, it is n=3. We have nine available signal components
X;» ¥: Z;, J=1..n. Of these only six components are independent, e.9. X, ¥;, Z;, Y,, Z;, Z;. By

using (10) we get a system of six linear equations for twelve unknown transformation matrix
components a;, &, i, j =1..3 for each recorded time point.

Directional cosines matrix S, contains in columns the coordinates of unit directional vectors

of the coordinate system’s b axes in the coordinate system a. Let we denote these vectors
b,, b,, b,, where

bx:[all'aZI’aSI]T’ by:[a12’a22’a32]T' bz:[aialazs’aaa]T- (11)



Any two of these vectors have to be perpendicular and the length of each of them is 1, which
can be expressed by using scalar products

bb,=0, bb,=0, bb =0, bb =1 bb =1 bb,=1. (12)

For calculations of transformation matrix components it is necessary to solve the system of
twelve equations for twelve unknowns. The equation system consists of six linear equations
obtained from (10) and six non-linear equations (12).

The solution of this equation system is necessary to be done for each time point of the
measured accelerometers’ signals. As it is a system of non-linear equations, it is possible to
solve it by using the appropriate iterative method. However, with the high number of the
measured values, this task is time consuming and demanding on computer capacity.

4.2 Solving transformation matrix components using four accelerometers

When using four accelerometers, it is n=4. We have twelve available signal components
X;,Y;» Z;, j=1..n . Six of them are independent again. If we assume that the studied body is

ideally rigid and accelerometers are ideally fixed to the body, the components of these signals
comply with six conditions for the constant distances between the accelerometers. These six
conditions are equivalent with the equations (12), because they represent the fact that the
studied body is rigid and thus the movable coordinate system remains orthonormal.

If we substitute the measured values to equation (10) and if we use all twelve components of
the accelerometer signals, we obtain a system of twelve linear equations for twelve unknown
components of the transformation matrix (3).

We will write this system in a matrix form

M, x=p, (13)

where My is a matrix of the equation system (square, 12th order), X vector of unknowns,
and p vector of right hand sides.

The matrix Mg contains components of vectors u,,, vector X contains twelve unknown
transformation matrix components, and vector p contains components of vectors u,,, .

The system (13) has just one solution if and only if the determinant of the matrix of equation
system Dg =|M|=0 . If this condition is accomplished, then the equation system is easy to

solve, e.g. by using Gauss elimination or matrix inverse, because the matrix Mg contains
many zero components.

It applies the theorem Dg =0 if and only if the accelerometers 1 to 4 do not lie in a plane. We

will prove this theorem. Let there be three vectors with the start point in the location of the
accelerometer 1 and end points in the locations of the accelerometers 2, 3, 4. The components

of these vectors will be put into columns of matrix M, , so that

Mv :[ubMZ_ule’ubM3_ubM1'ubM4_ubM1]' (14)



Determinant of matrix M, we denote D, =|MV|. By direct calculation of the determinants
D and D, it is possible to verify the equality

D, = D\? : (15)

The condition Dg #0 is true if and only if the determinant D, # 0, which results from the

equality (15). A determinant is nonzero if and only if all its columns are linearly independent,
which occurs only if the accelerometers 1 to 4 do not lie on a plane. This condition is
necessary and sufficient. The proof is finished.

Conclusion

In this paper we explored kinematics of the hydraulic hexapod with six degrees of freedom.
Furthermore, the method of conversion of the transformation matrix components to strokes of
hexapod hydraulic motors was proposed. For a simulation of motion, measured in a real
operation using accelerometers, it is necessary to convert the measured data to the
transformation matrix components at each time. There are two methods deduced: When using
three accelerometers and when using four accelerometers. It was mathematically deduced that
while using four accelerometers, the conversion is significantly faster and easier.
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SYNTEZA RIDICIHO SIGNALU PRO HYDRAULICKY HEXAPOD

Clanek popisuje hexapod se Sesti linedrnimi hydromotory a Sesti stupni volnosti. Tento
hexapod se sklada z tuhé zakladni desky, pohyblivé ploSiny a Sesti linearnich hydromotorti,
které jsou pfipojeny k zékladni desce a pohyblivé plosiné pomoci kulovych ¢epl. V prvni
Casti Clanku je feSena kinematika hexapodu za vyuziti maticovych metod zkoumani
prostorovych vazanych mechanickych systémt. Hexapod je pouzivan pro laboratorni
vybuzeni vibraci, které jsou ekvivalentni vibracim naméfenym pomoci akcelerometrt
V realném provozu. Druha cast ¢lanku popisuje syntézu fidiciho signalu z hodnot namétenych
akcelerometry. Vypoctové algoritmy syntézy jsou naprogramovany v prostiedi software
Maple.

SYNTHESE DES STEUERSIGNALS FUR EINEN HYDRAULISCHEN HEXAPOD

Dieser Artikel beschreibt eine Hexapod-Einrichtung mit sechs Linearmotoren und sechs
Freiheitsgraden. Der Hexapod besteht aus einer starren Grundplatte, einer beweglichen
Plattform und sechs linearen otoren, die mit der Grundplatte und der mobilen Plattform
mittels Kugelbolzen verbunden sind. Im ersten Teil des Artikels wird die Kinematik des
Hexapods mit Hilfe von Matrix-Methoden zur Untersuchung von Mehrkdrpersystemen
untersucht. Der Hexapod wird im Labor zur Anregung von Schwingungen genutzt, die
dquivalent zu den im realen Betrieb mit Hilfe des Beschleunigungsmessers gemessenen
Vibrationen sind. Der zweite Teil des Textes beschreibt die Synthese des Steuersignals aus
den von Beschleunigungsmessern gemessenen Werten. Die Synthese-Algorithmen sind in
Software Maple programmiert.

SYNTEZA SYGNALU STEROWANIA DLA HYDRAULICZNEGO SZESCIONOGA

Artykut opisuje sze$ciondg z szeScioma liniowymi silnikami hydraulicznymi i sze$cioma
stopniami swobody. Szesciondg sklada si¢ ze sztywnej ptyty gtdwnej, ruchomej platformy
i szeSciu liniowych silnikow hydraulicznych, ktore sg potaczone z ptyta gtdéwng i ruchomg
platforma za pomoca sworzni kulistych. W pierwszej czeSci artykutu przedstawiono
kinematyke sze$cionoga stosujac macierzowe metody badania przestrzennych mechanicznych
systemOw wieloobiektowych. Sze$ciondg wykorzystywany jest do laboratoryjnego
wywotywania drgan, ktore odpowiadaja wibracjom namierzonym przy pomocy
akcelerometréw w rzeczywistym $wiecie. Druga cze$¢ artykulu opisuje synteze sygnatu
sterujacego z wartosci namierzonych przez akcelerometry. Algorytmy obliczeniowe syntezy
zaprogramowano w oprogramowaniu Maple.



