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Vedoućı práce: Ing. Josef Novák, Ph.D.

Liberec 2017



Declaration

I hereby certify that I have been informed that Act 121/2000, the
Copyright Act of the Czech Republic, namely Section 60, School-
work, applies to my dissertation in full scope. I acknowledge that
the Technical University of Liberec (TUL) does not infringe my
copyrights by using my dissertation for TUL’s internal purposes.

I am aware of my obligation to inform TUL on having used or
licensed to use my dissertation in which event TUL may require
compensation of costs incurred in creating the work at up to their
actual amount.

I have written my dissertation myself using literature listed therein
and consulting it with my supervisor and my tutor.

I hereby also declare that the hard copy of my dissertation is iden-
tical with its electronic form as saved at the IS STAG portal.

Date:

Signature:



Abstract

The study Automated anomaly detection in geophysical survey is
the application of machine learning and computer vision techniques
to the geophysical data. The two main applications were tested
during the research. The research is mainly focused on the surface
geophysics. The fast scanning of an area for an appearance of a set
of predefined anomalies is the main focus of the thesis. The research
was applied to potential fields. Three types of detection were tested:
image processing techniques, the supported machine learning with
classifiers and adaptive neural networks. The second application
mentioned in the thesis is the application of the research results
to a continuous monitoring process. The structure of the object is
known and all the significant temporal changes in the data are to
be detected and interpreted. The thesis gives a summary of the
state of the research on the selected topic. It includes a proposal
of the algorithms and it summarizes the achieved results.

Keywords: Geophysics, Potenital fields, Seismics, Computer Vi-
sion, Machine Learning

Abstrakt

Práce nazvaná Automatická detekce anomálíı při geofyzikálńım
pr̊uzkmu je aplikaćı metod strojového učeńı a poč́ıtačového viděńı
v oblasti zpacováńı gyofyzikálńıch data. Během výzkumu byly
testovány dvě možné aplikace. Výzkum je zaměřen hlavně
na pr̊uzkum oblasti bĺızko povrchu s ćılem detekovat výskyt
předem definovaných anomálíı. Výzkum byl aplikován v oblasti
potenciálových poĺı, testovány byly tři možné typy detekce:
poč́ıtačové viděńı, metody asistovaného učeńı s klasifikátory a adap-
tivńı neuronové śıtě. Druhou aplikaćı výzkumu zmiňovanou v práci
byla aplikace výsledk̊u výkumu na pr̊uběžné monitorováńı. Struk-
tura monitorovaného objektu je známa a jakékoliv významné změny
v datech muśı být detekovány a interpretovány. Práce poskytuje
shrnut́ı stávaj́ıćıho výzkumu ve zvolených oblastech, návrh algo-
ritmů a shrnuje výsledky výzkumu.

Kĺıčová slova: Geofyzika, Potenciálová pole, Seismika, Poč́ıtačové
viděńı, Strojové učeńı
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1 Aims of the Thesis

Any geophysical survey ends up with a set of data describing the properties of the
materials hidden under the Earth surface. The acquired data set has to be analyzed
and interpreted; such complex process requires specialist with knowledge of the
geophysical theory as well as with a lot of practical experience. In general, such
process cannot be replaced by any automated software in general. But subtasks
can be defined where the automated or semi-automated data preprocessing can
be helpful and useful. The main objective of the presented work is the research
and development of algorithms dedicated to semi-automated interpretation of the
geophysical data.

The work was originally inspired by the idea to speed up the recovery operation
after a disaster such as flooding or an earthquake. In the case of disease and recovery
operation, it is necessary to detect the cavities or other contrast bodies under the
surface. The fast detection of buried infrastructure networks such as electricity or
gas pipes is also very important. After a disaster another danger situation can occur:
the area can be endangered by landslides, the stability of dams can be impaired.
Such structures can be detected using geophysical methodology. Of course - the
geophysical survey and data interpretation requires a fully qualified specialist and
rescue team members typically have no experience with geophysics at all.

Geophysical survey can help to scan subsurface in such situation, but it is
necessary to preselect the method and predefine the methodology. The members of
the rescue team cannot directly use the geophysical measuring equipment without
any training. They should be trained for a defined set of predefined data acquir-
ing procedures with preselected methodology and tools. Regardless of the selected
methodology the acquired data must be interpreted. Such knowledge is far behind
the capabilities of the professional rescuers. Fortunately the fast scan of the near
surface concentrated to find significant predefined anomalies in the affected area does
not require to define a detailed model of the subsurface. During the fast scan of the
area, several typical questions have to be answered, such as what is the probability
of appearance of this anomaly in selected area. It means that a semi automated fast
scan of the data might be done in situ before the fully qualified data interpretation
to speed up the whole process.

So before any special methodology for the rescue team is selected or any special
equipment designed, the question is if the semiautomated data preanalysis is ap-
plicable. The first part of this thesis is dedicated to proposal and test of such fast
scanner. The work is focused to the potential field data with special focus to the
gravity data. Several types of hidden bodies were preselected and synthetical data
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sets were created. To detect the anomaly structure in the data, computer vision
techniques were used at first do detect the anomaly presence in the data. Noise
tolerance was tested as well with several noise models. The original data set was
sampled, thresholded, converted to sets of black and white images and scanned for
structures which typically appear in the data if anomaly body is presented under the
surface. The position of the structures and its size and shape were used to estimate
the anomaly type and its parameters.

For an initial study of the fast scan algorithm were selected the methods based
on potential field models (gravity, electrical polarization). The second part of the
work presents another study focused to application of fast scan algorithms to the
process of the nuclear waste repository monitoring. In the case of disposal, the
key issue is a very long term monitoring of the conditions of the repository. When
suitable monitoring process is still the question of the research, the geophysical
methods in general should be taken in focus. In general, geophysics offers non-
invasive monitoring methods of the physical processes running in the repository.
Regardless of the finally selected methodology and monitoring procedure, the data
interpretation means to detect significant temporal changes or anomaly in the data.
Machine learning methods and structure detection algorithms can be used as a useful
support method for the classical geophysical data interpretation. The algorithm
designed for the potential field data was updated for the seismical models of the
repository.

Regardless of the monitoring technology, the physical conditions in the repository
such as water saturation or temperature should either remain unchanged or change
in a known manner. If any difference in monitored data is captured, it is necessary to
identify the cause of the change. Physical parameters in the repository can slightly
oscillate around the equilibrium, which can be understood as a normal behaviour,
or they can more dramatically increase/decrease. Such situation can be sign of a
problem in the repository – for example the surrounding barrier may be corrupted
and safety of the repository can be endangered.

The repository itself is strictly defined – it is a structure with defined and well
known geometry, with stable homogeneous surrounding. It is possible to start pre
monitoring to get the stable data stream as a reference training set. The other
training set of the data can be a set of models of anomaly data which correspond
to predefined problems occurring in the repository (increasing temperature over the
prediction, modified water saturation, modified geometry etc.). The task is to scan
in the data for any similarity with predefined anomaly situations.

The following chapters of the presented work summarize step by step the design
of the algorithm and the tests. In all the experiments were used the synthetical data
as the work is a first part of the research. The main aim of the thesis was to study
the computer vision and machine learning techniques and test its aplicability in the
geophysical data processing context. The chapter Detailed Task Definition describes,
how the anomalies were modelled and what types of data were selected. Initial part
of the Chapter Anomaly detection implementation stands for the current state of art
review for all the technologies used in the research. The chapter shortly summarizes
the current applications of the machine learning techniques in the geophysical data
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processing and also shortly describes the algorithm used for the feature extractions
and machine learning techniques. The chapter The Achievements gives a description
of all proposed algorithms and obtained results. The main focus is on the potential
field data, the data sets for the nuclear waste repository model are kept as an
illustration of another algorithm application.

The adaptation of the algorithm and all the tests for the seismical data were
realized with the support of the Modern2020 project1 (Work package 3, Task 3.5).
This project has received funding from the Euratom research and training pro-
gramme 2014-2018 under grant agreement No 662177. The overall objective of the
Modern2020 Project is to provide the means for developing and implementing an
effective and efficient repository operational monitoring programme, that will be
driven by safety case needs, and that will take into account the requirements of
specific national contexts (including inventory, host rocks, repository concepts and
regulations, all of which differ between Member States) and public stakeholder ex-
pectations (particularly those of local public stakeholders at (potential) disposal
sites).

1http://www.modern2020.eu
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2 Detailed Task Definition

2.1 Near surface fast scan

Gravity anomaly is a deviation of observed gravity from gravity predicted for the
location from a model of Earth gravity field. The gravity is usually measured in the
units of acceleration. The gravity anomaly value is typically smaller than values of
gravity itself. The gravity field can be measured using high resolution, with grid step
measured in kilometers to detect densities located deep below the Earth surface. As
the grid goes more granular it is possible to identify anomalies located closer to the
surface.

The gravity anomaly indicates different density of materials under the surface.
In target application it is usable to detect heavy objects or cavities with density con-
trast1. This detection can be used for example for fast dam diagnostics or landslides
danger detection.

The acquired gravity does not reflect only the geological sources. The measured
gravity value is always influenced by tidal forces, altitude and terrain topography.
Therefore it is necessary to apply all the gravity standard corrections such as Bourger
correction or free air correction before the proposed algorithm is used. A priori
information including the information about known anomalies in the neighborhood
or deep subsurface (such as location of buildings, constructions, water resources or
subway) can help to pre-process acquired data and fast up the detection process.

2.1.1 Gravity Anomaly Forward Models

Gravity effect of any object is proportional to object’s density. Considering the body
of defined volume and density ρ with corresponding gravitational potential V and
its vertical component Vz is expressed in Equation 2.1 (quoted from [25]). G is the
gravitational constant (G = 6.67 · 10−11Nm2kg−2).

V = G
∫
τ

ρ

r
dτ Vz =

∂V

∂z
(2.1)

The Equation (2.1) can be used to deduce the horizontal component of gravity
effect of an object with defined geometry. The analytical field description derived

1The density contrast is the difference of anomaly density and the density of the surrouding
material.
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from Equation (2.1) for such bodies are listed in all texts focused to the gravitational
field theory (for example in [25], [5], or [32]).

For the algorithm design and tests, simple geometrical bodies were selected: a
sphere, a horizontal infinite cylinder, a vertical semi infinite cylinder. As it was
already declared, during the fast subsurface scan it is not important to define pre-
cisely the anomaly geometry. Important is to quickly assess whether in the area any
anomaly is present and if yes, where and how deep it is located and what is estimate
density contrast.

A general function describing a symmetric potential field anomaly can be ex-
pressed by following equation (cited from [33]):

f(r) =
F

(r2 + z2)q
(2.2)

Anomaly type F q M

Sphere GMz 3
2

4
3
πR3ρ

Horizontal Cylinder 2GMz 1 2πR2ρc

Vertical Cylinder GM 1
2

2πR2ρc

Table 2.1: The F and q factor for simple geometrical bodies, gravity field. The
G is the gravitational constant, M is the mass for the sphere and density contrast
times cross-sectional area for the cylinder, z is the depth of the anomaly.

In the Equation 2.2, the F is an amplitude factor, the q is a shape factor
characterizing the shape of the anomaly. The r is the distance from the middle
point of the anomaly to the observation point on the surface. Detailed summary of
q and F values for different simple geometrical bodies both for gravity and magnetic
sources is given for example in [33], and it is listed in Table 2.1. Parameters listed
in the Table 2.1 were used to compute the test data set. The figures 2.1, 2.2 and 2.3
show the meaining of the pamameters listed in the table for all the anomaly bodies.

All the data used in the simulations were generated by the script get data.py
which is attached to the thesis (see Chapter 7 for details). The script uses the
parameters identification as it is depicted in the pictures. The input parameters
are marked by red color in the figures. For the spherical anomaly it is a set of
central point coordinates [XPos, Y Pos, ZPos]. The total mass M is given by the
radius R and the density contrast ρ. The Rn is used to compute the field value in
the surface point [Xn, Y n]. It corresponds with the r parameter from equation 2.2.
The vertical cylinder body has the same set of parameters, the ZPos value is the
depth of the cylinder top plane. The horizontal cylinder is an infinite body located
parallel to the surface plane, the central line of the cylinder is given by two points
with coordinates [XPos, Y Pos], [XPos2, Y Pos2]. The depth ZPos is the depth of
the central line. The density contrast for the both horizontal and vertical cylinder
is marked as ρc as it is given as a density per 1 m.
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Figure 2.1: The spherical anomaly model.
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Figure 2.2: The semi infinite vertical cylinder anomaly model.
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[x]

[z]

Rn

XPos

YPos

R

ρ 

[y]

XPos2

YPos2

ZPos

[Xn,Yn]

Figure 2.3: The infinite horizontal anomaly model.

The rectangular prism model presented in the Equation 2.3 was used accord-
ing to the [5], pages 192–213. The rectangular prism model is used to illustrate
that during the fast scan it is not important to define precisely the anomaly body
geometry. If the prism is detected as a sphere, still we can estimate the depth
and density contrast. All the presented anomaly models are defined for ideally
smooth surface, homogenized surrounding subsoil and constant density contrast in
the whole anomaly volume. The prism is defined by its top left corner with coordi-
nates [XPos, Y Pos, ZPos] and the down right corner [XPos2, Y Pos2, ZPos2] and
it have homogeneous density contrast ρ as it is demonstrated in the Figure 2.4.

Vz = Gρ
∫ x2

x1

∫ y2

y1

∫ z2

z1

z

(x2 + y2 + z2)
3
2

(2.3)

Vz = Gρ
2∑
i=1

2∑
j=1

2∑
k=1

µijk

[
zkarctan

xiyj
zkRijk

− xiln(Rijk + yj)− yjln(Rijk + xi)

]

Rijk =
√
x2i + y2j + z2k

µijk = (−1)i(−1)j(−1)k

For the more complex anomaly body, we can see models based on the collections
of the rectangular prisms, rectangular blocks, laminas and similar regular bodies
(for details see [25] and [5]).
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Figure 2.4: The rectangular prism anomaly model.

The density contrast of the anomaly is modeled according to the target ap-
plication. The possible scenario is an anomaly body filled by the air, water or a
construction material such as debris. The surrounding subsoil can in general consist
of any material. The Table 2.2 lists the combinations of the most likely combina-
tions of densities for the anomaly and surrounding subsoil. The densities used in
the table were used according to [22] and [6].

For the initial modeling, it is not necessary to model all of the density combi-
nations listed in Table 2.2. Figure 2.5 shows a distribution of values listed in the
Table 2.2. A set of groups can be seen in the picture. The main sets of the test data
used the small positive density contrast value set to 1 gcm−3. This model stands
for the anomaly created by a rock or concrete. The density value is not the most
important parameter of the model, in all the models it just stands as a multiplying
factor and its value has no influence to the shape of the field. The shape of the field
is affected by the position parameters and by the anomaly type in general. Figures
2.6, 2.7, 2.8 and 2.9 illustrate all types of predefined anomalies, all the bodies are
located ideally in the middle of the area.

The synthetical models were created for the area of size 100× 100 m. The real
data set is acquired over several linear profiles. The field workers are passing through
the area following approximately the linear path, each such path corresponds with
one profile. The set of profiles is obtained by repeated measurement at the locality.
Acquired data can be interpolated into a rectangular network and such interpolation
called a gridding process is a standard part of the commercial geophysical software
such as Oasis Montaj ([28]). The gridding algorithms and the gravimetry data
corrections (terrain corrections, Bourger corrections etc.) are not part of this study.
The algorithm input consits of already gridded data with necessary corrections.
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Anomaly
material

Anomaly
density
[gcm−3]

Surrounding
matter

Surrounding
density
[gcm−3]

Density
contrast
[gcm−3]

Air 0.0 Loam 1.7 -1.7

Mudstone (clay-
stone, marlstone)

2.0 -2.0

Sedimentary rock
(limestone)

2.3 -2.3

Volcanic rock
(basalts)

3.15 -3.15

Concrete (compact
concrete with steel
reinforcement)

2.5 -2.5

Rubble 1.3 -1.3

Water 1.0 Light rocks 2.5 -1.5

Heavy rocks 3 -2.0

Soil (loam) 1.7 -0.7

Concrete 2.5 Light rocks 2.5 0.0

Heavy rocks 3 -0.5

Soil (loam) 1.7 0.8

Rubble 1.3 1.2

Gravel and sand 1.0 1.5

Table 2.2: The expected anomaly density contrasts in the real application.
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Figure 2.5: The groups of the density models defined according to the target
application. The shape of the field is not affected by the density value, the density
stands in all the equations as a multiplying factor. Therefore the group D was finally
selected for all the models.
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Initial algorithm tests were done with synthetical data containing only one model
of the anomaly, the other data set contained smooth data with the noise (the selec-
tion of the noise model is explained later in this chapter). The main data set was
created by examples spherical bodies and both types of cylinders. The density was
set to constant value, the spatial parameters were randomly generated.

For each type of anomaly a set of randomly generated examples was used. A
reference data set was generated also with the noise, with SNR 20 dB and 40 dB. De-
scribed data sets were also used to train and test the artificial neural network (ANN)
and the classifiers. Table 2.3 summarizes the intervals of initial parameters values
used to generate the random data. The values of XPos, Y Pos,XPos2, Y Pos2 were
set randomly from 0 – 100 to cover all the area. In the case of rectangular prism it
was always selected to have XPos < XPos2, Y Pos < Y Pos2 and ZPos < ZPos2.

The initial testing of the fast scan algorithm was done using a smaller data set
of 30, 100 and 1000 samples of each anomaly body. The final testing was done with
the data set of 1000 examples. The ANN was trained using 10000 examples and
tested with another set of the same size.

‘

Anomaly type R ZPos ZPos2

Sphere 1 m - 20 m 1m - 50 m Not used

Horizontal Cylinder 1 m - 20 m 1m - 50 m Not used

Vertical Cylinder 1 m - 20 m 1m - 50 m Not used

Rectangular prism Not used 1m - 50 m 1m - 50 m

Table 2.3: The definition intervals for anomaly data sets used to generate the train
and test data.
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Figure 2.6: The example of used input data, spherical anomaly, density contrast
1 gcm−3, radius 5 m, situated in the middle of the area, located 15 m under the
surface.
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Figure 2.7: A model of vertical cylinder, density contrast 1 gcm−3, radius 5 m,
situated in the middle of the area, located 15 m under the surface.
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Figure 2.8: A model of horizontal cylinder, density contrast 1 gcm−3, parallel with
the surface, running diagonally, radius 5 m, located 15 m under the surface.
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Figure 2.9: A model of rectagonal prism, width is 10 m, height is 20 m, located
15 m under the surface.

24



2.1.2 The noise models

As any other real data, the real geophysical data can contain a noise. The source
and the nature of the noise depends on the data acquiring methodology. The clean
anomaly picture in the data can be overshadowed by the influence of other source
bodies. Typically, a set of corrections are applied to data before the data are an-
alyzed (such as free-air, Bourger, terrain or building correction for gravity data).
Such correction is a standard, well described, widely used procedure, which is often
automated or semi-automated. Therefore in this text it is assumed that corrections
were already applied to the data.

Another source of the noise is the noise of the measuring equipment itself, the
random or systematical errors or the noise of the surrounding environment (swell
noise in seismics for example [9]). To test the resistance of the algorithm to the noise
in the data, the analytical signals used in this thesis were combined with white noise.
The white noise was selected as universal noise model with no systematical distortion
for the data. To model the white noise a random matrix with normal distribution
was used, mean value was set to is zero, standard deviation was 1. The random
signal is related to the maximum value in input data. Two noise models were used,
with SNR set to 20 dB and 40 dB. Such a noise contamination of synthetical data
sets can be seen also in other experiments with potential field data (for example in
[12] and [15]).

Figure 2.10: The input data converted to the images - the original vertical cylinder
(left) and the noise corrupted data (right).

2.2 The continuous monitoring process

In the case of the waste deposit monitoring, the computer vision or machine learn-
ing techniques can be applied to detect significant anomalies in the data stream.
Regardless of the monitoring technology, the physical conditions in the repository
such as water saturation or temperature should either remain unchanged or they
sould change in a known manner. If any difference in monitored data is captured,
it is necessary to recognize the cause of the change. Physical parameters in the
repository can slightly oscillate around the equilibrium, which can be understood
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as a normal behaviour, or they can more dramatically increase/decrease. Atypical
changes in the acquired data stream can alarm a problem in the repository – for
example the surrounding barrier may be corrupted and safety of the repository can
be endangered.

The repository itself is strictly defined – it is a structure with defined and well
known geometry, with stable homogeneous surrounding. The process of selecting and
building of the repository lasts for years and it is very well planned and prepared.
During the preparation process it is possible to start pre monitoring of to get the
stable data streams as reference training sets describing the correct operation mode
of the repository.

The monitoring proces can be either focused just to detect any modification
which is different than the normal operational mode or it can be prepared to detect
predefined abnormal situations. According to the selected monitoring methodology
the set of anomaly data can be prepared. The modeled anomalies would describe the
expected abnormal situations occurring in the repository – increasing temperature
over the prediction, modified water saturation, modified geometry etc. The task for
the monitoring process is than modified: the algorithm searches the known abnormal
situations.

The geophysical monitoring of the nuclear waste repository is a part of the re-
search of the project called Modern20202. The Technical university in Liberec is one
of the participating research organisations in the project. The author of the thesis
is responsible for the research related to the geophysical data processing described
in the presented thesis.

The geophysical monitoring of the repositories is just a part of the research. The
geophysical methods included to the project are: Electric resistivity tomography
(ERT), Induced polarisation (IP) and Seismic methods (SM). For the ERT it is
planned to set up a real monitoring experiment in the real operating condition of
the repository. The IP is to be also run in the real operating condition with ERT as a
supplementary method to distinguish the influence of changing water saturation and
the temperature. For the SM, the full waveform seismic inversion is to be adjusted
for the target application. The machine learning techniques are to be used as a
supplementary method for the full waveform inversion ([29], [24], [23]).

The initial task related to the presented research was to adapte existing anomaly
detecting algorithms to be applicable as a secondary methodology of the data in-
terpretation for the seismical data and to test its usability in this application. The
aim of the research is to test if any modification in the reservoir configuration can
be automatically extracted from the seismical data.

The application is based on the synthetical seismical data. The model repository
is a ciruclar shaped tunnel. Two monitoring boreholes toward each other at an acute
angle are located in the plane perpendicular to the tunnel. The wave sources are
located in one of the boreholes, the receivers in the other one (the situation is
sketched in the Figure 2.11). The configuration is based on the experiments and
research done by ETH Zurich ([24], [23]).

2http://www.modern2020.eu
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the tunnel

Figure 2.11: The initial model configuration for the continous monitoring process.

The Figure 2.12 shows the inputs for the data modeling. It consits of the map
of the density (the left side in the image) and seismic velocity (the right side in the
image) of the material in the modeled area. The modeled tunnel is located in the
middle of the area.

Figure 2.12: The configuration of the data model – the density map (left) and
seismic velocity map (right) of the area.

The model contains 114 sources and 104 receivers. Additionally to the recievers
in the reciever borehole, a set of 8 recievers located around the tunnel is added (these
recievers are not presented in the Figure 2.11 to keep the figure comprehensible). The
signal from each of the sources is sampled in 2000 samples in each of the recievers.
The final data set is a cube of 114×104×2000. Initially the research started with the
data model created for the completely dry tunnel, the fully water saturated tunnel
and as a reference was generated a set of the tunnels with different geometry. The
models were created and calculated by our project partner from ETH Zurich ([29]).

The fast scan algorithm takes the initial data cube and divides it into a 104
images which are understood as the 104 samples of the current repository configu-
ration. The example of one of such data sample is available in the Figure 2.13. The
upper part of the image contains the signal collected from the 50th source without
any modification. The lower part of the image shows the input of the algorithm:
normalized data matrix.
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Figure 2.13: The input data for the continous monitoring scan, the original input
(top) and the normalized input (bottom).

In this case the main part of the work is to find and define the structures in
the data which are related to the modification of the repository conditions. The
environment seismics velocity varies with the water saturation. Therefore it was
decided to create several models of different water saturation in the model and to
test if it creates a detectable footprint in the data. The research is not finished yet
so only first outputs are presented in the thesis in the chapter 3.5.
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3 Anomaly detection implementation

3.1 The current application of computer vision and
machine learning in geophysics

The presented work is focused to the application of the computer vision techniques
to the geophysical domain with defined application. The study was originally com-
missioned as a first test if the idea of semi automated data processing in geophysics
is available. It was decided to start with simple models to verify, if the application is
possible. The author of the study is a computer vision and data processing specialist
with no preliminary experience in the field of geophysics.

The presented short research of current state of the research and application
focuses to the geophysical data interpretation done with the support of computer
vision and machine learning techniques. Even if these techniques are used and tested
already in geophysics it is still a minority technology. The most of the research of
the data intepretation in geophysics is still focused to the classical methods based
on forward models and data inversion techniques.

When the research was prepared the focus was on the applications where the geo-
physical data are processed as images regardless of the data acquiring methodology.
The attention was paid mostly to the classification problems, structure detection
and feature extraction. The very actual overview of the actual applications of the
MLT with the general overview of applied technologies in the geosciences is given in
[20] with several practical examples. The current research is focused to all the typ-
ical techniques of the CV and MLT, including simple structure detectors based on
the computer vision techniques or more complex solutions using the self organizing
structures such as neural networks.

When geophysical data are interpreted as images lines or curves are typical struc-
tures of interest. The Hough transform and its modifications are used to detect the
structures for the long time (the work [11] from 1998 optimizes Hough transofrm for
geophysical data) - an application can be find in [13] where the Ground penetrat-
ing radar (GPR) data are converted to the image and using the Hough Transform
scanned for linear structures or in [13] where the Hough Transform is used to identify
the planar and linear structures in the GPR data [14] or to identify the structures
[21] with support of learning algorithm.

The example of a task similar to the presented target application is the landmine
and unexploded ordnance (UXO) detection. There anomaly – landmine – has typical
shape, material and it is located close to the source. The CV and MLT is used in
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the field of landmine detection – the data can be processed using fusion algorithm
([38]) or with the neural network ([34]).

Another similar application when a typical structure is searched close to the
surface is the location of buried plastic pipes. A multi aged supported detection is
described in [1], the neural network and pattern recognition based on the Hough
transofrm is used in the [30].

The other typical application when the MLT and CV are very useful is the com-
puter vision-based rock-type classification - it can be based on the pattern recogni-
tion [27], neural network [31] or the self-organizing map neural network ([16]).

A lot of applications of the neural networks and geophysical data were published
last years. Considering the task defined in this thesis, interesting is the application
of the celular neural network to detect the edges in the data ([2]) or to process
the Bourger anomaly map ([3]). In the seismics domain the self organizing maps
were adopted for the characterization of 2D seismic lines ([19]). To process the
gravity data a neural network was applied to Bouguer data to obtain depth, density
contrast, and locations of the structures ([19]). Inspiring is also the work where the
neural network is used to evaluate the gravity data ([15]) where the first tests are
also done using synthetical spherical models.

3.2 Fast scan based on structure detection

3.2.1 Gravimetry: The spatial parameters estimation

The determination of the centre of the mass or the top of the anomaly body is the
one of the major importances of the gravity data analysis.

Using the forward models for the simple anomaly bodies such as sphere, horizon-
tal cylinder, vertical cylinder, prism or thin sheet, the relation between the gravity
anomaly and its depth can be easily derived directly from the forward model equa-
tion. The base idea is to use the forward model to express the half width x0.5 of the
anomaly.

The situation is depicted in the Figure 3.1 - the half width x0.5 is depicted as
X half . The Vz stands for vertical part of the gravity field, the d is the depth (ZPos
in the Figure 3.1).

By fitting the V z half value into the equation, we can determine the relation
between the x0.5 and d. The analytical expression for this parameter derivation is
demonstrated in the Equation 3.1. For other anomaly bodies the the same derivation
procedure can be used (see [25] page 55-57 or [32], page 51-52).

Vz = (Vz)max ×
d3

(x2 + y2)
3
2

=
(Vz)max((
x
d

)2
+ 12

) 3
2

(3.1)
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Figure 3.1: The spatial parameters estimation, spherical body.
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d = 1.305× x0.5

The value (Vz)max is available as a maximum value in the input data set and the
d can be set, both values can be used to estimate the total mass M of the anomaly
- for the spherical body it is demonstrated in the Equation 3.2. The r is the surface
distance from the central point of the anomaly (see Figure 2.1). At the (Vz)max the
r = 0. Similar derivation can be found for all the other simple anomaly bodies. The
Table 3.1 lists all the simple models with its depth and total mass estimations for
all the simple bodies.

Vz =
GMd

(r2 + d2)
3
2

(3.2)

(Vz)max =
GMd

(d2)
3
2

M =
(Vz)maxd

2

G
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Anomaly type The depth estimation The total mass estima-
tion

Sphere
d = 1.305x0.5 M =

(Vz)maxd
2

G

Horizontal
cylinder d = x0.5 M =

(Vz)maxd

2G

Vertical cylinder

d =

√
3

3
x0.5 M =

(Vz)maxd

G

Table 3.1: The simple anomaly bodies with d, ρ and ρc parameters extracted from
the models.

The relation between the x0.5 and d was the initial inspiration for the fast scan
algorithm. The general idea was simple: to use the image procession techniques to
get the x0.5 value from the data, to compute the estimated field and to compare
it with the input data. The following section describes what structures were to be
detected in the field data to classify the anomaly type.

3.2.2 The structures in the data

When the field model values of a simple anomaly body is depicted in colours in XY
plane as in Figures 2.6, 2.7, 2.8, one can easily notice that each type of anomaly
creates a simple structure in the 2D picture of the data. For the spherical and
vertical cylinder anomaly, the structures are circles. The horizontal cylinder creates
parallel lines in the picture.

This fact was used to estimate the x0.5 value for all the anomaly types. If an ideal
spherical anomaly body is hidden under the surface, we can cut the field at several
levels. For example, in the picture 3.2 the spherical and vertical cylinder anomaly
fields are cut at levels equal to 0.25× (Vz)max, 0.5× (Vz)max and 0.75× (Vz)max. The
outline of the cut is always spherical.

The two other types of anomaly body - the horizontal cylinder and rectagonal
prism - have different cut outlines. The outline of the cut of the horizontal cylinder
is a pair of parallel lines, for the rectangular prism, it can be a two pairs of oblique
lines as it is demonstrated in the Figure 3.3.

For the spherical body and both types of cylinders, the outline of the cut is
always of the same shape. The anomaly parameters (depth and density contrast)
only affect the radius of the circle or the distance of the lines. For the rectangonal
prism, the situation is different. Only for high density contrast near the surface we
can see the cut outline as it is demonstrated in the Figure 3.3. With the increasing
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Figure 3.2: Spherical anomaly (left) and vertical cylinder anomaly (right), the
outlines of the field cut at several levels.
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Figure 3.3: Anomaly characteristics for the rectagonal prism (left) and horizontal
cylinder (right).
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depth or decreasing density contrast, the cut outline is very close to the circle shape
- see the Figure 3.4. In this case, both anomaly bodies are located 5 m under the
surface, the radius of the sphere is 5 m, the prism is a cube with the edge line equal
to 4 m.

Figure 3.4: When the sphere and rectangular prism have similar cut outlines.

In this case the algorithm will probably misfit the prism body with the spherical
body, as the circle structures will be detected in the data picture. In fact, such
situation is not dramaticall, if the depth of the anomaly center and the total mass of
the hidden body will be estimated with acceptable precision. The target application
should provide the fast scan of the data and it should detect the areas for the future
more detailed exploration, it does not have to precisely distinguish between the
anomaly body types. In fact, no real anomaly have exactly spherical or cubical
form.

At the beginning of the shape detection process the input field is normalized from
original values to the interval of (0−1), according to the Equation 3.3. Depending on
the density contrast value the input data matrix can be both positive and negative.
For the algorithm design, initially only one anomaly was modeled in the data, so
data values are all negative or all positive. The normalization procedure takes the
absolute value of data. If multiple anomaly body would be present in the data,
|Vz| cannot be used. The model with multiple anomaly body with different contrast
densities is discussed in the Section 3.2.7.

35



(Vz)Norm =
|Vz| − (|Vz|)min

(|Vz|)max − (|Vz|)min
(3.3)

The normalized data field is now thresholded at several selected levels. The
initial idea was to use just one threshold at the value (Vz)N : N = 0.5 to get the
shapes to detect the value of x0.5. The initial classifier searched through the image
for linear and circle structures. Than it measured the radius of the circle or the
distance of the lines (if parallel lines were detected). The initial classifier had simple
logic:

• Circle structure detected – a spherical anomaly or a vertical cylinder
anomaly is detected. The circle radius was used to estimate the d and Ms

for a sphere and Mc for a cylinder.

• Two parallel lines detected – a horizontal cylinder anomaly is detected.
The half of distance of the lines is x0.5 and it is used to estimate both d and
Mc.

• Two pairs of oblique lines detected – a rectangular prism, the direct esti-
mation of the d and M is not possible just by derivation of the field definition
equation. Therefore a look up table was calculated.

• Any other structure detected – an unknown type of anomaly is hidden in
the data, no parameters estimation is done.

Such classification works correctly only for the ideal smooth data, with the
anomaly positioned close to the middle of the area. Unfortunately, a lot of mis-
detection can appear. If the white noise is given to the classifier, it can try to find
horizontal cylinder in the data as well as the rectangular prism, because a lot of
lines is detected. If the smooth data are combined with the noise as it was described
in the section 2.1.2, a lot of small circles can be misdetected, linear structures can
be corrupted and remain undetected. Therefore it was decided to use a bigger set
of thresholds and to design a more complex classifier.

The normalized field is thresholded at 9 levels to cut the VN at levels from 0.1
to 0.9. The detection of the lines and circle structures is done at all the levels. This
part of algorithm is implemented in the Matlab environment. To detect the line
structures, according to the theory of the line detection given in [7], the application
of Hough transform was selected as the best methodology. The Matlab Hough
transform implementation was used (the functions hough, houghpeaks and houghlines
were used).

For the circle structure detection, the detection was initially done by the origi-
nally implemented algorithm. The algorithm tested, if there is a connected region
in the picture of a near circular shape, but a lot of false data were indentified as
a circular or vertical cylinder anomaly. Therefore it was decided to use the more
precise circle structure detection with the Circular Hough Transform. The current
version of the algorithm uses the Matlab implementation imfindcircles, which was
introduced in Matlab in 2012.
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If a horizontal cylinder is the source of the anomaly in the data, in ideal smooth
data parallel lines with always the same direction should be detected in all the
thresholded images. Such situation is depicted in the Figure 3.5. In the Figure
3.5 all 9 thresholded images are shown as well as the original data. The top right
image is cut done at level 0.9, the low right image is the cut at level 0.1. The red
line shows detected lines. In all the thresholded images just 2 pairs of lines were
detected, running always the same direction. The depicted cylinder is located 19 m
under the surface, its radius is set to 1 m.

Figure 3.5: The ideal line detection for the horizontal cylinder.

The situation is not always as ideal as it is depicted in the Figure 3.5. Several
causes of the misfit were identified during the preliminary research and the classifier
was updated to be able to classify directly the anomaly type in such a situation.

Problem 1: An indistinctive anomaly body close to the border of the area. An
example of a such configuration is depicted in the 3.6 (on the left). The depth of
the presented anomaly body is set to 63 m and radius was set to 1 m. Therefore the
field structure is flat and due to the position of the cylinder only one edge of the
structure is detected. The other one was always out of the image and therefore it
was not detected. Even if the classifier logic would be updated to search through all
the slices for a single line with uniform direction, the missing second line means that
the x0.5 value cannot be estimated from the data. But when the target application
is taken into the account, such an indistinctive anomaly would not probably be the
target of interest.

Problem 2: The noise destroys the linear structures. The Figure 3.6 (on the
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right) shows the data with the noise at level 20 dB. The anomaly body is again
quite indistinctive and with the noise the linear structures at the level 0.3 and 0.4.
At the levels 0.8 and 0.9 more lines are detected because of the noise, with different
directions. To avoid such situations, noise filters were applied to smooth the data.
To clean the linear structures a set of morphology operations can be used before the
structure detection is started. This can again slightly increase the success rate of
the detection (see the Section 3.2.3 for details).

Figure 3.6: The undetected cylinder: on the left the structure is so flat, that only
one line is found in the thresholded images, on the right the noise destroyed the
linear structures in the data.

Problem 3: False line detections in the false data. The Figure 3.7 on the left
side depictes a random data processed by the detection algorithm. The lines are
detected at all the thresholded levels, a lot of parallel lines is detected. Due to
this misdetection it was decided to detect the lines at all the levels. The detection
algorithm tests, if the direction of lines is the same at all the levels where lines are
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detected. The direction of the line is measured in the angle θ between the line and
low border of the image. The classifier decides that all the lines have the same
direction, if the ∆θ is lower than 5 degrees for all the detected lines at all the levels.

Problem 4: False line detections at the other anomaly type. If the body of
spherical or vertical cylinder anomaly has a bigger radius, at levels 0.1 to 0.4 lines
can be also detected as it is illustrated in the Figure 3.7 on the right side. The
picture is used to demonstrate the other situation, when simple line detection at
just one level is not enough. It must by always tested, if detected lines have the
same direction at all the levels where lines were detected.

Figure 3.7: False lines detected: on the left in the white noise, on the right a
misdetection at levels 0.1 – 0.3 for vertical cylinder with a large radius.

Similar detection problems can appear with circle structure detection. Figure
3.8 demonstrates the situation for a smooth spherical anomaly (left) and vertical
cylinder (right). Even in a such ideal case, the circle structure is not detected in
all the thresholded images. As for the line detection, with circle structure detection
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a set of false detections must be avoided. First of all, at levels 0.1 to 0.3 at any
kind of anomaly source, as well as for the reference false data, a lot of small circle
structures can be detected. Situation is demonstrated in the Figure 3.9.

Therefore the classifier omits all the detected circles with radius smaller than a
given threshold. (For an area 100× 100 m the best solution is this threshold set to
5 m.) If more than one circle is detected, the biggest one is selected.

Figure 3.8: Ideally placed, ideally smooth data and circle detection for a sphere
(left) and an vertical cylinder (right).

The structure detection ends up with following parameters:

• Parallel lines detected (true/false) – a parameter is set to true, if parallel
lines are detected at levels 0.4, 0.5 and 0.6 and all detected lines have the same
direction (with predefined tolerance ∆θ < 5◦).

• The main θ value (numerical value, 0-180) – if parallel lines were detected,
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Figure 3.9: False detection of circle structures: horizontal cylinder (top left),
unclear borders of the circle structure (top right, middle left, middle right), a false
data (bottom left and right).
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final θ value is set to a median of the measured values at all significant levels
(0.4, 0.5, 0.6).

• Line distance (numerical value, 0-100) – if parallel lines are detected, at the
level 0.5 the distance between lines is measured, this distance is equal to 2x0.5
for a horizontal cylinder.

• Main circle detected (true/false) – a parameter is set to true, if at least
at 3 levels a circle was detected with center point at the same place (with
predefined tolerance ∆XPos < 3m and ∆Y Pos < 3m).

• Main circle central point (a pair of numerical values, both 0-100) – final
values of the central point [XPos, Y Pos] are set to median value of all detected
central points.

• Main circle radius at level 0.5 (a numerical value, 0-50) – the radius of
a circle at level 0.5. The radius is equal to x0.5 for a spherical or a vertical
cylinder anomaly body.

• Other radiuses at detected levels (a vector of numerical values, 0-50) –
if no significant circle was detected at level 0.5, but still a set of circles was
detected at other levels, a vector of other radiuses is given to estimate the level
at 0.5. This estimation is done by classifier.

3.2.3 Morphology operations to clean noise distortion

If the algorithm gets as the input clean data with no added noise, the detection of the
structures is good. The more noise is presented in the data, the more false detection,
mostly for small circles is done (as it was illustrated in the Figure 3.9). Due to the
noise the originally smooth border between black and white area is crooked. Such
distortion is present in the data even if the data were prefiltered using any denoising
filter.

If the thresholded slices of the data were morphed using the propriate morphology
operation, the border between the black and white area should be smoother. The
erosion operation was selected to close the boundaries of the objects in the black and
white images. To keep the precision and to avoid distortion of the structures in the
image, the erosion was tested with structural element of size 3 × 3 points (a small
cross). If the structural element is bigger, the erosion itself distorts the structures
in the images.

The algorithm gave best results if the erosion operation was repeated twice for
noise corrupted data. The number of misdetected small circles went down, but not
to zero. Therefore it was decided not to use the erosion process - it can possibly
distort original data, it takes time and it does not give reasonable results.

For the first implementation of the algorithm where the circular structures were
detected by measuring the connected regions in the image, the morphology opera-
tions were important to increase the precission of the detection. With the current
implementation based on the Hough transform it is not so important. Therefore
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instead of erosion, the circle detection algorithm is now designed to it ignore all
the circles with radius smaller than a given threshold. This value is a parameter
of the algorithm, for the test data it was set to 5 points. The morphology is still
implemented in the algorithm and can be switched on. The structural element can
be redefined in the algorithm configuration.

3.2.4 The anomaly type classification

The anomaly type classification is based on the parameters defined by the structure
detection part and its decision process is depicted in Figure 3.10. The input of
the process is the information, if the parallel lines were detected in the area. If
parallel lines were detected, the anomaly type is set to horizontal cylinder. In this
case, circle structures are ignored, because a circle misdetection at the line borders
appears quite often.
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Set type: 
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cylinder

Get: 
Lines 
distance

Get: 
Mass

Stop 
detection

Detect 
circles

Circles 
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Figure 3.10: Anomaly type classification – the decision process.

If no lines are detected in the picture, the detection process continues to search
for circle structures. If circles are detected, the classifier must correctly identify the
anomaly type. The original idea was to take the thresholded image at level 0.5, to
measure the circle radius and to estimate the d and M parameters for both anomaly
types (spherical, cylindrical) using the x0.5 to d relation described in the Table 3.1.
With the estimated ds, Ms for the sphere and dc, Mc for the cylinder, the Vs and Vc
matrices were calculated. Than the original input Vz matrix was compared with Vs
and Vc. If the Vs values were closer to the Vz, the anomaly type was set to sphere,
otherwise vertical cylinder was selected:

The first problem of such solution was the selection of a metrics used to com-
pute the distance of the origninal and proposed field. Several metrics were tested:
the total sums of differential (Equation 3.4 and the second power of the euclidean
distance (based on [8], page 242, Equation 3.5):
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EsD : esD[i, j] = |Vz[i, j]− Vs[i, j]| (3.4)

EcD : ecD[i, j] = |Vz[i, j]− Vc[i, j]|

∆D =
n∑
i=1

n∑
j=1

esD −
n∑
i=1

n∑
j=1

ecD

ESE : esE[i, j] = Vz[i, j]
2 − Vs[i, j]2 (3.5)

ECD : ecE[i, j] = Vz[i, j]
2 − Vc[i, j]2

∆E =
n∑
i=1

n∑
j=1

esE −
n∑
i=1

n∑
j=1

ecE

Both type of distances can be used to differentiate the anomaly type, the more
suitable is the Euclidean distance as it gives bigger ∆ and therefore it is used in the
algorithm.

If a circle structure was correctly detected at the x0.5 level, the precision of the
anomaly parameters estimation and the anomaly type classification was quite good:
The anomaly type was set correctly in 95 %, the position parameters were set with
1-2 m precision. But as the cylinder structure creates in the data a circle with quite
a big radius, in 90 % the circle was not detected. Only part of the circle arc was
presented in the picture. At the upper levels the circles were detected correctly.

It was necessary to measure the radius at all the levels, where circular structures
were detected. The original relation between the x0.5 and the d parameter can be
modified for any other data cut if the threshold level is expressed as a fraction of
(Vz)max. If the levels 0.1, 0.2,..., 0.9, the corresponding VN can be defined (for the
N = 5 the rN = x0.5):

VN =
N

10
(Vz)max, N = {1, 2, ..., 9} (3.6)

The VN value lies at the border of the detected circle with radius rN . Similar
to x0.5 to d ratio can be derived a relation between the rN the d parameter for all
the values of N used in the image thresholding. The Equation 3.7 defines the rN
to depth for a spherical anomaly, the Equation 3.8 for the vertical cylinder and the
Equation 3.9 for the horizontal cylinder.

N

10
(Vz)max =

(Vz)max(
rN
ds

+ 1
) 3

2
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ds =
rN√(

10
N

) 2
3 − 1

(3.7)

N

10
(Vz)max =

(Vz)max√((
rN
dc

)2
+ 1

)

dc =
rN√(

10
N

)2
− 1

(3.8)

N

10
(Vz)max =

(Vz)max(
rN
dc

+ 1
) 1

2

dh =
rN√
10
N
− 1

(3.9)

The values of rN are set using the outputs of the structure detection algorithms.
The Matlab function imfindcircles used to detect circular structures returns a vector
of radiuses of detected circles. When parallel lines are detected, the output of the
Hough Transform returns the values of the rho and θ values. If lines are parallel,
the θ must be identical and the distance of the lines is the difference |θ1 − θ2| (see
3.11 for the definition of the rho and θ).

[x]

[y]

The Line

rho

θ+45°

90°

Figure 3.11: The Hough transform outputs: The rho and θ values.

The rho and θ can be used to define the line by the following formula:

45



rho = xcos(θ) + ysin(θ) (3.10)

To increase the number of correctly detected anomalies, the algorithm measures
the radius of all concentric circle structures in the data. Next it computes the ds and
dc value for all the available circles. Regardless of the anomaly type, if a spherical
or vertical cylinder was modelled in the input data, the variation of the computed
ds and dc vectors is always small. The median values are used to estimate the Ms

and Mc.
As a next step, the estimated fields are computed for the detected parameters

XPos, Y Pos, ds/dc, Ms/Mc and compared with the original data using the Eu-
clidean distance ∆E. If ∆E is positive, the original field is closer to the spherical
model, otherwise it is set to vertical cylinder.

The final output of the classifier is following set of parameters:

• Anomaly type can be set to Sphere, Vertical Cylinder, Horizontal cylinder
or Other.

• Depth is the estimated depth of the center of the anomaly, it is set to 0, if
type is set to Other.

• Mass is the estimated total mass of the anomaly, it is set to 0, if type is set
to Other.

• Center is the pair of [XPos, Y Pos], it is set to 0, if type is set to Other.

• Direction is set only if the Horizontal cylinder is detected in the data to
detected value of θ. Otherwise it is set to 0.

The more detailed output of the classifier is written to a table containing all
the information describing the detected structures for all the input data samples.
The images are indexed from 1 to 9 according to the threshold level used to get the
black and white images (the index i stands for the thresholding level i

10
). All the

described parameters are sets of 9 values for each of the thresholding levels.

• Lines detected: it is set to 1, if any line structure was detected in the image.

• Parallel lines detected: the value is set to 1, if main pair of parallel lines
detected with the main θ as it is described above.

• Circles detected: the parameter is set to 1, if a correct circle structure was
detected at corresponding level.

• Circles radiuses: if a circle was detected, the value is set to the circle radius
in pixels. If no circle is detected, the value is set to 0.

• Circles X: if a circle is detected, set to first coordinate of the central point,
otherwise set to 0.
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• Circles Y: if a circle is detected, set to second coordinate of the central point,
otherwise set to 0.

All the detection outputs are stored in the *.csv file and remain available also in
the Matlab table in the workspace when the detection is finished.

3.2.5 The noise

To test the resistance of the algorithm to the noise in the data, the analytical
signals used in this thesis were combined with two random signals, with normal and
uniform distribution as it was described in Section 2.1.2. Following noise reduction
algorithms were tested:

• Averaging filters with kernel 3x3 and 5x5

• Gaussian filter with kernel 3x3 and 5x5

• Median filter with kernel 3x3 and 5x5

• Wiener filter with 3x3 and 5x5

All the algorithm and filter kernels were implemented according to the description
given in [36].

The proposed algorithm is to be based on the pattern recognition and mostly
the lines, edges and other simple patterns should be detected in the data in general.
As the illustration, analytical gravimetry data with horizontal cylinder were used.
The clean analytical and noise corrupted data are presented in the 3.12. The SNR
in this case is set to 40 dB. Without any prefiltering, the detection algorithm is not
able to detect any lines in the picture.

Figure 3.12: The original analytical data (left) and the noise corrupted data
(right).

The test results are depicted in Figure 3.13. It is not surprising that the bigger
kernel results with better smoothed data. But in the case of Gauss smoothing and
median filtering the bigger kernel except the noise smoothing also distorts the shape
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of the anomaly, which leads to incorrect parameter estimation. The best illustration
for such situation gives the 5x5 kernel for the Gauss filtration (see Figure 3.13, the
right column). The data are smoothed, but the hidden anomaly is smoothed as
well and the original central line is lost. It means that the detection software will
detect horizontal cylinder anomaly, but the depth and density contrast will not be
correct. The anomaly is deformed and will be misunderstood as a deep and heavy
object. The best results were obtained with Wiener filtering (again, see the Figure
3.13, the forth row). Wiener filter provides the best smoothing without damaging
the characteristics of the anomaly.

The filter types were not tested only for presented anomaly example, but also
for another types of anomalies as well as for another noise models. As the line
structures are the most sensitive to the noise, the horizontal cylinder example was
selected for the pictures.

The adaptive Wiener filter was selected as the preprocessing denoising filter. The
only limitation of the Wiener filtration is its performance at the border of the image.
The smoothing of the center area of the image is always satisfactory. But depending
on the kernel size, the border of the image is unsmoothed. The unsmoothed image
border disturbs the feature detection in the next algorithm steps (see 3.14). If the
input data matrix is sufficiently large, the best solution is to reduce the size of the
denoised image and omit the image edges from the next processing. For the final
testing was used the Wiener filter with kernel 3 x 3, because it offers acceptable
level of filtering and the smallest destruction of the image borders.
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Kernel size 3 x 3 5 x 5
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Figure 3.13: The summary for the noise elimination study.
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Figure 3.14: The weak point of the Wiener filtration. The image borders are not
smoothed. The central high line in the image is overshadowed by noise spikes at
the edges of the image and the line structure is not detected. The anomaly will be
classified incorrectly.

If the input data matrix is really small (less than 20x20 pixels), none of the pixels
can be omitted, otherwise the size of the picture would be dramatically reduced.
Therefore the Wiener filter should be replaced by another type of smoothing filter
with smaller kernel. Based on a set of tests, Median filter was selected as appropriate
solution in this case.

The noise filters can decrease the anomaly detection efficiency, see final summary
in Chapter 4 for the detailed statistics.

3.2.6 The general algorithm

The previous sections were describing in detail the parts of the fast scan detection
algorithm. In general, all the blocks of the algorithm are connected one after another,
as it is depicted in the Figure 3.15. The input of the algorithm is a matrix of vertical
part of the potential field (Vz). At first, denoising Wiener filter is applied. Next
step is the normalization procedure as described in Equation 3.3. The output of this
block is a matrix of values from the interval < 0, 1 >.

The next step is the conversion of the normalized data into a set of thresholded
black and white images - block Thresholding in the Figure 3.15. The nine threshold
levels are set from 0.1 to 0.9. The output of the block is a set of 9 binary matrices.
Optionally, an erosion of the data can be switched on (block Morphology). This is
the end of data preprocessing.

When the preprocessing is done, the structure detection and anomaly type clas-
sification is done as it was described in the Sections 3.2.1 and 3.2.4. The internal
structure of the block Classifier is depicted in the Figure 3.10.

The whole algorithm was implemented and tested in the Matlab environment.
All the parts of the algorithm are implemented as Matlab functions, called from
one main file. To simplify the interaction with the code, a simple graphical user
interface (GUI) was created, where all the algorithm input parameters can be set.
The algorithm and the GUI were packed using the Matlab packaging tool and the
package can be installed from the appended CD.

The application itself can be used with or without the GUI according to the
preference of the user. The general algorithm configuration is separated from the
algorithm code to a config file. The structure of the algorithm implementation is
depicted in the Figure 3.17.

50
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Block output:
Filtered vertical 
potential matrix
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parameters

Figure 3.15: The general fast scan algorithm with all function blocks and signals.

Figure 3.16: The graphical user interface of the fast scan algorithm.
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Figure 3.17: The Matlab application architecture.

All the algorithm outputs are stored in the *.csv file as a table. The output
of the algorithm is the set of all the extracted information: the logical information
if structures were detected for each of thresholded levels, the radiuses of detected
circles, the distances of the lines, the ∆E values, the estimated anomaly parameters
such as d etc.

When the algorithm is finished, it also shows a short statistics in the Matlab
environment containing the information about detection efficiency.

Another implementation of the algorithm with the GUI was prototyped in the
early development phase. The software cannot process a set of fields, it was imple-
mented as a test environment for the fast scan application development. The main
part of the GUI allows to define the input data model (Figure 3.18. It can also
create a multiple anomaly field by combining several anomaly models. The noise
model can be defined using the other part of the GUI. The last part is the first
implementation of the fast scan algorithm with possibility to edit the parameters of
the algorithm. This application currently supports the gravity data models (sphere,
both cylinders and rectagonal prism) and also the models of simple anomaly for the
spontanne polarization. The structure of the application is prepared to add any
other existing model or to read the input data from a folder.

The GUI have defined a simple process how to add the new anomaly model
without the modification of the original GUI sources. The anomaly generating
function must be defined and placed into correct folder in the application sources
and it is automatically added to the list of available models when the application
starts. The fast scan development part for example shows all the detected structures
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Figure 3.18: The GUI of the development environment of the fast scan algorithm
- the input data definition.

at the selected levels and other estimated parameters. This part of the GUI was
used for example to select the correct noise filter or to set correct input parameters
of the Hough transform.

Figure 3.19: The fast scan development GUI presenting the original image, the
proposed model and the data slices.
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3.2.7 Multiple anomaly body in the data

The presented classifier is capable of detecting the most significant anomaly in the
field and it will fail on the model depicted in the Figure 3.20. Presented example was
created by combining the horizontal cylinder anomaly with two spheres of different
total mass. The algorithm will in this case focuse to the biggest field and it will
propose a spherical anomaly body.

Figure 3.20: The multiple anomaly body - two spheres and a vertical cylinder.

If several horizontal cylinders running in different directions the algorithm will
classify the field as containing unknown anomaly because the horizontal cylinder is
detected only when all the detected lines run in the same direction. When circle
structures are being detected the algorithm focuses only to the biggest circle at each
slide. So if multiple anomaly body would be presented in the output, the algorithm
would detect the most significant one. The other structures would be ignored. Such
situation is modeled in the Figures 3.18 and 3.19. The snapshot of the GUI shows
the multiple anomlaly (3 different spheres of similar total mass and depth). The
snapshot of the detecting part shows in the right bottom picture the estimated field.

To improve this behaviour the algorithm should be improved for the multiple
anomaly: Before the classification starts, it can be tested if more than just one
structure is present in the data. For each detected structure such as circular structure
the algorithm can focus to the area: at the level 1 (corresponds with the 1

N
Vz) will

be detected the lowest shape. Than from the original field will be extracted a square
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containing just this structure. This part of the field will be processed separately.
The same can be done for the parallel line detection: when several pairs of parallel
lines are detected, at the level 1 will be detected the appearance of the line and
again the area will be extracted from the original field and processed separately.

The current version of the algorithm also presumes that the input contrast den-
sity of objects in the model is either positive for all the objects or negative for all the
objects. It means that all the input data are either positive or negative values for
the whole area. If the input model would be created with bodies with both positive
and negative contrast density the input data field could contain both positive and
negative values and the normalization procedure would deform the structures.

To prevent such situation, for the future implementation it is planned to detect
at the beginning if the input data field contains both positive and negative values.
If yes, the whole datafield would be shifted to have only positive values.

Figure 3.21: The multiple anomaly body - the separation of objects in slices.

This part of algorithm is not yet implemented in the main application but it
was tested in the development GUI. The algorithm now can detect several objects
in the slices and can propose how the original area should be divided to focus
to separate anomalies in detail. The different anomaly body separation is based
on the application of Matlab function bwlabel. The output of the function is a
matrix containing numbers identifying the separate structures. This matrix is used
to propose the new areas of detection.

When the multiple body anomaly separation will be finished, it will be added to
the original algorithm and its general schema will modify according the Figure 3.22.
The orange box is the part of the algorithm where the detection of multiple body is
realized. The most significant anomaly is detected and the algorithm in the next step
focuses to a new updated area. The whole process is repeated, including the data
normalization to get a new set of slices focused to the second object. This process
should be repeated for all the shapes detected at the first run of the algorithm.

The algorithm should detect the position of the anomalies and should classify
the type of the anomaly. The depth estimation uses only the structural geometrical
information measured in the image and therefore the depth should be estimated
with the same accuracy as it is estimated for single anomaly model. The total mass
estimation depends also on the value of (Vz)max. Therefore the mass will never be
estimated with high precission for the multiple anomalies.
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Figure 3.22: The fast scan algorithm updated to detect multiple bodies.

3.3 Anomaly type classification with supervised
machine learning

The anomaly type classification described in the previous sections can be done only
when an equation defining the anomaly field is available. For the more compli-
cated anomaly body, such as the rectagonal prism, such classification is unreachable.
Therefore it was also tested, if a classifier based on the supervised machine learning
can be used.

A lot of types of classifiers appeared in last years (see for example a brief reference
in [17]). A supervised machine learning is a process where the machine is trained
using the input data vectors containing the input features and the output value. In
our application, the input values is the information about detected structures and
its parameters (number of lines, line angles, line distances, circle radiuses etc.). The
output value is the anomaly type. The output of the machine learning process is
in this case a function called classifier which is used to predict the output value for
unknown set of features.

With the set of inputs xN and outputs yM the classification function f should
convert the input space X to the output space Y . The function f is mostly based
on probability and statistics models. Based on the f type, the classifiers are usually
divided into following groups:

• Decision trees: this type of classifier is very close to the fast scan classifier
presented in the previous section. The decision tree creates a tree structure.
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The nodes of the tree contain the input features, the leaves of the tree contain
the output values. In the node, the input feature are tested and according
to the result of the test the decision process selects a next node or a leave.
The learning process has to set the test levels to have the best classification.
Decision trees are simple classifiers, the learning process is fast, it can be easily
implemented and the implementation is not demanding a lot of memory.

• Discriminant analysis assumes that different classes generate data based on
different Gaussian distributions. To train a classifier, the fitting function esti-
mates the parameters of a Gaussian distribution for each class. The learning
process is fast, memory usage depends on the fitting function - if a quadratic
function is used, the classifier may need a lot of memory.

• Support vector machines (SVM) classify the data by finding the best hyper
plane that separates data points of one class from those of the other class. The
best hyper plane for an SVM means the one with the largest margin between
the two classes. Margin means the maximal width of the slab parallel to the
hyper plane that has no interior data points. Compared to previous classifiers,
the SVM is slower and it needs more memory, the implementation can be hard
for nonlinear SVM types.

• Nearest neighbor classifiers (KNN): the idea is based on the idea that
categorizing query points based on their distance to points (or neighbors) in
a training dataset can be a simple yet effective way of classifying new points.
Various metrics can be used to determine the distance. Given a set X of n
points and a distance function, k-nearest neighbor (kNN) search finds the k
closest points in X to a query point or set of points. kNN-based algorithms
are widely used as benchmark machine learning rules (see [4] for details). The
classifier needs a lot of memory, the implementation is hard.

Three versions of the decission tree architecture were used: with maximal number
of splits set to 4, 20 and 100. All the trees used the Gini index (see [10] for details).
The discriminant analysis succeeded only in the case of linear discriminant. Six
types of the SVM were tested: with the linear, quadratic and cubic kernel function
(3 types) and three different sizes of the Gaussian kernel (1.9, 7.6, 30). Finally five
types of KNN classifiers were tested: the KNN with Euclidean metrics and maximum
amount of neighbours set to 1, 10 and 100, the KNN with cosine metrics and 10
neighbours, the KNN with cubic metrics and 10 neighbours (see 4.9 for details).

To test the usability of the supervised machine learning and described classifiers,
the output table of the fast scan algorithm was used. The data preprocessing was
the same - the data were normalized and converted to a set of binary black and
white images. The linear and circular structures were searched in the data. As the
input vector were used all the structure describing parameters, the output vector
was the initial type information.

The whole statistics reporting the accuracy of the classification on the selected
training data sets is presented in the Chapter 4 together with other results.
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Several types of classifiers reached better accuracy of classification than the orig-
inal fast scan classifier. But the advantage of the fast scan classifier is its ability
to estimate other anomaly parameters, such as the depth, mass and location of the
anomaly. The advantage of the machine learning is a possibility to train the classifier
to detect another anomaly type such a rectangular prism.

The given example cannot get dramatically better achievements compared to the
fast scan classifier, because it uses the information about the structures identified in
the data. The fast scan algorithm fails in the anomaly detection when it is located
close to the border of the area - in this case the circular structures are not correctly
identified.

The reliability of classification should increase if the classifier would extract such
information directly from the image. In this case, each of the pixels in all the black
and white slices can be understood as a feature. If all the slices pixels are converted
into one vector, it gives a vector of 100×100×9 = 90000 features. The vectors were
created, labeled and stored in one table. Unfortunately, the Matlab environment is
not able to use this table to train the classifiers because of the lack of memory. The
tests were done on the laptop Lenovo ThinkPad X220 with 8 GB of RAM.

The Matlab is able to keep the table in the memory but it is not able to parse
the table for the classifiers learning environment. One of the plans for the future
research is to use the Python and its libraries to implement the selected classifiers
and to run the classifier training in the cluster with more RAM.

3.4 Fast scan with ANN

Deep neural networks, pioneered in works of Yann LeCun and Geoffrey Hinton,
changed and improved the state-of-art in many fields of machine learning. In 2012
Krizhevsky et al. ([18]) proved that deep convolutaional neural networks (CNN)
can be trainend as very efficient mage classfiers. From then many other papers were
published and CNN become the standard solution for image classification problem.

Convolutional neural networks are enhancement of ordinary Neural Networks.
The input is an image and the network architecture preserves some important image
features. Typical convolutional network consist the input layer, several convolutional
layers, RELU activation layers, pooling layers and finally one or more fully connected
layers as the output. The output layer contain the class score for each image. More
information about CNN can be found in [37].

As the original idea of the research was to process the geophysical data as im-
ages the CNN architecture was selected to test if it is capable of anomaly type
classification.

3.4.1 The implemented ANN

The final network architecture for the experiment consist of two convolutional layers
and one fully connected layer. Compared to the last published architectures it may
look too simple, but as the results shows, it is good enough for presented case. The
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first convolutional layer has 128 filters of 7 × 7 pixels size with stride 1 × 1. Then
there is the RELU activation layer, and the MaxPool layer with stride 2× 2. After
the pooling layer, the data are reduced from 100× 100 to 50× 50 shape. Then the
second convolutional layer with 256 filters of 5 × 5 size with strided 1 × 1. And
once again RELU and MaxPooling. Then there is fully connected layer with 1024
neurons On this layer we used dropout 40 % to prevent overfitting. Last part of the
network is the readout layer that classify the data to final class.

For the training 10000 of samples of each anomaly type generated with the
algorithms described earlier were used. At first 1000 samples was randomly selected
as a test and put it out of the training data. Each remaining sample was first
normalized using L2 norm and then two new copies with vertical and horizontal flip
of each sample were created. Using this simple data augmentation method 72000
samples was recieved for training and 15000 samples for the validation during the
network training.

For the implementation of CNN we used the TensorFlow1, the open source
machine learning library written in Python. Minibatches of size 100 and three
epochs of training were used. That means that the network saw each data sample
three times. Average training time on Nvidia K5200 GPU was aproximately 20
minutes.

3.5 Monitoring process with structure detection

The section 2.2 gives the definition of the input task for the monitoring process.
The input consists of the model seismical data generated from a set of sources and
recorded in the set of recievers. The alogirthm should detect any temporal significant
temporal change in the data. The configuration of the model and example of the
input data is given in the Section 2.2.

The application of the fast scan algorithm in the domain of processing the seis-
mical data during the monitoring process have one big limitation: The original fast
scan algorithm uses a forward model to compute the anomaly candidates because
the gravity models are very simple and can be fastly computed.

This part of the classifier has to be modified and solved in a different way. One
of the possible solution is to precalculate the accepted anomaly situations and to
compare the original field with the precalculated data set. The precalculated data
can be also used to train a simple classifier. When this thesis is prepared to being
published the research is still under process.

The available data models were sampled and converted to black and white figures
to estimate the difference between the data. The situation is depicted in the Figure
3.23. On the left side of the image the original input data are presented. On the
left side is the model of the tunnel with zero water saturation, on the right side
is the tunnel with the high water saturation called wet model. The picture selects
the information from the 30th source. The presented waveforms are detected in the
10th, 20th,... 100th reciever.

1https://www.tensorflow.org/about/bib
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Figure 3.23: The footprint of the dry tunnel in the seismics data (left) and thresh-
olded data (right).

The normalized, morphed and sliced data are presented in the right part of the
figure in the same order: first is the dry model, second is the wet model. The
presented slice (30 % of the maximum) is selected as the best illustration of the
tunnel footprint in the data. The footprint is visible for the dry tunnel, for the wet
tunnel it cannot be detected as the wave propagation in the tunnel is very close as
in the surrounding rock.

The typical footprint of the dry tunnel is the structure behind the first arrival
wave – the focused and thresholded structure is depicted in the Figure 3.24 - the
wet tunnel have no footprint (left side), the dry model have typical arcs (right side).
The figure uses a different level of thresholding and the different source than the
examples in the figure 3.23, therefore the shape of the footprint is different.

Figure 3.24: The difference between the wet and dry model after the preprocessing.

One of the ideas for the monitoring process is to scan the data for any footprint
appearing after the first arrival because the typical mode of operation of the tunnel
is the wet model. The structure of the footprint cannot be estimated in advance
but typically it will be present as a separate structure after the first arrival. If more
than one main arc is detected in the data, it maybe the abnormal condition of the
repository. So the classifier may use just two labels: N for the normal operation and
the A for the anomaly situation.
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The thresholded and binarized footprint of the dry tunnel contains more than
just one object. The detection of the footprint therefore can be based on the object
detection and separation. The Figure 3.25 illustrates the separation of the objects
in the data based on the Matlab bwboundaries function.

Figure 3.25: The separation of the objects in the footprint - wet tunnel (left) and
dry tunnel (right).

The shape of the tunnel footprint depends on the source location. The footprint
itself is the most expressive in the data from the sources located directly close to
the tunnel. The real monitoring application will not have such amount of sources
but just one or a few and its location will be important for the detection.

Preprocesing Normalization Thresholding Object 
separation

Decision Tree 
based 
Classifier

Block output:
Set of preselected 
matrices

Block output:
Set of normalized 
matrices

Block output:
9 binary images

Block output:
Number of detected 
objects, shape and 
location

Block output:
Data label A/N

Figure 3.26: The proposed structure of the updated Fast scan algorithm.

The footprint will be present in the data when the humidity of the tunnel will
move down. The current plan for the research is to create more models of the tunnel
with different water saturation, to extract the footprints, to count the objects and
to train the classifier.

The modified fast scan algorithm will use the information about the detected
objects in the slices, its location and size as the main input information. The initial
model of the clasifier was set to simple decission tree because the data set seem to
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be really separated. Because of the lack of examples the neural network will not be
used.

The detection of an arc in the waveform data with the Hough transform was
already tested for the GPR data ([21]) and it may be tested also for this application.
The classification of the normal and anomal operation will be based on the number
of the arcs presented in the image. The advantage of the arc detection is the future
possibility of the interpretation by measuring the arc parameters. The algorithm
again will use the same preprocessing with data normalization and thresholding.

The whole proposed scheme for the updated fast scan algorithm is depicted in
the figure 3.26. The initial block called Preprocessing selects from the original cube
of data the significant matrices containing the data from the sources located close to
the tunnel. Next steps are the Normalization when the seismics data are converted
to image and Thresholding where the one input image is converted into the set of
slices as it was done in the Fast scan algorithm. The next step is the counting of the
objects in each of slices, setting the centers of the detected objects and estimating
the shape of the object. The Hough transform here can be used to detect the arcs
and measure its parameters. The last step of the algorithm is the classifier with two
ouptut labels.

The blocks depicted in the Figure 3.26 are already implemented as standalone
functions. The next steps of the research is to connect all the block, to create the
final application and to test it with the bigger data set.

As for the fast scan development algorithm a simple GUI in Matlab was created
to help with the initial data processing and optimal algorithm selection (Figure
3.27).

Figure 3.27: The development GUI for the data preprocessing.
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4 The Achievements

This chapter contains all the outputs of the tested algorithms. The presented results
were obtained with several anomaly models, all the data sets and detailed results
are available on the attached DVD. To get the final statistics for the gravity data
and the fast scan algorithm, following data sets were used:

1. Test set 01 – ideal models data with no additional noise, 1000 spheres, 1000
vertical cylinders, 1000 horizontal cylinders.

2. Test set 02 – ideal models with low noise data with additional noise, level 40
dB, 1000 spheres, 1000 vertical cylinders, 1000 horizontal cylinders.

3. Test set 03 – ideal models with high level noise data with additional noise,
level 20 dB, 1000 spheres, 1000 vertical cylinders, 1000 horizontal cylinders.

4. Test set 04 – ideal models mixed with false data consists of 100 spheres, 100
vertical cylinders, 100 horizontal cylinders, 100 cubes, 100 random data and
200 false anomalies.

The data sets were created using the models decscribed in the Section 2.1.1
with the script get data.py. The changeable parameters such as the depth of the
anomaly body, the surface location and the total mass were for each model generated
randomly from the intervals defined in the Table 2.3.

The first three data sets were used to test the classifier ability classify correctly
the anomaly type and its parameters. The last data set was used to test, if the
classifier is able to set correctly the unknown anomaly body. To train the classifiers,
the data set 01 and 04 was used.

The test set 04 was used to verify, if the classifier labels correctly only the data
containing any real anomaly model. Therefore another set of mathematical functions
were used to create similar data with no real geophysical model. The idea was to
create the data looking similar to the anomaly models – a data field with one peak
which creates concentric circle structures in thresholded black and white slices of
data.

For the first part of the false data, the Equation 2.2 was used with the wrong
q and F factors. The defining functions for the two types of tested false data (f1
and f2) are given in following equations. The r factor is the surface distance from
the anomaly center, the M is the total mass, the z is the depth and the G is the
gravitational constant.
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f1(r) =
GMz

(r2 + z2)2
(4.1)

f2(r) =
GM

(r2 + z2)4
(4.2)

The tests done with the neural network were done with the data set similar to
data set 01. It was generated using the same Python script as the data set 01, only
the total number of samples is set to 10 000 to have enough data for the network
training.

4.1 Fast scan based on structure detection

4.1.1 Anomaly type classification

The input data set was labeled using 3 labels: HC for horizontal cylinder, S for
sphere, VC for vertical cylinder in data sets 01, 02 and 03. In the data set 04,
according to the anomaly types included in the data, were added the labels N for
completely random data, C for cubes, F2 and F4 for false data with the q factor set
to 2 (f1 in the 4.1) or 4 (the f2 in the 4.1). The classifier itself uses four labels: HC,
S, VC and O for all the unclassified data. Ideally, the input labels N, C, F2 and F4
should be in the output labelled as O.

The results are depicted at first in tables as confusion matrices. Each row of the
tables shows the number and percents of correctly classified anomalies (green cells)
and incorrectly classified anomalies (red cells). Each input label has its own row.
The number of columns is given by the number of the output labels of the classifier.
The confusion table for the data set 01 is presented in the Table 4.1, the data set 02
in the Table 4.3, the data set 03 in the Table 4.4 and finally the confusion matrix of
data set 04 is in the Table 4.7. All the presented confusion matrices in this section
contain both numbers of observations and percents.

Detected Type

HC S VC O

Input Type HC 976 (97.6 %) 0 0 24 (2.4 %)

S 1 (0.1 %) 547 (54.7 %) 304 (3.4 %) 148 (14.8 %)

VC 2 (0.2 %) 0 671 (67.1 %) 327 (32.7 %)

Table 4.1: Confusion Matrix, Test set 01.

What is very noticeable in the first demonstrated classifier output presented in
the Table 4.1 is the fact that a lot of spheres were misclassified as vertical cylinder.
With deeper look to the classifier output it is significant that the |∆E| value the
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difference in distance of the estimated spherical and vertical cylinder fields from the
original field is always very low in the case of misclassified sphere - |∆E| is from the
interval (1.87× 10−7 − 7× 10−4). In the case of the real vertical cylinder, the |∆E|
is from the interval (0.006− 0.92).

Therefore the classifier was updated to avoid the misclassification of the spheres.
The new criterion was added to the classifier: if |∆E| < 0.001, the anomaly is always
classified as a sphere. The Table 4.2 contains confusion matrix for updated classifier.
All the following results were obtained with updated classifier with the ∆E check
switched on.

Detected Type

HC S VC O

Input Type HC 979 (97.6 %) 0 0 24 (2.4 %)

S 1 (0.01%) 851 (85.1 %) 0 148 (14.8 %)

VC 2 (0.02%) 2 (0.02 %) 669 (66.9 %) 327 (32.7 %)

Table 4.2: The data set 01, with noise filter on, with the ∆E check on.

For the unclassified spheres it is typical that the main peak of the input field is
located close to the border of the image and the circle structures are not detected
as circles. It means that one of XPos or the Y Pos value is outside the interval
(15, 85). The 85 % of unclassified spheres were mispositioned this way. Rest of the
unclassified spheres were too small (the Radius < 3m) or too close to the surface
(d < 3m).

The worst results were obtained for the vertical cylinders, 32.7 % was not cor-
rectly classified, because not enough circle structures was detected in the pictures.
The situation is quite analogical to the sphere classification. The peak of the
anomaly field is more flat compared to the spheres and therefore more structures
remain undetected. When the classifier output was analyzed, it was found that for
the 80 % of the unclassified vertical cylinders were located close to the border of the
area – the XPos or the Y Pos value was outside the interval (16, 84).

In the case of vertical cylinder classification is also important the depth of the
anomaly body. If the vertical cylinder is located far from the area border and it is
not classified correctly, mostly it is located deeper than 25 meters, the majority was
lower than 40 m as it is depicted in the histogram in the Figure 4.1. The Figure
4.2 shows the error of the detection as a function of the anomaly body depth. The
mispositioned unclassified models were removed to demonstrate that with increasing
depth the reliability of classification goes down. For the selected density contrast the
critical depth is 30 m. Value 1 means correctly classified cylinder, value 0 stands for
the unclassified cylinder. This can be in the future improved by modification of the
structure detection part the same way as it is proposed for spheres: the algorithm
should detect not only the whole circle structures, but arcs as well.

If data are combined with the noise, the reliability of the classification goes down,
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Figure 4.1: The correctly located unclassified vertical cylinder and the input depth
of the anomaly.

Figure 4.2: The relation between the successfully anomaly classification and
anomaly depth for the vertical cylinder.
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even if the SNR is quite high as it is demonstrated in the Table 4.3 for the SNR
40 dB. The detection of horizontal cylinders is still good, the reliability of sphere
detection goes from 85 % to 75 % and 60 % of vertical cylinders remain unclassified.
The Table 4.4 shows that when the noise level increases, the classification reliability
falls dramatically down. The detection of the linear structures is still quite good,
only 8 % of models are not classified as the horizontal cylinder, because no lines are
detected in the data. In the case of spherical body, the reliability goes down from
85 % to 43 % and only 28 % of vertical cylinders are classified correctly.

The main reason is the uncertainty of the X and Y coordinates. Due to the noise
the detected circular structures have bigger variance in the position of the central
point and the circle radius. The vector of estimated values Vz at the borders of the
circle have also bigger variation and the depth parameter is set with less accuracy.
The estimated field at the end have biggest distance from the original field and the
algorithm can find a model of vertical cylinder which is closer to the original data.

Detected Type

HC S VC O

Input Type HC 945 (94.5 %) 0 0 55 (5.5 %)

S 0 848 (84.8 %) 0 151 (15.1 %)

VC 3 (0.3 %) 1 1 (0.01 %) 617 (61.7 %) 379 (37.9 %)

Table 4.3: Confusion Matrix, Test set 02, the noise was filtered using the Wiener
filter.

Detected Type

HC S VC O

Input Type HC 918 (91.8 %) 0 0 82 (8.2 %)

S 0 437 (43.7 %) 137 (13.7 %) 425 (42.5 %)

VC 0 0 280 (28.0 %) 720 (72.0 %)

Table 4.4: Confusion Matrix, Test set 03, the noise was filtered using the Wiener
filter.

The confusion matrix in the Table 4.5 shows the classifier output on data set 02
without the noise filters to demonstrate the importance of the noise filtering.

Even if the input consists of smooth data or data with the additional noise,
the algorithm detects the horizontal cylinder with high precision, worse results are
obtained for spherical anomalies and the worst result the algorithm gives for the
vertical cylinder anomaly. When the input data sets were analyzed, all the unde-
tected horizontal cylinders were located so close to the border of the modeled area
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Detected Type

HC S VC O

Input Type HC 944 (94.4 %) 0 0 56 (5.6 %)

S 0 748 (74.8 %) 0 252 (25.2 %)

VC 10 (1.0 %) 0 399 (39.9 %) 600 (60.0 %)

Table 4.5: Confusion Matrix, Test set 02, without the noise filtering.

Detected Type

HC S VC O

Input Type HC 899 (89.9 %) 0 0 101 (10.1 %)

S 0 270 (27.0 %) 137 (13.7 %) 592 (59.2 %)

VC 0 0 197 (19.7 %) 803 (83 %)

Table 4.6: Confusion Matrix, Test set 03, without the noise filtering.

that only one line structure remains in the data, as it was described in the Section
3.2.1, Figure 3.6.

4.1.2 The classifier and false data

All the above presented results were computed using the test sets 01, 02 and 03.
Those sets contain only valid data – a mix of real models of anomalies. Therefore
another data set was created. Random data were used to verify, that all the problems
described at circle structure recognition and parallel line recognition were solved
correctly (see the Figures 3.7, 3.9).

The cube model was used to have the model of the field with the peak, which
sometimes creates a circle like structures in the slices, sometimes it is presented
as pairs of parallel lines. Such model tests the precision of the circular structure
detection as well as the precision of the parallel line detection.

If the data slices contain a concentric circles, the algorithm should always try
to find a model of the vertical cylinder or a spherical anomaly. As the gravity
interpretation is an ambiguous task, a model which fits into proposed data may be
found anyway. Therefore the sets called False1 and False2 were created. As it was
expected, the algorithm really tries to fit a sphere or a vertical cylinder to such
type of input data. For the selected false data it is typical, that the proposed total
contrast mass of the anomaly candidate is small (typically just 1-10 kg per cubic
m).

So the algorithm has new optional parameter: a limit contrast mass which is
acceptable for the model of sphere and cylinder. The user of the algorithm should
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set this parameter according to accepted density contrast in the searched area and
according to the experience.

Table 4.7 presents the confusion matrix of data set 04, with the mass check
parameter switched on. The number of samples of each anomaly type was 100,
therefore only percents are written to the table, to omit duplicity values.

Detected Type

HC S VC O

Input Type HC 96 % 0 0 5 %

S 0 85 % 0 15 %

VC 0 0 69 % 31 %

N 0 0 0 100 %

C 0 0 0 100 %

F1 0 0 0 100 %

F2 0 0 0 100 %

Table 4.7: Confusion matrix for data set 04, Fast scan algorithm.

4.1.3 Anomaly location estimation

When the input data is labeled as S, VC or HC its parameters may be estimated.
At first the coordinates of the anomaly center ([X, Y ]) or the central line (given by
[X1, Y 1] and [X2, Y 2]) are estimated. Secondary the depth d is estimated and last
is the estimation of the total mass of the anomaly.

For the spherical body and vertical cylinder, the algorithm gives a set of central
points of detected circles at the data slices. The final values for [X, Y ] are set as
the median value of the vector of detected X and Y . The median works better than
a mean value, because typically the first detected circle is shifted from the original
position. The algorithm also checks, where is located the maximum value in the
picture and if the coordinate of the maximum value is close or identical with the
estimated [X, Y ]. The coordinates of the maximum value in the original data can
be used as the [X, Y ] only if there is no noise in the data. Otherwise, due to the
noise, the maximum point can be shifted from the anomaly center.

Figures 4.3 and 4.4 illustrate the precision of the detection of the central point
of the spherical anomaly for the smooth data without any noise. Both images show
the histogram of the difference between the input value and the estimated value.
The position of the anomaly is set with high precision, the bigger error appears for
models located very close to the image borders.

Figures 4.5 and 4.6 show the histograms for the XPos and Y Pos estimation for
the vertical cylinder.
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Figure 4.3: The histogram of the difference between the input XPos and the
estimated value, the spheres.

Figure 4.4: The histogram of the difference between the input YPos and the
estimated value, the spheres.
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What is interesting in all the Figures 4.3, 4.4, 4.5 and 4.6 is the fact that mostly
the XPos and Y Pos are set 1 point higher than the input value. It is caused by
the rounding prices during the XPos and Y Pos estimation.

Figure 4.5: The X coordinate estimation error, vertical cylinder anomalies, set 01,
the difference between the original and estimated value.

Figure 4.6: The Y coordinate estimation error, vertical cylinder anomalies, set 01,
the difference between the original and estimated value.

The evaluation of the accuracy of the determination of the central line is a little
bit more complicated. The input is given by 2 randomly selected points, the outputs
comes in the form of pair [rho, θ]. To first idea how to compare the position of both
lines, was to calculate the intersections of the input and output line with each the
axis x and y and compare it. For the input line, the X0in and Y 0in was computed
using the general line equation.

If the classifier finds a pair of parallel lines with the θ and rho1 and rho2 values,
the rho value of the central line is given by:
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rho = min(rho1, rho2) +
|rho1− rho2|

2
(4.3)

To set the X0out and the Y 0out, the Equation 3.10 of Hough transform was solved
with x set to 0 to get Y 0out and y set to 0 to get the X0out.

The comparison of the accuracy of estimating the intersection points is a good
idea, when the original line is not parallel or nearly parallel to the image border.
In such case even when the main line angle to the image borders is estimated with
good precision, the difference between the original and estimated intersection value
can be really high as it is demonstrated in the Figure 4.7. On the left in the image is
the standard situation with line not parallel to the border. On the right side of the
image is presented the situation when a small inaccuracy of the line angle estimation
leads to a big difference in the Y axis line intersections.

Figure 4.7: The similar precision of the angle detection, but differences in the
intersection estimation. The left side presents the situation where the estimation
error of the angle and intersection on the axis is similar. On the right side is depicted
the situation where even small error in line angle detection results in big difference
in original and detected intersection on the vertical axis.

Therefore if was finally implemented in reverse: for the input line the value of θ
and rho were calculated using the calculated pair [X0in, Y 0in]. The Equation 3.10
was used tto calcluate the θin and the rhoin using the substitution of intersection
points of the input line [X0in, 0] and [0, Y 0in] as it is demonstrated in the Equation
4.5 and the Equation 4.4.

θin = arctg
(
X0in
Y 0in

)
(4.4)

rhoin = X0incos
(
arctg

(
X0in
Y 0in

))
(4.5)

The precision of the θ and rho estimation is again illustrated using the difference
of the original and estimated value related to the original value (see Figures 4.8 for
the θ and 4.9 for the rho). As the rho value increases, the estimation error of θ
increases as well. The original input data set was sorted at first by the input θ value
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and second by the rho. The Figure 4.8 shows that the error of the θ estimation is
not related to the input theta value. When the parallel lines are detected, the θ is
always estimated with acceptable precision with average relative error 1.21 %.

Figure 4.8: The difference of the input and the estimated θ value as a function of
the input theta.

In the Figure 4.9 is the error of estimation distributed randomly. But if the
output data set is sorted by the input anomaly depth, one can easily see that the
error increases with the depth (Figure 4.10). The depth is not the only factor of
the rho estimation precision – the second factor is the total mass of the anomaly.
The worst results are obtained when the total mass is quite small and anomaly is
located deep under the surface. The detected lines are very close to each other, the
difference of estimated rho1 and rho2 is small and the total estimation error is high.
Compared to the rho, the θ estimation accuracy is depth independent.

The average relative error of the rho estimation for the presented data set is
15 %. When data samples with depth greater than 45 m are removed from the data
set, the average error is 11 %.
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Figure 4.9: The difference of the input and the estimated rho value as a function
of the input rho.

Figure 4.10: The difference of the input and estimated rho value estimation as a
function of depth.
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4.1.4 Anomaly depth estimation

Due to the rounding and the errors in the estimation of the XPos and Y Pos values
the estimated depth is never precise as well as the values of the vector rN . For all
the used anomaly bodies, the depth is always estimated lower than was the original
value. The table 4.8 summarizes the average relative error of the depth estimation.

Anomaly body Depth relative error

Sphere 21 %

Vertical cylinder 30 %

Horizontal cylinder 21 %

Table 4.8: The average depth estimation relative error.

For the detailed information about the precision of the depth estimation following
figures were inserted: Figure 4.11 shows the difference between the input depth and
the estimated value for the sphere as a function of the input depth value. Figure
4.12 shows the relative error of the depth estimation as the function of the input
depth value. Comparing the two figures one can easily see that the relative error of
the depth estimation is not related to the original anomaly body depth. The input
data models used the depth value from the interval of 1 m to 50 m.

Figure 4.11: The depth estimation error, spherical anomalies, set 01, the difference
between the original and estimated value.
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The relative error of the depth estimation increases, if the anomaly body center
is located close to the image border. When the Figures 4.11 and the 4.12 were
created, the output data table was sorted first by the relative error value, second by
the XPos value and third by the Y Pos value. The lowest relative error is obtained,
when XPos and Y Pos are located in the interval (15, 85), because in this case even
increases the error of the estimation of the values of XPos, Y Pos and the vector of
rN .

The described data sorting is the cause of the saw-like effect in the figures. The
higher frequency of the curve fluctuations is caused by the Y Pos values sorting, the
lower frequency of the curve fluctuation is set by the XPos sorting.

Figure 4.12: The depth estimation error, spherical anomalies, set 01, the relative
difference between the original and estimated value.

The histogram presented in the Figure 4.13 shows the histogram of the relative
error of the depth estimation of the sphere. The mean value of the error is 15 %.
Mostly all the anomalies with depth relative error estimation higher than 30 % are
located close to the original area border.

The depth estimation precision for the vertical cylinder is in general very similar
as it is described for the spherical bodies. The only difference is that the relative error
increases with the depth of the anomaly. The Figure 4.14 contains the difference
between the original and estimated depth for the data set 01. The Figure 4.15
contains the graph for the relative error of the depth estimation. The saw-like effect
is again presented in both the figures for the same reasons as it was described for
spherical bodies. The relative error is quite high at the border of the area when the
anomaly body depth is less than 20, and slightly increases as the depth is greater
than 40.
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Figure 4.13: The histogram of the depth estimation relative error, spherical anoma-
lies, set 01.

Figure 4.14: The depth estimation error, vertical cylinder anomalies, set 01, the
difference between the original and estimated value.
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In the Figure 4.15 it can be surprising that for the small depth the relative error
have noticeable fluctuation for the depth under 30 m and for the deeper located
bodies the relative error fluctuation is smaller. The accuracy of the depth estimation
depends on the anomaly body location. As it was described, when the anomaly is
located close to the area center the depth estimation have smaller relative error
compared to the body located at the border of the area.

Figure 4.15: The depth estimation error, vertical cylinder anomalies, set 01, the
relative difference between the original and estimated value.

The depth is estimated only when the input data set is labeled by the classifier
as S, VC or HC. It was already described that for the depth bigger than 30 m, the
reliability of the classifier is low and all the bodies located close to the area border
remain unclassified and the depth is not estimated at all. This is the reason of the
lower fluctuation of the relative depth estimation in the Figure 4.15 when the depth
of the anomaly body is greater than 30 m.

The histogram of the relative errors of the depth estimation for vertical cylinder
is presented in Figure 4.16. The median value of the relative error is very close to
the average value of the relative error. For the models where the relative error of
the depth estimation is greater than 40 % is typical the location close to the area
border as it was described for the sphere.

The fact that the depth of the sphere is estimated with higher precision may be
explained by the different nature of both anomaly bodies. The total mass of the
sphere is located very close to the anomaly center and therefore it can be estimated
with higher precision. The body of the vertical cylinder is modelled as semi infinite,
the gravity field is flatter and the circle structures have bigger radius and therefore
the circles are detected only at the sampling levels close to the maximum value. The
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rN vector contain less data and the error in the estimation of one of the values in
rN is therefore more significant than in the case of the spherical anomaly body.

Figure 4.16: The histogram of the depth estimation relative error, vertical cylin-
ders, set 01.

The average depth estimation relative error for the horizontal cylinders is 21 %.
The value is close to the relative error of the depth estimation of the sphere. The
shape of the field across the horizontally lying cylinder is similar as in the case of
the sphere. Therefore the sensitivity to the estimation of the rN values and the
central line position is similar. The difference of the input depth and the estimated
value is depicted in the Figure 4.17 and the relative error of the depth estimation is
presented in the 4.18.

Compared to the previous cases the depth to relative error dependency is differ-
ent. The relative error is greater when the body is located close to the surface or in
higher depth. The histogram of the relative depth estimation error is in the Figure
4.19. The median value of the depth estimation error is close to the mean value.

The first estimated parameter is the depth of the anomaly. The total mass
estimation precision depends on the precision of the depth estimation. For the
spherical bodies the dependency is cubical and for the other two bodies it is linear.
The estimated total mass using the formulas listed in the table 3.1 have the expected
relative error as it is demonstrated in the Figure 4.20 for the vertical cylinders. In
the case of other bodies, the results are similar.
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Figure 4.17: The depth estimation error, horizontal cylinder anomalies, set 01,
the difference between the original and estimated value.

Figure 4.18: The depth estimation error, horizontal cylinder anomalies, set 01,
the relative difference between the original and estimated value.
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Figure 4.19: The histogram of the depth estimation relative error, horizontal
cylinders, set 01.

Figure 4.20: The mass estimation error, vertical cylinder anomalies, set 01, the
difference between the original and estimated value.
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4.2 Anomaly type classification with supervised
machine learning

From the selected set of tested classifiers only a few of types were unsuccessful. The
determinant based classifiers failed in training and gave no outputs. The SVM with
the smallest Gauss kernel got the worst total reliability (49,1 %). Other types of
classifiers were able to classify the data with more than 95 % reliability.

The Table 4.9 summarizes what types of classifiers were used in the tests and
how the parameters of selected models were set.

General type Subtype Parameters

Tree Complex Maximum number of splits: 100, Gini index

Medium Maximum number of splits: 20, Gini index

Simple Maximum number of splits: 4, Gini index

SVM Linear Kernel function: linear, Kernel scale: automatic

Quad Kernel function: quadratic, Kernel scale: automatic

Cubic Kernel function: cubic, Kernel scale: automatic

FineGauss Kernel function: Gaussian, Kernel scale: 1.8

MediumGauss Kernel function: Gaussian, Kernel scale: 7.1

CoarseGauss Kernel function: Gaussian, Kernel scale: 29

KNN Fine Metrics: Euclidean, Neighbours: 1

Medium Metrics: Euclidean, Neighbours: 10

Coarse Metrics: Euclidean, Neighbours: 100

Cosine Metrics: Cosine, Neighbours: 10

Cubic Metrics: Cubic, Neighbours: 10

Table 4.9: The set of successfully trained classifiers.

The classifier outputs are labeled as S, HC and VC as each of the classifier models
uses only the labels from the input data. The Table 4.10 summarizes all the outputs
of the classifiers. The AVG column stands for the average value of reliability, the
other columns contain reliability of the classification of corresponding labels.

Compared to the Fast scan classifier, the results of the standard machine learning
classifiers are better. The disadvantage is that such type of classifier is not able to
estimate the anomaly parameters. The robustness of the classification of all the
models should be tested using the false data together with the real anomaly models.

Because all of the trained models have very similar reliability, the selection of
the model should be done regarding the algorithm memory consumption and im-
plementation complexity. The less memory consuming type of the classifier is the
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Type Subtype HC S VC Average

Tree Complex 99.80 % 99.40 % 96.20 % 97.3 %

Medium 99.80 % 97.00 % 95.40 % 97.4 %

Simple 98.80 % 86.00 % 99.60 % 94.8 %

SVM Linear 99.20 % 95.00 % 96.80 % 97.0 %

Quad 99.20 % 95.80 % 96.20 % 97.1 %

Cube 98.80 % 95.40 % 95.20 % 96.5 %

FineGauss 97.00 % 16.00 % 34.20 % 49.1 %

MedGauss 97.80 % 94.40 % 96.60 % 96.3 %

CoarseGauss 98.60 % 89.20 % 99.20 % 95.7 %

KNN Fine 99.60 % 96.00 % 93.40 % 96.3 %

Medium 98.80 % 97.00 % 91.40 % 95.7 %

Coarse 99.00 % 91.00 % 91.80 % 93.9 %

Cosine 99.00 % 96.80 % 92.40 % 96.1 %

Cubic 98.80 % 97.40 % 91.60 % 96.0 %

Table 4.10: The final accuracy obtained with data set 01.

decision tree, which is also easy to implement. As the Complex Tree and Medium
Tree gives nearly the same result, the best is to select the Medium Decision tree.

The original fast scan classifier may be updated to combine the best of both
approaches. The anomaly classification will be done by one of presented machine
learning classifiers. When the anomaly type is set, the parameters shall be estimated
using the methodology of the fast scan classifier.

The classification Learner application in Matlab was tested also using the data
set 04 to see if the classifiers are able to distinguish the real model from the false
models. The reliability of classification went down as it is demonstrated in the Table
4.11.

The results for the data set 04 are worse if compared with the accuracy of the Fast
scan classifier. Partly it is caused by a small data set (only 100 of examples for each
anomaly type), but mostly it shows that the posibilites of the Matlab Classification
Learner application are limited. The results presented for the data set 04 open a
hypothesis that in the case of real application, the Fast scan classifier can work with
higher accuracy and with the posibility to estimate the anomaly parameters.

For the future research again it should be tested, how the classifier would work
with the different output created only by the black and white thresholded images
as it is described in the Section 3.3. The learning process will demand a lot of
RAM and other computer resources, but final model can be very accurate and the
implementation can run fast.

The output of the Matlab Classification Learner consist only of confusion matri-

83



Type Subtype HC S VC 0 Average

Tree Complex 96 % 40 % 63 % 95.25 % 82.9 %

Medium 95 % 36 % 62 % 92.5 % 80.4 %

Simple 95 % 0 % 72 % 96 % 78.7 %

SVM Linear 98 % 32 % 69 % 95.75 % 83.1 %

Quad 97 % 48 % 81 % 96.5 % 87.4 %

Cube 97 % 50 % 70 % 96 % 85.9 %

FineGauss 74 % 15 % 21 % 99.5 % 72.6 %

MedGauss 99 % 28 % 78 % 98 % 85.3 %

CoarseGauss 98 % 0 % 67 % 98.25 % 79.7 %

KNN Fine 89 % 47 % 69 % 94.5 % 83.3 %

Medium 88 % 16 % 58 % 95.5 % 77.7 %

Coarse 87 % 0 % 34 % 99 % 73.9 %

Cosine 90 % 16 % 63 % 95.25 % 78.6 %

Cubic 88 % 20 % 60 % 93.5 % 77.4 %

Table 4.11: The final accuracy obtained with data set 04.

ces and the parameters of the finally obtained classifiers parameters. Therefore no
detailed study which types of anomalies were classified incorrectly regarding to their
location or other parameters such as depth or mass. It would require to implement
all the trained classifiers into the original Fast scan algorithm to get similar tables
with results.

4.3 Fast scan with ANN

Detected Type

HC S VC

Input Type HC 310 (97 %) 0 10 (3%)

S 0 360 (100.0 %) 0

VC 0 (0.3 %) 10 (3 %) 310 (97 %)

Table 4.12: Adaptive neural network, Confusion Matrix, Test set 01.

The convolution neural network (CNN) described in the Section 3.4.1 was tested
with the extended data set 01 as it is described in the Section 3.4.1. The neural
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network classifies the data into three groups: HC, S and VC. The obtained accuracy
of the clasiffication is the best of all the tested classification methods – see the
confusion matrix in the Table 4.12.

The ANN implementation was finished in the last phase of the presented research
and only limited results are available as the CNN implementation was complex and
required more time than it was intially planned. All the tests of the implemented
CNN shows that the network gives the best classification results. The network will
be tested also with other types of input data (noise corputed data and false data).
In fact, the complexity of the CNN implementation is far from the original research
idea to find a fast algorithm capable to be implemented on limited hardware.
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5 The Summary

The inspiration for the presented research was the idea to speed up the disaster re-
covery operation with the geophisical survey. The research was to verify if computer
vision and machine learning techniques can be applied in the field of semi automated
processing of the geophysical data.

After an initial research of the current state of the art in the related research
the Fast scan algorithm was proposed, implemented and tested using synthetical
gravity data. The reference tests with the supervized machine learning and a set
of classifiers were realized. To test the suitability of the application of the neural
network, in cooperation with the research partner the convolutional neural network
was implemented, trained and tested.

The research was mainly focused to detect a footprint of the anomaly in the
synthetical gravity data. The research was later included into the Modern2020
project and the algorithm is now being rearranged to detect the abnormal situations
in the seismical data.

The proposed fast scan algorithm is capable of anomaly classification and it
can also estimate the anomaly parameters. It was deeply analyzed which type of
anomaly is classified incorrectly and when and why the model parameters are not
estimated with high precission. The best classification results were obtained with
the convolutional neural network. The standard classifiers can also be trained to
classify the anomaly type with acceptable precission. The second phase includes the
other potential field methods.

It was tested that the reliability of the classification depends on the input data
set. The proposed Fast scan classifier was tested if it can distinguish the searched
anomaly model from the similar field with no real physical meaning.

The output of the research is the source code of the Fast scan classifier, the
source code of the development GUI and all the input data.

In the conclusion it can be said that the main task of the thesis is filled. All the
tests and developed software demonstrate that the geophysical data can be inter-
preted using the computer vision and machine learning. The future development of
the Fast scan algorithm should focus in the first phase to the different anomaly types
(the sloped cylinder, the cube) and to finalizing the preprocessing part responsible
for the detection of multiple anomaly body.

The current version of the algorithm cannot be yet applied to the real applica-
tion as it is fixed to the simple geometry bodies. For the real application the real
accepted anomalies should be modelled and the classifier should be trained to the
real application data as it is now done in the Modern2020 project.
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7 Attachments

The attached DVD with source codes contains the electronic version of this docu-
ment and all the sources used to get the published results. The content of the CD
is organized in following folders:

• The folder gravity input data contains scripts used to get the gravity anomaly
models. All the scripts were written using Python, the folder structure is
described in the readme file. The main file is called get data.py, the grav-
ity anomaly defining functions are defined in the file gravity.py. The data
sets used to test the algorithm are attached as well in this folder. The main
get data.py file has a lot of parameters for the target data set, the parameters
are described in the readme. The folder also contains all the datasets described
in the Chapter 4.

• The folder gravity classifier contains scripts used to define the fast scan
classifier, the folder structure is described in the readme file. The classifier
was implemented in the Matlab 2017 R2 environment. The folder structure is
described in the readme file located in the root folder.

• The folder development gui contain the source code of the fast scan classifier
development GUI. The folder structure is described in the readme file located
in the folder.
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