TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA TEXTILNÍ

DIPLOMOVÁ PRÁCE

LIBEREC 2010

VLADIMÍRA PECHOVÁ

TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA TEXTILNÍ

Studijní program: N3108 Průmyslový management Studijní obor: Management jakosti

Textilie pro speciální střešní konstrukce

The Textiles for the Special Roof Construction

Vladimíra Pechová

KHT - 021

Vedoucí diplomové práce: Ing. Jindra Porkertová Konzultant diplomové práce: Ing. Miroslava Maršálková, Ph.D.

Rozsah práce:

Počet stran textu... 58 Počet obrázků...... 43 Počet tabulek...... 5 Počet stran příloh . 52

Zásady pro vypracování:

- Proveďte literární rešerši na téma výroba, vlastnosti a použití speciálních textilií pro použití v architektuře.
- 2. Stanovte mechanické vlastnosti těchto textilií včetně testů různých typů spojů.
- 3. Navrhněte experiment pro testování pevnosti a tažnosti vzorků v různých klimatických podmínkách.
- 4. Experiment vyhodnoť te a proveď te diskuzi výsledků.

Prohlášení

Byl(a) jsem seznámen(a) s tím, že na mou diplomovou práci se plně vztahuje zákon č. 121/2000 Sb., o právu autorském, zejména § 60 – školní dílo.

Beru na vědomí, že Technická univerzita v Liberci (TUL) nezasahuje do mých autorských práv užitím mé diplomové práce pro vnitřní potřebu TUL.

Užiji-li diplomovou práci nebo poskytnu-li licenci k jejímu využití, jsem si vědom povinnosti informovat o této skutečnosti TUL; v tomto případě má TUL právo ode mne požadovat úhradu nákladů, které vynaložila na vytvoření díla, až do jejich skutečné výše.

Diplomovou práci jsem vypracoval(a) samostatně s použitím uvedené literatury a na základě konzultací s vedoucím diplomové práce a konzultantem.

V Liberci dne 11. 5. 2010

.....

Podpis

Poděkování

Touto cestou bych velice ráda poděkovala Ing. Jindře Porkertové za cenné rady a připomínky při zpracování této diplomové práce a Ing. Miroslavě Maršálkové, Ph.D., za přínosné odborné konzultace.

Dále mé poděkování patří firmě Kontis Praha, s. r. o., především Ing. Lubomíru Konečnému za věnovaný čas a poskytnutý materiál.

V neposlední řadě bych také ráda poděkovala mé rodině za trpělivost a podporu po dobu mého studia.

Anotace

Tato diplomová práce se zabývá studií textilií používaných pro speciální střešní konstrukce v textilní architektuře firmou Kontis Praha, s. r. o.

V teoretické části je čtenář seznámen se základními pojmy týkajícími se technických textilií, textilní architektury, specifikací používaných materiálů pro tuto stavební technologii a současnou nabídkou vyráběných materiálů dodavatelů firmy Kontis Praha, s. r. o. Dále se zabývá výrobou povrstvených textilií, jejich konfekčním zpracováním a degradací těchto materiálů vlivem povětrnostních podmínek.

V experimentální části je provedeno testování dvou povrstvených textilií odlišných použitou výrobní technologií a jednoho materiálu netextilního charakteru v podobě průhledné fólie. U vybraných materiálů byl zjišťován vliv různých klimatických podmínek – chlad, teplo a UV záření na jejich mechanické vlastnosti a vliv UV záření na jejich špinivost. Dále byly porovnány mechanické vlastnosti různých typů spojů provedených různou technologií spojování. Naměřené hodnoty byly graficky zpracovány a vyhodnoceny.

Klíčová slova

- Technické textilie
- Povrstvené textilie
- > Architektura
- Pevnost tahu
- Tažnost

Annotation

This thesis engages in the study of textiles that are used for the special roof construction by the firm Kontis Praha, s. r. o. in textile architecture.

In the theoretical part, the reader is got acquainted with the key words. The key words concern the technical textiles, the textile architecture, and the specification of the used materials for this building technology and a current offer of manufactured materials of the suppliers of the firm Kontis Praha, s. r. o. Further, the theoretical part engages in the production of coated textiles, their ready-made elaboration and it also engages in degradation of these materials by the effect of the windy conditions.

In the practical part, there is implemented the testing of two coated textiles which are different because of using another manufactured technology and one material that are not textile. This material is in the form of transparent sheet. There was investigated the effect of the various climatic condition such as cold, warm and UV radiation on their mechanical properties in choice materials. It was found the effect of UV radiation on dirt collection of testing materials. Further on, the mechanical properties of different kinds of connections made by several technologies of connection were compared. Finally, the measured values were worked up graphically and evaluated.

Key words

- Technical textiles
- Coated textiles
- Architecture
- ➤ Tensile strength
- ➢ Elongation

Obsah

SEZNA	AM POUŽITÝCH ZKRATEK, JEDNOTEK A VELIČIN	9
ÚVOD		10
1 T	ECHNICKÉ TEXTILIE PRO ARCHITEKTURU	12
1.1	Technické textilie	12
1.2	Textilní architektura	12
1.2.1	Materiály pro textilní architekturu	
1.2.2	2 Použití textilní architektury	13
1.2.3	B Projektování staveb textilní architektury	
2 K	ONTIS PRAHA, S. R. O	14
2.1	Ferrari	15
2.1.1	Výrobní sortiment	15
2.1.2	2 Materiály pro architektonické aplikace	15
2.1.3	3 Technologie Précontraint [®]	15
2.2	Sattler	16
2.2.1	Výrobní sortiment	16
2.2.2	2 Materiály pro architektonické aplikace	17
3 P	OVRSTVENÉ TEXTILIE	
3.1	Výroba povrstvených textilií	
3.1.1	Materiál pro výrobu podkladové tkaniny	
3.1.2	2 Konstrukce podkladové tkaniny	19
3.1.3	3 Materiál pro povrstvování podkladových tkanin	19
3.1.4	Výrobní technologie povrstvování podkladových textilií	
3.	1.4.1 Natírání	21
3.	1.4.2 Kašírování fólií	21
3.	1.4.3 Kašírování taveninou	
3.	1.4.4 Nánosování	
3.1.5	5 Lakování	
3.2	Konfekční zpracování povrstvených textilií	
3.2.1	l Šití	
3.2.2	2 Lepení	
3.2.3	3 Svařování	

3.3	D	egradace povrstvených textilií	24
3.3	8.1	Ultrafialové záření	25
3.3	8.2	Zjišťování degradace materiálů	26
4	EXI	PERIMENT	27
4.1	N	ávrh experimentu	27
4.2	S	pecifikace zkoušených materiálů	29
4.3	Μ	lěřicí přístroje	30
4.3	8.1	TIRA test 2300	30
4.3	8.2	Horkovzdušný sterilizátor HS 122 A	30
4.3	3.3	Lednice s mrazicím boxem	31
4.3	8.4	Šedá skříň s UV zářičem	31
4.3	8.5	Spectraflash SF600	32
4.3	8.6	Zkrápěcí zařízení	32
4.3	8.7	Rastrovací elektronový mikroskop VEGA TS 5130	33
4.4	Z	jišťování mechanických vlastností za různých podmínek	34
4.4	I.1	Stanovení mechanických vlastností	34
4	4.4.]	1 Příprava zkušebních vzorků	34
4	4.4.]	.2 Měření	35
4	4.4.]	.3 Výsledky měření a jejich vyhodnocení	36
4.4	1.2	Mikroskopické pozorování místa porušení při tahové zkoušce	42
4	4.4.2	2.1 Příprava zkušebních vzorků	42
4	4.4.2	2.2 Měření	42
4	4.4.2	2.3 Výsledky měření a jejich vyhodnocení	43
4.5	Z	jišťování vlivu UV záření na špinivost	46
4.5	5.1	Příprava zkušebních vzorků	46
4.5	5.2	Měření	47
4.5	5.3	Výsledky měření a jejich vyhodnocení	47
4.6	Z	jišťování mechanických vlastností různých typů spojů	50
4.6	5.1	Příprava zkušebních vzorků	50
4.6	5.2	Měření	50
4.6	5.3	Výsledky měření a jejich vyhodnocení	50
5	ZÁV	/ĚR	54
SEZ	NAN	A POUŽITÉ LITERATURY	56
SEZ	NAN	∕I PŘÍLOH	58

Seznam použitých zkratek, jednotek a veličin

Amax	maximální prodloužení [mm]
Amax	maximální tažnost [%]
dtex	jednotka jemnosti (nebo-li délkové hmotnosti)
Е	modul pružnosti [MPa]
Fmax	maximální síla [N]
ETFE	ethylen-tetrafluorethylen
L	stupeň světlosti [1]
PL	polyester
PVC	polyvinylchlorid
t	čas do přetrhu [sec]
Tj.	teplotní jednotka
UV	ultrafialové záření
W	deformační práce [J]
W _{CIE}	stupeň bělosti [1]

Úvod

Historie využití textilních materiálů v podobě primitivních přístřešků je stará více jak dva tisíce let. Dodnes se s nimi setkáváme prakticky v nezměněné formě. V poslední době získaly díky nové stavební technologii – textilní architektuře, moderní podobu oceňovanou zejména pro svoji eleganci, nevšednost tvarů a výraz lehkosti při poměrně příznivé pořizovací ceně.

Prostřednictvím textilní architektury se o textilních materiálech hovoří jako o dalším stavebním materiálu. Tato moderní stavební technologie vyniká širokým spektrem použití, a to od zastřešení velkých rozponů – stadionů, autobusových nádraží, průmyslových a skladovacích objektů atd., zastřešení menšího rozsahu – např. teras a výstavních prostorů, až po estetické a funkční řešení fasád, stínění, členění prostorů a jako podhledy v interiérech.

I přes nedůvěru českých architektů si v poslední době textilní architektura, která je ve světě již delší dobu používána, začíná nacházet své místo i v České republice.

Úkolem této diplomové práce je studie textilních materiálů pro speciální střešní konstrukce, testování materiálů a spojů používaných firmou Kontis Praha, s. r. o., se kterou byla v rámci této diplomové práce navázána spolupráce.

Pro testování byly firmou zvoleny dva konstrukčně podobné materiály povrstvených textilií od různých výrobců odlišné použitou výrobní technologií a jeden materiál netextilního charakteru v podobě průhledné fólie. Na začátku experimentu byl proveden jeho návrh, na jehož základě byl rozdělen na tři části.

V první části experimentu byl u zkoušených materiálů zjišťován vliv různých klimatických podmínek, kterým jsou materiály vystaveny při reálném použití, na jejich mechanické vlastnosti. Dle návrhu experimentu bylo provedeno měření mechanických vlastností za chladu, tepla a po vystavení UV záření. V další části experimentu, která byla provedena nad rámec zadání této diplomové práce, byl zjišťován vliv UV záření na špinivost zkoušených materiálů. V poslední části experimentu byly porovnány mechanické vlastnosti u firmou používaných spojů pro výrobky textilní architektury, a to spoje kolmého provedeného strojovým svařováním a spoje V, který se vzhledem k obtížné dostupnosti provádí svařováním ručním. Dále bylo provedeno porovnání

mechanických vlastností spoje kolmého svařovaného s dalšími možnými způsoby spojování povrstvených textilií, a to lepením a šitím.

Cílem této diplomové práce je vyhodnocení zkoušených materiálů určené pro speciální střešní konstrukce z hlediska vlivu různých klimatických podmínek na jejich mechanické vlastnosti a z hlediska vlivu UV záření na jejich špinivost, dále porovnání mechanických vlastností různých typů spojů provedených různou technologií spojování.

1 Technické textilie pro architekturu

Technické textilie se v poslední době stávají běžným stavebním materiálem jako je dřevo, kámen, kov, sklo a další klasické stavební materiály. Díky jejich cenové dostupnosti a užitným vlastnostem (dle [5] ocel, která má přibližně 2,5krát větší pevnost v tahu než polyamidová tkanina, má asi 7krát větší hmotnost) nezřídka klasické stavební materiály i předčí. [5, 18]

1.1 Technické textilie

Technické textilie jsou inženýrské, vysoce funkční a výkonné textilie konstruované pro definované aplikace. Významnou roli hrají tyto materiály prakticky ve všech průmyslových odvětvích, např. ve stavebním, zemědělském, automobilovém a leteckém průmyslu, v medicíně, armádě a ve speciálních aplikacích. [6, 19]

1.2 Textilní architektura

Textilní architektura dává příležitost uplatnění technických textilií ve stavebnictví a umožňuje vytvářet impozantní stavby. Pomocí lanových konstrukcí je možno vytvářet zajímavé stavby (viz. obr. č. 1), jejichž tvar je omezen pouze fantazií architekta.

Při srovnání staveb z technických textilií a klasických stavebních materiálů je jejich hlavní předností lehkost, pevnost, snadná tvarovatelnost, rozebíratelnost, netradiční vzhled, ekonomie nákladů a multifunkční použití. [18]

Obr. č. 1 Textilní architektura [10]

1.2.1 Materiály pro textilní architekturu

Textilní architektura vyžaduje použití speciálních textilních materiálů, které musí splňovat požadavky pro zajištění bezpečnosti staveb. Proto jejich důležitou charakteristikou je kvalita, dlouhodobá životnost a stabilita vlastností při použití.

Požadavkům textilní architektury nejlépe vyhovují textilie ze syntetických vláken opatřené vhodným nánosem plastické hmoty splňující požadavky, jako např. vysoká pevnost, nízká hmotnost, nepromokavost, odolnost vůči působení chemikálií, mikroorganismům, povětrnostním vlivům atd. [23]

1.2.2 Použití textilní architektury

Tyto stavby se používají k zastřešení velkých objektů, jako jsou stadiony, autobusová nádraží, výstavní prostory, hlediště apod., a také jako přístřešky menšího rozsahu, např. zastřešení restaurací nebo teras. Dále se textilní architektura uplatňuje při estetickém a funkčním použití na fasády, stínění, členění prostorů a jako podhledy v interiérech. [12]

1.2.3 Projektování staveb textilní architektury

Projektování těchto staveb architekti provádí ve speciálních počítačových programech, které umožňují definici tvaru, posouzení jeho statických vlastností, vytvoření střihového plánu a návrh podpůrné konstrukce z oceli nebo jiného materiálu. Na základě vytvořeného střihového plánu se textilie nastříhá a svaří. Při montáži se textilie s nosnou konstrukcí spojí a pomocí ocelových lan vypne, čímž se textilie stane součástí statického systému a odolá i velkému zatížení. [8]

2 Kontis Praha, s. r. o.

Firma Kontis Praha, s. r. o., byla založena roku 1995 za účelem výroby nafukovacích atrakcí a bazénů z povrstvených textilií. V současné době se firma zabývá výrobou samonosných bazénů, která dodnes tvoří velký podíl produkce této firmy, nafukovacích atrakcí, reklam, stanů, zakrytí pro různé objekty a renovací bazénů vyvařením folií. V nedávné době byla tato výroba, ve spolupráci se stavebními architekty, doplněna o uplatnění technických textilií pro stavební aplikace – textilní architekturu (viz. obr. č. 2 a další ukázky v příloze č. 2). Velká část výrobků této firmy je vyrobena na zakázku podle specifických požadavků jednotlivých zákazníků. [11, 12]

Firma Kontis Praha, s. r. o., sídlí v Praze, kde se nachází pouze administrativní zázemí. Výroba produktů probíhá v Sedčicích u Žatce, kde se textilie dle střihového plánu nastříhá a svaří do požadovaného tvaru. Tato firma má v současné době deset zaměstnanců (z toho 6 v Sedčicích u Žatce). V případě textilní architektury Kontis Praha, s. r. o., trvale spolupracuje s architekty firmy Archtex, s. r. o., kteří stavby navrhují, a horolezci, kteří provádí montáž celého objektu. [11]

Obr. č. 2 Tramvajová trať Hlubočepy [12]

Materiály pro textilní architekturu firma Kontis Praha, s. r. o., nakupuje od zahraničních výrobců Ferrari a Sattler. Tyto materiály jsou vyrobené z podkladových tkanin opatřené oboustranným nánosem plastické hmoty chráněné lakem. Výrobci svým zákazníkům slibují materiály s velkou pevností, odolností vůči extrémním teplotám, UV stabilitou, nehořlavostí, samočisticí schopností a dlouhodobou životností. Firma Kontis Praha, s. r. o., udává životnost staveb 30 let a záruku garantuje po dobu 10 let. [11, 12]

2.1 Ferrari

Ferrari je expandující francouzská firma se zastoupením téměř na všech kontinentech. Je zaměřená na vývoj a výrobu technických textilií pro stavební aplikace. Tato firma v roce 1973 zavedla do výroby významnou inovaci Précontraint[®], díky níž se stala jedničkou v tomto oboru. [3]

Ferrari klade velký důraz na systém environmentálního managementu certifikovaný normou ISO 14001. Materiály splňují požadavky normy Oeko-Tex, která je uznávaným měřítkem pro spotřebitele, potvrzující ekologickou nezávadnost produktu a výrobního procesu. Dále tato firma vyrábí materiály technologií Texyloop, která zajišťuje svým výrobkům 100% a opakovatelnou recyklovatelnost. [3]

2.1.1 Výrobní sortiment

Firma Ferrari nabízí svým zákazníkům širokou škálu materiálů pro stavební aplikace, jako jsou materiály pro externí textilní architekturu – zastřešení velkých objektů a fasády budov; interiérovou architekturu – řešení stropů a stěn dělící velké prostory; sluneční ochranu – pro interiéry a exteriéry; textilie pro výrobu stanů od kempingových po velkoplošné; zakrytí pro objekty – např. lodí; čalounění nábytku a příslušenství. [10]

Tyto materiály, splňující funkční i estetickou úlohu, se vyrábí v různých gramážích a barevných variantách. [10]

2.1.2 Materiály pro architektonické aplikace

Materiály firmy Ferrari jsou vyrobené z podkladových tkanin z vysoce výkonného polyesteru s nánosem polyvinylchloridu, chránícího polyester před degradací vlivem UV záření. Povrstvená textilie je ošetřena akrylovým nebo různě koncentrovaným polyvinylidenfluoridovým lakem [3, 10]

2.1.3 Technologie Précontraint[®]

Materiály vyrobené technologií Précontraint[®] se vyznačují stejnou pevností ve směru osnovy a útku, díky čemuž je zajištěna rozměrová stálost i při velkém zatížení a teplotních změnách.

Podstatou této technologie je nanášení nátěru z výkonného polymeru při stálém napětí jak v osnově, tak i v útku. Vzhledem k deformaci, zploštění osnovy a útku, způsobené napětím při nanášení nátěru je možné nanášet silnější vrstvu nátěru na textilii (viz. obr. č. 3), a tím zajistit lepší ochranu podkladové textilie vůči vlivům okolního prostředí. Při použití této technologie vznikne textilie s dostatečně silným nánosem při zachování nízké plošné hmotnosti. [4, 10]

Obr. č. 3 Porovnání technologie Précontraint[®] (vlevo) s běžným materiálem (vpravo) [10]

2.2 Sattler

Sattler je mezinárodní firma se sídlem v Rakousku, která působí na světovém trhu již od roku 1875. Tato firma se zabývá výrobou technických textilií převážně pro venkovní použití. V roce 1996 byl výrobní sortiment rozšířen o výrobu technických textilií pro stavební aplikace prostřednictvím dceřiné společnosti Ceno Tec v Německu. [21]

Ohled na životní prostředí bere firma Sattler výrobou ekologicky nezávadných výrobků splňujících normu Oeko-Tex a certifikací systému environmentálního managementu dle normy ISO 14001. [21]

2.2.1 Výrobní sortiment

Materiály, které vyrábí firma Sattler, jsou rozděleny do třech skupin. První skupinu tvoří textilie pro sluneční ochranu, jako jsou textilie pro výrobu markýz, stanů, deštníků a lodních plachet – umožňující nejen ochranu vůči UV záření, ale i odvod vlhkosti, a tím zabránění korozi kovových částí lodi. Další skupinu tvoří robustní textilie určené pro ochranu výrobků – plachty pro nákladní auta, skladovací haly a pro výrobu velkoplošných reklam. Poslední skupinu tvoří materiály pro aplikace textilní architektury v různém rozsahu a pro textilní konstrukce používané v oblasti životního prostředí a průmyslové techniky – skladovací systémy pro výrobu bioplynu a kapalných hnojiv. [21]

2.2.2 Materiály pro architektonické aplikace

Největší podíl materiálů, vyrobených firmou Sattler pro textilní architekturu, tvoří materiály s polyesterovou podkladovou tkaninou opatřenou oboustranným nánosem polyvinylchloridu, ošetřeným polyvinylidenfluoridovým nebo akrylovým lakem. Tyto materiály se vyrábí v nejrůznějším barevném provedení, nejčastěji v barvě bílé. Dalšími vyráběnými materiály pro textilní architekturu jsou různé kombinace podkladové textilie a nánosu, např. materiál s podkladovou tkaninou ze skleněných vláken povrstvenou silikonem nebo polytetrafluoretylenem. Materiály opatřené nánosem polytetrafluoretylenu jsou při výstupu z výroby béžové, s nižší světlopropustností, avšak vlivem působení světla se vybělí. [8, 21]

Dalším produktem určeným pro architektonické aplikace je fólie ETFE v podobě průhledného tuhého igelitu s tloušťkou od 0,05 až 0,2 mm, která svojí průhledností a propustností užitečných složek UV záření (složka A 100 %, B 50 % a C 0 %) efektivně nahrazuje sklo při překročení jeho technických a finančních možnostech. Tento materiál se používá zejména k zastřešení budov, v nichž žijí organismy, pro které jsou tyto podmínky nezbytné – zoologické a botanické zahrady nebo kryté bazény. Fólie ETFE se používají v naprosté většině případů ve formě nafukovacích polštářů (viz. obr. č. 4), jejichž stabilita je dána předpětím stlačeným vzduchem. Vyrábí se v čiré nebo mléčné podobě. Omezení slunečního svitu lze provést potiskem jedné nebo více vrstev nebo stíněním uvnitř nafukovacích polštářů. [7, 21]

Obr. č. 4 Zastřešení pomocí nafukovacích ETFE polštářů [21]

3 Povrstvené textilie

Povrstvené textilie vynikají širokým spektrem použití, které se v dnešní době neustále rozšiřuje. To je dáno splněním vysokých nároků z hlediska mechanických vlastností, i jejich trvanlivosti při působení vnějších vlivů. Optimálních vlastností pro daný účel se dosáhne použitím vhodných výrobních komponent, technologií a konfekčním zpracováním.

3.1 Výroba povrstvených textilií

Povrstvená textilie (viz. obr. č. 5) se skládá ze třech hlavních vrstev – z podkladové tkaniny (1) opatřené po obou stranách nánosem vhodného druhu plastické hmoty (3), který je v případě textilní architektury opatřen tenkou vrstvou ochranného laku (5). Přilnavost těchto základních vrstev zajišťuje nános adhezivního materiálu (2 a 4), čímž dojde k dokonalému spojení v jeden celek. [8]

Obr. č. 5 Struktura povrstvené textilie [22]

3.1.1 Materiál pro výrobu podkladové tkaniny

Výchozími surovinami pro výrobu podkladových tkanin se používají nejčastěji různé druhy syntetických vláken. Vzhledem k požadavku na vysokou pevnost v tahu se používají výhradně v podobě hladkých nekonečných vláken. Volba druhu je podmíněna danými vlastnostmi vláken a požadavky, které musí výsledná povrstvená textilie splňovat. [23]

Mezi nejpoužívanější vlákna pro výrobu podkladových tkanin pro textilní architekturu patří vlákna polyesterová a skleněná. [8]

Polyesterová vlákna

Z hlediska výroby povrstvených textilií patří mezi nejdůležitější vlastnosti polyesterových vláken vysoká pevnost, odolnost vůči působení tepla, světla a nízká navlhavost. [23]

Skleněná vlákna

Skleněná vlákna si svůj význam pro materiály textilní architektury získala díky své vysoké pevnosti, odolnosti vůči většině chemikálií a vysokým teplotám včetně nehořlavosti, díky čemuž tato vlákna splňují požadavky požární bezpečnosti. [23]

3.1.2 Konstrukce podkladové tkaniny

Konstrukce podkladových tkanin je dána především použitou povrstvovací technologií. Vzhledem k vysoké pevnosti samotných vláken lze požadované pevnosti povrstvené textilie teoreticky dosáhnout již při nízké dostavě osnovy a útku. Při povrstvování plastickou hmotou ve formě fólie postačí podkladové textilie s velice malou dostavou, tzv. mřížkové tkaniny (viz. obr. č. 6). Při povrstvování natíráním musí mít podkladová textilie takové zaplnění, aby se zabránilo protékání plastické hmoty vazebními otvory. [23]

Obr. č. 6 Mřížková tkanina [18]

Podkladová tkanina se tká ve vazbě plátnové, popř. v jejích odvozeninách, z přízí s malým počtem zákrutů. Díky nevýrazné struktuře takto vyrobené podkladové tkaniny se dosáhne dostatečného zakrytí všech vazných bodů při přijatelné váze nátěru. [23]

3.1.3 Materiál pro povrstvování podkladových tkanin

Povrstvováním se na podkladové tkanině vytvoří souvislá vrstva polymeru, čímž se dosáhne potřebné nepromokavosti a efektivní ochrany textilie, která je nosným prvkem pevnosti, před degradací působením vnějších vlivů. [23]

Textilie lze povrstvovat různými druhy plastických hmot. Druh nánosovací hmoty a technologie povrstvování, jsou zvoleny s ohledem na konečné použití výsledného výrobku. [23]

Textilie určené pro použití v architektuře se povrstvují měkčeným polyvinylchloridem, popř. polytetrafluoretylenem nebo silikonem. [23]

Textilie povrstvená polyvinylchloridem

Polyvinychloridový nános patří mezi nejpoužívanější a nejlevnější druh povrstvovací hmoty. K povrstvování měkčeným polyvinylchloridem se nejčastěji používá podkladová tkanina z polyesterových vláken a technologie natírání. [23]

Textilie povrstvené polyvinylchloridem mají řadu dobrých vlastností. Dalších požadavků, které musí povrstvená textilie pro textilní architekturu splňovat, se dosáhne přidáním vhodných přípravků (fungicidních, snižující hořlavost, UV absorberů) přímo do povrstvovací hmoty. Jejich nevýhodou je tuhnutí při nízkých teplotách, čímž se stěžuje manipulace při výrobě konečných produktů. [23]

Textilie povrstvená polytetrafluoretylenem

Polytetrafluoretylen patří k extrémně odolným materiálům, díky čemuž se textilie opatřené nánosem polytetrafluoretylenu vyznačují velice dobrými vlastnostmi. Nevýhodou je cenová náročnost tohoto materiálu. [19]

Materiály s podkladovou tkaninou ze skleněných vláken a nánosem polytetrafluoretylenu jsou označovány dle příslušných norem jako nehořlavé a používají se zejména v architektuře. [8]

Textilie povrstvená silikonem

Textilie opatřené nánosem silikonu patří také k velice odolným materiálům, které se používají zejména v architektuře. K povrstvování silikonem se používá pokladová textilie ze skleněných vláken. [8]

3.1.4 Výrobní technologie povrstvování podkladových textilií

Existuje několik výrobních technologií povrstvování podkladové tkaniny – natírání, které patří mezi nejpoužívanější, kašírování fólií, kašírování taveninou, nánosování a různé kombinace uvedených technologií. [23]

Povrstvovací linka (viz. obr. č. 7) se skládá z různých pracovních částí, které se liší podle použité povrstvovací technologie a podle druhu povrstvovací hmoty. [23]

Obr. č. 7 Povrstvovací linka [22]

3.1.4.1 Natírání

Povrstvování textilie natíráním spočívá v průchodu textilie pod ocelovým nožem (raklí), před kterým se nátěrová hmota dávkuje. Pohybem textilie pod nožem dochází k roztírání nátěrové hmoty, a tím k vytvoření souvislé vrstvy po celé šířce textilie. Nanášení nátěru probíhá na natírací stolici, která se rozlišuje podle způsobu uspořádání – stolice se vzdušnou raklí, s raklí proti otáčejícímu válci nebo proti otáčejícímu pásu. [23]

Pro natírání textilií jsou vhodné polyvinylchloridové pasty a roztoky polymerů ve vhodném rozpouštědle. Natírání se provádí opakovaným nanášením tenkých vrstev, čímž se dosáhne dokonalého nánosu bez bublin. [13, 23]

3.1.4.2 Kašírování fólií

Podstatou této technologie je spojení podkladové textilie s povrstvovací fólií, které lze provést lepením, nebo tavným způsobem. [23]

Při povrstvování podkladové textilie fólií *lepením* se vnitřní strany fólie a podkladové textilie, opatřené vrstvou tavného lepidla, na sebe položí, pomocí vyhřívaných válců se lepidlo nataví a tlakem spojí. [23]

Povrstvování podkladové textilie folií *tavným způsobem* probíhá natavením fólie a textilie pomocí vhodného zdroje tepla a následným stlačením obou vrstev, čímž dojde k vzájemnému spojení. [23]

3.1.4.3 Kašírování taveninou

Kašírovat textilii taveninou vhodného druhu polymeru lze dvěma způsoby, a to kašírování taveninou vytvořenou mezi dvěma vyhřívanými válci, nebo extruzní technikou. [23]

Povrstvování textilie *taveninou vytvořenou mezi dvěma vyhřívacími válci* se provádí tak, že polymer roztavený mezi těmito válci vytvoří na jednom z nich souvislý film, který je přenesen na textilii pod ním. Vzdálenost mezi vyhřívacími válci určuje plošnou hmotnost textilie. [23]

Při povrstvování textilie *extruzní technikou* se tavenina polymeru vytlačuje štěrbinovou tryskou extruderu na textilii procházející pod ním a následně se zafixuje vyhřívanými válci. [23]

3.1.4.4 Nánosování

Povrstvování textilie nánosováním se provádí na tříválcových až čtyřválcových kalandrech. Nánosovací hmota je mezi dvěma hormíni vyhřívanými válci, kde dojde k jejímu přechodu do plastického stavu. Štěrbinou mezi nimi se na druhém válci vytvoří souvislá vrstva nanášená na textilii, která prochází mezi druhým a třetím, popř. mezi třetím a čtvrtým válcem podle druhu použitého kalandru. [23]

3.1.5 Lakování

Povrstvené textilie používané pro speciální účely, např. pro textilní architekturu, se ošetřují tenkou vrstvou akrylového, polyvinylidenfluoridového nebo jiného laku. Nanesený lak zlepšuje svařitelnost povrstvené textilie při výrobě konečného produktu, chrání povrstvenou textilii díky svému hladkému povrchu před usazováním nečistot a vytváří zajímavé světelné efekty. [8, 10]

3.2 Konfekční zpracování povrstvených textilií

Spojování povrstvených textilií, pro dosažení požadovaného tvaru konečného výrobku, lze provést šitím, lepením a svařováním. Použití jednotlivých způsobů je závislé na druhu tkaniny, povrstvovací hmoty, a také na způsobu a účelu použití konečného výrobku. Pro účely textilní architektury se používá výhradně spojování svařováním. [23]

3.2.1 Šití

Šitím lze spojovat všechny materiály povrstvených textilií. Potřebné pevnosti šitých spojů lze dosáhnout použitím vhodných šicích nití, nejčastěji vysoce pevného polyesterového hedvábí, jehly a různým provedením švů. Nevýhodou šitých spojů je perforace povrstvené textilie, proto se spoje utěsňují přilepením nebo přivařením pásku z vhodného materiálu, nebo zalitím vhodným druhem lepidla. Překrytím šitých spojů dojde nejen k utěsnění, ale zároveň i k ochraně šicí nitě před degradací vlivem povětrnostních podmínek. [23]

3.2.2 Lepení

Lepení je méně používaný způsob spojování povrstvených textilií z důvodu stárnutí lepidel vlivem povětrnosti. Tento způsob se dá využít pro opravy spojů. [23]

3.2.3 Svařování

Svařování je jedním z nejvýznamnějších způsobů spojování povrstvených textilií, při kterém se vytvoří spoj o vysoké pevnosti. Textilie opatřené nánosem termoplastických hmot se působením tepla nataví a tlakem se vrstvy spojí. Vzniklý spoj má stejné složení jako spojovaný materiál, tvoří s ním jeden celek a je nerozebíratelný. Pevnost svárů závisí na dobré adhezi nánosu ke tkanině. [23, 24]

Pro spojování povrstvených textilií lze použít různých způsobů svařování. Nejčastěji se používá svařování vysokofrekvenčním proudem, horkým vzduchem nebo topným klínem. [23]

Vysokofrekvenční svařování

Podstatou vysokofrekvenčního svařování je natavení styčných ploch svařovaných materiálů rozpohybováním vnitřních částic pomocí elektrod, připojených ke generátoru měnící směr proudu, a následné spojení stlačením vrstev spojovaného materiálu. [24]

Horkovzdušné svařování

Svařování horkým vzduchem (viz. obr. č. 8) spočívá v natavení povrchu povrstvené textilie proudem horkého vzduchu a následným stlačením přítlačným válcem. Šířka spoje závisí na šířce použité horkovzdušné trysky.

23

Obr. č. 8 Horkovzdušné svařování

Svařování topným klínem

Svařování topným klínem spočívá v natavení vnitřních stran materiálu přímým stykem s horkým klínem, čímž dojde k jeho plastifikaci, a následném spojení stlačením. [24]

3.3 Degradace povrstvených textilií

Vystavením materiálů působení povětrnostních vlivů dochází po určité době k jeho nevratným změnám, zejména k poklesu mechanických vlastností, změně barvy apod. Mezi nejdůležitější atmosférické vlivy patří působení ultrafialového záření a kyslíku, tepla, vlhka, chemikálií, biologických organismů atd. [14]

Doba, po kterou je výrobek schopen plnit svoji funkci, při působení povětrnostních podmínek je označována jako jeho životnost. Životnost výrobku závisí i na jeho namáhání při používaní. V případě, že není výrobek mechanicky namáhán, je schopen plnit svoji funkci i tehdy, pokud došlo k poklesu jeho mechanických vlastností stárnutím. [14]

Vystavením povrstvených textilií povětrnostním vlivům při jejich používání dochází k degradaci povrstvovací hmoty, ale i vlákenného materiálu, která vede k nepříznivé změně jakostních parametrů. [23]

Povrstvené textilie patří k materiálům, které dobře odolávají povětrnostním vlivům. Zásadní vliv na degradaci povrstvené textilie má pouze UV záření slunečního světla. Rychlost stárnutí povrstvené textilie vlivem UV záření je v největší míře závislá na schopnosti nánosu pohlcovat UV paprsky a zabránit jejich průniku k podkladové textilii. Životnost povrstvených textilií je dána druhem vláken podkladové textilie a povrstvovací hmoty, tloušťkou nánosu a kvalitou povrstvení. [23]

3.3.1 Ultrafialové záření

Ultrafialové záření je elektromagnetické vlnění, jehož přirozeným zdrojem je Slunce. Slunce vyzařuje mimo ultrafialového záření, s vlnovou délkou pod 400 nm, ještě záření viditelné, s vlnovou délkou 400 až 700 nm, a infračervené, s vlnovou délkou přes 700 nm. [9]

Z celkového množství slunečních paprsků dopadne na Zem asi polovina (z toho asi 6 % UV záření). Ozónová vrstva chrání zemský povrch před průnikem nejškodlivějších složek slunečního spektra. Obecně množství UV záření závisí na ročním období, denní době, nadmořské výšce, zeměpisné poloze, odrazu paprsků a znečištění ovzduší. [9, 19]

Vzhledem k odlišným účinkům UV záření různých vlnových délek se dále dělí na záření s krátkou vlnovou délkou UVC (100 až 290 nm), se střední vlnovou délkou UVB (290 až 320 nm) a s dlouhou vlnovou délkou UVA (320 až 400 nm). [19]

UVA záření

Ultrafialové záření typu A je nejméně nebezpečné. Z celkového množství UV záření, které dopadne na zem, je 95 % v této spektrální oblasti. UVA záření proniká poměrně hluboko do kůže. V rozumném množství je pro lidské tělo potřebné – tvorba vitaminu D, posílení metabolismu atd., ale v opačném případě vede k degenerativním procesům kůže – pigmentové skvrny, vrásky a v některých případech až k rakovině kůže. [9, 19]

UVB záření

Ultrafialové záření typu B je asi 1000x nebezpečnější. Částečně je UVB záření filtrováno ozónovou vrstvou a částečně dopadá na zemský povrch. Neproniká tak hluboko do kůže jako UVA záření, proto vede spíše k povrchovému poškození kůže – zarudnutí, úpal atd. [9, 19]

UVC záření

Ultrafialové záření typu C je karcinogenní a nebezpečné pro všechny živé organismy. UVC záření je zcela absorbováno ozonovou vrstvou, ale v případě vytvoření ozónové díry může dojít k jeho průniku na zemský povrch. [19]

3.3.2 Zjišťování degradace materiálů

Zkouška přirozeného stárnutí neboli degradace materiálů se dá provést přímým vystavením materiálů povětrnostním vlivům, zahrnujícím komplexní vliv různých faktorů. Tato zkouška je časově velice náročná, ale poskytuje spolehlivé údaje o průběhu degradace. Při tomto způsobu se testované vzorky upínají do expozičních rámů, které jsou orientovány severojižním směrem, přičemž plocha vzorků musí směřovat k jihu. Sklon testovacího rámu k horizontální rovině je 45°. [5, 14]

Používanějším způsobem, díky menší časové náročnosti, avšak s méně věrohodnými výsledky, je testování degradace materiálů ve speciálním zařízení, simulující urychlené stárnutí, vystavením vzorků několikanásobně zvětšenému množství UV záření, v některých případech i při současném působení tepla a vlhka. [5, 14]

Vyhodnocení zkoušek degradace materiálu se provádí porovnáním změny pevnosti, barvy atd., před a po vystavení působení povětrnostních podmínek. [14]

4 Experiment

Prvním úkolem této diplomové práce je zjištění vlivů různých klimatických prostředí na mechanické vlastnosti všech materiálů pro speciální střešní konstrukce, které byly firmou Kontis Praha, s. r. o., poskytnuty. Druhým úkolem je porovnání mechanických vlastností různých typů spojů u jednoho vybraného materiálu, které firma provedla různou technologií spojování.

4.1 Návrh experimentu

Použité materiály pro speciální střešní konstrukce musí splňovat požadavky nejen na vysokou pevnost ve směru podélném a příčném, ale také její zachování po vystavení nepříznivým vlivům.

Na základě teoretických předpokladů vlastností daných materiálů a prostředí při reálném použití bude pro experiment zvoleno testování za nízkých a vysokých teplot, které souvisí se střídáním denní doby a ročních období, a dále po vystavení UV záření, které způsobuje degradaci většiny materiálů.

Vyhodnocení vlivu různých podmínek na mechanické vlastnosti bude provedeno porovnáním hodnot pevnosti, tažnosti a modulu pružnosti, které zkoušené materiály dosáhnou při měření za běžných zkušebních podmínek a při měření za chladu, tepla a po vystavení UV záření. Mikroskopickým pozorováním místa porušení při tahové zkoušce bude vyhodnocen vliv různých podmínek na změny tohoto porušení.

Pro testování zkoušených materiálů budou teploty zvoleny tak, aby simulovaly krajní podmínky, kterým jsou materiály pro speciální střešní konstrukce vystaveny v oblastech mírného podnebí v letních a zimních měsících. Při vystavení materiálů přímému slunečnímu záření v letních měsících se teplota může vyšplhat na velmi vysokou hodnotu. Zkoušené materiály budou testovány při teplotě 80 °C, což je o 10 °C více než horní garantovaná teplota výrobci materiálů povrstvených textilií. V zimních měsících jsou materiály vystaveny dlouhodobě nízkým teplotám, proto bude pro testování zvolena nejnižší možná realizovatelná teplota -18 °C.

Vystavení zkoušených materiálů UV záření mělo být provedeno v zařízení Atlas Uvcon, které slouží k simulaci povětrnostních podmínek (UV záření a vlhkost) při působení teploty v rozmezí 40 – 90 °C. Použití toho přístroje nebylo z finančních důvodů umožněno. Jako náhradní řešení bude zvoleno ozáření zkoušených materiálů zářivkovým UV zdrojem, které je ovšem nedostatečně odpovídající alternativou k zařízení Atlas Uvcon.

Vystavení materiálů pro speciální střešní konstrukce působení UV záření může mít vliv nejen na mechanické vlastnosti, ale také na jejich špinivost, která negativně ovlivňuje estetiku samotné stavby. Pro dosažení zřetelných výsledků bude použita velice intenzivní špína – mastné saze z lokálního topeniště. Vyhodnocení špinivosti bude provedeno porovnáním zašpinění vzorků vystavených a nevystavených UV záření při cyklickém špinění.

Nejkritičtějším místem při namáhání textilií pro speciální střešní konstrukce je spoj, tedy místo, kde došlo k porušení a následnému spojení různou technologií.

Porovnání mechanických vlastností bude provedeno u spojů běžně používaných firmou – spoje kolmého strojově svařovaného a spoje V ručně svařovaného. Dále bude na přání firmy provedeno porovnání mechanických vlastností spoje kolmého svařovaného s dalšími možnými způsoby spojování povrstvených textilií, a to spoji lepenými a šitými.

Osnova experimentu

Zjišťování mechanických vlastností za různých podmínek

- Stanovení mechanických vlastností
 - Za běžných zkušebních podmínek
 - Za chladu
 - Za tepla
 - Po vystavení UV záření
- Mikroskopické pozorování místa porušení při tahové zkoušce

Zjišťování vlivu UV záření na špinivost

- Cyklické špinění vzorků vystavených UV záření
- Cyklické špinění vzorků nevystavených UV záření

Zjišťování mechanických vlastností různých typů spojů

- Kolmý spoj svařovaný
- Kolmý spoj lepený
- Kolmý spoj šitý
- Spoj V svařovaný

4.2 Specifikace zkoušených materiálů

Pro experiment byly firmou Kontis Praha, s. r. o., vybrány dva konstrukčně podobné materiály povrstvených textilií pro textilní architekturu od různých výrobců – Ferrari a Sattler. Oba typy materiálů, Précontraint[®] 702 od firmy Ferrari a Polyplan 648 od firmy Sattler, jsou určeny pro méně rozsáhlé aplikace textilní architektury. Jediným zásadním rozdílem mezi těmito materiály je použití patentované technologie Précontraint[®] u materiálů firmy Ferrari, zajišťující téměř shodnou pevnost v osnově a útku. Proto Kontis Praha, s. r. o., využívá materiály firmy Ferrari pro aplikace textilní architektury s využitím trvalým a materiály firmy Sattler pro aplikace s využitím dočasným.

Jako třetí byl zvolen materiál netextilního charakteru – Fluon[®] ETFE film od firmy Asahi Glass v podobě tuhého igelitu, který by firma Kontis Praha, s. r. o., chtěla také v budoucnu využít pro architektonické aplikace.

Ukázky použitých materiálů jsou v příloze č. 1.

FERRARI – Précontraint[®] 702

Podkladová tkanina:	PL – 1100 dtex
Nános:	oboustranný – PVC
Lak:	oboustranný – akrylový
Hmotnost:	767 g/m^2
Tloušťka:	0,62 mm

SATTLER – Polyplan 648

Podkladová tkanina:	PL – 1100 dtex
Nános:	oboustranný – PVC
Lak:	oboustranný – akrylový
Hmotnost:	720 g/m^2
Tloušťka:	0,52 mm

ASAHI GLASS – Fluon[®] ETFE film

Materiál:	ETFE
Hmotnost:	175 g/m^2
Tloušťka:	0,13 mm

4.3 Měřicí přístroje

Tato kapitola popisuje měřicí přístroje, které byly použity v experimentu této diplomové práce.

4.3.1 TIRA test 2300

TIRA test 2300 (viz. obr. č. 9) je zařízení pro měření mechanických vlastností materiálů při jednoosém namáhání v tahu nebo tlaku. Přístroj je řízen počítačovým programem, který zároveň provádí statistické zpracování naměřených dat. [17]

Obr. č. 9 TIRA test 2300

Technické parametry

Maximální zatížení: 100 kN

4.3.2 Horkovzdušný sterilizátor HS 122 A

Horkovzdušný sterilizátor HS 122 A (viz. obr. č. 10) je určen k horkovzdušné sterilizaci ve zdravotnictví a v laboratořích k sušení nebo zahřívání materiálů. [15]

Obr. č. 10 Horkovzdušný sterilizátor

Technické parametry

Rozsah teploty:	od 60 °C do 200 °C
Rozložení teploty v pracovním prostoru:	±1 % Tj.

4.3.3 Lednice s mrazicím boxem

Lednice s mrazicím boxem je klasické zařízení pro uchování potravin, ve kterém bylo provedeno chlazení zkušebních vzorků.

Technické parametry

Nejnižší možná teplota v mrazicím boxu: -18 °C

4.3.4 Šedá skříň s UV zářičem

Šedá skříň (viz. obr. č. 11) slouží k osazení zářivkových UV zdrojů a vystavení vzorků UV záření za definovaných podmínek.

Obr. č. 11 Šedá skříň s UV zářičem

V případě této diplomové práce byly ve skříni osazeny tři trubice lineárních zářivek s černou skleněnou baňkou, vysílající záření v UVA oblasti, jehož spektrální průběh záření ukazuje obr. č. 12.

Obr. č. 12 Spektrální průběh záření lineální zářivky s černou skleněnou baňkou [20]

Technické parametry

Počet zářivek:	3
Délka zářivky:	590 mm
Vzdálenost vzorků od zářivky:	430 mm
Výkon zářivky v UVA oblasti:	3,5 W (x 3)
Záření dopadající na vzorek:	2,2 W.m ⁻² (x 3)

4.3.5 Spectraflash SF600

Spectraflash SF600 (viz. obr. č. 13) je spektrofotometr s vybavením pro transmisní a remisní měření barevnosti materiálů. Přístroj je řízen počítačovým programem, který zároveň provádí statistické zpracování naměřených dat.

Obr. č. 13 Spectraflash SF600

Technické parametry

Zdroj světla:	D65
Pozorovací úhel:	10°
Aperturní otvor:	SAV

4.3.6 Zkrápěcí zařízení

Zkrápěcí zařízení (viz. obr. č. 14) je zařízení používané pro zkrápěcí metodu dle normy ČSN EN 24920 (Stanovení odolnosti plošných textilií vůči povrchovému smáčení). V případě této diplomové práce bylo použito k oplachování špiněných vzorků. [1]

Obr. č. 14 Zkrápěcí zařízení

Technické parametry

Sklon upevňovacího držáku:	45°
Vzdálenost středu zkrápěcí trubice a středu zkoušené plochy:	150 mm

4.3.7 Rastrovací elektronový mikroskop VEGA TS 5130

Rastrovací elektronový mikroskop VEGA TS 5130 (viz. obr. č. 15) je počítačově řízený mikroskop, který je určen k pozorování povrchů při velkém zvětšení, k zaznamenávání a archivování zvětšených obrazů ve standardním obrazovém formátu. [16]

Obr. č. 15 Rastrovací elektronový mikroskop VEGA TS 5130

Technické parametry

Rozlišení:	3,5 nm

Zvětšení: 20 až 100000x

4.4 Zjišťování mechanických vlastností za různých podmínek

Cílem této části experimentu je zjištění vlivu různých zkušebních podmínek na mechanické vlastnosti zkoušených materiálů při tahové zkoušce a porovnání naměřených hodnot v podélném a příčném směru. Dále mikroskopickým pozorováním místa porušení zjistit, zda při tahové zkoušce za různých podmínek nedošlo k odlišnému porušení vzorků.

4.4.1 Stanovení mechanických vlastností

Měření mechanických vlastností zkoušených materiálů bylo provedeno na přístroji TIRA test 2300 na Katedře textilních materiálů TU v Liberci.

Zkouška byla provedena dle normy ČSN EN ISO 1421 (Textilie povrstvené pryží nebo plasty – stanovení pevnosti nebo tažnosti) metodou Strip, jejíž podstatou je zjišťování pevnosti a tažnosti zkušebního vzorku o stanovených rozměrech, který je upnutý v čelistech (viz. obr. 16), napínáním konstantní rychlostí až do jeho porušení. [2]

4.4.1.1 Příprava zkušebních vzorků

Pro měření mechanických vlastností vzorků za běžných zkušeních podmínek, tepla a chladu, bylo připraveno šest vzorků ve směru osnovy a útku materiálu Précontraint 702 a Polyplan 648 a pět vzorků v podélném a příčném směru materiálu ETFE film. Pro měření mechanických vlastností vzorků vystavených UV záření byly připraveny pouze čtyři vzorky pro každý zkoušený materiál v obou směrech, čímž došlo k odchýlení od již zmíněné normy, která ukládá měření nejméně na pěti vzorcích, a to z důvodu omezeného prostoru v šedé skříni, ve které bylo ozařování vzorků provedeno.

Vzorky materiálu Précontraint 702, Polyplan 648 o rozměrech 300 x 50 mm a ETFE film o rozměrech 200 x 50 mm byly odebrány dle zásad příslušné normy.

Příprava vzorků pro měření za běžných podmínek

Zkušební vzorky byly před měřením klimatizovány.

Příprava vzorků pro měření za chladu

Zkušební vzorky byly před měřením vystaveny teplotě -18 °C v lednici s mrazicím boxem po dobu 120 hodin (tj. 5 dnů). Před vložením do mrazicího boxu byly vzorky 30 minut ponořeny v destilované vodě.

Měření proběhlo ihned po vyjmutí vzorku z lednice s mrazicím boxem.

Příprava vzorků pro měření za tepla

Zkušební vzorky byly před měřením temperovány na teplotu 80 °C po dobu 2 hodin v horkovzdušném sterilizátoru.

Měření proběhlo ihned po vyjmutí vzorku z horkovzdušného sterilizátoru.

Příprava vzorků pro měření po vystavení UV záření

Zkušební vzorky byly před měřením vystaveny UV záření v šedé skříni se třemi trubicemi lineárních zářivek s černou skleněnou baňkou po dobu 5 hodin (tzn. při intenzitě záření v UVA oblasti 33 W.h.m⁻²).

4.4.1.2 Měření

Měření a stanovení definice základních parametrů zkoušených materiálů, která je nutná pro výpočet výstupních veličin tahové zkoušky, bylo provedeno dle příslušné normy.

Definice základních parametrů

Précontraint 702:

- upínací délka: 200 mm,
- tloušťka vzorku: 0,62 mm,
- rychlost do přetrhu: 100 mm.min⁻¹,
- předpětí: 10 N.

Polyplan 648:

- upínací délka: 200 mm,
- tloušťka vzorku: 0,52 mm,
- rychlost do přetrhu: 100 mm.min⁻¹,
- předpětí: 10 N.

ETFE film:

- upínací délka: 100 mm,
- tloušťka vzorku: 0,13 mm,
- rychlost do přetrhu: 100 mm.min⁻¹,
- předpětí: bez předpětí.

Obr. č. 16 Ukázka upnutí zkušebního vzorku

4.4.1.3 Výsledky měření a jejich vyhodnocení

Výstupem každého měření je statistické zpracování naměřených hodnot veličin jednotlivých tahových zkoušek a jejich grafické zpracování. Tyto výstupy jsou pro každé měření uvedeny v příloze č. 3.

Při měření došlo u několika vzorků k přetrhu v čelistech. O platnosti těchto zkoušek bylo rozhodnuto na základě příslušné normy. Neplatné zkoušky byly vyřazeny.

Précontraint 702

Průměrné hodnoty naměřené pevnosti, tažnosti a modulu pružnosti za různých zkušebních podmínek materiálu Précontraint 702 v osnově a útku jsou uvedeny v tab. č. 1.

Prácontraint 702	Pevnost [N]		Tažno	ost [%]	Modul pružnosti [MPa]		
	osnova	útek	osnova	útek	osnova	útek	
Běžné podmínky	2601	2542	17	18	803	644	
Chlad	2701	2629	18	19	768	630	
Teplo	2624	2450	18	18	776	646	
UV záření	2957	2508	22	18	726	649	

Tab. č. 1 Mechanické vlastnosti materiálu Précontraint 702 za různých podmínek

Výsledné grafy (viz. obr. 17, 18, 19) znázorňují průměrné hodnoty pevnosti, tažnosti a modulu pružnosti materiálu Précontraint 702 ve směru osnovy a útku za různých zkušebních podmínek.

Obr. č. 17 Graf pevnosti materiálu Précontrain 702 za různých podmínek

Obr. č. 18 Graf tažnosti materiálu Précontrain 702 za různých podmínek

Obr. č. 19 Graf modulu pružnosti materiálu Précontrain 702 za různých podmínek

Z naměřených výsledků mechanických vlastností materiálu Précontraint 702 lze konstatovat, že měření za chladu, tepla a po vystavení UV záření nemělo vliv na jeho mechanické vlastnosti.

Pevnost a tažnost tohoto materiálu dosahovala ve všech případech ve směru osnovy a útku téměř shodných hodnot, přičemž ve všech měřeních byla pevnost osnovy o něco větší než pevnost útku. Výraznějšího rozdílu ve směru osnovy a útku dosáhla pouze hodnota modulu pružnosti, kdy modul pružnosti ve směru osnovy ve všech případech dosahoval o něco větší hodnoty, což znamená, že tento materiál ve směru osnovy klade větší odpor vůči působící deformaci.

Materiál Précontraint 702 vykazoval velice podobné mechanické vlastnosti ve směru osnovy a útku. Různé zkušební podmínky neměly vliv na změnu jeho mechanických vlastností.

Polyplan 648

Průměrné hodnoty naměřené pevnosti, tažnosti a modulu pružnosti za různých zkušebních podmínek materiálu Polyplan 648 v osnově a útku jsou uvedeny v tab. č. 2.

Polyplan 648	Pevnost [N]		Tažno	ost [%]	Modul pružnosti [MPa]		
Polypian 048	osnova	útek	osnova	útek	osnova	útek	
Běžné podmínky	3242	2402	19	23	1171	375	
Chlad	3342	2307	20	21	1193	346	
Teplo	3278	2283	20	21	1142	385	
UV záření	3238	2339	19	23	1190	358	

Tab. č. 2 Mechanické vlastnosti materiálu Polyplan 648 za různých podmínek

Výsledné grafy (viz obr. 20, 21, 22) znázorňují průměrné hodnoty pevnosti, tažnosti a modulu pružnosti materiálu Polyplan 648 ve směru osnovy a útku za různých zkušebních podmínek.

Obr. č. 20 Graf pevnosti materiálu Polyplan 648 za různých podmínek

Obr. č. 21 Graf tažnosti materiálu Polyplan 648 za různých podmínek

Obr. č. 22 Graf modulu pružnosti materiálu Polyplan 648 za různých podmínek

Z naměřených výsledků mechanických vlastností materiálu Polyplan 648 lze konstatovat, že měření za chladu, tepla a po vystavení UV záření nemělo stejně jako u materiálu Précontraint 702 vliv na jeho mechanické vlastnosti.

Pevnost tohoto materiálu ve směru útku dosahovala ve všech případech výrazně nižších hodnot než ve směru osnovy a to až o 30 %. S rozdílnou hodnotou pevnosti ve směru osnovy a útku souvisel i výrazný rozdíl hodnoty modulu pružnosti. Tažnost naopak dosahovala vyšší hodnoty ve směru útku, což bylo dáno napřimováním útkových nití před porušením.

Materiál Polyplan 648 se vyznačuje výrazně odlišnými mechanickými vlastnostmi ve směru osnovy a útku. Různé zkušební podmínky neměly vliv na změnu jeho mechanických vlastností.

ETFE film

Průměrné hodnoty naměřené pevnosti, tažnosti a modulu pružnosti za různých zkušebních podmínek materiálu ETFE film v osnově a útku jsou uvedeny v tab. č. 3.

	Pevnost [N]		Tažno	ost [%]	Modul pruž	Modul pružnosti [MPa]		
ETFE film	podélný směr	příčný směr	podélný směr	příčný směr	podélný směr	příčný směr		
Běžné podmínky	210	201	361	377	351	337		
Chlad	217	209	374	379	319	326		
Teplo	209	195	362	366	187	207		
UV záření	206	197	365	380	232	244		

Tab. č. 3 Mechanické vlastnosti materiálu ETFE film za různých podmínek

Výsledné grafy (viz obr. 23, 24, 25) znázorňují průměrné hodnoty pevnosti, tažnosti a modulu pružnosti materiálu ETFE film ve směru osnovy a útku za různých zkušebních podmínek.

Obr. č. 23 Graf pevnosti materiálu ETFE film za různých podmínek

Obr. č. 24 Graf tažnosti materiálu ETFE film za různých podmínek

Obr. č. 25 Graf modulu pružnosti materiálu ETFE film za různých podmínek

Z naměřených výsledků mechanických vlastností materiálu ETFE film lze konstatovat, že měření za tepla a po vystavení UV záření mělo vliv na jeho mechanické vlastnosti. Tento vliv se projevil poklesem modulu pružnosti, pevnost a tažnost tohoto materiálu zůstala zachována. Při měření za chladu dosahoval modul pružnosti o něco menší hodnoty, než na běžných podmínek. Rozdíl těchto hodnot byl ale tak malý, že se nedá jednoznačně tvrdit, že měření za chladu mělo vliv na jeho mechanické vlastnosti.

Materiál ETFE film se vyznačuje téměř shodnými vlastnostmi ve směru podélném a příčném. Hodnoty pevnosti, tažnosti a modulu pružnosti u tohoto materiálu dosahovala ve směru podélném a příčném téměř shodných hodnot, přičemž pevnost byla ve všech případech o něco větší ve směru podélném a tažnost ve směru příčném.

4.4.2 Mikroskopické pozorování místa porušení při tahové zkoušce

Snímky mikroskopického pozorování místa porušení při tahové zkoušce byly pořízeny na rastrovacím elektronovém mikroskopu VEGA TS 5130 na Katedře textilních materiálů TU v Liberci.

Podstatou vzniku zvětšeného obrazu povrchu vzorku je detekce elektronů uvolněných na povrchu vzorku po dopadu primárního svazku elektronů. Zdrojem primárního svazku elektronů, pohybujícího se po vzorku, je žhavená wolframová katoda.

4.4.2.1 Příprava zkušebních vzorků

Ze všech vzorků, které byly podrobeny zjišťování mechanických vlastností tahovou zkouškou za běžných zkušebních podmínek, chladu, tepla a po vystavení UV záření, byl vybrán vždy jeden vzorek od každého zkoušeného materiálu v podélném i příčném směru. Z těchto vybraných vzorků byl odebrán vzorek z místa porušení při tahové zkoušce o rozměrech 5 x 5 mm, který byl určen k mikroskopování.

4.4.2.2 Měření

- Odebrání vzorků z místa porušení,
- opatření vzorků vodivou vrstvou zlata,
- vložení vzorků do preparátové komory,
- odsátí vzduchu z preparátové komory,
- mikroskopování.

4.4.2.3 Výsledky měření a jejich vyhodnocení

Pro každý zkoumaný vzorek byly pořízeny dva snímky povrchu vzorku v místě porušení při tahové zkoušce, a to při 50násobném a 250násobném zvětšení.

Vzhledem k velkému množství pořízených snímků jsou zde uvedeny pouze snímky materiálu Précontraint 702 (viz. obr. 26 - 29), Polyplan 648 (viz. obr. 30 - 33) ve směru osnovy a ETFE film (viz. obr. 34 - 37) ve směru podélném podrobené tahové zkoušce za běžných zkušeních podmínek, chladu, tepla a po vystavení UV záření, a to při 50násobném zvětšení. Ostatní snímky se nachází v příloze č. 4.

Obr. č. 26 Porušení materiálu Précontraint 702 (osnova) za běžných podmínek

Obr. č. 27 Porušení materiálu Précontraint 702 (osnova) za chladu

Obr. č. 28 Porušení materiálu Précontraint 702 (osnova) za tepla

Obr. č. 29 Porušení materiálu Précontraint 702 (osnova) po vystavení UV záření

Na pořízených snímcích materiálu Précontraint 702 nebyly pozorovány žádné změny v porušení při tahové zkoušce provedené za různých zkušebních podmínek.

Obr. č. 30 Porušení materiálu Polyplan 648 (osnova) za běžných podmínek

Obr. č. 32 Porušení materiálu Polyplan 648 (osnova) za tepla

Obr. č. 31 Porušení materiálu Polyplan 648 (osnova) za chladu

Obr. č. 33 Porušení materiálu Polyplan 648 (osnova) po vystavení UV záření

U materiálu Polyplan 648, stejně jako u materiálu Précontraint 702, nebyly na pořízených snímcích pozorovány žádné změny porušení povrstvovací hmoty ani vlákenných svazků při tahové zkoušce provedené za různých zkušebních podmínek.

Obr. č. 34 Porušení materiálu ETFE film (podélný směr) za běžných podmínek

Obr. č. 35 Porušení materiálu ETFE film (podélný směr) za chladu

Obr. č. 36 Porušení materiálu ETFE film (podélný směr) za tepla

Obr. č. 37 Porušení materiálu ETFE film (podélný směr) po vystavení UV záření

Z pořízených snímků materiálu ETFE film je zřejmé, že při tahové zkoušce provedené za chladu a tepla došlo k odlišnému charakteru porušení než za běžných zkušebních podmínek. Charakter porušení za chladu a tepla odpovídal daným podmínkám, kterým byl materiál ETFE film při tahové zkoušce vystaven. Porušení materiálu po vystavení UV záření bylo stejné jako za běžných zkušebních podmínek.

4.5 Zjišťování vlivu UV záření na špinivost

Cílem této části experimentu je stanovení vlivu UV záření na špinivost zkoušených materiálů, a to porovnáním zašpinění vzorků při cyklickém špinění vystavených a nevystavených UV záření. Špinivost byla zjišťována na vrchní straně vzorků.

Měření špinivosti bylo provedeno na přístroji Spectraflash SF600 na Katedře textilní chemie TU v Liberci, stejně jako příprava vzorků pro tento experiment.

4.5.1 Příprava zkušebních vzorků

Pro měření byly připraveny dvě sady po šesti vzorcích každého materiálu o rozměrech 150 x 50 mm. Jedna sada pro měření špinivosti vzorků nevystavených UV záření a druhá sada pro měření špinivosti vzorků, které byly před každým špiněním UV záření vystaveny, přičemž byl vždy jeden vzorek určen pro stanovení výchozí hodnoty nešpiněného vzorku a pět vzorků pro sledování zašpinění při jednotlivých cyklech špinění.

Ozařování vzorků

Ozařování vzorků před špiněním proběhlo v šedé skříni se třemi trubicemi lineárních zářivek s černou skleněnou baňkou po dobu 1 hodiny (tzn. při intenzitě záření v UVA oblasti 6,6 W.h.m⁻²). Při ozařování byly vzorky položeny tak, aby jejich vrchní strana směřovala k zářivkám.

Špinění vzorků

Špinění vzorků proběhlo v uzavíratelné nádobě o objemu 1 l, ve které bylo 50 g drcených mastných sazí z lokálního topeniště. Po špinění byly vzorky oplachovány ve zkrápěcím zařízení 100 ml destilované vody o teplotě 20 °C.

Postup špinění:

- vložit suchý vzorek do nádoby,
- 20x vzorek protřepat,
- vyjmout vzorek z nádoby,
- upevnit do zkrápěcího zařízení,
- zkropit z vrchní strany,

- zkropit ze spodní strany,
- vyjmout vzorek a lehce oklepnout,
- zavěsit k osušení.

4.5.2 Měření

Měření špinivost materiálů Précontraint 702 a Polyplan 648 bylo provedeno metodikou stanovení stupně bělosti (W_{CIE}) a zjišťování poklesu této hodnoty v závislosti na cyklu špinění. Stupeň bělosti materiálů, jehož hodnota je standardně od 1 do 100, přičemž hodnota 100 odpovídá ideální běli, byl softwarově vyhodnocen dle vzorce (1). Měření bylo provedeno na 4 různých místech z vrchní strany každého vzorku.

$$W_{CIE} = Y + 800(x_n - x) + 1700(y_n - y)$$
⁽¹⁾

Kde: *Y*... hodnota jasu měřeného vzorku x_n, y_n ... souřadnice bodu nepestrosti pro světlo D65 a 10° pozorovatele

x,*y*... souřadnice měřeného vzorku

Měření špinivosti materiálu ETFE film bylo vzhledem k jeho průhlednosti provedeno metodikou stanovení stupně světlosti (L) a zjišťováním poklesu této hodnoty v závislosti na cyklu špinění. Stupeň světlosti materiálu, jehož hodnota je od 1 do 100, přičemž tato hodnota se špiněním klesá, byl softwarově vyhodnocen dle vzorce (2). Měření bylo provedeno na 4 různých místech z vrchní strany každého vzorku.

$$L = 116 \left(\frac{Y}{Y_0}\right)^{1/3} - 16$$
⁽²⁾

Kde: Y... hodnota jasu měřeného vzorku

 $Y_o...$ hodnota ideálně průhledného materiálu, pro světlo D65 a 10° pozorovatele = 100

4.5.3 Výsledky měření a jejich vyhodnocení

Průměrné hodnoty naměřeného stupně bělosti a světlosti ozářených a neozářených vzorků zkoušených materiálů jsou uvedeny v tabulce č. 4.

		Běl	ost		Světlost		
čykličke špinění	Précont	raint 702	Polypl	an 648	ETFE film		
	bez UV	s UV	bez UV	s UV	bez UV	s UV	
0	83,84	83,92	78,10	77,87	72,13	72,29	
1	77,73	77,99	74,94	70,93	70,90	71,67	
2	78,51	77,95	73,05	69,19	71,32	71,06	
3	77,89	75,67	70,70	68,44	71,07	70,79	
4	75,37	74,38	66,58	65,30	70,83	70,76	
5	72,65	73,73	63,14	58,28	70,46	70,71	

Tab. č. 4 Hodnoty stupně bělosti a světlosti při cyklickém špinění

Výsledné grafy (viz. obr. č. 38, 39, 40) ukazují průběh cyklického špinění vzorků vystavených a nevystavených UV záření u jednotlivých materiálů. Pro lepší identifikaci špinivosti materiálů, jsou hodnoty v grafu vyneseny jako procentuální vyjádření naměřené hodnoty vůči hodnotě původního, nešpiněného vzorku.

Obr. č. 38 Graf cyklického špinění materiálu Précontraint 702

Obr. č. 39 Graf cyklického špinění materiálu Polyplan 648

Obr. č. 40 Graf cyklického špinění materiálu ETFE film

Z uvedených grafů vyplývá, že celková špinivost (tzn. po 5 cyklech špinění) byla nejvyšší u materiálu Polyplan 648 s poklesem bělosti přibližně o 25 % u ozářených a 19 % u neozářených vzorků v porovnání s výchozími nešpiněnými vzorky. Materiály Précontraint 702 a ETFE film vykazovaly celkovou špinivost u vzorků vystavených a nevystavených UV záření téměř shodnou. U materiálu Précontraint 702 došlo k poklesu bělosti přibližně o 13 %, u materiálu ETFE film k poklesu světlosti o pouhé 2 % v porovnání s výchozími nešpiněnými vzorky.

Nejvýraznějších rozdílů mezi zašpiněním vzorků vystavených a nevystavených UV záření při jednotlivých cyklech špinění dosahoval materiál Polyplan 648. U materiálů Précontraint 702 a ETFE film jsou tyto rozdíly zašpinění zanedbatelné.

Vliv UV záření na špinivost materiálů byl prokázán pouze u materiálu Polyplan 648.

4.6 Zjišťování mechanických vlastností různých typů spojů

Cílem této části experimentu je porovnání mechanických vlastností tahovou zkouškou různých typů spojů materiálu Précontraint 702, které byly provedené firmou Kontis Praha, s. r. o., různou technologií spojování.

Měření mechanických vlastností různých typů spojů bylo provedeno na přístroji TIRA test 2300 na Katedře textilních materiálů TU v Liberci.

Vhledem k tomu, že žádná dostupná norma, popisující metodiky zjišťování mechanických vlastností, zcela neodpovídala zadaným požadavkům, byla zkouška provedena dle normy ČSN EN ISO 1421 (Textilie povrstvené pryží nebo plasty – stanovení pevnosti nebo tažnosti), která byla již použita v tomto experimentu pro zjišťování mechanických vlastností za různých podmínek.

Podstatou této zkoušky je zjišťování mechanických vlastností zkušebního vzorku o stanovených rozměrech se spojem uprostřed, který je upnutý v čelistech, napínáním kolmo ke spoji konstantní rychlostí až do jeho porušení.

4.6.1 Příprava zkušebních vzorků

Pro měření mechanických vlastností různých typů spojů bylo firmou Kontis Praha, s. r. o, připraveno šest vzorků ve směru osnovy a útku pro každý typ spoje. Rozměry vzorků po provedení přeplátování se šířkou přeložení 4 cm odpovídaly rozměru 300 x 50 mm. Ukázka provedení jednotlivých typů spojů je v příloze č. 5.

4.6.2 Měření

Pro měření mechanických vlastností různých typů spojů byl použit stejný postup měření a definice základních parametrů materiálu Précontraint 702 jako při zjišťování mechanických vlastností za různých podmínek.

4.6.3 Výsledky měření a jejich vyhodnocení

Výstupem každého měření je statistické zpracování naměřených hodnot veličin jednotlivých tahových zkoušek a jejich grafické zpracování. Tyto výstupy jsou uvedeny v příloze č. 6.

Z důvodu špatného provedení jednoho vzorku spoje kolmého lepeného byl tento vzorek vyřazen z následujícího měření.

Průměrné hodnoty naměřené pevnosti, tažnosti a modulu pružnosti různých typů spojů materiálu Précontraint 702 v osnově a útku jsou uvedeny v tab. č. 5.

Brácontraint 702	Pevnost [N]		Tažnost [%]		Modul pružnosti [MPa]		
	osnova	útek	osnova	útek	osnova	útek	
Spoj kolmý svařovaný	2806	2699	18	18	834	673	
Spoj kolmý lepený	2986	2600	19	18	845	689	
Spoj kolmý šitý	1429	1426	12	13	638	546	
Spoj V svařovaný	2280	2009	16	15	796	693	

Tab. č. 5 Mechanické vlastnosti různých typů spojů materiálu Précontraint 702

Výsledné grafy (viz. obr. č. 41, 42, 43) znázorňují hodnoty pevnosti, tažnosti a modulu pružnosti materiálu Précontraint 702 ve směru osnovy a útku různých typů spojů.

Obr. č. 41 Graf pevnosti různých typů spojů materiálu Précontraint 702

Obr. č. 42 Graf tažnosti různých typů spojů materiálu Précontraint 702

Obr. č. 43 Graf modulu pružnosti různých typů spojů materiálu Précontraint 702

Z uvedených grafů vyplývá, že mechanické vlastnosti spoje kolmého svařovaného jsou podobné jako u spoje kolmého lepeného. K porušení vzorků docházelo mimo spoj, proto mechanické vlastnosti těchto spojů odpovídají mechanickým vlastnostem samotné textilie. Spoj kolmý šitý dosahoval téměř poloviční hodnoty pevnosti spoje kolmého lepeného a svařovaného, tím i menší hodnoty tažnosti a modulu pružnosti. Nízká pevnost tohoto spoje byla dána nedostatečnou pevností použitých nití. Spoj V svařovaný dosahoval nižší hodnoty pevnosti, přibližně o 20 %, než spoj kolmý svařovaný a lepený. K porušení vzorků došlo vždy na hranici spoje (viz. příloha č. 5 – obr. č. P 61). Menší pevnost spoje V byla zřejmě dána použitím ručního svařování, kde je kvalita provedeného sváru ovlivněna lidským faktorem.

Pevnost spoje kolmého svařovaného a lepeného, a spoje V svařovaného dosahovala o něco vyšší hodnoty ve směru osnovy než ve směru útku. U spoje kolmého šitého, kde byla pevnost spoje dána pevností šicí nitě, byla pevnost ve směru osnovy a útku shodná.

5 Závěr

Diplomová práce se zabývá textilními materiály pro speciální střešní konstrukce, které jsou prvkem moderní stavební technologie – textilní architektury.

První část je věnována literární rešerši zaměřené na obecný přehled materiálů používaných pro textilní architekturu, dále na výrobu, zpracování a vlastnosti povrstvených textilií. Ve druhé části je provedeno testování materiálů a spojů používaných firmou Kontis Praha, s. r. o.

U vybraných materiálů byly zjišťovány hodnoty mechanických vlastností ve směru podélném a příčném a změny těchto hodnot po vystavení různým zkušebním podmínkám – chlad, teplo a UV záření.

Z naměřených výsledků vyplývá, že povrstvená textilie Précontraint 702, která je vyrobená patentovanou technologií Précontraint[®] zajišťující stejnou pevnost v osnově a útku, skutečně dosáhla v obou směrech téměř shodných hodnot. Při vystavení různým zkušebním podmínkám se mechanické vlastnosti tohoto materiálu nezměnily.

Povrstvená textilie Polyplan 648, vyrobená klasickou výrobní technologií, dosáhla sice výrazně vyšší hodnoty pevnosti než materiál Précontraint 702, ale pouze ve směru osnovy. Ve směru útku vykazoval tento materiál hodnotu pevnosti výrazně nižší. Rozdíl mezi pevností ve směru osnovy a útku je mnohem větší než udává výrobce tohoto materiálu. Mechanické vlastnosti se stejně jako u materiálu Précontraint 702, vlivem různých zkušebních podmínek, nezměnily.

S odlišnou konstrukcí a způsobem použití materiálu ETFE film souvisí i jeho odlišné mechanické vlastnosti. Materiál ETFE film v podobě průhledné fólie je charakteristický mnohem menší pevností a větší tažností než povrstvené textilie. Mechanické vlastnosti tohoto materiálu jsou ve směru podélném a příčném téměř shodné. Při vystavení tohoto materiálu různým zkušebním podmínkám došlo k poklesu modulu pružnosti, ale hodnota pevnosti a tažnosti zůstala zcela zachována.

Dále byl u zkoušených materiálů zjišťován vliv UV záření na špinivost. Testování špinivosti bylo provedeno na vrchní straně materiálů, která je při použití vystavena působení UV záření a nečistot. Výsledky testu špinivosti ukázaly, že u materiálu Précontraint 702 došlo k mírnému zašpinění, které se vlivem působení UV záření nezhoršilo. U materiálu Polyplan 648 došlo k zašpinění výraznějšímu. Při působení UV záření bylo zašpinění tohoto materiálu ještě větší. Rozdíl mezi zašpiněním materiálu Précontraint 702 a Polyplan 648 byl patrný již pouhým okem. U materiálu ETFE film nedošlo díky jeho hladkému povrchu, ani po působení UV záření k téměř žádnému zašpinění.

Výsledky ukazují, že povrstvená textilie Précontraint 702 od firmy Ferrari vykazuje všestranně lepší vlastnosti než povrstvená textilie Polyplan 648 od firmy Sattler, která dosáhla velice rozdílných hodnot mechanických vlastností ve směru osnovy a útku a výrazného zašpinění, které se po působení UV záření zhoršilo. Naměřené hodnoty vlastností materiálu ETFE film nebylo možné porovnat s jiným podobným materiálem. Z hlediska sledovaných charakteristik nebyly zjištěny závažné nedostatky.

Pevnost spojů pro textilní architekturu musí vykazovat nejméně 90 % pevnosti spojovaného materiálu. Tento požadavek, dle naměřených výsledků, splnily spoje kolmý strojově svařovaný a lepený, kde pevnost spojů odpovídala pevnosti samotného materiálu. Mnohem horší výsledky vykazoval spoj kolmý šitý, který dosáhl pouze poloviční hodnoty pevnosti spojovaného materiálu. Pevnost spoje V svařovaného ručně také nedosáhla požadované hranice pevnosti.

Jednoznačně nejvhodnější technologií spojování se pro textilní architekturu jeví spojování strojovým svařováním. Přestože spoj kolmý lepený dosáhl stejných hodnot mechanických vlastností, jako spoj kolmý strojově svařovaný, nelze jeho použití jednoznačně doporučit. U tohoto spoje by bylo nutné ověření trvanlivosti, tedy zda nedochází k degradaci použitého lepidla, a tím k poklesu pevnosti spoje po delší době vystavení klimatickým podmínkám. U technologie spojování povrstvených textilií šitím lze předpokládat, že ani při použití pevnějších nití se nedosáhne požadované pevnosti, proto se tato technologie spojování pro textilní architekturu dá považovat za nevhodnou.

Menší pevnost ručně svařovaného spoje V než strojově svařovaného spoje kolmého, byla zřejmě způsobena použitím ručního svařování, kde je kvalita provedeného sváru ovlivněna lidským faktorem. Pro dosažení požadované pevnosti je nutné, aby obsluha svařovacího stroje dbala na použití správné teploty, rychlosti a přítlaku při svařování.

Seznam použité literatury

[1] ČSN EN 24920 (80 0827). Stanovení odolnosti plošných textilií vůči povrchovému smáčení (zkrápěcí metoda). Praha: Český normalizační institut, 1994. 12s.

[2] ČSN EN ISO 1421 (80 4627). *Textilie povrstvené pryží nebo plasty – stanovení pevnosti nebo tažnosti*. Praha: Český normalizační institut, 1999. 24s.

[3] *Ferrari* [online]. [cit. 2009-11-09] Dostupné z WWW: ">http://www.ferrari-textiles.com/index.php#>.

[4] *Ferrari*[®] *covers and composite textiles and membranes* [online]. [cit. 2009-11-09] Dostupné z WWW: http://www.ferrari-industry.com/index.php?lang=gb>.

[5] FOLTÝN, J., POSPÍŠIL, Z., SUCHOMEL, Z. *Technické textilie ve stavebnictví*.1. vyd. Praha: SNTL, 1984. 149 s.

[6] HANUŠ, Jaroslav. *Technické textilie* (přednáška) [online]. Liberec: TUL 2005. [cit. 2009-12-18] Dostupné z WWW: http://www.ft.vslib.cz/depart/knt/nove/index.php? obsah=studium/stranky_predmetu/ttx>.

[7] HIRNŠAL, Zdeněk (ARCHTEX, s. r. o.). ETFE – další materiál se zajímavou perspektivou. *Stavba*. 2006, č. 5, s. 94-95. Dostupné také z WWW: http://www.archtex.cz/clanky/stavba.pdf>.

[8] HIRNŠAL, Zdeněk (ARCHTEX, s. r. o.). Textilní architektura. *Fasády*. 2005, č. 1,
s. 24-27. Dostupné také z WWW: http://www.archtex.cz/clanky/fasady.pdf>.

[9] *Charakteristika slunečního záření* [online]. [cit. 2009-02-18] Dostupné z WWW: http://www.liposukce.cz/plasticka-chirurgie/kozni-nadory/charakteristika-slunecniho-zareni.htm>.

[10] *Innova* [online]. 2009 [cit. 2009-11-09]. Dostupné z WWW: http://www.innova.com.au/home/>.

[11] KONEČNÝ, Lubomír. Ústní sdělení. KONTIS Praha, s. r. o., V Mezihoří 2a, Praha 8. [cit. 2009-11-6].

[12] *Kontis Praha, s. r. o.* [online]. [cit. 2009-11-09] Dostupné z WWW: http://www.kontispraha.cz/kontakt/produkty.php.

[13] KRČMA, Ladislav. Degradace textilních vláken a ochrana proti ní. Praha: SNTL, 1976. 163 s.

[14] KREBSOVÁ, Milada. Nauka o polymerech. Liberec: VŠS a T, 1979. 223 s.

[15] Manuál k přístroji: Horkovzdušný sterilizátor HS 122 A.

[16] Manuál k přístroji: Rastrovací elektronový mikroskop VEGA TS 5130.

[17] Manuál k přístroji: TIRA test 2300.

[18] MILITKÝ, Jiří. *Seminář MATA 09* (přednáška: Textil a architektura) [online]. Brno: VÚT 2009. [cit. 2009-12-18] Dostupné z WWW: http://www.stany-haly.cz/seminar-mata-09-membranova-a-textilni-architektura.aspx.

[19] MILITKÝ, Jiří. *Technické textilie: Vybrané kapitoly*. 2. vyd. Liberec: TUL, 2007.
238 s. ISBN 978-80-7372-170-1.

[20] Osram. *Speciální zářiče* (firemní katalog) [online]. [cit. 2009-01-18] Dostupné z WWW: http://www.osram.cz/osram_cz/KATALOG/index.html.

[21] *Sattler* [online]. [cit. 2009-11-17] Dostupné z WWW: http://www.sattler-ag.com/sattler-web/en/index.html.

[22] Sioen Industries. *Seminář MATA 09* (přednáška: Innovations in coated textiles) [online]. Brno: VÚT 2009. [cit. 2009-12-18] Dostupné z WWW: http://www.stany-haly.cz/seminar-mata-09-membranova-a-textilni-architektura.aspx.

[23] ŠVÉDOVÁ, J. a kol. Technické textilie. 1. vyd. Praha: SNTL, 1978. 456 s.

[24] ZOUHAROVÁ, Jana. Výroba oděvů II. Liberec: TUL, 2002. 98 s.

Seznam příloh

Příloha č. 1 – Vzorky zkušebních materiálů

- Příloha č. 2 Ukázky realizací textilní architektury firmy Kontis Praha, s. r. o. [12]
- Příloha č. 3 Mechanické vlastnosti zkoušených materiálů za různých podmínek
- Příloha č. 4 Snímky mikroskopického pozorování místa porušení při tahové zkoušce
- Příloha č. 5 Ukázka různých typů spojů
- Příloha č. 6 Mechanické vlastnosti různých typů spojů

Příloha č. 1

Vzorky zkušebních materiálů

Počet stran: 1

Précontraint[®] 702

Polyplan 648

Fluon[®] ETFE film

Příloha č. 2

Ukázky realizací textilní architektury firmy Kontis Praha, s. r. o. [12]

Počet stran: 3

Obr. č. P 1 Autobusové nádraží – Hradec Králové

Obr. č. P 2 Fotbalový stadion – Jihlava

Obr. č. P 3 Obchodní centrum Chodov – Praha

Obr. č. P 4 Restaurace Golf Hostivař – Praha

Obr. č. P 5 Restaurace Golf Hostivař – Praha (detail)

Obr. č. P 6 Rodinný dům – Praha

Obr. č. P 7 Stínění obytného domu

Obr. č. P 8 Podhled na koupališti

Obr. č. P 9 Podhled v restauraci

Příloha č. 3

Mechanické vlastnosti zkoušených materiálů za různých podmínek

Počet stran: 24

Précontraint 702 (osnova) – běžné podmínky

STAT	Amax	Fmax	W	E	Amax	t
51741	[mm]	[N]	[1]	[MPa]	6 17,47 0,55 3,17	[sec]
Počet zkoušek	6	6	6	6	6	6
Průměrná hodnota zkoušek	34,93181	2600,96509	42,61038	803,13	17,47	19,45
Směrodatná odchylka zkoušek	1,10906	98,96591	3,09445	7,10	0,55	0,61
Variační koeficient zkoušek	3,17492	3,80497	7,26219	0,88	3,17	3,15
Minimální hodnota zkoušek	33,83584	2483,46606	39,48920	795,14	16,92	18,86
Maximální hodnota zkoušek	36,89736	2752,12012	47,91945	813,32	18,45	20,54

Tab. č. P 1 Statistické zpracování naměřených hodnot

Tab. č. P 2 Naměřené hodnoty

Zkouška	Amax [mm]	Fmax [N]	[1] W	E [MPa]	Amax [%]	t [sec]
6	35,01968	2657,16992	43,49667	813,32	17,51	19,50
5	33,83584	2483,46606	39,48920	795,84	16,92	18,88
4	36,89736	2752,12012	47,91945	801,81	18,45	20,54
3	34,87902	2572,55615	41,87247	795,14	17,44	19,40
2	35,05642	2627,08618	43,15850	808,49	17,53	19,52
1	33,90252	2513,39209	39,72601	804,17	16,95	18,86

Obr. č. P 10 Graf tahových křivek

Précontraint 702 (útek) – běžné podmínky

CTAT.	Amax	Fmax	W	E	Amax	t
STAT	[mm]	[N]	[J]	[MPa]	[%]	[sec]
Počet zkoušek	5	5	5	5	5	5
Průměrná hodnota zkoušek	36,69145	2542,31787	43,14548	643,68	18,35	20,44
Směrodatná odchylka zkoušek	2,19533	131,34596	5,30159	9,61	1,10	1,26
Variační koeficient zkoušek	5,98321	5,16639	12,28771	1,49	5,98	6,15
Minimální hodnota zkoušek	34,81028	2458,47412	39,43122	630,15	17,41	19,36
Maximální hodnota zkoušek	40,25574	2771,71191	52,24232	655,29	20,13	22,48

Tab. č. P 3 Statistické zpracování naměřených hodnot

Tab. č. P 4 Naměřené hodnoty

Zkoučko	Amax	Fmax	W	E	Amax	t
ZKOUSKA	[mm]	[N]	[J]	[MPa]	[%]	[sec]
5	40,25574	2771,71191	52,24232	655,29	20,13	22,48
4	37,30966	2532,90796	43,33351	643,96	18,65	20,80
3	35,58904	2474,43994	40,76524	639,50	17,79	19,80
2	35,49254	2458,47412	39,95512	630,15	17,75	19,76
1	34,81028	2474,05591	39,43122	649,48	17,41	19,36

Obr. č. P 11 Graf tahových křivek

Précontraint 702 (osnova) – chlad

CTAT	Amax	Fmax	W	Е	Amax	t
STAT	[mm]	[N]	[J]	[MPa]	Amax [%] 6 17,78 0,49 2,78	[sec]
Počet zkoušek	6	6	6	6	6	6
Průměrná hodnota zkoušek	35,56913	2700,73706	45,63040	768,24	17,78	19,78
Směrodatná odchylka zkoušek	0,98814	62,85502	2,62451	7,27	0,49	0,55
Variační koeficient zkoušek	2,77810	2,32733	5,75166	0,95	2,78	2,78
Minimální hodnota zkoušek	34,67466	2621,45605	43,29496	754,20	17,34	19,30
Maximální hodnota zkoušek	36,85362	2764,53809	49,06911	773,56	18,43	20,48

Tab. č. P 5 Statistické zpracování naměřených hodnot

Tab. č. P 6 Naměřené hodnoty

Zkouška	Amax [mm]	Fmax [N]	[1] W	E [MPa]	Amax [%]	t [sec]
6	34,67466	2659,02002	43,29496	754,20	17,34	19,30
5	34,75796	2654,78003	43,42488	768,24	17,38	19,32
4	35,47476	2741,70801	45,85378	772,32	17,74	19,74
3	36,85362	2764,53809	49,06911	773,56	18,43	20,48
2	34,92346	2621,45605	43,63461	768,19	17,46	19,40
1	36,73032	2762,92017	48,50507	772,92	18,37	20,44

Obr. č. P 12 Graf tahových křivek

Précontraint 702 (útek) – chlad

CTAT	Amax	Fmax	W	Е	Amax	t
STAT	[mm]	[N]	[J]	[MPa]	Amax [%] 6 18,57 0,69 3,69	[sec]
Počet zkoušek	6	6	6	6	6	6
Průměrná hodnota zkoušek	37,14494	2628,50098	45,35978	629,91	18,57	20,67
Směrodatná odchylka zkoušek	1,37126	87,18577	3,25166	5,64	0,69	0,76
Variační koeficient zkoušek	3,69165	3,31694	7,16859	0,90	3,69	3,67
Minimální hodnota zkoušek	35,53320	2521,48999	41,48146	624,65	17,77	19,80
Maximální hodnota zkoušek	38,83402	2774,48999	49,53003	639,61	19,42	21,62

Tab. č. P 7 Statistické zpracování naměřených hodnot

Tab. č. P 8 Naměřené hodnoty

Zkouška	Amax	Fmax	W	E	Amax	t
	[mm]	[N]	[1]	[MPa]	[%]	[sec]
6	38,83402	2659,40576	48,69213	639,61	19,42	21,62
5	37,38150	2627,93604	45,49698	624,65	18,69	20,78
4	35,53320	2521,48999	41,48146	626,83	17,77	19,80
3	36,68378	2624,53979	44,53641	629,96	18,34	20,40
2	38,57350	2774,48999	49,53003	625,53	19,29	21,46
1	35,86366	2563,14404	42,42164	632,90	17,93	19,96

Obr. č. P 13 Graf tahových křivek

Précontraint 702 (osnova) – teplo

CTAT.	Amax	Fmax	W	E	Amax	t
STAT	[mm]	[N]	[J]	[Mpa]	[%]	[sec]
Počet zkoušek	6	6	6	6	6	6
Průměrná hodnota zkoušek	35,84810	2623,64087	43,90882	776,22	17,92	19,96
Směrodatná odchylka zkoušek	0,89636	57,91322	2,15389	10,69	0,45	0,50
Variační koeficient zkoušek	2,50043	2,20736	4,90537	1,38	2,50	2,51
Minimální hodnota zkoušek	34,42062	2536,37793	40,54312	759,67	17,21	19,16
Maximální hodnota zkoušek	36,98494	2714,55615	47,04261	792,41	18,49	20,58

Tab. č. P 9 Statistické zpracování naměřených hodnot

Tab. č. P 10 Naměřené hodnoty

Zkouška	Amax [mm]	Fmax	W	E [Mpa]	Amax	t [sec]
	[11111]	נואן	[1]	[ivipa]	[/0]	႞ၭႄၬၟ
6	35,54786	2608,88013	43,40518	778,46	17,77	19,78
5	34,42062	2536,37793	40,54312	792,41	17,21	19,16
4	35,73176	2614,51416	43,63343	780,02	17,87	19,90
3	36,98494	2714,55615	47,04261	759,67	18,49	20,58
2	35,79342	2619,91406	43,63738	773,21	17,90	19,94
1	36,61000	2647,60400	45,19120	773,56	18,30	20,40

Obr. č. P 14 Graf tahových křivek

Précontraint 702 (útek) – teplo

CTAT.	Amax	Fmax	W	E	Amax	t
STAT	[mm]	[N]	[J]	[MPa]	[%]	[sec]
Počet zkoušek	5	5	5	5	5	5
Průměrná hodnota zkoušek	35,72144	2450,23584	39,78422	645,78	17,86	19,88
Směrodatná odchylka zkoušek	1,49756	103,93333	3,27232	13,01	0,75	0,83
Variační koeficient zkoušek	4,19233	4,24177	8,22517	2,01	4,19	4,19
Minimální hodnota zkoušek	33,48666	2286,92993	34,75957	625,68	16,74	18,64
Maximální hodnota zkoušek	36,98864	2562,44800	42,89677	659,72	18,49	20,60

Tab. č. P 11 Statistické zpracování naměřených hodnot

Tab. č. P 12 Naměřené hodnoty

Zkouška	Amax	Fmax	W	E	Amax	t
	[mm]	[N]	[J]	[MPa]	[%]	[sec]
5	34,91754	2425,22998	38,39067	659,72	17,46	19,42
4	33,48666	2286,92993	34,75957	643,45	16,74	18,64
3	36,32842	2473,66992	40,94123	654,34	18,16	20,24
2	36,98864	2502,90186	41,93283	625,68	18,49	20,60
1	36,88592	2562,44800	42,89677	645,72	18,44	20,50

Obr. č. P 15 Graf tahových křivek
Précontraint 702 (osnova) – UV záření

STAT	Amax [mm]	Fmax [N]	[1] W	E [MPa]	Amax [%]	t [sec]
Počet zkoušek	4	4	4	4	4	4
Průměrná hodnota zkoušek	43,31867	2957,31445	62,33151	725,59	21,66	24,10
Směrodatná odchylka zkoušek	2,07874	54,40623	5,23933	3,77	1,04	1,14
Variační koeficient zkoušek	4,79871	1,83972	8,40559	0,52	4,80	4,72
Minimální hodnota zkoušek	41,22584	2877,69409	56,50357	720,69	20,61	22,94
Maximální hodnota zkoušek	46,14664	3000,48804	69,20791	728,65	23,07	25,64

Tab. č. P 13 Statistické zpracování naměřených hodnot

Tab. č. P 14 Naměřené hodnoty

Zkoučko	Amax	Fmax	W	Е	Amax	t
ZKOUSKA	[mm]	[N]	[J]	[MPa]	[%]	[sec]
4	41,22584	2877,69409	56,50357	724,55	20,61	22,94
3	42,55368	2978,04419	61,28178	728,45	21,28	23,70
2	43,34850	2973,03174	62,33279	720,69	21,67	24,12
1	46,14664	3000,48804	69,20791	728,65	23,07	25,64

Obr. č. P 16 Graf tahových křivek

Précontraint 702 (útek) – UV záření

CTAT	Amax	Fmax	W	E	Amax	t
STAT	[mm]	[N]	[J]	[MPa]	[%]	[sec]
Počet zkoušek	4	4	4	4	4	4
Průměrná hodnota zkoušek	36,62314	2507,85791	42,18437	649,15	18,31	20,40
Směrodatná odchylka zkoušek	1,13944	92,45804	3,02255	2,68	0,57	0,64
Variační koeficient zkoušek	3,11126	3,68673	7,16510	0,41	3,11	3,13
Minimální hodnota zkoušek	35,79770	2434,10010	39,97807	646,94	17,90	19,96
Maximální hodnota zkoušek	38,25262	2640,89404	46,54464	652,91	19,13	21,32

Tab. č. P 15 Statistické zpracování naměřených hodnot

Tab. č. P 16 Naměřené hodnoty

Amax		Fmax	W	E	Amax	t
ZKOUSKA	[mm]	[N]	[J]	[MPa]	[%]	[sec]
4	35,87820	2434,10010	39,97807	647,56	17,94	19,98
3	36,56404	2497,57983	41,88452	649,19	18,28	20,34
2	38,25262	2640,89404	46,54464	646,94	19,13	21,32
1	35,79770	2458,85791	40,33023	652,91	17,90	19,96

Obr. č. P 17 Graf tahových křivek

Polyplan 648 (osnova) – běžné podmínky

CTAT	Amax	Fmax	W	E	Amax	t
STAT	[mm]	[N]	[J]	[MPa]	[%]	[sec]
Počet zkoušek	6	6	6	6	6	6
Průměrná hodnota zkoušek	38,90391	3241,95679	59,30628	1171,00	19,45	21,71
Směrodatná odchylka zkoušek	2,04114	171,20613	7,11841	18,66	1,02	1,15
Variační koeficient zkoušek	5,24661	5,28095	12,00279	1,59	5,25	5,29
Minimální hodnota zkoušek	35,69634	3003,65405	47,59169	1140,39	17,85	19,88
Maximální hodnota zkoušek	41,16124	3429,12183	66,44152	1188,33	20,58	22,96

Tab. č. P 17 Statistické zpracování naměřených hodnot

Tab. č. P 18 Naměřené hodnoty

Zkoučka	Amax	Fmax	W	Е	Amax	t
ZKUUSKa	[mm]	[N]	[J]	[MPa]	[%]	[sec]
6	40,58530	3429,12183	66,44152	1157,03	20,29	22,66
5	39,93606	3401,66016	63,15411	1140,39	19,97	22,28
4	41,16124	3334,70776	65,31731	1182,39	20,58	22,96
3	38,01564	3154,83398	57,07915	1188,33	19,01	21,22
2	38,02886	3127,76196	56,25391	1173,82	19,01	21,24
1	35,69634	3003,65405	47,59169	1184,04	17,85	19,88

Obr. č. P 18 Graf tahových křivek

Polyplan 648 (útek) – běžné podmínky

CTAT	Amax	Fmax	W	E	Amax	t
STAT	[mm]	[N]	[J]	[MPa]	[%]	[sec]
Počet zkoušek	5	5	5	5	5	5
Průměrná hodnota zkoušek	46,34009	2401,95068	44,78654	375,05	23,17	25,84
Směrodatná odchylka zkoušek	1,40867	137,86383	3,72394	4,99	0,70	0,77
Variační koeficient zkoušek	3,03985	5,73966	8,31487	1,33	3,04	2,99
Minimální hodnota zkoušek	44,59574	2218,12598	39,82882	367,34	22,30	24,88
Maximální hodnota zkoušek	48,39636	2592,22217	49,98785	379,42	24,20	26,96

Tab. č. P 19 Statistické zpracování naměřených hodnot

Tab. č. P 20 Naměřené hodnoty

Zkoučko	Amax	Fmax	W	E	Amax	t
ZKOUSKA	[mm]	[N]	[J]	[MPa]	[%]	[sec]
5	46,84260	2425,38403	46,05138	377,53	23,42	26,12
4	45,73008	2336,83398	43,29042	372,82	22,87	25,50
3	48,39636	2592,22217	49,98785	378,16	24,20	26,96
2	44,59574	2218,12598	39,82882	367,34	22,30	24,88
1	46,13568	2437,18799	44,77422	379,42	23,07	25,74

Obr. č. P 19 Graf tahových křivek

Polyplan 648 (osnova) – chlad

STAT	Amax	Fmax	W	E	Amax	t
STAT	[mm]	[N]	[1]	[MPa]	[%]	[sec]
Počet zkoušek	6	6	6	6	6	6
Průměrná hodnota zkoušek	39,00465	3341,79321	60,76141	1193,24	19,50	21,70
Směrodatná odchylka zkoušek	0,93536	72,12927	2,67765	12,80	0,47	0,50
Variační koeficient zkoušek	2,39808	2,15840	4,40682	1,07	2,40	2,32
Minimální hodnota zkoušek	37,61302	3211,21997	56,81901	1180,34	18,81	20,98
Maximální hodnota zkoušek	40,15358	3408,44995	63,08553	1217,66	20,08	22,32

Tab. č. P 21 Statistické zpracování naměřených hodnot

Tab. č. P 22 Naměřené hodnoty

Zkouško	Amax	Fmax	W	Е	Amax	t
ZKOUSKA	[mm]	[N]	[J]	[MPa]	[%]	[sec]
6	37,61302	3307,48193	58,01496	1191,62	18,81	20,98
5	40,15358	3378,05786	63,08553	1191,46	20,08	22,32
4	38,30806	3211,21997	56,81901	1192,12	19,15	21,30
3	39,74252	3365,40771	63,03753	1186,25	19,87	22,12
2	38,92113	3408,44995	61,80980	1217,66	19,46	21,64
1	39,28958	3380,14209	61,80161	1180,34	19,64	21,86

Obr. č. P 20 Graf tahových křivek

Polyplan 648 (útek) – chlad

CTAT	Amax	Fmax	W	E	Amax	t
STAT	[mm]	[N]	[J]	[MPa]	[%]	[sec]
Počet zkoušek	6	6	6	6	6	6
Průměrná hodnota zkoušek	42,25654	2307,48535	40,42160	345,57	21,13	23,50
Směrodatná odchylka zkoušek	2,48709	116,98237	4,32673	4,47	1,24	1,38
Variační koeficient zkoušek	5,88570	5,06969	10,70402	1,29	5,89	5,88
Minimální hodnota zkoušek	38,72676	2118,23779	34,22259	340,34	19,36	21,54
Maximální hodnota zkoušek	45,20220	2427,23389	45,06830	352,84	22,60	25,14

Tab. č. P 23 Statistické zpracování naměřených hodnot

Tab. č. P 24 Naměřené hodnoty

Zkouška	Amax [mm]	Fmax [N]	[1] W	E [MPa]	Amax [%]	t [sec]
6	38,72676	2118,23779	34,22259	352,84	19,36	21,54
5	42,43084	2427,23389	41,88672	345,48	21,22	23,58
4	41,61942	2348,09595	39,78064	346,48	20,81	23,14
3	40,68148	2212,95776	36,86386	346,84	20,34	22,64
2	44,87852	2363,29224	44,70747	340,34	22,44	24,96
1	45,20220	2375,09399	45,06830	341,41	22,60	25,14

Obr. č. P 21 Graf tahových křivek

Polyplan 648 (osnova) – teplo

STAT	Amax	Fmax	W	E	Amax	t
SIAI	[mm]	[N]	[1]	[MPa]	[%]	[sec]
Počet zkoušek	6	6	6	6	6	6
Průměrná hodnota zkoušek	39,82650	3277,87427	60,61530	1141,88	19,91	22,16
Směrodatná odchylka zkoušek	0,84066	73,98867	3,06906	7,61	0,42	0,48
Variační koeficient zkoušek	2,11081	2,25722	5,06317	0,67	2,11	2,17
Minimální hodnota zkoušek	38,99810	3182,29614	57,62438	1134,17	19,50	21,68
Maximální hodnota zkoušek	41,01374	3371,81006	64,96265	1155,33	20,51	22,84

Tab. č. P 25 Statistické zpracování naměřených hodnot

Tab. č. P 26 Naměřené hodnoty

Zkoučka	Amax	Fmax	W	Е	Amax	t
ZKOUSKa	[mm]	[N]	[J]	[MPa]	[%]	[sec]
6	39,33080	3228,34204	58,21404	1135,77	19,67	21,88
5	39,42192	3310,48975	60,26208	1155,33	19,71	21,94
4	38,99810	3182,29614	57,62438	1134,17	19,50	21,68
3	40,76122	3371,81006	64,96265	1142,59	20,38	22,70
2	39,43322	3233,66162	58,82610	1139,33	19,72	21,94
1	41,01374	3340,64795	63,80254	1144,09	20,51	22,84

Obr. č. P 22 Graf tahových křivek

Polyplan 648 (útek) – teplo

CTAT	Amax	Fmax	W	E	Amax	t
STAT	[mm]	[N]	[J]	[MPa]	[%]	[sec]
Počet zkoušek	6	6	6	6	6	6
Průměrná hodnota zkoušek	42,43712	2283,40723	39,57055	385,07	21,22	23,62
Směrodatná odchylka zkoušek	3,36231	113,58263	4,39326	8,49	1,68	1,86
Variační koeficient zkoušek	7,92304	4,97426	11,10233	2,20	7,92	7,87
Minimální hodnota zkoušek	40,05520	2136,36401	35,12423	373,67	20,03	22,32
Maximální hodnota zkoušek	46,79120	2450,68213	46,02443	399,55	23,40	26,04

Tab. č. P 27 Statistické zpracování naměřených hodnot

Tab. č. P 28 Naměřené hodnoty

Zkouška	Amax [mm]	Fmax [N]	(J]	E [MPa]	Amax [%]	t [sec]
6	46,75398	2450,68213	46,02443	399 <i>,</i> 55	23,38	26,00
5	46,79120	2377,33228	44,06154	383,17	23,40	26,04
4	40,55538	2268,26196	38,04050	383,49	20,28	22,60
3	40,17940	2212,11182	36,74857	373,67	20,09	22,34
2	40,28758	2255,69189	37,42405	387,96	20,14	22,44
1	40,05520	2136,36401	35,12423	382,57	20,03	22,32

Obr. č. P 23 Graf tahových křivek

Polyplan 648 (osnova) – UV záření

STAT	Amax	Fmax	W	E	Amax	t
3141	[mm]	[N]	[1]	[MPa]	[%]	[sec]
Počet zkoušek	4	4	4	4	4	4
Průměrná hodnota zkoušek	37,80763	3238,04199	56,84718	1190,07	18,90	21,06
Směrodatná odchylka zkoušek	0,36625	60,06079	1,93203	5,40	0,18	0,22
Variační koeficient zkoušek	0,96873	1,85485	3,39863	0,45	0,97	1,03
Minimální hodnota zkoušek	37,43946	3168,10205	54,95481	1184,85	18,72	20,84
Maximální hodnota zkoušek	38,15320	3308,25244	59,36362	1197,57	19,08	21,28

Tab. č. P 29 Statistické zpracování naměřených hodnot

Tab. č. P 30 Naměřené hodnoty

Zkouško	Amax	Fmax	W	Е	Amax	t
ZKOUSKA	[mm]	[N]	[J]	[MPa]	[%]	[sec]
4	37,43946	3168,10205	54,95481	1188,08	18,72	20,84
3	38,09022	3260,27612	57,27337	1189,79	19,05	21,20
2	37,54764	3215,53784	55,79692	1197,57	18,77	20,90
1	38,15320	3308,25244	59,36362	1184,85	19,08	21,28

Obr. č. P 24 Graf tahových křivek

Polyplan 648 (útek) – UV záření

STAT	Amax	Fmax	W	E	Amax	t
STAT	[mm]	[N]	[J]	[MPa]	[%]	[sec]
Počet zkoušek	4	4	4	4	4	4
Průměrná hodnota zkoušek	46,19983	2338,97461	44,02093	357,83	23,10	25,70
Směrodatná odchylka zkoušek	1,42109	116,28616	3,27293	1,61	0,71	0,79
Variační koeficient zkoušek	3,07597	4,97167	7,43493	0,45	3,08	3,06
Minimální hodnota zkoušek	44,56492	2218,51221	40,79896	355,73	22,28	24,80
Maximální hodnota zkoušek	47,40620	2441,58008	46,88327	359,63	23,70	26,36

Tab. č. P 31 Statistické zpracování naměřených hodnot

Tab. č. P 32 Naměřené hodnoty

Zkoučko	Amax	Fmax	W	E	Amax	t
ZKOUSKA	[mm]	[N]	[J]	[MPa]	[%]	[sec]
4	45,45534	2218,51221	41,60292	355,73	22,73	25,28
3	47,40620	2435,56396	46,88327	358,17	23,70	26,36
2	47,37286	2441,58008	46,79857	357,77	23,69	26,36
1	44,56492	2260,24194	40,79896	359,63	22,28	24,80

Obr. č. P 25 Graf tahových křivek

ETFE film (podélný směr) – běžné podmínky

STAT	Amax [mm]	Fmax [N]	[1] M	E [MPa]	Amax [%]	t [sec]
Počet zkoušek	5	5	5	5	5	5
Průměrná hodnota zkoušek	360,65131	210,17319	48,90395	350,68	360,65	200,80
Směrodatná odchylka zkoušek	18,01019	14,37468	3,69010	6,49	18,01	9,66
Variační koeficient zkoušek	4,99379	6 <i>,</i> 83945	7,54561	1,85	4,99	4,81
Minimální hodnota zkoušek	339,47079	195,99620	44,52703	342,33	339,47	188,86
Maximální hodnota zkoušek	380,02020	226,30978	52,75489	356,65	380,02	211,23

Tab. č. P 33 Statistické zpracování naměřených hodnot

Tab. č. P 34 Naměřené hodnoty

Zkoučka	Amax	Fmax	W	Е	Amax	t
ZKOUSKa	[mm]	[N]	[J]	[MPa]	[%]	[sec]
5	375,93842	226,30978	52,43187	352,10	375,94	209,09
4	345,27618	195,99620	46,07481	342,33	345,28	193,51
3	380,02020	224,45798	52,75489	345,66	380,02	211,23
2	339,47079	198,23300	44,52703	356,65	339,47	188,86
1	362,55103	205,86902	48,73112	356,65	362,55	201,33

Obr. č. P 26 Graf tahových křivek

ETFE film (příčný směr) – běžné podmínky

STAT	Amax [mm]	Fmax [N]	[1] M	E [MPa]	Amax [%]	t [sec]
Počet zkoušek	5	5	5	5	5	5
Průměrná hodnota zkoušek	377,47241	200,59334	48,52680	337,15	377,47	210,08
Směrodatná odchylka zkoušek	23,20183	15,36477	4,38983	7,72	23,20	12,56
Variační koeficient zkoušek	6,14663	7,65966	9,04621	2,29	6,15	5 <i>,</i> 98
Minimální hodnota zkoušek	354,06644	182,42101	43,07267	327,42	354,07	197,01
Maximální hodnota zkoušek	409,91901	222,91599	54,49475	347,33	409,92	227,55

Tab. č. P 35 Statistické zpracování naměřených hodnot

Tab. č. P 36 Naměřené hodnoty

Zkouško	Amax	Fmax	W	Е	Amax	t
ZKOUSKA	[mm]	[N]	[J]	[MPa]	[%]	[sec]
5	354,06644	182,42101	43,07267	335,87	354,07	197,01
4	409,91901	222,91599	54,49475	333,19	409,92	227,55
3	356,26257	190,90500	45,63783	347,33	356,26	198,93
2	387,35019	205,17500	50,23962	341,94	387,35	215,39
1	379,76398	201,54959	49,18914	327,42	379,76	211,51

Obr. č. P 27 Graf tahových křivek

ETFE film (podélný směr) – chlad

STAT	Amax [mm]	Fmax [N]	[1] M	E [MPa]	Amax [%]	t [sec]
Počet zkoušek	5	5	5	5	5	5
Průměrná hodnota zkoušek	373,97943	216,96097	51,71656	318,54	373,98	207,68
Směrodatná odchylka zkoušek	12,68883	11,46657	3,29940	6,85	12,69	6,85
Variační koeficient zkoušek	3,39292	5,28509	6,37977	2,15	3,39	3,30
Minimální hodnota zkoušek	361,56818	204,01801	48,14274	312,50	361,57	200,93
Maximální hodnota zkoušek	393,05121	232,63420	55,64919	329,68	393 <i>,</i> 05	217,97

Tab. č. P 37 Statistické zpracování naměřených hodnot

Tab. č. P 38 Naměřené hodnoty

Zkoučka	Amax	Fmax	W	Е	Amax	t
ZKOUSKa	[mm]	[N]	[1]	[MPa]	[%]	[sec]
5	371,79300	217,90201	51,79672	317,06	371,79	206,85
4	379,20782	222,37561	54,25424	312,50	379,21	210,33
3	393,05121	232,63420	55,64919	313,68	393,05	217,97
2	361,56818	204,01801	48,14274	329,68	361,57	200,93
1	364,27701	207,87500	48,73995	319,79	364,28	202,35

Obr. č. P 28 Graf tahových křivek

ETFE film (příčný směr) – chlad

STAT	Amax [mm]	Fmax [N]	[1] W	E [MPa]	Amax [%]	t [sec]
Počet zkoušek	5	5	5	5	5	5
Průměrná hodnota zkoušek	378,77643	209,24756	50,73999	326,01	378,78	210,96
Směrodatná odchylka zkoušek	18,40580	16,32393	4,42644	9,28	18,41	10,11
Variační koeficient zkoušek	4,85928	7,80125	8,72376	2,85	4,86	4,79
Minimální hodnota zkoušek	350,64899	191,67700	46,57938	314,04	350,65	195,38
Maximální hodnota zkoušek	397,91660	230,24300	55,44492	339,29	397,92	221,37

Tab. č. P 39 Statistické zpracování naměřených hodnot

Tab. č. P 40 Naměřené hodnoty

Zkoučka	Amax	Fmax	W	Е	Amax	t
ZKOUSKa	[mm]	[N]	[J]	[MPa]	[%]	[sec]
5	381,88858	201,31799	49,36608	314,04	381,89	212,61
4	372,47681	191,67700	46,57938	321,64	372,48	207,75
3	350,64899	200,46980	46,87141	326,93	350,65	195,38
2	397,91660	230,24300	55,44492	339,29	397,92	221,37
1	390,95117	222,53000	55,43816	328,14	390,95	217,67

Obr. č. P 29 Graf tahových křivek

ETFE film (podélný směr) – teplo

CTAT	Amax	Fmax	W	Е	Amax	t
STAT	[mm]	[N]	[J]	[MPa]	[%]	[sec]
Počet zkoušek	5	5	5	5	5	5
Průměrná hodnota zkoušek	361,93378	209,26299	49,64735	187,22	361,93	202,11
Směrodatná odchylka zkoušek	41,44482	29,23517	8,73173	6,13	41,44	21,56
Variační koeficient zkoušek	11,45094	13,97054	17,58750	3,27	11,45	10,67
Minimální hodnota zkoušek	308,67059	171,23599	38,74315	180,75	308,67	174,82
Maximální hodnota zkoušek	395,28522	234,87100	57,04228	196,42	395,29	219,37

Tab. č. P 41 Statistické zpracování naměřených hodnot

Tab. č. P 42 Naměřené hodnoty

Zkoučka	Amax	Fmax	W	Е	Amax	t
ZKUUSKa	[mm]	[N]	[J]	[MPa]	[%]	[sec]
5	395,28522	231,78598	56,09678	196,42	395,29	219,37
4	388,87619	234,87100	57,04228	180,75	388,88	216,03
3	391,36383	223,68698	54,71438	186,24	391,36	217,71
2	308,67059	171,23599	38,74315	189,60	308,67	174,82
1	325,47302	184,73500	41,64012	183,08	325,47	182,64

Obr. č. P 30 Graf tahových křivek

ETFE film (příčný směr) – teplo

STAT	Amax [mm]	Fmax [N]	[1] M	E [MPa]	Amax [%]	t [sec]
Počet zkoušek	5	5	5	5	5	5
Průměrná hodnota zkoušek	366,29428	194,74635	46,78352	207,16	366,29	204,42
Směrodatná odchylka zkoušek	24,08757	12,76895	3,47707	5,66	24,09	13,05
Variační koeficient zkoušek	6,57602	6,55671	7,43225	2,73	6,58	6,38
Minimální hodnota zkoušek	327,82202	184,27180	42,34721	201,75	327,82	183,56
Maximální hodnota zkoušek	394,10901	216,35898	51,34018	216,03	394,11	219,35

Tab. č. P 43 Statistické zpracování naměřených hodnot

Tab. č. P 44 Naměřené hodnoty

Zkoučka	Amax	Fmax	W	Е	Amax	t
ZKUUSKa	[mm]	[N]	[J]	[MPa]	[%]	[sec]
5	327,82202	184,27180	42,34721	201,75	327,82	183,56
4	373,76337	216,35898	51,34018	207,74	373,76	208,87
3	366,12778	187,43401	45,06895	202,73	366,13	204,05
2	394,10901	195,53300	48,94178	207,56	394,11	219,35
1	369,64923	190,13400	46,21945	216,03	369,65	206,29

Obr. č. P 31 Graf tahových křivek

ETFE film (podélný směr) – UV záření

STAT	Amax [mm]	Fmax [N]	[1] W	E [MPa]	Amax [%]	t [sec]
Počet zkoušek	4	4	4	4	4	4
Průměrná hodnota zkoušek	365,48035	205,56076	48,71650	231,73	365,48	203,83
Směrodatná odchylka zkoušek	35,62826	22,28218	6,45513	3,91	35,63	18,67
Variační koeficient zkoušek	9,74834	10,83970	13,25040	1,69	9,75	9,16
Minimální hodnota zkoušek	332,35861	185,50600	42,94799	226,13	332,36	186,44
Maximální hodnota zkoušek	404,97519	229,85800	55,63577	234,99	404,98	224,47

Tab. č. P 45 Statistické zpracování naměřených hodnot

Tab. č. P 46 Naměřené hodnoty

Zkoučko	Amax	Fmax	W	E	Amax	t
ZKOUSKA	[mm]	[N]	[J]	[MPa]	[%]	[sec]
4	386,07318	219,05901	52,78829	233,67	386,07	214,69
3	332,35861	185,50600	42,94799	232,13	332,36	186,44
2	338,51440	187,82001	43,49398	234,99	338,51	189,70
1	404,97519	229,85800	55,63577	226,13	404,98	224,47

Obr. č. P 32 Graf tahových křivek

ETFE film (příčný směr) – UV záření

STAT	Amax [mm]	Fmax [N]	[1] M	E [MPa]	Amax [%]	t [sec]
Počet zkoušek	4	4	4	4	4	4
Průměrná hodnota zkoušek	379,74698	196,88300	47,13425	244,12	379,75	211,60
Směrodatná odchylka zkoušek	15,71247	9,97048	2,37159	8,54	15,71	7,98
Variační koeficient zkoušek	4,13762	5,06417	5,03157	3,50	4,14	3,77
Minimální hodnota zkoušek	356,24884	183,96300	43,61542	234,39	356,25	199,69
Maximální hodnota zkoušek	388,90381	206,33200	48,77603	252,66	388,90	216,13

Tab. č. P 47 Statistické zpracování naměřených hodnot

Tab. č. P 48 Naměřené hodnoty

Zkoučko	Amax	Fmax	W	E	Amax	t
ZKOUSKA	[mm]	[N]	[J]	[MPa]	[%]	[sec]
4	387,86618	194,37601	48,20333	234,39	387,87	216,13
3	385,96902	202,86099	47,94223	252,66	385,97	214,47
2	388,90381	206,33200	48,77603	239,71	388,90	216,11
1	356,24884	183,96300	43,61542	249,73	356,25	199,69

Obr. č. P 33 Graf tahových křivek

Příloha č. 4

Snímky mikroskopického pozorování místa porušení při tahové zkoušce

Počet stran: 6

Obr. č. P 34 Porušení materiálu Précontraint 702 (osnova) za běžných podmínek

Obr. č. P 35 Porušení materiálu Précontraint 702 (osnova) za chladu

Obr. č. P 36 Porušení materiálu Précontraint 702 (osnova) za tepla

Obr. č. P 37 Porušení materiálu Précontraint 702 (osnova) po vystavení UV záření

Obr. č. P 38 Porušení materiálu Précontraint 702 (útek) za běžných podmínek

Obr. č. P 39 Porušení materiálu Précontraint 702 (útek) za chladu

Obr. č. P 40 Porušení materiálu Précontraint 702 (útek) za tepla

Obr. č. P 41 Porušení materiálu Précontraint 702 (útek) po vystavení UV záření

Obr. č. P 42 Porušení materiálu Polyplan 648 (osnova) za běžných podmínek

Obr. č. P 43 Porušení materiálu Polyplan 648 (osnova) za chladu

Obr. č. P 44 Porušení materiálu Polyplan 648 (osnova) za tepla

Obr. č. P 45 Porušení materiálu Polyplan 648 (osnova) po vystavení UV záření

Obr. č. P 46 Porušení materiálu Polyplan 648 (útek) za běžných podmínek

Obr. č. P 47 Porušení materiálu Polyplan 648 (útek) za chladu

Obr. č. P 48 Porušení materiálu Polyplan 648 (útek) za tepla

Obr. č. P 49 Porušení materiálu Polyplan 648 (útek) po vystavení UV záření

Obr. č. P 50 Porušení materiálu ETFE film (podélný směr) za běžných podmínek

Obr. č. P 51 Porušení materiálu ETFE film (podélný směr) za chladu

Obr. č. P 52 Porušení materiálu ETFE film (podélný směr) za tepla

Obr. č. P 53 Porušení materiálu ETFE film (podélný směr) po vystavení UV záření

Obr. č. P 54 Porušení materiálu ETFE film (příčný směr) za běžných podmínek

Obr. č. P 55 Porušení materiálu ETFE film (příčný směr) za chladu

Obr. č. P 56 Porušení materiálu ETFE film (příčný směr) za tepla

Obr. č. P 57 Porušení materiálu ETFE film (příčný směr) po vystavení UV záření

Příloha č. 5

Ukázka různých typů spojů

Počet stran: 4

Obr. č. P 58 Précontraint 702 – spoj kolmý svařovaný

Obr. č. P 59 Précontraint 702 – spoj kolmý lepený

Obr. č. P 60 Précontraint 702 – spoj kolmý šitý

Obr. č. P 61 Précontraint 702 – spoj V svařovaný

Příloha č. 6

Mechanické vlastnosti různých typů spojů

Počet stran: 8

Précontraint 702 (osnova) – spoj kolmý svařovaný

STAT	Amax [mm]	Fmax	W	E [MPa]	Amax	t
	[11111]	נואן	[1]	נועודמן	Amax [[%] 6 3 18,16 0,95 5,22 7 17,02 3 19,33	[sec]
Počet zkoušek	6	6	6	6	6	6
Průměrná hodnota zkoušek	36,32266	2806,02466	48,87683	833,83	18,16	20,25
Směrodatná odchylka zkoušek	1,89593	153,95580	5,56600	7,26	0,95	1,06
Variační koeficient zkoušek	5,21968	5,48662	11,38781	0,87	5,22	5,24
Minimální hodnota zkoušek	34,04940	2589,29224	41,92320	822,47	17,02	19,00
Maximální hodnota zkoušek	38,66270	2988,07178	55,87853	840,33	19,33	21,56

Tab. č. P 49 Statistické zpracování naměřených hodnot

Tab. č. P 50 Naměřené hodnoty

Zkoučka	Amax	Fmax	W	Е	Amax	t
ZKUUSKa	[mm]	[N]	[J]	[MPa]	[%]	[sec]
6	37,65852	2924,59399	52,56439	827,34	18,83	21,00
5	37,66046	2899,13794	52,74760	839,71	18,83	21,00
4	38,66270	2988,07178	55,87853	837,13	19,33	21,56
3	34,95398	2715,94385	44,98525	836,01	17,48	19,46
2	34,04940	2589,29224	41,92320	822,47	17,02	19,00
1	34,95090	2719,10791	45,16201	840,33	17,48	19,48

Obr. č. P 62 Graf tahových křivek

Précontraint 702 (útek) – spoj kolmý svařovaný

STAT	Amax	Fmax	W	E [MDo]	Amax	t
	[[]]]]	נואן	[1]	[IVIPa]	Amax [[%] 6 5 18,38 0,71 3,85 0 17,18 9 18,97	[sec]
Počet zkoušek	6	6	6	6	6	6
Průměrná hodnota zkoušek	36,76345	2698,78247	46,16464	673,16	18,38	20,48
Směrodatná odchylka zkoušek	1,41652	118,54131	3,90629	8,70	0,71	0,78
Variační koeficient zkoušek	3,85307	4,39240	8,46164	1,29	3,85	3,81
Minimální hodnota zkoušek	34,36432	2523,11206	40,31563	661,40	17,18	19,16
Maximální hodnota zkoušek	37,94766	2811,59009	49,84082	684,89	18,97	21,12

Tab. č. P 51 Statistické zpracování naměřených hodnot

Tab. č. P 52 Naměřené hodnoty

7kouška	Amax	Fmax	W	E	Amax	t
Enousita	[mm]	[N]	[J]	[MPa]	[%]	[sec]
6	37,61848	2744,79199	48,47112	673,47	18,81	20,96
5	34,36432	2523,11206	40,31563	680,79	17,18	19,16
4	37,17864	2713,70776	46,72022	666,62	18,59	20,72
3	37,94766	2811,59009	49,84082	684,89	18,97	21,12
2	35,74346	2589,44409	42,45074	661,40	17,87	19,90
1	37,72816	2810,04810	49,18929	671,80	18,86	21,00

Obr. č. P 63 Graf tahových křivek

Précontraint 702 (osnova) – spoj kolmý lepený

STAT	Amax	Fmax	W	E	E Amax IPa] [%] 5 5 5,11 19,24 63 0,66 14 3,44	t
STAT	[mm]	[N]	[J]	[MPa]	[%]	[sec]
Počet zkoušek	5	5	5	5	5	5
Průměrná hodnota zkoušek	38,47594	2986,08203	55,68000	845,11	19,24	21,44
Směrodatná odchylka zkoušek	1,32336	78,91487	3,73330	9,63	0,66	0,74
Variační koeficient zkoušek	3,43944	2,64276	6,70492	1,14	3,44	3,43
Minimální hodnota zkoušek	36,64924	2877,61597	50,54265	831,62	18,32	20,42
Maximální hodnota zkoušek	40,32178	3084,56592	60,87556	856,70	20,16	22,46

Tab. č. P 53 Statistické zpracování naměřených hodnot

Tab. č. P 54 Naměřené hodnoty

Zkoučka	Amax	Fmax	W	Е	Amax	t
ZKUUSKa	[mm]	[N]	[J]	[MPa]	[%]	[sec]
5	38,87804	3022,70581	56,91566	845,99	19,44	21,68
4	36,64924	2877,61597	50,54265	850,80	18,32	20,42
3	40,32178	3084,56592	60,87556	831,62	20,16	22,46
2	38,19218	3002,34229	55,03831	840,45	19,10	21,30
1	38,33846	2943,18018	55,02784	856,70	19,17	21,36

Obr. č. P 64 Graf tahových křivek

Précontraint 702 (útek) – spoj kolmý lepený

STAT	Amax [mm]	Fmax [N]	[1] M	E [MPa]	Amax [%]	t [sec]
Počet zkoušek	6	6	6	6	6	6
Průměrná hodnota zkoušek	35,65179	2600,06421	43,46239	689,42	17,83	19,89
Směrodatná odchylka zkoušek	0,27378	37,27063	0,84525	12,15	0,14	0,15
Variační koeficient zkoušek	0,76794	1,43345	1,94479	1,76	0,77	0,74
Minimální hodnota zkoušek	35,30300	2553,50000	42,74033	676,30	17,65	19,68
Maximální hodnota zkoušek	36,10034	2666,27197	44,92775	707,03	18,05	20,12

Tab. č. P 55 Statistické zpracování naměřených hodnot

Tab. č. P 56 Naměřené hodnoty

Zkoučka	Amax	Fmax	W	E	Amax	t
ZKUUSKa	[mm]	[N]	[J]	[MPa]	[%]	[sec]
6	35,81714	2591,67993	43,56611	685,93	17,91	19,98
5	35,59100	2553,50000	42,74916	676,46	17,80	19,86
4	35,55334	2609,88818	43,82862	707,03	17,78	19,86
3	35,54592	2591,06592	42,96234	676,30	17,77	19,84
2	35,30300	2587,97998	42,74033	693,88	17,65	19,68
1	36,10034	2666,27197	44,92775	696,90	18,05	20,12

Obr. č. P 65 Graf tahových křivek

Précontraint 702 (osnova) – spoj kolmý šitý

STAT	Amax	Fmax	W	E	Amax	t
	[mm]	[N]	[1]	[IMPa]	Amax [[%] 6 3 12,14 0,55 4,49 7 11,68 3 12,84	[sec]
Počet zkoušek	6	6	6	6	6	6
Průměrná hodnota zkoušek	24,27793	1429,46326	21,20374	638,23	12,14	14,89
Směrodatná odchylka zkoušek	1,09049	82,43025	0,38071	4,80	0,55	0,45
Variační koeficient zkoušek	4,49171	5,76652	1,79549	0,75	4,49	3,01
Minimální hodnota zkoušek	23,35616	1366,03394	20,73231	632,87	11,68	14,32
Maximální hodnota zkoušek	25,68870	1545,29199	21,77449	645,68	12,84	15,28

Tab. č. P 57 Statistické zpracování naměřených hodnot

Tab. č. P 58 Naměřené hodnoty

Zkoučka	Amax	Fmax	W	Е	Amax	t
ZKUUSKa	[mm]	[N]	[J]	[MPa]	[%]	[sec]
6	24,11290	1410,07593	21,77449	636,68	12,06	15,28
5	23,52514	1366,72791	21,47361	634,30	11,76	15,26
4	23,35616	1366,03394	21,16806	632,87	11,68	15,22
3	23,39232	1367,57593	21,19021	637,99	11,70	14,88
2	25,68870	1521,07397	20,73231	641,83	12,84	14,36
1	25,59236	1545,29199	20,88372	645,68	12,80	14,32

Obr. č. P 66 Graf tahových křivek
Précontraint 702 (útek) – spoj kolmý šitý

STAT	Amax [mm]	Fmax [N]	[1] M	E [MPa]	Amax [%]	t [sec]
Počet zkoušek	6	6	6	6	6	6
Průměrná hodnota zkoušek	26,28747	1425,70801	22,02043	545,85	13,14	15,80
Směrodatná odchylka zkoušek	2,49036	124,85092	1,74922	4,54	1,25	0,72
Variační koeficient zkoušek	9,47355	8,75712	7,94363	0,83	9,47	4,58
Minimální hodnota zkoušek	23,09372	1272,08398	19,39097	540,04	11,55	14,90
Maximální hodnota zkoušek	30,09050	1580,15405	24,20501	551,23	15,05	16,82

Tab. č. P 59 Statistické zpracování naměřených hodnot

Tab. č. P 60 Naměřené hodnoty

Zkoučka	Amax	Fmax	W	E	Amax	t
ZKUUSKa	[mm]	[N]	[J]	[MPa]	[%]	[sec]
6	30,09050	1363,33398	24,20501	540,04	15,05	16,82
5	26,01162	1467,15405	23,12260	551,23	13,01	16,28
4	23,09372	1272,08398	19,39097	548,58	11,55	14,90
3	24,14682	1324,68799	21,01482	542,25	12,07	15,78
2	27,35670	1580,15405	23,00875	543,38	13,68	15,94
1	27,02544	1546,83398	21,38039	549,60	13,51	15,08

Obr. č. P 67 Graf tahových křivek

Précontraint 702 (osnova) – spoj V svařovaný

STAT	Amax	Fmax	W	E	Amax	t
STAT	[mm]	[N]	[J]	[MPa]	[%]	[sec]
Počet zkoušek	6	6	6	6	6	6
Průměrná hodnota zkoušek	32,26011	2279,74365	35,94934	796,32	16,13	18,20
Směrodatná odchylka zkoušek	0,92401	82,71297	1,94773	10,38	0,46	0,50
Variační koeficient zkoušek	2,86426	3,62817	5,41800	1,30	2,86	2,77
Minimální hodnota zkoušek	31,22500	2179,86792	33,61810	787,16	15,61	17,50
Maximální hodnota zkoušek	33,41540	2387,97388	38,49369	815,68	16,71	18,86

Tab. č. P 61 Statistické zpracování naměřených hodnot

Tab. č. P 62 Naměřené hodnoty

Zkouška	Amax [mm]	Fmax	W	E [MPa]	Amax	t [sec]
	[]	נואן	[1]	[IVIF a]	[/0]	႞ၭႄၬၟ
6	33,12730	2338,45630	38,49369	790,63	16,56	18,86
5	33,41540	2387,97388	37,98726	789,68	16,71	18,66
4	31,22500	2188,58618	33,61810	815,68	15,61	17,50
3	32,54934	2307,13818	36,07071	798,29	16,27	18,20
2	31,29598	2179,86792	34,96072	787,16	15,65	18,16
1	31,94764	2276,43994	34,56560	796,47	15,97	17,84

Obr. č. P 68 Graf tahových křivek

Précontraint 702 (útek) – spoj V svařovaný

STAT	Amax	Fmax	W	E	Amax	t
	[mm]	[N]	[1]	[IVIPa]	[%]	[sec]
Počet zkoušek	6	6	6	6	6	6
Průměrná hodnota zkoušek	29,24283	2008,99060	33,26017	693,02	14,62	18,04
Směrodatná odchylka zkoušek	0,66634	67,57420	1,47745	6,59	0,33	0,56
Variační koeficient zkoušek	2,27863	3,36359	4,44209	0,95	2,28	3,12
Minimální hodnota zkoušek	28,59786	1907,43201	31,52436	684,88	14,30	17,18
Maximální hodnota zkoušek	30,34782	2115,15210	35,33399	703,09	15,17	18,58

Tab. č. P 63 Statistické zpracování naměřených hodnot

Tab. č. P 64 Naměřené hodnoty

Zkouška	Amax [mm]	Fmax [N]	[1] M	E [MPa]	Amax [%]	t [sec]
6	28,93930	1987,72595	32,45292	703,09	14,47	17,88
5	28,73066	1993,51196	31,52436	693,55	14,37	17,18
4	29,13316	2020,66406	34,14120	688,69	14,57	18,54
3	28,59786	1907,43201	34,07601	697,76	14,30	18,40
2	29,70818	2029,45776	32,03256	684,88	14,85	17,66
1	30,34782	2115,15210	35,33399	690,15	15,17	18,58

Obr. č. P 69 Graf tahových křivek