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Abstract 

In this work was accomplished a review and comparison of the methods which allows make 

the kinematic and dynamic models. We can distinguish two ways: 

 Classic and the most common way of representing a multi-link manipulator. In case 

of kinematic model it is algorithm Denavit-Hartenberg and the homogeneous 

transformation matrix, as well as the recursive method based on Newton's equations 

for dynamic model. 

 An alternative way of representing the multi-link manipulator, which is based on the 

exponential matrices for the kinematic and dynamic model. 

I had carried out analysis of manipulator ABB IRB 140. All researching was accomplished 

on base of this manipulator. Also compiled system description parameters, which required for 

mathematical model. 

Calculations were made using two different methods. On the basis of the results compiled 

two dynamic models describing the manipulator. 

I had done simulation and comparison the obtained characteristics based on the determined 

models. 

Key words 

Robot, Dynamics, Control, Kinematics, Models, Denavit-Hartenberg, Newton-Euler, 

Lagrange-Euler, Exponential Matrices. 
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Outline 

 Chapter 2: Fundamental background theory and notation used throughout the thesis are 

explained in this chapter. It is put importance on the standard convention of how to 

interpret robot manipulators, as well as the concept of rotation matrices. 

 Chapter 3: This chapter presents different approaches on dynamic modeling of robot 

manipulators, and compares the Newton-Euler formulation to the product of exponential 

formula. 

 Chapter 4: Based on determined parameters, using the method based on Newton-Euler 

formulation and method based on the product of exponential formula, we determine the 

equations which compose the dynamic model. 

 Chapter 5: This chapter describing the simulation system in the case of open loop and 

closed loop with PD-controller. 

 Chapter 6: This chapter execute the comparison of results between classical dynamic 

model and dynamic model based on product of exponential formula.. 

 Chapter 7: This chapter represent conclusion of this work. 
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1. Introduction 

Robotics is concerned with the study of machines that can replace human beings. The 

goal of this introductory chapter is to express the motivation behind the thesis, and to give an 

overview of the contents. The IRB 140 is introduced, as well as the objective and the software 

that has been used to solve it. An outline and the contributions of the thesis is presented in the end 

of the chapter. 

1.1. History and Motivation 

The English term robot was derived from the Czech word robota that means executive labor, 

and was first introduced by the Czech playwright Karel Capek in his 1921 play Rossum's 

Universal Robots. Since then the term has been applied to virtually anything that operates with 

some degree of autonomy, usually under computer control. An official definition of the term, dated 

to 1980, comes from the Robot Institute of America (RIA) and reflects today status of robotics 

technology: 

 

A robot is a reprogrammable, multifunctional manipulator designed to move material, 

parts, tools, or specialized devices through variable programmed motions for the performance 

of a variety of tasks. 

 

In the early 1980's, robot manipulators were touted as the ultimate solution to automated 

manufacturing. Predictions were that entire factories of the future would require few, if any, 

human operators. It turned out that these predictions were a little exaggerated, as the savings in 

labor costs often did not outweigh the development costs of creating robot systems. Quite simply, 

people are good at what they do, and installing a robot involves complex systems integration 

problems. As a result, robotics fell out of favor in the late 1980's. 

A resurgence of interest in robotics can be witnessed in the recent years. Deeper 

understanding of the subject and new technology have made it possible for robots to explore the 

surface on Mars, locate sunken ships, searching out land mines, and finding victims in collapsed 

buildings. In an industrial environment the advantages of robots are reduction of manufacturing 

costs, increase of productivity, improvement of quality standards, and the possibility of 

eliminating harmful tasks for human operators. 
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1.2. The description of IRB 140 

 
Figure 1.1: The IRB 140 with six degrees of freedom 

The IRB 140 is an industrial robot produced by ABB, designed specifically for 

manufacturing industries. Their website [10] presents various facts about the manipulator, as 

well as articles, data sheets and movies. The manipulator has a total of six revolute joints that are 

controlled by AC-motors, hence six degrees of freedom (6 DOF). Figure 1.1 gives a clear view of 

the manipulator and its degrees of freedom. The compact and robust design is adapted for flexible 

use, and the robot can be mounted on the floor, the wall or the roof in any angle. It offers 

outstanding accuracy and speed, and suits a lot of industrial tasks as for example: 

 spray painting, 

 packing 

 palletizing. 

1.3. Objective 

The objective of this thesis is to derive the complete dynamic model of the IRB 140 by 

the product of exponential formula and analyze this method. 

For accomplish the task it is necessary to solve following subtask: 

 Comparative analysis of methods of robot kinematics and dynamics 

 Studying the well-known methods of robot control 

 Realization a dynamical model of an industrial robot with using exponential 

matrices 

 Development of a technique for designing of robust robot controller with using 

the theory of stability of non-linear systems 

 Simulation of the robot controller and robot dynamics by Matlab 

 Comparison of results 
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1.4. Software 

Mathcad 14 

Mathcad [5] is computer software primarily intended for the verification, validation, 

documentation and re-use of engineering calculations. First introduced in 1986 on DOS, it was 

the first to introduce live editing of typeset mathematical notation, combined with its automatic 

computations. 

Mathcad, Parametric Technology Corporation's engineering calculation solution, is used by 

engineers and scientists in various disciplines–most often those of mechanical, chemical, 

electrical, and civil engineering. Mathcad today includes some of the capabilities of a computer 

algebra system, but remains oriented towards ease of use and simultaneous documentation of 

numerical engineering applications. 

Mathcad has been used to derive some parameters, which necessary for dynamic model. 

Maple 17 

Maple [6] is developed by MapleSoft, and is a technical computing software for doing 

symbolic, numeric and graphical computations. Because of its great efficiency in symbolic 

computations, Maple has been used to derive the dynamic model for the IRB 140.  

MatlabR2013bwithSimulink 

Matlab [7] is developed by MathWorks, and is a high-level language and numerical 

computing environment for performing computationally intensive tasks faster than with traditional 

programming languages. It offers tight integration with other MathWorks products, among them 

Simulink which is an environment for multidomain simulation and Model-Based Design for 

dynamic and embedded systems. Matlab and Simulink have been used to simulate the dynamic 

model for the IRB 140, and to present the results graphically. 

MicrosoftVisio 

Microsoft Office Visio [8] is a diagramming and vector graphics application and is part of 

the Microsoft Office family. The product was first introduced in 1992, made by the 

Shapewarecorporation. It was acquired by Microsoft in 2000. 

Microsoft Visio has been used to creation drawings describing structure of manipulator. 

  

https://en.wikipedia.org/wiki/DOS
https://en.wikipedia.org/wiki/Microsoft
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2. Background theory and notation 

This thesis follows the standard convention of how a robot manipulator is interpreted. 

Fundamental background theory and important notation that are used throughout the thesis are 

briefly explained in this chapter to facilitate the understanding of the later chapters. 

Section 2.1describesthe concept of rotation matrices and kinematics of manipulator. 

Section 2.2 describes  rotational matrices and homogenous transformational matrices, which is the 

one of part model of robot, also describes their properties and connection with skew symmetric 

matrices. Section 2.3-2.5 describes mathematical structure of method which based on product based 

on exponential formula. Section 2.6 describes the main types of joint in robots. Section 2.7 and 2.8 

include describing algorithms for creation kinematic model of n-link manipulator. Section 2.9 

describes dynamic model structure of manipulator based on Newton-Euler equation and product 

based on exponential formula. 

2.1. Manipulator kinematics 

The kinematic of a robot manipulator it is analytic describing of the geometric motion of 

manipulator relatively to some given absolute coordinate frame without taking force and 

moments into account, which actuate this motion. Thus the task of kinematics is analytic 

describing the attitude of manipulator with relation to time and especially determination 

connection between coordinates of manipulator links and orientation of gripper in orthogonal 

coordinates. 

The manipulator can be consider as open chain, which consist from several rigid links 

jointed sequentially with the help rotational or translational joints. 

Consider two types of tasks 

 The forward kinematics of a robot determines the configuration of the end-

effector (the gripper or tool mounted on the end of the robot) according to given 

vector of generalized coordinates 𝑞 = (𝑞1, 𝑞2 …𝑞𝑛)𝑇 

 The inverse kinematicsof a robot determines the joint angles which achieve 

desired configuration according to given a desired configuration for the tool 

frame. 

2.2. The rotational matrices 

 
Figure 2.1 Absolute coordinate system and relative coordinate system 
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In order to perform algebraic manipulations with vectors using coordinates, it is essential 

that all vectors are expressed in the same coordinate frame. Rotation matrices are used to 

accomplish this. An n×n rotation matrix specifies the orientation of one frame relative to another 

frame in the n-dimensional Euclidean space. To specify the coordinate vectors of frame 1 with 

respect to frame 0 in three dimensions, the 3×3 rotation matrix is written as 

𝑅1
0 = [𝑥𝑎𝑏 𝑦𝑎𝑏 𝑧𝑎𝑏],    (2.1) 

where the columns are the coordinates of the vectors 𝑥𝑎𝑏 , 𝑦𝑎𝑏 , 𝑧𝑎𝑏 expressed in frame XYZ 

Below is a matrix of elementary rotations: 

𝑅𝑥,𝛼 = [
1 0 0
0 cos ∝ −sin ∝
0 sin ∝ cos ∝

] , 𝑅𝑦,𝛼 = [

cos𝜑 0 sin𝜑
0 1 0

− sin𝜑 0 cos𝜑
] , 𝑅𝑧,𝛼 = [

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
]    (2.2) 

In a number of cases the mobile coordinate frame can perform the rotation by an angle φ 

relatively arbitrary axis r, thus in common form rotation matrix is written as 

𝑅𝑟,𝜑 = [

𝑟𝑥
2 ∙ 𝑉 + 𝑐𝜑 𝑟𝑥 ∙ 𝑟𝑦 ∙ 𝑉 − 𝑟𝑧 ∙ 𝑠𝜑 𝑟𝑥 ∙ 𝑟𝑧 ∙ 𝑉 + 𝑟𝑦 ∙ 𝑠𝜑

𝑟𝑥 ∙ 𝑟𝑦 ∙ 𝑉 + 𝑟𝑧 ∙ 𝑠𝜑 𝑟𝑦
2 ∙ 𝑉 + 𝑐𝜑 𝑟𝑦 ∙ 𝑟𝑧 ∙ 𝑉 − 𝑟𝑧 ∙ 𝑠𝜑

𝑟𝑥 ∙ 𝑟𝑧 ∙ 𝑉 − 𝑟𝑦 ∙ 𝑠𝜑 𝑟𝑦 ∙ 𝑟𝑧 ∙ 𝑉 + 𝑟𝑧 ∙ 𝑠𝜑 𝑟𝑧
2 ∙ 𝑉 + 𝑐𝜑

]  (2.3) 

where 𝑐𝜑 = cos𝜑 , 𝑠𝜑 = sin𝜑 , 𝑉 = 1 − cos𝜑 

2.2.1. Properties of the rotation matrices 

1. Each column of the rotation matrix is a unit vector in the direction corresponding 

to the axis of the rotated frame defined by its coordinates relative to the absolute coordinate 

system. 

2. Each row of the rotation matrix is a unit vector in the direction corresponding to 

the axis of absolute coordinate system defined its coordinates relative to the rotated frame. 

3. 𝑅𝑇 = 𝑅−1 and 𝑅𝑅𝑇 = 𝐼3, where 𝐼3 is a unit matrix with size 33 

4. detR=1 

5. The columns (and therefore the rows) of R are mutually orthogonal 

2.2.2. Relation to skew symmetric matrices 

An n × n matrix S is said to be skew symmetric if and only if 

𝑆𝑇 + 𝑆 = 0 

which means that every 33 skew symmetric matrix has the form 

 

𝑆 = [
0 𝑠3 𝑠2

−𝑠3 0 𝑠1

−𝑠2 −𝑠1 0
] 

 

Skew symmetric matrices have been found useful in relation to rotationmatrices. Four 

important properties are given below. 

 

1. For any vectors 𝑎, 𝑝 ∈ 𝑅3 
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𝑆(𝑎)𝑝 = 𝑎 × 𝑝 

where S is a 33 skew symmetric matrix 

2. For 𝑅 ∈ 𝑆𝑂(3) and 𝑎 ∈ 𝑅3 

𝑅𝑆(𝑎)𝑅𝑇 = 𝑆(𝑅𝑎) 

where S is a 33 skew symmetric matrix 

3. In the general case of angular velocity about an arbitrary and possibly 

moving axis we have 

𝑅̇(𝑡) = 𝑆(𝜔(𝑡))𝑅(𝑡) 

where 𝑅 = 𝑅(𝑡) ∈ 𝑆𝑂(3)for every 𝑡 ∈ 𝑅, S is a 3 × 3 skew symmetricmatrix,and 𝜔(𝑡) is the 

angular velocity of the rotating frame with respect to the fixed frame at time t. 

 

4. For an 𝑛 × 𝑛skew symmetric matrix S and any vector 𝑋 ∈ 𝑅𝑛 

𝑋𝑇𝑆𝑋 = 0 

2.2.3. Homogeneous coordinates and transformation matrix 

As 33 rotation matrix carries information only about rotation around some axis and does 

not take translation and scale into account then vector 𝑝 = (𝑝𝑥, 𝑝𝑦, 𝑝𝑧)
𝑇vector complement 

fourth coordinateso that the vector take a new form 𝑝̂ = (𝜔𝑝𝑥, 𝜔𝑝𝑦, 𝜔𝑝𝑧, 𝜔)𝑇. Then vector 𝑝̂ 

expressed in homogeneous coordinates. Physical coordinates associated with the homogeneous, 

as follows 

𝑝𝑥 =
𝜔𝑝𝑥

𝜔
, 𝑝𝑦 =

𝜔𝑝𝑦

𝜔
, 𝑝𝑧 =

𝜔𝑝𝑧

𝜔
,    (2.4) 

where  is a forth component of vector of homogeneous coordinates (scale multiplier). 

If 𝜔 = 1 then homogeneous coordinates of position vector coincide with its physical 

coordinates. 

The homogenous transformation matrix have a size 44 and convert vector from one 

coordinate system to other. The homogeneous matrix in common form is written as: 

𝑇 = [
𝑅3×3 𝑝3×1

𝑓1×3 1 × 1
] = [

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛
𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡 𝑆𝑐𝑎𝑙𝑒

] 

𝑇 = [

𝑥𝑥 𝑦𝑥 𝑧𝑥 𝑝𝑥

𝑥𝑦 𝑦𝑦 𝑧𝑦 𝑝𝑦

𝑥𝑧 𝑦𝑧 𝑧𝑧 𝑝𝑧

0 0 0 1

]     (2.5) 
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2.3. Exponential coordinates for rotation 

An alternative to the rotation matrix is matrix based on exponential coordinates for 

rotation. Consider rotation of robot link around fixed axis Figure 2.2. 

 
Figure 2.2 Tip point trajectory generated by rotation about the 𝝎-axis 

Let 𝜔 ∈ 𝑅3 be a unit vector, which specifies the direction of rotation and let𝜃 ∈ 𝑅3bethe 

angle of rotation in radians. Then velocity of point q can be written as 

𝑞̇(𝑡) = 𝜔 × 𝑞(𝑡) = 𝜔̂𝑞(𝑡).    (2.6) 

This is a time-invariant linear differential equation which may be integrated to give 

𝑞(𝑡) = 𝑒𝜔̂𝑡𝑞(0), 

where q(0) is the initial position of the point and 𝑒𝜔̂𝑡 is the matrix exponential 

𝑒𝜔̂𝑡 = 𝐼 + 𝜔̂𝑡 +
(𝜔̂𝑡)

2

2!
+

(𝜔̂𝑡)
3

3!
+ ⋯, 

𝑅 = 𝑒𝜔̂𝑡.      (2.7) 

According to [3] get the finite equation for rotation matrix in common form 

𝑒𝜔̂𝜃 = 𝐼 + 𝜔̂𝑠𝑖𝑛𝜃 + 𝜔̂2(1 − 𝑐𝑜𝑠𝜃) = [

1 − 𝑣𝜃(𝜔2
2 + 𝜔3

2) 𝜔1𝜔2𝑣𝜃 − 𝜔3𝑠𝜃 𝜔1𝜔3𝑣𝜃 + 𝜔2𝑠𝜃

𝜔1𝜔2𝑣𝜃 + 𝜔3𝑠𝜃 1 − 𝑣𝜃(𝜔1
2 + 𝜔3

2) 𝜔2𝜔3𝑣𝜃 − 𝜔1𝑠𝜃

𝜔1𝜔3𝑣𝜃 − 𝜔2𝑠𝜃 𝜔2𝜔3𝑣𝜃 + 𝜔1𝑠𝜃 1 − 𝑣𝜃(𝜔1
2 + 𝜔2

2)

] =

[

𝜔1
2𝑣𝜃 + 𝑐𝜃 𝜔1𝜔2𝑣𝜃 − 𝜔3𝑠𝜃 𝜔1𝜔3𝑣𝜃 + 𝜔2𝑠𝜃

𝜔1𝜔2𝑣𝜃 + 𝜔3𝑠𝜃 𝜔2
2𝑣𝜃 + 𝑐𝜃 𝜔2𝜔3𝑣𝜃 − 𝜔1𝑠𝜃

𝜔1𝜔3𝑣𝜃 − 𝜔2𝑠𝜃 𝜔2𝜔3𝑣𝜃 + 𝜔1𝑠𝜃 𝜔3
2𝑣𝜃 + 𝑐𝜃

],  (2.8) 

where 𝑣𝜃 = 1 − 𝑐𝑜𝑠𝜃, 𝑠𝜃 = 𝑠𝑖𝑛𝜃, 𝑐𝜃 = 𝑐𝑜𝑠𝜃 

2.4. Exponential coordinates for rigid motion and twists 

An alternative to the homogeneous matrix is exponential mapping which allows represent 

geometric treatment of spatial rigid body motion in elegant and rigorous form. Consider the easy 

example of robot with one link as shown in Figure 2.3. 
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Figure 2.3 (a) Rotation joint and (b) translation joint 

a) For rotation link 

Velocity of the tip point 

𝑝̇(𝑡) = 𝜔 × (𝑝(𝑡) − 𝑞).    (2.9) 

Equation can be rewritten with an extra row append to it as 

[
𝑝̇

0
] = [

𝜔̂ −𝜔 × 𝑞

0 0
] [

𝑝

1
] = 𝜉 [

𝑝

1
] ⟹ 𝑝̇ = 𝜉𝑝̅ 

where 𝑣 = −𝜔 × 𝑞 

To solution of the differential equation is given by 

𝑝̅(𝑡) = 𝑒𝜉̂𝑡𝑝̅(0) 

where 𝑒𝜉̂𝑡is the 4×4 matrix exponential of the, defined as  

𝑒𝜉̂𝑡 = 𝐼 + 𝜉𝑡 +
(𝜉𝑡)

2

2!
+

(𝜉𝑡)
3

3!
+ ⋯ 

The scalar t is the total amount of rotation. exp(𝜉𝑡) is a mapping from the initial location of a 

point to its location after rotating t radians. 

b) In a similar manner can represent the transformation due to translation motion as the 

exponential of a 4×4 matrix. 

The velocity of a point 

𝑝̇(𝑡) = 𝑣.      (2.10) 

In the common form transformation matrix written as 

𝑒𝜉̂𝜃 = [𝑒
𝜔̂𝑡 ℎ𝜔𝜃
0 1

] = [𝑒
𝜔̂𝑡 (𝐼 − 𝑒𝜔̂𝑡)(𝜔 × 𝑣) + 𝜔𝜔𝑇𝑣𝜃

0 1
]  𝜔 ≠ 0. (2.11) 

The transformation 𝑔 = exp (𝜉𝜃) is slightly different than the rigid transformation. 

Itsinterpret not as mapping points from one coordinate frame to another, but rather as mapping 

points from their initial coordinates, 𝑝(0) ∈ 𝑅3, to their coordinates after the rigid motion is 

applied 

𝑝̅(𝜃) = 𝑒𝜉̂𝜃𝑝̅(0) 

In this equation, both  p(0) and p(θ) are specified with respect to a single reference frame. 

Similarly if 𝑔𝑎𝑏(0) represent the initial configuration of a rigid body relative to a frame A, then 

final configuration still with respect to A, is given by 

𝑔𝑎𝑏(𝜃) = 𝑒𝜉̂𝜃𝑔𝑎𝑏(0).     (2.12) 
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2.5. Screws: a geometric description of twists 

Consider a rigid body motion which consists of rotation about an axis in space through an 

angle of θ radians, followed by translation along the same axis by an amount d as shown in 

Figure 2.4. 

 
Figure 2.4 Screws motion 

This motion called a screw motion, since it is reminiscent of the motion of a screw, in so 

far as a screw rotates and translates about the same axis. Take this analogy into account, we 

define the pitch of the screw to be the ratio of translation to rotation ℎ =
𝑑

𝜃
. Represent axis as a 

directed line through a point; choosing 𝑞 ∈ 𝑅3 to be a point onhe axis and 𝜔 ∈ 𝑅3 to be a unit 

vector specifying the direction, the axis is the set of points. If the case of zero rotation, the axis 

of the screw must be taken as  the line through the origin in the direction v , v is a vector of 

magnitude 1. Below is given geometric description of rotation, as particular case of screw 

motion. 

2.5.1. Geometric description of twist 

In order to compute the rigid body transformation associated with a screw, we analyze the 

motion of a point 𝑝 ∈ 𝑅3, as shown in Figure 2.5 

 
Figure 2.5 Generalized screw motion(with nonzero rotation) 

The final location of the point is given 

𝑔𝑝 = 𝑞 + 𝑒𝜔̂𝜃(𝑝 − 𝑞) + ℎ𝜃𝜔 

or, in homogeneous coordinates, 
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 𝑔 [
𝑝
1
] = [𝑒

𝜔̂𝜃 𝑒𝜔̂𝑡(𝐼 − 𝑒𝜔̂𝑡)𝑞 + ℎ𝜃𝜔

0 1
] [

𝑝
1
]. 

where 

𝑒𝜉̂𝜃 = [𝑒
𝜔̂𝜃 𝑒𝜔̂𝑡(𝐼 − 𝑒𝜔̂𝑡)𝑞 + ℎ𝜃𝜔

0 1
]   (2.13) 

Note that equation (2.13) describing displacement of the rigid body have the same form as 

equation (2.11). If we use the substitute 𝑣 = −𝜔 × 𝑞 + ℎ𝜔 in equation (2.11) then we get the 

same equation for screw motion. 

 Equation (2.13) is the common form of screw motion. In our case we are interested in the 

particular case when pitch ℎ = 0 pure rotation. This case used for computation kinematic map 

for rotation joint of manipulator. 

Geometric explanation fully disclosed in the Chasles theorem: “Every rigid body motion 

can be realized by a rotation about an axis combined with a translation parallel to that 

axis”.Exponential twists describe relative motion of rigid body. The equation 

𝑝(𝜃) = 𝑒𝜉̂𝜃𝑝(0) 

describe the finite location of point 𝑝(𝜃) respect to its initial location 𝑝(0), in case on Figure 2.5 

 If a coordinate frame B is attached to a rigid body undergoing a screwmotion, the 

instantaneous configuration of the coordinate frame B, relative to a fixed frame A, is given by 

 

𝑔𝑎𝑏(𝜃) = 𝑒𝜉̂𝜃𝑔𝑎𝑏(0)     (2.14) 

 

This transformation can be interpreted as follows: multiplication by𝑔𝑎𝑏(𝜃)maps the coordinates 

of a point relative to the B frame into A’scoordinates, and the exponential map transforms the 

point to its finallocation (still in A coordinates). 

 

2.6. Kinematic chains 

Robot manipulators are composed of links connected by joints to form a kinematic chain, 

where the joints are revolute or prismatic. A revolute joint is like a hinge and allows relative 

rotation between two links, while a prismatic joint allows a linear relative motion between two 

links. Both types of joints have a single degree of freedom, thus each jointi can be represented by 

a single joint variable 𝑞𝑖. Figure 2.6 shows a symbolic representation of robot joints in 2D and 

3D. 
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Figure 2.6 Symbolic representation of robot joints 

A configuration of a manipulator is a complete specification of every point on the 

manipulator. Assuming a manipulator with rigid links and a fixed base,that means the 

configuration is entirely given by q, the vector of joint variables. In case of joints with more 

degrees of freedom, like a ball or a spherical wrist, these joints can always be thought of as a 

succession of joints with a single degree of freedom. 

A coordinate frame is rigidly attached to each link, and an inertial frame is attached to the 

robots base. Links, joints and frames are defined as summarized below. 

 Links are numbered from 0 to n where link 0 is the base. 

 Joints are numbered from 1 ton where joint i connects link 𝑖 − 1 to link 

 When joint i is actuated, link i moves. The base cannot be actuated. 

 Frames are numbered from 0 ton where frame i is attached to link i. 

 Frames are attached such that axis 𝑧𝑖 of frame i is the axis of actuationfor joint 𝑗 + 1. 

 The joint variable 𝑞𝑖 is associated with joint i. 

 

2.7. Denavit-Hartenberg algorithm  

For describing rotation joints and translation joints between adjacent links Denavit and 

Hartenberg offer in 1955 algorithm based on the matrix method for determine coordinate 

systems. The idea of DH algorithm is in creature a homogeneous transformation matrix which 

have a size 4×4. This makes it possible to consistently convert the coordinates of the gripper 

from reference systems associated with the last link tothe basic reference frame which is an 

inertial coordinate system for the dynamical system. 

Each of the coordinate system forms based on the follow rules: 

1) 𝑧𝑖-axis is direct along axis ofi-th joint 

2) 𝑥𝑖-axis is perpendicularto the𝑧𝑖−1-axis and direct against it 

3) 𝑦𝑖-axis is supplement the 𝑥𝑖, 𝑧𝑖 axes to right-hand coordinate system 
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Figure 2.7 Denavit-Hartenberg coordinate system 

 DH-parameters of rigid links depends from fourth geometric parameters which associated 

with each link. These four parameters fully described any rotation or translation motion. 

 

 d: offset along previous z to the common normal 

 θ: angle about previous z, from old x to new x 

 r: length of the common normal(aka a, but if using this notation, do not confuse with α). 

Assuming a revolute joint, this is the radius about previous z 

 α: angle about common normal, from old z axis to new z axis 

2.7.1. Forward kinematic equation 

The homogeneous matrix 𝑇0
𝑖 which determine  location of the i-th coordinate system 

relative to base coordinate system is a multiplication of series of the homogeneous 

transformation matrices 𝐴𝑖−1
𝑖 , have the form 

 

𝑇0
𝑖 = 𝐴0

1𝐴1
2 …𝐴𝑖−1

𝑖 = ∏ 𝐴𝑖−1
𝑖 = [

𝑥𝑖 𝑦𝑖 𝑧𝑖 𝑝𝑖

0 0 0 1
] = [𝑅0

𝑖 𝑝0
𝑖

0 1
] ,𝑖

𝑖=1  (2.15) 

i=1,2,…, n 

where[𝑥𝑖 𝑦𝑖 𝑧𝑖] is a matrix which determine orientation of i-th coordinate system (coupled 

with i-th link) relative to the base coordinate system. This is the top left sub matrix, have the size 

3×3. 𝑝𝑖is a vector which connected the beginning of the base coordinate system with beginning i-

th coordinate system. It is the top right sub matrix, have the size 3×1. Particularly if i = 6 we will 

get matrix 𝑇 = 𝐴0
6 which determine location and orientation of the gripper relative the base 

coordinate system. 

2.8. Algorithm for N-link manipulator, based on product of exponential formula. 

In the common form the procedure for solving the forward kinematic task for manipulator 

with open-chain structure and n-DOF looks as follows. Let S is a coordinate system of base of 

manipulator, T is a coordinate system of a last link. 
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Figure 2.8 Manipulator with 2 DOF 

 It is necessary to determine the basic configuration of the manipulator, corresponding to 

𝜃 = 0, where 𝑔𝑠𝑡(0) describes a transformation matrix between the T and S, when the 

manipulator is in the basic configuration. 

 For each joint, it is necessary to record the twists 𝜉𝑖 which corresponds to a screw motion 

for each i-th joint, given that other angles for the joints 𝜃𝑗 = 0. 

𝜉𝑖 = [
−𝜔𝑖 × 𝑞𝑖

𝜔𝑖
] – revolute joint 

𝜉𝑖 = [
𝑣𝑖

0
] – prismatic joint 

 Combining the individual joint motions, we can get the solution for forward kinematic 

task. 

𝑔𝑠𝑡(𝜃) = 𝑒𝜉1̂𝜃1𝑒𝜉2̂𝜃2 …𝑒𝜉𝑛̂𝜃𝑛𝑔𝑠𝑡(0),   (2.18) 

The 𝜉𝑖 must be numbered sequentially starting from the base, but 𝑔𝑠𝑡(𝜃)gives the 

configuration of the tool frame independently of the orderin which the rotations and translations 

are actually performed. Equation (2.18) is called the product of exponentials formula for the 

manipulator forward kinematics. 

 

2.9. Dynamics of manipulator 

Robot manipulators can be described mathematically in different ways. The problem of 

kinematics is to describe the motion of the manipulator without consideration of forces and torques 

causing the motion. These equations determine the position and orientation of the end effector 

given the values for the joint variables (forward kinematics), and as the opposite the values of 

the joint variables given the position and orientation of the end effector (inverse kinematics). 

Dynamics section as part of robotics is a mathematical description of the correlation of 

forces and moments acting on the arm, in the form of the equations of dynamics. Also equations 

needed to simulate the movement of the manipulator using a computer, in choosing of control 

laws, as well as in the evaluation of the quality and design of the kinematic scheme and 

construction of robot. For compiling dynamic equation which is a mathematical model usually 
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used the known laws of Newtonian and Lagrangian mechanics. Also exist an alternative method 

of calculating the elements of the equation, constituting a model based on the product of 

exponential formula. The result of the application of these laws is the equation that is the same 

for all representation methods: 

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝑔(𝑞) = 𝜏,    (2.19) 

 q - generalized coordinates (n×1)) 

 τ – vector of actuator toques (n×1); 

 M– inertia matrix; 

 C– Coriolis matrix; 

 g– gravity vector; 

2.9.1. Newton – Euler versus product of exponential formula 

The efficiency of the Newton-Euler formulation and product of exponential formula is an 

interesting topic. Actually there is no clear answer to the question of which method is better than 

the other. The main goal is to derive the dynamic model as fast as possible, and how well this 

goal is satisfied for each method depends on several factors. The number of link and joints in the 

kinematic chain, the topology of the chain (e.g. serial or parallel), the position and orientation of 

the coordinate frames, and whether a recursive procedure is used or not, are factors that will 

influence the computation time. 

The Newton-Euler formulation is usually the preferred choice for manipulators with 

many degrees of freedom. The reason is the recursive structure which the Newton-Euler 

formulation is based on. If the frames are attached in a convenient way, the recursions will be 

greatly simplified. The recursive approach is in general faster than treating the manipulator as a 

whole system. It should also be mentioned that for the case of parallel manipulators, the Newton-

Euler formulation gives an advantage for dynamic computations and control. 

Also exist an alternative methods of realization, one of them the method based on product 

of exponential formula which consider manipulator as a whole system. In the [3] consider the 

method of calculation a dynamic model which structure is similar to the Euler – Lagrange 

formulation and allegedly the author : “If the forward kinematics are specified using the product 

of exponential formula, then it is possible ti get more explicit formulas for the inertia and 

Coriolis matrices.” 

The selection of algorithm is a matter of personal preference and the key factor for 

selection this or that algorithm is that each algorithm can provide a different representation of the 

same mechanism. 
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2.9.2. Equation of Newton-Euler formula 

The basis of the Newton-Euler formulation is three important mechanic laws: 

 Every action has an equal and opposite reaction. Thus, if link 1 applies a force f 

and torque τ to link 2, then link 2 applies a force — f and torque—τ to link 1. 

 The rate of change of the linear momentum equals the total force applied to the 

link. 

 The rate of change of the angular momentum equals the total torque applied to 

the link. 

Applying the second law to the linear motion of a link gives the relationship 

 

𝑑(𝑚𝑣)

𝑑𝑡
= 𝑓,      (2.20) 

where m is the mass of the link, v is the velocity of the center of mass with respect to an inertia! 

frame, and f is the sum of external forces applied to the link. Since the mass is constant as a 

function of time for robot manipulators, Equation (2.20) can be simplified to 

 

𝑓 = 𝑚𝑎,      (2.21) 

 

where a is the acceleration of the center of mass. The third law gives the relationship 

 

𝑑(𝐼0𝜔0)

𝑑𝑡
= 𝜏0,      (2.22) 

 

where 𝐼0is the moment of inertia of the link, 𝜔0is the angular velocity of the link, and 𝜏0 is the sum 

of torques applied on the link. All three variables are expressed in an inertial frame whose origin is 

at the center of mass. Note that 𝐼0 is not necessarily a constant function of time, but this can be 

taken care of by rewriting Equation (2.22) to be valid for a frame rigidly attached to the the link 

instead of an inertial frame. A similarity transformation of I0 is given by 

 

𝐼 = 𝑅−1𝐼0𝑅      (2.23) 

 

which gives 

 

𝐼0 = 𝑅𝐼𝑅𝑇      (2.24) 

 

where R is the rotation matrix that transforms coordinates from the link attached frame to the 

inertial frame. Equation (2.22) together with the Equation (2.24) and facts 

 

𝜔0 = 𝑅𝜔,             𝜏0 = 𝑅𝜏.     (2.25) 
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yields 

 

𝑑(𝐼0𝜔0)

𝑑𝑡
=

𝑑(𝑅𝐼𝑅𝑇𝑅𝜔)

𝑑𝑡
=

𝑑(𝑅𝐼𝜔)

𝑑𝑡
= 𝑅̇𝐼𝜔 + 𝑅𝐼𝜔̇,   (2.26) 

 

and the equation for the rate of change of the angular momentum with respect to the 

link attached frame is 

 

𝜏 = 𝑅𝑇𝜏0 = 𝑅𝑇(𝑅̇𝐼𝜔 + 𝑅𝐼𝜔̇) = 𝑅𝑇𝑅̇𝐼𝜔 + 𝐼𝜔̇,   (2.27) 

 

The rotation matrix in Equation (2.27) can be cancelled out by taking advantage of 

the properties showed in subsection 2.2.2. The final torque expression becomes 

𝜏 = 𝑅𝑇𝑅̇𝐼𝜔 + 𝐼𝜔̇ = 𝑅𝑇𝑆(𝜔0)𝑅𝐼𝜔 + 𝐼𝜔̇ = 𝑆(𝑅𝑇𝜔0)𝐼𝜔 + 𝐼𝜔̇ = 𝑆(𝜔)𝐼𝜔 + 𝐼𝜔̇ = 𝜔 ×

𝐼𝜔 + 𝐼𝜔̇.     (2.28) 

 

This concludes the general case of the derivation with the force balance and moment 

balance summarized respectively as 

𝑓 = 𝑚𝑎,      (2.29) 

𝜏 = 𝜔 × 𝐼𝜔 + 𝐼𝜔̇,     (2.30) 

2.9.3. Equations of an n-link manipulator 

To begin with, several vectors need to be introduced. Note that all these vectors are 

expressed in frame i. 

 
Figure 2.9 Forces and torques acting on a random link 

𝑎𝑐,𝑖 - acceleration of the center of mass of link i 

𝑎𝑒,𝑖 - acceleration of the end of link i(origin of frame i+ 1) 

𝜔𝑖 - angular velocity of frame iwith respect to frame 0 

𝛼𝑖 - angular acceleration of frame iwith respect to frame 0 

𝑧𝑖 - axis of actuation of frame iwith respect to frame 0 

𝑔𝑖 - acceleration due to gravity 

𝑓𝑖 - force exerted by link i — 1 on link i 

𝜏𝑖 - torque exerted by link i — 1 on link i 

𝑅𝑖−1
𝑖  - rotation matrix from frame ito frame i+ 1 

𝑚𝑖 - the mass of link i 
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𝐼𝑖 - inertia tensor of link iabout a frame parallel to frame Iwhose origin is at the center of 

mass of link i 

𝑟𝑖−1,𝑐𝑖 - vector from the origin of frame i — 1 to the center of mass of link i 

𝑟𝑖−1,𝑖 - vector from the origin of frame i — 1 to the origin of frame i 

𝑟𝑖,𝑐𝑖 - vector from the origin of frame ito the center of mass of link 

 

When all vectors in Figure 2.9 are expressed in frame i, the force balance equation based 

on (2.29) can be stated as 

∑ 𝑓 = 𝑚𝑎𝑙𝑖𝑛𝑘        (2.31) 

𝑓𝑖 − 𝑅𝑖+1
𝑖 𝑓𝑖+1 + 𝑚𝑖𝑔𝑖 = 𝑚𝑖𝑎𝑐,𝑖,    (2.32) 

𝑓𝑖 = 𝑅𝑖+1
𝑖 𝑓𝑖+1 + 𝑚𝑖𝑎𝑐,𝑖 − 𝑚𝑖𝑔𝑖    (2.33) 

 

Next, the moment balance equation for the link will be computed, and it is important to 

note two things: 

1) the moment exerted by a force f about a point is given by 𝑓 × 𝑟, where r is the radial 

vector from the point where the force is applied to the point where the moment is 

computed. 

2) the vector 𝑚𝑖𝑔𝑖does not appear in the moment balance since it is applied directly at 

the center of mass. The moment balance equation based on (2.30) becomes 

 

∑ 𝜏𝑙𝑖𝑛𝑘 = 𝜔 × (𝐼𝜔) + 𝐼𝜔̇       (2.34) 

𝜏𝑖 − 𝑅𝑖+1
𝑖 𝜏𝑖+1 + 𝑓𝑖 × 𝑟𝑖−1,𝑐𝑖 − (𝑅𝑖+1

𝑖 𝑓𝑖+1) × 𝑟𝑖,𝑐𝑖 = 𝜔𝑖 × (𝐼𝑖𝜔𝑖) + 𝐼𝑖𝛼𝑖 (2.35) 

𝜏𝑖 = 𝑅𝑖+1
𝑖 𝜏𝑖+1 − 𝑓𝑖 × 𝑟𝑖−1,𝑐𝑖 + (𝑅𝑖+1

𝑖 𝑓𝑖+1) × 𝑟𝑖,𝑐𝑖 + 𝜔𝑖 × (𝐼𝑖𝜔𝑖) + 𝐼𝑖𝛼𝑖. (2.36) 

 

The force balance equation is actually a part of the moment balance equation. 

Solving Equation (2.36) for decreasing i and substituting (2.33) is the ultimate goal of the 

formulation, but the solution needs to be expressed only by 𝑞, 𝑞̇, 𝑞̈and constant parameters 

to achieve the general matrix form (2.19). That means it is necessary to find a relation 

between 𝑞, 𝑞̇, 𝑞̈and 𝑎𝑐,𝑖, 𝜔𝑖and 𝛼𝑖. This can be obtained by a recursive procedure of 

increasing i. 

Since the force and moment equations are expressed with respect to the link attached 

frame, this also applies to𝑎𝑐,𝑖 , 𝜔𝑖and 𝛼𝑖,𝑐. However, as a starting point 𝜔𝑖and 𝛼𝑖need to be 

expressed in the inertial frame, and the superscript (0) will be used to denote that. This 

gives 

 

𝜔𝑖
(0)

= 𝜔𝑖−1
(0)

+ 𝑧𝑖−1𝑞̇𝑖,     (2.37) 
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because of the fact that the angular velocity of frame i equals that of frame i -1 plus the 

added rotation from joint i. Using rotation matrices this leads to 

 

𝜔𝑖 = (𝑅𝑖
𝑖−1)𝑇𝜔𝑖−1 + 𝑏𝑖𝑞̇𝑖     (2.38) 

 

where 

 

𝑏𝑖 = (𝑅𝑖
0)𝑇𝑅𝑖−1

0 𝑧0      (2.39) 

 

is the rotation of joint i expressed in frame i. 

For the angular acceleration it is important to note that 

𝛼𝑖 = (𝑅𝑖
0)𝑇𝜔̇𝑖

(0)
      (2.40) 

which means 𝛼𝑖 ≠ 𝜔𝑖̇ ! By using Newtons Second Law in a rotating frame, the time 

derivative of Equation (2.36) becomes 

𝜔̇𝑖
(0)

= 𝜔𝑖−1
(0)

+ 𝑧𝑖−1𝑞̇𝑖 + 𝜔𝑖
(0)

× 𝑧𝑖−1𝑞̇𝑖,   (2.41) 

and expressed in frame i it directly becomes 

𝛼𝑖 = (𝑅𝑖
𝑖−1)𝑇𝛼𝑖−1 + 𝑏𝑖𝑞𝑖 + 𝜔𝑖 × 𝑏𝑖𝑞̇𝑖

̈    (2.42) 

Now it only remains to find an expression for 𝑎𝑐,𝑖. First, the linear velocity of the center 

of mass of link i is expressed as 

 

𝑣𝑐,𝑖
(0)

= 𝑣𝑒,𝑖−1
(0)

+ 𝜔𝑖
(0)

× 𝑟𝑖−1,𝑐𝑖
(0)

     (2.43) 

 

and note that 𝑟𝑖−1,𝑐𝑖
(0)

is constant in frame i. Thus 

 

𝑎𝑐,𝑖
(0)

= 𝑎𝑒,𝑖−1
(0)

× 𝑟𝑖−1,𝑐𝑖
(0)

+ 𝜔𝑖
(0)

× (𝜔𝑖
(0)

× 𝑟𝑖−1,𝑐𝑖
(0)

)  (2.44) 

 

Multiplying with rotation matrices and using the fact that 

 

𝑅(𝑎 × 𝑏) = (𝑅𝑎) × (𝑅𝑏)     (2.45) 

 

the final expression for the acceleration of the center of mass of link i, expressed in 

frame i, becomes 

 

𝑎𝑐,𝑖 = (𝑅𝑖
𝑖−1)𝑇𝑎𝑒,𝑖−1 + 𝜔̇𝑖 × 𝑟𝑖−1,𝑐𝑖 + 𝜔𝑖 × (𝜔𝑖 × 𝑟𝑖−1,𝑐𝑖) (2.46) 

 

To find the acceleration of the end of the link, 𝑟𝑖−1,𝑐𝑖 is replaced by 𝑟𝑖−1,𝑖 

𝑎𝑒,𝑖 = (𝑅𝑖
𝑖−1)𝑇𝑎𝑒,𝑖−1 + 𝜔̇𝑖 × 𝑟𝑖−1,𝑖 + 𝜔𝑖 × (𝜔𝑖 × 𝑟𝑖−1,𝑖) (2.47) 
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This completes the recursive formulation, and the Newton-Euler formulation of an 

n-link manipulator can be stated as follows. 

1. Forward recursion: Start with the initial conditions 

𝜔0 = 𝛼0 = 𝑎𝑐,0 = 𝑎𝑒,0 = 0     (2.48) 

and solve Equations (2.38), (2.39), (2.40), (2.42). (2.46) and (2.47) (in that order) to 

compute 𝜔𝑖, 𝛼𝑖,𝑎𝑐,𝑖, 𝑎𝑒,𝑖 for increasing i from 1 to n. 

2. Backward recursion: Start with the terminal conditions 

𝑓𝑛+1 = 𝜏𝑛+1 = 0 

and solve Equations (2.34) and (2.36) (in that order) for decreasing i from n to 1. 

2.9.4. Robot dynamic model based on product of exponential matrix 

In the case when forward kinematics are specified using the product of exponential 

formula, then it is possible to get more explicit formulas for the inertia and Coriolis matrices.” 

In order to obtain the inertial matrix, it is necessary to determine the following 

parameters: 

 Link inertia matrix𝑀𝑖 

𝑀𝑖 = [
𝑚𝑖I 0
0 𝐼𝑖

]     (2.50) 

 Adjoint transformation𝐴𝑖𝑗 ∈ 𝑅6×6 

 𝐴𝑖𝑗 = {

𝐴𝑑
(𝑒

𝜉𝑗+1𝜃𝑗+1…𝑒𝜉𝑖𝜃𝑖)

−1    𝑖 > 𝑗

𝐼                                      𝑖 = 𝑗
0                                      𝑖 < 𝑗

    (2.51) 

Adjoint transformation followed from the equation which describe the space velocity of 

rigid body [3]. 

In the general case 𝑔𝑎𝑏(𝑡) ∈ 𝑆𝐸(3) is a matrix describing the trajectory of rigid body 

with coordinate frame B relative to coordinate A. 

𝑔𝑎𝑏(𝑡) = [
𝑅𝑎𝑏(𝑡) 𝑝𝑎𝑏(𝑡)

0 1
]     (2.52) 

In the [3] cites the equations which describes space velocity of rigid body 

𝜔𝑎𝑏
𝑠 = 𝑅𝑎𝑏𝜔𝑎𝑏

𝑏  

𝑣𝑎𝑏
𝑠 = 𝑝𝑎𝑏 × (𝑅𝑎𝑏𝜔𝑎𝑏

𝑏 ) + 𝑅𝑎𝑏𝑣𝑎𝑏
𝑏  

where 𝑣𝑎𝑏
𝑠 -space velocity of point , 𝜔𝑎𝑏

𝑠 -angle velocity in space, 𝑣𝑎𝑏
𝑏 - velocity of the coordinate 

system origin relative to the space coordinate system, in respect to current position of coordinate 

system of body. 𝜔𝑎𝑏
𝑏 - angle velocity coordinate system also in respect to current position. 

Rewrite in the matrix form: 

𝑉𝑎𝑏
𝑠 = [

𝑣𝑎𝑏
𝑠

𝜔𝑎𝑏
𝑠 ] = [

𝑅𝑎𝑏 𝑝̂𝑎𝑏𝑅𝑎𝑏

0 𝑅𝑎𝑏
] [

𝑣𝑎𝑏
𝑏

𝜔𝑎𝑏
𝑏 ]   (2.53) 
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 The 6 × 6, matrix which transforms twists from one coordinate frame to another is 

referred to as the adjoint transformation associated with g, written as 𝐴𝑑𝑔. Thus, given 𝑔 ∈

𝑆𝐸(3)which maps one coordinate system to another,  

 

𝐴𝑑𝑔 = [
𝑅𝑎𝑏 𝑝̂𝑎𝑏𝑅𝑎𝑏

0 𝑅𝑎𝑏
]     (2.54) 

This matrix is invertible: 

 

𝐴𝑑𝑔
−1 = [

𝑅𝑇 −(𝑅𝑇𝑝)^𝑅𝑇

0 𝑅𝑇
] = [

𝑅𝑇 −𝑅𝑇𝑝̂

0 𝑅𝑇
] = 𝐴𝑑𝑔−1  (2.55) 

Equation (2.55) allows determine the elements of adjoint transformation matrix (2.51). Used 

equation (2.51) jth column of the body Jacobian for the ith link is given by 𝐴𝑑𝑔𝑠𝑙𝑖
−1𝐴𝑖𝑗𝜉𝑗: 

𝐽𝑖(𝜃) = 𝐴𝑑𝑔
𝑠𝑙

𝑖
(0)

−1 [𝐴𝑖1𝜉1 …𝐴𝑖𝑗𝜉𝑖   0…0]   (2.56) 

Combine 𝐴𝑑𝑔
𝑠𝑙

𝑖
(0)

−1  with the link inertia matrix by defining the transformed inertia matrix for the 

link [3] 

𝑀𝑖
′ = 𝐴𝑑

𝑔
𝑠𝑙

𝑖
(0)

−1
𝑇 𝑀𝑖𝐴𝑑𝑔

𝑠𝑙
𝑖
(0)

−1      (2.57) 

Using the equations (2.51), (2.55), (2.57) it can be get equations for determining inertia matrix 

and Coriolis matrix which necessary for composition dynamic equation 

𝑀𝑖𝑗(𝜃) = ∑ 𝜉𝑖
𝑇𝐴𝑙𝑖

𝑇𝑀𝑙
′𝐴𝑙𝑗𝜉𝑗

𝑛
𝑙=max (𝑖,𝑗)     (2.58) 

𝐶𝑖𝑗(𝜃) =
1

2
∑ (

𝜕𝑀𝑖𝑗

𝜕𝜃𝑘
+

𝜕𝑀𝑖𝑘

𝜕𝜃𝑗
−

𝜕𝑀𝑘𝑗

𝜕𝜃𝑖
)𝑛

𝑘=1 𝜃̇𝑘    (2.59) 

As shown in equations (2.58), (2.59) all of the dynamic attributes of the manipulator can be 

determined directly from the joint twists 𝜉𝑖, the linkframes 𝑔
𝑠𝑙𝑖

(0), and the link inertia matrices 

𝑀𝑖. The matrices 𝐴𝑖𝑗 are the only expressions which depend on current configuration of the 

manipulator. 

 

2.10. Feedback Controllers 

A system can be controlled in open loop or closed loop. With an open-loop controller, the 

input is computed without observing the output that it is controlling. Complex systems will not 

be possible to control in open loop, because the controller will never know if the output has 

achieved the desired goal. However, by adding feedback controllers, it might be possible to 

stabilize the system in closed loop. 
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A feedback controller observes the output and calculates the error between this output 

and a reference value.  Then the input is computed based on this error such that the output 

approaches the reference value. To achieve a desired behavior of the output, controllers can take 

one or more of three standard control elements. These elements are 

 P - proportional term: The input is proportional to the error between the 

reference value and the current output. Kp is the proportional gain. 

 I - integral term: Integrates the error over time and multiplies with the integral 

gain Ki. The term eliminates steady state error. 

 D - derivative term: Determines the slope of the error over time and multiplies 

with the derivative gain Kd. The term has as a damping effect. 
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3. System Description and dynamic parameter estimation 

ABB has produced the industrial robot manipulator named IRB 140. Their website [10] 

presents facts about the manipulator, as well as data sheet, articles and movies about abilities of 

manipulator. 

This chapter is presenting all information about the IRB 140 which is needed to derive the 

dynamic model. The manipulator comes with a product manual, a product specification [10], and a 

data sheet (Attachment A1). The manual is not of much interest in this thesis, as it focuses 

solely on safety, installation and maintenance. What is interesting is the data sheet, which is 

basically a summary of the product specification, presenting some facts about the structure and 

performance of the manipulator. The relevant information given in the data sheets are 

summarized in Section 3.1. 

Out of consideration for trade secrets in ABB, the data sheets present a very limited amount 

of information. Section 3.2 states these limitations and how they lead to simplified dynamic 

parameter estimation. 

In Section 3.3, a symbolic representation shows how the joints and links can be 

represented as a serial kinematic chain, and how frames are attached to the links. This 

representation follows all guidelines described in the previous chapters, and can be said to lay the 

foundation for the whole dynamic model. 

3.1. Information from data sheets 

The manipulator has a total of six revolute joints that are controlled by AC-motors, hence 

six degrees of freedom (6 DOF). Thetotal mass including the base and without a payload is 98 

kg, and the mass of the payload alone must not exceed 6 kg. Someapplicable link dimensions are 

given in Figure 3.1 (lengths in millimeters). 

 
Figure 3.1 View of the manipulator from the back and side 
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3.2. Limitations 

It is not possible to derive an accurate dynamic model for the IRB 140 with the limited 

information available in the data sheets. The dynamic parameters for the links are not given and 

explained in Section 3.1, these parameters are indeed a demanding task to estimate. The masses of 

the links could have been identified by dismantling the manipulator and weigh them one by one, but 

this would have been a comprehensive task by itself. Besides, this useless, if through experiments on 

estimating the inertia parameters and centers of mass would not be performed. 

Researching dynamic parameter of the IRB 140 is an interesting and challenging task.It 

can be use identification methods like for example CAD modeling because on the website is a 

CAD-model of ABB IRB 140. But ABB does not give the characteristic about material of 

manipulator which is necessary for estimation with the help of CAD-system. Consequently, the 

dynamic parameters in the model have been estimated quite roughly. The estimation is based on 

intuitive guesses, with the purpose of creating a simple model which still represents the IRB 140 

as good as possible 

3.3. Kinematic model 

3.3.1. Algorithm of Denavit-Hartenberg 

 
Figure 3.2 Schematic representation of manipulator TRB 140 

The IRB 140 can be interpreted in such a way that the first three degrees of freedom 

make up an elbow manipulator, and the last three degrees of freedom is a spherical wrist 

attached to the end of the arm. This spherical wrist alone is built up by three single degree of 

freedom revolute joints, where the rotation axes intersect in the wrist center point. Thus the two 

links in between will have zero length and zero mass. 

Examining the manipulator closer, it is discovered that some freedom is given to the 

choice of how to model joint 4. Actually, modeling the last three joints as a spherical wrist is not 

the desired choice, because the two links in between (link 4 and 5) do not have zero length and 
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mass. To compensate for this, it is found convenient to interpret the manipulator such that joint 

3 and 4 has their center point in common, and joint 5 and 6 has their center point in common. In 

that case it is link 3 and link 5 which is modeled with zero length and mass. Figure 3.2 shows a 

symbolic representation of the manipulator by this interpretation, including how the frames have 

been attached to the links 

The coordinate systems oriented according to Denavit-Hartenberg algorithm it allows get 

the product of basic rotation matrices around t the z-axis for each joint 

𝑅𝑧,𝜃 = [
cos (𝜃) −sin (𝜃) 0
sin (𝜃) cos (𝜃) 0

0 0 1

]    (3.1) 

where θ is the rotation angle. According to Figure 4.2, substituting q instead of θ and multiply 

matrix of basic rotation on addition matrix which turn the coordinate system(around axes x, y, z) 

according to the joint position. The result becomes 

 

𝐴𝑖−1
𝑖 = [𝑅𝑖−1

𝑖 𝑝𝑖

0 1
]      (3.2) 

𝐴0
1 = [

cos (𝑞1) −sin (𝑞1) 0 0
sin (𝑞1) cos (𝑞1) 0 0

0 1 0 0
0 0 0 1

] ∙ [

1 0 0 𝑎1

0 0 −1 0
0 1 0 𝑒1

0 0 0 1

]

= [

cos (𝑞1) 0 sin (𝑞1) 𝑎1cos (𝑞1)
sin (𝑞1) 0 −cos (𝑞1) 𝑎1sin (𝑞1)

0 1 0 𝑒1

0 0 0 1

] 

𝐴0
1 = [

cos (𝑞1) 0 sin (𝑞1) 𝑎1cos (𝑞1)
sin (𝑞1) 0 −cos (𝑞1) 𝑎1sin (𝑞1)

0 1 0 𝑒1

0 0 0 1

]   (3.3) 

𝐴1
2 = [

cos(𝑞2) − sin(𝑞2) 0 𝑎2 cos(𝑞2)

sin(𝑞2) cos(𝑞2) 0 𝑎2 sin(𝑞2)
0 0 1 𝑒2

0 0 0 1

]   (3.4) 

𝐴2
3 = [

cos (𝑞3) 0 sin (𝑞3) 0
sin (𝑞3) 0 −cos (𝑞3) 0

0 1 0 𝑒3

0 0 0 1

]    (3.5) 

𝐴3
4 = [

cos (𝑞4) 0 sin (𝑞4) 0
sin (𝑞4) 0 −cos (𝑞4) 0

0 1 0 𝑒4

0 0 0 1

]    (3.6) 

𝐴4
5 = [

cos (𝑞5) 0 sin (𝑞5) 0
sin (𝑞5) 0 −cos (𝑞5) 0

0 1 0 0
0 0 0 1

]    (3.7) 



34 

 

𝐴5
6 = [

cos (𝑞6) −sin (𝑞6) 0 0
sin (𝑞6) cos (𝑞6) 0 0

0 0 1 𝑒6

0 0 0 1

]    (3.8) 

Multiplying the received matrix, we obtain the solution for the forward kinematic task. 

𝑇0
6 = 𝐴0

1𝐴1
2𝐴2

3𝐴3
4𝐴4

5𝐴5
6     (3.9) 

 But for dynamic model we need only rotation matrices 𝑅0
2, 𝑅0

3, 𝑅0
4, 𝑅0

5, 𝑅0
6 which we get 

from homogeneous matrices 

𝑅0
2 = 𝑅0

1𝑅1
2,(3.10) 𝑅0

3 = 𝑅0
2𝑅2

3,(3.11) 𝑅0
4 = 𝑅0

3𝑅3
4,(3.12) 

𝑅0
5 = 𝑅0

4𝑅4
5,(3.13) 𝑅0

6 = 𝑅0
5𝑅5

6,(3.14)  
 

3.3.2. Algorithm based on product of exponential fotmula 

 
Figure 3.3 Schematic representation of manipulator IRB 140 

In section 3.3.1 were describing the kinematic characteristics of manipulator. With the 

help of Denavit-Hartenberg algorithm with tacking kinematic characteristic into account were 

calculate homogeneous matrix 𝑇0
6 which determine the position of six link of manipulator. 

In this section also using the kinematic characteristics of manipulator described earlier. 

Determine the homogeneous matrix using alternative method based on product of exponential 

matrices. 

 Determine the base configuration on manipulator 

𝑔𝑆𝑇(0) = [

1 0 0 𝑎1 + 𝑒4

0 1 0 0
0 0 1 𝑒1 + 𝑒2

0 0 0 1

]     (3.15) 
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 For each link determine axis of rotation this parameter will be characterized by the 

vectorω. Also determine position of joint in space this parameter will be 

characterized by vector q. 

 

𝜔1 = [
1
0
0
],(3.16) 𝜔2 = [

0
1
0
],(3.17) 𝜔3 = [

0
0
1
],(3.18) 

𝑞1 = [

𝑎1

0
𝑒1

],(3.19) 𝑞2 = [

𝑎1

0
𝑒1 + 𝑒2

],(3.20) 𝑞3 = 𝑇 = [

𝑎1 + 𝑒1

0
𝑒1 + 𝑒2

].(3.21) 

 Find the twists (2.16) for each link, this six-dimensional vector characterized the revolute 

joint 

𝜉1 =

[
 
 
 
 
 

0
−𝑎1

0
0
0
1 ]

 
 
 
 
 

,(3.22) 𝜉2 =

[
 
 
 
 
 
−𝑒1

0
𝑎1

0
1
0 ]

 
 
 
 
 

,(3.23) 𝜉3 =

[
 
 
 
 
 
−𝑒1 − 𝑒2

0
𝑎1

0
1
0 ]

 
 
 
 
 

,(3.24) 

𝜉4 =

[
 
 
 
 
 

0
𝑒1 + 𝑒2

𝑎1

1
0
0 ]

 
 
 
 
 

,(3.25) 𝜉5 =

[
 
 
 
 
 
−𝑒1 − 𝑒2

0
𝑒4 + 𝑎1

0
1
0 ]

 
 
 
 
 

,(3.26) 𝜉6 =

[
 
 
 
 
 

0
𝑒1 + 𝑒2

0
1
0
0 ]

 
 
 
 
 

,(3.27) 

 Find the transformation matrix (2.13) describing the joint motion for each joint. 

𝑒𝜉1𝜃1 = [

cos (𝜃1) −sin (𝜃1) 0 𝑎1(1 − cos (𝜃1))
sin (𝜃1) cos (𝜃1) 0 −𝑎1sin (𝜃1)

0 0 1 0
0 0 0 1

]     (3.28) 

𝑒𝜉2𝜃2 = [

cos (𝜃2) 0 sin (𝜃2) 𝑎1(1 − cos (𝜃2)) − 𝑒1sin (𝜃2)
0 1 0 0

−sin (𝜃2) 0 cos (𝜃2) 𝑎1 sin(𝜃2) + 𝑒1(1 − cos (𝜃2))
0 0 0 1

]   (3.29) 

𝑒𝜉3𝜃3 = [

cos (𝜃3) 0 sin (𝜃3) 𝑎1(1 − cos (𝜃3)) − sin (𝜃3)(𝑒1 + 𝑒2)
0 1 0 0

−sin (𝜃3) 0 cos (𝜃3) 𝑎1 sin(𝜃3) + 𝑒1(1 − cos (𝜃3))
0 0 0 1

]  (3.30) 

𝑒𝜉4𝜃4 = [

1 0 0 0
0 cos (𝜃4) −sin (𝜃4) sin (𝜃4)(𝑒1 + 𝑒2)
0 sin (𝜃4) cos (𝜃4) (1 − cos (𝜃4))(𝑒1 + 𝑒2)
0 0 0 1

]    (3.31) 

𝑒𝜉5𝜃5 = [

cos (𝜃5) 0 sin (𝜃5) (1 − cos(𝜃5))(𝑎1 + 𝑒4) − sin (𝜃5)(𝑒1 + 𝑒2)
0 1 0 0

−sin (𝜃5) 0 cos (𝜃5) sin(𝜃5) (𝑎1 + 𝑒4) + (1 − cos (𝜃5))(𝑒1 + 𝑒2)
0 0 0 1

] (3.32) 

𝑒𝜉6𝜃6 = [

1 0 0 0
0 cos (𝜃6) −sin (𝜃6) sin (𝜃6)(𝑒1 + 𝑒2)
0 sin (𝜃6) cos (𝜃6) (1 − cos (𝜃6))(𝑒1 + 𝑒2)
0 0 0 1

]    (3.33) 
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 According to the Equation (2.18) we get the solution for Forward kinematic task 

𝑔𝑠𝑡(𝜃) = 𝑒𝜉̂1𝜃1𝑒𝜉̂2𝜃2𝑒𝜉̂3𝜃3𝑒𝜉̂4𝜃4𝑒𝜉̂5𝜃5𝑒𝜉̂6𝜃6𝑔𝑠𝑡(0),   (3.34) 

 

3.4. Parameter estimation 

This section describes how the dynamic parameters are estimated. It is mentioned in 

Section 3.2 that the parameters are estimated quite roughly. Still they should be close enough to 

the real unknown parameters that simulations show a behavior that is somewhat in accordance to 

the behavior of a perfect model. 

The centers of mass of the four links have been estimated by studying the manipulator 

thoroughly, assuming the links have uniform mass density. Figure 3.4 shows the estimated 

centers of mass with colored dots. Link 1 has a red dot, link 2 has a green dot, link 4 has a blue 

dot, and link 6 has a yellow dot. Note that viewing from the back in Figure 4.3(a), link 4 and 6 

have their centers of mass along the same line perpendicular to the paper. 

 
Figure 3.4 Location of centers of mass 

Vectors between the origins of the frames are defined precisely by the dimensions in Figure 

3.4. Vectors from the origins of the frames to the centers of mass are calculated by first 

computing the scale of the figure, and then multiplying the scale with the lengths measured by a 

ruler. The clever way of attaching frames to the links in the Newton-Euler formulation make all 

length vectors independent of the configuration of the manipulator. The results are given below 

(lengths in meters). 

 

𝑟0,𝑐1 = [0.014 − 0.264  0.067]𝑇,    (3.35) 

𝑟1,𝑐2 = [0.201  0 − 0.070]𝑇,    (3.36) 

𝑟2,𝑐3 = [0  0  0]𝑇,      (3.37) 
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𝑟3,𝑐4 = [0  0.080  0]𝑇,     (3.38) 

𝑟4,𝑐5 = [0  0  0]𝑇,      (3.39) 

𝑟5,𝑐6 = [0  0  0.029]𝑇,     (3.40) 

𝑟0,1 = [0.070 − 0.352  0]𝑇,     (3.41) 

𝑟1,2 = [0.360  0  0]𝑇,      (3.42) 

𝑟2,3 = [0  0  0]𝑇      (3.43) 

𝑟3,4 = [0  0.380  0]𝑇,      (3.44) 

𝑟4,5 = [0  0  0]𝑇,      (3.45) 

𝑟5,6 = [0  0  0.065]𝑇.      (3.46) 

Estimating the inertia parameters are definitely the most difficult task. The irregular 

shapes of the links makes it highly complicated to come up with realistic parameters without 

performing some kind of identification. As a fair simplification the links are modeled as 

cylindrical links with uniform mass density, where the center of mass of each link is the 

geometric center of the cylinder. Figure 3.5 shows an example of how this simplification can 

be applied on link 2 

 
Figure 3.5 Example of the link 2 as cylinder 

The green figure illustrates link 2 viewed from the back, and the orange dot is the 

center of mass.  

3.5. The inertia tensor 

The inertia tensor of such a cylinder can be determine with the help of follow equations 

 The rotation axis is along to the cylinder axis: 

𝐽 =
1

2
𝑚𝑟2.      (3.47) 

 The rotation axis is perpendicular to the cylinder axis and goes through its center of mass:  

𝐽 =
1

12
𝑚ℎ2 +

1

4
𝑚𝑟2     (3.48) 

where m is the mass, r is the radius and h is the height of the cylinder. The cross products are 

identically zero such that the inertia tensor becomes a diagonal matrix in its principal axis form. 
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Determining the the mass, radius and height of the cylinders is kind of a constrained task, 

where the constraints are that the total mass must be 98 kg (including the base), and that the 

radius and height of the cylinders match the dimensions of the manipulator given in Figure 3.4. 

Like the actual links do, the cylinders will also overlap each other since the centers of mass are 

not geometrically right in between two frames, and it was assumed uniform mass density. 

It is fair to believe that the mass density of every link is approximately equal. The links are 

constructed of a shell of metal with components such as motors, gearboxes, cables and belts on 

the inside. In addition, large proportions of the total volume is just air in between these 

components. By a trial-and-error approach, the masses, radii and heights was eventually found to 

match the physical shape of the manipulator using a mutual mass density of 1500 кг/м
3
. The 

parameter values are given in Table 3.1, where the missing mass of 23 kg is allocated the 

manipulator base. To make a comparison, the mass density of steel is 7850 кг/м
3
according to [9]. 

That is for massive steel, such that assuming a mass density of the links of about the fifth the mass 

density for steel seems satisfying. 

 

Table 3.1 – Parameters of cylinders    

Звено Масса, кг Радиус, м Высота, м 
1 27 0.191 0.363 
2 22 0.151 0.515 
3 - - - 
4 25 0.115 0.583 
5 - - - 
6 1 0.044 0.107 

 

Note that the orientation of the attached frame determines the coordination of the 

principal moments of inertia. Since in this work represents two methods below is giving the 

inertia tensors for each of case 

3.5.1. The inertia tensor for algorithm of Denavit-Hartenberg 

𝐼𝐷𝐻,1 =

[
 
 
 
 

1

12
𝑚1ℎ1

2 +
1

4
𝑚1𝑟1

2 0 0

0
1

2
𝑚1𝑟1

2 0

0 0
1

12
𝑚1ℎ1

2 +
1

4
𝑚1𝑟1

2
]
 
 
 
 

   (3.49) 

𝐼𝐷𝐻,2 =

[
 
 
 
 
1

2
𝑚2𝑟2

2 0 0

0
1

12
𝑚2ℎ2

2 +
1

4
𝑚2𝑟2

2 0

0 0
1

12
𝑚2ℎ2

2 +
1

4
𝑚2𝑟2

2
]
 
 
 
 

`  (3.50) 

𝐼𝐷𝐻,3 = [
0 0 0
0 0 0
0 0 0

]        (3.51) 
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𝐼𝐷𝐻,4 =

[
 
 
 
 

1

12
𝑚4ℎ4

2 +
1

4
𝑚4𝑟4

2 0 0

0
1

2
𝑚4𝑟4

2 0

0 0
1

12
𝑚4ℎ4

2 +
1

4
𝑚4𝑟4

2
]
 
 
 
 

   (3.52) 

𝐼𝐷𝐻,5 = [
0 0 0
0 0 0
0 0 0

],        (3.53) 

𝐼𝐷𝐻,6 =

[
 
 
 
 

1

12
𝑚6ℎ6

2 +
1

4
𝑚6𝑟6

2 0 0

0
1

12
𝑚6ℎ6

2 +
1

4
𝑚6𝑟6

2 0

0 0
1

2
𝑚6𝑟6

2
]
 
 
 
 

   (3.54) 

3.5.2. The inertia tensors for algorithm based on product of exponential formula 

𝐼𝑒𝑥𝑝,1 =

[
 
 
 
 

1

12
𝑚1ℎ1

2 +
1

4
𝑚1𝑟1

2 0 0

0
1

12
𝑚1ℎ1

2 +
1

4
𝑚1𝑟1

2 0

0 0
1

2
𝑚1𝑟1

2
]
 
 
 
 

   (3.55) 

𝐼𝑒𝑥𝑝,2 =

[
 
 
 
 

1

12
𝑚2ℎ2

2 +
1

4
𝑚2𝑟2

2 0 0

0
1

12
𝑚2ℎ2

2 +
1

4
𝑚2𝑟2

2 0

0 0
1

2
𝑚2𝑟2

2
]
 
 
 
 

  (3.56) 

𝐼𝑒𝑥𝑝,3 = [
0 0 0
0 0 0
0 0 0

]        (3.57) 

𝐼𝑒𝑥𝑝,4 =

[
 
 
 
 
1

2
𝑚4𝑟4

2 0 0

0
1

12
𝑚4ℎ4

2 +
1

4
𝑚4𝑟4

2 0

0 0
1

12
𝑚4ℎ4

2 +
1

4
𝑚4𝑟4

2
]
 
 
 
 

  (3.58) 

𝐼𝑒𝑥𝑝,5 = [
0 0 0
0 0 0
0 0 0

]        (3.59) 

𝐼𝑒𝑥𝑝,6 =

[
 
 
 
 
1

2
𝑚6𝑟6

2 0 0

0
1

12
𝑚6ℎ6

2 +
1

4
𝑚6𝑟6

2 0

0 0
1

12
𝑚6ℎ6

2 +
1

4
𝑚6𝑟6

2
]
 
 
 
 

  (3.60) 
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4. The dynamic model 

In the Chapter 2 were described two methods of determination the dynamic model 

 The recursive method based on Newton-Euler formulation 

 The method based on product of exponential formula 

In the Chapter 3, a system description of the IRB 140 was presented. In this Chapter is 

presented calculation of dynamic model based on methods described earlier. 

Since the manipulator has a six degrees of freedom, even the simplified system is quite 

complex. Actually, the final torque equations in the model are so huge that they do not even 

suit to be shown in this text. Therefore, to let this chapter be clear and easy to follow, all 

equations are kept in their symbolic form. Attachment A2 shows how the model has been 

computed in Maple by adjusting the framework and Appendix A3. 

4.1. Method based on Newton-Euler formulation 

4.1.1. Froward recursion 

The forward recursion describes the linear and angular motion of the links, starting with 

link 1 and ending with link 6. The algorithm is described in Section 2.9.3, and it is just a matter 

of substituting in the general equations for an n-link manipulator. 

As a part of the forward recursion it is necessary to compute 𝑏𝑖the axis of rotation for 

each joint i expressed in frame i.. The rotation axis in frame 0 is given directly as axis z 

𝑧0 = [0  0  1]𝑇     (4.1) 

and then the rotation axes for the joints are computed by Equation (2.39) as 

𝑏1 = (𝑅1
0)𝑇𝑧0 = [0  1  0]𝑇 ,     (4.2) 

𝑏2 = (𝑅2
1)𝑇𝑅1

0𝑧0 = [0  0  1]𝑇 ,    (4.3) 

𝑏3 = (𝑅3
2)𝑇𝑅2

0𝑧0 = [0  1  0]𝑇 ,    (4.3) 

𝑏4 = (𝑅4
3)𝑇𝑅3

0𝑧0 = [0  1  0]𝑇 ,    (4.4) 

𝑏5 = (𝑅5
4)𝑇𝑅5

0𝑧0 = [0  1  0]𝑇 ,    (4.5) 

𝑏6 = (𝑅6
5)𝑇𝑅6

0𝑧0 = [0  0  1]𝑇 .    (4.6) 

Due to the coupled kinematics, these rotation axes will normally be functions of q 

just like the rotation matrices. They will depend on how the coordinate frames are defined, and 

therefore directly influence the efficiency of the Newton-Euler formulation. By inspecting how 

the frames are defined in Figure 3.2, it can be seen that when looking from frame i into frame 

i-1, the angular velocity 𝜔𝑖does not depend on 𝑞𝑖itself, but completely on the axis of 

rotation. Consequently the rotation axes 𝑏𝑖are not depending on q. 

Link 1 

The initial conditions are 

𝜔0 = 𝛼0 = 𝑎𝑐,0 = 𝑎𝑒,0 = 0.     (4.8) 

Angular velocity and acceleration are calculated from Equation (2.38) and (2.40) respectively, 

and becomes 

   𝜔1 = 𝑏1𝑞̇1,      (4.9) 
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𝛼1 = 𝑏1𝑞̈1 + 𝜔1 × 𝑏1𝑞̇1.    (4.10) 

Acceleration of the end of the link and the center of the link are calculated from Equation (2.46) 

and (2.47) respectively, and becomes 

𝑎𝑒,1 = 𝜔̇1 × 𝑟0,1 + 𝜔1 × (𝜔1 × 𝑟0,1),  (4.11) 

𝑎𝑐,1 = 𝜔̇1 × 𝑟0,𝑐1 + 𝜔1 × (𝜔1 × 𝑟0,𝑐1),  (4.12) 

Using the same equations as for the link 1, we can get the angular velocity and acceleration, and 

acceleration of the end of the link and the center of mass for each link. 

Link 2 

𝜔2 = (𝑅2
1)

𝑇
𝜔1 + 𝑏2𝑞̇2

,      (4.13) 

𝛼2 = (𝑅2
1)

𝑇
𝛼1 + 𝑏2𝑞̈2

+ 𝜔2 × 𝑏2𝑞̇2
,    (4.14) 

𝑎𝑒,2 = (𝑅2
1)

𝑇
𝑎𝑒,1 + 𝜔̇2 × 𝑟1,2 + 𝜔2 × (𝜔2 × 𝑟1,2),  (4.15) 

𝑎𝑐,2 = (𝑅2
1)

𝑇
𝑎𝑒,1 + 𝜔̇2 × 𝑟1,𝑐2 + 𝜔2 × (𝜔2 × 𝑟1,𝑐2),  (4.16) 

Link 3 

𝜔3 = (𝑅3
2)

𝑇
𝜔2 + 𝑏3𝑞̇3

,      (4.17) 

𝛼3 = (𝑅3
2)

𝑇
𝛼2 + 𝑏3𝑞̈3

+ 𝜔3 × 𝑏3𝑞̇3
,    (4.18) 

𝑎𝑒,3 = (𝑅3
2)

𝑇
𝑎𝑒,2,       (4.19) 

𝑎𝑐,3 = (𝑅3
2)

𝑇
𝑎𝑒,2,       (4.20) 

Link 4` 

𝜔4 = (𝑅4
3)

𝑇
𝜔3 + 𝑏4𝑞̇4

,      (4.21) 

𝛼4 = (𝑅4
3)

𝑇
𝛼3 + 𝑏4𝑞̈4

+ 𝜔4 × 𝑏4𝑞̇4
,    (4.22) 

𝑎𝑒,4 = (𝑅4
3)

𝑇
𝑎𝑒,3 + 𝜔̇4 × 𝑟3,4 + 𝜔4 × (𝜔4 × 𝑟3,4),  (4.23) 

𝑎𝑐,4 = (𝑅4
3)

𝑇
𝑎𝑒,3 + 𝜔̇4 × 𝑟3,𝑐4 + 𝜔4 × (𝜔4 × 𝑟3,𝑐4),  (4.24) 

Link 5 

𝜔5 = (𝑅5
4)

𝑇
𝜔4 + 𝑏5𝑞̇5

,      (4.25) 

𝛼5 = (𝑅5
4)

𝑇
𝛼2 + 𝑏5𝑞̈5

+ 𝜔5 × 𝑏5𝑞̇5
,    (4.26) 

𝑎𝑒,5 = (𝑅5
4)

𝑇
𝑎𝑒,4,       (4.27) 

𝑎𝑐,5 = (𝑅5
4)

𝑇
𝑎𝑒,4,       (4.28) 

Link 6 

𝜔6 = (𝑅6
5)

𝑇
𝜔5 + 𝑏6𝑞̇6

,      (4.29) 

𝛼6 = (𝑅6
5)

𝑇
𝛼5 + 𝑏6𝑞̈6

+ 𝜔6 × 𝑏6𝑞̇6
,    (4.30) 

𝑎𝑐,4 = (𝑅6
5)

𝑇
𝑎𝑒,5 + 𝜔̇6 × 𝑟5,𝑐6 + 𝜔6 × (𝜔6 × 𝑟5,𝑐6),  (4.31) 
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Note that there is no need to compute 𝑎𝑒,6because 𝑎𝑒,𝑖is only used to compute 𝑎𝑒,𝑖+1 (and 

there is no link 7). 

4.1.2. Backward recursion 

The backward recursion calculates the forces and joint torques acting on the links, starting 

with link 6 and ending with link 1. Determining the joint torques is the ultimate goal of the 

Newton-Euler formulation, because the torques are the externally applied input to the model. 

As for the forward recursion, the algorithm is described in Section 2.9.3 and it is just a 

matter of substituting in the general equations for an n-link manipulator. Note that the force 

equation includes the gravity vector. This gravity vector differs for each link, but can 

easily be calculated with the use of rotation matrices as shown in the recursions below 

Link 6 

The terminal conditions are 

𝑓7 = 𝜏7 = 0.      (4.32) 

The gravity vector becomes 

𝑔6 = (𝑅6
0)𝑇𝑔0,     (4.33) 

Where 𝑔0 is the gravity vector in the inertial frame defined as 

𝑔0 = [0  0   − 𝑔]𝑇 .     (4.34) 

The force and joint torque exerted on the link are calculated from Equation (2.33) and (2.36) 

respectively, and becomes 

𝑓
6

= 𝑚6𝑎𝑐,6 − 𝑚6𝑔6
,        (4.35) 

𝜏6 = −𝑓
6

× 𝑟5𝑐,6 + 𝜔6 × (𝐼6𝜔6) + 𝐼6𝛼6.     (4.36) 

Using the same equations as for the link 6, we can get the gravity vector, and force and 

joint torque for each link 

Link 5 

𝑔
5

= (𝑅5
0)

𝑇
𝑔

0
,         (4.37) 

𝑓
5

= 𝑅6
5𝑓

6
,         (4.38) 

𝜏6 = 𝑅6
5𝜏6 + 𝜔5 × (𝐼5𝜔5) + 𝐼5𝛼5,      (4.39) 

Link 4 

𝑔
4

= (𝑅4
0)

𝑇
𝑔

0
,        (4.40) 

𝑓
4

= 𝑅5
4𝑓

5
+ 𝑚4𝑎𝑐,4 − 𝑚4𝑔4

,      (4.41) 

𝜏4 = 𝑅5
4𝜏5 − 𝑓

4
× 𝑟3,𝑐4 + 𝑅5

4𝑓
5
× 𝑟4,𝑐4 + 𝜔4 × (𝐼4𝜔4) + 𝐼4𝛼4, (4.42) 

Link 3 

𝑔
3

= (𝑅3
0)

𝑇
𝑔

0
,         (4.43) 

𝑓
3

= 𝑅4
3𝑓

4
,         (4.44) 

𝜏3 = 𝑅4
3𝜏4 + 𝜔3 × (𝐼3𝜔3) + 𝐼3𝛼3,      (4.45) 
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Link 2 

𝑔
2

= (𝑅2
0)

𝑇
𝑔

0
,        (4.46) 

𝑓
2

= 𝑅3
2𝑓

3
+ 𝑚2𝑎𝑐,2 − 𝑚2𝑔2

,      (4.47) 

𝜏2 = 𝑅3
2𝜏3 − 𝑓

2
× 𝑟1,𝑐2 + 𝑅3

2𝑓
3
× 𝑟2,𝑐2 + 𝜔2 × (𝐼2𝜔2) + 𝐼2𝛼2, (4.48) 

Link 1 

𝑔
1

= (𝑅1
0)

𝑇
𝑔

0
,         (4.49) 

𝑓
1

= 𝑅2
1𝑓

2
+ 𝑚1𝑎𝑐,1 − 𝑚1𝑔1

,      (4.50) 

𝜏1 = 𝑅2
1𝜏2 − 𝑓

1
× 𝑟0,𝑐1 + 𝑅2

1𝑓
2
× 𝑟1,𝑐1 + 𝜔1 × (𝐼1𝜔1) + 𝐼1𝛼1. (4.51) 
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4.1.3. Comments 

The results in this chapter are interesting and verifies why the Newton-Euler 

formulation often is the preferred choice for manipulators with many degrees of freedom. 

The recursive algorithm is easy to implement and consequently there are small chances of 

doing any mistakes in the derivation. Strange behavior of the model can mostly be 

connected to the preparations such as the set-up of the kinematic chain and the frames, 

rotation matrices, vector definitions and inertia tensors. 

Note that even though link 3 and 5 have zero length and mass, they still have to be 

considered in the recursions. The Newton-Euler formulation is based on a kinematic 

chain with only single degree-of-freedom joints, such that n degrees of freedom always 

lead to n steps in each recursion. However, some terms in the expressions for link 3 and 5 

are canceled out. 

One interesting insight in the Newton-Euler formulation comes from the final joint 

torque vectors in the backward recursion. All joints in the kinematic chain are single 

degree-of-freedom joints, such that the torques applied are scalars about the rotation axes 

computed in Equations (4.2)-(4.7). The other two elements of the torque vectors can be 

explained as follows. When applying torque to any of the joints, this will also generate 

torque components about the other axes of the joints due to the coupled kinematics in the 

system. These torque components are not included in the dynamic model because they do 

not induce motion (not affecting q), but still it is valuable information about the physics 

of the manipulator. If the joints in the manipulator are not constructed to physically resist 

these torque quantities, the joints will break. 

Although utilizing the Newton-Euler formulation appears to be quite easy, the 

complexity of the resulting model should be emphasized. The basic idea behind recursion 

is that the solution to a problem depends on solutions to smaller instances on the same 

problem. The backward recursion of link 1 depends on the backward recursion of link 2, 

which depends of the backwards recursion of link 3, and so on. All in all the backward 

recursion of link 1 is directly dependent on all 11 steps back to the forward recursion of 

link 1. Thus it should not be a surprise that calculating τ1 from Equation (4.51) results in 

a huge vector.  
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4.2. The dynamic model based on product of exponential formula 

In the case when forward kinematics are specified using the product of exponential 

formula, then it is possible to get more explicit formulas for the inertia and Coriolis matrices in 

case of n-link manipulator. 

In order to obtain the components of the dynamic equation, it is necessary determine the 

following parameters 

 Inertia matrix𝑀𝑖(2.50)for each of links 

𝑀𝑖 = [
𝑚𝑖I 0

0 𝐼𝑖
], 

where𝑚𝑖isamass of link, 𝐼𝑖 is a inertia tensor of i-th link. The inertia tensors for links have been 

determined in section 3.5.2 in matrix form (3.55) - (3.60) .Hence, using the known parameters 

we can determine the inertia matrix for each of links. 

𝑀1 = [
𝑚1I 0
0 𝐼1

],     (4.52) 

𝑀2 = [
𝑚2I 0
0 𝐼2

],     (4.53) 

𝑀3 = [
𝑚3I 0
0 𝐼3

] = Z,     (4.54) 

𝑀4 = [
𝑚4I 0
0 𝐼4

],     (4.55) 

𝑀5 = [
𝑚5I 0
0 𝐼5

] = Z,     (4.56) 

𝑀6 = [
𝑚6I 0
0 𝐼6

],     (4.57) 

where Z is a zero matrix. 

 Adjoint transformation matrix 𝐴𝑖𝑗 ∈ 𝑅6×6 

For the beginning determine nonzero elements of matrix which need to be calculate. According 

to (2.51) we get the 6×6 matrix: 

𝐴 =

[
 
 
 
 
 

I 0 0 0 0 0
𝐴21 I 0 0 0 0
𝐴31 𝐴32 I 0 0 0
𝐴41 𝐴42 𝐴43 I 0 0
𝐴51 𝐴52 𝐴53 𝐴54 I 0
𝐴61 𝐴62 𝐴63 𝐴64 𝐴65 I ]

 
 
 
 
 

, 

 Each element of matrix calculate according to (). And results write as 

𝐴21 = 𝐴𝑑
(𝑒𝜉2𝜃2𝑒𝜉2𝜃2)

−1
= [

𝑅22
𝑇 − 21

𝑇 𝑝̂
22

0 𝑅22
𝑇

],   (4.59) 

𝐴31 = 𝐴𝑑
(𝑒𝜉2𝜃2𝑒𝜉3𝜃3)

−1
= [

𝑅23
𝑇 −𝑅23

𝑇 𝑝̂
23

0 𝑅23
𝑇

],   (4.60) 

𝐴32 = 𝐴𝑑
(𝑒𝜉3𝜃3𝑒𝜉3𝜃3)

−1
= [

𝑅33
𝑇 −𝑅33

𝑇 𝑝̂
33

0 𝑅33
𝑇

],   (4.61) 
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𝐴41 = 𝐴𝑑
(𝑒𝜉2𝜃2𝑒𝜉4𝜃4)

−1
= [

𝑅24
𝑇 −𝑅24

𝑇 𝑝̂
24

0 𝑅24
𝑇

],   (4.62) 

𝐴42 = 𝐴𝑑
(𝑒𝜉3𝜃3𝑒𝜉4𝜃4)

−1
= [

𝑅34
𝑇 −𝑅34

𝑇 𝑝̂
34

0 𝑅34
𝑇

],   (4.63) 

𝐴43 = 𝐴𝑑
(𝑒𝜉4𝜃4𝑒𝜉4𝜃4)

−1
= [

𝑅44
𝑇 −𝑅44

𝑇 𝑝̂
44

0 𝑅44
𝑇

],   (4.64) 

𝐴51 = 𝐴𝑑
(𝑒𝜉2𝜃2𝑒𝜉5𝜃5)

−1
= [

𝑅25
𝑇 −𝑅25

𝑇 𝑝̂
25

0 𝑅25
𝑇

],   (4.65) 

𝐴52 = 𝐴𝑑
(𝑒𝜉3𝜃3𝑒𝜉5𝜃5)

−1
= [

𝑅35
𝑇 −𝑅35

𝑇 𝑝̂
35

0 𝑅35
𝑇

],   (4.66) 

𝐴53 = 𝐴𝑑
(𝑒𝜉4𝜃4𝑒𝜉5𝜃5)

−1
= [

𝑅45
𝑇 −𝑅45

𝑇 𝑝̂
45

0 𝑅45
𝑇

],   (4.67) 

𝐴54 = 𝐴𝑑
(𝑒𝜉5𝜃5𝑒𝜉5𝜃5)

−1
= [

𝑅55
𝑇 −𝑅55

𝑇 𝑝̂
55

0 𝑅55
𝑇

],   (4.68) 

𝐴61 = 𝐴𝑑
(𝑒𝜉2𝜃2𝑒𝜉6𝜃6)

−1
= [

𝑅26
𝑇 −𝑅26

𝑇 𝑝̂
26

0 𝑅26
𝑇

],   (4.69) 

𝐴62 = 𝐴𝑑
(𝑒𝜉3𝜃3𝑒𝜉6𝜃6)

−1
= [

𝑅36
𝑇 −𝑅36

𝑇 𝑝̂
36

0 𝑅36
𝑇

],   (4.70) 

𝐴63 = 𝐴𝑑
(𝑒𝜉4𝜃4𝑒𝜉6𝜃6)

−1
= [

𝑅46
𝑇 −𝑅46

𝑇 𝑝̂
46

0 𝑅46
𝑇

],   (4.71) 

𝐴64 = 𝐴𝑑
(𝑒𝜉5𝜃5𝑒𝜉6𝜃6)

−1
= [

𝑅56
𝑇 −𝑅56

𝑇 𝑝̂
56

0 𝑅56
𝑇

],   (4.72) 

𝐴65 = 𝐴𝑑
(𝑒𝜉6𝜃6𝑒𝜉6𝜃6)

−1
= [

𝑅66
𝑇 −𝑅66

𝑇 𝑝̂
66

0 𝑅66
𝑇

].   (4.73) 

Then we need determine the transformed inertia matrix 𝑀𝑖
′ which describe theinertia 

moments of each link relative to the base coordinate frame of manipulator. In Section 2.9.4 was 

given Equation (2.56) allows determine the Jacoby matrix, from this equation we need use the 

inverse adjoint matrix of i-thlink 𝐴𝑑
𝑔

𝑠𝑙
𝑖
(0)

−1
𝑇 . Equation (2.57) allows determine the transformed 

inertia matrix. 
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Figure 4.1 the coordinate system location of each links 

Assuming that the link frames are initially aligned with the base frame and are located at 

the centers of mass of the links Figure 4.1, the transformed link inertia matrices have the form 

𝑀𝑖
′ = 𝐴𝑑

𝑔
𝑠𝑙𝑖

(0)
−1

𝑇
𝑀𝑖𝐴𝑑𝑔

𝑠𝑙𝑖
(0)

−1 = [
I 0

−𝑝̂
𝑖

I] [
𝑚𝑖I 0

0 𝐼𝑖
] [

I 𝑝̂
𝑖

0 I
] = [

𝑚𝑖I 𝑚𝑖𝑝̂𝑖

−𝑚𝑖𝑝̂𝑖
𝐼𝑖

] 

where𝑝𝑖 is the location of the origin of the i-th link frame relative to the base frame S. 

 Below is given the results in symbolic form: 

𝑀1
′ = [

𝑚1I 𝑚1𝑝̂1

−𝑚1𝑝̂1
𝐼1

],     (4.74) 

𝑀2
′ = [

𝑚2I 𝑚2𝑝̂2

−𝑚2𝑝̂2
𝐼2

],     (4.75) 

𝑀3
′ = [

𝑚3I 𝑚3𝑝̂3

−𝑚3𝑝̂3
𝐼3

],     (4.76) 

𝑀4
′ = [

𝑚4I 𝑚4𝑝̂4

−𝑚4𝑝̂4
𝐼4

],     (4.77) 

𝑀𝑖
′ = [

𝑚5I 𝑚5𝑝̂5

−𝑚5𝑝̂5
𝐼5

],     (4.78) 

𝑀𝑖
′ = [

𝑚6I 𝑚6𝑝̂6

−𝑚6𝑝̂6
𝐼6

],     (4.79) 

Using all determined parameters we find the inertia matrix and Coriolis matrix for 

manipulator with 6 DOF and open-chain kinematic map based on equations (2.58) and (2.59) 

𝑀𝑖𝑗(𝜃) = ∑ 𝜉
𝑖
𝑇𝐴𝑙𝑖

𝑇𝑀𝑙
′𝐴𝑙𝑗𝜉𝑗

𝑛

𝑙=max (𝑖,𝑗)
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𝐶𝑖𝑗(𝜃) =
1

2
∑(

𝜕𝑀𝑖𝑗

𝜕𝜃𝑘

+
𝜕𝑀𝑖𝑘

𝜕𝜃𝑗

−
𝜕𝑀𝑘𝑗

𝜕𝜃𝑖

)

𝑛

𝑘=1

𝜃̇𝑘 

4.2.1. Inertia matrix 

𝑀(𝜃) =

[
 
 
 
 
 
𝑀11 𝑀12 𝑀13 𝑀14 𝑀15 𝑀16

𝑀21 𝑀22 𝑀23 𝑀24 𝑀25 𝑀26

𝑀31 𝑀32 𝑀33 𝑀34 𝑀35 𝑀36

𝑀41 𝑀42 𝑀43 𝑀44 𝑀45 𝑀46

𝑀51 𝑀52 𝑀53 𝑀54 𝑀55 𝑀56

𝑀61 𝑀62 𝑀63 𝑀64 𝑀65 𝑀66]
 
 
 
 
 

   (4.80) 

𝑀11(𝜃) = 𝜉1
𝑇𝐴11

𝑇 𝑀1
′𝐴11𝜉1 + 𝜉1

𝑇𝐴21
𝑇 𝑀2

′𝐴21𝜉1 + 𝜉1
𝑇𝐴31

𝑇 𝑀3
′𝐴31𝜉1 + 𝜉1

𝑇𝐴41
𝑇 𝑀4

′𝐴41𝜉1

+ 𝜉1
𝑇𝐴51

𝑇 𝑀5
′𝐴51𝜉1 + 𝜉1

𝑇𝐴61
𝑇 𝑀6

′𝐴61𝜉1 

𝑀12(𝜃) = 𝜉1
𝑇𝐴21

𝑇 𝑀2
′𝐴22𝜉2 + 𝜉1

𝑇𝐴31
𝑇 𝑀3

′𝐴32𝜉2 + 𝜉1
𝑇𝐴41

𝑇 𝑀4
′𝐴42𝜉2 + 𝜉1

𝑇𝐴51
𝑇 𝑀5

′𝐴52𝜉2

+ 𝜉1
𝑇𝐴61

𝑇 𝑀6
′𝐴62𝜉2 

𝑀13(𝜃) = 𝜉1
𝑇𝐴31

𝑇 𝑀3
′𝐴33𝜉3 + 𝜉1

𝑇𝐴41
𝑇 𝑀4

′𝐴43𝜉3 + 𝜉1
𝑇𝐴51

𝑇 𝑀5
′𝐴53𝜉3 + 𝜉1

𝑇𝐴61
𝑇 𝑀6

′𝐴63𝜉3 

𝑀14(𝜃) = 𝜉1
𝑇𝐴41

𝑇 𝑀4
′𝐴44𝜉4 + 𝜉1

𝑇𝐴51
𝑇 𝑀5

′𝐴54𝜉4 + 𝜉1
𝑇𝐴61

𝑇 𝑀6
′𝐴64𝜉4 

𝑀15(𝜃) = 𝜉1
𝑇𝐴51

𝑇 𝑀5
′𝐴55𝜉5 + 𝜉1

𝑇𝐴61
𝑇 𝑀6

′𝐴65𝜉5 

𝑀16(𝜃) = 𝜉1
𝑇𝐴61

𝑇 𝑀6
′𝐴66𝜉6 

 

𝑀21(𝜃) = 𝜉2
𝑇𝐴22

𝑇 𝑀2
′𝐴21𝜉1 + 𝜉2

𝑇𝐴32
𝑇 𝑀3

′𝐴31𝜉1 + 𝜉2
𝑇𝐴42

𝑇 𝑀4
′𝐴41𝜉1 + 𝜉2

𝑇𝐴52
𝑇 𝑀5

′𝐴51𝜉1

+ 𝜉2
𝑇𝐴62

𝑇 𝑀6
′𝐴61𝜉1 

𝑀22(𝜃) = 𝜉2
𝑇𝐴22

𝑇 𝑀2
′𝐴22𝜉2 + 𝜉2

𝑇𝐴32
𝑇 𝑀3

′𝐴32𝜉2 + 𝜉2
𝑇𝐴42

𝑇 𝑀4
′𝐴42𝜉2 + 𝜉2

𝑇𝐴52
𝑇 𝑀5

′𝐴52𝜉2

+ 𝜉2
𝑇𝐴62

𝑇 𝑀6
′𝐴62𝜉2 

𝑀23(𝜃) = 𝜉2
𝑇𝐴32

𝑇 𝑀3
′𝐴33𝜉3 + 𝜉2

𝑇𝐴42
𝑇 𝑀4

′𝐴43𝜉3 + 𝜉2
𝑇𝐴52

𝑇 𝑀5
′𝐴53𝜉3 + 𝜉2

𝑇𝐴62
𝑇 𝑀6

′𝐴63𝜉3 

𝑀24(𝜃) = 𝜉2
𝑇𝐴42

𝑇 𝑀4
′𝐴44𝜉4 + 𝜉2

𝑇𝐴52
𝑇 𝑀5

′𝐴54𝜉4 + 𝜉2
𝑇𝐴62

𝑇 𝑀6
′𝐴64𝜉4 

𝑀25(𝜃) = 𝜉2
𝑇𝐴52

𝑇 𝑀5
′𝐴55𝜉5 + 𝜉2

𝑇𝐴62
𝑇 𝑀6

′𝐴65𝜉5 

𝑀26(𝜃) = 𝜉2
𝑇𝐴62

𝑇 𝑀6
′𝐴66𝜉6 

 

𝑀31(𝜃) = 𝜉3
𝑇𝐴33

𝑇 𝑀3
′𝐴31𝜉1 + 𝜉3

𝑇𝐴43
𝑇 𝑀4

′𝐴41𝜉1 + 𝜉3
𝑇𝐴53

𝑇 𝑀5
′𝐴51𝜉1 + 𝜉3

𝑇𝐴63
𝑇 𝑀6

′𝐴61𝜉1 

𝑀32(𝜃) = 𝜉3
𝑇𝐴33

𝑇 𝑀3
′𝐴32𝜉2 + 𝜉3

𝑇𝐴43
𝑇 𝑀4

′𝐴42𝜉2 + 𝜉3
𝑇𝐴53

𝑇 𝑀5
′𝐴52𝜉2 + 𝜉3

𝑇𝐴63
𝑇 𝑀6

′ 𝐴62𝜉2 

𝑀33(𝜃) = 𝜉3
𝑇𝐴33

𝑇 𝑀3
′𝐴33𝜉3 + 𝜉3

𝑇𝐴43
𝑇 𝑀4

′𝐴43𝜉3 + 𝜉3
𝑇𝐴53

𝑇 𝑀5
′𝐴53𝜉3 + 𝜉3

𝑇𝐴63
𝑇 𝑀6

′𝐴63𝜉3 

𝑀34(𝜃) = 𝜉3
𝑇𝐴43

𝑇 𝑀4
′𝐴44𝜉4 + 𝜉3

𝑇𝐴53
𝑇 𝑀5

′𝐴54𝜉4 + 𝜉3
𝑇𝐴63

𝑇 𝑀6
′𝐴64𝜉4 

𝑀35(𝜃) = 𝜉3
𝑇𝐴53

𝑇 𝑀5
′𝐴55𝜉5 + 𝜉3

𝑇𝐴63
𝑇 𝑀6

′𝐴65𝜉5 

𝑀36(𝜃) = 𝜉3
𝑇𝐴63

𝑇 𝑀6
′𝐴66𝜉6 

 

𝑀41(𝜃) = 𝜉4
𝑇𝐴44

𝑇 𝑀4
′𝐴41𝜉1 + 𝜉4

𝑇𝐴54
𝑇 𝑀5

′𝐴51𝜉1 + 𝜉4
𝑇𝐴64

𝑇 𝑀6
′𝐴61𝜉1 

𝑀42(𝜃) = 𝜉4
𝑇𝐴44

𝑇 𝑀4
′𝐴42𝜉2 + 𝜉4

𝑇𝐴54
𝑇 𝑀5

′𝐴52𝜉2 + 𝜉4
𝑇𝐴64

𝑇 𝑀6
′𝐴62𝜉2 

𝑀43(𝜃) = 𝜉4
𝑇𝐴44

𝑇 𝑀4
′𝐴43𝜉3 + 𝜉4

𝑇𝐴54
𝑇 𝑀5

′𝐴53𝜉3 + 𝜉4
𝑇𝐴64

𝑇 𝑀6
′𝐴63𝜉3 

𝑀44(𝜃) = 𝜉4
𝑇𝐴44

𝑇 𝑀4
′𝐴44𝜉4 + 𝜉4

𝑇𝐴54
𝑇 𝑀5

′𝐴54𝜉4 + 𝜉4
𝑇𝐴64

𝑇 𝑀6
′𝐴64𝜉4 



49 

 

𝑀45(𝜃) = 𝜉4
𝑇𝐴54

𝑇 𝑀5
′𝐴55𝜉5 + 𝜉4

𝑇𝐴64
𝑇 𝑀6

′𝐴65𝜉5 

𝑀46(𝜃) = 𝜉4
𝑇𝐴64

𝑇 𝑀6
′𝐴66𝜉6 

 

𝑀51(𝜃) = 𝜉5
𝑇𝐴55

𝑇 𝑀5
′𝐴51𝜉1 + 𝜉5

𝑇𝐴65
𝑇 𝑀6

′𝐴61𝜉1 

𝑀52(𝜃) = 𝜉5
𝑇𝐴55

𝑇 𝑀5
′𝐴52𝜉2 + 𝜉5

𝑇𝐴65
𝑇 𝑀6

′𝐴62𝜉2 

𝑀53(𝜃) = 𝜉5
𝑇𝐴55

𝑇 𝑀5
′𝐴53𝜉3 + 𝜉5

𝑇𝐴65
𝑇 𝑀6

′𝐴63𝜉3 

𝑀54(𝜃) = 𝜉5
𝑇𝐴55

𝑇 𝑀5
′𝐴54𝜉4 + 𝜉5

𝑇𝐴65
𝑇 𝑀6

′𝐴64𝜉4 

𝑀55(𝜃) = 𝜉5
𝑇𝐴55

𝑇 𝑀5
′𝐴55𝜉5 + 𝜉5

𝑇𝐴65
𝑇 𝑀6

′𝐴65𝜉5 

𝑀56(𝜃) = 𝜉5
𝑇𝐴65

𝑇 𝑀6
′𝐴66𝜉6 

 

𝑀61(𝜃) = 𝜉6
𝑇𝐴66

𝑇 𝑀6
′𝐴61𝜉1 

𝑀62(𝜃) = 𝜉6
𝑇𝐴66

𝑇 𝑀6
′𝐴62𝜉2 

𝑀63(𝜃) = 𝜉6
𝑇𝐴66

𝑇 𝑀6
′𝐴63𝜉3 

𝑀64(𝜃) = 𝜉6
𝑇𝐴66

𝑇 𝑀6
′𝐴64𝜉4 

𝑀65(𝜃) = 𝜉6
𝑇𝐴66

𝑇 𝑀6
′𝐴65𝜉5 

𝑀66(𝜃) = 𝜉6
𝑇𝐴66

𝑇 𝑀6
′𝐴66𝜉6 

4.2.2. Coriolis matrix 

𝐶(𝜃) =

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16

𝐶21 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26

𝐶31 𝐶32 𝐶33 𝐶34 𝐶35 𝐶36

𝐶41 𝐶42 𝐶43 𝐶44 𝐶45 𝐶46

𝐶51 𝐶52 𝐶53 𝐶54 𝐶55 𝐶56

𝐶61 𝐶62 𝐶63 𝐶64 𝐶65 𝐶66]
 
 
 
 
 

    (4.81) 

𝐶11(𝜃) =
1

2
[(

𝜕𝑀11

𝜕𝜃1

+
𝜕𝑀11

𝜕𝜃1

−
𝜕𝑀11

𝜕𝜃1

) 𝜃̇1 + (
𝜕𝑀11

𝜕𝜃2

+
𝜕𝑀12

𝜕𝜃1

−
𝜕𝑀21

𝜕𝜃1

) 𝜃̇2 + (
𝜕𝑀11

𝜕𝜃3

+
𝜕𝑀13

𝜕𝜃1

−
𝜕𝑀31

𝜕𝜃1

) 𝜃̇3

+ (
𝜕𝑀11

𝜕𝜃4

+
𝜕𝑀14

𝜕𝜃1

−
𝜕𝑀41

𝜕𝜃1

) 𝜃̇4 + (
𝜕𝑀11

𝜕𝜃5

+
𝜕𝑀15

𝜕𝜃1

−
𝜕𝑀51

𝜕𝜃1

) 𝜃̇5 + (
𝜕𝑀11

𝜕𝜃6

+
𝜕𝑀16

𝜕𝜃1

−
𝜕𝑀61

𝜕𝜃1

)𝜃̇6] 

𝐶12(𝜃) =
1

2
[(

𝜕𝑀12

𝜕𝜃1

+
𝜕𝑀11

𝜕𝜃2

−
𝜕𝑀12

𝜕𝜃1

) 𝜃̇1 + (
𝜕𝑀12

𝜕𝜃2

+
𝜕𝑀12

𝜕𝜃2

−
𝜕𝑀21

𝜕𝜃1

) 𝜃̇2 + (
𝜕𝑀13

𝜕𝜃3

+
𝜕𝑀13

𝜕𝜃2

−
𝜕𝑀32

𝜕𝜃1

) 𝜃̇3

+ (
𝜕𝑀14

𝜕𝜃4

+
𝜕𝑀14

𝜕𝜃2

−
𝜕𝑀42

𝜕𝜃1

) 𝜃̇4 + (
𝜕𝑀15

𝜕𝜃5

+
𝜕𝑀15

𝜕𝜃2

−
𝜕𝑀52

𝜕𝜃1

) 𝜃̇5 + (
𝜕𝑀16

𝜕𝜃6

+
𝜕𝑀16

𝜕𝜃2

−
𝜕𝑀62

𝜕𝜃1

)𝜃̇6] 

𝐶13(𝜃) =
1

2
[(

𝜕𝑀13

𝜕𝜃1

+
𝜕𝑀11

𝜕𝜃3

−
𝜕𝑀13

𝜕𝜃1

) 𝜃̇1 + (
𝜕𝑀13

𝜕𝜃2

+
𝜕𝑀12

𝜕𝜃3

−
𝜕𝑀23

𝜕𝜃1

) 𝜃̇2 + (
𝜕𝑀13

𝜕𝜃3

+
𝜕𝑀13

𝜕𝜃3

−
𝜕𝑀33

𝜕𝜃1

) 𝜃̇3

+ (
𝜕𝑀13

𝜕𝜃4

+
𝜕𝑀14

𝜕𝜃3

−
𝜕𝑀43

𝜕𝜃1

) 𝜃̇4 + (
𝜕𝑀13

𝜕𝜃5

+
𝜕𝑀15

𝜕𝜃3

−
𝜕𝑀53

𝜕𝜃1

) 𝜃̇5 + (
𝜕𝑀13

𝜕𝜃6

+
𝜕𝑀16

𝜕𝜃3

−
𝜕𝑀63

𝜕𝜃1

)𝜃̇6] 

𝐶14(𝜃) =
1

2
[(

𝜕𝑀14

𝜕𝜃1

+
𝜕𝑀11

𝜕𝜃4

−
𝜕𝑀14

𝜕𝜃1

) 𝜃̇1 + (
𝜕𝑀14

𝜕𝜃2

+
𝜕𝑀12

𝜕𝜃4

−
𝜕𝑀24

𝜕𝜃1

) 𝜃̇2 + (
𝜕𝑀14

𝜕𝜃3

+
𝜕𝑀13

𝜕𝜃4

−
𝜕𝑀34

𝜕𝜃1

) 𝜃̇3

+ (
𝜕𝑀14

𝜕𝜃4

+
𝜕𝑀14

𝜕𝜃4

−
𝜕𝑀44

𝜕𝜃1

) 𝜃̇4 + (
𝜕𝑀14

𝜕𝜃5

+
𝜕𝑀15

𝜕𝜃4

−
𝜕𝑀54

𝜕𝜃1

) 𝜃̇5 + (
𝜕𝑀14

𝜕𝜃6

+
𝜕𝑀16

𝜕𝜃4

−
𝜕𝑀64

𝜕𝜃1

)𝜃̇6] 
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𝐶15(𝜃) =
1

2
[(

𝜕𝑀15

𝜕𝜃1

+
𝜕𝑀11

𝜕𝜃5

−
𝜕𝑀15

𝜕𝜃1

) 𝜃̇1 + (
𝜕𝑀15

𝜕𝜃2

+
𝜕𝑀12

𝜕𝜃5

−
𝜕𝑀25

𝜕𝜃1

) 𝜃̇2 + (
𝜕𝑀15

𝜕𝜃3

+
𝜕𝑀13

𝜕𝜃5

−
𝜕𝑀35

𝜕𝜃1

) 𝜃̇3

+ (
𝜕𝑀15

𝜕𝜃4

+
𝜕𝑀14

𝜕𝜃5

−
𝜕𝑀45

𝜕𝜃1

) 𝜃̇4 + (
𝜕𝑀15

𝜕𝜃5

+
𝜕𝑀15

𝜕𝜃5

−
𝜕𝑀55

𝜕𝜃1

) 𝜃̇5 + (
𝜕𝑀15

𝜕𝜃6

+
𝜕𝑀16

𝜕𝜃5

−
𝜕𝑀65

𝜕𝜃1

)𝜃̇6] 

𝐶16(𝜃) =
1

2
[(

𝜕𝑀16

𝜕𝜃1

+
𝜕𝑀11

𝜕𝜃6

−
𝜕𝑀16

𝜕𝜃1

) 𝜃̇1 + (
𝜕𝑀16

𝜕𝜃2

+
𝜕𝑀12

𝜕𝜃6

−
𝜕𝑀26

𝜕𝜃1

) 𝜃̇2 + (
𝜕𝑀16

𝜕𝜃3

+
𝜕𝑀13

𝜕𝜃6

−
𝜕𝑀36

𝜕𝜃1

) 𝜃̇3

+ (
𝜕𝑀16

𝜕𝜃4

+
𝜕𝑀14

𝜕𝜃6

−
𝜕𝑀46

𝜕𝜃1

) 𝜃̇4 + (
𝜕𝑀16

𝜕𝜃5

+
𝜕𝑀15

𝜕𝜃6

−
𝜕𝑀56

𝜕𝜃1

) 𝜃̇5 + (
𝜕𝑀16

𝜕𝜃6

+
𝜕𝑀16

𝜕𝜃6

−
𝜕𝑀66

𝜕𝜃1

)𝜃̇6] 

 

𝐶21(𝜃) =
1

2
[(

𝜕𝑀21

𝜕𝜃1

+
𝜕𝑀21

𝜕𝜃1

−
𝜕𝑀11

𝜕𝜃2

) 𝜃̇1 + (
𝜕𝑀21

𝜕𝜃2

+
𝜕𝑀22

𝜕𝜃1

−
𝜕𝑀21

𝜕𝜃2

) 𝜃̇2 + (
𝜕𝑀21

𝜕𝜃3

+
𝜕𝑀23

𝜕𝜃1

−
𝜕𝑀31

𝜕𝜃2

) 𝜃̇3

+ (
𝜕𝑀21

𝜕𝜃4

+
𝜕𝑀24

𝜕𝜃1

−
𝜕𝑀41

𝜕𝜃2

) 𝜃̇4 + (
𝜕𝑀21

𝜕𝜃5

+
𝜕𝑀25

𝜕𝜃1

−
𝜕𝑀51

𝜕𝜃2

) 𝜃̇5 + (
𝜕𝑀21

𝜕𝜃6

+
𝜕𝑀26

𝜕𝜃1

−
𝜕𝑀61

𝜕𝜃2

)𝜃̇6] 

𝐶22(𝜃) =
1

2
[(

𝜕𝑀22

𝜕𝜃1

+
𝜕𝑀21

𝜕𝜃2

−
𝜕𝑀12

𝜕𝜃2

) 𝜃̇1 + (
𝜕𝑀22

𝜕𝜃2

+
𝜕𝑀22

𝜕𝜃2

−
𝜕𝑀22

𝜕𝜃2

) 𝜃̇2 + (
𝜕𝑀22

𝜕𝜃3

+
𝜕𝑀23

𝜕𝜃2

−
𝜕𝑀32

𝜕𝜃2

) 𝜃̇3

+ (
𝜕𝑀22

𝜕𝜃4

+
𝜕𝑀24

𝜕𝜃2

−
𝜕𝑀42

𝜕𝜃2

) 𝜃̇4 + (
𝜕𝑀22

𝜕𝜃5

+
𝜕𝑀25

𝜕𝜃2

−
𝜕𝑀52

𝜕𝜃2

) 𝜃̇5 + (
𝜕𝑀22

𝜕𝜃6

+
𝜕𝑀26

𝜕𝜃2

−
𝜕𝑀62

𝜕𝜃2

)𝜃̇6] 

𝐶23(𝜃) =
1

2
[(

𝜕𝑀23

𝜕𝜃1

+
𝜕𝑀21

𝜕𝜃3

−
𝜕𝑀13

𝜕𝜃2

) 𝜃̇1 + (
𝜕𝑀23

𝜕𝜃2

+
𝜕𝑀22

𝜕𝜃3

−
𝜕𝑀23

𝜕𝜃2

) 𝜃̇2 + (
𝜕𝑀23

𝜕𝜃3

+
𝜕𝑀23

𝜕𝜃3

−
𝜕𝑀33

𝜕𝜃2

) 𝜃̇3

+ (
𝜕𝑀23

𝜕𝜃4

+
𝜕𝑀24

𝜕𝜃3

−
𝜕𝑀43

𝜕𝜃2

) 𝜃̇4 + (
𝜕𝑀23

𝜕𝜃5

+
𝜕𝑀25

𝜕𝜃3

−
𝜕𝑀53

𝜕𝜃2

) 𝜃̇5 + (
𝜕𝑀23

𝜕𝜃6

+
𝜕𝑀26

𝜕𝜃3

−
𝜕𝑀63

𝜕𝜃2

)𝜃̇6] 

𝐶24(𝜃) =
1

2
[(

𝜕𝑀24

𝜕𝜃1

+
𝜕𝑀21

𝜕𝜃4

−
𝜕𝑀14

𝜕𝜃2

) 𝜃̇1 + (
𝜕𝑀24

𝜕𝜃2

+
𝜕𝑀22

𝜕𝜃4

−
𝜕𝑀24

𝜕𝜃2

) 𝜃̇2 + (
𝜕𝑀24

𝜕𝜃3

+
𝜕𝑀23

𝜕𝜃4

−
𝜕𝑀34

𝜕𝜃2

) 𝜃̇3

+ (
𝜕𝑀24

𝜕𝜃4

+
𝜕𝑀24

𝜕𝜃4

−
𝜕𝑀44

𝜕𝜃2

) 𝜃̇4 + (
𝜕𝑀24

𝜕𝜃5

+
𝜕𝑀25

𝜕𝜃4

−
𝜕𝑀54

𝜕𝜃2

) 𝜃̇5 + (
𝜕𝑀24

𝜕𝜃6

+
𝜕𝑀26

𝜕𝜃4

−
𝜕𝑀64

𝜕𝜃2

)𝜃̇6] 

𝐶25(𝜃) =
1

2
[(

𝜕𝑀25

𝜕𝜃1

+
𝜕𝑀21

𝜕𝜃5

−
𝜕𝑀15

𝜕𝜃2

) 𝜃̇1 + (
𝜕𝑀25

𝜕𝜃2

+
𝜕𝑀22

𝜕𝜃5

−
𝜕𝑀25

𝜕𝜃2

) 𝜃̇2 + (
𝜕𝑀25

𝜕𝜃3

+
𝜕𝑀23

𝜕𝜃5

−
𝜕𝑀35

𝜕𝜃2

) 𝜃̇3

+ (
𝜕𝑀25

𝜕𝜃4

+
𝜕𝑀24

𝜕𝜃5

−
𝜕𝑀45

𝜕𝜃2

) 𝜃̇4 + (
𝜕𝑀25

𝜕𝜃5

+
𝜕𝑀25

𝜕𝜃5

−
𝜕𝑀55

𝜕𝜃2

) 𝜃̇5 + (
𝜕𝑀25

𝜕𝜃6

+
𝜕𝑀26

𝜕𝜃5

−
𝜕𝑀65

𝜕𝜃2

)𝜃̇6] 

𝐶26(𝜃) =
1

2
[(

𝜕𝑀26

𝜕𝜃1

+
𝜕𝑀21

𝜕𝜃6

−
𝜕𝑀16

𝜕𝜃2

) 𝜃̇1 + (
𝜕𝑀26

𝜕𝜃2

+
𝜕𝑀22

𝜕𝜃6

−
𝜕𝑀26

𝜕𝜃2

) 𝜃̇2 + (
𝜕𝑀26

𝜕𝜃3

+
𝜕𝑀23

𝜕𝜃6

−
𝜕𝑀36

𝜕𝜃2

) 𝜃̇3

+ (
𝜕𝑀26

𝜕𝜃4

+
𝜕𝑀24

𝜕𝜃6

−
𝜕𝑀46

𝜕𝜃2

) 𝜃̇4 + (
𝜕𝑀26

𝜕𝜃5

+
𝜕𝑀25

𝜕𝜃6

−
𝜕𝑀56

𝜕𝜃2

) 𝜃̇5 + (
𝜕𝑀26

𝜕𝜃6

+
𝜕𝑀26

𝜕𝜃6

−
𝜕𝑀66

𝜕𝜃2

)𝜃̇6] 

 

𝐶31(𝜃) =
1

2
[(

𝜕𝑀31

𝜕𝜃1

+
𝜕𝑀31

𝜕𝜃1

−
𝜕𝑀11

𝜕𝜃3

) 𝜃̇1 + (
𝜕𝑀31

𝜕𝜃2

+
𝜕𝑀32

𝜕𝜃1

−
𝜕𝑀21

𝜕𝜃3

) 𝜃̇2 + (
𝜕𝑀31

𝜕𝜃3

+
𝜕𝑀33

𝜕𝜃1

−
𝜕𝑀31

𝜕𝜃3

) 𝜃̇3

+ (
𝜕𝑀31

𝜕𝜃4

+
𝜕𝑀34

𝜕𝜃1

−
𝜕𝑀41

𝜕𝜃3

) 𝜃̇4 + (
𝜕𝑀31

𝜕𝜃5

+
𝜕𝑀35

𝜕𝜃1

−
𝜕𝑀51

𝜕𝜃3

) 𝜃̇5 + (
𝜕𝑀31

𝜕𝜃6

+
𝜕𝑀36

𝜕𝜃1

−
𝜕𝑀61

𝜕𝜃3

)𝜃̇6] 

𝐶32(𝜃) =
1

2
[(

𝜕𝑀32

𝜕𝜃1

+
𝜕𝑀31

𝜕𝜃2

−
𝜕𝑀12

𝜕𝜃3

) 𝜃̇1 + (
𝜕𝑀32

𝜕𝜃2

+
𝜕𝑀32

𝜕𝜃2

−
𝜕𝑀22

𝜕𝜃3

) 𝜃̇2 + (
𝜕𝑀32

𝜕𝜃3

+
𝜕𝑀33

𝜕𝜃2

−
𝜕𝑀32

𝜕𝜃3

) 𝜃̇3

+ (
𝜕𝑀32

𝜕𝜃4

+
𝜕𝑀34

𝜕𝜃2

−
𝜕𝑀42

𝜕𝜃3

) 𝜃̇4 + (
𝜕𝑀32

𝜕𝜃5

+
𝜕𝑀35

𝜕𝜃2

−
𝜕𝑀52

𝜕𝜃3

) 𝜃̇5 + (
𝜕𝑀32

𝜕𝜃6

+
𝜕𝑀36

𝜕𝜃2

−
𝜕𝑀62

𝜕𝜃3

)𝜃̇6] 
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𝐶33(𝜃) =
1

2
[(

𝜕𝑀33

𝜕𝜃1

+
𝜕𝑀31

𝜕𝜃3

−
𝜕𝑀13

𝜕𝜃3

) 𝜃̇1 + (
𝜕𝑀33

𝜕𝜃2

+
𝜕𝑀32

𝜕𝜃3

−
𝜕𝑀23

𝜕𝜃3

) 𝜃̇2 + (
𝜕𝑀33

𝜕𝜃3

+
𝜕𝑀33

𝜕𝜃3

−
𝜕𝑀33

𝜕𝜃3

) 𝜃̇3

+ (
𝜕𝑀33

𝜕𝜃4

+
𝜕𝑀34

𝜕𝜃3

−
𝜕𝑀43

𝜕𝜃3

) 𝜃̇4 + (
𝜕𝑀33

𝜕𝜃5

+
𝜕𝑀35

𝜕𝜃3

−
𝜕𝑀53

𝜕𝜃3

) 𝜃̇5 + (
𝜕𝑀33

𝜕𝜃6

+
𝜕𝑀36

𝜕𝜃3

−
𝜕𝑀63

𝜕𝜃3

)𝜃̇3] 

𝐶34(𝜃) =
1

2
[(

𝜕𝑀34

𝜕𝜃1

+
𝜕𝑀31

𝜕𝜃4

−
𝜕𝑀14

𝜕𝜃3

) 𝜃̇1 + (
𝜕𝑀34

𝜕𝜃2

+
𝜕𝑀32

𝜕𝜃4

−
𝜕𝑀24

𝜕𝜃3

) 𝜃̇2 + (
𝜕𝑀34

𝜕𝜃3

+
𝜕𝑀33

𝜕𝜃4

−
𝜕𝑀34

𝜕𝜃3

) 𝜃̇3

+ (
𝜕𝑀34

𝜕𝜃4

+
𝜕𝑀34

𝜕𝜃4

−
𝜕𝑀44

𝜕𝜃3

) 𝜃̇4 + (
𝜕𝑀34

𝜕𝜃5

+
𝜕𝑀35

𝜕𝜃4

−
𝜕𝑀54

𝜕𝜃3

) 𝜃̇5 + (
𝜕𝑀34

𝜕𝜃6

+
𝜕𝑀36

𝜕𝜃4

−
𝜕𝑀64

𝜕𝜃3

)𝜃̇6] 

𝐶35(𝜃) =
1

2
[(

𝜕𝑀35

𝜕𝜃1

+
𝜕𝑀31

𝜕𝜃5

−
𝜕𝑀15

𝜕𝜃3

) 𝜃̇1 + (
𝜕𝑀35

𝜕𝜃2

+
𝜕𝑀32

𝜕𝜃5

−
𝜕𝑀25

𝜕𝜃3

) 𝜃̇2 + (
𝜕𝑀35

𝜕𝜃3

+
𝜕𝑀33

𝜕𝜃5

−
𝜕𝑀35

𝜕𝜃3

) 𝜃̇3

+ (
𝜕𝑀35

𝜕𝜃4

+
𝜕𝑀34

𝜕𝜃5

−
𝜕𝑀45

𝜕𝜃3

) 𝜃̇4 + (
𝜕𝑀35

𝜕𝜃5

+
𝜕𝑀35

𝜕𝜃5

−
𝜕𝑀55

𝜕𝜃3

) 𝜃̇5 + (
𝜕𝑀35

𝜕𝜃6

+
𝜕𝑀36

𝜕𝜃5

−
𝜕𝑀65

𝜕𝜃3

)𝜃̇6] 

𝐶36(𝜃) =
1

2
[(

𝜕𝑀36

𝜕𝜃1

+
𝜕𝑀31

𝜕𝜃6

−
𝜕𝑀16

𝜕𝜃3

) 𝜃̇1 + (
𝜕𝑀36

𝜕𝜃2

+
𝜕𝑀32

𝜕𝜃6

−
𝜕𝑀26

𝜕𝜃3

) 𝜃̇2 + (
𝜕𝑀36

𝜕𝜃3

+
𝜕𝑀33

𝜕𝜃6

−
𝜕𝑀36

𝜕𝜃3

) 𝜃̇3

+ (
𝜕𝑀36

𝜕𝜃4

+
𝜕𝑀34

𝜕𝜃6

−
𝜕𝑀46

𝜕𝜃3

) 𝜃̇4 + (
𝜕𝑀36

𝜕𝜃5

+
𝜕𝑀35

𝜕𝜃6

−
𝜕𝑀56

𝜕𝜃3

) 𝜃̇5 + (
𝜕𝑀36

𝜕𝜃6

+
𝜕𝑀36

𝜕𝜃6

−
𝜕𝑀66

𝜕𝜃3

) 𝜃̇6] 

 

𝐶41(𝜃) =
1

2
[(

𝜕𝑀41

𝜕𝜃1

+
𝜕𝑀41

𝜕𝜃1

−
𝜕𝑀11

𝜕𝜃4

) 𝜃̇1 + (
𝜕𝑀41

𝜕𝜃2

+
𝜕𝑀42

𝜕𝜃1

−
𝜕𝑀21

𝜕𝜃4

) 𝜃̇2 + (
𝜕𝑀41

𝜕𝜃3

+
𝜕𝑀43

𝜕𝜃1

−
𝜕𝑀31

𝜕𝜃4

) 𝜃̇3

+ (
𝜕𝑀41

𝜕𝜃4

+
𝜕𝑀44

𝜕𝜃1

−
𝜕𝑀41

𝜕𝜃4

) 𝜃̇4 + (
𝜕𝑀41

𝜕𝜃5

+
𝜕𝑀45

𝜕𝜃1

−
𝜕𝑀51

𝜕𝜃4

) 𝜃̇5 + (
𝜕𝑀41

𝜕𝜃6

+
𝜕𝑀46

𝜕𝜃1

−
𝜕𝑀61

𝜕𝜃4

) 𝜃̇6] 

𝐶42(𝜃) =
1

2
[(

𝜕𝑀42

𝜕𝜃1

+
𝜕𝑀41

𝜕𝜃2

−
𝜕𝑀12

𝜕𝜃4

) 𝜃̇1 + (
𝜕𝑀42

𝜕𝜃2

+
𝜕𝑀42

𝜕𝜃2

−
𝜕𝑀22

𝜕𝜃4

) 𝜃̇2 + (
𝜕𝑀42

𝜕𝜃3

+
𝜕𝑀43

𝜕𝜃2

−
𝜕𝑀32

𝜕𝜃4

) 𝜃̇3

+ (
𝜕𝑀42

𝜕𝜃4

+
𝜕𝑀44

𝜕𝜃2

−
𝜕𝑀42

𝜕𝜃4

) 𝜃̇4 + (
𝜕𝑀42

𝜕𝜃5

+
𝜕𝑀45

𝜕𝜃2

−
𝜕𝑀52

𝜕𝜃4

) 𝜃̇5 + (
𝜕𝑀42

𝜕𝜃6

+
𝜕𝑀46

𝜕𝜃2

−
𝜕𝑀62

𝜕𝜃4

)𝜃̇6] 

𝐶43(𝜃) =
1

2
[(

𝜕𝑀43

𝜕𝜃1

+
𝜕𝑀41

𝜕𝜃3

−
𝜕𝑀13

𝜕𝜃4

) 𝜃̇1 + (
𝜕𝑀43

𝜕𝜃2

+
𝜕𝑀42

𝜕𝜃3

−
𝜕𝑀23

𝜕𝜃4

) 𝜃̇2 + (
𝜕𝑀43

𝜕𝜃3

+
𝜕𝑀43

𝜕𝜃3

−
𝜕𝑀33

𝜕𝜃4

) 𝜃̇3

+ (
𝜕𝑀43

𝜕𝜃4

+
𝜕𝑀44

𝜕𝜃3

−
𝜕𝑀43

𝜕𝜃4

) 𝜃̇4 + (
𝜕𝑀43

𝜕𝜃5

+
𝜕𝑀45

𝜕𝜃3

−
𝜕𝑀53

𝜕𝜃4

) 𝜃̇5 + (
𝜕𝑀43

𝜕𝜃6

+
𝜕𝑀46

𝜕𝜃3

−
𝜕𝑀63

𝜕𝜃4

)𝜃̇6] 

𝐶44(𝜃) =
1

2
[(

𝜕𝑀44

𝜕𝜃1

+
𝜕𝑀41

𝜕𝜃4

−
𝜕𝑀14

𝜕𝜃4

) 𝜃̇1 + (
𝜕𝑀44

𝜕𝜃2

+
𝜕𝑀42

𝜕𝜃4

−
𝜕𝑀24

𝜕𝜃4

) 𝜃̇2 + (
𝜕𝑀44

𝜕𝜃3

+
𝜕𝑀43

𝜕𝜃4

−
𝜕𝑀34

𝜕𝜃4

) 𝜃̇3

+ (
𝜕𝑀44

𝜕𝜃4

+
𝜕𝑀44

𝜕𝜃4

−
𝜕𝑀44

𝜕𝜃4

) 𝜃̇4 + (
𝜕𝑀44

𝜕𝜃5

+
𝜕𝑀45

𝜕𝜃4

−
𝜕𝑀54

𝜕𝜃4

) 𝜃̇5 + (
𝜕𝑀44

𝜕𝜃6

+
𝜕𝑀46

𝜕𝜃4

−
𝜕𝑀64

𝜕𝜃4

)𝜃̇6] 

𝐶45(𝜃) =
1

2
[(

𝜕𝑀45

𝜕𝜃1

+
𝜕𝑀41

𝜕𝜃5

−
𝜕𝑀15

𝜕𝜃4

) 𝜃̇1 + (
𝜕𝑀45

𝜕𝜃2

+
𝜕𝑀42

𝜕𝜃5

−
𝜕𝑀25

𝜕𝜃4

) 𝜃̇2 + (
𝜕𝑀45

𝜕𝜃3

+
𝜕𝑀43

𝜕𝜃5

−
𝜕𝑀35

𝜕𝜃4

) 𝜃̇3

+ (
𝜕𝑀45

𝜕𝜃4

+
𝜕𝑀44

𝜕𝜃5

−
𝜕𝑀45

𝜕𝜃4

) 𝜃̇4 + (
𝜕𝑀45

𝜕𝜃5

+
𝜕𝑀45

𝜕𝜃5

−
𝜕𝑀55

𝜕𝜃4

) 𝜃̇5 + (
𝜕𝑀45

𝜕𝜃6

+
𝜕𝑀46

𝜕𝜃5

−
𝜕𝑀65

𝜕𝜃4

)𝜃̇6] 

𝐶46(𝜃) =
1

2
[(

𝜕𝑀46

𝜕𝜃1

+
𝜕𝑀41

𝜕𝜃6

−
𝜕𝑀16

𝜕𝜃4

) 𝜃̇1 + (
𝜕𝑀46

𝜕𝜃2

+
𝜕𝑀42

𝜕𝜃6

−
𝜕𝑀26

𝜕𝜃4

) 𝜃̇2 + (
𝜕𝑀46

𝜕𝜃3

+
𝜕𝑀43

𝜕𝜃6

−
𝜕𝑀36

𝜕𝜃4

) 𝜃̇3

+ (
𝜕𝑀46

𝜕𝜃4

+
𝜕𝑀44

𝜕𝜃6

−
𝜕𝑀46

𝜕𝜃4

) 𝜃̇4 + (
𝜕𝑀46

𝜕𝜃5

+
𝜕𝑀45

𝜕𝜃6

−
𝜕𝑀56

𝜕𝜃4

) 𝜃̇5 + (
𝜕𝑀46

𝜕𝜃6

+
𝜕𝑀46

𝜕𝜃6

−
𝜕𝑀66

𝜕𝜃4

)𝜃̇6] 
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𝐶51(𝜃) =
1

2
[(

𝜕𝑀51

𝜕𝜃1

+
𝜕𝑀51

𝜕𝜃1

−
𝜕𝑀11

𝜕𝜃5

) 𝜃̇1 + (
𝜕𝑀51

𝜕𝜃2

+
𝜕𝑀52

𝜕𝜃1

−
𝜕𝑀21

𝜕𝜃5

) 𝜃̇2 + (
𝜕𝑀51

𝜕𝜃3

+
𝜕𝑀53

𝜕𝜃1

−
𝜕𝑀31

𝜕𝜃5

) 𝜃̇3

+ (
𝜕𝑀51

𝜕𝜃4

+
𝜕𝑀54

𝜕𝜃1

−
𝜕𝑀41

𝜕𝜃5

) 𝜃̇4 + (
𝜕𝑀51

𝜕𝜃5

+
𝜕𝑀55

𝜕𝜃1

−
𝜕𝑀51

𝜕𝜃5

) 𝜃̇5 + (
𝜕𝑀51

𝜕𝜃6

+
𝜕𝑀56

𝜕𝜃1

−
𝜕𝑀61

𝜕𝜃5

)𝜃̇6] 

𝐶52(𝜃) =
1

2
[(

𝜕𝑀52

𝜕𝜃1

+
𝜕𝑀51

𝜕𝜃2

−
𝜕𝑀12

𝜕𝜃5

) 𝜃̇1 + (
𝜕𝑀52

𝜕𝜃2

+
𝜕𝑀52

𝜕𝜃2

−
𝜕𝑀22

𝜕𝜃5

) 𝜃̇2 + (
𝜕𝑀52

𝜕𝜃3

+
𝜕𝑀53

𝜕𝜃2

−
𝜕𝑀32

𝜕𝜃5

) 𝜃̇3

+ (
𝜕𝑀52

𝜕𝜃4

+
𝜕𝑀54

𝜕𝜃2

−
𝜕𝑀42

𝜕𝜃5

) 𝜃̇4 + (
𝜕𝑀52

𝜕𝜃5

+
𝜕𝑀55

𝜕𝜃2

−
𝜕𝑀52

𝜕𝜃5

) 𝜃̇5 + (
𝜕𝑀52

𝜕𝜃6

+
𝜕𝑀56

𝜕𝜃2

−
𝜕𝑀62

𝜕𝜃5

)𝜃̇6] 

𝐶53(𝜃) =
1

2
[(

𝜕𝑀53

𝜕𝜃1

+
𝜕𝑀51

𝜕𝜃3

−
𝜕𝑀13

𝜕𝜃5

) 𝜃̇1 + (
𝜕𝑀53

𝜕𝜃2

+
𝜕𝑀52

𝜕𝜃3

−
𝜕𝑀23

𝜕𝜃5

) 𝜃̇2 + (
𝜕𝑀53

𝜕𝜃3

+
𝜕𝑀53

𝜕𝜃3

−
𝜕𝑀33

𝜕𝜃5

) 𝜃̇3

+ (
𝜕𝑀53

𝜕𝜃4

+
𝜕𝑀54

𝜕𝜃3

−
𝜕𝑀43

𝜕𝜃5

) 𝜃̇4 + (
𝜕𝑀53

𝜕𝜃5

+
𝜕𝑀55

𝜕𝜃3

−
𝜕𝑀53

𝜕𝜃5

) 𝜃̇5 + (
𝜕𝑀53

𝜕𝜃6

+
𝜕𝑀56

𝜕𝜃3

−
𝜕𝑀63

𝜕𝜃5

)𝜃̇6] 

𝐶54(𝜃) =
1

2
[(

𝜕𝑀54

𝜕𝜃1

+
𝜕𝑀51

𝜕𝜃4

−
𝜕𝑀14

𝜕𝜃5

) 𝜃̇1 + (
𝜕𝑀54

𝜕𝜃2

+
𝜕𝑀52

𝜕𝜃4

−
𝜕𝑀24

𝜕𝜃5

) 𝜃̇2 + (
𝜕𝑀54

𝜕𝜃3

+
𝜕𝑀53

𝜕𝜃4

−
𝜕𝑀34

𝜕𝜃5

) 𝜃̇3

+ (
𝜕𝑀54

𝜕𝜃4

+
𝜕𝑀54

𝜕𝜃4

−
𝜕𝑀44

𝜕𝜃5

) 𝜃̇4 + (
𝜕𝑀54

𝜕𝜃5

+
𝜕𝑀55

𝜕𝜃4

−
𝜕𝑀54

𝜕𝜃5

) 𝜃̇5 + (
𝜕𝑀54

𝜕𝜃6

+
𝜕𝑀56

𝜕𝜃4

−
𝜕𝑀64

𝜕𝜃5

)𝜃̇6] 

𝐶55(𝜃) =
1

2
[(

𝜕𝑀55

𝜕𝜃1

+
𝜕𝑀51

𝜕𝜃5

−
𝜕𝑀15

𝜕𝜃5

) 𝜃̇1 + (
𝜕𝑀55

𝜕𝜃2

+
𝜕𝑀52

𝜕𝜃5

−
𝜕𝑀25

𝜕𝜃5

) 𝜃̇2 + (
𝜕𝑀55

𝜕𝜃3

+
𝜕𝑀52

𝜕𝜃5

−
𝜕𝑀25

𝜕𝜃5

) 𝜃̇3

+ (
𝜕𝑀55

𝜕𝜃4

+
𝜕𝑀54

𝜕𝜃5

−
𝜕𝑀45

𝜕𝜃5

) 𝜃̇4 + (
𝜕𝑀55

𝜕𝜃5

+
𝜕𝑀55

𝜕𝜃5

−
𝜕𝑀55

𝜕𝜃5

) 𝜃̇5 + (
𝜕𝑀55

𝜕𝜃6

+
𝜕𝑀56

𝜕𝜃5

−
𝜕𝑀65

𝜕𝜃5

)𝜃̇6] 

𝐶56(𝜃) =
1

2
[(

𝜕𝑀56

𝜕𝜃1

+
𝜕𝑀51

𝜕𝜃6

−
𝜕𝑀16

𝜕𝜃5

) 𝜃̇1 + (
𝜕𝑀56

𝜕𝜃2

+
𝜕𝑀52

𝜕𝜃6

−
𝜕𝑀26

𝜕𝜃5

) 𝜃̇2 + (
𝜕𝑀56

𝜕𝜃3

+
𝜕𝑀53

𝜕𝜃6

−
𝜕𝑀36

𝜕𝜃5

) 𝜃̇3

+ (
𝜕𝑀56

𝜕𝜃4

+
𝜕𝑀54

𝜕𝜃6

−
𝜕𝑀46

𝜕𝜃5

) 𝜃̇4 + (
𝜕𝑀56

𝜕𝜃5

+
𝜕𝑀55

𝜕𝜃6

−
𝜕𝑀56

𝜕𝜃5

) 𝜃̇5 + (
𝜕𝑀56

𝜕𝜃6

+
𝜕𝑀56

𝜕𝜃6

−
𝜕𝑀66

𝜕𝜃5

)𝜃̇6] 

 

𝐶61(𝜃) =
1

2
[(

𝜕𝑀61

𝜕𝜃1

+
𝜕𝑀61

𝜕𝜃1

−
𝜕𝑀11

𝜕𝜃6

) 𝜃̇1 + (
𝜕𝑀61

𝜕𝜃2

+
𝜕𝑀62

𝜕𝜃1

−
𝜕𝑀21

𝜕𝜃6

) 𝜃̇2 + (
𝜕𝑀61

𝜕𝜃3

+
𝜕𝑀63

𝜕𝜃1

−
𝜕𝑀31

𝜕𝜃6

) 𝜃̇3

+ (
𝜕𝑀61

𝜕𝜃4

+
𝜕𝑀64

𝜕𝜃1

−
𝜕𝑀41

𝜕𝜃6

) 𝜃̇4 + (
𝜕𝑀61

𝜕𝜃5

+
𝜕𝑀65

𝜕𝜃1

−
𝜕𝑀51

𝜕𝜃6

) 𝜃̇5 + (
𝜕𝑀61

𝜕𝜃6

+
𝜕𝑀66

𝜕𝜃1

−
𝜕𝑀61

𝜕𝜃6

)𝜃̇6] 

𝐶62(𝜃) =
1

2
[(

𝜕𝑀62

𝜕𝜃1

+
𝜕𝑀61

𝜕𝜃2

−
𝜕𝑀12

𝜕𝜃6

) 𝜃̇1 + (
𝜕𝑀62

𝜕𝜃2

+
𝜕𝑀62

𝜕𝜃2

−
𝜕𝑀22

𝜕𝜃6

) 𝜃̇2 + (
𝜕𝑀62

𝜕𝜃3

+
𝜕𝑀63

𝜕𝜃2

−
𝜕𝑀32

𝜕𝜃6

) 𝜃̇3

+ (
𝜕𝑀62

𝜕𝜃4

+
𝜕𝑀64

𝜕𝜃2

−
𝜕𝑀42

𝜕𝜃6

) 𝜃̇4 + (
𝜕𝑀62

𝜕𝜃5

+
𝜕𝑀65

𝜕𝜃2

−
𝜕𝑀52

𝜕𝜃6

) 𝜃̇5 + (
𝜕𝑀62

𝜕𝜃6

+
𝜕𝑀66

𝜕𝜃2

−
𝜕𝑀62

𝜕𝜃6

)𝜃̇6] 

𝐶63(𝜃) =
1

2
[(

𝜕𝑀63

𝜕𝜃1

+
𝜕𝑀61

𝜕𝜃3

−
𝜕𝑀13

𝜕𝜃6

) 𝜃̇1 + (
𝜕𝑀63

𝜕𝜃2

+
𝜕𝑀62

𝜕𝜃3

−
𝜕𝑀23

𝜕𝜃6

) 𝜃̇2 + (
𝜕𝑀63

𝜕𝜃3

+
𝜕𝑀63

𝜕𝜃3

−
𝜕𝑀33

𝜕𝜃6

) 𝜃̇3

+ (
𝜕𝑀63

𝜕𝜃4

+
𝜕𝑀64

𝜕𝜃3

−
𝜕𝑀43

𝜕𝜃6

) 𝜃̇4 + (
𝜕𝑀63

𝜕𝜃5

+
𝜕𝑀65

𝜕𝜃3

−
𝜕𝑀53

𝜕𝜃6

) 𝜃̇5 + (
𝜕𝑀63

𝜕𝜃6

+
𝜕𝑀66

𝜕𝜃3

−
𝜕𝑀63

𝜕𝜃6

)𝜃̇6] 

𝐶64(𝜃) =
1

2
[(

𝜕𝑀64

𝜕𝜃1

+
𝜕𝑀61

𝜕𝜃4

−
𝜕𝑀14

𝜕𝜃6

) 𝜃̇1 + (
𝜕𝑀64

𝜕𝜃2

+
𝜕𝑀62

𝜕𝜃4

−
𝜕𝑀24

𝜕𝜃6

) 𝜃̇2 + (
𝜕𝑀64

𝜕𝜃3

+
𝜕𝑀63

𝜕𝜃4

−
𝜕𝑀34

𝜕𝜃6

) 𝜃̇3

+ (
𝜕𝑀64

𝜕𝜃4

+
𝜕𝑀64

𝜕𝜃4

−
𝜕𝑀44

𝜕𝜃6

) 𝜃̇4 + (
𝜕𝑀64

𝜕𝜃5

+
𝜕𝑀65

𝜕𝜃4

−
𝜕𝑀54

𝜕𝜃6

) 𝜃̇5 + (
𝜕𝑀64

𝜕𝜃6

+
𝜕𝑀66

𝜕𝜃4

−
𝜕𝑀64

𝜕𝜃6

)𝜃̇6] 
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𝐶65(𝜃) =
1

2
[(

𝜕𝑀65

𝜕𝜃1

+
𝜕𝑀61

𝜕𝜃5

−
𝜕𝑀15

𝜕𝜃6

) 𝜃̇1 + (
𝜕𝑀65

𝜕𝜃2

+
𝜕𝑀62

𝜕𝜃5

−
𝜕𝑀25

𝜕𝜃6

) 𝜃̇2 + (
𝜕𝑀65

𝜕𝜃3

+
𝜕𝑀63

𝜕𝜃5

−
𝜕𝑀35

𝜕𝜃6

) 𝜃̇3

+ (
𝜕𝑀65

𝜕𝜃4

+
𝜕𝑀64

𝜕𝜃5

−
𝜕𝑀45

𝜕𝜃6

) 𝜃̇4 + (
𝜕𝑀65

𝜕𝜃5

+
𝜕𝑀65

𝜕𝜃5

−
𝜕𝑀55

𝜕𝜃6

) 𝜃̇5 + (
𝜕𝑀65

𝜕𝜃6

+
𝜕𝑀66

𝜕𝜃5

−
𝜕𝑀65

𝜕𝜃6

)𝜃̇6] 

𝐶66(𝜃) =
1

2
[(

𝜕𝑀66

𝜕𝜃1

+
𝜕𝑀61

𝜕𝜃6

−
𝜕𝑀16

𝜕𝜃6

) 𝜃̇1 + (
𝜕𝑀66

𝜕𝜃2

+
𝜕𝑀62

𝜕𝜃6

−
𝜕𝑀26

𝜕𝜃6

) 𝜃̇2 + (
𝜕𝑀66

𝜕𝜃3

+
𝜕𝑀63

𝜕𝜃6

−
𝜕𝑀36

𝜕𝜃6

) 𝜃̇3

+ (
𝜕𝑀66

𝜕𝜃4

+
𝜕𝑀64

𝜕𝜃6

−
𝜕𝑀46

𝜕𝜃6

) 𝜃̇4 + (
𝜕𝑀66

𝜕𝜃5

+
𝜕𝑀65

𝜕𝜃6

−
𝜕𝑀56

𝜕𝜃6

) 𝜃̇5 + (
𝜕𝑀66

𝜕𝜃6

+
𝜕𝑀66

𝜕𝜃6

−
𝜕𝑀66

𝜕𝜃6

)𝜃̇6] 
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5. Simulations 

This chapter deals with simulations of the dynamic model in open loop and closed loop. 

Note that the main goal is to perform simulations and comparative analyze of the model, not to 

optimize a control system for a specific job task. 

The simulation structure in Simulink and the connection to Matlab is described in 

Section5.1. In Section 5.2 the second order model is reduced to an equivalent first order model 

which is needed to perform simulations in Simulink. 

The open loop case is presented in Section 5.3. First the model is driven with desired torque 

to check for open loop stability, and then energy properties are investigated. The closed loop case in 

Section 5.5 presents a mathematical proof of global asymptotic stability with PD control of a 

system model in the form (2.19). 

5.1. Simulation structure 

For realization the dynamic model was used one of the Simulink tool so called Level-2 

Matlab S-Function. This is a block with multiple input and output ports where input 1 is the state 

vector, input 2 is the applied torque vector, and the output is the vector of state derivatives. For 

each time step in the simulation the updated vector of state derivatives is computed from the 

new inputs. The contents of the Level-2 Matlab S-Function block is the dynamic model in reduced 

form (see Section 5.2). 

For each time step in the simulation, the state vector is sent from Simulink to the Matlab 

interface through a To Workspace block. That makes it possible to present the results 

graphically, and use the states to compute kinetic and potential energy. 

5.2. Reduced system order 

As described in Section 3.1, the dynamic model can be written on matrix form as 

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝑔(𝑞) = 𝑢    (5.1) 

To simulate the system in Simulink it is necessary to express it in the first-order 

nonlinear form 

𝑥̇ = 𝑓(𝑥, 𝑢)      (5.2) 

where 𝑥̇ is the state vector and u is the torque vector. 

The first step is to rearrange the terms 𝑞̈ in (5.1) to get 

𝑞̈ = 𝑀−1(−𝐶𝑞̇ − 𝑔 + 𝑢)     (5.3) 

where it is assumed that the inertia matrix M is invertible. The inertia matrix is the main 

factor of the kinetic energy expression 
1

2
𝑞𝑇̇𝑀(𝑞)𝑞̇. Positive definiteness of M is seen directly 

by the fact that the kinetic energy is always nonnegative, and is zero if and only if all the 

joint velocities are zero. Thus, M is invertible and Equation (5.3) is valid. 

The second step is to reduce the system from 6 second-order equations to 12 first-

order equations. Defining 

𝑥1 = 𝑞
1
 𝑥2 = 𝑥̇1 = 𝑞̇

1
 

𝑥3 = 𝑞
2
 𝑥4 = 𝑥̇3 = 𝑞̇

2
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…
 

…
 

𝑥11 = 𝑞
6
 𝑥12 = 𝑥̇11 = 𝑞̇

6
 

 

the dynamic system can be expressed in the form (5.2) as 

𝑥̇1 = 𝑥2        (5.4) 

𝑥̇2 = 𝑓
2
(𝑥, 𝑢)        (5.5) 

𝑥̇3 = 𝑥4        (5.6) 

𝑥̇4 = 𝑓
4
(𝑥, 𝑢)        (5.7) 

𝑥̇5 = 𝑥6        (5.8) 

𝑥̇6 = 𝑓
6
(𝑥, 𝑢)        (5.9) 

𝑥̇7 = 𝑥8      (5.10) 

𝑥̇8 = 𝑓
8
(𝑥, 𝑢)      (5.11) 

𝑥̇9 = 𝑥10      (5.12) 

𝑥̇10 = 𝑓
10

(𝑥, 𝑢)     (5.13) 

𝑥̇11 = 𝑥12      (5.14) 

𝑥̇12 = 𝑓
12

(𝑥, 𝑢)     (5.15) 

Note that this first-order model is only how the dynamics are implemented in Simulink 

and Matlab. All figures and text for the rest of this chapter will refer to the original second-order 

system with q as the state vector. 

5.3. Open loop with desired torque 

In open loop there is no feedback from the system output. In other words, no 

information about the joint variables and its derivatives is available when computing the input 

torque. Figure 5.1 shows the open loop model in Simulink, where the block called IRB 

140contains all the dynamics. 

Due to the excitation of gravity on the links being dependent on the joint variables, it is 

quite intuitive that controlling the system in open loop is impossible. The behavior of the system 

can be studied by driving the system with the desired torque, that is the constant torque derived 

when substituting in the dynamic equations for the desired joint variables and derivatives. If 

𝑞𝑑𝑒𝑠 = 0, this control torque can be explained as the constant torque which is needed to keep the 

manipulator steady in the desired position. 
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Figure 5.1 the open loop model 

The desired position and velocity are set to 

𝑞
𝑑𝑒𝑠

= [0     
𝜋

2
    −

𝜋

2
     0     0    0]

𝑇

    (5.16) 

𝑞̇
𝑑𝑒𝑠

= [0     0     0     0     0    0]𝑇    (5.17) 

 

which is the position when the manipulator arm is stretched out to the maximum in the direction. By 

substituting the desired position and velocity in the dynamic equations (𝑞̇𝑑𝑒𝑠 → 𝑞̈𝑑𝑒𝑠 = 0), the 

control torque becomes 

𝑢𝑑𝑒𝑠 =

[
 
 
 
 
 

0
−2.409 ∙ 𝑔 − 13.782 ∙ 𝑔

−2.409 ∙ 𝑔
0

−0.029 ∙ 𝑔
0 ]

 
 
 
 
 

    (5.18) 

From an intuitive perspective this control torque is as expected. To keep the 

manipulator steady in the chosen desired position, joint 2, 3 and 5 will have to be actuated to 

compensate for the gravity, based on the law of action and reaction. Joint 1, 4 and 6 will not 

be influenced by gravity as long as 𝑞̇ = 0, and is therefore given zero control torque. 

Four simulations, each with different initial conditions, shows the behavior of the 

system when applied this control torque. The gravity acceleration is set to 𝑔 = 9.81
𝑚

𝑠2, the 

gravity of earth. 

5.4. Closed loop position control 

The open loop analysis with desired torque in Section 5.3 showed that controlling 

the system in open loop is impossible. This section deals with the attempt of controlling 

the system in closed loop. In closed loop, feedback controllers observe the output and 

calculate the error between this output and a reference. To achieve desired output, 

controllers can take one or more of three standard control elements that were described in 

Section 2.10. 
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Closed loop position control is also called the set-point tracking problem. The goal 

is to demonstrate that the manipulator can move from the position given as initial 

conditions, position A, to the position given as the reference value, position B. The joint 

torque input is continuously calculated by the feedback controllers. The path taken from A 

to B, as well as how long the motion lasts, is not controlled in the set-point tracking 

problem. 

Section 5.4.1 presents a mathematical proof showing that a simple PD control 

structure works great for position control of systems in the general form (5.1). Then in 

Section 5.4.2, PD controllers are added to the model in Simulink, and simulations verify 

that the system is stable and that the position control is satisfying. 

5.4.1. PD control with gravity compensation 

It is a remarkable fact that the simple PD scheme for set-point control can be shown 

to work in the general case of a system model in the form of Equation (5.1). This can be 

proved in a Lyapunov stability analysis, as shown in [3]. This proof is of such importance 

and relevance to this thesis that it will be restated in this section. 

The proof is based on independent joint control, which means that each joint is 

controlled as a single-input/single-output (SISO) system. Adding PD controllers in the 

model, the input torque u can be written in vector form as 

𝑢 = −𝐾𝑝(𝑞𝑟𝑒𝑓 − 𝑞) − 𝐾𝑑𝑞̇ = −𝐾𝑝𝑞̃ − 𝐾𝑑𝑞̇   (5.19) 

where q is the error between the joint references and the actual joint variables, and 𝐾𝑝and 

𝐾𝑑are positive definite diagonal matrices of proportional and derivative gains. 

It can be assumed that the gravitational acceleration is constant and known, such that 

𝑔(𝑞) can be computed explicitly for all instants. By adding 𝑔(𝑞) to the input, gravity 

compensation is achieved such that the complete system model is now given by 

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝑔(𝑞) = 𝑢    (5.20) 

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝑔(𝑞) = −𝐾𝑝𝑞̃ − 𝐾𝑑𝑞̇ + 𝑔(𝑞) (5.21) 

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ = −𝐾𝑝𝑞̃ − 𝐾𝑑𝑞̇    (5.22) 

To show that the input torque given in Equation (5.21) achieves asymptotic tracking, 

consider the Lyapunov function candidate 

𝑉 =
1

2
𝑞̇𝑇𝑀(𝑞)𝑞̇ +

1

2
𝑞̃𝑇𝐾𝑝𝑞̃     (5.23) 

For the manipulator, V represents the total energy that would result if the actuators were 

replaced by springs with stiffness constants represented by 𝐾𝑝, and with equilibrium 

position in 𝑞 = 𝑞𝑟𝑒𝑓. Thus, V is a positive function except in the equilibrium position 

𝑞 = 𝑞𝑟𝑒𝑓with 𝑞̇ = 0, at which point V is zero. If it can be shown that V is decreasing along 

any motion, this implies that the robot is moving toward that equilibrium position. 

Noting that qref is constant, the derivative of V is given by 

𝑉̇ = 𝑞̇𝑇𝑀(𝑞)𝑞̈ +
1

2
𝑞̇𝑇𝑀̇(𝑞)𝑞̇ + 𝑞̇𝑇𝐾𝑝𝑞̃   (5.24) 

Solving for 𝑀(𝑞)𝑞̈in Equation (5.20) and substituting into the (5.24) yields 
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𝑉̇ = 𝑞̇𝑇(𝑢 − 𝐶(𝑞, 𝑞̇)𝑞̇ − 𝑔(𝑞)) +
1

2
𝑞̇𝑇𝑀(𝑞)𝑞̇ + 𝑞̇𝑇𝐾𝑝𝑞̃

̇
= 𝑞̇𝑇(𝑢 − 𝑔(𝑞) + 𝐾𝑝𝑞̃) +

1

2
𝑞̇𝑇[𝑀̇(𝑞) − 2𝐶(𝑞, 𝑞̇)]𝑞̇ = 𝑞̇𝑇(𝑢 − 𝑔(𝑞) + 𝐾𝑝𝑞̃)  (5.25) 

where 𝑀̇(𝑞) − 2𝐶(𝑞, 𝑞̇)) is skew symmetric, then according to the subsection 2.2.2 it 

can be written as 𝑞̇𝑇[𝑀̇(𝑞) − 2𝐶(𝑞, 𝑞̇)]𝑞̇ = 0. Substituting the input torque in Equation 

(5.21) for иin (5.25) above yields 

𝑉̇ = −𝑞̇𝑇𝐾𝑑𝑞̇ ≤ 0     (5.26) 

The above analysis shows that V is decreasing as long as q is not zero. 

Moreover it is necessary to prove that the manipulator cannot reach a position 

where 𝑞̇ = 0 but 𝑞 ≠ 𝑞𝑟𝑒𝑓- Suppose 𝑉̇ ≡ 0, meaning that V is zero for all instants. Since 

𝐾𝑑 is a positive definite, this implies that 𝑞̇ ≡ 0and hence 𝑞̈ ≡ 0. Substituting this in the 

system model (5.22), the result becomes 

0 = −𝐾𝑝𝑞̃      (5.27) 

which implies that 𝑞̃ = 0. Finally, La Salle's theorem then proves that the equilibrium 

position 𝑞 = 𝑞𝑟𝑒𝑓 is globally asymptotic stable. 

It should be noted that if the gravitational terms 𝑔(𝑞) are unknown, they cannot 

be added to the input because then the input cannot be computed. Controlling the system 

would then require controllers with robust and adaptive properties. 

5.4.1. Simulations with PD control 

The goal of this section is to perform simulations of the system with PD controllers, 

checking for asymptotic stability. If this can be accomplished, the mathematical proof in Section 

5.4.1 is verified for the model. Figure 5.2 shows the Simulink model of the system in closed loop. 

With gravity compensation the model becomes 

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ = −𝐾𝑝𝑞̃ − 𝐾𝑑𝑞̇    (5.28) 

where the input is 

𝑢 = −𝐾𝑝𝑞̃ − 𝐾𝑑𝑞̇      (5.29) 

Note that to increase the efficiency of the simulations, it is chosen to remove the gravitational 

terms directly in the model (in the IRB 140 block) instead of adding it to the input. 
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Figure 5.2 Closed loop simulation model with PD-controller 

The mathematical proof gives no other bounds on 𝐾𝑝 and 𝐾𝑑  except for being positive 

definite. Adjusting these controller gains optimally have not been a priority, because it will not 

be decisive for global asymptotic stability. 

A set of satisfying gain matrices was found as simple as 

𝐾𝑝 =

[
 
 
 
 
 
50 0 0 0 0 0
0 50 0 0 0 0
0 0 50 0 0 0
0 0 0 50 0 0
0 0 0 0 50 0
0 0 0 0 0 60]

 
 
 
 
 

    (5.30) 

𝐾𝑑 =

[
 
 
 
 
 
20 0 0 0 0 0
0 20 0 0 0 0
0 0 20 0 0 0
0 0 0 20 0 0
0 0 0 0 20 0
0 0 0 0 0 22]

 
 
 
 
 

    (5.31) 
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6. Comparison of results 

In this work considering the two main approaches for dynamic modeling of robot 

manipulators 

 Method based on  the Newton-Euler formulation 

 Method based on the product of exponential formula 

Since in a present-day world the mechanic laws remain unchanged then method based 

on product of exponential formula, from the point of view of mechanic laws the similar with 

Lagrange-Euler method. Distinguishing feature is a way of determine inertia matrix. 

In Chapter 2.9.1 it was stated that there is no clear answer to the question of which of the 

methods is better than the other, because of all the factors that influence the computation time. 

However the Chapter 6 proves at least that a recursive procedure is more efficient than treating 

the manipulator as a whole. 

The purpose of this chapter is to compare the behavior and computation times of the 

models derived by the Newton-Euler formulation and by method based on product of 

exponential formula. 

6.1. Simulation and comparison 

6.1.1. The open loop 

Simulation 1 

The initial conditions for simulation, results are cited on Figure 6.1 

𝑞𝑛𝑒,𝑖𝑛𝑖𝑡 = [0    
𝜋

2
   −

𝜋

2
    0    0    0]

𝑇

    (6.1) 

𝑞̇𝑛𝑒,𝑖𝑛𝑖𝑡 = [0    0    0    0    0    0]𝑇     (6.2) 

𝜏𝑛𝑒,𝑖𝑛𝑖𝑡 = [0    0    0    0    0    0]𝑇     (6.3) 

𝑞𝑒𝑥𝑝,𝑖𝑛𝑖𝑡 = [0    
𝜋

2
   −

𝜋

2
    0    0    0]

𝑇

    (6.4) 

𝑞̇𝑒𝑥𝑝,𝑖𝑛𝑖𝑡 = [0    0    0    0    0    0]𝑇    (6.5) 

𝜏𝑒𝑥𝑝,𝑖𝑛𝑖𝑡 = [0    0    0    0    0    0]𝑇    (6.6) 

Simulation 2 

The initial conditions for simulation, results are cited on Figure 6.2 

𝑞𝑛𝑒,𝑖𝑛𝑖𝑡 = [0    𝜋   −
𝜋

2
    0    0    0]

𝑇

    (6.7) 

𝑞̇𝑛𝑒,𝑖𝑛𝑖𝑡 = [0    0    0    0    0    0]𝑇     (6.8) 

𝜏𝑛𝑒,𝑖𝑛𝑖𝑡 = [0    0    0    0    0    0]𝑇     (6.9) 

𝑞𝑒𝑥𝑝,𝑖𝑛𝑖𝑡 = [0    𝜋  −
𝜋

2
    0    0    0]

𝑇

    (6.10) 

𝑞̇𝑒𝑥𝑝,𝑖𝑛𝑖𝑡 = [0    0    0    0    0    0]𝑇    (6.11) 

𝜏𝑒𝑥𝑝,𝑖𝑛𝑖𝑡 = [0    0    0    0    0    0]𝑇    (6.12) 
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The initial conditions correspond to the configuration where link 2 is hanging 

straight down, while link 4 and 6 represents a double inverted pendulum on top of link 2.  

 
Figure 6.1 Comparison of the method based on Newton-Euler formulation with method based on product of 

exponential formula 

 
Figure 6.2 Comparison of the method based on Newton-Euler formulation with method based on product of 

exponential formula 

6.1.2. Comments 

Simulation 2 show a clearly unstable behavior when attempting to control the system to a 

desired position that is not in immediate proximity to the initial conditions. As mentioned, this is 
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just as expected because the excitation of gravity on the links is dependent on the joint variables. 

In simulation 1, the initial conditions are equal to the desired position and velocity, and the graph is 

showing the expected response. The joints are actuated exactly as required to compensate for the 

gravity and to keep the manipulator steady in the desired state. 

The conclusion corresponds to what was assumed in advance of the simulations. The 

behavior of the system is unstable, and just the slightest disturbance in the system leads to a 

completely uncontrollable motion because the gravity on the links is dependent on the joint 

variables, and the input is computed without observing the output. The system requires feedback 

controllers to be stabilized. 

6.1.1. Closed loop 

Simulation 1 

The initial conditions and reference value are set up equal to 

𝑞𝑖𝑛𝑖𝑡 = [0    0     0    0    0    0]𝑇    (6.13) 

𝑞̇𝑖𝑛𝑖𝑡 = [0    0     0    0    0    0]𝑇    (6.14) 

𝑞𝑟𝑒𝑓 = [
𝜋

2
    0    −

𝜋

2
    𝜋    

𝜋

2
   − 𝜋]

𝑇

    (6.15) 

on Figure 6.3 are cited characteristics of manipulator position, on Figure 6.4 are cited 

characteristics of input torque. 

Simulation 2 

The initial conditions and reference value are set up equal to 

𝑞𝑖𝑛𝑖𝑡 = [0    𝜋    −
𝜋

2
    0    0    0]

𝑇

    (6.16) 

𝑞̇𝑖𝑛𝑖𝑡 = [0    0     0    0    0    0]𝑇    (6.17) 

𝑞𝑟𝑒𝑓 = [𝜋    0    0    𝜋    
𝜋

2
   − 𝜋]

𝑇

    (6.18) 

on Figure 6.5 are cited characteristics of manipulator position, on Figure 6.6 are cited 

characteristics of input torque. 

Simulation 3 

The initial conditions and reference value are set up equal to 

𝑞𝑖𝑛𝑖𝑡 = [0    
𝜋

2
   −

𝜋

2
    0    0    0]

𝑇

    (6.19) 

𝑞̇𝑖𝑛𝑖𝑡 = [0    0     0    0    0    0]𝑇    (6.20) 

𝑞𝑟𝑒𝑓 = [−𝜋    𝜋    − 𝜋   − 𝜋   −
𝜋

2
   𝜋]

𝑇

   (6.21) 

on Figure 6.7 are cited characteristics of manipulator position, on Figure 6.8 are cited 

characteristics of input torque. 
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Figure 6.3 Comparison of the characteristic of system with closed loop, position control , Simulation 1 

 
Figure 6.4 Characteristic of system with closed loop, input torque, Simulation 1 

 



64 

 

 
Figure 6.5 Comparison of the characteristic of system with closed loop, position control, Simulation 2 

 
Figure 6.6 characteristic of system with closed loop, input torque, Simulation 2 
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Figure 6.7 Comparison of the characteristic of system with closed loop, position control, Simulation 3 

 
Figure 6.8 characteristic of system with closed loop, input torque, Simulation 3 
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6.1.2. Comments 

All simulations show that the states converge to the reference in about 3 seconds. Asymptotic 

stability is verified, and the response is very satisfying. Nevertheless, several factors deserve to 

be emphasized. First of all, actuators cannot supply infinite torque. The nominal torque of the 

actuators and their gear ratio limits the maximum input torque. This constraint can be included in 

Simulink simply by saturating the input, but doing this is not necessary of reasons explained as 

follows. In the proof in Section 5.4.1 the gravitational terms 𝑔(𝑞) were added to the input 

because the gravitational acceleration was assumed to be constant and known. With this 

simplification it is taken for granted that the maximum input torque in the actuators is larger than 

𝑔(𝑞). The data sheets for the IRB 140 do not state any torque values or other motor 

characteristics, but obviously this assumption is valid since the manipulator is observed to "beat 

the gravity" in a real environment. The mathematical proof gives no other bounds on the input 

torque, thus global asymptotic stability is proved also for saturated inputs. The only difference in 

the simulations will be the increased time to reach steady state. 

Secondly, actuators cannot change the input torque value from 𝜏𝑎 to 𝜏𝑏 in zero time. In 

other words, the input can never be a perfect step function. The IRB 140 are controlled by 

electric AC-motors which supplies torque by passing electricity to an electromagnet creating a 

magnetic field. How fast this magnetic field is created will determine the maximum rate of change 

in input torque. Rate limiters can be included in Simulink, but it is assumed that electric motors 

create their electric fields very quickly. Consequently, rate limiters will not make any significant 

difference in the simulations. 

Some limitations have been chosen deliberately. First, joint friction is not taken into 

account because of two reasons. First, it will be like a shot in the dark to estimate the friction 

parameters without any given information. Secondly, it does not really make a difference to the 

simulations anyway when the input is not saturated. However, if joint friction was to be taken into 

account, the simplest way to include it would be to only model viscous friction, being proportional 

to the joint velocity. The system model would then be 

𝑀(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐹𝑣𝑞̇ + 𝑞̇ + 𝑔(𝑞) = 𝑢 

where Fvis a diagonal matrix of the joint friction coefficients.  

Note also that the simulations do not take into account the workspace of the manipulator at 

all. Since the main goal of this chapter is to prove the validity of the model, and not to optimize 

a control system for a specific job task, it was found convenient to not include the workspace 

restrictions. The joints are allowed to revolve freely, and no obstacles, floor, roof or walls are 

considered. The data sheet (Attachment A1) specifies the actual working range for the joints. 

It should be mentioned that there exists several other control techniques and methodologies 

that can be applied to the control of manipulators. The choice of control structure should therefore 

match the requirements for the robot operation. If there are obstacles within the workspace of the 

manipulator, continuous path tracking could be necessary to avoid collisions. Many operations may 

also require that the manipulator moves from point A to point В in a precise fixed time interval. If 
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the robot operation requires objects to be moved around, robust and adaptive controllers are 

superior. Note that this can often be the case for the IRB 140, as it is designed to handle payloads 

of up to 6 kg. The mechanical design, motor characteristics, and problems due to backlash, 

friction and gear reduction, may also affect the choice of control structure. 

6.2. Computation times 

This section will investigate the efficiency of the formulations described in terms of 

computation times in open loop and closed loop. To distinguish clearly, the simulation time chosen 

in Simulink will be referred to as simulation time, and the actual time recorded during the 

simulation will be referred to as real time. 

6.2.1. Open loop 

The simulations showed in Figure 6.2 are used to compare computation times in open 

loop. The simulation times for both models were set to 10 seconds. The real times were recorded 

as 7 minutes for the model based o n product of exponential formula and only 6 seconds for the 

Newton-Euler model. 

6.2.2. Closed loop 

In subsection 6.1.2 three different simulations for the both of models were performed in 

closed loop with PD controllers (see Section 5.4.1).  

The analyze of model based on Newton-Euler formulation showed that the states converged 

to the reference in about 3 seconds of simulation time. The total simulation times were 5 seconds 

for all simulations, and the real times were recorded to be 28 minutes, 32 minutes and 27 minutes 

respectively. 

Equivalent simulations in closed loop with PD controllers have been performed with the 

model based on product of exponential formula, and the results are quite remarkable. The 

simulations were awfully time-consuming and they required so much computer capacity that it was 

chosen to stop the simulations after 2.3 seconds of simulation time. The real time was then at 

about 18 hours for all three simulations. 

6.2.3. Comments 

All simulation times and recorded real times in this comparison are summarized in Table 6.1. 

Several times throughout this thesis it has been pointed out that a recursive procedure is faster 

than treating the manipulator as a whole.  

Diagrams 
Newton - Euler Product of exponential formula 

Sim.time Real time Sim.time Real time 

Figure 6.2 10 sec 6 min 10 min 7 min 

Figure 6.3 5 sec 28 min 2.3 min 18 h 

Figure 6.5 5 sec 32 min 2.3 min 18 h 

Figure 6.7 5 sec 27 min 2.3 min 18 h 
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Since exist at others software for simulation, which can have a other results. I was 

counted the quantity of math operations in each of dynamic equations. This analyze showed that 

recursion method based on Newton-Euler formulation more useful for work in real time, the 

results are given in table 6.2: 

Newton - Euler Product of exponential formula 
16080 39001 
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7. Conclusion 

The main task of this thesis has been in the comparison of dynamic modeling and 

simulation of robot manipulators. Two different methods for dynamic modeling have been 

introduced, method based on Newton-Euler formulation and method based on product of 

exponential formula. The results which were obtained during investigation shows that method 

based on Newton-Euler formulation more efficiency in the view of practical using, but method 

based on product of exponential formula more useful in determine the kinematic map. Although 

it is a difficult conclusion to the question of which method is better than the other in general. 

The computation time depends on several aspects in the system to be analyzed, and the approaches 

provide different insights such that personal preference becomes a factor as well. 

It has been shown that estimating the dynamic parameters accurately is a hard and time-

consuming challenge. It requires either the possibility to measure the state variables and its 

derivatives during motion of the manipulator, or specific knowledge about other identification 

techniques as for example CAD modeling. Even if such an attempt is to be performed, the 

dynamic parameters will not be perfectly accurate. In the model for the IRB 140, the dynamic 

parameters have been estimated based on inspecting the manipulator carefully, making intuitive 

guesses when required. 

Simulations of the dynamic model had as main purpose to prove the validity of the 

model. Open loop simulations with desired torque showed that the behavior of the system was 

unstable just as assumed; the slightest disturbance in the system led to a completely 

uncontrollable motion.  

Global asymptotic stability of the system with PD control and gravity compensation was 

proved mathematically in a Lyapunov stability analysis. Afterwards, this was confirmed to be the 

case for the model by simulations with PD control. 

It was mentioned that the computation times of the Newton-Euler formulation and model 

based on product of exponential formula depends on several factors. However, in case of 

dynamic model, it is a fact that a recursive procedure is more efficient than treating the 

manipulator as a whole. 
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