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Abstract

In this work was accomplished a review and comparison of the methods which allows make
the kinematic and dynamic models. We can distinguish two ways:

e Classic and the most common way of representing a multi-link manipulator. In case
of kinematic model it is algorithm Denavit-Hartenberg and the homogeneous
transformation matrix, as well as the recursive method based on Newton's equations
for dynamic model.

e An alternative way of representing the multi-link manipulator, which is based on the
exponential matrices for the kinematic and dynamic model.

| had carried out analysis of manipulator ABB IRB 140. All researching was accomplished
on base of this manipulator. Also compiled system description parameters, which required for
mathematical model.

Calculations were made using two different methods. On the basis of the results compiled
two dynamic models describing the manipulator.

| had done simulation and comparison the obtained characteristics based on the determined
models.

Key words
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Outline

Chapter 2: Fundamental background theory and notation used throughout the thesis are
explained in this chapter. It is put importance on the standard convention of how to
interpret robot manipulators, as well as the concept of rotation matrices.

Chapter 3: This chapter presents different approaches on dynamic modeling of robot
manipulators, and compares the Newton-Euler formulation to the product of exponential
formula.

Chapter 4: Based on determined parameters, using the method based on Newton-Euler
formulation and method based on the product of exponential formula, we determine the
equations which compose the dynamic model.

Chapter 5: This chapter describing the simulation system in the case of open loop and
closed loop with PD-controller.

Chapter 6: This chapter execute the comparison of results between classical dynamic
model and dynamic model based on product of exponential formula..

Chapter 7: This chapter represent conclusion of this work.



1. Introduction

Robotics is concerned with the study of machines that can replace human beings. The
goal of this introductory chapter is to express the motivation behind the thesis, and to give an
overview of the contents. The IRB 140 is introduced, as well as the objective and the software
that has been used to solve it. An outline and the contributions of the thesis is presented in the end
of the chapter.

1.1. History and Motivation
The English term robot was derived from the Czech word robota that means executive labor,
and was first introduced by the Czech playwright Karel Capek in his 1921 play Rossum's
Universal Robots. Since then the term has been applied to virtually anything that operates with
some degree of autonomy, usually under computer control. An official definition of the term, dated
to 1980, comes from the Robot Institute of America (RIA) and reflects today status of robotics
technology:

A robot is a reprogrammable, multifunctional manipulator designed to move material,
parts, tools, or specialized devices through variable programmed motions for the performance
of a variety of tasks.

In the early 1980's, robot manipulators were touted as the ultimate solution to automated
manufacturing. Predictions were that entire factories of the future would require few, if any,
human operators. It turned out that these predictions were a little exaggerated, as the savings in
labor costs often did not outweigh the development costs of creating robot systems. Quite simply,
people are good at what they do, and installing a robot involves complex systems integration
problems. As a result, robotics fell out of favor in the late 1980's.

A resurgence of interest in robotics can be witnessed in the recent years. Deeper
understanding of the subject and new technology have made it possible for robots to explore the
surface on Mars, locate sunken ships, searching out land mines, and finding victims in collapsed
buildings. In an industrial environment the advantages of robots are reduction of manufacturing
costs, increase of productivity, improvement of quality standards, and the possibility of
eliminating harmful tasks for human operators.
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1.2. The description of IRB 140

i
\

s g i 1

Figure 1.1: The IRB 140 with six degrees of freedom

The IRB 140 is an industrial robot produced by ABB, designed specifically for
manufacturing industries. Their website [10] presents various facts about the manipulator, as
well as articles, data sheets and movies. The manipulator has a total of six revolute joints that are
controlled by AC-motors, hence six degrees of freedom (6 DOF). Figure 1.1 gives a clear view of
the manipulator and its degrees of freedom. The compact and robust design is adapted for flexible
use, and the robot can be mounted on the floor, the wall or the roof in any angle. It offers
outstanding accuracy and speed, and suits a lot of industrial tasks as for example:

e spray painting,
e packing
e palletizing.

1.3. Objective
The objective of this thesis is to derive the complete dynamic model of the IRB 140 by
the product of exponential formula and analyze this method.
For accomplish the task it is necessary to solve following subtask:
e Comparative analysis of methods of robot kinematics and dynamics
e Studying the well-known methods of robot control
e Realization a dynamical model of an industrial robot with using exponential
matrices
e Development of a technique for designing of robust robot controller with using
the theory of stability of non-linear systems
e Simulation of the robot controller and robot dynamics by Matlab
e Comparison of results

11



1.4. Software

Mathcad 14

Mathcad [5] is computer software primarily intended for the verification, validation,
documentation and re-use of engineering calculations. First introduced in 1986 on DOS, it was
the first to introduce live editing of typeset mathematical notation, combined with its automatic
computations.

Mathcad, Parametric Technology Corporation's engineering calculation solution, is used by
engineers and scientists in various disciplines—most often those of mechanical, chemical,
electrical, and civil engineering. Mathcad today includes some of the capabilities of a computer
algebra system, but remains oriented towards ease of use and simultaneous documentation of
numerical engineering applications.

Mathcad has been used to derive some parameters, which necessary for dynamic model.

Maple 17

Maple [6] is developed by MapleSoft, and is a technical computing software for doing
symbolic, numeric and graphical computations. Because of its great efficiency in symbolic
computations, Maple has been used to derive the dynamic model for the IRB 140.

MatlabR2013bwithSimulink

Matlab [7] is developed by MathWorks, and is a high-level language and numerical
computing environment for performing computationally intensive tasks faster than with traditional
programming languages. It offers tight integration with other MathWorks products, among them
Simulink which is an environment for multidomain simulation and Model-Based Design for
dynamic and embedded systems. Matlab and Simulink have been used to simulate the dynamic
model for the IRB 140, and to present the results graphically.

MicrosoftVisio

Microsoft Office Visio [8] is a diagramming and vector graphics application and is part of
the Microsoft Office family. The product was first introduced in 1992, made by the
Shapewarecorporation. It was acquired by Microsoft in 2000.

Microsoft Visio has been used to creation drawings describing structure of manipulator.

12
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2. Background theory and notation

This thesis follows the standard convention of how a robot manipulator is interpreted.
Fundamental background theory and important notation that are used throughout the thesis are
briefly explained in this chapter to facilitate the understanding of the later chapters.

Section 2.1describesthe concept of rotation matrices and kinematics of manipulator.
Section 2.2 describes rotational matrices and homogenous transformational matrices, which is the
one of part model of robot, also describes their properties and connection with skew symmetric
matrices. Section 2.3-2.5 describes mathematical structure of method which based on product based
on exponential formula. Section 2.6 describes the main types of joint in robots. Section 2.7 and 2.8
include describing algorithms for creation kinematic model of n-link manipulator. Section 2.9
describes dynamic model structure of manipulator based on Newton-Euler equation and product
based on exponential formula.

2.1. Manipulator kinematics
The kinematic of a robot manipulator it is analytic describing of the geometric motion of
manipulator relatively to some given absolute coordinate frame without taking force and
moments into account, which actuate this motion. Thus the task of kinematics is analytic
describing the attitude of manipulator with relation to time and especially determination
connection between coordinates of manipulator links and orientation of gripper in orthogonal
coordinates.
The manipulator can be consider as open chain, which consist from several rigid links
jointed sequentially with the help rotational or translational joints.
Consider two types of tasks
e The forward kinematics of a robot determines the configuration of the end-
effector (the gripper or tool mounted on the end of the robot) according to given
vector of generalized coordinates g = (4,95 ... g,)7
e The inverse kinematicsof a robot determines the joint angles which achieve
desired configuration according to given a desired configuration for the tool
frame.

2.2. The rotational matrices

Figure 2.1 Absolute coordinate system and relative coordinate system

13



In order to perform algebraic manipulations with vectors using coordinates, it is essential
that all vectors are expressed in the same coordinate frame. Rotation matrices are used to
accomplish this. An nxn rotation matrix specifies the orientation of one frame relative to another
frame in the n-dimensional Euclidean space. To specify the coordinate vectors of frame 1 with
respect to frame 0 in three dimensions, the 3x3 rotation matrix is written as

R) = [Xab Yab Zab), (2.)
where the columns are the coordinates of the vectors x,p, Vap, Zap €Xpressed in frame XYZ

Below is a matrix of elementary rotations:

1 0 0 cos@ —sinf O
0 cosx —sino yRzq =|sin@ cos6® 0| (2.2
0 sinx cosx 0 0 1

In a number of cases the mobile coordinate frame can perform the rotation by an angle ¢
relatively arbitrary axis r, thus in common form rotation matrix is written as

cosep 0 sing
0 1 0
—sing 0 cosg

Rx,a = 'Ry,a =

2V +cp Te'ly V=r,50 1. 1,-V+r,-5¢
Rep=|rm V+1n-s¢ r eV +cp Ty 1y V=150 (2.3)
T Ty V=150 1,1, V+r, 50 2V +co

where cp = cos@,s@ =sing,V =1 —cos¢

2.2.1. Properties of the rotation matrices

1. Each column of the rotation matrix is a unit vector in the direction corresponding
to the axis of the rotated frame defined by its coordinates relative to the absolute coordinate
system.

2. Each row of the rotation matrix is a unit vector in the direction corresponding to
the axis of absolute coordinate system defined its coordinates relative to the rotated frame.

3. RT = R~1and RRT = I, where I5 is a unit matrix with size 3x3

4. detR=1

5. The columns (and therefore the rows) of R are mutually orthogonal

2.2.2. Relation to skew symmetric matrices

An n x n matrix S is said to be skew symmetric if and only if
ST+5=0
which means that every 3x3 skew symmetric matrix has the form

0 S3 Sy
S = [_53 0 51]
-s, —s; O

Skew symmetric matrices have been found useful in relation to rotationmatrices. Four
important properties are given below.

1. For any vectors a,p € R3

14



S(a)p=axp
where S is a 3x3 skew symmetric matrix
2. ForRe SO(3)anda € R?
RS(a)RT = S(Ra)
where S is a 3x3 skew symmetric matrix
3. Inthe general case of angular velocity about an arbitrary and possibly
moving axis we have
R(t) = S(w(®)R()
where R = R(t) € SO(3)for every t € R, S is a 3 x 3 skew symmetricmatrix,and w(t) is the
angular velocity of the rotating frame with respect to the fixed frame at time t.

4. For an n X nskew symmetric matrix S and any vector X € R™
X'sx=0

2.2.3. Homogeneous coordinates and transformation matrix

As 3x3 rotation matrix carries information only about rotation around some axis and does
not take translation and scale into account then vector p = (py,p,,p,)" vector complement
fourth coordinateso that the vector take a new form p = (wpy, wp,, wp,, w)". Then vector p
expressed in homogeneous coordinates. Physical coordinates associated with the homogeneous,
as follows

Px = %'py = wrpz = wpz, (2.4)

w w w
where @ is a forth component of vector of homogeneous coordinates (scale multiplier).
If w =1 then homogeneous coordinates of position vector coincide with its physical
coordinates.
The homogenous transformation matrix have a size 4x4 and convert vector from one

coordinate system to other. The homogeneous matrix in common form is written as:

T = [R3X3 P3x1] _ [ Rotation Translation]
"~ lfixs 1x1] |Converting prospect Scale
xx yx ZX px
Xy Yy Zy P
r=|% Y Z Py 9
‘xZ yZ ZZ pZ ( 5)
0 0 0 1

15



2.3. Exponential coordinates for rotation
An alternative to the rotation matrix is matrix based on exponential coordinates for
rotation. Consider rotation of robot link around fixed axis Figure 2.2.

) o i 1)
= —."{’ /

Figure 2.2 Tip point trajectory generated by rotation about the w-axis

Let w € R® be a unit vector, which specifies the direction of rotation and letd € R3bethe
angle of rotation in radians. Then velocity of point g can be written as
q(t) = w x q(t) = dq (D). (2.6)
This is a time-invariant linear differential equation which may be integrated to give
q(t) = e®*q(0),
where q(0) is the initial position of the point and e®? is the matrix exponential
@) @y’
+ +
! 3!
R = e®t, (2.7)
According to [3] get the finite equation for rotation matrix in common form

e =+ ot +

)

1—vg(w% +w3) wwvg —ws3sy Wiw3Vg + WySg

e®? =1+ @sind + @%(1 — cosO) = | wiwyvg + W3S9 1 —ve(w? + w2) wyw3vg — wySg | =
W1W3Vg — W3Sg  Waw3Vg + w1Sg 1 — vg(wi + w?)
wivg + cg W1WyVg — W3Sy W W3Vg + W, Sy |
W1 W,Vg + W3S w3vg + ¢y WyW3Vy — W1Sg || (2.8)
W1W3Vg — WySg  WoW3Vg + W1Sp a)%vg + cg

where vg = 1 — cos8, sy = sinf, cy = cosO

2.4. Exponential coordinates for rigid motion and twists
An alternative to the homogeneous matrix is exponential mapping which allows represent
geometric treatment of spatial rigid body motion in elegant and rigorous form. Consider the easy
example of robot with one link as shown in Figure 2.3.

16



p(t) ( 4 » p(t)

(a) (b)
Figure 2.3 (a) Rotation joint and (b) translation joint

a) For rotation link
Velocity of the tip point
p(t) = wx (p(t) — ). (2.9)
Equation can be rewritten with an extra row append to it as

A (WEH R
where v = —w X q

To solution of the differential equation is given by
p(t) = ¢'p(0)
where e$tis the 4x4 matrix exponential of the, defined as
& _ 142 @ @
e =1+¢&t+ Y + 3] +
The scalar t is the total amount of rotation. exp(ét) is a mapping from the initial location of a
point to its location after rotating t radians.
b) In a similar manner can represent the transformation due to translation motion as the
exponential of a 4x4 matrix.
The velocity of a point
p(t) = v. (2.10)
In the common form transformation matrix written as
080 — [ea’t hw@] _ [ea’t (1= e®)(wxv) + wo'™v8|
0 1 0 1
The transformation g = exp(6) is slightly different than the rigid transformation.
Itsinterpret not as mapping points from one coordinate frame to another, but rather as mapping
points from their initial coordinates, p(0) € R3, to their coordinates after the rigid motion is
applied

#0.  (2.11)

p(6) = e**p(0)
In this equation, both p(0) and p(B) are specified with respect to a single reference frame.
Similarly if g,;,(0) represent the initial configuration of a rigid body relative to a frame A, then
final configuration still with respect to A, is given by

9ap(8) = €9 g4, (0). (2.12)

17



2.5. Screws: a geometric description of twists
Consider a rigid body motion which consists of rotation about an axis in space through an
angle of 0 radians, followed by translation along the same axis by an amount d as shown in
Figure 2.4.

e v

\ L Ad 3 p+ v

pe”

(a) general screw (b) pure translation

Figure 2.4 Screws motion

This motion called a screw motion, since it is reminiscent of the motion of a screw, in so
far as a screw rotates and translates about the same axis. Take this analogy into account, we

define the pitch of the screw to be the ratio of translation to rotation h = %. Represent axis as a

directed line through a point; choosing g € R® to be a point onhe axis and w € R3 to be a unit
vector specifying the direction, the axis is the set of points. If the case of zero rotation, the axis
of the screw must be taken as the line through the origin in the direction v , v is a vector of
magnitude 1. Below is given geometric description of rotation, as particular case of screw
motion.

2.5.1. Geometric description of twist
In order to compute the rigid body transformation associated with a screw, we analyze the
motion of a point p € R3, as shown in Figure 2.5

\ A q+ e“?(p — q) + hbw

|-

_,..""'l( I I <3

§ o q+e“%(p—q)
P -
Figure 2.5 Generalized screw motion(with nonzero rotation)

The final location of the point is given

gp=q+e®[®—-q)+hbw
or, in homogeneous coordinates,

18



g [219] _ [e‘;"9 e®t(1 - e‘jt)q + h@w] [Iﬂ
where

80 _ [eae e&)t(l _ eat)q n hea)]
0 1

Note that equation (2.13) describing displacement of the rigid body have the same form as

equation (2.11). If we use the substitute v = —w X q + hw in equation (2.11) then we get the

same equation for screw motion.

Equation (2.13) is the common form of screw motion. In our case we are interested in the
particular case when pitch h = 0 pure rotation. This case used for computation kinematic map
for rotation joint of manipulator.

Geometric explanation fully disclosed in the Chasles theorem: “Every rigid body motion

(2.13)

can be realized by a rotation about an axis combined with a translation parallel to that
axis ”.Exponential twists describe relative motion of rigid body. The equation
p(6) = ¢*%p(0)
describe the finite location of point p(8) respect to its initial location p(0), in case on Figure 2.5
If a coordinate frame B is attached to a rigid body undergoing a screwmotion, the
instantaneous configuration of the coordinate frame B, relative to a fixed frame A, is given by

Jap(0) = €%9g,4,(0) (2.14)

This transformation can be interpreted as follows: multiplication byg,; (6)maps the coordinates
of a point relative to the B frame into A’scoordinates, and the exponential map transforms the
point to its finallocation (still in A coordinates).

2.6. Kinematic chains
Robot manipulators are composed of links connected by joints to form a kinematic chain,
where the joints are revolute or prismatic. A revolute joint is like a hinge and allows relative
rotation between two links, while a prismatic joint allows a linear relative motion between two
links. Both types of joints have a single degree of freedom, thus each jointi can be represented by
a single joint variable g;. Figure 2.6 shows a symbolic representation of robot joints in 2D and
3D.

19



Revolute Prismatic
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Figure 2.6 Symbolic representation of robot joints

A configuration of a manipulator is a complete specification of every point on the
manipulator. Assuming a manipulator with rigid links and a fixed base,that means the
configuration is entirely given by q, the vector of joint variables. In case of joints with more
degrees of freedom, like a ball or a spherical wrist, these joints can always be thought of as a
succession of joints with a single degree of freedom.

A coordinate frame is rigidly attached to each link, and an inertial frame is attached to the
robots base. Links, joints and frames are defined as summarized below.

e Links are numbered from O to n where link O is the base.

e Joints are numbered from 1 ton where joint i connects link i — 1 to link

e When joint i is actuated, link i moves. The base cannot be actuated.

e Frames are numbered from O ton where frame i is attached to link i.

e Frames are attached such that axis z; of frame i is the axis of actuationfor joint j + 1.

e The joint variable g; is associated with joint i.

2.7. Denavit-Hartenberg algorithm
For describing rotation joints and translation joints between adjacent links Denavit and
Hartenberg offer in 1955 algorithm based on the matrix method for determine coordinate
systems. The idea of DH algorithm is in creature a homogeneous transformation matrix which
have a size 4x4. This makes it possible to consistently convert the coordinates of the gripper
from reference systems associated with the last link tothe basic reference frame which is an
inertial coordinate system for the dynamical system.
Each of the coordinate system forms based on the follow rules:
1) z;-axis is direct along axis ofi-th joint
2) x;-axis is perpendicularto thez;_,-axis and direct against it
3) y;-axis is supplement the x;, z; axes to right-hand coordinate system
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Axis i — 1 Axis [

Figure 2.7 Denavit-Hartenberg coordinate system

DH-parameters of rigid links depends from fourth geometric parameters which associated
with each link. These four parameters fully described any rotation or translation motion.

d: offset along previous z to the common normal

0: angle about previous z, from old x to new x

r: length of the common normal(aka a, but if using this notation, do not confuse with ).
Assuming a revolute joint, this is the radius about previous z

a: angle about common normal, from old z axis to new z axis

2.7.1. Forward kinematic equation

The homogeneous matrix T¢ which determine location of the i-th coordinate system
relative to base coordinate system is a multiplication of series of the homogeneous
transformation matrices A:_,, have the form

i oala2 oAl i i_xiyizipi_R(i)p(i)]
Ty = ApA7 ... Aj_1 = i=1Ai—1_[0 0 0 1 —[0 1|’ (2.15)

I=1,2,....Nn

where[X; Yi Z] is a matrix which determine orientation of i-th coordinate system (coupled
with i-th link) relative to the base coordinate system. This is the top left sub matrix, have the size
3x3. p;is a vector which connected the beginning of the base coordinate system with beginning i-
th coordinate system. It is the top right sub matrix, have the size 3x1. Particularly if i = 6 we will
get matrix T = A§ which determine location and orientation of the gripper relative the base
coordinate system.

2.8. Algorithm for N-link manipulator, based on product of exponential formula.
In the common form the procedure for solving the forward kinematic task for manipulator
with open-chain structure and n-DOF looks as follows. Let S is a coordinate system of base of
manipulator, T is a coordinate system of a last link.
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Figure 2.8 Manipulator with 2 DOF

e It is necessary to determine the basic configuration of the manipulator, corresponding to
6 = 0, where g,:(0) describes a transformation matrix between the T and S, when the
manipulator is in the basic configuration.

e For each joint, it is necessary to record the twists &; which corresponds to a screw motion
for each i-th joint, given that other angles for the joints §; = 0.

—w: X 0: o

& = [ w(‘u_ ql] — revolute joint
L

& = [1(7)1] — prismatic joint

e Combining the individual joint motions, we can get the solution for forward kinematic
task.

9::(0) = e%1%1e%2% ... etnng,, (0), (218)
The & must be numbered sequentially starting from the base, but g.(6)gives the

configuration of the tool frame independently of the orderin which the rotations and translations
are actually performed. Equation (2.18) is called the product of exponentials formula for the
manipulator forward kinematics.

2.9. Dynamics of manipulator

Robot manipulators can be described mathematically in different ways. The problem of
kinematics is to describe the motion of the manipulator without consideration of forces and torques
causing the motion. These equations determine the position and orientation of the end effector
given the values for the joint variables (forward kinematics), and as the opposite the values of
the joint variables given the position and orientation of the end effector (inverse kinematics).

Dynamics section as part of robotics is a mathematical description of the correlation of
forces and moments acting on the arm, in the form of the equations of dynamics. Also equations
needed to simulate the movement of the manipulator using a computer, in choosing of control
laws, as well as in the evaluation of the quality and design of the kinematic scheme and
construction of robot. For compiling dynamic equation which is a mathematical model usually
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used the known laws of Newtonian and Lagrangian mechanics. Also exist an alternative method
of calculating the elements of the equation, constituting a model based on the product of
exponential formula. The result of the application of these laws is the equation that is the same
for all representation methods:
M(q)j +C(q.9) +g(q) =7,
e (- generalized coordinates (nx1))

(2.19)

e 1 —vector of actuator toques (nx1);
e M- inertia matrix;
e C— Coriolis matrix;

e (- gravity vector;

2.9.1. Newton — Euler versus product of exponential formula

The efficiency of the Newton-Euler formulation and product of exponential formula is an
interesting topic. Actually there is no clear answer to the question of which method is better than
the other. The main goal is to derive the dynamic model as fast as possible, and how well this
goal is satisfied for each method depends on several factors. The number of link and joints in the
kinematic chain, the topology of the chain (e.g. serial or parallel), the position and orientation of
the coordinate frames, and whether a recursive procedure is used or not, are factors that will
influence the computation time.

The Newton-Euler formulation is usually the preferred choice for manipulators with
many degrees of freedom. The reason is the recursive structure which the Newton-Euler
formulation is based on. If the frames are attached in a convenient way, the recursions will be
greatly simplified. The recursive approach is in general faster than treating the manipulator as a
whole system. It should also be mentioned that for the case of parallel manipulators, the Newton-
Euler formulation gives an advantage for dynamic computations and control.

Also exist an alternative methods of realization, one of them the method based on product
of exponential formula which consider manipulator as a whole system. In the [3] consider the
method of calculation a dynamic model which structure is similar to the Euler — Lagrange
formulation and allegedly the author : “If the forward kinematics are specified using the product
of exponential formula, then it is possible ti get more explicit formulas for the inertia and
Coriolis matrices.”

The selection of algorithm is a matter of personal preference and the key factor for
selection this or that algorithm is that each algorithm can provide a different representation of the
same mechanism.
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2.9.2. Equation of Newton-Euler formula
The basis of the Newton-Euler formulation is three important mechanic laws:
e Every action has an equal and opposite reaction. Thus, if link 1 applies a force f
and torque 7 to link 2, then link 2 applies a force — f and torque—r to link 1.
e The rate of change of the linear momentum equals the total force applied to the
link.
e The rate of change of the angular momentum equals the total torque applied to
the link.
Applying the second law to the linear motion of a link gives the relationship

d(mv) _

= = f, (2.20)

where m is the mass of the link, v is the velocity of the center of mass with respect to an inertia!
frame, and f is the sum of external forces applied to the link. Since the mass is constant as a
function of time for robot manipulators, Equation (2.20) can be simplified to

f =ma, (2.21)

where a is the acceleration of the center of mass. The third law gives the relationship

da(l
o) = 74, (2.22)

where I,is the moment of inertia of the link, w,is the angular velocity of the link, and t, is the sum
of torques applied on the link. All three variables are expressed in an inertial frame whose origin is
at the center of mass. Note that I, is not necessarily a constant function of time, but this can be
taken care of by rewriting Equation (2.22) to be valid for a frame rigidly attached to the the link
instead of an inertial frame. A similarity transformation of 10 is given by

I =R R (2.23)
which gives
I, = RIRT (2.24)

where R is the rotation matrix that transforms coordinates from the link attached frame to the
inertial frame. Equation (2.22) together with the Equation (2.24) and facts

Wy = R(l), T = Rt. (225)
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yields

d(lowo) _ d(RIRTRw) _ d(RIw)

o — ~2 = Rlw + Rlo, (2.26)

and the equation for the rate of change of the angular momentum with respect to the
link attached frame is

7=RT1y = RT(RIw + RI®) = RTRIw + I &, (2.27)

The rotation matrix in Equation (2.27) can be cancelled out by taking advantage of

the properties showed in subsection 2.2.2. The final torque expression becomes
T=RTRIw + 10 = RTS(wo)RIw + I = S(RTwo)lw + o) = S(w)lw + [o = w X
lw + 1. (2.28)

This concludes the general case of the derivation with the force balance and moment
balance summarized respectively as

= ma, (2.29)

t=wxlw+1o| (2.30)

2.9.3. Equations of an n-link manipulator
To begin with, several vectors need to be introduced. Note that all these vectors are
expressed in frame i.

. 1%i+1
Ti Ti—1,ci Tici b

; T

_Rf+1ﬁ'+1
* m;gi

Figure 2.9 Forces and torques acting on a random link

a.; - acceleration of the center of mass of link i

a.; - acceleration of the end of link i(origin of frame i+ 1)
w; - angular velocity of frame iwith respect to frame 0

«; - angular acceleration of frame iwith respect to frame 0
z; - axis of actuation of frame iwith respect to frame 0

gi - acceleration due to gravity

fi - force exerted by link i — 1 on link i

T; - torque exerted by link i — 1 on link i

R!_, - rotation matrix from frame ito frame i+ 1

m; - the mass of link i

25



I; - inertia tensor of link iabout a frame parallel to frame Iwhose origin is at the center of
mass of link i

Ti—1,¢i - vector from the origin of frame i — 1 to the center of mass of link i

Ty-1,; - vector from the origin of frame i — 1 to the origin of frame i

13 i - vector from the origin of frame ito the center of mass of link

When all vectors in Figure 2.9 are expressed in frame i, the force balance equation based
on (2.29) can be stated as

Yiink [ = ma (2.31)
fi = Riz1fisr + migi = miae, (2.32)
fi= Rii+1fi+1 +ma.; —m;g; (2.33)

Next, the moment balance equation for the link will be computed, and it is important to
note two things:

1) the moment exerted by a force f about a point is given by f x r, where r is the radial
vector from the point where the force is applied to the point where the moment is
computed.

2) the vector m;g;does not appear in the moment balance since it is applied directly at
the center of mass. The moment balance equation based on (2.30) becomes

ZlinkT = w X (I(U) + lw (234)
Ti— R Tipr + fi X Ticyei — (Rlpifirn) X e = 0 X (Tiw) + Ly (2.35)
Ty = RipaTin — fi X Timyei + (Rbafian) X Ty + @3 X (Liwy) + L. (2.36)

The force balance equation is actually a part of the moment balance equation.
Solving Equation (2.36) for decreasing i and substituting (2.33) is the ultimate goal of the
formulation, but the solution needs to be expressed only by g, g, gand constant parameters
to achieve the general matrix form (2.19). That means it is necessary to find a relation
between gq,q, gand a.; w;and «;. This can be obtained by a recursive procedure of
increasing i.

Since the force and moment equations are expressed with respect to the link attached
frame, this also applies toa,;, w;and «; .. However, as a starting point w;and a;need to be
expressed in the inertial frame, and the superscript (0) will be used to denote that. This
gives

a)i(O) _ wi(g)l + 2 14; (2.37)
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because of the fact that the angular velocity of frame i equals that of frame i -1 plus the
added rotation from joint i. Using rotation matrices this leads to

w; = REDTwi_q + big; (2.38)
where
bi = (R)TRY., 2 (2.39)

is the rotation of joint i expressed in frame i.
For the angular acceleration it is important to note that
. (0
a; = (RO o (2.40)
which means «; # ,! By using Newtons Second Law in a rotating frame, the time
derivative of Equation (2.36) becomes

. (0 0 . 0 .

a)i( ) = “’i(—)1 +2zi_1q; + wi( ) x Zi—19;, (2.41)
and expressed in frame i it directly becomes

a; = (Rii_l)Tai—l + bi‘ll + w.l' X blC.Il (2-42)

Now it only remains to find an expression for a ;. First, the linear velocity of the center
of mass of link i is expressed as

0 _ (0 (0) (0)
Vei = Veima T W " XTiiq (2.43)
and note that ri(—oi,ciis constant in frame i. Thus
© _ ,0 ©) ) 0) o ,.(0)
Aoj = Agjqg XTiq e T @0; 7 X (“)i X Ti—l,ci) (2.44)

Multiplying with rotation matrices and using the fact that
R(a x b) = (Ra) x (Rb) (2.45)

the final expression for the acceleration of the center of mass of link i, expressed in
frame i, becomes

aei = (R ag;q + & X Ti_g i+ w; X (0; X 1i_q;) (2.46)

To find the acceleration of the end of the link, r;_; .; is replaced by r;_; ;

Qei = (R ag;q + @ X1imy; + w; X (w; X1320;)  (2.47)
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This completes the recursive formulation, and the Newton-Euler formulation of an
n-link manipulator can be stated as follows.
1. Forward recursion: Start with the initial conditions
Wo =0Ag = Acp = Aeo =0 (2.48)
and solve Equations (2.38), (2.39), (2.40), (2.42). (2.46) and (2.47) (in that order) to
compute w;, a;,a;, a.; for increasing i from 1 to n.
2. Backward recursion: Start with the terminal conditions
far1 =Tn41 =0
and solve Equations (2.34) and (2.36) (in that order) for decreasing i from n to 1.
2.9.4. Robot dynamic model based on product of exponential matrix
In the case when forward kinematics are specified using the product of exponential
formula, then it is possible to get more explicit formulas for the inertia and Coriolis matrices.”
In order to obtain the inertial matrix, it is necessary to determine the following
parameters:

e Link inertia matrixM;

M; = [ 0 (2.50)
e Adjoint transformationA;; € R°*®
-1 ] ,
Ad(efj+19j+1__efi9i) L>]
0 i<j

Adjoint transformation followed from the equation which describe the space velocity of
rigid body [3].
In the general case g,;,(t) € SE(3) is a matrix describing the trajectory of rigid body

with coordinate frame B relative to coordinate A.
— Rab (t) Pap (t)
Jap(0) = ["a0E) Par (D] (2:52)
In the [3] cites the equations which describes space velocity of rigid body
Wap = Rabwgb
Vap = Pap X (Rabwgb) + RapVgyp

where v, -space velocity of point , w;,-angle velocity in space, vgb- velocity of the coordinate

system origin relative to the space coordinate system, in respect to current position of coordinate

system of body. wﬁb- angle velocity coordinate system also in respect to current position.

Rewrite in the matrix form:
A b
s véb] — [Rab pabRab] vab 253
ab [w(slb 0 Rab wgb ( . )
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The 6 X 6, matrix which transforms twists from one coordinate frame to another is
referred to as the adjoint transformation associated with g, written as Ad,. Thus, given g €

SE (3)which maps one coordinate system to another,

_ Rab ﬁabRab]
Adg = "¢ R (2.54)

This matrix is invertible:
Ad _1 _ [RT —(RTp)ART] _ [RT _RT
g 0 RT 0 RT
Equation (2.55) allows determine the elements of adjoint transformation matrix (2.51). Used

p] = Ady (2.55)

equation (2.51) jth column of the body Jacobian for the ith link is given by Adgs-l;Aijfj:

J:(6) = Ad o) [4i1¢1 .. Aij& 0...0] (2.56)

Combine Adg-% ) with the link inertia matrix by defining the transformed inertia matrix for the

0
sli

link [3]

ro__ T . _
M| = Adgs_lgo) MlAngl%O) (2.57)

Using the equations (2.51), (2.55), (2.57) it can be get equations for determining inertia matrix

and Coriolis matrix which necessary for composition dynamic equation

M;(0) = Ximaxqi) & ALMi A€ (2.58)
_lyn OMy | oMy My

As shown in equations (2.58), (2.59) all of the dynamic attributes of the manipulator can be

determined directly from the joint twists ;, the linkframes g_ ), and the link inertia matrices

M;. The matrices A;; are the only expressions which depend on current configuration of the

manipulator.

2.10. Feedback Controllers
A system can be controlled in open loop or closed loop. With an open-loop controller, the
input is computed without observing the output that it is controlling. Complex systems will not
be possible to control in open loop, because the controller will never know if the output has
achieved the desired goal. However, by adding feedback controllers, it might be possible to
stabilize the system in closed loop.
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A feedback controller observes the output and calculates the error between this output
and a reference value. Then the input is computed based on this error such that the output
approaches the reference value. To achieve a desired behavior of the output, controllers can take
one or more of three standard control elements. These elements are

e P - proportional term: The input is proportional to the error between the
reference value and the current output. Kp is the proportional gain.

e | - integral term: Integrates the error over time and multiplies with the integral
gain Ki. The term eliminates steady state error.

e D - derivative term: Determines the slope of the error over time and multiplies
with the derivative gain Kd. The term has as a damping effect.
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3. System Description and dynamic parameter estimation

ABB has produced the industrial robot manipulator named IRB 140. Their website [10]
presents facts about the manipulator, as well as data sheet, articles and movies about abilities of
manipulator.

This chapter is presenting all information about the IRB 140 which is needed to derive the
dynamic model. The manipulator comes with a product manual, a product specification [10], and a
data sheet (Attachment Al). The manual is not of much interest in this thesis, as it focuses
solely on safety, installation and maintenance. What is interesting is the data sheet, which is
basically a summary of the product specification, presenting some facts about the structure and
performance of the manipulator. The relevant information given in the data sheets are
summarized in Section 3.1,

Out of consideration for trade secrets in ABB, the data sheets present a very limited amount
of information. Section 3.2 states these limitations and how they lead to simplified dynamic
parameter estimation.

In Section 3.3, a symbolic representation shows how the joints and links can be
represented as a serial kinematic chain, and how frames are attached to the links. This
representation follows all guidelines described in the previous chapters, and can be said to lay the
foundation for the whole dynamic model.

3.1. Information from data sheets
The manipulator has a total of six revolute joints that are controlled by AC-motors, hence
six degrees of freedom (6 DOF). Thetotal mass including the base and without a payload is 98
kg, and the mass of the payload alone must not exceed 6 kg. Someapplicable link dimensions are
given in Figure 3.1 (lengths in millimeters).

360

810

352

Q € Axis 1

Figure 3.1 View of the manipulator from the back and side
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3.2. Limitations

It is not possible to derive an accurate dynamic model for the IRB 140 with the limited
information available in the data sheets. The dynamic parameters for the links are not given and
explained in Section 3.1, these parameters are indeed a demanding task to estimate. The masses of
the links could have been identified by dismantling the manipulator and weigh them one by one, but
this would have been a comprehensive task by itself. Besides, this useless, if through experiments on
estimating the inertia parameters and centers of mass would not be performed.

Researching dynamic parameter of the IRB 140 is an interesting and challenging task.lIt
can be use identification methods like for example CAD modeling because on the website is a
CAD-model of ABB IRB 140. But ABB does not give the characteristic about material of
manipulator which is necessary for estimation with the help of CAD-system. Consequently, the
dynamic parameters in the model have been estimated quite roughly. The estimation is based on
intuitive guesses, with the purpose of creating a simple model which still represents the IRB 140
as good as possible

3.3. Kinematic model

3.3.1. Algorithm of Denavit-Hartenberg

e4=380 €6=65

a2=360

el=352

al=70

Figure 3.2 Schematic representation of manipulator TRB 140

The IRB 140 can be interpreted in such a way that the first three degrees of freedom
make up an elbow manipulator, and the last three degrees of freedom is a spherical wrist
attached to the end of the arm. This spherical wrist alone is built up by three single degree of
freedom revolute joints, where the rotation axes intersect in the wrist center point. Thus the two
links in between will have zero length and zero mass.

Examining the manipulator closer, it is discovered that some freedom is given to the
choice of how to model joint 4. Actually, modeling the last three joints as a spherical wrist is not
the desired choice, because the two links in between (link 4 and 5) do not have zero length and
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mass. To compensate for this, it is found convenient to interpret the manipulator such that joint
3 and 4 has their center point in common, and joint 5 and 6 has their center point in common. In
that case it is link 3 and link 5 which is modeled with zero length and mass. Figure 3.2 shows a
symbolic representation of the manipulator by this interpretation, including how the frames have
been attached to the links
The coordinate systems oriented according to Denavit-Hartenberg algorithm it allows get
the product of basic rotation matrices around t the z-axis for each joint
cos(8) —sin(@) O
Rz = [sin(@) cos(6) O]
0 0 1
where 0 is the rotation angle. According to Figure 4.2, substituting g instead of 6 and multiply

matrix of basic rotation on addition matrix which turn the coordinate system(around axes X, Y, z)
according to the joint position. The result becomes

(3.1)

i |Ria Pi]
R (32)
cos(ql) —sin(qgl) 0 O] [1 O O a4
Al = sin(ql) cos(ql) O 0‘_[0 0 -1 0
0 0 1 0 of o 1 0 ¢
0 0 o 110 0 0 1

cos(ql) 0 sin(ql) aqcos(ql)
_|sin(ql) 0 —cos(ql) aysin(ql)

0 1 0 ey
0 0 0 1
[cos(ql) 0 sin(ql) aycos(ql)
1 _ |sin(ql) 0 —cos(ql) aysin(ql)
A = 0 1 0 e, (3.3)
L0 0 0 1
[cos(q2) —sin(q2) 0 a,cos(q2)
A2 = sin(q2) cos(q2) 0 a,sin(q2) (3.4)
0 0 1 e,
L0 0 0 1
cos(q3) 0 sin(g3) 0]
3 _ |sin(g3) 0 —cos(qg3) O
A; = 0 1 0 . (3.5)
L0 0 0 1
cos(qg4) 0 sin(qg4) 0]
A = sin(q4) 0 —cos(q4) O (3.6)
0 1 0 ey
0 0 0 1
cos(qg5) 0 sin(g5) O
A5 = sin(qg5) 0 —cos(g5) O 3.7)
* 0 1 0 0 '
0 0 0 1
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cos(q6) —sin(g6) 0 O
sin(qg6) cos(g6) 0 O

Ag = 3.8
> 0 0 1 e (38)
0 0 0 1
Multiplying the received matrix, we obtain the solution for the forward kinematic task.
TS = AL AZAZALASAS (3.9)

But for dynamic model we need only rotation matrices R2, R3, R¢, R3, RS which we get
from homogeneous matrices

R3 = R}R?,3.10) R3 = RZR3,(3.11) R¢ = R3R3,(3.12)

Ry = R§R;,(3.13) R§ = RJRS,(3.14)

3.3.2. Algorithm based on product of exponential fotmula

e4=380 e6=65

o E/v I/

a2=360

el=

o

al=70

Figure 3.3 Schematic representation of manipulator IRB 140

In section 3.3.1 were describing the kinematic characteristics of manipulator. With the
help of Denavit-Hartenberg algorithm with tacking kinematic characteristic into account were
calculate homogeneous matrix T¢ which determine the position of six link of manipulator.

In this section also using the kinematic characteristics of manipulator described earlier.
Determine the homogeneous matrix using alternative method based on product of exponential
matrices.

e Determine the base configuration on manipulator

0 0 ag;+e,
0
e;te,
1

gsr(0) = (3.15)

S O O
S O
o = o
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e For each link determine axis of rotation this parameter will be characterized by the

vectorw. Also determine position of joint in space this parameter will be

characterized by vector @.

1 0 0
0 0 1
a, a a; te
4, = [o ],(3,19) = 0 |[(3.20 g:=T=| 0 [(3.21)
eq e;te, e +e,
¢ Find the twists (2.16) for each link, this six-dimensional vector characterized the revolute
joint
- O - 91 -—el - 82
—aq 0 ]| 0 ]|
a a
f=| 0 62 &= 329 =] U |62
0 | L
[ 1 0 0
-0 91 ] 0 7
e te; | e te;
e + a; |
£, = “11 (3.25) =] "o 326 §6 = (1) (3.27)
0 1 Jl 0
0 0 0

e Find the transformation matrix (2.13) describing the joint motion for each joint.

[cos(61)
6161 — sin(f1) cos(61) O
0 0 1
L0 0 0
[ cos(62) 0 sin(62)
85292 = 0 1 0
—sin(62) 0 cos(682)
L0 0 0
[ cos(83) 0 sin(83)
e$30s = 0 1 0
—sin(83) 0 cos(63)
L0 0 0
[1 0 0
R 0 cos(64) -—sin(64)
0 sin(f4) cos(64)
10 0 0
[ cos(65) 0 sin(65)
e$sfs — 0 1 0
—sin(85) 0 cos(65)
L0 0 0
[1 0 0
R 0 cos(86) —sin(66)
0 sin(06) cos(66)
10 0 0

—sin(61) 0 a4(1—cos(61))

—a,sin(61)
0
1
a;(1 —cos(62)) — e;sin(62)
0
a, sin(82) + e; (1 — cos(62))
1
a,(1 — cos(63)) —sin(83)(e; + e3)
0
a, sin(63) + e, (1 — cos(83))
1

0
sin(04)(e; + e,)
(1 —cos(64))(e; + ey)
1

(3.28)

(3.29)

(3.30)

(3.31)

(1 — cos(65))(a; + e,) —sin(85)(e; + e,)

0

sin(65) (a; + e4) + (1 — cos(85))(e; + e;)

1
0
sin(06)(e; + e;)
(1 —cos(66))(e; + e,)
1

(3.32)

(3.33)
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e According to the Equation (2.18) we get the solution for Forward kinematic task
gst(e) = 331913329233393354943359533696gst(0)' (334)

3.4. Parameter estimation

This section describes how the dynamic parameters are estimated. It is mentioned in
Section 3.2 that the parameters are estimated quite roughly. Still they should be close enough to
the real unknown parameters that simulations show a behavior that is somewhat in accordance to
the behavior of a perfect model.

The centers of mass of the four links have been estimated by studying the manipulator
thoroughly, assuming the links have uniform mass density. Figure 3.4 shows the estimated
centers of mass with colored dots. Link 1 has a red dot, link 2 has a green dot, link 4 has a blue
dot, and link 6 has a yellow dot. Note that viewing from the back in Figure 4.3(a), link 4 and 6

have their centers of mass along the same line perpendicular to the paper.
585
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Figure 3.4 Location of centers of mass

Vectors between the origins of the frames are defined precisely by the dimensions in Figure
3.4. Vectors from the origins of the frames to the centers of mass are calculated by first
computing the scale of the figure, and then multiplying the scale with the lengths measured by a
ruler. The clever way of attaching frames to the links in the Newton-Euler formulation make all
length vectors independent of the configuration of the manipulator. The results are given below
(Iengths in meters).

Toer = [0.014 —0.264 0.067]", (3.35)
i = [0.201 0 — 0.070], (3.36)
723 = [0 0 0], (3.37)
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T304 = [0 0.080 0], (3.38)

T4es = [0 0 0], (3.39)
rse = [0 0 0.029]", (3.40)
o1 = [0.070 — 0.352 0], (3.41)
r1, = [0.360 0 0], (3.42)
1,3 =1[0 0 0]" (3.43)
34 = [0 0.380 0], (3.44)
45 = [0 0 0], (3.45)
56 = [0 0 0.065]". (3.46)

Estimating the inertia parameters are definitely the most difficult task. The irregular
shapes of the links makes it highly complicated to come up with realistic parameters without
performing some kind of identification. As a fair simplification the links are modeled as
cylindrical links with uniform mass density, where the center of mass of each link is the
geometric center of the cylinder. Figure 3.5 shows an example of how this simplification can
be applied on link 2

r

- o

h — L.
.'47’41

.

. W

Figure 3.5 Example of the link 2 as cylinder

/)

The green figure illustrates link 2 viewed from the back, and the orange dot is the
center of mass.

3.5. The inertia tensor
The inertia tensor of such a cylinder can be determine with the help of follow equations
e The rotation axis is along to the cylinder axis:
J =smr, (3.47)
e The rotation axis is perpendicular to the cylinder axis and goes through its center of mass:
_ 1 y2,1 2
J = > mh* + Lmr (3.48)
where m is the mass, r is the radius and h is the height of the cylinder. The cross products are
identically zero such that the inertia tensor becomes a diagonal matrix in its principal axis form.
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Determining the the mass, radius and height of the cylinders is kind of a constrained task,
where the constraints are that the total mass must be 98 kg (including the base), and that the
radius and height of the cylinders match the dimensions of the manipulator given in Figure 3.4.
Like the actual links do, the cylinders will also overlap each other since the centers of mass are
not geometrically right in between two frames, and it was assumed uniform mass density.

It is fair to believe that the mass density of every link is approximately equal. The links are
constructed of a shell of metal with components such as motors, gearboxes, cables and belts on
the inside. In addition, large proportions of the total volume is just air in between these
components. By a trial-and-error approach, the masses, radii and heights was eventually found to
match the physical shape of the manipulator using a mutual mass density of 1500 kr/m®. The
parameter values are given in Table 3.1, where the missing mass of 23 kg is allocated the
manipulator base. To make a comparison, the mass density of steel is 7850 kr/m>according to [9].
That is for massive steel, such that assuming a mass density of the links of about the fifth the mass
density for steel seems satisfying.

Table 3.1 — Parameters of cylinders

3BEHO Macca, kr Panuyc, m | Beicora, m
1 27 0.191 0.363
2 22 0.151 0.515
3 - - -
4 25 0.115 0.583
5 - - -
6 1 0.044 0.107

Note that the orientation of the attached frame determines the coordination of the
principal moments of inertia. Since in this work represents two methods below is giving the

inertia tensors for each of case

3.5.1. The inertia tensor for algorithm of Denavit-Hartenberg

-1 1
Emlhf + Zmlrlz 0
Ipg1 = 0 Zmyr? 0 (3.49)
1 1
0 0 S mahi +myri |
%mzrzz 0 0
1 1
IDH,Z == 0 Emzh% + Zmzrzz 0 (350)
1 1
0 0 Emzh% +Zm2r22_
0 0 O
Ipyz =10 0 O (3.51)
0 0 O
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I DH4 =

IDH,5 =

IDH,6 =

1 2, 1 2
—mgyhs +=myur.
12 Mally T 24Ty

0
i 0
[0 0 O
0O 0 0}
0 0 O
1 h2 1 2
Emﬁ e+ Zmﬁr6
0
0

0 0 1|
“myr? 0 | (3.52)
1 1
0 Em4hﬁ + Zm4r42J
(3.53)
0 0
1 1
Em6h§ + strsz 0 (3.54)
0 %m6r62

3.5.2. The inertia tensors for algorithm based on product of exponential formula

I exp,1

I exp,2

I exp,3

1 exp,4

I exp,5

Iexp,6 =

r 1 1
Emlh% + Zm17”12 0 0
0 —mih? +smr? 0 (3.55)
0 0 %mlrlz
1 1
Emzhg + Zmzrzz 0 0
0 f—zmzhg + %mzrzz 0 (3.56)
i 0 0 %mzrzz
[0 0 O
000 (3.57)
0 0 O
% myrf 0 ]I
0 —myh}+omuf 0 I (3.58)
| 0 1_12m4h2_ + l7""141_7"4_2‘|
[0 0 O
0 0 0 (3.59)
0 0 O
% meré 0 ]l
0 —mgh?+ mer 0 I (3.60)
0 Zmgh? + lm6r62J
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4. The dynamic model

In the Chapter 2 were described two methods of determination the dynamic model
e The recursive method based on Newton-Euler formulation
e The method based on product of exponential formula

In the Chapter 3, a system description of the IRB 140 was presented. In this Chapter is
presented calculation of dynamic model based on methods described earlier.

Since the manipulator has a six degrees of freedom, even the simplified system is quite
complex. Actually, the final torque equations in the model are so huge that they do not even
suit to be shown in this text. Therefore, to let this chapter be clear and easy to follow, all
equations are kept in their symbolic form. Attachment A2 shows how the model has been
computed in Maple by adjusting the framework and Appendix A3.

4.1. Method based on Newton-Euler formulation

4.1.1. Froward recursion

The forward recursion describes the linear and angular motion of the links, starting with
link 1 and ending with link 6. The algorithm is described in Section 2.9.3, and it is just a matter
of substituting in the general equations for an n-link manipulator.

As a part of the forward recursion it is necessary to compute b;the axis of rotation for
each joint i expressed in frame i.. The rotation axis in frame 0 is given directly as axis z

zo=1[00 1]" (4.1)
and then the rotation axes for the joints are computed by Equation (2.39) as

by = (R))'zy=1[01 0], (4.2)
b, = (RHTRYzy = [0 0 1]7, (4.3)
b; = (RH)"R3zo = [0 1 0", (4.3)
b, = (RHTRIzy = [0 1 0], (4.4)
bs = (R5)"Rgz = [0 1 0], (4.5)
be = (R)TR2zy = [0 0 1]7. (4.6)

Due to the coupled kinematics, these rotation axes will normally be functions of g
just like the rotation matrices. They will depend on how the coordinate frames are defined, and
therefore directly influence the efficiency of the Newton-Euler formulation. By inspecting how
the frames are defined in Figure 3.2, it can be seen that when looking from frame i into frame
i-1, the angular velocity w;does not depend on g;itself, but completely on the axis of
rotation. Consequently the rotation axes b;are not depending on q.

Link 1
The initial conditions are
Wo = Ay = Acp = Ao = 0. (4.8)
Angular velocity and acceleration are calculated from Equation (2.38) and (2.40) respectively,
and becomes
w1 = by1qy, (4.9)
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a1 = b1Gy + wy X by1qyq,

(4.10)

Acceleration of the end of the link and the center of the link are calculated from Equation (2.46)
and (2.47) respectively, and becomes

ae’l = (l)l X rO,l + (1)1 X ((1)1 X ro‘l),

Ac1 = W1 X Ty T W X (0)1 X rO,cl)'

(4.11)
(4.12)

Using the same equations as for the link 1, we can get the angular velocity and acceleration, and
acceleration of the end of the link and the center of mass for each link.

Link 2

Link 3

Link 4°

Link 5

Link 6

T )
w,; = (R) w1 + byq,,
1T . )
a; = (Rz) a; + byq, + w; X byq,,
T )
Aoy = (R3) apq + Wy X1y + wy X (wz X 7‘1,2)'

AT .
Acy = (RZ) Q1 + Wy X7y + wy X (wz X 7”1,c2)'

T .
w3 = (R3) w, + bs3q,,
T . .
a3 = (R) &, + b3{, + w3 X bs3q,,
T
ae,3 = (R%) ae,Z'

o T
a3 = (R3) a5

3 T .
wy = (Ry) w3 + byuq,,
3T . )
ay = (Ry) as +byq, + wy X byq,,
3 T .
Qg = (R}) Qo3+ Wy X T34+ wy X (w4 X 7”3,4)'

PN )
Aeq = (Ry) Qo3+ Wy X T304 + w4 X (w4 X T3,c4)r

T )
ws = (R$) w, + bsq.,
T . :
as = (RY) a, + bsqy + ws X bsq,,
T
ae,5 = (Rg) ae,4'

4T
aC,5 = (RS) ae,4'

T )
ws = (R}) ws + beq,,

T . :
ag = (Rg) as + beqg + we X bqy,

— (p5Y/ .
Acq = (RG) Qes + W X 56 + wg X (wa X r5,c6)'

(4.13)
(4.14)
(4.15)
(4.16)

(4.17)
(4.18)
(4.19)
(4.20)

(4.21)
(4.22)
(4.23)
(4.24)

(4.25)
(4.26)
(4.27)
(4.28)

(4.29)
(4.30)
(4.31)

41



Note that there is no need to compute a, gbecause a, ;is only used to compute a,;., (and
there is no link 7).

4.1.2. Backward recursion

The backward recursion calculates the forces and joint torques acting on the links, starting
with link 6 and ending with link 1. Determining the joint torques is the ultimate goal of the
Newton-Euler formulation, because the torques are the externally applied input to the model.
As for the forward recursion, the algorithm is described in Section 2.9.3 and it is just a
matter of substituting in the general equations for an n-link manipulator. Note that the force
equation includes the gravity vector. This gravity vector differs for each link, but can
easily be calculated with the use of rotation matrices as shown in the recursions below
Link 6
The terminal conditions are

fr=1,=0. (4.32)
The gravity vector becomes

96 = (R g0, (4.33)
Where g, is the gravity vector in the inertial frame defined as

go=1[00 —g]". (4.34)

The force and joint torque exerted on the link are calculated from Equation (2.33) and (2.36)
respectively, and becomes

fe = Melce — Mgy, (4.35)
T6 = _f6 X rsc'6 + (1)6 X (16(’06) + I6a6. (436)
Using the same equations as for the link 6, we can get the gravity vector, and force and
joint torque for each link

Link 5
oxT
9s = (Rs) g, (4.37)
fs = Refs (4.38)
T6 = R2T6 + (1)5 X (15(1)5) + 15015, (439)
Link 4
T
g, = @R g, (4.40)
f4 = R§f5 + MyQea — Myg,, (441)
Ty = R3Ts — [y X T304 + Refg X Tyeq + @y X (w,) + Lyay, (4.42)
Link 3
0 T
gg = (RB) go' (443)
f3 = Rify (4.44)
T3 = Rity + w3 X (Iz303) + [zas, (4.45)
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Link 2

Link 1

T
g, = (R)) g,
f, = R%fg +mya., —myg,,

2 2
Ty = R3T3 — f, X Ty + R3f3 X Ty + @y X (I,w,) + Ly,

T
g, = @R g,
fi= R%fz +ma,, —mg,,

1 1
Ty = R3Ty — f{ X Toe1 + Rof, X1y + 0 X (Iw,) + L.

(4.46)
(4.47)
(4.48)

(4.49)
(4.50)
(4.51)

43



4.1.3. Comments

The results in this chapter are interesting and verifies why the Newton-Euler
formulation often is the preferred choice for manipulators with many degrees of freedom.
The recursive algorithm is easy to implement and consequently there are small chances of
doing any mistakes in the derivation. Strange behavior of the model can mostly be
connected to the preparations such as the set-up of the kinematic chain and the frames,
rotation matrices, vector definitions and inertia tensors.

Note that even though link 3 and 5 have zero length and mass, they still have to be
considered in the recursions. The Newton-Euler formulation is based on a kinematic
chain with only single degree-of-freedom joints, such that n degrees of freedom always
lead to n steps in each recursion. However, some terms in the expressions for link 3 and 5
are canceled out.

One interesting insight in the Newton-Euler formulation comes from the final joint
torque vectors in the backward recursion. All joints in the kinematic chain are single
degree-of-freedom joints, such that the torques applied are scalars about the rotation axes
computed in Equations (4.2)-(4.7). The other two elements of the torque vectors can be
explained as follows. When applying torque to any of the joints, this will also generate
torque components about the other axes of the joints due to the coupled kinematics in the
system. These torque components are not included in the dynamic model because they do
not induce motion (not affecting q), but still it is valuable information about the physics
of the manipulator. If the joints in the manipulator are not constructed to physically resist
these torque quantities, the joints will break.

Although utilizing the Newton-Euler formulation appears to be quite easy, the
complexity of the resulting model should be emphasized. The basic idea behind recursion
is that the solution to a problem depends on solutions to smaller instances on the same
problem. The backward recursion of link 1 depends on the backward recursion of link 2,
which depends of the backwards recursion of link 3, and so on. All in all the backward
recursion of link 1 is directly dependent on all 11 steps back to the forward recursion of
link 1. Thus it should not be a surprise that calculating t1 from Equation (4.51) results in
a huge vector.
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4.2. The dynamic model based on product of exponential formula
In the case when forward kinematics are specified using the product of exponential
formula, then it is possible to get more explicit formulas for the inertia and Coriolis matrices in

case of n-link manipulator.

In order to obtain the components of the dynamic equation, it is necessary determine the

following parameters

e Inertia matrixM;(2.50)for each of links

M_[mil 0]
Lo Lk

wherem;isamass of link, I; is a inertia tensor of i-th link. The inertia tensors for links have been

determined in section 3.5.2 in matrix form (3.55) - (3.60) .Hence, using the known parameters

we can determine the inertia matrix for each of links.

where Z is a zero matrix.

M1:

(m4 1
| 0
[m, |
| 0
[m; 1
| 0
[, 1
| 0
[m;s|

)

[l

| 0

* Adjoint transformation matrix 4;; € R®*®

For the beginning determine nonzero elements of matrix which need to be calculate

to (2.51) we get the 6x6 matrix:

I
Az,
Ay
As>
Agz

Ays
As3
A63

I
Asy
Aga

0
0
0
0
|

Ags

o O O oo

[

Each element of matrix calculate according to (). And results write as

-1
A21 = Ad(efz‘gzefzez) =
-1
A31 = Ad(65292653€3) =

-1
A32 = Ad(ef393ef393) =

T ~
lezz

(4.52)
(4.53)
(4.54)
(4.55)
(4.56)

(4.57)

. According

(4.59)

(4.60)

(4.61)
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Ay = Ad(_ef‘29265494) -| 0 - ]I, _, (4.62)
Ay = Ad(_e%393e5494) = R§4 _ngfﬂ ) (4.63)
Ay = Ad(_e%494e§464) = :R§4 _Rgng-' (4.64)
Asy = Ad(_egzezeeses) = RES _RR%fZS-, (4.65)
2
Asy = Ad 0 ioss) = Rgs _Rjﬁf“ , (4.66)
3
Ags = Ad;ﬁ%sses) = Rgs _Rng‘*s , (4.67)
Asy = Ad(_elfsesefses) = RES _Rjgf“ , (4.68)
Agy = Ad 0 g6y = R§6 _Rgff%_' (4.69)
Agy = Ad 0 igts) = _R§6 _Rjgf%_, (4.70)
Ags = Adt,04,5606) = -R§6 _ijf%-, (4.71)
Agy = Ad(_(jfsese%ea) = R _R€6ﬁ56-, 4.72)

| 0 R

R£6 _R£6ﬁ66
T

| 0 Rse

Then we need determine the transformed inertia matrix M; which describe theinertia

moments of each link relative to the base coordinate frame of manipulator. In Section 2.9.4 was
given Equation (2.56) allows determine the Jacoby matrix, from this equation we need use the

A65 = Ad(_e%(696e§696) = (4.73)

inverse adjoint matrix of i-thlink Adg_% . Equation (2.57) allows determine the transformed
0

Sli

inertia matrix.
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Figure 4.1 the coordinate system location of each links

Assuming that the link frames are initially aligned with the base frame and are located at
the centers of mass of the links Figure 4.1, the transformed link inertia matrices have the form
I . 5 ml  mp,
e IS | 1 B
sif sl i i iD; i
wherep; is the location of the origin of the i-th link frame relative to the base frame S.
Below is given the results in symbolic form:

[ md omyp,
My=| . Y (4.74)
[—mM1P4 I |
., [ myl  myp.]
My=| °. 2 (4.75)
| —m,p, I, |
| mil myp,|
My=| °. U3 (4.76)
__m3p3 13 ]
[ myl mup,]
My=| . (4.77)
[~y I |
[ msl mep.]
M= °. S| (4.78)
__m5p5 15
| mgd mep |
M=| °. | (4.79)
__m6p6 16 ]

Using all determined parameters we find the inertia matrix and Coriolis matrix for
manipulator with 6 DOF and open-chain kinematic map based on equations (2.58) and (2.59)

n
Mij(9)= z fiTAEMlAljfj
I=max(i,j)
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aMlk oMy
0 —-z :
i(6) (agk ) O

4.2.1. Inertia matrix

M(@0) =

My1(0) = AT I M A 1§ + & AT MyAp &y + &1 AS M3 Az &y + &1 A M3 A,
+ T AL M5 As & + &1 G MgAg1 &

M12(0) = E] A5 1 M3 A50 8, + &1 AT M3 A3 &, + &1 AL MuALE, + &1 AR MgAsy &,
+ & Agi Mg g8,

M,5(0) = E1TAT1M§A33$Z3 + & AL My ALsEs + 1 AT MgAssés + §1 AGi MgAssés

M14(0) = &] AG1 M3 A4sés + &1 AT Mg Agyéy + &1 AL MgAgaés

M,5(0) = &f AL MgAssés + &1 Afy MgAgsés

M,c(0) = E1TA61M6A6656

My, (8) = & A5y MyAz &y + &5 AT, M3 Ag1 &y + &5 AlaMyAs &y + &5 AL, MsAs &y
+ &5 A6 Mg Ag1 &y

My5(0) = &5 A5, MyAz08, + &5 A5 M3Azpéy + 85 AlaMaAs s + &5 AS, Mg Asy &,
+ &5 Aga Mg g8,

My3(0) = &5 AY,M3A3385 + &5 ALy MuAusés + &5 AL, MgAssés + &5 Ag, MgAgsés

M34(0) = &5 ALy MuAsaés + 5 A5, MEAsaés + &5 AGaMeAgals

My5(0) = & AL, MgAssés + &5 Aga MgAgsés

My6(0) = szAgzMéAef)fe

M31(0) = &3 A53M3A3:&y + &3 ALz MuAu &y + &5 AL MgAg &y + &5 AfsMgAgi &y
M3,(0) = &5 AL3M3A358, + &5 A3 MyA 48, + &5 Af3MsAsy$) + f§A€3M,6A6252
M33(0) = &3 A53M3A3585 + &5 ALz MuAssés + 5 ASsMEAssEs + &5 AGsMeAssés
M34(60) = §3 Al MaAssSs + &5 AT Mg AsyEy + &5 A3 MeAsalsy

M35(6) = &3 AS3MEAssEs + &3 AGsMeAesés

M36(0) = gAgsMéAssfs

M4, (6) = EZALM!;AM& + 51A€4MQA51€1 + EZA£4MéA61E1
M42(0) = &5 ALaMuAs &, + §4 ASaMEAs €, + 1 AGaMeAsr €,
M,y3(0) = EZAT4M4’}A43SZ3 + 4 AL Mg Ag3és + E4 A MgAgsés
My4(0) = E4ALMLALEs + EL AT MgAsss + E4 AL MEAcaSs

(4.80)
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Mys5(0) = & AT MEAssEs + E1 AL M Agsés
M46(9) = S(ZAgz}MéAesfs

Ms,(0) = &5 ASsMgAs &y + E5 AGsMgAgi &y
Ms2(0) = &5 ALsMgAsz 8, + &5 AgsMgAg2és
Ms3(0) = &5 ALsMgAs3és + &4 AgsMgAgsés
Ms,(0) = &5 AGsMgAsaés + &5 AgsMgAcads
Ms5(0) = fsTA sM5Assés + &5 AgsMgAssés

M56(9) - 5M6A66E6
M61(6) - 6M6A6151
M62(9) - 6M6A6262
M63(9) - 6M6A63$3
M64(9) - 6M6A64$4-

M65(9) = fsAgsMsAesfs
M66(9) = fsTAgsMéAesfs

4.2.2. Coriolis matrix

Cll C12
C21 CZZ
C31 C32
c@) =
@ =lc,, c,
Cor Cor
661 C62

(4.81)

C63 CG4- 665 666-

1[/0M oM oM . oM
C11(9)=E[< u M 11)91+< L

(B e M)

M, 6M21> . (aMll oM 3 aM31) P
J— + —
a0, a0,/ % \oo, a0, 00,/ °

oMy, 0My5s 0Ms,\ oM,y 0M,, 0Mg, .,
0. 90, 06, a0, 90, 96,

oM oM M5\ . oM
C12(9)——[< 2 fu 12)91+( 12

20, 00, 086, 26,

aM14 aM14_ aM42.
(S My M),

20, 00, 06,

oM, 6M21> . (6M13 0M 3 aM32> F
—_ + —_
a0, a0,/ > \oe, a6, 00,/ °

M5 0Mys aMsz) . oMys 0M,s 0Mg, b ]
—_ + —_
0. 80, 96,/ ° 06, a6, 80, °

oM oM oMy3)\ . oM
Ca(0) = = [( 3, TTu_ 13)91+( 18

20, 00, 086, 26,

M3 OMyy  OMy3)
(S B )

20, 00, 06,

oM, aM23>é (aM13 oM, aM%>é
—_ + —_
a0, a0,/ > \oo, 096, 00,/ °

OMy3; O0Mys OMs3)\ , OM3; O0Myy OMgy;
20, 80, 06, 20, 96, 06,

C14(0) =

6M14 6M14 6M44 .
+ ( + - )94 + (

My, OMy; OMyy) . oM 4
+ - 0, + +

My,  0My,\ . oMy, 0My3  0My,)\ .

+ - ) s+ + — )96]
0. 90, 06, 20, 90, 06,
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1[/0M oM
e :-[( s oMy
21\a0, * o0,

My, OMy

- 2 - 3

+
20, 30, = 86, 90,

Ce(6) = = +
160 =3 20, 06,

M5 aMss) . M5 0My, O0Mggs
0. a0,/ > ‘a6, 00. 00,

1 [ <aM16 oM., M,

My, OMy

«

oM, 6M26> ) (aMm N 0M 5 6M36) 5
- 2 - 3

691 693 696 691
M5 OMsg\ | oMy, 0M,, 0Mgg
696 391 696 606 691

oM, 6M21>, (6M21 0M 5 6M31>_
— 5 —

M,  OMy

+ 05

OM s 0M51) . My, 0M,s 0Mg,
a0, a0,/ > ‘a6, 096, 096,

My, OMyy

0M,s  OMsy\ | OMy, 0Mys OMg,
692 692 666 602 662

My, My

0M,s  OMs3\ | OMy;  0Mys  OMg3
693 692 666 603 662

My,  OMy,

OM;,  OMyy\ . M, OMy3  OM3,)
)t (G T )

26, a0, 06, 06,

M, OMs,\ .  OM,, OM,, OM,,
+ - ) s+ + -

20, 06, a0, 26, 06,

My, OM,s

oMy, Mg\,  (OMys My OMyg)
o) (G e~ )

20, a0, 06 06,

0M 5 aMss) . OM,s O0Mps  OMg;s
—_ + —_
0. a0,/ > ‘a6, 06 96,

My, OMye

1[1/0M oM
€,1(0) :_[< 2z M
1[/0M oM oM
C,y(0) :_K 2 Mz oMy,
21\ a6, " a0,
+ +
1[/0M oM oM
C,(6) :_K 23 Mz OMis
21\ a6, " a0,
+
1[/0M oM oM
C24(9)=—[( 20 OMan  OMyg
2130, " 00,
(6M24
+ +
26,
1[/0M oM oM
C25(9)=—[< s Mz OMhs
21\ a0, " 0.
(aMZS
+
26,
1[/0M oM oM
C,e(6) :_K 26  OMan  OMig
21\ a8, " 6,
+

- 2 - 3

C5,(0) = = +
16 =73 20, 90,

0Mys  OMsg\ My  OMps  OMgg
696 692 696 606 692

M3, OMy

- 2 - 3

C5,(0) = = +
2(0) =7 20, 90,

M35 6M51) . OM3, 0Mz, OMg,
— + —_
0, a6,/ > ‘80, 00, 96,

M3, OMy,

- 2 - 3

+

M35 aMsz) . 0M3, 0M3s  OMg,
0, a6,/ > ‘80, 00, 96,

)96]
)96]

)0,
)éﬁ]
)éﬁ]
)0,
)0,
)éﬁ]

)éﬁ]
)éﬁ]



6M13) . <6M33

26, 00,/ "°

)95+

oM,

0M3;  O0M3, O0Mgs .,
+ - )93]

OM3; aM34> .
- 0
20, 06,/ ">

00, 00,

oMy, OM;, O0Mg, .
+ - )96]
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5. Simulations

This chapter deals with simulations of the dynamic model in open loop and closed loop.
Note that the main goal is to perform simulations and comparative analyze of the model, not to
optimize a control system for a specific job task.

The simulation structure in Simulink and the connection to Matlab is described in
Section5.1. In Section 5.2 the second order model is reduced to an equivalent first order model
which is needed to perform simulations in Simulink.

The open loop case is presented in Section 5.3. First the model is driven with desired torque
to check for open loop stability, and then energy properties are investigated. The closed loop case in
Section 5.5 presents a mathematical proof of global asymptotic stability with PD control of a
system model in the form (2.19).

5.1. Simulation structure

For realization the dynamic model was used one of the Simulink tool so called Level-2
Matlab S-Function. This is a block with multiple input and output ports where input 1 is the state
vector, input 2 is the applied torque vector, and the output is the vector of state derivatives. For
each time step in the simulation the updated vector of state derivatives is computed from the
new inputs. The contents of the Level-2 Matlab S-Function block is the dynamic model in reduced
form (see Section 5.2).

For each time step in the simulation, the state vector is sent from Simulink to the Matlab
interface through a To Workspace block. That makes it possible to present the results
graphically, and use the states to compute kinetic and potential energy.

5.2. Reduced system order
As described in Section 3.1, the dynamic model can be written on matrix form as
M(@)j+C(q,q)q+9g(@ =u (5.1)
To simulate the system in Simulink it is necessary to express it in the first-order
nonlinear form
x = f(x,u) (5.2)
where x is the state vector and u is the torque vector.
The first step is to rearrange the termsg in (5.1) to get
Gg=M1'(-C4—g+w (5.3)
where it is assumed that the inertia matrix M is invertible. The inertia matrix is the main
factor of the kinetic energy expression %q'TM(q)q. Positive definiteness of M is seen directly

by the fact that the kinetic energy is always nonnegative, and is zero if and only if all the
joint velocities are zero. Thus, M is invertible and Equation (5.3) is valid.
The second step is to reduce the system from 6 second-order equations to 12 first-
order equations. Defining
X1 =4, x2=5c1=c'11
X3 =4, x4=553=512
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X11 = Y X12 = X11 = {4

the dynamic system can be expressed in the form (5.2) as

X1 = X, (5.4)
Xy = f,(xu) (5.5)
X3 = X4 (5.6)
xy = f,000) (5.7)
Xs = Xg (5.8)
X = fo(x0) (5.9
Xy = xg (5.10)
xg = fg(x,u) (5.11)
Xg = Xqg (5.12)
X19 = [0t ) (5.13)
X11 = X1z (5.14)
X1y = [ (6w (5.15)

Note that this first-order model is only how the dynamics are implemented in Simulink
and Matlab. All figures and text for the rest of this chapter will refer to the original second-order
system with q as the state vector.

5.3. Open loop with desired torque

In open loop there is no feedback from the system output. In other words, no
information about the joint variables and its derivatives is available when computing the input
torque. Figure 5.1 shows the open loop model in Simulink, where the block called IRB
140contains all the dynamics.

Due to the excitation of gravity on the links being dependent on the joint variables, it is
quite intuitive that controlling the system in open loop is impossible. The behavior of the system
can be studied by driving the system with the desired torque, that is the constant torque derived
when substituting in the dynamic equations for the desired joint variables and derivatives. If
q4es = 0, this control torque can be explained as the constant torque which is needed to keep the
manipulator steady in the desired position.
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Figure 5.1 the open loop model

The desired position and velocity are set to
V[ T

q4ps = [O S T3 0 0 O] (5.16)
0 0 0 o0 o] (5.17)

which is the position when the manipulator arm is stretched out to the maximum in the direction. By
substituting the desired position and velocity in the dynamic equations (§ges = Gges = 0), the

control torque becomes

0
—2.409-g—13.782- g

~2.409 -
Uges = 0 ! (5.18)

—0.029- g
0
From an intuitive perspective this control torque is as expected. To keep the

manipulator steady in the chosen desired position, joint 2, 3 and 5 will have to be actuated to
compensate for the gravity, based on the law of action and reaction. Joint 1, 4 and 6 will not
be influenced by gravity as long as ¢ = 0, and is therefore given zero control torque.

Four simulations, each with different initial conditions, shows the behavior of the

. - - - . m
system when applied this control torque. The gravity acceleration is set to g = 9.81 = the

gravity of earth.

5.4. Closed loop position control
The open loop analysis with desired torque in Section 5.3 showed that controlling
the system in open loop is impossible. This section deals with the attempt of controlling
the system in closed loop. In closed loop, feedback controllers observe the output and
calculate the error between this output and a reference. To achieve desired output,
controllers can take one or more of three standard control elements that were described in
Section 2.10.
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Closed loop position control is also called the set-point tracking problem. The goal
is to demonstrate that the manipulator can move from the position given as initial
conditions, position A, to the position given as the reference value, position B. The joint
torque input is continuously calculated by the feedback controllers. The path taken from A
to B, as well as how long the motion lasts, is not controlled in the set-point tracking
problem.

Section 5.4.1 presents a mathematical proof showing that a simple PD control
structure works great for position control of systems in the general form (5.1). Then in
Section 5.4.2, PD controllers are added to the model in Simulink, and simulations verify
that the system is stable and that the position control is satisfying.

5.4.1. PD control with gravity compensation

It is a remarkable fact that the simple PD scheme for set-point control can be shown
to work in the general case of a system model in the form of Equation (5.1). This can be
proved in a Lyapunov stability analysis, as shown in [3]. This proof is of such importance
and relevance to this thesis that it will be restated in this section.

The proof is based on independent joint control, which means that each joint is
controlled as a single-input/single-output (SISO) system. Adding PD controllers in the
model, the input torque u can be written in vector form as

u= _Kp(qref - CI) — Kqq = —Kpq — Kaq (5.19)
where q is the error between the joint references and the actual joint variables, and K,and
K are positive definite diagonal matrices of proportional and derivative gains.

It can be assumed that the gravitational acceleration is constant and known, such that
g(q) can be computed explicitly for all instants. By adding g(q) to the input, gravity
compensation is achieved such that the complete system model is now given by

M(@)G+C(q,q)q+g(q) =u (5.20)
M(q)g+C(q,q)q+ 9(q) = —Kpq — Kaq + g(q) (5.21)
M(q)4 + C(q,4)q = —KpG — Kaq (5.22)

To show that the input torque given in Equation (5.21) achieves asymptotic tracking,
consider the Lyapunov function candidate
V =24"M(q)q +57"Kypq (5.23)
For the manipulator, V represents the total energy that would result if the actuators were
replaced by springs with stiffness constants represented by K,, and with equilibrium
position in g = q,.f. Thus, V is a positive function except in the equilibrium position
q = qrefWith g = 0, at which point V is zero. If it can be shown that V is decreasing along
any motion, this implies that the robot is moving toward that equilibrium position.
Noting that qf is constant, the derivative of V is given by
V=4"M(@)§+54"M(@)q + q"Kyq (5.24)
Solving for M(q)gin Equation (5.20) and substituting into the (5.24) yields
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V=4"(u—Cqqq—g(@)+54"M@q +47KyG = q7(u — g(q) + K, ) +
~q"[M(q) - 2C(q, D] = 4" (u — g(q) + K@) (5.25)
where M(q) — 2C(q, §)) is skew symmetric, then according to the subsection 2.2.2 it
can be written as qT[M(q)—ZC(q, q)]q = 0. Substituting the input torque in Equation
(5.21) for uin (5.25) above yields
V=-q"K;g<0 (5.26)
The above analysis shows that V is decreasing as long as q is not zero.

Moreover it is necessary to prove that the manipulator cannot reach a position
where ¢ = 0 but q # g,.p- Suppose V = 0, meaning that V is zero for all instants. Since
K, is a positive definite, this implies that ¢ = 0and hence ¢ = 0. Substituting this in the
system model (5.22), the result becomes

0 =-K,q (5.27)
which implies that § = 0. Finally, La Salle's theorem then proves that the equilibrium
position g = g is globally asymptotic stable.

It should be noted that if the gravitational terms g(q) are unknown, they cannot
be added to the input because then the input cannot be computed. Controlling the system
would then require controllers with robust and adaptive properties.

5.4.1. Simulations with PD control
The goal of this section is to perform simulations of the system with PD controllers,
checking for asymptotic stability. If this can be accomplished, the mathematical proof in Section
5.4.1 is verified for the model. Figure 5.2 shows the Simulink model of the system in closed loop.
With gravity compensation the model becomes
M(q@)g +C(q,9)q = —Kpq — Kaq (5.28)
where the input is
u=—K,4 — Kqq (5.29)
Note that to increase the efficiency of the simulations, it is chosen to remove the gravitational
terms directly in the model (in the IRB 140 block) instead of adding it to the input.
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The mathematical proof gives no other bounds on K, and K, except for being positive

definite. Adjusting these controller gains optimally have not been a priority, because it will not

be decisive for global asymptotic stability.

A set of satisfying gain matrices was found as simple as
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6. Comparison of results

In this work considering the two main approaches for dynamic modeling of robot

manipulators
e Method based on the Newton-Euler formulation
e Method based on the product of exponential formula

Since in a present-day world the mechanic laws remain unchanged then method based
on product of exponential formula, from the point of view of mechanic laws the similar with
Lagrange-Euler method. Distinguishing feature is a way of determine inertia matrix.

In Chapter 2.9.1 it was stated that there is no clear answer to the question of which of the
methods is better than the other, because of all the factors that influence the computation time.
However the Chapter 6 proves at least that a recursive procedure is more efficient than treating
the manipulator as a whole.

The purpose of this chapter is to compare the behavior and computation times of the
models derived by the Newton-Euler formulation and by method based on product of
exponential formula.

6.1. Simulation and comparison

6.1.1. The open loop

Simulation 1
The initial conditions for simulation, results are cited on Figure 6.1
G =[0 = =% 0 0 0 (6.1)
Ineinic =[0 0 0 0 0 0]” (6.2)
Tneinit =0 0 0 0 0 0] (6.3)
Gexpinie =[0 3 =2 0 0 o]T (6.4)
Qexp,init:[o 0 000 0] (6.5)
Texp,init=[0 000 0 0] (6.6)
Simulation 2
The initial conditions for simulation, results are cited on Figure 6.2
T
Gneinie =0 T =5 0 0 0] (6.7)
Gneinie =[0 0 0 0 0 0]" (6.8)
Tneimnit =[0 0 0 0 0 0] (6.9)
T T
Gexpinic =[0 ™ =2 0 0 0] (6.10)
Jexpinic =10 0 0 0 0 0] (6.11)
Texpmit =[0 0 0 0 0 0] (6.12)
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The initial conditions correspond to the configuration where link 2 is hanging
straight down, while link 4 and 6 represents a double inverted pendulum on top of link 2.

Response of q in Newton-Euler
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Figure 6.1 Comparison of the method based on Newton-Euler formulation with method based on product of
exponential formula
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Figure 6.2 Comparison of the method based on Newton-Euler formulation with method based on product of
exponential formula

6.1.2. Comments
Simulation 2 show a clearly unstable behavior when attempting to control the system to a
desired position that is not in immediate proximity to the initial conditions. As mentioned, this is
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just as expected because the excitation of gravity on the links is dependent on the joint variables.
In simulation 1, the initial conditions are equal to the desired position and velocity, and the graph is
showing the expected response. The joints are actuated exactly as required to compensate for the
gravity and to keep the manipulator steady in the desired state.

The conclusion corresponds to what was assumed in advance of the simulations. The
behavior of the system is unstable, and just the slightest disturbance in the system leads to a
completely uncontrollable motion because the gravity on the links is dependent on the joint
variables, and the input is computed without observing the output. The system requires feedback
controllers to be stabilized.

6.1.1. Closed loop

Simulation 1
The initial conditions and reference value are set up equal to
Qe =[0 0 0 0 0 0] (6.13)
Gmie=[0 0 0 0 0 0] (6.14)
T
qref=[§ 0 _g T g —TT] (6.15)

on Figure 6.3 are cited characteristics of manipulator position, on Figure 6.4 are cited
characteristics of input torque.

Simulation 2

The initial conditions and reference value are set up equal to

T
Gme=[0 7 =2 0 0 0 (6.16)
gmie =[0 0 0 0 0 0]F (6.17)
- T
qref=[7r 00 m - —n] (6.18)

on Figure 6.5 are cited characteristics of manipulator position, on Figure 6.6 are cited
characteristics of input torque.

Simulation 3

The initial conditions and reference value are set up equal to

T
Qe =0 5 =3 0 0 0f (6.19)
gmie =10 0 0 0 0 0]7 (6.20)
- 1T
qref=[—7t I n] (6.21)

on Figure 6.7 are cited characteristics of manipulator position, on Figure 6.8 are cited
characteristics of input torque.
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6.1.2. Comments

All simulations show that the states converge to the reference in about 3 seconds. Asymptotic
stability is verified, and the response is very satisfying. Nevertheless, several factors deserve to
be emphasized. First of all, actuators cannot supply infinite torque. The nominal torque of the
actuators and their gear ratio limits the maximum input torque. This constraint can be included in
Simulink simply by saturating the input, but doing this is not necessary of reasons explained as
follows. In the proof in Section 5.4.1 the gravitational terms g(q) were added to the input
because the gravitational acceleration was assumed to be constant and known. With this
simplification it is taken for granted that the maximum input torque in the actuators is larger than
g(q). The data sheets for the IRB 140 do not state any torque values or other motor
characteristics, but obviously this assumption is valid since the manipulator is observed to "beat
the gravity" in a real environment. The mathematical proof gives no other bounds on the input
torque, thus global asymptotic stability is proved also for saturated inputs. The only difference in
the simulations will be the increased time to reach steady state.

Secondly, actuators cannot change the input torque value from t, to t, in zero time. In
other words, the input can never be a perfect step function. The IRB 140 are controlled by
electric AC-motors which supplies torque by passing electricity to an electromagnet creating a
magnetic field. How fast this magnetic field is created will determine the maximum rate of change
in input torque. Rate limiters can be included in Simulink, but it is assumed that electric motors
create their electric fields very quickly. Consequently, rate limiters will not make any significant
difference in the simulations.

Some limitations have been chosen deliberately. First, joint friction is not taken into
account because of two reasons. First, it will be like a shot in the dark to estimate the friction
parameters without any given information. Secondly, it does not really make a difference to the
simulations anyway when the input is not saturated. However, if joint friction was to be taken into
account, the simplest way to include it would be to only model viscous friction, being proportional
to the joint velocity. The system model would then be

M(@4G+CqPDid+Fq+q+9(@ =u
where F,is a diagonal matrix of the joint friction coefficients.

Note also that the simulations do not take into account the workspace of the manipulator at
all. Since the main goal of this chapter is to prove the validity of the model, and not to optimize
a control system for a specific job task, it was found convenient to not include the workspace
restrictions. The joints are allowed to revolve freely, and no obstacles, floor, roof or walls are
considered. The data sheet (Attachment A1) specifies the actual working range for the joints.

It should be mentioned that there exists several other control techniques and methodologies
that can be applied to the control of manipulators. The choice of control structure should therefore
match the requirements for the robot operation. If there are obstacles within the workspace of the
manipulator, continuous path tracking could be necessary to avoid collisions. Many operations may
also require that the manipulator moves from point A to point B in a precise fixed time interval. If
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the robot operation requires objects to be moved around, robust and adaptive controllers are
superior. Note that this can often be the case for the IRB 140, as it is designed to handle payloads
of up to 6 kg. The mechanical design, motor characteristics, and problems due to backlash,
friction and gear reduction, may also affect the choice of control structure.

6.2. Computation times
This section will investigate the efficiency of the formulations described in terms of
computation times in open loop and closed loop. To distinguish clearly, the simulation time chosen
in Simulink will be referred to as simulation time, and the actual time recorded during the
simulation will be referred to as real time.

6.2.1. Open loop

The simulations showed in Figure 6.2 are used to compare computation times in open
loop. The simulation times for both models were set to 10 seconds. The real times were recorded
as 7 minutes for the model based o n product of exponential formula and only 6 seconds for the
Newton-Euler model.

6.2.2. Closed loop

In subsection 6.1.2 three different simulations for the both of models were performed in
closed loop with PD controllers (see Section 5.4.1).

The analyze of model based on Newton-Euler formulation showed that the states converged
to the reference in about 3 seconds of simulation time. The total simulation times were 5 seconds
for all simulations, and the real times were recorded to be 28 minutes, 32 minutes and 27 minutes
respectively.

Equivalent simulations in closed loop with PD controllers have been performed with the
model based on product of exponential formula, and the results are quite remarkable. The
simulations were awfully time-consuming and they required so much computer capacity that it was
chosen to stop the simulations after 2.3 seconds of simulation time. The real time was then at
about 18 hours for all three simulations.

6.2.3. Comments

All simulation times and recorded real times in this comparison are summarized in Table 6.1.
Several times throughout this thesis it has been pointed out that a recursive procedure is faster
than treating the manipulator as a whole.

_ Newton - Euler Product of exponential formula
Diagrams — . —— -
Sim.time Real time Sim.time Real time
Figure 6.2 10 sec 6 min 10 min 7 min
Figure 6.3 5 sec 28 min 2.3 min 18 h
Figure 6.5 5 sec 32 min 2.3 min 18 h
Figure 6.7 5 sec 27 min 2.3 min 18 h
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Since exist at others software for simulation, which can have a other results. | was
counted the quantity of math operations in each of dynamic equations. This analyze showed that
recursion method based on Newton-Euler formulation more useful for work in real time, the

results are given in table 6.2:

Newton - Euler

Product of exponential formula

16080

39001
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7. Conclusion

The main task of this thesis has been in the comparison of dynamic modeling and
simulation of robot manipulators. Two different methods for dynamic modeling have been
introduced, method based on Newton-Euler formulation and method based on product of
exponential formula. The results which were obtained during investigation shows that method
based on Newton-Euler formulation more efficiency in the view of practical using, but method
based on product of exponential formula more useful in determine the kinematic map. Although
it is a difficult conclusion to the question of which method is better than the other in general.
The computation time depends on several aspects in the system to be analyzed, and the approaches
provide different insights such that personal preference becomes a factor as well.

It has been shown that estimating the dynamic parameters accurately is a hard and time-
consuming challenge. It requires either the possibility to measure the state variables and its
derivatives during motion of the manipulator, or specific knowledge about other identification
techniques as for example CAD modeling. Even if such an attempt is to be performed, the
dynamic parameters will not be perfectly accurate. In the model for the IRB 140, the dynamic
parameters have been estimated based on inspecting the manipulator carefully, making intuitive
guesses when required.

Simulations of the dynamic model had as main purpose to prove the validity of the
model. Open loop simulations with desired torque showed that the behavior of the system was
unstable just as assumed; the slightest disturbance in the system led to a completely
uncontrollable motion.

Global asymptotic stability of the system with PD control and gravity compensation was
proved mathematically in a Lyapunov stability analysis. Afterwards, this was confirmed to be the
case for the model by simulations with PD control.

It was mentioned that the computation times of the Newton-Euler formulation and model
based on product of exponential formula depends on several factors. However, in case of
dynamic model, it is a fact that a recursive procedure is more efficient than treating the
manipulator as a whole.
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ATTACHMENT

Al

Robotics

IRB 140
Industrial Robot

Compact, powerful IRB 140 industrial robot.
Six axis multipurpose robot that handles payload of 6 kg,

with long reach (810 mm). The IRB 140 can be floor mounted,

inverted or on the wall in any angle. Available as Standard,
Foundry Plus 2, Clean Room and Wash versions, all mechani-
cal arms completely IP67 protected, making IRB 140 easy to
integrate in and suitable for a variety of applications. Uniquely
extended radius of working area due to bend-back mecha-
nism of upper arm, axis 1 rotation of 360 degrees even as
wall mounted.

The compact, robust design with integrated cabling adds to
overall flexibility. The Collision Detection option with full path
retraction makes robot reliable and safe.

Using IRB 140T, cycle-times are considerably reduced where
axis 1 and 2 predominantly are used.

Reductions between 15-20 % are possible using pure axis

1 and 2 movements. This faster versions is well suited for
packing applications and guided operations together with
PickMaster.

IRB 140 Foundry Plus 2 and Wash versions are suitable for
operating in extreme foundry environments and other harch
environments with high requirements on corrosion resistance
and tightness. In addition to the IP67 protection, excellent
surface treatment makes the robot high pressure steam wash-
able. Also available in white Clean Room ISO class 6 version,
making it especially suited for environments with stringent
cleanliness standards.

Power and productivity “ l. l.
for a better world™ "l. l'
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IRB 140

Specification

Electrical Connections

Robot versions Handling Reach of = Remarks

capacity 5th axis

IRB 140/IRB 140T 6 kg 810 mm
IRB 140F/IRB 140TF 6 kg 810 mm Foundry Plus 2 Protection
IRB 140CR/IRB 140TCR 6 kg 810 mm Clean Room
IRB 140W/IRB 140TW 6 kg 810 mm SteamWash Protection
Supplementary load (on upper arm alt. wrist)

on upper arm 1 kg

on wrist 0.5 kg
Number of axes

Robot manipulator 6

External devices 6

Integrated signal supply
Integrated air supply
IRC5 Controller variants:

12 signals on upper arm

Max. 8 bar on upper arm

Single cabinet, Dual cabinet, Compact,
Panel mounted

Performance

Position repeatability 0.03 mm (average result from ISO test)

Axis movement Axis Working range
1 360°
2 200°
3 280°
4 Unlimited (400° default)
5 240°
6 Unlimited (800° default)
Max. TCP velocity 2.5m/s
Max. TCP acceleration 20 m/s?
Acceleration time 0-1 m/s 0.15 sec
Velocity *)
Axis no. IRB 140 IRB 140T
1 200°/s 250°/s
2 200°/s 250°/s
3 260°/s 260°/s
4 360°/s 360°/s
5 360°/s 360°/s
6 450°/s 450°/s

*) Max velocity is reduced at single phase power supply, e.g. Compact
controller. Please, see the Product specification for further details.

Cycle time
5 kg Picking side IRB 140 IRB 140T
cycle 25 x 300 x 256 mm 0.85s 0.77s

www.abb.com/robotics

Supply voltage
Rated power

200-600 V, 50/60 Hz

Transformer rating 4.5 kVA
Power consumption typicly 0.4 kW
Physical
Robot mounting Any angle
Dimensions g
Robot base 400 x 450 mm =
Robot controller H x W x D 950 x 800 x 620 mm g
Weight E]
Robot manipulator 98 kg z
Environment §
Ambient temperature for e
Robot manipulator 5-45°C Z
Relative humidity Max. 95% g
Degree of protection, &
Manipulator P67 g
Options Foundry Plus 2 5
SteamWash %
(High pressure steam washable) g
Clean Room, class 6
(certified by IPA) m
Noise level Max. 70 dB (A)
Safety Double circuits with supervision,
emergency stops and safety
functions,
3-position enable device
Emission EMC/EMI-shielded

Data and dimensions may be changed without notice

Working range

Lckstance (mm)

o 0 10 10 20 250
o
50
65k
200 kg
E sig
3 150
]
3 akg
N o

Z-detanca (mm)

Power and productivity "l‘ == ==

for a better world™
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;> #Dynamic model of ABB IRB 140
> #{based on recursion mthod of Newton-Euler

“V"V IIV “V"V "V "V “V “V IIV IIV IIV IIv “V "V IIV “V IIV IlV IIv IIv “V “V "V“V "V IIV IIv “V “V"V IIv “V "V

restart :
with(LinearAlgebra) :

#Defining joint variable

q = {ql(1),q2(1),q3(t), q4(t),q5(t),q6(1)) :
Dq = map(diff, q, t) :
DDgq = map(diff, Dq, t) :

#Defining link length vectors
r0Ocl :== (0.014, -0.264, 0.067) :
rlc2 = (0.201, 0,-0.070) :

r2¢3 = (0,0,0) :

r3c4 == (0, 0.080, 0) :
rde5 == (0,0, 0) :

r5c6 = (0,0, 0.029) :

r01 := (0.070, -0.352, 0) :
rl12 == (0.360,0,0) :

r23 = (0,0,0) :

r34 := (0, 0.380,0) :

45 :=(0,0,0) :

r56 :== (0,0, 0.065) :
ricl == rOcl —r0l:
r2c2:==vrlc2—rl2:
r3c3:=r2c3—r23:
rd4c4 == r3c4d—r34:
rdcs ==rdc5—r45:
r6c6 = r5¢6 —r56:

#Gravity vector in inertial frame
g0 := (0,0,-g) :

#Rotation matrices

[ cos(q[1]) -sin(¢q[1]) 0|1 0 o
> ROI == MatrixMatrixMultiply| | sin(g[1]) cos(¢[1]) 0 |, 0 =1
i 0 1 0 0
[ cos(g[2]) -sin(g[2]) 0| [1
> RI12 == MatrixMatrixMultiply| | sin(g[2]) cos(¢[2]) 0 |, 0 0
0 0 1 1
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v

IV “V IIv “V“V IIv IIv "V IIV “V “V “V“V Ilv “V IIV “V “V IIv “V “V“V IIv “V IIV IIv IIv L]

[ cos(q[31])
R23 = MatrixMatrixMultiply| | sin(g[3])
0

cos(gq[4])
R34 == MatrixMatrixMultiply| | sin(q[4])
0

cos(q[5])
R45 = MatrixMatrixMultiply| | sin(g[5])
0

cos(gq[6])
R56 = MatrixMatrixMultiply| | sin(g[6])
0

R0O2 = MatrixMatrixMultiply(R0O1, R12) :

RO3 == MatrixMatrixMultiply(R02, R23) :

R04 = MatrixMatrixMultiply(R03, R34) :
( )
( )

ROS5 := MatrixMatrixMultiply(R04, R45) :
R06 = MatrixMatrixMultiply(R0S, R56) :

-sin(g[3]) 0 10 0
cos(g[3]) 0}, | 0 0 =1
0 1 axr 9
-sin(g[4]) 0 10 0
cos(q[4]) 0[O0 O -1
0 1 0L 0
-sin(g[5]) O 10 0
cos(¢[5]) 0 }]10 0 -1
0 1 DT 0
-sin(g[6]) 0 100
cos(q[6]) O |, [0 1
0 | 001

#Axis of rotation of joint i expressed in frame i

z0:=(0,0,1) :
bl = MatrixMatrixMultiply( (ROI%T : 20) :

b2 = combine( MatrixMatrixMultiply R02%T) MatrixVectorMultiply (R01, z0
b3 = combine MatrixMatrixMultiply R03%T) MatrixVectorMultiply (R02, z0

b4 = combine

((

((
MatrixMatrixMultiply( (RO4

b5 = combine ((

((

(

(

(MatrixMatrixMultiply( (RO5
b6 = combine( MatrixMatrixMultiply

#Link Masses
ml =27
m2:=22:
m3:=0:

m4 =25
ms=0:
mé6:=1:

RO6”

0,

%)
%T) MatrixVectorMultiply(R04, z0
uT)

) (
) (
, MatrixVectorMultiply(R03, z0
; (
, MatrixVectorMultiply (R0S5, z0

#Cylinder link dimentions parametrs

rl:=0.191:
r2:=0.151:
r3:=0:

)
)
)
)
)

)
)
)
)
)

, trig) -
,trig) :

)
)
)
)
)

, trig

, trig) -
, trig) -
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“V“V “V Ilv IIV "V "V IIv IIV "V "V "V

(3-/'124—/112) 0

%mlv‘]2

0

- 2
2 m2 (3 12'-!-/12)

0

rd + 1142) 0

% -md-rd

r4:=10.115:
r5:=0:
r6 == 0.044 :
hl == 0.363:
h2 = 0.515:
h3=0:
h4 == 0.583:
hs5:=0:
h6 :=0.107 :
#Inertia matrices
1
P ml
Il = 0
0
%-mZ-rZz
2= 0
0
000
3=1000
000
1
2 m4 (3
14 := 0
0
000
I5:=1000
000

l—lz-ml-

1
=
TR

1
12 m4

0
(3'1’12 +h12j
0

0

(3-,~22+h22j

0

(3-1‘42 +h42j
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v “V "V“V “V IIV "V IIv IIV "V “V"V ]

v "V L]

v

v IIV “V"V “V ]

v "V "V"V "V IIV IIV IIv ]

% -m6- (3 6 + /162) 0 0

16 = 0 1—12 -m6- (3 6 + 1162) 0
0 0 L sl
2

#Forward recursion:Link 1
ol == bI-Dg[1]:
ol == b1-DDgq[ 1]+ CrossProduct(®l, bl-Dq[1]) :
Dol = map(diff, o, t) :
ael := CrossProduct(Dwl, r01) + CrossProduct( wl, CrossProduct( oI, r01) ) :
acl = CrossProduct(Dwl, rOcl) + CrossProduct( wl, CrossProduct( oI, rOcl) ) :
gl = MatrixVectorMultiply( (R()I%T), g()) g
#Forward recursion:Link 2
@2 = combine( MatrixVectorMultiply( (R127T), ol) +b2-Dq[2], trig) :
o2 = combine( MatrixVectorMultiply( (R12”T), at ) + b2-DDq[2] + CrossProduct( @2, b2

-Dq[2]), trig) :

D2 = map(diff, ®2, t) :

ae = combme(Matrlx VectorMulnply( (RI Z%T) , ael) + CrossProduct(Dw2, r12)
+ CrossProduct( (@2, r12) ), trig) :

ac2 = combzne(MatrszectorMultzply( (RI Z%T) , ael) + CrossProduct(Dw2, rlc2)
+ CrossProduct( @2, CrossProduct( @2, rlc2) ), trig) :

g2 = combine(MatrixVectorMultiply( (ROZ%T) 2 gO), trig) :

#Forward recursion:Link 3

®3 = combine( MatrixVectorMultiply( (R237T), ®2) +b3-Dq[3], trig) :

o3 = combine(MatrixVectorMultiply( (R23%T), aZ) + b3-DDq[3] + CrossProduct( @3, b3
-Dq[31), trig) :

Dw3 = map(diff, 3, t) :

ael = combine(MatrixVectorMultiply( (R23%T) ,ae2), trig) :

ac3 = combine(MatrixVectorMultzply( (R23%T) ,ae2), trig) :

g3 = combine(MatrixVectorMultiply( (RO3%T) 2 g()), trig) :

#Forward recursion:Link 4

4 = combine( MatrixVectorMultiply( (R347T), 3) + b4-Dq[4], trig) :

o4 = combine(MatrixVectorMultiply( (R34%T), o3 ) + b4-DDq[4] + CrossProduct( w4, b4
-Dq[4]), trig) :
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> Dad = map(diff, w4, 1) :

> aed = combine(MatrixVectorMultiply( (R34%T), ae3) + CrossProduct(Da4, r34)

+ CrossProduct( &4, CrossProduct( &4, r34) ), trig) :

> ac4 = combine(MatrixVectorMultiply( (R34%T) , ae3) + CrossProduct(Dwd, r3c4)
+ CrossProduct( &4, CrossProduct( &4, r3c4) ), trig) :

g4 = combine(MatrixVectorMultiply( (R04%T) . g()), trig) ’

#Forward recursion:Link 5

5 = combine( MatrixVectorMultiply( (R457°T), 4) +b5-Dq[5], trig) :

oS = combine(Matrix VectorMultiply( (R45%T) i Ot4) + b5-DDq[5] + CrossProduct( w5, b5
-Dq[51), trig) :

DS = map(diff, 5, t) :

ael = Combine(MatrixVectorMulnply( (R45%T) ,aed), trig) :

ach = combine(MatrixVectorMultiply( (R45%T) ,aed), trig) :

g5 = combine(MatrixVectorMultiply( (R05%T) ’ gO), trig) :

v "V “V"V IlV ]

#Forward recursion:Link 6

w6 = combine( MatrixVectorMultiply( (R56""), w5) + b6-Dq[6], trig) :

a6 = combine( MatrixVectorMultiply( (R56”7), a5 ) + b6-DDq[6] + CrossProduct( w6, b6
-Dq[6]),trig) :

D6 := map(diff, w6, 1) :

aeb = combine(MatrixVectorMultiply( (R56%T) ,aes ) + CrossProduct(Dw6, r56)
+ CrossProduct( @6, CrossProduct( 06, r56) ), trig) :

> ac6 = combine(MatrixVectorMultiply( (R56%T) , ae5) + CrossProduct(Dw6, r5¢6)

+ CrossProduct( 6, CrossProduct( w6, r5c6) ), trig) :

> g6 = combine(MatrixVectorMultiply( (R06%T), g()), trig) :

v "V “V“V "V “V IIV "V ]

v "V |

| > #Backward recursion:Link 6

[> /6 := Add(m6-ac6,-m6-g6) :

> 16 := CrossProduct( -6, r5c¢6) + MatrixVectorMultiply (16, a6) + CrossProduct( a6,

L MatrixVectorMultiply (16, 06) ) :

> 16z = collect( combine(MatrixVectorMultiply( (b6%T), ‘L'6), trig), {DDq[1], DDq[2],

| DDq[3), DDg[4], DDg[5], DDg[6], Dg[ 1], Dg[2], Dg[31, Dgl4], Dg[5], Dg[61}) :

>

j> #Backward recursion:Link 5

;> f5 = MatrixVectorMultiply (R56, f6) :

> 15 := MatrixVectorMultiply( R56, 16) + MatrixVectorMultiply(15, oi5) + CrossProduct( @5,

L MatrixVectorMultiply (15, ®5) ) :

> oy = collect( combine(MatrixVectorMultiply( (b5%T), 15), trig), {DDgq[ 1], DDg[2],
DDg[31, DDg[41, DDq[5], DDq[6], Dq( 1], Dql21, Dg[31, Dg[4], Dg[5], Dq(61}) :
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[ >
[>
[>

>

>

>

>

>

[>
[>
>

>

#Backward recursion:Link 4

f4 == MatrixMatrixMultiply(R45, f5) + Add(m4-ac4,-m4-g4) :

4 := MatrixVectorMultiply( R45, ©5) — CrossProduct( f4, r3c4)
+ CrossProduct(MatrixVectorMultiply (R45, f5), r4c4) + MatrixVectorMultiply (14, o4)
+ CrossProduct( &4, MatrixVectorMultiply (14, o4) ) :

T4x == collect( combine(MatrixVectorMultiply( (b4%T), 1.'4), trig), {DDq[1], DDq[2],
DDq[3], DDq[4], DDg[5], DDg[ 6], Dg[ 1], Dg[2], Dg[3], Dg[4], Dg[5], Dg[61}) :

#Backward recursion:Link 3

f3 == MatrixVectorMultiply(R34, f4) :

13 = MatrixVectorMultiply( R34, ) + CrossProduct( w3, MatrixVectorMultiply(13, ®3) )
+ MatrixVectorMultiply (13, 03) :

13z == collect( combine(MatrixVectorMultiply( (b3%r), 13 ), trig), {DDq[1], DDgq[2],
DDq[3], DDg[4], DDg[5], DDq[6], Dg[ 1], Dg[2], Dg[3], Dg[4], Dg[5], Dg[61}) :

#Backward recursion:Link 2

f2 = MatrixVectorMultiply(R23, f3) + Add(m2-ac2,-m2-g2) :

12 := MatrixVectorMultiply( R23, 13) — CrossProduct( f2, rlc2)
+ CrossProduct(MatrixVectorMultiply(R23, f3), r2c2) + MatrixVectorMultiply (12, o2)
+ CrossProduct( @2, MatrixVectorMultiply (12, 02) ) :

2p = collect( combine(MatrixVectorMultiply( (bZ%T), 1:2), trig), {DDq[1], DDq[2],
DDq[3], DDg[4], DDq[51, DDq[6], Dg[ 1], Dg[2], Dg[3], Dg[4], Dg[5], Dg[61}) :

#Backward recursion:Link 1

f1 := MatrixVectorMultiply(R12, f2) + Add(m1-acl,-ml-gl) :

1l := MatrixVectorMultiply(R12, 12) — CrossProduct( f1, rOcl)
+ CrossProduct(MatrixVectorMultiply(R12, f2), ricl) + MatrixVectorMultiply (11, ol )
+ CrossProduct( o1, MatrixVectorMultiply (11, @l ) ) :

Tlx = collect( combine(MatrixVectorMultiply( (bl%T), 7l ), trig), {DDq[1], DDg[2],
DDq[31], DDq[4], DDg[5], DDgq[6], Dg[1], Dg[2], Dg[3], Dg[4], Dg[5], Dg[6]}) :

#Setting up the matrix elements

m[1, 1] := eval(tlx, {DDq[1]=1, DDq[2]=0, DDg[3]=0, DDgq[4]=0, DDg[5]=0,
DDgq[6]=0, Dg[1]=0, Dg[2]=0, Dg[3]1=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m[1,2] = eval( tlx, {DDq[1]=0, DDg[2]=1, DDq[3]=0, DDq[4]=0, DDg[5]=0,
DDq[6]=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m[1,3] = eval(tlx, {DDq[1]=0, DDg[2]=0, DDg[3]1=1, DDq[4]1=0, DDg[5]=0,
DDgq[6]=0, Dg[1]1=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m[1,4] = eval(tlx, {DDq[1]=0, DDg[2]=0, DDg[3]=0, DDgq[4]=1, DDg[5]=0,
DDq[6]=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :
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v “V L]

m[1,5] == eval(tlx, {DDg[1]=0, DDg[2]=0, DDg[3]1=0, DDg[4]=0, DDg[5]=1,
DDq[6]=0, Dg[11=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m[1, 6] = eval(tlx, {DDg[1]=0, DDg[2]=0, DDg[3]=0, DDg[4]=0, DDg[5]=0,
DDq[6]=1,Dg[1]=0, Dg[2]=0, Dg[3]1=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m[2, 1] := eval( 12y, {DDq[1]=1, DDq[2]=0, DDg[3]=0, DDgq[4]=0, DDg[5]=0,
DDq[6]=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :
m[2,2] = eval( 12y, {DDq[1]=0,DDg[2]=1,DDg[3]=0, DDq[4]=0, DDg[5]=0,
DDq[6]=0, Dg[1]1=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :
m[2,3] = eval( 12y, {DDq[1]=0, DDq[2]=0, DDg[3]1=1, DDgq[4]=0, DDgq[5]=0,
DDq[6]=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :
m[2,4] = eval( 12y, {DDq[1]=0, DDq[2]=0, DDg[3]1=0, DDg[4]=1, DDg[5]=0,
DDq[6]1=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :
m[2, 5] := eval( 12y, {DDq[1]1=0, DDgq[2]=0, DDgq[3]1=0, DDq[4]=0, DDg[5]=1,
DDq[6]=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :
m[2,6] = eval( 12y, {DDq[1]=0,DDq[2]=0,DDgq[3]1=0, DDg[4]1=0, DDg[5]=0,
DDq[6]=1,Dg[1]1=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m[3,1] := eval( 3z, {DDq[1]=1, DDg[2]=0, DDg[3]=0, DDg[4]=0, DDq[5]=0, DDg[6]
=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m([3,2] = eval( 13z, {DDq[1]1=0, DDg[2]=1, DDq[3]=0, DDg[4]=0, DDg[5]=0, DDg[6]
=0, Dq[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m[3,3] = eval(13z, {DDg[1]=0, DDg[2]=0, DDg[3]1=1, DDg[4]1=0, DDg[5]1=0, DDq[6]
=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m([3,4] = eval( 13z, {DDq[1]1=0, DDg[2]=0, DDq[3]=0, DDg[4]=1, DDg[5]=0, DDq[6]
=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m[3,5] = eval( 13z, {DDq[1]=0, DDg[2]=0, DDg[3]=0, DDg[4]=0, DDg[5]=1, DDgq[6]
=0, Dq[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m[3, 6] = eval( 13z, {DDq[1]=0, DDg[2]=0, DDg[3]=0, DDg[4]1=0, DDq[5]=0, DDq[6]
=1,Dq[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m[4, 1] := eval( w4x, {DDq[1]=1, DDq[2]=0, DDgq[3]1=0, DDgq[4]=0, DDg[5]=0,
DDq[6]1=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :
m[4, 2] := eval(t4x, {DDq[1]1=0, DDgq[2]=1, DDgq[3]=0, DDgq[4]1=0, DDg[5]=0,
DDq[6]=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :
m[4,3] = eval( x, {DDq[1]=0,DDq[2]=0,DDq[3]1=1,DDq[4]1=0, DDg[5]=0,
DDq[6]1=0,Dq[1]1=0, Dg[2]=0, Dg[3]=0, Dg[4]1=0,Dq[5]1=0,Dq[6]1=0,g=0}) :
m[4,4] = eval( 4x, {DDq[1]=0, DDg[2]=0, DDg[3]=0, DDgq[4]=1, DDg[5]=0,
DDq[6]1=0, Dg[1]1=0, Dg[2]1=0, Dg[3]1=0, Dg[4]1=0, Dg[5]1=0, Dq[6]=0,g=0}) :
m[4, 5] := eval( t4x, {DDq[1]=0, DDg[2]=0, DDg[3]=0, DDgq[4]=0, DDg[5]=1,
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>

DDq[6]=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :
m[4, 6] == eval(téx, {DDg[1]=0, DDg[2]=0, DDg[3]1=0, DDg[4]=0, DDg[5]=0,
DDq[6]=1,Dg[1]1=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m[5, 1] = eval( 15y, {DDg[1]=1, DDq[2]=0, DDg[3]=0, DDg[4]=0, DDg[5]=0,
DDq[6]=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :
m[5,2] = eval( 15y, {DDq[1]1=0, DDg[2]=1, DDg[3]=0, DDg[4]=0, DDg[5]=0,
DDq[6]=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :
m([5,3] = eval( 1Sy, {DDq[1]=0, DDq[2]=0, DDg[3]=1, DDg[4]=0, DDgq[5]=0,
DDq[6]1=0, Dg[1]=0, Dg[2]=0, Dg[3]1=0, Dg[4]=0, Dg[5]=0, Dg[6]1=0,g=0}) :
m[5, 4] = eval( 15y, {DDq[1]1=0, DDgq[2]=0, DDg[3]=0, DDgq[4]=1, DDg[5]=0,
DDq[6]=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :
m[5, 5] = eval( 15y, {DDq[1]1=0, DDg[2]=0, DDg[3]=0, DDgq[4]=0, DDg[5]=1,
DDq[6]=0,Dg[1]=0,Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :
m([5, 6] = eval( 1Sy, {DDq[1]=0, DDg[2]=0, DDg[3]=0, DDg[4]=0, DDg[5]=0,
DDq[6]=1,Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m[6, 1] := eval( 16z, {DDq[1]=1, DDq[2]=0, DDg[3]=0, DDg[4]=0, DDg[5]=0, DDg[6]
=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m[6,2] = eval( 16z, {DDq[1]=0, DDg[2]=1, DDg[3]=0, DDg[4]1=0, DDq[5]=0, DDq[6]
=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m[6,3] = eval( 16z, {DDgq[1]=0, DDg[2]=0, DDg[3]1=1, DDq[4]1=0, DDgq[5]1=0, DDq[6]
=0, Dq[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m[6,4] = eval( 16z, {DDq[1]=0,DDq[2]=0,DDq[3]=0,DDg[4]=1,DDq[5]=0, DDg[6]
=0,Dq[1]=0,Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m[6,5] = eval( 6z, {DDg[1]=0, DDg[2]=0, DDg[3]=0, DDg[4]=0, DDg[5]=1, DDq[6]
=0,Dq[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

m[6, 6] = eval( 16z, {DDg[1]=0, DDg[2]=0, DDg[3]=0, DDg[4]=0, DDg[5]=0, DDg[6]
=1,Dq[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0,g=0}) :

g6 = eval( 16z, {DDq[1]=0, DDq[2]=0, DDgq[3]=0, DDg[4]=0, DDq[5]=0, DDgq[6]=0,
Dq[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0}) :

g5 = eval( 5y, {DDq[1]=0,DDq[2]=0,DDq[3]=0,DDg[4]=0,DDgq[5]=0, DDq[6]
=0,Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0}) :

g4 = eval(tx, {DDq[1]=0, DDq[2]=0, DDgq[3]=0, DDq[4]1=0, DDq[5]1=0, DDq[6]
=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0}) :

g3 = eval( 13z, {DDq[1]=0, DDq[2]=0, DDq[3]=0, DDg[4]=0, DDq[5]1=0, DDq[6]=0,
Dq[1]1=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0}) :

g2 = eval( 12y, {DDq[1]=0, DDg[2]=0, DDg[3]=0, DDgq[4]=0, DDg[5]1=0, DDq[6]
=0, Dg[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0}) :
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> gl = eval(tlx, {DDq[1]=0, DDg[2]=0, DDq[3]=0, DDg[4]=0, DDg[5]=0, DDq[6]
=0,Dq[1]=0, Dg[2]=0, Dg[3]=0, Dg[4]=0, Dg[5]=0, Dg[6]=0}) :

| > #HHHHH R R

> #Setting up the dynamic system

’nl‘l 171] o )771“% ﬂll.4 ml.s I”|.6

’112,1 1712.2 1712’3 m, 4 I772‘5 ”12,6

Wy i 945 Wy P4 Wys Mag

> MO :=

My | My o My My, My s My
s i Mg 5 s 5 Te i Mg Mg g
Mgt Me s Weq. 064 Mg M6

[> G0 = (g1, g2, g3, g4, g5, 6)

| > 70 = (T]x, 12y, 13z, T™x, 15), ‘L'6z> :

| > C0Dq = combine( ™0 — MatrixVectorMultiply(M0, DDq) — GO, trig) :

| >

;> #Matlab conversion

| > with(CodeGeneration) :

| > #Matrix M

> mll

» ml2

» ml3

> ml4

> ml5

» ml6

[>

» m21

> m22

» m23



> m24
> m25

» m26
£

» m31
» m32
» m33
» m34
» m35

» m36
>

> m41
> m42
> m43
> m44
» m45

» m46
>

» m51

> m52
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» m53
» m54
» m55

» m56
B8

» mo61
» mo62
» m63
> mo64
» m65
» mé66

B3

[> #cravity vector
> gl

> g2

> g3

> g4

> g5

> g6

[>

[> #coriolis vector
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A3

IV IIV 1

IV“V Ilv IIv "V "V llvl

IV “V IIV IIV IIv IIv IIVI

V"V "V IIV IIv “V "V IIV "V"V "V IIV IIV “V “V IIVIIV|

| >
| >
=>
| >
B

restart :
with(LinearAlgebra) :

#Defining joint variable

q = {ql,q2,493, 94,95, q6) :

;> #Dynamic model of ABB IRB 140
| > #based on exponential formula

qt == (ql (1), q2(t), q3(t), q4(t), q5(1), q6(1)) :

Dqt == map(diff, qt, t) :

#Defining manipulator parametrs

#Link Masses

ml =27 :
m2:=22:
m3:=0:
m4 =25
m5:=0:
mo6 = 1:

#Cylinder link dimentions
#Radius

rl :==0.191:
r2:=0.151:
r3:=20:
r4:=0.115:
r5:=20:

r6 == 0.044 :
#Height
hl == 0.363:
h2 :=0.515:
h3:=0:

h4 := 0.583:
h5=0:

h6 :=0.107 :
#Twists

&l = (0,-0.070,0,0,0,1) :

& = (-0.352,0,0.070,0, 1, 0) :
&3 == (-0.712, 0, 0.070,0, 1, 0) :
& = (0,0.712,0.070, 1, 0, 0) :
& = (-0.712,0,45,0,1,0) :

parametrs
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[ > &6 = (0,0.712,0,1,0,0) :

>

[> #Constants
| > al == 0.070:

| > el :=0.352:

| > e2:=0.360:

| > e4:=0.380:

| > e6 :=0.065 :

| > ric:=0.014:

| > r2¢:=0.067 :

| > r3c:=0.264:

| > r4c:=-0.070:
| > r5c¢:=0.201:

| > r6¢ := 0.080 :

| > r7¢:=0.029:
;> #Gravity vector in inertial frame
| > g0:=(0,0,2) :

[> #Rotation matricies

[ >
cos(q[1]) -sin(g[1]) O

> Rl =] sin(g[1]) cos(g[l]) O

i 0 0 1
cos(q[2]) O sin(g[2])

> R2:= 0 1 0

i -sin(g[2]) 0 cos(g[2])
cos(q[3]) 0 sin(g[3])

> R3 = 0 1 0

-sin(g[3]) 0 cos(g[3])
1 0 0

> R4:=|0 cos(q[4]) -sin(q[4])
0 sin(g[4]) cos(q[4])
cos(¢q[5]) 0 sin(g[5])
> RS = 0 1 0

-sin(g[51) 0 cos(q[5])




\%

V"V“V IIV IIV IIV IIv IIv IIV "V L]

1 0 0
R6 =] 0 cos(g[6]) -sin(g[6])
0 sin(g[6]) cos(q[6])

ROI :==RI :

R02 = MatrixMatrixMultiply(R01, R2) :
R0O3 = MatrixMatrixMultiply(R02, R3) :
R04 = MatrixMatrixMultiply(R03, R4) :
RO5 = MatrixMatrixMultiply(R04, R5) :
R06 == MatrixMatrixMultiply(R0S5, R6) :

#Adjoint transformation

#A:=Matrix([[ s R o (s 0: ; (0 [
# [ A21 , ) 57 (U o,
# [A31 ,A32, I, O,
# [ a41 , A42 , A43 , I ;
# [ A1 ; A52 , AS53 , A54 ,
# [ A61 , A62 , A63 , A64 ,

100000O0

010000

001000
all, 1] =

000100

000010

000 01

PHOOOO

WS 88 NS
HOOOOO
[
il = W

a[2,1]:=[[ (2 q[21), 0, -sin(2-¢[2]), 0, 2-al- (sin(¢[2]))* — el-sin(2-¢[2]) -2-al

21)) +el-sin(4-g[2]), 0],

sin ( 2 -q[2]), 0, cos(2-¢q[2]),0,2-el-(sin(2-q[2])

21))* +al- sm(4 q[Z]) 0],

[0,0,0, cos(2-¢[21), 0, -sin(2:¢[2])],
[0,0,0,0,1,0],

[0,0,0,sin(2-¢[21]), 0, cos(2-¢[2]) ]]:

)?
al-(sin(q[2]))* —el-sin(2-¢[2]), 0, 2-el-((cos(g[2]))*> — 1) -al-sin(2-¢[2

)2 —al-sin(2-g[2])-2-el-(sin(q
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|Iv L

a[2,2]:

Il
S O o o o =~
S O O O = O
o ©oO o = o O
o © = O O O
S = O O O O
_ O O O O o

2

> al3,1]:= [cos(q[2]+q[3]),0,—sin(q[2]+q[3]),0,2-62-(sin(-qm)) +2-e1-(sm

a[3,3]:=

2
(M M)) —a]-sin(

b

[0.1,0,2:e1(sin( 221 + 31))" 4 .02 (sin( L2 4+ 2031) )" 5.2, s

(42)) s 2

+e2-sin(q[2]+q[3]) -e2-sin(gq[2]) ],

[sin(g[2]+¢([3]), 0, cos(g[2]+¢q[3]), 0, al-cos(q[2]+q[3]) -al —el-sin(q[2]+q[3]
)-e2-sin(q[31), 0],

0,0,0,cos(¢g[2]+¢[3]),0, -sin(q[2]+ q[3])],

|

2]+q[3‘), 0,al-cos(q[2]+¢q[3])-al +el-sin(g[2]+¢q[3])

P —

05 07 O’ O’ l’ 0]’

[0, 0,0,sin(¢g[2]+¢[3]),0,cos(g[2]+¢[3])

a[3,2] = [[cos(2-¢q[3]),0, -sin(2-¢[3]),0,2-sin(g[3])- (el sin(g[3])-al-cos(q[3])+e2

-sin(¢[3])), 0],

[0,1,0,al-sin(2-q[3]) +2-el-(sin(g[3]))> +2-e2-(sin(q[31))2 0, 2-al - (cos(¢[3]))
—2-al +el-sin(2-¢[3]) +e2-sin(2-¢[3]) ],

[sin(2-¢[31), 0, cos(2-g[31), 0, 2-al-(cos(q[31))> —2-al —el-sin(2-¢[3]) -e2-sin(2-q
(3]),0],

[0, 0,0, cos(2:g[3]),0, -sin(2-g[3]) ],

[0,0,0,0,1,0],

[0,0,0,sin(2:¢[31),0,cos(2-¢[3])]]:
100000
010000
001000
000100
000010
000001
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>

> a[4,1]==[

cos(g[21), 0, ~sin(q[21), ~sin(q[2]) sin(q[4])- (el +e2>,2-e1-(&5“’ﬂ

~ %)_M.( satgla) 1 ) +2.82.(&s<q2[ﬂ - %)_aj.sm(q z]) -Zos(q[z

1)-sin(q[4])- (el +e2)],

sin(g[2]) -sin(g[4]), cos(g[4]), cos(q[2]) -sin(q[4]), el-cos(q[4]) + al-cos(q[4]) -sin
(q[2]) +e2-cos(q[2])-cos(q[4])-el-cos(2-q[4])-cos(g[2])-e2-cos(2:q[4]) -cos(gq[2]

)-sin(q )-[2~a1-(sin(g%)) +e1~sin(q ]),al-cos(q[2])~cos(q[4])-e1

-sin( [ ]) e2- sm( [2]) a1-cos(q[4])—e2-cos(q[4])'sin(q[2])+2 el-(cos(q [4]))2
-sin(g[2]) +2-e2- (cos(g[4]))*sin(g[2]) ],

4 2

[COS (q[4])-sin(g[2]), -sin(q[4]), cos(g[2]) -cos(q[4]), -sin(q[4])- (el +al-sin(g[2])
+e2-cos(q[2])-2-el-cos(q[2])-cos(g[4])-2-e2-cos(q[2])-cos(q[4])), (2-a1- (sin

(ﬂ%)) +e1-sm[q 2])]-(2-(911“%))2—1],-sin(q[4])~(aI'COS(q[ZJ)-aI

—e2-sin(q[2])+2-el-cos(q[4])-sin(q[2]) +2-e2~cos(q[4])-sin(q[2]))],

0’ 0, 0, cos(q[z])s 05 _Sln(q[zl)]’
0,0,0,sin(g[2])-sin(g[4]), cos(g[4]), cos(g[2]) -sin(g[4]) ]

0,0,0,cos(g[4])-sin(g[2]), -sin(g[4]), cos(g[2])-cos(gq 4])”:

> a[4,2] == [[cos(q[3]), 0, -sin(g[3]), -sin(g[3])-sin(q[4])- (el +e2),el-cos(q[4])-el
cos(g[3])-al-sin(g[3])-e2-cos(q[3])+ e2-cos( [ 1) —cos(q[3]) sin(g[4])- (el +e2
)]’

sin(g[3])-sin(g[4]), cos(g[4]),cos(¢[3])-sin(q[4]), el-cos(q[4])+ e2-cos(q[4]) + al

-cos(q[4])-sin(g[3])-el-cos(2-q[4])-cos(q[3]) -e2-cos(2-q[4])-cos(g[3]), -sin(q[4}

)-(2-511- (sin(-q%)f—i-el'sin(q J+e2~sin(q 3]) ),al'COS(q[3])'COS(q[4])
3
)

3

-el'sin(q3) -eZ-sin(q[ )-a]-cos(q[4]) +2-el-(cos(gq[4]) )2'sin(q[3]) 2702
(cos(g[4]))*sin(g[3]) ],

cos(q[4])-sin(g[3]), -sin(g[4]), cos(g[3])-cos(q[4]), -sin(q[4])- (el +e2 +al-sin

2
(q[31)-2-el-cos(q[3]) -cos(g[4]) -2-e2-cos(¢[31]) -cos(g[4])), (2-(sin(-q%)) ol
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2

+e1-sin(q 3])) -sin(q[4])-(al-cos(gq[3])

)~(2-a1~(sin(-"%)) 3])+e2~sin[q

-al +2-el-cos(q[4])-sin(g[3])+2-e2-cos(q[4])-sin(g[3]))
[0’ 0, 03 COS(q[3]), Oa ‘Sm(f][?’])],
[0, 0,0, sin(g[3])-sin(g[4]), cos(g[4]), cos(g[3]) -sin(q[4]) ]

[0,0,0,c05(q[4])-sm (g[31), -sin(g[4]), cos(g[3]) -cos( [4])”:

> a[4,3]:=[[1,0,0,0,2-(el +e2)-((cos(g[4]))> —1), -sin(2-q[4])- (el +¢2)],
[0, cos(2-g[4]), sin(2-q[4]), (cos(2-q[4]) -cos(4-q[4]))- (el +e2),0,0],
[0, -sin(2-g[4]), cos(2:q[4]), - (sin(2-g[4]) -sin(4-q[4]))- (el +e2),0,0],
[0,0,0,1,0,0],
[0,0,0,0,cos(2:q[4]), sin(2-¢[4]) ],
[0,0,0,0, -sin(2-¢[4]), cos(2-¢[4])]]:

|IV L]

100000
010000
001000
> a[4,4] =
000100
000010
000001
(511
3 G[8, 1] = cos(q[2]+q[5]),0,—sin(q[2]+q[5]),0,2-e2-[sin(-qz—)) +2-e1-(sin

2

—al-sin(q

(4284920 s o s}

[0,1,02e1 sm(-qm+—qm))2+2~e2 (sm(-qu M))Z—Z-e}(sin

8o el oo

]+q[5] -al +e4-cos(q[2]+q[5]) +el-sin(q[2]+¢q[5]) +e2-sin(q[2]+ q[5]) -e4-cos
(q[2])-e2-sin(q[2])],
[sin(g[2]+¢[5]),0,cos(q[2]+¢q[5]),0,al-cos(q[2]+ q[5])-e4 —al —el-sin(gq[2]
+q[5]) +e4-cos(q[5]) -e2-sin(g[5]), 0],

[0, 0,0, cos(¢[2]+¢[5]),0, -sin(g[2]+ q[5])l,

[0, 0,0:0.1, 0],

[0, 0,0,sin(g[2]+¢[5]),0, cos(g[2]+¢[5]) H :
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2
al5,2] = Hcos(q[3]+q[5]),0, ~sin(q[31+q[51), 0,2~e1'(sin(-q% + M)) +2

2
-e2- (sin(-q% 5 —q%))z—al-sin(q
)

3]+q[5 J-e4-sin[q[5]), O],
3]), 0,al-cos(q[3]+¢q[5])-al +e4-cos(q[3

[0, 1,0, 2+l (sin(-q% - ﬂ%))zm-ez- (sin(ﬂ% & ﬁ[zi]))zﬂl-sin(q

e

]+q[5])+61'Sin(q[3]+q[5])+62'Sin(q[3]+q[5])-64'003(q[3])],

[sin(g[3]1+¢[5]1),0,cos(¢q[3]+¢q[5]),0,al-cos(q[3]+q[5])-e4 —al —el-sin(gq[3]
+q[5])-e2-sin(q[3]+q[5]) + e4-cos(¢q[5]), 0],

[O,O,O,COS(q[3]+q[ 1), 0, -sin(q [3]+q[5])],

o) evsnfs

[0, 0,:0,.0,:2, 0],

[0, 0,0,sin(g[3]+¢[51),0,cos(g[3]1+¢q[5]) ” 3

> a[5,3] := [[cos(g[5]), sin(q[4]) -sin(¢[5]), -cos(¢[4]) -sin(q[5]), sm( [4])-(2-al- cos(q
[4])+2-e4~cos(q[4])+e]~sin(q[5])+e2-sin(q[5] -2-al-cos( [4] (cos(g[51]))
—2~e4‘cos(q[4])-(cos(q[S]))2-2-el-cos(q[4])-cos(q[S])~sm(q[5]) 2-e2- cos(q[4]
)-cos(q[S])-sin(q[S])),e]~cos(q[4])—e]-cos(q[S])+e2-cos(q[4])—e2-cos(q[5])—a1
cos(q[4]) -sin(g[5]) -e4-cos(g[4]) -sin(q[51), sin(g[4]) - (e1- (2- (sin(q[51))* — 1)
+e2-(2-(sin(g[51))*-1) +al-sin(2-q[5]) + e4-sin(2-¢[5]) -al-sin(g[5]) -e4-sin(q

[s1))],

0, cos(gq[4]),sin(q[4]), el-cos(q[4])+e2-cos(q[4]) +al-cos(2-q[4]) sin(g[5]) -el
-cos(2-q[4])-cos(gq[5])-e2-cos(2-q[4])-cos(q[5]) + e4-cos(2-q[4]) -sin(g[5]), —sin(q

]| [ | SR = 8 T SRR 2 I 5])+e2-sin(q

2 2 2
5]) ), cos(gq[4])-(al-cos(q[5])-e4 —al + e4-cos(q[5]) +el-sin(q[5])+ e2-sin(g[5])

)

[sin(g[5]), -cos(g[5])-sin(g[4]), cos(q[4]) -cos(¢q[5]), -cos(g[5]) sm(q[4] (el +e2
+2-al-cos(q[4])-sin(g[5])-2-el-cos(q[4])-cos(g[5])-2-e2-cos q[4] -cos( [5])+2
-e4-cos(q[4])-sin(q[5])),al-cos(q[4])-cos(q[5]) -e4-cos(q[4]) -el-sin(g[5 ]) e2-sin
(q[5])-al-cos(q[4])+ e4-cos(q[4])-cos(g[5]), —sin(q[4])~(a1-cos(2‘q[5])+e4-cos

(2-q[5]) +el-sin(2-q[5])+e2-sin(2- q[5])-al-cos(q[5])-e4-cos(¢[5]1))],

[0,0,0,cos(q[S]),sin(q[4])~sm q[5]), -cos( [4])'sin(q[5])],
[0, 0,0, 0, cos(g[41), sin(g[4]) |

[o, 0,0, sin(¢[51), —cos(q[sn-sin(qm]),cos(q[4]>-cos(q[5]>”:
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2
al5,4] = [ cos(2+¢[51), 0, —sin(2-q[5]),0,2-sin(q[5])-(al'(Z-(sin(-q%)) - 1)
2
+e4~[2~(sin(-q%)) —1)+31'sin(q 5 )+e2-sin(q 5])),0],

[0, 1,0, al-sin(2-[5]) + e4-sin(2-¢[5]) +2-el-(sin(g[5]) ) + 2-e2- (sin(g[5]))% 0,

2 2

el-sin(2-g[5]) +e2-sin(2-g[5]) +2-al-((cos(g[5]))
)],
[sin(2-¢[5]), 0, cos(2-g[51), 0, 2-al-( (cos(g[5]))> — 1) -e2-sin(2-¢[5]) -el-sin(2-q
[5]) +2-e4-((cos(q[51))> —1), 0],

0’ 09 0, 005(2"][5]), b ‘Sln(z‘Q[S])],

—1)+2-e4-((cos(g[5]))" —1

0,0,0,0,1, 0],

R ——

0,0,0,sin(2-¢[5]), 0, cos(2-¢g[5]) ” 4

10000O0
010000
a5, 5] = 001000
000100
000010
0000O0T1
>
> al6,11:= [[cos(g[21), 0, ~sin(q[2]), ~sin(g[2]) sin(ql6])- (el +¢2), 2-e1-( <=4
_%)_2.81.(&5(%@—%)—%2@2(&5(3[‘&— ) -al- sm( D -cos(g[2]

)-sin(gq[6])- (el +e2)],

sin(g[2]) -sin(g[6]), cos(g[6]), cos(g[2])-sin(q[6]), el-cos(q[6]) +al-cos(q[6])-sin
q[2])

—sm(q
(ql2]
(¢l2]

)+ e2-cos(q[2])-cos(q[6])-el-cos(2-q[6]) -cos(g[2])-e2-(2-q[6])-cos(gq[2]),

) (2 al- sm(g%))z+e1'sin(q 2])J,a1~cos(q[2])-cos(q[6])—e1'sin

) -e2- sm(q[2]) al- cos(q[6] —e2-cos(q[6])~sin(q[2])+2~e1-(cos(q[6]))2~sin
)+2 e2-(cos(q[6])) sm(q[2])],

cos(q[6])-sin(g[2]), -sin(q[6]), cos(g[2]) -cos(¢q[6]), -sin(q[6])- (el +al-sin(q[2])

+e2-cos(q[2])-2-el-cos(gq[2])-cos(q[6])-2-e2-cos(q[2])-cos(q[6])), (2-51]- (sin
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2

Gl +e1.sm(q

2
; 2])]-(2-@;{%)) —IJ,—sin(q[6])~(a1'cos(q[2])-a]

—e2-sin(q[2])+2-el-cos(q[6])-sin(g[2]) +2-e2-cos(q[6]) -sin(q[2]))],

0’ 0’ 0’ Cos(q[z]), Oa ‘Sm(f][z])],
0,0,0,sin(g[2])-sin(g[6]), cos(¢[6]), cos(g[2]) -sin(q[6]) ]

0,0,0,cos(g[6])sin(g[2]), -sin(q[é]),COS(q[2])-COS(q[6])”:

> a[6,2] == [[cos(q[3]), 0, -sin(g[3]), -sin(g[3])-sin(g[6])- (el +eZ) el- cos ql6])-el
-cos(q[3]) -e2-cos(g[3])-al-sin(g[3])+ e2-cos(g[6]), -cos(g[3]) -sin( [6])-(e1 +e2
)]5

sin(g[3])-sin(g[6]), cos(g[6]), cos(g[3])-sin(g[6]), el-cos(q[6]) +e2-cos(q[6]) + al

J

-cos(q[6])-sin(g[3])-el-cos(2:q[6])-cos(g[3]) -e2-cos(2-q[6])-cos(q[3]), —sin(q

) (2 al- (sm( ))2+e1 sm( )+e2‘sin(q 3])),al-cos(q[3])-cos(q[6])
ql3
(61))

-el-sin( ] e2 -sin( q 3])-al- cos(q[6])+2-el~(cos(q[6]))z-sin(q[3])+2-eZ

[
(cos(gq %.sin(q[3])],

[cos(q[6])-sm(q[3]),—sm (q[61), cos(g[3])-cos(g[6]), -sin(g[6])- (el +e2 + al-sin
2
(q[31)-2-el-cos(q[3]) -cos(q[6]) -2-e2-cos(g[31) -cos(g[61)), (2-(sin(-q%j) =

) (2:ar-(sin( 221))"+-et:sin 3] + 25

-al +2-el-cos(gq[6])-sin(g[3]) +2-e2-cos(gq[6]) -sin(g[3]))

SD ), -sin(g[6]) - (al-cos(g[3])

[0,0,0,COS( [3]),0, -sin(g [3])],
[0,0,0,sin(q[3])-sin(q[6]),COS(q[6]),COS(q[3])-sin(q[6])],

[O, 0,0, cos(g[6]) -sin(g[3]), -sin(q[6]),COS(q[31)~COS(q[6])”:

> al6,3]:=[[1,0,0,0, (cos(g[4]+q[6])-1)- (el +e2), -sin(q[4]+q[6])- (el +e2)],
[0, cos(g[4]+¢[6]1), sin(g[4]+¢[6]1), (el +e2)-(-2-(cos(q[4]+q[6]))* +cos(q[4]
+4ql6])+1),0,0],
[0, -sin(g[4]1+ q[6]), cos(q[4]1+¢[6]), (sin(2-q[4]+2-q[6])-sin(g[4]+ q[6])) (el
+e2),0,0],
[0,0,0,1,0,0],
[0,0,0,0, cos(q[4]1+¢[6]), sin(q[4]+q[6]) ],
[0,0,0,0, -sin(q[4]+q[6]), cos(q[4]+q[6])]]:
al6,4] = [[cos(¢q[5]), 0, -sin(g[5]), -sin(g[5])-sin(g[6])- (el +e2), el-cos(q[6]) -e!

93



cos(g[5])-al-sin(q[5])-e2-cos(q[5]) +e2-cos(q[6])-e4-sin(q[5]), -cos(q[5])-sin(gq
[6]): (el +e2)],
[sin(g[5])-sin(g[6]),cos(g[6]), cos(g[5]) sin(g[6]), el-cos(q[6])+ e2-cos(q[6]) +al
-cos(q[6])-sin(q[S])+e4-cos(q[6])~sin(q[5])—e]-cos(Z-q[6])-cos(q[S])—eZ-cos(2-q
[6])-cos(q[5]), -sin(q[6])-(al +e4 —al-cos(q[5])-e4-cos(q[5])+el-sin(g[5])+e2
-sin(q[5])), al-cos(q[5])-cos(g[6]) -e4-cos(q[6])-al-cos(q[6])+ e4-cos(g[5])-cos(g
[6])+el-cos(2-q[6])-sin(g[5])+e2-cos(2-q[6])-sin(g[5]) ]

cos(q[6])-sin(g[5]), -sin(g[6]), cos(g[5]) -cos(g[6]), -sin(q[6]) (el +e2 +al-sin

(q[5]) +e4-sin(g[5])-2-el-cos(q[5])-cos(g[6]) -2-e2-cos(g[5]) -cos(q[6])), (2

-(sin(-q%))z—1)-(2~a1~(sin(ﬂ%J)2+2-e4~(sin(-q%))2+e1-sin(q 5])
+22'sin(q SDJ, -sin(q[6])-(al-cos(q[5])-e4 —al +e4-cos(q[5])+2-el-cos(g[6])

-sin(g[5]) +2-e2-cos(g[6])-sin(g[5])) ]
[0, 0,0, cos(¢[5]),0, -sin(q[S])],
[0, 0,0, sin(g[5]) -sin(q[6]), cos(g[6]), cos(q[5]) -sin(g[6]) ]

[0, 0,0, cos(¢[6]) -sin(g[5]), -sin(q[é]),COS(q[S])~c08(q[6])”:

> a[6,5]1:=[[1,0,0,0,2-(el +e2)-((cos(q[61))*-1), -sin(2-q[6])- (el +¢2)],
[0, cos(2:g[6]), sin(2-¢[6]), (cos(2-q[6]) -cos(4-q[6]))- (el +e2),0,0],

[0, -sin(2-g[6]), cos(2:¢[6]), - (sin(2-g[6]) -sin(4-g[6]))- (el +e2),0,0],
[0,0,0,1,0,0],

[0,0,0,0,cos(2-¢[
[0,0,0,0, -sin(2-¢
0

(=)}
o\\_:

), sin(2-¢[61)],
1), cos(2-¢q[61)]]:

—

> a[6,6] =

o O = O O O
S = O O O O
- o o o o O

0
1
0
0
0
0

S O O o o ==

S O o = O



Iv IIv L]

v

vy

| >

>4

MO

1

a, 0 0 0 0 0
a, | ay, 0 0 0 0
azy az, a33 00 0
Ay G4 43 444 0 0
0

e 1 Gspg By Cund GE

Qs 1 %2 %3 %4 % s %6

[> #Transformed inertia matrices for the ith link

= [ [ml, 0,0,0, ml-r3c, m]-rZC],
0,ml,0, -ml-r3c0, mI~rlc],
0,0, ml, -ml-r2c, -ml-rlc, 0],
e A L 24 p2
0, -ml-r3c, -ml-r2c, T sml-|3-rI"+hl"|,0,0],
: e o 2 ang?
ml-r3c, 0, -ml-ric, 0, 12 eml-|3-rl”+hl"|,0],

ml-r2¢c, ml-ric, 0, 0, 0, %-ml-ﬂzH :

> M02 = HmZ, 0,0,0,ml- (el +r5c), ml-r4c],

0,m2,0, -ml-(el +r5c), 0, 0],
0,0, m2, -ml-rdc, 0,0],
1 2
0, -ml-(el +r5c), -ml-rdc, E~m2- 302 +h2 ,0,01,
ml- (el +r5¢),0,0,0, %~m2- [3-r22+h22),0],

ml-rdc, 0,0,0,0, %-mZ-ﬁz” :
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> MO3 :

= ||m4,0,0,0, m4- (el +e2),0

> MO5 :

>

|
S O O o o ©
o ©O O ©oO o o
S O O O o ©
S O ©O o o o
SO ©O O o o o
S O O o o o

i

0,m4,0, -m4-(el +e2),0, m4-(al — réc) ],
0,0, m4,0, -m4-(al —réc), 0],

0, -m4- (el +e2),0, %-m4~r42, 0, o],

md- (el +e2),0, -m4- (al —réc), 0, 11—2-m4- (3~r42 +h42), o],

0, m4- (al —réc), 0,0, 0, %2 -m4- (3-r42 +h42)] :

S O ©O ©o o ©
S O O o o ©
S O ©O o o o

|
oS O ©O o o o
S O ©O ©o o o
S O O o o ©

= [|m6,0, 0,0, m6- (el +e2), 0],

0, m6,0, -m6- (el +e2),0,m6-(al +e4+r7c)

i

0,0, m6,0, -m6-(al +e4 +r7c), 0],

L
2

mb6- (el +e2),0, -m6-(al +e4 +r7c), 0,

0, -m6- (el +e2),0, m6-r62, 0, 0],

1
12
0, m6- (al +ed +77¢),0,0,0, % o (3-r62 +h62) ” :

i (3-r62 +h62), o],

;> MO = table([MO1, M02, M03, M04, M05, M06]) :

| >
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v IIv “V“V "V

#Elements for dynamics equation

#felements of inertia matrix

n[1,1]
= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( &l “
all, 17°7), Mo[11), a[1,1]), &), 1=max(1, 1) ..6) :
n[1,2]
= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( &l =
Lall, 17°7), Mor11), all,21), &), 1=max(1,2) ..6) :
n[1,3]
= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( &l il
Lall, 17°7), Mor11), all,31), &), 1=max(1, 3) ..6) :
n[1,4]
= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( &l al
Lall 17°7), MoL1Y), a1, 41), &), 1=max(1,4) .6) :
]
= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( &l ol
all, 1]"/”7),M0[1]),a[1,5]),55),1=max(1,5) .6)
n[l,6]
= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( &l 0
La[l, 17°7), Mo[17), a[1,61), &6), 1=max(1, 6) ..6) :

(Jl

n[l,

n[2,1 ]
= add (Multzply( VectorMatrlxMultzply( VectorMatrlxMulttply( VectorMaterMultlply( &
La[,217°7), Mot11), all, 11), &), 1=max(2, 1) ..6) :
n(2,2]
= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectarMatrixMultiply( §Z%T
,all,21°7), Mot11), all,21), &), 1=max(2, 2) ..6) :
n[2,3]
= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( &%T
La[l,217), MoL11), a1, 31), &), 1=max(2, 3) .6) :
n[2,4]
= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( &%T
Lall, 2177), Mo[1]), a[l,4]), &), 1=max(2,4) .6) :
n[2,5]
= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( &
,all,217), Mo[11), all, 51), &), 1=max(2, 5) ..6) :
n[2,6]

%T

%T
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= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( @%T
all,27°7), Mo[11), a[1,6]), &), 1=max(2, 6) .6) :

n[3,1]

n(3

= add ( M ultiply( VectorMatrixMultiply( VectorMatrixMultipl y( VectorMatrixMultipl y( & e

La[l,317°7), Mor11), all, 11), &), 1=max(3, 1) ..6) :
2]

%
= add ( Multiply( VectorMatrixMultiply( VectorMatrixMultiply( Ve ectorMatrixMultiply( & !

,a[1,3]%T),M0[1]),a[1,2]),52),1=max(3,2) .6)

n[3,3]

= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( §S%T

,a[l,31°7), Mor11), al1,31), &), 1=max(3, 3) ..6) :

n(3,4]

0,

= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( & o

,a[l,31°7), Mo[11), a[1,4]), &), 1=max(3, 4) ..6) :

n[3,5]

n[3,

= add ( Mi ultiply( VectorMatrixMultiply( VectorMatrixM ultiply( VectorMatrixM ultiply( & T

La[l,3777), MoL11), a1, 51), &), 1=max(3, 5) .6) :
]

O\

%
add ( Multipl y( VectorMatrixMultiply( VectorMatrixMultipl, y( VectorMatrixMultipl y( & J

afl, 3]”) MO[11), a[l,61), &), 1=max(3, 6) ..6) :

n(4,1]

%T
= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( &

,a[l,47°T), Mo[11), a[l,11), &), 1=max(4, 1) ..6) :

n(4,2]

= add ( Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( <§4%T

,a[l,47°T), Mo[11), a[1,2]), &), 1=max(4,2) .6) :

n(4,3]

= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrbcMultiply( §4%T

all,47°7), Mo[11), a[1,31]), &), 1=max(4, 3) ..6) :

n(4,4]

= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( 54%T

all,47°7), MO[1]), a[1,4]), &), 1=max(4,4) .6) :

n[4,5]

%
= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( & J

all,47°7), MO[11), a[1,51), &5),1=max(4, 5) ..6) :

n(4,6]
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= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( 64%T
all,47°7), Mo[11), a[1,6]), &), 1=max(4, 6) .6) :

n[5,1]

n[s

= add ( M ultiply( VectorMatrixMultiply( VectorMatrixMultipl y( VectorMatrixMultipl y( & o

La[l,51°7), Mor11), all, 11), &), 1=max(5, 1) ..6) :
2]

%
= add ( Multiply( VectorMatrixMultiply( VectorMatrixMultiply( Ve ectorMatrixMultiply( & !

,a[z,SJ%T),MOU]),a[z,2]),52),1=max(5,2) .6)

n[s,3]

= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( §5%T

,a[l,51°7), MoL11), al1,31), €3), 1=max(5, 3) ..6) :

n[5,4]

0,

= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( & i

,a[l,517°7), Mo[11), a[1,4]), &), 1=max(5, 4) ..6) :

n[5,5]

n[5,

= add ( Mi ultiply( VectorMatrixMultiply( VectorMatrixM ultiply( VectorMatrixM ultiply( &5 o

Lall,5177), MoL1Y), a1, 51), &), 1=max(5, 5) .6) :
]

O\

%
add ( Multipl y( VectorMatrixMultiply( VectorMatrixMultipl, y( VectorMatrixMultipl y( & J

afl, 5]”) MO[11), all,61), &), 1=max(5, 6) ..6) :

n[6,1]

%T
= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( &

,a[l,61°T), Mo[11), a[l,11), &), 1=max(6, 1) ..6) :

n[6,2]

= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( <§6%T
,all, 61°7), MO[11), a[1,2]), &),1=max(6,2) ..6) :

n[6,3]

= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrbcMultiply( §6%T

all, 61°7), Mo[11), a[1,31]), &), 1=max(6, 3) ..6) :

nl[6,4]

= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( 56%T

all,617°7), MO[1]), a[1,4]), &), 1=max(6,4) ..6) :

n[6,5]

= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( 66%T

all,617°7), MO[11), a[1,51), &5),1=max(6, 5) ..6) :

n[6,6]

99



#Elements of Coriolis mstrix

0[1,1]]==6)add(((diﬁ"(n[1 1], q[k])

o[l, 2]l —6add ((diff (n[1,2], q[k]) +diff (n[1, k], q[2])
= )

o[1,3] = add(((diff (n[1, 3], q[k])
=l..6)

o[l,4] = ((diff (n
=1.6)

o[1,5] =
=1. 6)

o[1,6] = add(((diff (n[1, 6], q[k])
=l..6)

o0[2,1] = add(((diff (n[2, 1], q[k]) +diff (n[2, k], q[1])
0[2,2] = add(((diff (n[2,2], q[k])
0[2,3] = add(((diff (n[2,
0[2,4] = add(((diff (n

0[2,5] = add(((diff (n[2

= add (Multiply( VectorMatrixMultiply( VectorMatrixMultiply( VectorMatrixMultiply( 56%T

=1..6):
=1.6):
=1..6):
1. q[k])
=1.6):
=1.6):

=1..6):

o[3, 1] = add(((diff (n[3,1], g

0[3,2]:

0[3,3] = add(((diff (n[3,3], q[k]) +diff (n[3, k], q[3])

o[3,

o[3,

o[3,

=1..6):
=1..6):

=1.6):
4] == add(((diff (n[3, 4],
=1.6):
51 = add(((diff (n[3, 5],
=1.6):
6] = add( ((diff (n[3,6
=1.6):

((diff (n 1, qlk])

51, qlk])

qlk])
qlk])

((diff (n[4, 1], q[k])

+diff (n[1,k1, q[1])

,a[l,61°7), Mo[1]), a[1,61), &6),1=max(6, 6) ..6) :

+diff (n[1, k], q

qlkl) +diff (n[1, k
add(((diff (n[1, 5], q[k]) +diff (n[1, k], q[S])

+diff (n[1, k],

+diff (n[2, k1, ¢[2])

31, qlk]) +diff (n[2, k], q[3])

+diff (n[2, k],

+diff (n[2,

1) +diff (n[3, k],

+diff (n[3,

+diff (n[3, k],

k1) +diff (n[3, k],

+diff (n[4, k],

+diff (n

k1, q[5])
0[2,6] = add(((diff (n[2, 6], q[k]) +diff (n[2, k], q[6])

= add(((diff (n[3,2], q[k]) +diff (n[3, k], q[2])

k], q[4])
q[5])
q(6])

—diff (n[k 1
—diff (n[k, 2], q[1]))

—diff (n[k, 4],

q[6]) —diff (n[k, 6],

—diff (n[k, 5],

—diff (n[k, 6], q[2]))-Dqt[k]), k

—diff (n[k, 6],

q[1]) —diff (n[k, 1],

1. q[1]))-Dqt[k]), k
-Dqt[k]), k
—diff (n

q[1]))-Dqt[k]), k

q[11))-Dqt[k]), k

—diff (n[k, 5], q[1])) -Dqt[k]), k

q[1]))-Dqt[k]), k

—diff (n[k, 11, q[2])) -Dqt[k]), k
—diff (n[k, 2]
—diff (n[k.

»q[21)) -Dqt[k]), k
3),q[2]))

q[2]))

-Dqt[k]), k
—diff (n "Dqt[k]), k

q[2])) -Dqt[k]), k

—diff (n q[3])) -Dqt[k]), k

—diff (n[k, 2], q[3]))-Dqt[k]), k
—diff (n[k, 3], q[3])) -Dqt[k]), k
—diff (n[k, 4], q

—diff (n[k, 5],

[31))-Dqt[k]), k
q[31))

q[3])) -Dqt[k]), k

“Dqt[k]), k

q[4]))

q[4]))

"Dqt[k]), k

—diff (n "Dqt[k]), k
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IV“V“V "V “V IIV “V “V “V "V“V L]

o[4,3] = add(((diff (n 1, q[k]) +diff (n
=1.6):

0[4,4]1 ==6add(((diﬁ”(n[4,4],q[k]) +diff (n[4, k], q[4])
=1.6):

0[4,511 :=6)add(((diff(n[4, 51, qlk]) +diff (n[4, k], q[5])

o[4,6] = add(((diff (n[4, 6], q[k])
=1..6):

+diff (n[4, k], q[6])

015, 11 = add({(dif (n[5, 1} g[41) +dif (15, 1, L1

0[5, 2) = ad(((dif (15, 2} 414

o[5,3]: — a;Z'd ((diff (
=1:6)%

+diff (n[5, k1, [2])

n[5,3), qLk]) +diff (n[35, k], q[31])

0[5,4] = add(((diff (n 1) +diff (n[5, k]
=1.6):

0[5,5]1 =6 ((diff (n 1) +diff (n[5, k1, q[51)
= )i

0[5,f]1 =6) ((diff (n[S, 61, q[k]) +diff (n[5, k], q[6])

0[6, 1] = add(((diff (n[6, 1],
=1.6):

0[6,2]l ==6 add(((diff (n[6, 2], q[k]) +diff (n[6, k], q[2])
=1..6):

0[6,3] = add(((diff (n[6,3], ¢
=1..6):

0[6,4] = add(((diff (n[6,
=1.6):

0[6,5] == add( ((diff (n
=1..6):

qlk]) +diff (n[6,k], q

1) +diff (n[6, k], q

41, q[k]) +diff (n[6, k],
[6,5], qlk]) +diff (n

q[4])

6 k],

0[6,6]] —6add (diff (n 1) +diff (n[6, k], q[6])

=1.6):

#Elements of gravity vector

gl = MatrixVectorMultzply( ROI/T), g0) :

g2 = combine(MatrixVectorMultlply( (R OZ%T), gO), trig) :

g3 = combine(MatrixVectorMultiply( (R03/"T) ks g0), trig) >

g4 = combine(MatrixVectorMultiply( (R04/”T) 5 gO), trig) :

g5 = combine(MatrixVectorMultiply( (R05%T) 5 gO), trig) :
= combme(MatrszectorMultlply( (R06%T) 2 gO), trig) :

##############################

#Inertia matrix

—diff (n[k, 3],

—diff (n[k, 6],

—diff (n[k, 6],

q[4]))

—diff (n[k, 4], q[4])) -Dqt[k]), k

—diff (n[k, 5], q[4])) -Dqt[k]), k

—diff (nlk, 11, q[51])) -Dqtlk]), k
— diff (n[k, 2]
—diff (n[k, 3],
—diff (n[k, 4]
— diff (n[k, 5]

—diff (n[k, 6], 4[5]))-Dqt[k]), k

q[51))
,q[5]))

—diff (n[k, 1], 4[6]))

—diff (n[k, 2], q[6]))-Dqt[k]), k

—diff (n 1.q[6])) Dqt[k]), k
—diff (n[k, 4], q[6])) -Dqt[k]), k
—diff (n q[6]))-Dqt[k]), k

"Dqt[k]), k

q[4])) -Dqt[k]), k

,q[5]))-Dqtlk]), k
-Dqt[k)), k
-Dqt[k]), k

»q[51)) -Dqt[k]), k

-Dqt[k]), k

q[6])) -Dqt[k]), k
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Pt Pig Big By g By g
Mg 1 M2 Mg 3 My g My s My
Ba'y M35 N4 ity 3 N3 5 Mg
By 1 Mg M43 Nyq Nys Ny
N5 1 M52 Ns 3 Ns 4 N5 5 N5 ¢

Mg 1 Ne2 N6 3 Mg 4 N5 Ng 6

:> #Coriolis matrix

914 91 8 91,53 914 91,5 94,6
999 5 95 5 954 9505 O9¢
937, 93 9t 193 3 Yaig. 9415 93,6
041 942 043 044 945 946
05,1 95,2 953 054 055 056

9,1 9%,2 9,3 %.,4 %5 9,6

:> #Gravity vector
| > GO0 := (gl, g2, g3, g4,g5,g6) :

;> #Matlab conversion

| > with(CodeGeneration) :
| > #Matrix M

> nll

> nl2
> nl3
> nl4
> nl5

» nlé6
>

> n21l
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> n22
> n23
> n24
> n25

» n26
>

> n31
> n32
> n33
> n34
» n35

» n36
BS

> n41
> n42
> n43
» nd4
> n45

» n46
>
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» n51
> n52
» nS3
> n54
» nSS

» nsS6
>

> n6l
> n62
> n63
> n64
> n65

» n66

[> #Matrix C

> oll
> o012
> o013
> ol4
> ol5

> 016
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[>
> 021

> 022
> 023
> 024
> 025

» 026
B8

> 031
> 032
> 033
> 034
> 035

» 036
>

> 041
> 042
> 043
> 044

> 045
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> 046
>

> 051
> 052
> 053
> 054
> 055

> 056
B8

> 061
> 062
> 063
> 064
> 065

> 066

[> #Gravity vector
> gl
> g2
> g3

> g4
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> g5

> g6
S
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