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Name S/N Name S/N Name S/Negys54u1/2 12.04/17.29 egys54s1/2 9.62/13.50 egys54a1/2 12.04/17.29egys55u1/2 11.35/16.79 egys55s1/2 8.97/13.06 egys55a1/2 9.22/13.41egys64u1/2 12.05/17.31 egys64s1/2 9.82/13.79 egys64a1/2 9.99/14.00egys65u1/2 11.36/16.80 egys65s1/2 9.16/13.33 egys65a1/2 9.35/13.59egym54u1/2 6.40/11.74 egym54s1/2 5.05/9.65 egym54a1/2 5.53/10.27egym55u1/2 5.96/11.41 egym55s1/2 4.58/9.39 egym55a1/2 4.97/9.89egym64u1/2 6.40/11.74 egym64s1/2 5.08/9.68 egym64a1/2 5.42/10.12egym65u1/2 5.97/11.41 egym65s1/2 4.54/9.34 egym65a1/2 4.89/9.78egyl54u1/2 12.69/16.50 egyl54s1/2 12.69/16.50 egyl54a1/2 12.64/16.21egyl55u1/2 15.05/21.38 egyl55s1/2 12.16/16.17 egyl55a1/2 12.09/15.89egyl64u1/2 15.59/21.91 egyl64s1/2 12.67/16.50 egyl64a1/2 12.56/16.21egyl65u1/2 15.05/21.40 egyl65s1/2 12.13/16.16 egyl65a1/2 12.05/15.91tris54u1/2 33.05/33.72 tris54s1/2 29.18/29.34 tris54a1/2 23.12/22.82tris55u1/2 33.05/33.72 tris55s1/2 28.41/28.64 tris55a1/2 22.84/22.61tris64u1/2 33.06/33.74 tris64s1/2 29.22/29.36 tris64a1/2 23.85/23.49tris65u1/2 32.55/33.34 tris65s1/2 28.43/28.65 tris65a1/2 23.42/23.16trim54u1/2 26.40/27.54 trim54s1/2 23.64/24.38 trim54a1/2 18.36/18.67trim55u1/2 25.63/26.87 trim55s1/2 23.01/23.84 trim55a1/2 17.73/18.14trim64u1/2 26.31/27.46 trim64s1/2 23.62/24.38 trim64a1/2 18.40/18.78trim65u1/2 25.58/26.80 trim65s1/2 23.09/23.94 trim65a1/2 17.80/18.30tril54u1/2 36.70/37.82 tril54s1/2 28.15/27.11 tril54a1/2 26.34/26.08tril55u1/2 36.15/37.32 tril55s1/2 27.67/26.68 tril55a1/2 25.94/25.74tril64u1/2 36.70/37.83 tril64s1/2 28.22/27.14 tril64a1/2 26.60/26.49tril65u1/2 36.15/37.33 tril65s1/2 27.82/26.77 tril65a1/2 26.25/26.20Table 1. Signal-to-noise ratios for various parameter choices, at 25:1 compression.REFERENCES1. R. R. Coifman, Y. Meyer, S. R. Quake, and M. V. Wickerhauser, \Signal processing and compression withwavelet packets," in Progress in Wavelet Analysis and Applications, Y. Meyer and S. Roques, eds., Proceedingsof the International Conference \Wavelets and Applications," Toulouse, France, 8{13 June 1992, pp. 77{93,Editions Frontieres, Gif-sur-Yvette, France, 1993.2. R. Devore, B. rn Jawerth, and B. J. Lucier, \Image compression through wavelet transform coding," IEEETransactions on Information Theory 38, pp. 719{746, March 1992.3. J. Lu, V. R. Algazi, and J. Robert B. Estes, \Comparative study of wavelet image coders," Optical Engineering35, pp. 2605{2619, September 1996.4. P. Mathieu, M. Barlaud, and M. Antonini, \Compression d'images par transform�ee en ondelette et quanti�cationvectorielle," Traitment du Signal 7(2), pp. 101{115, 1990.5. O. Rioul, \On the choice of wavelet �lters for still image compression," in Proceedings of ICASSP'93, vol. V,pp. 550{553, IEEE Press, 1993.6. M. V. Wickerhauser, \Comparison of picture compression methods: Wavelet, wavelet packet, and local cosinetransform coding," in Wavelets: Theory, Algorithms, and Applications, C. K. Chui, L. Montefusco, and L. Puc-cio, eds., Proceedings of the International Conference in Taormina, Sicily, 14{20 October 1993, pp. 585{621,Academic Press, San Diego, California, 1994.7. P. L. Donoho, R. A. Ergas, and J. D. Villasenor, \High-performance seismic trace compression," in Proceedingsof SEG, pp. 160{163, 1995.8. E. Reiter and M. Hall, \A comparison of multi-dimensional wavelet compression methods," in Proceedings ofEAGE, 1996.9. M. V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software, AK Peters, Ltd., Wellesley, Mas-sachusetts, 1994.
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0

5

10

15

20

25

30

35

40

0 0.0050.010.0150.020.0250.030.0350.040.0450.05

S
/N

 in
 d

B

Fraction of file size

Trinidad

"tril55u1"
"tril55u2"

0

5

10

15

20

25

30

35

40

0 0.0050.010.0150.020.0250.030.0350.040.0450.05

S
/N

 in
 d

B

Fraction of file size

Trinidad

"tril55s1"
"tril55s2"

0

5

10

15

20

25

30

35

40

0 0.0050.010.0150.020.0250.030.0350.040.0450.05

S
/N

 in
 d

B

Fraction of file size

Trinidad

"tril55a1"
"tril55a2"Figure 8. Uniform, subbanded, and adjusted quantization applied to long �lters to 5/5 levels for the Trinidadsurvey data. 4. ComparisonsIn this study we did not consider other wavelet representations, such as local cosines, best orthogonal bases, ormultiwavelets. In addition, we did not look at di�erent encoding schemes. These two topics will be the subject of afuture paper.We chose an arbitrary compression ratio (25:1) and estimated the signal to noise ratio after compression by the36 various methods and the two measures of distortion. This was done by �tting the least-squares line through thepairs (�le fraction, S/N) for each parameter choice, then evaluating that linear function at the �le fraction 0.040.The results are given in Table 1 below.It should be noted that the two distortion criteria used here are not perfectly correlated with visible distortion.Thus, an individual subject may prefer one of the lower signal-to-noise reconstructions, obtained through visibility-adjusted quantization. Another measure of quality might be the statistics of the residual, which ideally should bewhite noise. The residual produced by subband-variance-weighted or adjusted quantization, though more energetic,in some cases has fewer visible features of the original signal. It is di�cult to reconcile these conicting notions ofquality without precise knowledge of the ultimate \customer" for the data, be he man or machine. Our goal thereforeis to be unbiased, that is, to make the fewest assumptions about the customer's vision and intended use for the data.5. ConclusionThis study showed results of di�erent 2-D wavelet image coders on two seismic data sets. We used a comprehensiverepresentation of �lter lengths, decomposition levels, quantization schemes, and compression ratios. The resultsshow that, for both data sets used, we get the least average error at a given compression by using long �lter lengths,moderate decomposition levels and variance weighted subband quantization scheme adjusted with a subband visibilitymatrix. More speci�cally, the best combination seems to be the (9; 7) biorthogonal �lter decomposition to levels(6; 4) in time and trace number, coupled with uniform quantization. These parameter choices are very signi�cantfor the design of e�cient 3-D wavelet image coders for fast compression of 3-D seismic data. This study is by nomeans exhaustive; future studies are envisioned to evaluate compression using local cosines, best orthogonal bases,multiwavelets, and di�erent encoding schemes.
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Figure 2. Density plot of several traces from the Trinidad survey.



Figure 1. Density plot of several traces from the Egypt survey.



several other choices of visual adjustment array. As to the subband variance, subbands with small variance as forinstance high frequency subbands, are assigned coarse bin widths. In contrast, low frequency subbands are assigned�ne bin widths. In this study, the non-zero bin width is inversely proportional to the logarithm of the subbandvariance.The zero bin width at each subband is assigned 1.2 times the value of the non-zero bin width and the reconstructedvalue from each subband non-zero quantization bin corresponds to a value slightly smaller than the bin midpoint value.In our study we have all three scalar quantization techniques described above, namely scalar uniform quantization,variance-weighted quantization and variance weighted quantization with a sub-band visual adjustment array.2.3. Lossless Encoding TechniquesIn this step, we attempt to map the set of quantized coe�cients to a set of symbols, so that the total number of bitsper symbol gets minimized. The encoding process works with the the probabilities of the quantized coe�cients. Ifthese coe�cients are stationary, then Hu�man coding14 plus zero-run-length coding can be e�ciently used. However,if these coe�cients are not stationary, then more sophisticated coding such as arithmetic coding have to be used. Inthis study we used Hu�man coding plus zero-run-length coding.3. Experiment ParametersWe designed this compression comparison experiment so that it accomodates some seismic data variety and a goodselection of compression parameters. In terms of seismic data, we worked with two data sets, all of them two-dimensional slices from three-dimensional o�shore surveys, one from Egypt and one from Trinidad. These two datasets are displayed in Figures 1 and 2, respectively. Which data set was used may be determined from the �rst threeletters of the plot label. Egyptian data is named egy*****, while Trinidad data is named tri*****.In terms of compression parameters, we used three previously described �lters.12 All three �lters are biorthogonaland come in quadruplets, with an analysis pair and its conjugate synthesis pair. The short, medium and long analysis�lter pairs have (5; 3), (8; 4), and (9; 7) taps, respectively. In fact the longest �lter is the same used by the FBI for�ngerprint compression. Which �lter set was used can be determined from the fourth letter in the plot label;`***s****' stands for short or (5; 3), `***m****' stands for medium or (8; 4), and `***l****' stands for long or(9; 7).We used four di�erent levels of decomposition: (5; 4), (5; 5), (6; 4), and (6; 5), with the �rst number representingthe time decomposition and the second representing the trace decomposition. Which levels were used can be de-termined from the two-digit number in positions �ve and six of the plot label; `****54**' stands for (5; 4), and soon. Finally, we employed three di�erent quantization schemes. The �rst scheme computes a uniform zero and non-zerocoe�cient bin, while the other two perform variance weighted subband quantization. The di�erent between theselast two quantization schemes is that the �rst assumes a at subband visibility model, while the second quantizationscheme allows for an adjusted visual model which increases the bin widths for the high resolution subbands. Whichof these was used can be deduced from the seventh character in the plot label: `******u*' stands for uniformquantization, `******s*' stands for a at subband model, while `******a*' stands for an adjusted visual model.Therefore, for each data set we have three di�erent �lter choices, four di�erent decomposition levels and threedi�erent quantization schemes, resulting in 36 di�erent data compressed and decompressed �les. For each of the 36resulting compressed and decompressed �les we compute two signal-to-noise ratios (S/N, in dB) using the followingformulas:(1) Abs. S/N = 20 log10 Xk jckj=Xk j�ckj! ; (2) MSE S/N = 10 log10Xk jckj2=Xk j�ckj2:Which formula was used to �nd distortion may be determined fom the last digit in the plot label: `*******1' standsfor formula (1), while `*******2' stands for formula (2).We then plot these S/N ratios versus the fractional �le size. These plots are then compared for each of the threeoriginal data sets and the parameters leading to the best compression results are agged. Several of the 72 plots areshown in Figures 3 through 8, for comparison.



2. Wavelet Image CodingIt is well known that wavelet image coding consists of three main parts: wavelet transform, quantization, andredundancy removal. This section is mostly a review of wavelet image coding schemes and in particular of theparameter choices used in wavelet transform and quantization. In this study we have not looked at di�erent encodingschemes like arithmetic coding. This is an issue which should be further investigated in the near future. The subjectof wavelet transform coding has been well referenced in a lot of journal articles, thus in this review section, we referthe interested reader to other papers and texts.92.1. Wavelet transform schemesIn this study we work only with 2-D separable wavelet transform, which means that we only have to concernourselves with their corresponding 1-D wavelets and scaling functions. There are two families of wavelets, orthogonaland biorthogonal. Orthogonal wavelets have several interesting properties. First, they provide an orthonormal basissystem for square integrable functions, i.e., �nite-energy signals. Second, they can have compact support, or in�ltering terms they can have a �nite impulse response, thus allowing for very e�cient computer implementation.Third, we need only one FIR �lter function to be de�ned, and that is the scaling function, the mother wavelet isdetermined from the scaling function through a quadrature mirror �lter relation.10 Another study5 has indicatedthat optimum image compression for still images is obtained with �lter lengths ranging between 8 and 10. However,the compactly supported wavelets have asymmetric �nite impulse response. As a result, their phase is non-linearwhich in turn can cause artifacts in the decompressed images. One way to avoid this problem in orthogonal �lters isto use orthogonal wavelets which are not compactly supported. Realistically, since we want to work with FIR �lterswe have to work with a long subset of the noncompactly supported wavelet coe�cients, which are fast decaying, atthe expense at more CPU time. This is not the preferred way to achieve computationally e�cient compression. Theother wavelet choice, biorthogonal wavelets, are both compactly supported and have symmetric impulse response.Besides symmetry, another major di�erence between orthogonal and biorthogonal wavelets is biorthogonal waveletsuse one pair of functions for the forward wavelet transform and one pair of �lters for the inverse transform. The pairof the forward transform �lters are not orthogonal to each other, but they are orthogonal to the pair of the inversewavelet transform �lters. The computational cost incurred by using biorthogonal wavelets instead of orthogonalwavelets is small, with the added advantage of a linear phase �lter response. For both orthogonal and biorthogonalwavelets there are fast computational algorithms,11 which allow very e�cient wavelet transform computation.In this study we have used biorthogonal �lters with di�erent �lter lengths. We used three di�erent �lters,short, medium and long. The short, medium and long �lters had (5; 3), (8; 4), and (9; 7) �lter lengths for both theforward and the inverse transform.12 The long �lter is the same one used by FBI for �ngerprint compression anddecompression and identi�cation.13 We also used di�erent combinations for wavelet transform decomposition levels.In particular we used four combinations for the wavelet decomposition in time and space: 5/4, 5/5, 6/4 and 6/5.Each of these decomposition level pairs was combined with the three di�erent �lters in a search for the optimumcompression scheme.2.2. Quantization SchemesThe result of applying the wavelet transform is a set of coe�cients of which most have very small amplitudes andonly few have signi�cant values. In order to get compression, we map the set of wavelet transform coe�cients to anew set of discrete values. This process of mapping from a continuous set of real values to a set of discrete values iscalled quantization.In general there are two kinds of quantization, �rst scalar quantization and second vector quantization. In scalarquantization, each wavelet coe�cient or sample in general is quantized. In vector quantization several samples arequantized together and in general, vector quantization is more powerful than scalar quantization. In this paper wework with scalar quantization. There are several sub-types of scalar quantization. The �rst type is uniform scalarquantization. In this quantization, we assign two bin widths for all samples, or in this case wavelet coe�cients, onefor the signi�cant sample values and one for the close to zero values. The second type is scalar quantization, withdi�erent quantization bins per subband. The non-zero bin width per subband is determined by two factors, �rst anadjustable subband array related to human vision, and second the subband coe�cient variance. The adjustable arraycan be user de�ned. The easiest choice is to have a unit array across all subbands. In this study we have looked at



Comparison of Wavelet Image Coding Schemes for Seismic DataCompression�Anthony Vassilioua and Mladen Victor WickerhauserbaAmoco EPTG, 4502 E. 41 St., Tulsa, OK 74135bDept. of Math., Washington University, St. Louis, MO 63130ABSTRACTWavelet transform coding image compression is applied to two raw seismic data sets. The parameters of �lter length,depth of decomposition, and quantization method are varied through 36 parameter settings and the rate-distortionrelation is plotted and �tted with a line. The lines are compared to judge which parameter setting produces thehighest quality for a given compression ratio on the sample data. It is found that long �lters, moderate decompositiondepths, and frequency-weighted, variance-adjusted quantization yield the best results.1. IntroductionWavelet image compression has been a very active research subject during the last few years.1{6 However, applicationof wavelet image coding to seismic data compression has only started very recently.7,8 Seismic data compressionpresents more di�culties than still image compression, due to certain image discontinuities (such as residual statics)and large image amplitude imbalances. Nevertheless, seismic data compression has been applied with good success inseveral case studies, achieving compression ratios of 10:1 to 50:1 for 2-D seismic data and 30:1 to 150:1 for 3-D seismicdata. Since the subject of seismic data compression is fairly new, there has not been up to now any comprehensivecomparative study of wavelet image coding for 2-D seismic data compression. The unavailability of such study makesit very hard to design e�cient wavelet image coders for 3-D seismic data compression, where there are signi�cantmany more choices of wavelet coding options. Due to these reasons, we studied several wavelet image coders andtheir behavior in 2-D seismic data compression.Since there are many forms that seismic data can be available, for instance raw shot gather data, common-o�setdata, etc., in this study we are working with only one particular form of seismic data. This form, is called commondepth point gathers (CDP), and is obtained from sorting in almost real time, raw shot gather data, according totheir common depth or reection point. Assuming that there are no signi�cant image discontinuities in the data,such as residual statics, e�ciently compressed CDP seismic data can then be transmitted via satellite during largeo�shore seismic 3-D surveys to the processing center. In the processing center the data are decompressed, qualitychecked and then processed through a typical seismic data processing ow. We have collected a set of about 100CDP gathers, from four di�erent areas of the world which have been compressed with several wavelet image coders.In this preliminary study, we use several of these from two of the areas.The class of compression algorithms which are explored in this project, use the separable discretewavelet transform(DWT) which is then followed by uniform, weighted, or frequency-adjusted quantization and zero-run-length plusstatic Hu�man coding. We examine the e�ectiveness of these algorithms for di�erent choices of parameters forwaveler transform coding and quantization. For each of these parameter choices and for each data set we compressthe data set using several compression ratios from 5:1 up to 100:1 and then we compute the actual bit rate achievedas well as the distortion in terms of the residual energy. We then present the composite results of bit rate versusdistortion for each parameter choice. The parameters which yield lower distortion bit rate at a given bit rate are thebest choices.This paper is organized as follows. Section II, reviews wavelet transform image coding by looking at severalchoices of wavelets and quantization schemes. In section III we describe the distortion measures employed in thisstudy. In section IV we present the results of the seismic data compression and we conclude this study with sectionV.�Research supported by NSF, AFOSR, Amoco Inc., and the Southwestern Bell Telephone Company


