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Abstract. In this paper we present an overview of the historical evolution of 
connected component labeling algorithms, and in particular the ones applied on 
images stored in raster scan order. This brief survey aims at providing a 
comprehensive comparison of their performance on modern architectures, since 
the high availability of memory and the presence of caches make some 
solutions more suitable and fast. Moreover we propose a new strategy for label 
propagation based on a 2x2 blocks, which allows to improve the performance 
of many existing algorithms. The tests are conducted on high resolution images 
obtained from digitized historical manuscripts and a set of transformations is 
applied in order to show the algorithms behavior at different image resolutions 
and with a varying number of labels. 
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1   Introduction 

Connected component labeling is a fundamental task in several computer vision 
applications. It is used as a first step in the task chain in many problems, e.g for 
assigning labels to segmented visual objects, and for this reason a fast and efficient 
algorithm is undoubtedly very useful. A lot of techniques have been proposed in 
literature in the past; most of them referred to specific hardware architectures to take 
advantage of their characteristics, but nowadays, modern architectures do not suffer 
anymore of such limitations that constitute a design priority of some of these 
algorithms. In this paper, a brief survey of traditional and new labeling techniques is 
presented and a comparison of some labeling techniques is reported in order to find 
out the real performances of these proposals on modern computer architectures.   

Moreover, Intel has released a precious set of libraries as an open source project 
named OpenCV. These libraries contain an implementation of all the main algorithms 
useful in computer vision applications and include two strategies for connected 
component analysis: a contour tracing (cvFindContours) followed by a contour filling 
(cvDrawContours), or a flood fill approach (cvFloodFill) which can be applied 
sequentially to all foreground pixels. We will also consider these two approaches in 
the comparison.  
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Beside an extensive review of labeling algorithms, the main contribution of this 
work is a new block based scanning strategy, which allows to substantially improve 
the performance of the most common class of algorithms, namely the raster scan one. 

We will exclude two wide classes of algorithms from our analysis. The first one is 
the class of parallel algorithms which has been extensively studied up to the first half 
of the ‘90s. These algorithms were aimed to specific massively parallel architectures 
and do not readily apply to current common workstations, which provide more and 
more parallelism (instruction level, thread level and so on), but substantially different 
from the parallelism exploited in those algorithms. The second class is given by 
algorithms suitable for hierarchical image representations (for example quadtrees) 
initially studied for accessing large images stored in secondary memory. We excluded 
them because the vast majority of images is currently stored in sequential fashion, 
since they can often be fully loaded in main memory. 

After formalizing the basic concepts needed, we review of some of the most used 
labeling algorithms, the newest ones and then we detail our proposal. The different 
algorithms performance are evaluated on a high resolution image dataset, composed 
of documental images with a large number of labels. Different modifications are 
performed to test these algorithms in several situations in order to show which is the 
most effective algorithm in different conditions. 

2   Neighborhood and Connectivity 

Two pixels are said to be 4-neighbors if only one of their image coordinates differs of 
at most one, that is if they share a side when viewed on a grid. They are said to be 8-
neighbors if one or both their image coordinates differ of at most one, that is if they 
share a side or a corner when viewed on a grid.  

A subset of a digitized picture, whose pixels share a common property, is called 
connected if for any two points P and Q of the subset there exists a sequence of points 

0 1, , , ,i n nP P P P P Q−= =… of the subset such that iP  is a neighbor of 1 ,1iP i n− ≤ ≤  
[1].  

The common choice in binary images, where the property of interest is to be part of 
the “foreground” with respect to the “background”, is to choose 8-connectivity, that is 
connectivity with 8-neighbors, for the foreground regions, and 4-connectivity for 
background regions. This usually better matches our usual perception of distinct 
objects, as in Fig. 1. 

a) b) c) 
 
Fig. 1. Example of binary image depicting text (a), its labeling considering 4-
connectivity (b), and 8-connectivity (c). 
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In binary images, the “labeling” procedure is the process of adding a “label” (an 
integer number) to all foreground pixels, guaranteeing that two points have the same 
label if and only if they belong to the same connected component.  

3   The evolution of labeling algorithms 

The problem of labeling has been deeply studied since the beginning of Computer 
Vision science. In the following we try to provide a historical view of the different 
approaches, discussing how they contributed to current approaches and if their 
purposes are still applicable to modern architectures. 

The first work proposed for image labeling date back to Rosenfeld et al. in 1966 
[1], and this can be considered the very classical approach to labeling. It is based on a 
raster scan of the image and, rather than generate an auxiliary picture, the 
“redundancies” of the labels are stored in an equivalences table with all the 
neighborhood references. The redundancies are solved processing the table by 
repeatedly using an unspecified sorting algorithm and removing redundant entries, 
consequently requiring an high amount of CPU power. Finally the resulting labels are 
updated in an output image with a single pass, exploiting the solved equivalences 
table. 

A problem of the original algorithm is the use of a second image to store labels and 
of another structure to store equivalences. To tackle this problem an improvement has 
been proposed by Haralick et al. [2]. This algorithm does not use any equivalences 
table and no extra space, by iteratively performing forward and backward raster scan 
passes over the output image to solve the equivalences exploiting only local 
neighborhood information. This technique clearly turns out to be very expensive 
when the size of the binary image to analyze increases. 

Lumia et al. [3] observe that both previous algorithms perform poorly on ’83 
virtual memory computers because of page faults, so they mix the two approaches 
trying to keep the equivalences table as small as possible, saving memory usage. In 

 
Fig. 2. Timeline showing the evolution of the labeling algorithms. 
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this algorithm a forward and a backward scan are sufficient to complete the labeling, 
but at the end of each row the collected equivalences are solved and another pass 
immediately updates that row labels. This suggests that four passes over the data are 
indeed used by this algorithm. The technique to solve label equivalences is left 
unspecified. 

Schwartz et al.[4] further explored on this approach, in order to avoid the storage 
of the output image, which would have required too much memory. Thus they use a 
sort of run length based approach (without naming it so), which produces a compact 
representation of the label equivalences. In this way, after a forward and a backward 
scan, they can output an auxiliary structure which can be used to infer a pixel label.  

Samet and Tamminen [5] are the first researchers who clearly named the 
equivalence resolution problem as the disjoint-set union problem. This is an important 
achievement, since a quasi linear solution for this problem is available: the so called 
union-find algorithm, from the name of the basic operations involved. The algorithm 
is executed in two passes. The first pass creates an intermediate file consisting of 
image elements and equivalence classes while the second pass processes this file in 
reverse order, and assigns final labels to each image element. Their proposal is 
definitely complex, since it also targets quad-tree based image representations and is 
aimed at not keeping the equivalences in memory. In particular in [6] a general 
definition of this algorithm for arbitrary image representations has been proposed. 

The Union-Find algorithm is the basis of a more modern approach for label 
resolution. As a new pixel is computed, the equivalence label is resolved: while the 
previous approaches generally performed first a collection of labels and at the end the 
resolution and the Union of equivalence classes, this new approach guarantees that at 
each pixel the structure is up to date. 

A relevant paper in this evolution is [7] where Di Stefano and Bulgarelli proposed 
an online label resolution algorithm with an array-based structure to store the label 
equivalences. The array-based data structure has the advantage to reduce the memory 
required and to speed up the retrieval of elements without the use of pointer 
dereferencing. They do not explicitly name their equivalences resolution algorithm as 
Union-Find, and their solution requires multiple searches over the array at every 
Union operation. 

In 2003, Suzuki [8] resumed Haralick’s approach, including a small equivalence 
array and he provided a linear-time algorithm that in most cases requires 4 passes. 
The label resolution is performed exploiting array-based data structures, and each 
foreground pixel takes the minimum class of the neighboring foreground pixels 
classes. An important addition to this proposal is provided in an appendix in the form 
of a LUT of all possible neighborhoods, which allows to reduce computational times 
and costs by avoiding unnecessary Union operations. 

In the same year, Chang et al. [9] proposed a radically different approach to 
connected components labeling. Their approach is an improvement of [10] and [11], 
and it is based on a single pass over the image exploiting contour tracing technique 
for internal and external contours, with a filling procedure for the internal pixels. This 
technique proved to be very fast, even because the filling is cache-friendly for images 
stored in a raster scan order, and the algorithm can also naturally output the connected 
components contours. 
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In 2005, Wu in [12] proposed a strategy to increase the performances of the 
Suzuki’s approach. He exploited a decision tree to minimize the number of 
neighboring pixels to be visited in order to evaluate the label of the current pixel. In 
fact in a 8-connected components neighborhood, often only one pixel is needed to 
determine the label of the new one. In the same paper, Wu proposed another strategy  
to improve the Union-Find algorithm of Fiorio and Gustedt [13] exploiting an array-
based data structure. For each equivalence array a path compression is performed to 
compute the root, in order to directly keep the minimum equivalent label within each 
equivalence array. 

In 2007, He (in collaboration with Suzuki) proposed another fast approach in the 
form of a two scan algorithm [14]. The data structure used to manage the label 
resolution is implemented using three arrays in order to link the sets of equivalent 
classes without the use of pointers. By using this data structure, two algorithms have 
then been proposed: in [15] a run-based first scan is employed, while in [16] a 
decision tree is used to optimize the neighborhood exploration and to apply merging 
only when needed. The He and the Chang proposals can be considered the state-of-
the-art methods for connected components labeling, being the latest evolution of two 
different approaches to solve the problem, and obtaining similar performances in 
terms of computation time. With the dataset used by He in [16], the Chang algorithm 
was shown to be  slightly slower. 

4   Speeding up neighbors computation 

The algorithms analyzed so far differ each other on the way neighboring pixels are 
analyzed, how many passes are performed and in the way the resolution of 
equivalences is managed. While the number of passes depends on the underline idea 
of the algorithm, and the label resolution is based on a limited amount of data 
structures and optimization proposed in literature, there is still something to say about 
the neighborhood computation. In [16], besides the efficient data structure used for 
label resolution, He proposed an optimization of the neighborhood computation 
deeply minimizing the number of pixel needed to access.  

In this paper, we provide another optimization for the neighboring computation 
based on a very straightforward observation: when using 8-connection, the pixels of a 
2x2 square are all connected to each other. This implies that they will share the same 
label at the end of the computation. For this reason we propose to logically scan the 
image moving on a 2x2 pixel grid. To allow this, we have to provide rules for the 
connectivity of 2x2 blocks. 

P Q R 

S X 
  
  

 
Blocks 

      
 c d e f  
 b y z   
 a x    

 
Pixels in blocks 



6      Costantino Grana, Daniele Borghesani, Rita Cucchiara 

Referring to the figure, we can define the following rules:  
• P is connected to X if c and y are foreground pixels 
• Q is connected to X if (d or e) and (y or z) are foreground pixels 
• R is connected to X if f and z are foreground pixels 
• S is connected to X if (a or b) and (y or x) are foreground pixels 

By applying these connectivity rules, we obtain two advantages: the first one is that 
the number of provisional labels created during the first scan, is roughly reduced by a 
factor of four, and the second is that we need to apply much less unions, since  
equivalences are implicitly solved within the blocks. Another advantage is that a 
single label is stored for the whole block. On the contrary the same pixel needs to be 
checked multiple times, but this is easily solved by the use of local variables and 
caching, and the second scan requires to access again the original image to check 
which pixels in the block require their label to be set. Overall the advantages greatly 
overcome the additional work required in the following stage. 

This method may be applied to different connected component labeling algorithms, 
and, depending from the algorithms, can improve performances from 10% to 20% 
based on the way they consider the neighborhood of the current pixel. 

5   Comparison 

The main focus of this comparison is to evaluate the performance of the algorithms 
under stress, that is when working with high resolution images with thousands of 
labels. Besides, we also tested their scalability, varying the image sizes and the 
number of labels. 

To this purpose, we produce three datasets coming from the binarized version of 
high resolution documentary images. The first dataset is composed by 615 images, 
with a resolution of 3840x2886 pixels. For each algorithm, a mean value of the 
processing times will indicate which one has the best overall performance. The 
second dataset is composed by 3,173 images derived by the first dataset by a sequence 
of 10 subsequent dilations with a 3x3 pixels square structuring element. In this way 
we preserve the image size (total amount of pixel processed) but we decrease the 

 
Fig. 3. Results of Test 1. 
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number of labels thanks to the dilations (that merges little by little an increasing 
amount of blobs). This test will show which algorithm has the best scalability varying 
the number of labels, and at the same time which algorithm performs better with 
lower and higher amount of labels. Finally the third dataset is composed by 3807 
images obtained from a 160x120 downscaled version of the first dataset, increasingly 
upscaled with 11 4:3 formats (up to the original image size). This dataset will be 
useful to evaluate the scalability of these algorithms with a small fixed number of 
blobs, but a larger number of pixels. 

In all tests we applied our 2x2 block optimization to a raster scan algorithm which 
uses He’s technique for handling equivalences and applies a union operation every 
time two different labeled blocks are connected. 

The results of the first test are shown in Fig. 3. On high resolution images, our 
approach provides the best performances, by using the block optimization. Suzuki and  
DiStefano proposals are superior to the OpenCV standard contour tracing method, but 
cannot beat the other technique based on flood fill. After our proposal, the overall best 
techniques are Chang’s and He’s.  

The results of the second test are shown in Fig. 4. Even in this case, the performace 
of OpenCV algorithms, as well as Suzuki and DiStefano ones, result to be not quite 
good (even if their proposal proves to have a good scalability). Chang’s and He’s 
algorithms and our proposal are still the approaches with the best performances. It is 
important to highlight that the behaviour of these algorithms is somehow different 
below and above the 150 labels: in this case the OpenCV contour tracing technique 

 
Fig. 4. Results of Test 2. 
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stays close to the other techniques. Chang algorithm is a clear winner with less then 
10000 labels, while our proposal has the best performance in other cases. 

Finally the results of the latest test are shown in Fig. 5. In this case, where the 
average number of labels is 473, OpenCV contour tracing proved to have a great 
scalability increasing the size of the image, while Chang and our method still perform 
very well. Nevertheless, zooming in at lower images sizes, up to 1024x768, we can 
notice that our approach and Chang’s provide the best performance. 

6   Conclusions 

We have given a comprehensive overview of the different strategies which have been 
proposed for the connected component labeling problem, pointing out relations and 
evolution of the single optimization proposals. 
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Fig. 5. Results of Test 3. The lower figure shows an enlargement of the area of 

images with widths below 1500 pixels. 
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A new strategy for label propagation has been proposed, based on a 2x2 block 
subdivision. This strategy allows to improve the performance of many existing 
algorithms, given that the specific connection rules are satisfied.  

Experimental results have stressed a few points of the different algorithms, in 
particular showing how the Cheng approach is a clear winner when the number of 
labels is small, compared to the image size, while our proposal can obtain around 
10% of speedup when the number of labels is high. 
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