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Abstract

Stiffness matrix of the Dirichlet problem −(au′)′ = f with a homogeneous boundary value
condition in a spline wavelet basis has O(n logn) non-zero elements [4]. We show that for
a constant function a it is just O(n) and moreover we show that it can be stored in O(1) elements.
This leads to a linear-time algorithm for multiplication by the wavelet matrix.
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Introduction

Our aim is to solve the Dirichlet boundary value problem

−∆u = f on Ω = (0,1)d

u = 0 on ∂Ω

in the higher dimension d by the Galerkin method in a wavelet basis which is a tensor product
of wavelet bases in one dimension. The Galerkin method leads to a system of linear algebraic
equations with a matrix constructed from matrices (di j), (gi j), where

di j =
∫ 1

0
ϕ
′
i (x)ϕ

′
j(x)dx, (1)

gi j =
∫ 1

0
ϕi(x)ϕ j(x)dx

and ϕi are basis functions. We need an efficient storage of matrices (di j), (gi j) and as we solve
the system by an iterative method, we also need an efficient implementation of multiplication
of matrices by a vector.

In this paper we describe what a wavelet basis is, its construction and then we show that the
stiffness matrix (di j) for the one-dimensional Poisson equation has O(n) non-zero elements, and
moreover it can be stored in O(1) space. In the last section we show a numerical experiment on
one-dimensional Poisson equation.

1 Spline Wavelet Basis

In this section we first describe the spaces Vn of scaling functions based on quadratic splines.
Then we deal with the wavelet basis of Vn. First we formulate desired properties for wavelets
and explain their consequences, then we show some constructions of wavelet bases.
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1.1 Scaling Functions

Spline wavelet basis consists of scaling and wavelet functions. We use two following functions
to construct them:

ϕbd(x) =


2x− 3

2x2 for x ∈ [0,1]
1
2 − x+ 1

2x2 for x ∈ [1,2]
0 otherwise

ϕin(x) =


1
2x2 for x ∈ [0,1]
1
2 + x− x2 for x ∈ [1,2]
1
2 − x+ 1

2x2 for x ∈ [2,3]
0 otherwise
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Fig. 1. Boundary scaling function
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Fig. 2. Inner scaling function

Both are C 1 piecewise quadratic functions.

Definition 1 Let ` ∈ N. We call functions

ϕ`,0(x) = ϕbd(2`x) (2)

ϕ`,i(x) = ϕin(2`x− i+1) for i = 1, . . . ,(2`−2) (3)

ϕ`,2`−1(x) = ϕbd(2`(1− x)) (4)

scaling functions at the level `.
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Note that from (3) it follows that the values of integrals

d`,i, j =
∫ 1

0 ϕ ′
`,iϕ

′
`, j dx

g`,i, j =
∫ 1

0 ϕ`,iϕ`, j dx

}
for i, j = 1, . . . ,(2`−2) (5)

depend just on the difference (i− j) and the value `. Furthermore, for two different levels `1, `2
it holds

d`1,i, j = 2`1−`2d`2,i, j (6)

g`1,i, j = 2`2−`1g`2,i, j

Similarly from (2), (4) it follows that∫ 1
0 ϕ ′

`1,0ϕ ′
`1,i dx = 2`1−`2

∫ 1
0 ϕ ′

`2,0ϕ ′
`2,i dx∫ 1

0 ϕ ′
`1,2`−1ϕ ′

`1,i dx = 2`1−`2
∫ 1

0 ϕ ′
`2,2`−1ϕ ′

`2,i dx∫ 1
0 ϕ`1,0ϕ`1,i dx = 2`2−`1

∫ 1
0 ϕ`2,0ϕ`2,i dx∫ 1

0 ϕ`1,2`−1ϕ`1,i dx = 2`2−`1
∫ 1

0 ϕ`2,2`−1ϕ`2,i dx

 for i = 1, . . . ,(2`−2) (7)

1.2 Wavelets

Let us denote
S` = {ϕ`,i : i = 0 . . .2`−1}

and
V` = spanS` for ` ∈ N.

It holds that
V` ⊂V`+1 for ` ∈ N.

In the next section we describe some constructions of sets W` ⊂V`+1 which consist of functions
ψ`,0, . . .ψ`,2`−1. We require the following properties:

1. The set S`∪W` forms a basis of V`+1.

2. Functions ψ ∈W` have vanishing moments of order 0, 1 and 2. It means that∫
supp(ψ)

xm
ψ(x)dx = 0 for m = 0,1,2.

We use property 1 iteratively to construct the basis of V`

Sl0 ∪
l⋃

i=l0

Wi (8)

for an appropriate `0.
The property of vanishing moments has two very important consequences. The first one is

more sparse approximation of the solution. The second one concerns matrices (1) – they are less
sparse in the basis (8) than in the basis S`, but vanishing moments imply a lot of zero entries
of matrices (1) even if supports of functions in the base overlap – more precisely∫

[0,1]
ψiψ j =

∫
[0,1]

ψ
′
i ψ

′
j = 0
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whenever ψi is a quadratic function on the support of ψ j. In the general case we can write ψ j
as a sum

ψ j(x) = ax2 +bx+ c+∑
k

dk(max{(x− xk),0})2.

We can then express integrals as sums∫
[0,1]

ψiψ j = ∑
k

dk

∫ 1

xk

ψi(x)(x− xk)2 dx, (9)

∫
[0,1]

ψ
′
i ψ

′
j = ∑

k
2dk

∫ 1

xk

ψ
′
i (x)(x− xk)dx.

We use these formulas in cases when levels `i, ` j of functions ψi, ψ j respectively differ by at
least two – then the sum consists of at most two terms.

1.3 Construction of Wavelets

We need wavelets satisfying properties from the previous section. Several such constructions
are known: inner bi-orthogonal wavelets [3], boundary bi-orthogonal wavelets [1] and three
types of short wavelets [2].

We show construction of one type of short wavelets:

ψ`,0 = −5
2ϕ`+1,0 + 47

12ϕ`+1,1− 13
4 ϕ`+1,2 +ϕ`+1,3, (10)

ψ`,i = −1
4ϕ`+1,2i−1 + 3

4ϕ`+1,2i− 3
4ϕ`+1,2i+1 + 1

4ϕ`+1,2i+2 for i = 1, . . . ,2`−2, (11)

ψ`,2`−1 = −ϕ`+1,2`+1−4 + 13
4 ϕ`+1,2`+1−3− 47

12ϕ`+1,2`+1−2 + 5
2ϕ`+1,2`+1−1. (12)

In general case wavelets of the `-th level are linear combinations of scaling functions of the
(`+1)-th level. There are a few boundary wavelets on both edges – as in (10), (12). We denote
their number at each edge by nbw.

Left-edge boundary wavelets are

ψ`,i =
n1

∑
j=0

ai, jϕ`+1, j, i = 0, . . . ,(nbw−1). (13)

The upper bound n1 in the sum corresponds to the support of boundary wavelets

suppψ`,i = [0,(n1 +2)2−`−1] for i < nbw.

We will measure the support in the units of 2−`−1 and denote lbw = n1 +2.
Right-edge boundary wavelets are

ψ`,2`−1−i =
n1

∑
j=0

ai, jϕ`+1,2`+1−1− j, i = 0, . . . ,(nbw−1)

with the same coefficients ai j and the same upper bound lbw of the length.
Inner wavelets ψ`,i for

i = nbw, . . . ,2`−nbw−1

are constructed by

ψ`,i =
n2

∑
j=0

a jϕ`+1,2(i−nbw)+1+ j. (14)
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It holds
suppψ`,i = [2(i−nbw)2−`−1,(2(i−nbw)+n2 +2)2−`−1]. (15)

We denote liw = n2 +2 the length of the support of inner wavelets in the unit 2−`−1.
All constructions are such that the support of the last inner wavelet contains the point x = 1.

From here it follows
(2(2`−2nbw−1)+n2 +2)2−`−1 = 1

and as liw = n2 +2 it follows that

(2(2`−2nbw−1)+ liw)2−`−1 = 1

which gives by a straightforward calculation

liw = 2(2nbw +1). (16)

Another straightforward calcualation gives that the center of the support of ψ`,i is at the point

x =
(
i+ 1

2

)
2−`. (17)

In the next section we will use the value lw = max{lbw, liw} and the maximal number of
discontinuities nd which bases function can have. As two different discontinuities are distant at
least 2−`−1 it holds nd ≤ lw−1.

Due to the construction of wavelets similar property to (5), (6), (7) it holds:∫ 1

0
ϕ
′
`1,iϕ

′
`1, j dx = 2`1−`2

∫ 1

0
ϕ
′
`2,iϕ

′
`2, j dx (18)∫ 1

0
ϕ`1,iϕ`1, j dx = 2`2−`1

∫ 1

0
ϕ`2,iϕ`2, j dx

and also ∫ 1

0
ϕ
′
`,iϕ

′
`, j dx =

∫ 1

0
ϕ
′
`,i+kϕ

′
`, j+k dx (19)∫ 1

0
ϕ`,iϕ`, j dx =

∫ 1

0
ϕ`,i+kϕ`, j+k dx

whenever all involved wavelets are inner ones.

2 Wavelet Matrix

In this section, we first show that matrices (1) in a wavelet basis can be stored in a constant
space. Next we show in the Theorem that they have at most linear non-zero elements with
respect to the order N of the matrices.

2.1 Storage of Matrices

We store matrices (1) in blocks as in Figure 3. Let us denote B(`) the block corresponding to
scaling functions and to wavelets at the `-th level. Blocks B(4) and B(5) as well as the top-
left block corresponding to scaling functions are stored as a whole. Elements of blocks B(`),
` = 6, . . . are computed by the formulas (9). We store in an array both the discontinuities of
scaling functions and integrals∫

xk

ψ(x)(x− xk)m dx m =
{

1 for the matrix g
2 for the matrix d

142



ϕ3,i

ψ4,k

ψ5,j

Source: Own

Fig. 3. Structure of a wavelet matrix

Now we describe how to pair discontinuities and integrals for inner wavelets (rows corre-
sponding to boundary wavelets are zero due to choice of `0 in (8) – it is chosen in such a way
that the support of the left-edge boundary wavelet does not overlap the support of the right-edge
boundary wavelet). We assign the central point of its support (17)

x =
(
i+ 1

2

)
2−`

to the wavelet ψ`,i and from it we measure points xk of discontinuities of scaling functions.
They are positioned at

1 ·2−3,2 ·2−3, . . . ,6 ·2−3,7 ·2−3, (20)

so they can be inside the support of ψ`,i at the points

. . . ,(i−1)2−`, i2−`,(i+1)2−`,(i+2)2−`, . . . (21)

Inner wavelets are lw2−`−1 long, so we have n := lw/2−1 = 2nnb points (16)

(i−n+1)2−`, . . . i2−` (22)

on the left of x and n points
(i+1)2−`, . . .(i+n)2−` (23)

on the right of x. In total we have 2n = lw − 1 points and we will index them by an index
j = 0, . . . , lw−2. Given discontinuity at k2−3 we have an equation

(i−n+1+ j)2−` = k2−3,

and so
i = k2`−3 +n−1− j.

As the value of the integral depends just on j and ` and the dependence on ` is given by (9),
we have 8 scaling functions × 7 discontinuities × (lw−2) integrals and the cycle of the length
56(lw−2) to construct any block B(6),. . . .

Let us denote by B(`1, `2) blocks of wavelet functions of the levels `1 and `2. In case that
`1 and `2 differ by at least two we use similar idea as described above for the blocks of scaling
functions. Other blocks are stored in a compressed way, separately boundary wavelets and inner
wavelets and to reconstruct the whole block we use (18), (19).
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2.2 Number of Non-Zero Elements

Matrices (1) in a wavelet basis have a block structure. The first block in a row and in a column
corresponds to scaling functions of the third level, the second one to wavelets of the third level,
then the other levels follow (Figure 3).

In the following theorem, we show that matrices (1) in a wavelet basis have at most linear
number of non-zero elements with respect to the order N of the matrices.

Theorem. Let n ∈ N, n ≥ 3,

Bn = {ϕ3,i : i = 0, . . . ,7}∪
n⋃

`=4

{ψ`,i : i = 0, . . . ,< 2`−1−1},

let N be |Bn| = 2n, lw be the maximum of length of basis functions in 2−` units, nd be a
maximal number of discontinuities of basis functions. Then the matrices (1) have at most
(2ndlw−2nd +2lw−1)N non-zero elements.

PROOF.

• Square diagonal blocks: the integral is zero for basis functions with disjoint supports.
Supports of neighbour functions are shifted by 2−l+1 – see (15) – so every function meets
in its support at most (lw−1) functions and every row will contain at most (lw−1) non-
zero elements. In total the N rows in diagonal blocks contain at most (lw−1)N non-zero
elements.

• Blocks above the diagonal: every basis function has at most nd points of discontinuity and
every discontinuity is met by at most (lw/2−1) wavelets of a given finer level. So every
row in every block contains at most nd(lw/2− 1) non-zero elements. We will calculate
them by blocks in the same column from right to left and get at most nd(lw/2−1)(N/2+
N/4+N/8+ · · ·+8) < nd(lw/2−1)N non-zero elements.

• In blocks under diagonal there is the same amount of non-zero elements as over diagonal
as matrices are symmetric.

We get
(lw−1)N +2nd(lw/2−1)N = (ndlw−2nd + lw−1)N

in total. �

3 Numerical Experiment

We tested our implementation on a one-dimensional Poisson equation on the interval [0,1] with
the solution

u(x) = (1− x)(1− e−50x). (24)
The columns of the table contain:

• Level of wavelet basis L.
• Matrix order N.
• Number of iterations (we use conjugate gradient method) #CG.
• Total time of conjugate gradient method in seconds.
• Time per cycle in seconds.
• L2 norm of error of a solution.

We run it on a processor with 2.4 GHz frequency.
Note that the very slowly increasing number of iterations shows that wavelet basis is well-

conditioned.
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Tab. 1. Results of numerical experiment
L N #CG time of CG(s) time per cycle L2 norm

12 32 768 47 0.46 0.0098 2.1×10−12

13 65 536 47 0.92 0.020 2.6×10−13

14 131 072 49 1.9 0.040 3.3×10−14

15 262 144 49 4.0 0.082 4.1×10−15

16 524 288 50 8.3 0.17 5.2×10−16

17 1 048 576 51 17 0.34 6.5×10−17

18 2 097 152 51 35 0.69 8.1×10−18

Source: Own

Conclusion

We presented an efficient implementation of multiplication by a wavelet matrix. Our next aim
is to use it to solve a multi-dimensional Poisson equation on hypercube with a basis which is a
tensor product of presented basis.
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NÁSOBENÍ WAVELETOVOU MATICÍ – EFEKTIVNÍ IMPLEMENTACE

Matice tuhosti Dirichletovy okrajové úlohy −(au′)′ = f v bázi splajnových waveletů má dle
K. Urbana O(n logn) nenulových prvků. Ukážeme, že pro konstantnı́ funkci a jich je ve
skutečnosti O(n) a popı́šeme algoritmus, který počı́tá násobenı́ vektoru touto maticı́ v O(n)
operacı́ch. V implementaci použı́váme wavelety na bázi kvadratických splajnů.

DIE MULTIPLIKATION DER WAVELET-MATRIX – EINE EFFEKTIVE

IMPLEMENTIERUNG

Die Zähigkeitsmatrix der Dirichlet-Randaufgabe −(au′)′ = f auf der Basis der Spline-Wavelets
hat nach K. Urban O(n logn) Nicht-Null-Elemente. Wir zeigen, dass es für die konstante Funk-
tion a in Wirklichkeit O(n) gibt, und wir beschreiben einen Algorithmus, der die Multiplikation
des Vektors durch diese Matrix in O(n)-Operationen berechnet. In der Implementierung be-
nutzen wir Wavelets auf der Basis quadratischer Splines.

MNOŻENIE MACIERZ ↪A FALKOW ↪A – EFEKTYWNE WDRAŻANIE

Macierz sztywności Dirichleta krańcowego zadania −(au′)′ = f w bazie falek splajnowych
ma wg K. Urbana O(n logn) elementów niezerowych. Pokazano, że dla funkcji stałej a jest
ich w rzeczywistości O(n) oraz opisano algorytm, który oblicza mnożenie wektora poprzez t ↪e
macierz w O(n) operacjach. Wdrażane s ↪a falki na bazie splajnów drugiego stopnia.
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