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Statisticka inference pomoci L-momentu

Anotace: Rozdéleni s tézsimi chvosty, nez ma normalni rozdéleni, se vyskytuji
v oblastech, ve kterych jsou pozorovany extrémy, jako napiiklad v hydrologii,
meteorologii nebo také v ekonomii. Pouziti konven¢nich momentii v analyze nadhodné
veli¢iny s rozdélenim s tézsimi chvosty vsak neni vhodné z divodu predpokladu
existence moment vyssich rada. Jednorozmérné L-momenty, které jsou alternativou
ke konven¢nim momentim, jsou definovany jako stfedni hodnota jisté linedrni
kombinace poradkovych statistik a to pouze za predpokladu konecné stredni hodnoty.
Podobné jako je tomu v jednorozmérném pripadé, mnohorozmérnd analyza zahrnujici
zejména vektor stfednich hodnot a kovariancni nebo korela¢ni matice je zalozena na
predpokladu existence vyssich momentta. Rozsiteni jednorozmérnych L-momentt
do mnohorozmérného pripadu umoznuje na rozdil od téchto charakteristik popsat
mnohorozmérné rozdéleni pouze za predpokladu konecné stredni hodnoty. Cilem
prace je poskytnout komplexni prehled o L-momentech a jejich pouziti ve statistické
inferenci a vyporadat se rovnéz s problémy, které se objevily pri jejich studiu. Kromé
obecné teorie L-momentli se zamérenim na urcité vlastnosti a metodologii jejich
pouziti k odhadu parametrii pravdépodobnostnich rozdéleni a v regionalni frekvencéni
analyze predstavuje prace prvni ¢tyri L-, LQ- a TL-momenty tfiparametrického
zobecnéného Paretova rozdéleni a rozdéleni extrémnich hodnot a odhady jejich
parametru zalozené na téchto momentech. Rovnéz uvadi asymptotické L-momentové
intervaly spolehlivosti parametri a kvantilti téchto rozdéleni. Dale prinasi podrobny
postup, jak provést testovani homogenity v trojrozmérné regionalni frekvencéni
analyze. Nakonec je predstaveno vylepseni dvourozmérného L-momentového testu
homogenity pro ptripad prostorové korelovanych dat.

Kli¢ova slova: L-moment, rozdéleni s tézsimi chvosty, odhad parametrt a kvantila,

regionalni frekvenéni analyza, kopula



Statistical Inference Using L-Moments

Annotation: Distributions with heavier tails than has the normal distribution
appear in many fields in which extremes are observed, such as climatology, hydrology,
meteorology, or economics as well. However, in analysis of a random variable having
a probability distribution with heavier tails, the traditionally used conventional
moments are not sufficient due to the moment assumptions of higher orders.
Univariate L-moments as an alternative to the conventional moments are defined
as an expectation of certain linear combinations of order statistics under only first
order moment assumptions. Analogously to the univariate framework, multivariate
analysis of a random vector mainly including the mean vector and covariance
or correlation matrices is based on the assumptions of second and higher order
moments. In comparison to these characteristics, the extension of univariate L-
moments to the multivariate case enables to describe a multivariate probability
distribution under only finite mean assumptions. The aim of the thesis is to
present a comprehensive overview of L-moments and their application in statistical
inference, and to deal with issues that appeared in study of them as well. Among a
general theory of L-moments with focus on their specific properties and methodology
how to employ them in estimating parameters of a probability distribution and
in regional frequency analysis, the thesis presents expressions of the first four L-,
LQ-, and TL-moments of the three-parametric generalized Pareto and generalized
extreme-value distributions and estimators of their parameters based on these
quantities. The L-moments’ asymptotic confidence intervals of parameters of these
distributions are presented as well. Further, a detailed procedure how to perform L-
moment homogeneity testing in trivariate regional frequency analysis is introduced.
Finally, the improvement of the bivariate L-moment homogeneity test for the case
of cross-correlated data is proposed.

Keywords: L-moment, distribution with heavier tails, parameter and quantile
estimation, regional frequency analysis, copula
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Introduction

Moments, such as mean, variance, skewness, and kurtosis, are traditionally used to
describe features of a univariate probability distribution. Hosking [55] unified and
popularised an alternative approach to conventional moments which is now used
both in descriptive statistics and statistical inference. This approach uses quantities
called L-moments which are based on linear combinations of order statistics and from
there also their name comes from. The main L.-moments’ advantage in comparison
to the conventional moments is their existence of all orders under only a finite mean
assumption. However, this limitation has also been removed. First, Mudholkar and
Hutson [84] introduced analogs of Hosking’s [55] L-moments, labeled LQ-moments,
by replacing the expectation in the definition of L-moments by other measures of
location of the distribution of the order statistics. Elamir and Seheult [38] then
generalized L-moments by replacing the expectation by its trimmed version. Both
the LQ- and TL-moments always exist which makes them an appropriate tool for
analysis of probability distributions that do not have (finite) mean.

When describing a multivariate probability distribution, the situation is very
similar. The mean vector, covariance, correlation, coskewness, and cokurtosis
matrices with elements the covariance, correlation, coskewness, and cokurtosis are
the characteristics usually used to summarize features of a multivariate probability
distribution. However, central comoments are defined under finiteness of central
moments. To avoid this drawback, Serfling and Xiao [97] generalized univariate
L-moments and proposed multivariate L-moments in the matrix form with elements
the L-comoments as analogues to the central comoments, however, without giving
assumptions to finiteness of second and higher order central moments.

L-moments, being measures of shape of a probability distribution, may be used

for summarizing data drawn from both the univariate and multivariate distributions.

14



They also play an important role in inference statistics. Traditional techniques
for parameter estimation are the moments and maximum likelihood methods. L-
moments are used for parameter estimation as an alternative to the traditional
estimation methods, mainly in hydrology, climatology, and meteorology [70, 89],
but also in socioeconomics, economics, and quality control [12, 47, 103, 110], or
aerodynamics [41]. The estimators based upon L-moments are obtained in a similar
way as it is in the moments method, which means the population L-moments are
equated to their corresponding sample counterparts. Hosking [55] gave the parameter
estimators of some common univariate distributions and prefers L-moments to the
conventional moments, because they are more robust to the presence of outliers and,
therefore, less subject to bias in parameter estimation in small samples. Several
other studies have shown that the L-moments method in some cases outperforms
also the maximum likelihood method [57, 59, 77].

L-moments have been at most often employed in regional frequency analysis
(RFA), which yields more reliable estimates of high quantiles of extreme events
than do the at-site approaches. RFA is based on pooling the data from the sites
that have similar probability distributions, that overcomes the problem of small
number of observations in single sites for estimating high quantiles and related
unreliable estimates. Hence, in RFA quantile estimation is preceded by an important
hypothesis testing step whether the sites have similar probability distributions apart
from a site-specific scale factor. To check the homogeneity condition, L-moments
are used as well. A univariate approach based on L-moments introduced by Hosking
and Wallis [54] has been routinely used in areas such as hydrology, climatology,
and meteorology, among others [24, 69, 70, 71, 86, 113]. After that Serfling and
Xiao [97] proposed multivariate L-moments, it did not take long time and Chebana
and Ouarda [22] and Chebana and Ouarda [23] generalized completely the Hosking
and Wallis [54] RFA approach to the multivariate framework.

This dissertation thesis aims to summarize theory of both univariate and
multivariate L-moments, to be a guide for statistical inference using them, and in

particular, to propose some developments of L-moments’ application as well. The
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thesis is divided into six chapters. Two chapters, specifically the first and fifth,
summarize theory of L-moments and their applications, however, it cannot be fully
exhausted, and provide foundations for the entire work, while the rest are crucial
as they include the own results. The first one introduces the theory of univariate L-
moments: basic definitions, main properties and possible generalizations. The second
chapter deals with derivation of parameters and quantiles of univariate distributions
that are often used in modeling extreme events based upon L-moments and their
generalizations. Specifically, they are the generalized Pareto and generalized extreme-
value distributions. These estimation methods are compared with one another and
they are also compared to the traditional maximum likelihood method via computer
simulations. Since studies involving parameter estimation using L-moments have
continued to be focused on point estimation, the next chapter presents asymptotic
confidence intervals for parameters and quantiles estimators of the generalized
Pareto and generalized-extreme value distributions based on L-moments and focuses
on their comparison to another estimation techniques as well. The fourth chapter
introduces generalization of univariate L-moments to the multivariate framework and
presents their application in RFA, that is illustrated on the bivariate precipitation
data. Methodology of trivariate L-moment homogeneity testing is presented in
the fifth chapter, in which practical aspects of trivariate L-moment homogeneity
testing are investigated for extreme precipitation events. In the last chapter, the
multivariate L-moment homogeneity test is developed for spatially cross-correlated
data using D-vine copulas and it is shown that the proposed modified L-moment
homogeneity test faces the presence of cross-correlation better than the original one.

This dissertation thesis is based on the following articles published or prepared

during my Ph.D. study:

+ Simkové, T. and Picek, J. “A Comparison of L-, LQ-, TL-Moment and Maxi-
mum Likelihood High Quantile Estimates of the GPD and GEV Distribution”.
In: Communications in Statistics - Simulation and Computation 46.8 (2017),

pp. 5991-6010. DOI: 10.1080/03610918.2016.1188206.
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o Simkové, T. “Homogeneity Testing for Spatially Correlated Data in Multivari-
ate Regional Frequency Analysis”. In: Water Resources Research 53.8 (2017),
pp. 7012-7028. DOI: 10.1002/2016WR020295.

« Simkové, T. “Statistical Inference Based on L-Moments”. In: Statistika:

Statistics and Economy Journal 97.1 (2017), pp. 44-58.

« Simkovd, T. “L-Moment Homogeneity Test in Trivariate Regional Frequency
Analysis of Extreme Precipitation Events”. In: Meteorological Applications

25.1 (2018), pp. 11-22. DOIL: 10.1002/met . 1664.

« Simkova, T. “Asymptotic Confidence Inetrvals of Quantile Estimates for the

GP and GEV Distributions”. In preparation.

The research, on which these articles and thesis are based, was financially
supported by the Project Klimatext CZ.1.07/2.3.00/20.0086, the Czech Science
Foundation under the projects 14-18675S and 18-01137S, and the Student Grant
Competition at the Technical University of Liberec under the projects 21116 and
21256, which 1 would like to thank.

All data analysis was carried out using R software [91]. Graphics were created

using R and GeoGebra softwares [52, 91].
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Univariate L-Moments
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1.1 Introduction

Traditional tools for describing a univariate probability distribution of a random

variable X include the mean
p=EX,
central moments
pr = E(X —p)",r > 2,

and their scale-free versions



In particular, they are the variance
pr =0’ = B(X — p)?,

the coefficient of skewness

_ M3
a3 = 3/27
25
and the coefficient of kurtosis
Ha
oy = —5.
13

The shape of a probability distribution may be also described by the coeffi-
cient of variation
4
L
However, the central moments are not sufficient for analysis of distributions
with heavier tails due to the moment assumptions of second and higher orders. To
overcome this limitation, L-moments which are an alternative more robust system
to the conventional moments may be used to describe a probability distribution
under just first moment assumptions. Although univariate L-moments were formally
introduced by Hosking [55], they had first appeared in the work of Sillitto [101] in the
context of the quantile function’s approximation by polynomials. They were not yet
termed L-moments at that time. Hosking [55] pulled together the earlier findings
mainly of Gini [46], Sillitto [101, 102], Downton [34], Chan [20], Konheim [65],
Mallows [75], and Greenwood et al. [48], then assembled these into a unified whole
that uses order statistics for analysis of a univariate probability distribution. L-
moments can be interpreted as are conventional moments, because they are measures
of location, scale and shape of the probability distribution. They also offer several
advantages over them. First, the L-moment of any order exists if and only if the
distribution has a finite mean. Moreover, if the mean of the distribution exists, then
the L-moments uniquely define the distribution, because no two distributions are

described by the same series of L-moments. Another useful property is the algebraic
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boundedness of the L-moment ratios. The essential difference between conventional
moments and L-moments is that the L-moments give smaller weights to the tails of
the distribution. Sample L-moments give smaller weights to extreme observations,
and this may lead also to more accurate parameter estimates based upon them.

The problem of use of L-moments occurs when the probability distribution
has no or non-finite mean. For example, this happens for a Cauchy distribution.
Therefore, some generalizations of L-moments were proposed. They are trimmed
L-moments, termed TL-moments, and LQ-moments, which exist even if L-moments
do not exist. Mudholkar and Hutson [84] introduced LQ-moments obtained by
replacing the expectation in the definition of L-moments by quick estimators, such
as medians, trimeans, or Gastwirth’s location estimators. Elamir and Seheult [38]
proposed robust modification of L-moments, so-called TL-moments, by assigning
zero weights to the extremes.

The aim of this chapter is to review univariate L-moments, because they form
together with multivariate L-moments the basis of the entire work. The chapter
is organized as follows: The definitions and main features of the univariate L-
moments are presented in Sections 1.2-1.3. The attention is then given to the
L-moments method and asymptotic distribution of the sample L-moments, becuse
the focus of Chapters 2 and 3 is on the quantile estimates and their confidence
intervals of selected univariate distributions. In Section 1.6, univariate L-moments
are generalized for a random variable with no or non-finite mean. This chapter

relies mainly on the articles [117, 118].

1.2 Population L-Moments

Hosking [55] defined the population L-moment of the rth order as a linear com-
bination of the order statistics Xi., < X5, < .-+ < X,,., of a random sample of
size n drawn from a univariate probability distribution of a random variable X

with the cumulative distribution function F

r—1 _ 1
)\r _rlz(_l)k<r k >EX7']€:T7T_ 1727"' (11)
k=0
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When using the mean of the order statistic

EX., =
G -1)

Tér — /Q(u)uj_l(l — )" du

and the (r — 1)th shifted Legendre polynomial

P = 3 (—1y! (7“ N 1) (T i 1>u r=1,2 (1.2)

i=0 l v

formula (1.1) may be rewritten to a form

1
A\ = /Q(U)P:_l(u) du,r=1,2,..., (1.3)
0

that is useful particularly for computating L-moments of a specific probability
distribution with the quantile function Q(u) = inf{z € R s.t. F(z) > u},0 <u < 1.

The first four L-moments are then in the form
1
M =—EX = /Q(u)du,
0

)\2 = %E (XQ:Q — X1:2) = Q(U)(QU — ].) du,

1
A3 = gE (X33 — 2X0.3 + X1.3) Q(u)(6u* — 6u + 1) du,

1
Ay = ZE (Xgua — 3X54 + 3Xou — X1u) = [ Q(u)(20u® — 30u® + 12u — 1) du,

I
O\H O\H O\H

The first L-moment )\, is just the ordinary mean. Serfling and Xiao [97] also

presented the second and higher order L-moments in the covariance representation as
Ar = cov(X, P (F(X))),r > 2. (1.4)

Note that L-moments are related to the notion of the probability-weighted
moment (PWM). The PWM of a probability distribution with the cumulative

distribution function F' was proposed by Greenwood et al. [48] as

M,

p

s = E{[XPIF(X)]L = F(X)P} (1.5)
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A special case of PWM is obtained when p = 1 and s = 0 are substitued in
Equation (1.5), that gives

Br = / z[F(z)]"dF(x) = /a:(u)quu, r=20,1,... (1.6)

L-moments were derived from PWDMs, and thus L-moments may be written as

certain linear combinations of PWMs as follows

T o fr\(r+k
)\Hl:Z(—l)r k(k)( I >Bk,r:O,1,2,...,

k=0
where f3;, are given by (1.6). All the procedures based on L-moments and PWMs
are therefore equivalent, but the notion of L-moment is in practice more popular

than PWM. The first four L-moments in terms of PWM are

A = Do,
A2 =201 — fo,
Az =602 — 651 + o,
Ay = 2083 — 3082 + 1251 — fo.

L-moments of the second and higher orders are standardized to be scale-

free quantities

A
7, = —,r >3 (L-moment ratios).
Ao

In contrast with the conventional moments, L-moment ratios are boundeded as fol-

lows
7| < 1,7 > 3.

Tighter bounds can be obtained for specific L-moment ratios. For example, Hosking

and Wallis [54] have shown that the following holds

1
Z(5@,? -1 <7<l
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Hosking [55] justified that the L-moments \; and Ay and L-moment ratios 73 and 74
are measures of location, scale, skewness, and kurtosis, respectively, by considering
linear combinations of the observations in a sample of data that are arranged in
ascending order. Hence, they are useful quantities for summarizing a univariate
probability distribution. Hosking [55] presented the first four L-moments of some
common univariate distributions, including the uniform, exponential, normal, logis-
tic, Gumbel, generalized Pareto, and generalized extreme-value distributions, which

may be simply derived using Equation (1.3). See Table 1.1 for the selected ones.

1.3 Sample L-Moments

Population L-moments are in practice estimated from a finite observed random
sample drawn from an unknown univariate probability distribution. The rth
sample L-moment, being an L-estimator of the population L-moment \,, was
defined by Hosking [55] as a linear combination of the order sample x;., < x9,, <

- < xpg Of size n

I = (") DD *12 < 1>xirkm,r —=1,2,... (1.7)

r 1<i1 <2< <ip<n

Hosking [55] showed that [, given by (1.7) may be expressed in the simpler form

= —1 —1
hir =Y (—1)T—’€—1(r . ) (rﬂz >bk,r ~0,1,...,n—1, (18

Note that by given by Equation (1.9) are unbiased estimators of [ defined by

where

Equation (1.6).

Theorem 1. The sample L-moment I, given by (1.8) is an unbiased estimator of

the population L-moment \,.,r =1,2,...
Proof. See Hosking [55], p. 114. O
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Table 1.1: L-moments of selected univariate probability distributions

Distribution Quantile function Q(u) L-moments

A= s5(a+ )
Uniform U(«, ) ot (5—au X =3(6—a)
a,PER a<f A3 =10

A =0

M=E+0
Exponential Exp(¢, o) £~ olog(1 — u) Ao=1
EeR,o>0 Az = %0

A4 1—120

no explicit form, A=
Normal N (u, o) approximation used Ay = %
peR o>0 Q(u) = p+ 5.0630- A3 =0
Ju013 (1 — )013) A, = 0.07020

At =¢§
Logistic Logi(§, o) €+ olog <%) Ao =0
E€eR,o0>0 A3 =10

Ay = %0
Generalized M =&+ kL-i-l
Pareto frell—(1- u)k] Ay = m
GP(£, 0, k) * Xs = G TS
§ER0>0,kER Ay = (k+1;((kk-i-_21))((kk—i-_32))(k+4)

AM=E+7[1-T(k+1)]

Generalized
extreme-value

GEV (&, 0,k)
EeR,o0>0,keR

§+ g1 — (—logu)]

2Tk +1)(1 —27F)
IP(k+1)(2- 377+
+3.27F 1)

A =90(k+1)(=5-47F+
+10-37%F—6-27F + 1)

I'(:) denotes the gamma function.

Wang [120] proposed another L-estimator of A, in a form

k—1

p=r() SR (D

(1.10)

)5

and called it “direct sample estimator” of the L-moment. Wang [120] stated that

both [, given by Equation (1.8) and [” given by Equation (1.10) give the same
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numerical values. However, he did not prove that these quantities are equal. Hosking
and Balakrishnan [56] proved that if two L-statistics have the same mean, then
they are identical. From this results that I, given by Equation (1.8) and [” given
by Equation (1.10) are identical.

Thus, the first four sample L-moments are in the form

1.
. Z Lk:n,

> (2k — n — 1)Tpin,
n(n—l Z n= L
1 n
I3 = 6k> — 6k — 6nk + n” + 3n + 3)xk,
3 n(n—l)(n—2);( nk +n® 4 3n + 3)Tpn,
1 n
Iy = > (20k® — 30k*n — 30k + 12kn’ + 30kn + 22k —

n(n—1)(n—2)(n—-3) /=
—n3 — 6n% — 11n — 6)Tpum.

The first sample L-moment, /;, is just the sample mean and the second sample
L-moment, ls, is half of the Gini’s mean difference statistic [46, 109].
The sample L-CV and L-moment ratios are obtained analogously to their

population counterparts

respectively. Although the estimators ¢ and ¢, are not unbiased, Hosking [55]
and Hosking and Wallis [54] showed that their biases are negligible for arbitrary
sizes. Hosking and Wallis [54] estimated bias for small samples and several selected
distributions, such as the generalized extreme-value and kappa distributions, from
the simulations. For large samples, the biases of L-moment ratios may be evaluated
using asymptotic theory. For example, Hosking [55] calculated the asymptotic

bias of ¢4 for the normal distribution with L-kurtosis 7, as 0.03n~*

, where n
is the sample size.
Observed data may alternatively be summarized by the sample L-mean, [y; L-

scale, ly; L-skewness, t3; and L-kurtosis, t4. Hosking [55] recommends using sample
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L-moments over conventional moments, because they are linear combinations of
data and therefore are less prone to sampling variability or errors in data. That
means they may result in better and more robust estimates of the distribution’s

characteristics and parameters.

1.4 Method of L-Moments

Following the same idea as in the case of the moments method, L-moments provide
parameter estimators. Let X be a random variable with a probability density
function f(x;6,,0s,...,0;), which depends on some unknown parameter vector
0 = (01,0,...,0,)T. It may be estimated by solving the system of equations which
arises from matching the first & population L-moments to their corresponding

sample quantities, i.e.,

Hosking [55] and Hosking and Wallis [54] presented L-moments parameter
estimators of some commonly used probability distributions. Parameter estimators

of selected univariate distributions are shown in Table 1.2.

Table 1.2: Parameter estimators of selected univariate probability distributions

Distribution Parameter estimators
Uniform a=1—3l,3=2l —a
Exponential o =2y, 5: L —0
Normal a=1,0=/rl
Logistic é: ly,0 =1
Generalized Pareto k=100 =bLtk+1)(k+2), =L~ =
Generalized k ~ 7.859z + 2.95542%, where 2 = 37 —log; 2,
extreme-value S _ b _7 _a_T(k
7 T o2 S=h—3 1-T(k+1)]

I'(-) denotes the gamma function.



1.5 Asymptotic Properties of L-Moments

It is not easy to derive exact distributions of L-moments. Therefore, Hosking
[55] used the asymptotic theory for linear combinations of order statistics devel-
oped by Chernoff, Gastwirth and Johns [25], Moore [83] and Stigler [108], and
applied it to sample L-moments and L-moment ratios to prove that they are

asymptotically normal.

Theorem 2. Let X be a real-valued random variable with a cumulative distribution
function F', L-moments \,., and finite variance. Let l.,v = 1,2,...,m, be sample
L-moments calculated from a random sample of size n drawn from the distribution

of X. Then, as n — oo:

1. the vector v/nl(ly — M), (la = Xa), .., (ly — Am)]T converges in distribution to
the multivariate normal distribution N, (0, A), where 0 is the m-dimensional
null vector and the elements A,.;,r,s =1,2,...,m, of the covariance matriz

A are given by

Mo = [ [(PLAF@IPLIFW)] + P @) P F@)])
<y (1.11)
F(2)[1 = F(y)] de dy,
2. the vector \/nl(l1 — \1), (Ia — Xo), (ts — 73), (ta — Ta)s - - -, (b — Tin)]T converges
in distribution to the multivariate normal distribution N,,(0,T), where 0 is

the m-dimensional null vector and the elements T,s,r,s = 1,2,...,m, of the

covariance matrix 'T are given by
Ars ifr<2,s<2,
T, = (Ars - T’I"AQS)/A2 Zf’l“ > 3,5 <2,
(Ars — TTAQS — TSAQT + TTTSAQQ)/)\g zfr > 3, s > 3.

Proof. See Hosking [55], p. 116. O
When the random variable X is continuous and its quantile function is dif-

ferentiable, then the elements A,, of the covariance matrix A given by (1.11)

may be rewritten to the form

Ars = / / [P (w)Pry (v) + Pry(u) Py (0)]u(l — 0)Q' (w)Q' (v) dudv. (1.12)

r—

0<u<v<l
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1.6 Generalizations of L-Moments

1.6.1 LQ-Moments

Mudholkar and Hutson [84] proposed LQ-moments as a more robust analog to
L-moments, which always exist even if a mean of a random variable does not exist.
Hence, they are also already applicable for heavy-tail distributions. LQ-moments
are obtained by replacing the expectation in Equation (1.1) by a quick measure

of the location of the distribution of the order statistic X,_;.,

1
i Z ’“(r >TP,Q(X,~_,M), r=1,2 ... (1.13)

where 0 < p < 5,0 < a < 3, and

1
2
Tp,a<Xr—k:7“) - pQerk:r (O{) + (1 - QP)QXT,kT(1/2) + pQX,,»,;m.(l - OZ) -

= pQ[B, ()] + (1 = 2p)Q[B, 2., (1/2)] + pQ[B, ., (1 — a)],

@ is the quantile function of a random variable X and B, () is the a-quantile
of a beta distribution function with parameters (r — k) and (k + 1). The skewness
and kurtosis measures 13 = (3/(; and ny = (4/( are called LQ-skewness and
LQ-kurtosis, respectively.

Let us have order sample xy., < 29, < -+ < x,., of size n. Then the rth

sample LQ-moments is given by

—1
_12 k<7' )fp,a(Ir—k:T)v r=12,...,n,
WhereOSpS%,OSOéS
FpaTr—tr) = PQIB ()] + (1 = 2p) QB (1/2)] + pQ[B, ., (1 — )]

is the quick estimator of location of the distribution of the order statistic X, _g.,,
where @(u) = (1 = )T (m+1)ulm + ET(|(n+1)u)+1):m 1S the quantile estimator of the
quantile function @ of a random variable X, ¢ = (n + Du — |[(n+ D)u] (|]

denotes the floor function).
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Using large sample theory of the linear functions of order statistics, Mudholkar
and Hutson [84] showed the asymptotic normality of the sample LQ-moments. See
Mudholkar and Hutson [84, p. 201] for details about the covariance matrix.

Solving the system
G=0C, i=12.. .k

where k is the number of unknown parameters of a univariate probability distribution
with the probability density function f(z;6;,0s,...,6x), the parameter estimators

based on LQ-moments are obtained.

1.6.2 TL-Moments

Elamir and Seheult [38] introduced trimmed L-moments as a more robust gen-
eralization of L-moments. Equally as in the case of LQ-moments, TL-moments
always exist. On the top of it in comparison to L-moments, TL-moments are
more resistant to outliers due to assigning zero weights to extreme observations.
The rth population TL-moment with trimmed the ¢; smallest and the ¢, largest
ordered statistics is defined as follows

r—1

)‘s«tl’t2) =r! Z (—1)" <r ; 1) EXt—krdti+t, T=12,...

k=0
When t; = t5 = 0, usual L-moments defined by Hosking [55] are obtained. Here,
the focus is only on the symmetric case t| = ty = ¢

r—1

A =137 (—1)’“<r ; 1) EX,itoprior, T =1,2,... (1.14)
k=0

The formula in (1.14) may be rewritten to the form

0 A cf(r—1 (r+2t)!
X =r ,;f”( k )(r+t—k—1)!(t+k)!'

1
./Q(u)ur—kt—k—l(l — )t du,
0

(1.15)

Analogously to L-moments, the first two TL-moments /\gt) and )\gt) are measures of
location and scale, the TL-skewness ngt) = )\g) / )\g) is a measure of skewness and

the TL-kurtosis 7'4(t) = )\y) / )\gt) is a measure of kurtosis.
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An unbiased estimator of the rth population TL-moment for symmetric case ()
is a linear combination of the ordered sample z;y1., < Tiion < -0 < Ty
of size n — 2t in the form

= k(r—1 i—1 n—i
o[BI

1=t+1

. =1,2,...,n.
(£20) T

r+2t

In the same way as in the L- and LQ-moments methods, the estimators of
k unknown parameters of a univariate probability distribution with the proba-
bility density function f(x;6,0s,...,60;) based upon TL-moments are the solu-

tions of the system

A== 12, k.

7 i
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Comparison of L-, LQ)-, TL-Moments and

Maximum Likelihood Quantile Estimates
of the GP and GEV Distributions
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2.1 Introduction

Knowledge of the probability distribution, which specifies how frequently the
possible values of a random variable occur, is of great importance in many fields.

The focus is often on estimating high quantiles, and, hence, the parameter estimates
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of a probability distribution are required. Usually, the maximum likelihood and
moments methods are used. After that Hosking [55] introduced an analogy to the
conventional moments, called L-moments, the method based on them has been
used as the convenient alternative to these methods in the last years. Hosking [55]
and Hosking and Wallis [54] presented also parameters estimators derived using
the L-moments for many common distributions, including the generalized Pareto
(GP) and generalized extreme-value (GEV) distributions. Due to the fact that
the maximum likelihood method is based on large sample theory, the parameters
estimates obtained by this technique for small samples may be unreliable. Therefore,
Hosking, Wallis and Wood [59] and Hosking and Wallis [57] focused on the properties
of estimates of the GP and GEV distributions based upon L-moments for small
samples via computer simulations. They concluded that the L-moments method is
the preferable one when the sample size is small to moderate and the distribution
has heavier tails (i.e., n < 100 and k£ < 0). On the top of it, the estimators based
upon L-moments are easily computable for many distributions in comparison to
the maximum likelihood method.

Shortly after, L-moments were generalized by Mudholkar and Hutson [84] and
Elamir and Seheult [38], and other alternative estimation techniques based on these
statistics appeared. The LQ-moments parameters estimators have been already
derived for probability distributions such as a GEV [84], extreme-value type I [98],
kappa [99], generalized logistic [95], and exponentiated Pareto [5] distributions.
Elamir and Seheult [38] presented as an example the TL-moments based parameters
estimators of a normal, logistic, Cauchy, and exponential distributions. Ariff
[4] derived the symmetric TL-moments for the other well-known distributions,
such as generalized logistic, extreme-value type I, GEV, and GP distributions.
The TL-moments method has also been applied to the generalized lambda [6],
Dagum [100], exponentiated Pareto [5], and exponentiated generalized extreme-
value [37] distributions.

The GP and GEV distributions have been used in modeling of extreme events in

hydrology, climatology, meteorology, and other areas [42, 53, 64, 70, 88]. It is well
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known that it does not exist finite mean for certain values of the shape parameter
of these two distributions. Thus, neither moments nor L-moments can be well used
exactly in analysis of extreme events in such cases. According to the definition
of LQ- and TL-moments, it seems that reliable parameters estimates employing

the LQ- and TL-moments methods would be obtained.

The aim of this chapter is to compare -, L.Q-, and symmetric TL-moments and
maximum likelihood estimators of high quantiles of the GP and GEV distributions
depending on various factors, such as sample size, probability, and values of the shape
parameter. Using the formulas (1.3), (1.13), and (1.15), the population L-moments,
LQ-moments, and symmetric TL-moments with the trimming parameters ¢ = 1 and
2 up to the fourth order are computed by standard methods, including integration
by parts. Matching the first two population L-, LQ-, and TL-moments and L-, LQ-,
and TL-skewness with their corresponding sample counterparts, the estimators of
three unknown parameters of the GP and GEV distributions are derived. The
well-known maximum likelihood-based estimators are also given. The chapter is
organized as follows: In Sections 2.2 and 2.3 the first four population L-moments,
LQ-moments and symmetric TL-moments, and estimators of the GP and GEV
distributions parameters based on these moments are presented. In Section 2.4, a
simulation is performed. Applying the software R [91], parameters of the GP and
GEV distributions are estimated by four methods: L-moments (LM), LQ-moments
(LQM) with optimal values of parameters « and p, symmetric TL-moments with the
trimming parameters ¢t = 1 (TLM1) and ¢ = 2 (TLM2), and maximum likelihood
(ML) methods. The quantile estimates for probabilities 90%,99%, and 99.9%
are compared with one another according to their sample mean squared errors.
The results of the simulation study and recommendations are summarized as well.

Conclusions are presented in the last section. This chapter relies on the article [118].
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2.2 Parameters Estimators for the GP Distribu-
tion

The cumulative distribution function of the GP distribution with parameters & € R

(location), ¢ > 0 (scale), and k € R (shape) is

B 1—[1—@}%, k0,
Flo) = {1 — exp (_fog)? k=0, 21)

§<x <&+ 7 if k>0,¢6<z<ooif k<0. L-moments of all orders exist when

k > —1, while LQ- and TL-moments of all orders exist for an arbitrary value of k.

2.2.1 L-Moments Method

Theorem 3. Let X ~ GP(§,0,k). Then, if k > —1,k # 0,

g
M=E+—
! §+k+1’
ag

(k+1)(k+2)
N = o(1—k)
(k+1)(k +2)(k +3)’
- ok —1)(k —2)
YT+ ) (k+2)(k+3)(k+4)

)\2:

and

Proof. Substituting the quantile function
o
Qu) =&+ 21— (1 —u)',k #0, (2.2)

into the formula (1.3) and integrating by parts gives the expressions of the first

four population L-moments. The L-moments parameters estimators are obtained
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by solving the following system of equations

g

E+1

%

k+1D(k+2) 7
1—k

-ty
k+3

€+ :lh

which arises from matching the L-mean, Ay, L-scale, A\, and the L-skewness, 73, to

their corresponding counterparts Iy, lo, and t3. O

2.2.2 LQ-Moments Method

Theorem 4. Let X ~ GP(&,0,k). Then, if k # 0,

G=6+ 7 = ol = Bil(e)) + (L= 2p)[1 = Bl (1/2)) +plL = By (1 — )"},
G = 5p{=pll = Byi(e)) = (1= 2p)[1 = By (1/2)]* —pll = B3 (1 — )]+
[l = Bij(@))F + (1= 2p)[1 = Bid(1/2) +pl1 - B (1 — )"},

G = gL = Byg ()] — (1 = 2p)[1 = Byg (1/2)]" —plt = By(1 — )]+
+2p[1 = By (e)]* + 21— 2p)[1 — By (1/2))} + 2p[L — B(1 — )]~
[l = Br(a)]* — (1= 2p)[1 — B3 (1/2))" —pl1 — Bi(1 — )]},

G= =Pl = Bl = (1= 2p)[1 = Bii(1/2]" — pll = Bij(1 - )]+
+3p[L = By} (@)]* + 31— 29)[1 = By} (1/2)]* + 3p[1 — Byj(1 — )~
=3p[1 = Byl (o))" = 3(1 —2p)[1 — By}(1/2))* = 3p[L — By}(1 — o))+

+p[l — Bry(@))" + (1 —2p)[1 — Byi(1/2)]* + p[1 — Bri(1 — a)]*},
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and

s = 5 {-plL = B ()] = (1= 2)[1 = B (1/2)* — pl1 — Bid(1 - )+
+2p{1 = Bl (@) + 201~ 2)[1 - B (12 + 21 — Bl — o))~
—pl1 = Bl = (1= 2)[1 = Bd(/2)) — 1 - Bd(L - o))}/
[=plt = Bb(@))* — (1 = 20)1 — B (1/2)* — pl1 — B (1 — )]+
ol = B+ (1= 2)[1 - Brd(/2) + 51 - B - o))},
& = 20/ {~pl1 = B3(@))* — (1 = 20)[1 = B (1/2)" — pl1L - Byj(1 - )"+

+p[l = Bra(@)]* + (1= 20)[1 - B (1/2)]* + p[L - B (1 — )]},

~

5261_g+ = 1 Nk 0—1 N 4
ko 4k{p[l — Biy(e)]F + (1 = 2p)[1 — By (1/2)]F +p[l — By (1 — a)]F}

—~_ .

Proof. Substituting the quantile function given by (2.2) into the formula (1.13)
gives the expressions of the first four population LQ-moments. The LQ-moments

parameters estimators are obtained by solving the following system of equations

<1 - 517
€2 = 527
N3 = 13- (2.3)

First the shape parameter k£ must be estimated numerically by solving the equation

(2.3), then the estimators of £ and o are easily obtained. O

2.2.3 TL-Moments Method

Theorem 5. Let X ~ GP(&,0,k). Then, if k # 0,

o(k+5)
(k+2)(k+3)’
60
(k+2)(k+3)(k+4)
0 200(1 — k)
53k +2)(k+3)(k+4)(k+5)
(1) 150(k — 1)(k — 2)

A= 2(k +2)(k + 3)(k + 4)(k + 5)(k + 6)’

M =g+

A =
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and
10 — 45t
10+ 9

1 N N N
G = 6lg”(k: +2)(k + 3)(k + 4),
(k+5)
)(k+3)

)

)

782%
+ |
[\

(k
If k£ #0, then

@ O’(/{J2 + 12k + 47)
A _5+(k+3)(k+4)(k:+5)’
)\(2): 600 .

2 (k+3)(k+4)(k+5)(k+6)
)\(2): 700(1—/€)

P k4 3)(k+D(k+5)(k+6)(k+T7)

@ 8do(k —1)(k —2)
k4 3)k+D)(k+5)(k+6)(k+T7)(k+8)

A

and

7 — 42t

746t

G = iz@”(% +3)(k + 4)(k +5)(k +6),
5 (k® + 12k + 47)

(k+3)(k+4)(k+5)

k=

E=1" -

Proof. Substituting the quantile function given by (2.2) into the formula (1.15)
for t = 1 and 2, and integrating by parts gives the expressions of the first four
population symmetric TL-moments. The TL-moments parameters estimators for

t =1 and 2 are obtained by solving the following systems of equations

0'(k+5) . (1)
&+ (k4 2)(k +3) =h

b

60‘ _l(l)
(k+2)(k+3)(k+4) 7?27
10(1—k)
9k+5) 7
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and

o(k? + 12k + 47)

+ _ 1(2)7
¢ (k+3)(k+4)(k+5)
600 o l(2)
(k+3)(k+4)(k+5)(k+6) *’
7(1—k) e
6(k+7) *°7
respectively. O

2.2.4 Maximum Likelihood Method

The log-likelihood function for a sample & = {x1,22,...,z,} is
1-k & k(x; —
logL(m;ﬁ,a,k):—nloga—i—TZlog [1—u]_ (2.4)
i=1 g
However, the location parameter ¢ cannot be obtained by differentiating (2.4),
because the log-likelihood function is not bounded with respect to £. Therefore, the
minimum value of the sample data is used as its estimator [104]. The estimators

of o0 and k are achieved numerically by solving the equations

2.3 Parameters Estimators for the GEV Distri-
bution

The cumulative distribution function of the GEV distribution with parameters

¢ € R (location), 0 > 0 (scale) and k € R (shape) is
1 ko) } k40
F(z) = exp{ L S SRE oL (2.5)
exp {exp (—xT_f)] , k=0,

—co<x <&+ itk >0 o< <o0ifk=0,+7 <z <o0ifk <O
L-moments of all orders exist when k > —1, while LQ- and TL-moments of all

orders exist for an arbitrary value of k.
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2.3.1 L-Moments Method
Theorem 6. Let X ~ GEV (&, 0,k). Then, if k > —1,k # 0,

M= 1 =Tk + 1)),
Ao = %r(m 1)(1—27%),
As = %F(k +1)(—2-3F43.27F 1),

A= %F(k F1)(=5-47F410-37F —6.27F 1 1),

and
b —2.37F43.27F -1
T 1—2F ’
_ lok
0 =—= -,
[(k+1)(1—27F)
=1 - %[1 —T(k+ 1).
Proof. The proof of this theorem is similar to the proof of Theorem 3. O

Remark. The shape parameter k may be approzimated by 7.8590z +2.955422, where

z = 3ft3 —logs2 [55].

2.3.2 LQ-Moments Method
Theorem 7. Let X ~ GEV(§,0,k). Then, if k # 0,

G =+ — TApl=log Bl (] + (1 - 2p) = log Bl (1/2))* + pllog Biif (1 — a))*},
G2 = 5 {~pl-log By (@))* — (1= 2p)[~log B,3(1/2)]* — p[~log By3 (1 — )]+
+pl—log B3(@)]* + (1 - 2p)[~ log Bi(1/2)]" + p[~ log Bi(1 — )]},
G = g {-pl=log Bii(a))* = (1 - 2p)[~log By (1/2)]" — pl-log Byj(1 - a)]*+
+2p|—log By} ()] + 2(1 = 2p)[— log B33(1/2)]* + 2p[~ log B}(1 — o))~
—pl—log BiA(a)) — (1 = 2p)[~ log Bii(1/2)]" — pl—log Bi(1 - )]},
G= 45 (Pl log Bii(@))* = (1 - 2p) [~ log B} (1/2)]* — p[~log Byi(1 - o))+
+3p|—log By} ()" + 3(1 — 2p)[— log B3.1(1/2)]" + 3p[— log B; (1 — )]~
—3p[—log By} ()] = 3(1 — 2p)[— log B3} (1/2)]" — 3p[—log B3 (1 — )]+

+pl—log Br(a)]" + (1 — 2p)[~ log By i(1/2)]* + p[~log Bi; (1 — )]},
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and

s = 2 (—pl~log Bid (@) ~ (1~ 20)[~ log BiA(1/2)1* ~ pl~log Bi}(1 ~ o]+
+2p[~log By (@)]* +2(1 — 2p)[~ log By (1/2)]* + 2p[~ log By (1 — )]~
—pl~log Bri(a)]F — (1 — 2p)[~ log Br(1/2))* — pl~log Bi(1 — )]*}/
/{~pl~log By(a)]* — (1 — 2p)[~log B33 (1/2)]" — pl~log B}(1 — a)]*+
+pl-log B (@) + (1 - 2p)[~ log Bib(1/2)]* + pl~ log Bia(1 — )]},

5 = 20ok/{—p[~log Byl(a)]* — (1 - 2p)[~ log B;3(1/2)]" -

—pl—log By (1 — ) + p[—log Byl ()] +
—(1—2p)[~log B3 (1/2)F + p[—log Bii(1 — o))},

E=C - % %{p[— log B! ()]F + (1 — 2p)[—log Bl (1/2)]+

+p[—log Bri (1 - a)]}.
Proof. The proof of this theorem is similar to the proof of Theorem 4. O

2.3.3 TL-Moments Method

Theorem 8. Let X ~ GEV (&, 0,k). Then, if k # 0,

A =4 %[1 —T(k+1)(2-37%F—3.270),

AW = %"r(k F 1P —2.37F g2k,

1
A = %F(k +1)(2-57—5-47F44.37F —27F),
AW = i—ZP(k +1)(14-67% —42.57F 4 45.47% —20.37F 4 3.27F),

and

(o _ 1002 57 —5.47F44.3F_27F)
B 9(4kF — 2. 37k 4 2-k) ’

- 15k
30(k + 1)(4F — 23k 4 2-F)
£=1 %[1 TR+ 1)(=2-37F +3.27F)].



If k # 0, then

M =6+ T =Tk +1)(6-5* ~15-47F +10-37),

10
A = TOF(k: +1)(=6"+3-5F-3.47F 4378,
35
AP = S—ISF(IC F1)(=2-TF4+7-6F— 9.5k 4 5.4k —37h),
7
AP = %r(/{ F1)(—9-8F4+36-7F —56-67F 44257 —15.47F 1 2.37),
and
L) _ 7(=2-7F+7-67F—9.57F45.47F - 37F)
s 6(—6F + 3.5k —3.4-k 4 3-F) ’
_ Ik
o =
100(k +1)(—6% +3-57F — 3.4k 4 3-k)’
£=1? Z[ T+ 1)(6-5F —15-47F +10.375)].
Proof. The proof of this theorem is similar to the proof of Theorem 5. |

Remark. For the estimators of k, Ariff [4] used the method of regression to

approximate them as follows

k ~ 0.291922291 — 2.89036313¢{" + 1.291839815(£{")? — 0.403498762(t{")3—
—0.707333631(t{")* — 1.728715237(¢5")® + 4.076511188(¢{")0+
+2.525801801(£4")7 — 5.225208913(¢5”)® — 1.910928577(£{")?+

+2.856823577(t{")10

k ~ 0.300983183 — 3.911819242t) 4 1.38875248(t))? — 1.11298955(£{”)?+
+1.326160015(£4”)* + 0.578634686(15)° — 1.462068119(t)5—

—1.103598046(15”)7 + 1.366381534(t5)®.

2.3.4 Maximum Likelihood Method

The log-likelihood function for a sample & = {x1,x9,...,2,} is

" (1—k
logL(w;57a,k)=—nlogU+Z< I logy; — Z/zl/k>,

=1
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where y; = 1 —

@ The estimators of &, 0, and k are achieved by solving

the system of equations

n n 1/k 1
_r 1—k —q —Z_1) =
0+0k:§:( Y; )<y1: ) 0,

n 1
=D (1—k—y ") logy; + (1 —k — /") (——1>] = 0.

Yi

2.4 Simulation Study and Results

A simulation study was performed to compare four estimation methods: the L-
moments, LQ-moments, TL-moments (with the trimming parameters t = 1 and
2), and maximum likelihood methods. The samples of three different size n =
20,50, and 100 were simulated. The values for the location and scale parameter
were fixed (¢ = 0,0 = 1), because different values have negligible effect on the
results. From hydrological studies results that the range —0.4 < k < 0.4 covers
the estimated shape parameter k of the GP and GEV distributions for many
datasets, and, hence, nine values of the shape parameter k are considered: k €
{-0.4,-0.3,-0.2,-0.1,0,0.1,0.2,0.3,0.4}. For each combination of n and k a
sample drawn from the GP and GEV distributions was simulated 10 000 times. Using
Theorems 3-8, L-, LQ-, and TL-moments estimates of the unknown parameters
&, 0, and k were computed. The parameter estimates using LQ-moments were
calculated considering p € [0,0.5] for all sample sizes, a € [0.15,0.5] when n = 20,
a € [0.075,0.5] when n = 50, and a € [0.05,0.5] when n = 100 with step size
0.025. Since in hydrology, climatology, and meteorology the interest is focused
on quantile estimation, the parameter estimates were then substitued into the
quantile functions derived from the distribution functions given by (2.1) and (2.5)
for probabilities u = 0.9, 0.99, and 0.999 to estimate high quantiles. The estimation

methods were compared with one another according to the sample mean squared
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error (MSE) of a quantile @
1 X
MSE = 3 (@) - Q)"
In the simulation study, it was considered that the best the estimator is the
one with the smallest MSE.

Tables 2.1 and 2.3 compare the performances of the L-, LQ-, and TL-moments,
and maximum likelihood methods. The first one corresponds to the GP distribution
and the second one to the GEV distribution. For each combination of the method,
sample size n, shape parameter k, and probability u two numbers are displayed:
the mean over 10 000 simulations is in the first row, the sample MSE is in the
second gray row. The minimum value of MSE is reported in bold. In Tables
2.2 and 2.4 optimal pairs (p, «) for estimating high quantiles by LQ-moments are
displayed. Figures 2.1 and 2.3 show the interaction plots, while Figures 2.2 and
2.4 show the main effects plots. The following recommendations are deduced from
Tables 2.1 and 2.3, and Figures 2.1 to 2.4.

Let us start with the GP distribution - see Table 2.1, and Figures 2.1 and 2.2.
The L-moments method provides definitely the smallest MSE when estimating the
99.9% quantile for small samples (n = 20) and all values of k, except k = 0.4.
When the sample size is small and the 90% quantile is estimated, the L-moments
method is the best one for £ < 0. When k > 0.1, the maximum likelihood method
is recommended. For the 99% quantile and k£ < 0.2 the L-moments method also
provides the smallest MSE, otherwise the maximum likelihood estimates are the
best. When the sample size is moderate (n = 50) and the 99% or 99.9% quantile
is estimated, the L-moments method is preferred for £ < 0, while the maximum
likelihood method is recommended for £ > 0.1. The L-moments method outperforms
other estimation methods when estimating the 90% quantile and k& < —0.1. The L-
moments estimators are recommended for the 90% or 99.9% quantile and k£ < —0.1,
and for the 99% quantile and k& < 0 for sample sizes about 100. In other cases, the

maximum likelihood estimators are the best. When the sample size n increases,
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Table 2.2: Optimal combination of parameters (p, &) for estimation high quantiles

of the GP distribution by LQ-moments

i u=20.9 u=0.99 u = 0.999
n = 20
-0.4  (0.275,0.175) (0.125, 0.15)  (0.125, 0.15)
-0.3  (0.275, 0.175)  (0.15, 0.15) (0.15, 0.15)
-0.2  (0.275, 0.175) (0.175, 0.15) (0.2, 0.15)
-0.1 (0.275, 0.175) (0.225, 0.15)  (0.225, 0.15)
0 (0.25,0.15)  (0.275, 0.15)  (0.275, 0.15)
0.1 (0.25, 0.15)  (0.275, 0.15) (0.3, 0.15)
0.2 (0.275, 0.15) (0.3, 0.15) (0.3, 0.15)
0.3 (0.3, 0.15) (0.3, 0.15) (0.325, 0.15)
0.4 (0.325,0.15) (0.325, 0.15)  (0.325, 0.15)
n = 50
-0.4  (0.225,0.15)  (0.225, 0.25) (0.2, 0.25)
-0.3  (0.225,0.15) (0.25, 0.25)  (0.225, 0.25)
-0.2  (0.175,0.125)  (0.125, 0.1) (0.1, 0.1)
-0.1 (0.175,0.1) (0.175, 0.1) (0.15, 0.1)
0 (0.2,0.1) (0.225, 0.1) (0.2, 0.1)
0.1 (0.175,0.075) (0.25, 0.1) (0.225, 0.1)
0.2 (0.2,0.075) (0.275, 0.1) (0.25, 0.1)
0.3 (0.2,0.075) (0.275, 0.1) (0.275, 0.1)
0.4 (0.225,0.075) (0.3, 0.075) (0.275, 0.1)
n = 100
-0.4  (0.125, 0.1) (0.1, 0.1) (0.275, 0.275)
-0.3 (0.15, 0.1) (0.125, 0.1) (0.1, 0.1)
-0.2 (0.15, 0.1) (0.175, 0.1) (0.15, 0.1)
-0.1  (0.175, 0.1) (0.2, 0.1) (0.175, 0.1)
0 (0.15, 0.075) (0.25, 0.1) (0.225, 0.1)
0.1 (0.175,0.075)  (0.25, 0.1) (0.25, 0.1)
0.2  (0.2,0.075) (0.325,0.05) (0.275, 0.1)
0.3 (0.225,0.075) (0.35, 0.05) (0.275, 0.1)
0.4 (0.225,0.075) (0.375, 0.05) (0.3, 0.1)
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Figure 2.1: Interaction plots of MSEs for
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the MSE decreases. The bigger is the parameter k, the smaller is the MSE. The
MSE increases with increasing probability wu.

Finally, let us deal with the results for the GEV distribution — see Table 2.3,
and Figures 2.3 and 2.4. The L-moments method provides the smallest MSE for
small samples (n = 20), all values of k, and probabilities u. When the sample size
is moderate (n = 50) and the 90% quantile is estimated, the L-moments method
is preferred when k£ < 0, while the maximum likelihood method is recommended
in other cases. When the 99% and 99.9% quantiles are estimated, the L-moments
method yields the smallest MSE when £ < 0.1 and the maximum likelihood method
when k& > 0.2. If a larger sample is available (n = 100), the L-moments method is
the best one when k£ < 0 and the maximum likelihood when k£ > 0.1. When the
sample size n increases, the MSE decreases. The bigger is the parameter k, the
smaller is the MSE. The MSE increases with increasing probability wu.

To summarize the obtained results it can be said that there are small differences
when estimating high quantiles of the GP and GEV distributions. It was revealed
that the L-moments and maximum likelihood methods outperform the LQ- and
TL-moments methods. The L-moments method is preferred for distributions with
heavier tails (k < 0), while the maximum likelihood method is recommended for
distributions with lighter tails (k > 0). From Tables 2.2 and 2.4 it is observed

that the common quick estimators such as the median (p =0,0<a< %), trimean

1

3) estimators are completely unsuitable

(p =q= i), and Gastwirth’s (p = 1—%, a =
for estimation high quantiles of the GP and GEV distributions. Comparing the
MSEs of TL-moments methods with trimmed the one or two smallest and largest
observations, it is observed that the TL-moments method with the trimming
parameter t = 1 yields better estimates. The LQ-moments and TL-moments

methods with the trimming parameter ¢ = 2 provide definitely the worst estimates

of high quantiles and therefore are not recommended.
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Estimated high quantiles of the GEV distribution by LM, TLM1,

Table 2.3

the white row,

1011S 11

TLM2, LQM and ML methods (mean over 10 000 simulat

sample MSE in the gray row)
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Table 2.4: Optimal combination of parameters (p, ) for estimation high quantiles

of the GEV distribution by LQ-moments

i u=20.9 u=0.99 u = 0.999
n = 20
-0.4  (0.325, 0.175) (0.1, 0.15) (0.125, 0.15)
-0.3 (0.325,0.175)  (0.125, 0.15)  (0.125, 0.15)
-0.2  (0.25, 0.175)  (0.175, 0.15) (0.15, 0.15)
-0.1  (0.25, 0.175) (0.2, 0.15) (0.2, 0.15)
0 (0.225, 0.15) (0.25, 0.15) (0.225, 0.15)
0.1 (0.25, 0.15) (0.275, 0.15)  (0.275, 0.15)
0.2 (0.275, 0.15) (0.3, 0.15) (0.3, 0.15)
0.3 (0.3, 0.15) (0.3, 0.15) (0.3, 0.15)
0.4  (0.325, 0.15) (0.3, 0.15) (0.3, 0.15)
n = 50
-0.4 (0.2,0.15) (0.175, 0.2) (0.125, 0.2)
-0.3 (0.2,0.15) (0.225, 0.2) (0.15, 0.175)
-0.2 (0.175,0.125) (0.2, 0.15) (0.2, 0.175)
-0.1 (0.2,0.125) (0.2, 0.125) (0.175, 0.1)
0 (0.2,0.1) (0.25, 0.125) (0.225, 0.1)
0.1 (0.225,0.1) (0.25, 0.1) (0.25, 0.1)
0.2 (0.25,0.1) (0.275, 0.1) (0.275, 0.1)
0.3 (0.25,0.1) (0.275, 0.1) (0.275, 0.1)
0.4 (0.275,0.1) (0.275, 0.1) (0.275, 0.1)
n = 100
-0.4  (0.175,0.125)  (0.225, 0.2) (0.3, 0.275)
-0.3 (0.2, 0.125) (0.15, 0.125) (0.25, 0.2)
-0.2  (0.175, 0.1) (0.2, 0.125)  (0.175, 0.125)
-0.1 (0.2, 0.1) (0.225, 0.125) (0.2, 0.125)
0 (0.2, 0.1) (0.25, 0.1) (0.225, 0.1)
0.1 (0.225, 0.1) (0.25, 0.1) (0.25, 0.1)
0.2 (0.225,0.075)  (0.275, 0.1) (0.275, 0.1)
0.3 (0.25, 0.075) (0.275, 0.1) (0.275, 0.1)
0.4  (0.25, 0.075) (0.275, 0.1) (0.275, 0.1)
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Figure 2.3: Interaction plots of MSEs for the GEV distribution
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2.5 Conclusion

The chapter presents expressions of the first four -, LQ-, and TL-moments of
the GP and GEV distributions and estimators of their parameters based on these
moments including the well-known maximum likelihood estimators as well. In the
simulation study, the performance of the usually used maximum likelihood method
was compared to the alternative considered estimation methods — L-, LQ-, and
TL-moments methods — to estimate high quantiles of the GP and GEV distributions
considering various sample sizes, values of the shape parameter and probabilities.
The simulations revealed that L-moments and maximum likelihood methods outper-
form definitely other considered estimation methods when estimating high quantiles
of these distributions, although the optimal combinations of parameters (p, ) for
estimation LQ-moments based quantiles were identified, and the one or two largest
observations were trimmed for estimation quantiles based upon TL-moments. It
was found out that the common quick estimators such as the median, trimean, and
Gastwirth’s estimators highlighted by Mudholkar and Hutson [84] are completely
unsuitable when estimating high quantiles of these distributions by LQ-moments.
Although the results for symmetric TL-moments with the trimming parameter ¢t = 1
and 2 are displayed, simulations were performed also for asymmetric TL-moments
with trimming parameters t; = 0,¢, = 1 and t; = 0,1, = 2. Using asymmetric
TL-moments, smaller MSEs can be achieved in comparison with symmetric TL-
moments for certain combinations of the probability, sample size and value of the
shape parameter (particularly for very high quantiles and distributions with heavier
tails), nevertheless the L-moments and maximum likelihood methods still provide

the best high quantile estimates of the GP and GEV distributions.
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3.1 Introduction

Traditional techniques for estimating parameters of a univariate probability distri-
bution are the moments and maximum likelihood methods. After that Hosking
[55] introduced L-moments, the estimation method based upon them began to
be popular, especially in such areas as hydrology, climatology, and meteorology
[41, 70, 89], but also in economics [12, 13, 110]. It has already been stated that
the L-moments method is in some cases preferred over the traditional methods

for quantile estimation, specifically when such distribution with heavier tails than

o4



has the normal distribution are fitted to small sample data, as has been shown in
several studies using large computer simulations [57, 59, 77, 118]. Studies involving
parameter estimation using L-moments have continued to be focused on point
estimation, even though the confidence interval for an estimate is preferable because
it is more informative than a point estimator.

Prescott and Walden [90] derived the asymptotic variance of the maximum
likelihood-based parameter estimators for the GEV distribution. Smith [106]
presented the asymptotic variance of the maximum likelihood-based parameters
estimators for the two-parametric GP distribution. Note that the maximum likeli-
hood estimator of the location parameter of the three-parametric GP distribution
does not exist, because the log-likelihood function is not bounded with respect
to this parameter. In general, and as Hosking [55] had stated, it is very difficult
to obtain the exact distributions of the L-moments parameter estimators of a
univariate probability distribution. The asymptotic distributions of moments and
L-moments parameter estimators may nevertheless be derived by using the delta
method, because both the sample moments and L-moments have asymptotically
a normal distribution [55, 92]. This approach was used by Hosking [57, 59] to
obtain parameters and quantile estimators of the GP and GEV distributions that
are based on PWMs. Hosking [59] showed that the variance of PWM estimators of
both parameters and quantiles of the GEV distribution is well approximated by the
asymptotic theory even for small sample sizes (about 50). Hosking [57] also concluded
that the asymptotic PWM-based confidence intervals for quantile estimates of the
GP distribution give the best results in terms of empirical coverage probability in
comparison with the maximum likelihood and moments methods. Several other
studies have dealt with the construction of asymptotic confidence intervals based on
PWNMs of different probability distributions and their comparison to the intervals
obtained by other estimation methods: Dupius and Field [35] considered asymptotic
and bootstrap confidence intervals for the GEV distribution, the work by Heo and

Salas [49] was devoted to the log-Gumbel distribution, Heo, Salas and Kim [50]
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presented estimation of confidence intervals for the Weibull distribution, Mahdi and
Ashkar [74] investigated the two-parametric Weibull distribution, etc.

Although L-moments are in practice more popular than PWMs and are used
in many studies, no attention has been given to estimation of confidence intervals
for parameter and quantile estimates of the GP and GEV distributions based on
L-moments. It is expected that, as in the case of PWMs, asymptotic confidence
intervals for the GP and GEV parameter and quantile estimates based on L-moments
will outperform those obtained by the moments and maximum likelihood methods.

This chapter deals with estimating confidence intervals for quantiles of the GP
and GEV distributions and assessing of their accuracy. In Section 3.2 asymptotic
distributions of parameter estimators of the GP and GEV distributions based on
moments, L-moments, and maximum likelihood are presented. A simulation study,
showing how the approximate confidence intervals based on various estimation
methods behave for particular values of the parameters and sample size is performed
in Section 3.3. In Section 3.4, the derived confidence intervals are applied to real
meteorological data. The conclusions thus obtained are summarized and discussed

in the final section. This chapter relies on the article [114].

3.2 Asymptotic Confidence Intervals

The asymptotic distribution of moments and L-moments estimators may be derived

by the delta method (see, e.g., [92]).

Theorem 9. Let us assume a random sample x1, s, . .., x, whose assumed prob-
ability distribution depends on some unknown k-variate parameter vector @ =
(01,05,....0)". Let s, = (51,52,...,5m)" be an m-dimensional statistic with
the asymptotic normal distribution having mean (S, Ss, ..., Sm)? and covariance
matriz n~ Y. Further, let @ = (01,0,,...,0,)7 = g(s1,52,-..,5m) = (g1(s1,
Sy 8m)s 92(81, 82,y Sm), - -+ Ge(S1, S2y .., 8m)) T and g; be totally differentiable

for each1=1,2,..., k. Then, asn — oo

0 % N, ((61,0s,...,0,)", n 'GEGT),
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where

dg;
88]' ’

GU: Z:1727aka]:1,2,,m, (31)
and N,, denotes the m-variate normal distribution.

Proof. See [92], p. 388. O

Corollary 1. Let us assume a random sample x1, %o, ..., T, whose assumed prob-
ability distribution depends on some unknown k-variate parameter vector @ =

(01,0, ...,0,)T. Further, let the asymptotic distribution of @ = (0,05, ...,0,)T be

normal with mean (01,04, ...,0x)" and covariance matriz
var(0;)  cov(fy,0,) ... cov(fy,0;)
cov(fy,01)  var(fy) ... cov(fsy,6y)
cov(Op,01) cov(By,05) ... var(fy)

Then, for 0 <u <1,

where

k
var(O(w) Z(

=1

and N denotes the univariate normal distribution. Hence, 1 — « asymptotic central

confidence interval for a quantile Q(u),0 < u < 1, is in the form

(@ =7 (1-5) Vvar(@u): Qw + 7 (1= 5) Yvar(@w))

where &1 (1 — %) is the (1 — %)-quantz’le of the standard normal distribution.

Proof. Straightforward application of Theorem 9 gives these results. O
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3.2.1 Asymptotic Confidence Intervals for the GP Distri-
bution

According to the cumulative distribution function of the GP distribution given
by Equation (2.1), its quantile function is
o k
o= (B T
Here, the focus is only on the case k& # 0. With respect to Corollary 1, the
asymptotic variance of the quantile estimator Q(u), if k£ 0, is

var(@(w) = var(§) + LT

var(o) +

+02[—(1 — )k + k(1 l;u)k log(lf— u) + 1]2var® N
201 = (; — 9 ov(E5)
o[- —wr+ k(0 k_zu)k log(1 —u) + 1]COV@ P
ol - (1w~ u)k]:; k(1 —u)*log(1 — u) + 1] cov(3.B)

where the variances var(€), var(3), and var(k), and covariances cov(€, ), cov(€, k),

and cov(a, E) are given as follows with respect to the chosen estimation method.

Moments Method

Theorem 10. Let X ~ GP(§,0,k). Then, if k > —¢,
var(€) = pl1o11 + 2p11Pi12012 + 2P11P13013 + Pha0az + 2p12P130as + Pi3033,
var(o) = ]931011 + 2p21p22012 + 2p21P23013 + p§2022 + 2paopagoas + p33033,
V&I(E) = P51011 + 2P31P32012 + 2P31D33013 + D3022 + 2P32D33021 + D3g033,
COV(& 0) = prup21011 + P12P210i2 + PriPeadiz + P13P21013 + Pr1pasois +
+P12P22022 + P13P22023 + P12P23023 + P13P23033,
COV(ga E) = P11P31011 + P12P31012 + P11P32012 + P13P31013 + P11P33013 +
+D12P32022 + P13P32023 + P12P33023 + P13P33033,
cov (T, E) = P21P31011 + P22P31012 + P21P32012 + P23P31013 + P21P33013 +

+P22D320922 + P23P32023 + P22P33023 + P23P33033,
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where

1+ 2k myms — m2 2% \?
pi=14+m 17 2<1+ )

mo —m3  (my — m?)? 1+k

. 1 1+ 2k i mi1mseo — M3 14 2k 2
P ="\ e — mi  4(mg —m?)? 1+k)
B 1 L, 2k ?
P13 = G, — m?) 1+k)
1+ 2k myms — ma 2% \?
= — 1+ k — 3k+2) 1+ ——
b mal+ )\/ mo —m3 (mg—m%)Q( +2) Jr14—14: ’
1+l€ 1+2k’ mime — M3 2k
= — 3k+2) |1+ ——
b2z 2 \Vmy—m?  4(my— m%)2( |1+ 1+k)’

(3k +2) <1+ﬂ>2,

1+k

D23 = _6(m2 - m%)

myms — m?2 2% \?
R S

2(my — m?)5/2 1+k

—~ 2k \*
P32 = — T v1+2k<1+—> )

4(mgy — m3)5/2 1+k
1

P33 = —

2% \°
Vitok(1+ -2,

6(mg — m3)3/2 1+ k
o2
011 = )
(1+ k)2(1 + 2k)
202(€ + 20 + 3Ek)
012 =

(1+ k)2(1+ 2&)(1 + 3k)°

7 (1803 + 4€02(4 + 22k + 35k + 50k*+

(1 4+ k)21 + 2k) (1 + 3k)(1 + 4k)
+24Kk*) + 3620 (1 + Tk + 12k%) — 4€3(1 + 10k + 35k + 50k° + 24k)],

013 =

4o
(1+k)2(1+ 2k)%(1 4 3k)(1 + 4k)

+120k° + 124%™ + 48K°) + &%0(1 + 9k + 26k + 24k%) —

[0%(5 + 11k) + £0*(5 + 36k + 8TK* +

0922 =

—&3(1 4 2k)*(1 + 8k + 19k* + 12K7)],

60
7 T A k)21 + 2k)2(1 + 3k)(L + 4k)(1 + 5k)

+260%(8 4 5Tk + 85k%) — 320 (1 + 14k + T1k* + 154k° + 120k") +

[60°(3 + 7k) +

+&3(1 + 14k + T1E* + 154K° 4+ 120k")],

29



902
(1 4+ k)2(1 + 2k)2(1 + 3k)2(1 + 4k) (1 + 5k)(1 + 6k)
+24€0° (3 4 34k + 117k* + 126K°) + 46207 (8 + 129k + 155k + 80K” + 1044k* +

Osg = [40*(19 + 105k + 146k°) +

+720k%) + 830 (1 + 20k + 155k% 4 580k™ + 1044k* 4 720k%) + (1 + 3k)?(1 +

+17k 4+ 104k* + 268k> + 240k™)].

Proof. The point estimators of parameters ¢ and ¢ obtained by the moments method

are

E=m — \/(mg —m2)(1 + 2k),

~

& = (k + 1)/ (ms — m3)(1 + 2K),

while the estimator of the shape parameter k must be obtained numerically from

the following equation

21— k)V1+2k  mg—3mymy + 2m}

- , 3.2
1+ 3k (my — m3)3/2 (3:2)
where
m :lzn:x m :lzn:xz m :lzn:x?’
1 nl:l 19 2 nl:l ) 3 nl:l 1

are the first three sample raw moments. Note that the first three population
moments exist when k£ > —%. If £ > —%, then the asymptotic distribution of the
)T

vector of the first three sample raw moments (mq,mg, m3)" is normal with mean

(g1, 2, 13)™ and covariance matrix as follows [92]

flo — J1}  p3 — pafla e — Hij3
nT'S =0Tt ps — g pa— g3 ps — pops |
[ia = pafis  fis — flofis e — /13

where j; = EX%, i =1,2,...,6, is the ith population raw moment of the variable
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X. Specifically,

g
pr =&+ H—ka
s 20 20
e = T T A R s 2R
5 3% 602 60>
e = e Y a2 T AR+ 20 (1 3k)
a4 460 12€2072 24£03
M= T T AT 2R T AL Ao 13k
2404
AR+ 200 + 3% (1 + 4k)
5 5o 20&302 6£203
s = T U T 2k T AR+ 2m (1 3k)
. 120¢0° N 1200°
TR 2R)(L1 301 1 4k) | (L1 KL+ 2K)(1 1 3k)(L + 4k)(1 1 5K)’
.6 650 30&%02 120303
o = T A 2k T A= k(T 2R k)
. 36020 N 720¢0° .
TR+ 20 (1 130 14k (LF k)T 201 1 3k)(L 1 4k)(1 1 5k)
72009
_l_

(1+ &)(L+ 2k)(1 + 3k)(1 + 4k)(1 + 5K)(1 + 6k)°

However, the Jacobi matrix G of the transformation

)1

that is used in Theorem 9 cannot be obtained directly, because the estimator of
the shape parameter k is not expressed as an explicit function of the sample raw
moments my, ms, and ms (see Equation (3.2)). The covariance matrix of the vector
of the parameters estimators (é ,0, @)T may be then obtained by using the following

system of transformations

mq mq
my 5
1st transformation } 772 | 2nd transformation J 7772 | 3rd transformation
me — — — g
k

ms3 ms
s R k

as seen in the studies by Heo and Salas [49] and by Heo, Salas and Kim [50]. In
the 1st transformation, R is the right-hand side of Equation (3.2), while in the 2nd

transformation it is the left-hand side of Equation (3.2).
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Hence, the Jacobi matrix of the first, second and third transformations are

omy  Omi  Omg
87711 amg amg 1 O 0
Omo  Oma  Oma 0 1 0
J = om1 Oma oms _
1 — oms ms3 oms - 0 O 1
% %E % 3(mimsz—m3)  3(mima—ms3) 1
Omi Omg Oms (ma—m2)57/2 2(ma—m2)5/2  (ma—m?2)3/2
omq omq omq omq
omq Omo  Oms OR 100 0
dma  Omz  Omo  Imao 010 0
J, = omi1  Omg  Omgs OR —
2 dmsz Omg Omg Omg 0 0 1 0
O Ome oms G 1 2k \?
Dmi Dms Om; O 00 0 —VIT2R(1+ 2)
o€ ¢ SIS/
omiy Omo Omsz Ok
J. = 0o Oo do do | _
3 — omq Omo oms Ok -
ok ok ok Ok
omiy Omg Omg Ok
2
142k 1 142k _me—m?
]' + my mg—m% 2 mg—m% O 142k
2
. 142k 14k | 142k mo—m? |,
ma(1+ k) 72, Lk [ o ()4 2), [ men
0 0 0 1
respectively. Let us denote
P11 P12 P13
P =J3JoJ1 = | poa1 pa2 P23
P31 P32 P33
and
011 O12 013
Y= |on o2 03
031 032 033
Then the covariance matrix of (£,7, k)T is in the form

cov(€,5,k) = n ' PEPT.
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L-Moments Method

Theorem 11. Let X ~ GP(§,0,k). Then, if k > —%,

var(€) = A1 + 2g12A12 + 201315 + gh Moo + 2012013005 + g3 A3,
var(0) = g3 MNos + 202292323 + 9333,
var(k) = g2yAas + 2932933 ag + 935 Ass,
cov(€,5) = goaliz + goaliz + G12go2 0oz + G13go2los + G12gaslas + Gi3gasias,
cov(&, k) = ga2Aio + g3ahiz + giogazhas + gi3gazAas + g12g33Aas + G13g33aa,

cov(a, %) = g229320\22 + g23g32 23 + G22933A23 + G23g33/A33,

where
2
o
A p—
TR+ 122k + 1)
o?(1—k)

iz = Ao = (k+12(k+2)(2k + 1)
Aug — Agr — 02(2k3 — 5k? — 12k + 3)
(k+1)%2(k+2)(k+3)(2k+ 1)(2k + 3)’
I 02(2k3 — k2 — 2k + 4)
27 (k+1)2%(k+2)2(2k + 1)(2k + 3)°
N — A — OO = F)(2K — 5k* — 6k + 6)
PR +1)2(k + 2)2(k + 3)(2k + 1)(2k + 3)°
o _ UK — 16K — 13K" + 184K° + 123K% — 66k + 72)
BTk +1)2(k +2)%(k +3)2(2k + 1)(2k + 3)(2k + 5)
=313 — 6laly + 13
J12 = (s 1 I3)?
o
913 = 7”2 )2
2(313 4 91515 — 913 4 13)
g22 = (s + 1 )2
gy — 4(31215 — 513)
(Iy+13)?
4l
g32 = m»
1
933 = 7“2 i)

Y

i
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Proof. The parameters estimators based upon L-moments are
E—1, - 3[; — lols
2+ (3
2l5(ly — 13)(3ly — 13)
(o 4 15)? ’
ly — 3l3
lo + 15

According to Theorem 2, if k£ > —%, the asymptotic distribution of the vector of

b

o=

k=

the first three sample L-moments (11,15, 13)7 is normal with mean (A, Ao, A3)T and

A A Ags
nTA=n"" Ay Ap Ags |,
A1 Asy Asg

where its elements are derived by using Equation (1.12), i.e.,
2

covariance matrix

A . g
T k4 1)22k + 1)
o?(1—k
A12:A21: ( )

(k+1)2(k+2)(2k+ 1)
o?(2k3 — 5k* — 12k + 3)
(k+1)%2(k +2)(k +3)(2k + 1)(2k + 3)’
Ao — o?(2k® — k* — 2k + 4)

27 (k+1)2(k+2)2(2k +1)(2k + 3)°

o?(1 — k)(2k® — 5k* — 6k + 6)

(k+1)%(k +2)%2(k+3)(2k + 1)(2k + 3)’

_ 0?(4kS — 16k° — 13k" + 184k% 4 123k* — 66k + 72)
BTk + D2k +2)%(k +3)2(2k + 1)(2k + 3)(2k +5)

In comparison to the moments method, it is easy to determine the Jacobi matrix

A13 = A31 =

A23 = A32 =

G for the L-moments method

o6 o8¢ ¢
g G2 gi3 aly By s
G = (921 22 923) = 27" gT; 372 =
931 G932 gs3 g—i 3—12 3—13
1 (I + lg)2 —315 — 6lsl3 + l§ 4Z§
= 0 2(3[523 + 9l§lg — 9lgl§ + lg) 4(3[%13 — 51;’) .
(l2 +13) 0 Al —4l,

The covariance matrix of the parameter estimators (5 , 0, %)T is then

cov(€,5,k) =n'GAG.



3.2.2 Asymptotic Confidence Intervals for the GEV Dis-
tribution

The quantile function of the GEV distribution derived from the cumulative dis-
tribution function given by Equation (2.5) is
Q(U):{g+%[1_<_1ogu)k], k40,
¢ — olog(logu), k=0.
Here, the focus is again only on the case k # 0. With respect to Corollary 1 the
asymptotic variance of the quantile estimator @(u), if k£ 0, is

(@) = van(§) + L o8]

var (o) +

+a2[1 — (—logu)* + k; log u)klff)g(— 1ogu)]2m®+
L2 = (—klog u)*] cov(€. 5) -
~20[1 — (= logu)* + k];— log u)¥ log(— log “>]cov(§, B
o[t — (= logw)*][1 — (—log Zz’“ + k(= log u)¥ log(— log u)] cov(3. ),

where var(€), var(5), and var(k), and cov(, ), cov(€, k), and cov(d, k) are given

as follows with respect to the chosen estimation method.
Moments Method

Theorem 12. Let X ~ GEV (§,0,k). Then, if k > —%,

~

var(§) = plho11 + 2pupi2012 + 2p11P13013 + Pia022 + 2P12P13023 + Pig0ss,
var(o) = ]931011 + 2p21p22012 + 2p21P23013 + p§2022 + 2paopagoas + p33033,
V&I(E) = P51011 + 2P31P32012 + 2P31D33013 + D3022 + 2P32D33021 + D3g033,
COV(& 0) = prup21011 + P12P210i2 + PriPeadiz + P13P21013 + Pr1pasois +
+P12P22022 + P13P22023 + P12P23023 + P13P23033,
COV(ga E) = P11P31011 + P12P31012 + P11P32012 + P13P31013 + P11P33013 +
+D12P32022 + P13P32023 + P12P33023 + P13P33033,
cov (T, E) = P21P31011 + P22P31012 + P21P32012 + P23P31013 + P21P33013 +

+P22D320922 + P23P32023 + P22P33023 + P23P33033,
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where

mi[l —T(1+ k)] mymg —m3
Vmy —md)[D(1+2k) —T2(1+ k)] (m2 —mi)?
(14 2k) — T2(1+ k)] - {{[C(1 + 2k) — T2(1 + k)]yp(1 + 3k) —

pii =1+

—(1 4 2k)0(1 + 2k) + (1 + B)T*(1+ &)} - T(1 + 3k) +
+[D(1+ k(14 2k) — (1 + k)T(1 + k)T*(1 + 2k)} -
AT2(1 4+ k)Y(1+ k) +T(1 + E)T(1 + 2k)[0(1 4+ 2k) — (1 4+ k)] —

CT(1 4 20)(1+ 28)),
B M1+k)—1 mime — M3
g Jlma — )DL+ 28) — T2(1 1 B)] " 3my —mi)?
[D(L 4+ 2k) — T2(1 + k)] - {{[T(L + 2k) — T2(1 + k)]ob(1 + 3k) —

—(1 4 2k)0(1 + 2k) + (1 + B)T*(1+ &)} - T(1 + 3k) +
+[(1+ k)p(1 + 2k) — (1 + k)D(1 + k)01 + 2k)}
AT2(1 4+ k)1 + k) +T(1 + E)T(1 + 2k)[0(1 4+ 2k) — (1 4+ k)] —
—T(1 + 2k)y(1 + 2k)},

— - [[(1+2k) —T*(1+ k)]

3(mg —mf7)
LA+ 2k) — F2(1 + k)|(1 4 3k) —

P13 =

—(1 4 2k)0(1 + 2k) + (1 + B)T*(1+ &)} - T(1 + 3k) +
+[0(1 + k(1 + 2k) — (1 + k)T(1 + k)T*(1 + 2k)} -
AT2 (1 4+ k(1 + k) +T(1 + EB)T(1 + 2k)[0(1 + 2k) — (1 + k)] —

—T'(1+ 2k)y(1 + 2k)},
B —my |k| mimg —mj
P )T+ 28) T2 4 )] (ma— i)
[D(1+2k) — T2(1+ k)] - ({01 + 2k) — T2(1 + &)]ob(1 + 3k) —

—(1 4 2k)0(1 + 2k) + (1 + )T (1 + &)} - T(1 + 3k) +
+[0(1 + k(1 + 2k) — (1 + k)T(1 + k)T*(1 + 2k)} -

K k|7 AT2(1 + k) k(1 + k) — 1]+ T(1 + 2k)[1 — (1 + 2k)]},
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_ ‘k| mymg — Mg
P22 = — .

2,/(my — m)[L(1+2k) —T2(1+ k)] 2(mz —mi)?
01+ 2k) = T2(1 + k)] - {{[0(1 + 2k) — T*(1 + k)]v(1 + 3k) —

—p(1+2K)0(1 + 2k) + (1 + B)T*(1+ k) } - T(1 + 3k) +
+[0(1 + k(1 + 2k) — (1 + k)T(1 + k)T*(1 + 2k)} -
K- kTN AT+ k) [EY(1 4+ k) — 1] 4+ T(1 + 2k)[1 — (1 + 2k)]},

1

3(mg —m7)

T+ 2k) = T2(1 4 k)]ap(1 + 3k) —

S[D(1+2k) —T%(1 + k)]

P23 = —

—h(1+ 2K)0(1 + 2k) + (1 + B)T*(1 + k)} - T(1 + 3k) +
HT(1+ k)Y(1 4 2k) — (1 + k)D(1 4 k)02 (1 4 2k)}

K- |kTH AT+ k) [RY(1 4+ E) — 1]+ T(1 + 2k)[1 — (1 + 2k)]},

P31 = —_(m2 _ m%)5/2

{01+ 2k) — T2(1 + k)](1 + 3k) —

[C(1+ 2k) — T%(1 + k)]

— (1 + 28)T(1 + 2k) + (1 + E)T3(1 + k)} - T(1 + 3k) +

FO(L+ k(1 + 2k) — (1 + k)DL + )T+ 2k)} 7,
Kty —

J{C(1+2k) = T2(1 4 k)]ap(1 + 3k) —

P32 = — (14 2k) — T%(1 + k)]-

—(1 4 2k)0(1 + 2k) + (1 + B)T*(1+ &)} - T(1 + 3k) +

FI0(L+ k(1 + 2k) — (1 4+ k)D(1 4+ B)T2(1 + 2k)}

P33 = T3 0m, —1m%)3/zr(1 +2k) = I*(1 + k)]-
{01+ 2k) — T2(1 + k)]yp(1 + 3k) —
—(1 4 2k)0(1 + 2k) + (1 + E)T*(1+ &)} - T(1 + 3k) +

+[0(1 + k)(1 4 2k) — (1 + k)D(1 + k)T?(1 + 2k)}
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011 = M2 — M%a
012 = U3 — M2,
013 = Mg — M1 143,

092 = g — /é,
023 = W5 — H2/43,

_ 2

033 = e — U3,

=&+ T -TA+R),

[\V]

= ¢ —1—25 =T+ k)] + 51 —200+ k) + (1 + 2k)],

= €3 4 3¢2 [ (1+k;)]+3§—2[1—2F(1+k)+F(1+2k)]+

N|Q

+ [1 — 30(1 + k) + 30(1 4 2k) — T(1 + 3k)),

py =&+ 453%“ — (1 + k)] + 6¢? —[1 —2I(1 + k) + T'(1 + 2k)] +
+4§U—§[1 —30(1 + k) +30(1 +2k) — (1 + 3k)] +

7
k.4
S 5545[ T(1+ k) + 1053 [1 —9T(1 + k) + D(1 + 2k)] +

1—4AT(1+ k) + (1 +2k) — 4T(1 + 3k) + (1 + 4k)],

+1052 il S[1=30(1+ k) +30(1 + 2k) — T(1 + 3k)] +

+5§—j[1 —AT(1+ k) + 6'(1 4 2k) — 4T(1 + 3k) + (1 + 4k)] +

5

5 (1= 5T(1 4 k) + 100(1 +2k) — 107 (1 + 3k) + 5T(1 + 4k) — T(1+5h)]

=&y 6559[1 —T(1+ k)] + 15¢* —[1 — (1 + k) 4+ (1 4 2k)] +
+20§3 [1 —3T(1+ k) + 30(1 + 2k) — T(1 + 3k)] +

+15§ [1—4F(1+I<;)+6F(1+2k:) AI'(1 4 3k) + (1 + 4k)] +

+6§—z[1 —5I(1 + k) 4+ 10T°(1 + 2k) — 100°(1 + 3k) +5I'(1 + 4k) — T'(1 + 5k)] +

6

g1 = 6T(1+ k) + 150(1 + 2k) — 20T (1 + 3k) + 15T(1 + 4k) — 6T(1 + 5k) +

+I'(1 + 6k)],
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and I'(+) is the gamma function and ¥(r) = dl%f(r) is the digamma function.

Proof. The proof of this theorem is similar to the proof of Theorem 10.

L-Moments Method

Theorem 13. Let X ~ GEV (&,0,k). Then, if k > 0,

var(E) = A1+ 2p12Ai2 + 2p13Ais + pioyAas + 2piopisAag + pisAss,
var(G) = pyy Aoz + 2p2opasos + pisAss,
var(%) = Pialas + 2psapssNaspisAss,
cov(g, 0) = paalia + pazhiz + prapaafas + prapaalos + prapesias + piapasias,
COV(& /2) = pa2i2 + pazliz + Prapsalas + pi3paalas + P1apsslas + pi3pasAss,

~

cov(T, k) = paopsalos + paspsalog + DaopssNag + Daspssss,

where
T4k =1 3M{[1 -1+ k) log2 + (25 — Dep(1 + k)}
P20 "o T+ k) DL+ k)[(2F—1)log3— (3" — 1)log2]
ML= T(1+ k)] log 2+ (2 — 1)y(1 + k)}
P = oA 1 k)25 — 1)log3 — (35 — 1)log2]
o k 315[1 — 28 + k- log 2+ k(28 — 1)o(1 + k)]

(=2 "1+ ) 26T+ )2 — D)log3 — (3 —1)log2]’
3E[1 — 28 + k- log2 + k(2% — 1)y (1 + k)]

P =TT+ k)[(2F — 1)log3 — (3 — 1)log 2]
3kl (Qk _ 1)2
por =~ B((2F — 1) log3 — (3 — 1) log2)
k15 (28 — 1)?
D3z = %12[(2]g —1)log3 — (3" — 1)log 2],
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Ay = —[20(2k) — kT?(K)],

o
k
Ay = Ay = —%2 212 9R LD (2k) [ 22K 4 oF 4 36F - 2% oF L H(—2)—

4 9F (1) 4295 H(—1/2)],
Az = Agy = Q%F(Qk)[l +3.217 2.3 L y7F 6. H(-3)+12- H(—2)—
—1)+3-2"7% . fg(—=1/2) — 2372 . H(-1/3)],

Ngy = ?2 214 9F D (2k)[—2% 3 + 4. 9% 4 36F +
4144k 4 42k+1 gk H(-2) — 92k+1 gk (4+3- 4k> CH(-1) + g2k+1 | gkl H(-1/2)],

Aoz = Agy = %2 QIR QTR (2K) [ 103" 5. 412k 212k o5~k 36k

—144F 4 9l+4k  gl42k H(-3)—7 ol+4k gk H(-2) — glt2k | yl+k H(—3/2)+

+5- 2ok (1) + 36" H(—1) — 34" . H(-2/3) —
—2TR R L H(—1/2) +9- 2"k H(—1/3)],
Agz = Q%F(Qk)[l +15-257% —16-3"7% 1 47F 108 . 572F 4 6272k~

—12-H(=3)+24-H(—2)+9-2>2 . H(-3/2) —14- H(-1) —9-4* % . H(~1)—

—8-9"F L H(=1)+16-9"F . H(—2/3) + 21 -4 . H(—1/2) — 28 - 372 . H(-1/3)],

dlogI'(r)

G Is the digamma function and

and T'(+) is the gamma function, ¥(r) =
H(z) = F (k, 14 2k; 1+ k; z) is the hypergeometric function.

Proof. The proof of this theorem is similar to the proofs of Theorems 10 and 11. [J

Maximum Likelihood Method

The point estimators of &, 0, and k are achieved by solving the following sys-

tem of equations

11—k — gk
Sy,
U Yi
n 1” 1/k 1
e N (k- —1] =0
RN yz>(yi ) ,

1 1
—pZ{[l—k v logy: + (1—k —y'") <y,—1>}=0,
=1 7

where y; = 1 — @
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Prescott and Walden [90] presented the asymptotic variances and covariances of
the maximum likelihood estimators. They are given by the elements of the inversion

of the information matrix M having the elements

na
My = —,
n
M12_M21_ﬁ[a—1“(2—k’)],
n a
M M. — b+ =
13 31 ak<+k>’
n
MQQ W[l—QF(Q—k')‘l—CLL
B _n 1-T'(2—-k) a
M23—M32—ﬁ[1—’7—T—b—E]:
n |2 1\% 2b a
Mys = — | — [ —— — + —
» k2[6+( 7 k>+k+k2]’

where v denotes the Euler’s constant (v & 0.5772157), a = (1 — k)*T'(1 — 2k),b =
I'2—k) {1/)(1 —k)— 1+ 1} . I'(+) is the gamma function and ¥(r) = dl%f(r) is

the digamma function. When £ < the estimators are consistent and have

1
2

asymptotic normal distribution [90].

3.3 Simulation Study and Results

A simulation study was performed to find out how well the approximate confidence
intervals for the GP and GEV distributions based on the moments, L-moments, and
maximum likelihood methods work for different choices of parameters’ values and
sample sizes. Samples of five sizes, n = 20, 50, 100, 250, and 500 were drawn from the
GP and GEV distributions with fixed location and scale parameters ({ = 0,0 = 1)
and varying values of the shape parameter k, that variation ranging from —0.4 to
0.4 with step size 0.1. For each combination of n and k a sample was simulated
10 000 times. First, the unknown parameters &, o, and k were estimated. Note that
the shape parameter k for both the GP and GEV distributions is always evaluated
numerically, except in the case of the L-moments method for the GP distribution.
The estimators 5 ,0, and k are then substitued into the corresponding quantile

functions. Here, the focus was only on estimating the 95% population quantiles
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of both distributions. Using variances of population quantiles derived in Sections
3.2.1 and 3.2.2, the approximate asymptotic 95% confidence intervals based on
moments, L-moments, and maximum likelihood are computed.

The estimation methods were compared with one another with respect to
the empirical coverage probability and median length of the approximate 95%
confidence intervals for an estimate of the 95% population quantile of the GP and
GEV distributions. The empirical coverage probability is defined to be the ratio
of the number of confidence intervals that contain the true value to the number
of simulated samples, which is equal to 10 000. Ideally, that probability should
be close to 95%. Moreover, the median length should be short.

First, we will discuss the results obtained for the GP distribution. Let us recall
that only approximate asymptotic confidence intervals for the three-parametric GP
distribution based on L-moments and moments may be computed. In the case of the
two-parametric GP distribution (with unknown scale and shape parameters), the
maximum likelihood-based asymptotic confidence intervals may also be derived. The
empirical coverage probabilities are shown in Figure 3.1. The L-moments method

outperforms with absolutely no ambiguity the moments method: The moments-

1

5> While the confidence

based confidence intervals can be found only when k > —
intervals based upon L-moments can be estimated for k& > —%. The latter covers the
estimated shape parameter in many practical situations. Moreover, the empirical
coverage probabilities of the confidence intervals based upon L-moments are always
higher than for the moments method. These two observations clearly favour use of
the L-moments method over the moments method. The difference between empirical
coverage probabilities of the two methods diminishes with increasing sample size n
and the value of the shape parameter k. The estimation methods have comparable
performance when n > 100 and k£ > 0.1. As expected, asymptotic theory works well
for large sample sizes. It is also observed that the accuracy depends not only on
the sample size n but also on the value of the shape parameter k. Good accuracy

(about 90%) also can be achieved for smaller sizes: let us say about 50 for the

L-moments method when k£ > 0, and in the case of moments method when n > 100
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Figure 3.1: Empirical coverage probabilities of 95% confidence intervals for 95%
quantile estimates of the GP distribution

and k > 0. Figure 3.2 shows that the median length of confidence intervals is
always shorter for the moments method, but the median lengths are comparable
with increasing sample size n and value of the shape parameter k. In both methods,
the median length decreases with increasing n and k.

Figures 3.3 and 3.4 summarize the simulation results obtained for the GEV
distribution. Here, the choice of best estimation method depends on the value of
the shape parameter k. If one has no a priori information about the value of £, then
the maximum likelihood method seems to be a good choice, because the variance of
the maximum likelihood quantile estimator is defined for all k£ < % In any case, the
maximum likelihood method outperforms the moments and L-moments methods for
k < 0.1 and all sample sizes, except the case when n = 20. For k£ = 0.2 all methods
have comparable performances, except that in the case n = 20 the moments method
surpasses the other two. If it can be assumed that the shape parameter k is greater
than 0.2, then the moments and L-moments methods are preferred, because they

show significantly better accuracy than does the maximum likelihood method. It
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Figure 3.2: Median lengths of 95% confidence intervals for 95% quantile estimates
of the GP distribution

can be concluded, however, that use of the L-moments method will probably remain
uncommon in practice due to its very restrictive requirement that £ > 0. It is
also important to point out that in the case of the maximum likelihood method
the empirical coverage probabilities are affected by the fact that in some cases
the local maxima of the corresponding maximum likelihood function do not exist.
Hence, the empirical coverage probabilities would probably be even higher if such
samples would be omitted from the simulation study. Figure 3.4 shows that all
methods provide confidence intervals of similar lengths when k£ > 0.1. For the
case —0.1 < k <0, it is obvious that the confidence intervals based on moments
method are narrower than are those obtained by the maximum likelihood method.

Of course, the median length decreases with increasing n and k.

3.4 Case Study

To show that the asymptotic L-moments derived on the basis of L-moments

provide reasonable results comparable to those obtained by the standard techniques,
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they are applied here to real meteorological data. The maximum annual 1-day
precipitation totals for the period from 1961 to 2012 measured at the meteorological
station Hustopece located in the southeast part of the Czech Republic are used to
calculate the 80%, 90%, 95%, and 99% approximate asymptotic confidence intervals
of the parameters, and 90%, 95%, and 99% quantile estimates. Basic information
concerning the data set is summarized in Table 3.1. Data is displayed in Figure 3.5.
According to the results of Kysely and Picek [70], the GEV distribution seems to

be the most suitable for modeling 1- to 7-day precipitation totals in this station.

Table 3.1: Basic information on maximum annual 1-day precipitation totals
measured at Hustopece

Record length (years) 52

Mean (mm) 32

Median (mm) 30.3
Lower quartile (mm) 25.2
Upper quartile (mm) 40.6
Minimum (mm) 14.3
Maximum (mm) 69.2
Variance (mm?) 103.9

Standard deviation (mm) 10.2

Figure 3.6 shows the point estimates of parameters, and 90%, 95%, and 99%
quantile and their confidence intervals obtained by the moments, L-moments, and
maximum likelihood methods. Neither point nor interval estimates obtained by the
three methods differ significantly. Let us notice that the maximum likelihood-based
confidence intervals are the narrowest for the parameters estimators, while they are
the widest for the quantile estimates. It was found out that the L-moments method
is inapplicable in analysis of daily and multidaily precipitation totals measured in
many stations in the Czech Republic due to a very restrictive requirement that
k > 0, when estimating the confidence intervals. For example, in almost 83% of
stations the estimated shape parameter k of the GEV distribution fitted to the

maximum annual 1-day precipitation totals was less than 0, that does not allow
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Figure 3.5: Maximum annual 1-day precipitation totals measured at Hustopece
for the period from 1961 to 2012

to use the L-moments method. In comparison to the moments method, in almost
42% of stations the estimated shape parameter k was less than —%. In contrast,

the maximum likelihood method was always applicable.

3.5 Conclusion

This chapter presents asymptotic variances and covariances of parameter and
quantile estimators based upon moments, L-moments, and maximum likelihood.
They are then used to construct asymptotic confidence intervals of both parameter
and quantile estimators. The results obtained by the simulation study performed
show that the asymptotic confidence intervals for quantile estimates based on L-

moments work well even for small sample size of 50 depending on the value of
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the shape parameter k for both the GP and GEV distributions. In the case of
the GP distribution, the confidence intervals based upon L-moments outperform
those based on moments. It is difficult to recommend a single best method for
estimating confidence intervals of quantiles for the GEV distribution, because the
performances depend on the numerical values of the shape parameter £ and sample
size n. First, although it probably will be almost always possible to calculate the

maximum likelihood-based confidence intervals in practice (the estimated values of

11

the shape parameter k lie within (—5, 5) for many hydrological and meteorological
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data sets), their performance is poor for higher numerical values of the shape
parameter (k> 0.2) and smaller sample sizes (n = 20, 50). The moments method
works very well when k£ > 0.2 for all samples, while the L-moments method is a little
bit poorer. Of course, all the confidence intervals are accurate for large samples.
It seems that, in practice, use of confidence intervals based both on moments
and L-moments will be limited in quite restrictive requirements where k& > —é
and k > 0, respectively. This was also confirmed in the case study performed,
because the confidence intervals based upon moments and L-moments could not
be calculated for many precipitation data sets. In relation to this problem there
remains an issue for future consideration concerning comparison of the asymptotic
confidence intervals to those confidence intervals obtained by bootstrap techniques.
The use of bootstrap will eliminate the impracticability of the asymptotic confidence

intervals using moments and L-moments, and it could lead to more accurate results

in cases of small finite samples.
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4.1 Introduction

Considering the extremes of natural phenomena observed in many parts of the
world over the past few decades, it is of great importance for planning and design
engineering to have sufficient knowledge to construct a model providing adequate
estimates of a given event. Usually, such interest is in the extreme event with a
high return period T'. To reliably estimate a quantile of a return period 7', the
observed data of length n > T are generally required. In practice, this inequality
is usually not satisfied, since the record length of annual data is typically less
than 50 and often the return period is equal to 100 or even 1 000 [54]. However,
the same variable is usually measured at many different sites. Due to the lack of
observations in many environmental applications, regional frequency analysis (RFA)
is useful, because it is an approach providing more accurate estimates of extreme
hydrological and other environmental events compared to at-site approaches by
taking into account data from a set of sites, which have probability distributions
similar to that site of interest. The origins of RFA are traced to Dalrymple [31],
who introduced the index-flood model, which is a way of pooling statistics of a
set of different data samples. The method is based on the assumption that the
sites have the same probability distributions apart from a site-specific scale factor
termed the index-flood. Regions that meet the homogeneity condition are termed
homogeneous, otherwise they are termed to be heterogeneous.

Let us have N sites in which data are available. The quantile function Q;(p),0 <

p < 1, at site ¢ may be estimated as

Qi(p) = miq(p), (4.1)

where [i; is an estimate of the index-flood at site @ (it is usually estimated by
the at-site mean or median) and g(p) is an estimate of the regional growth curve
for probability p, which is a dimensionless quantile function of the probability
distribution that is common to all sites in the region. The estimated regional

quantile growth curve is obtained from the all rescaled data samples available
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in the region. Several assumptions should be respected when using the index-
flood based RFA, particularly that observations are identically distributed and
serially independent at each site, observations are independent between sites, etc.

Generally, RFA involves four main steps:
1. screening of the data,
2. identification of homogeneous regions,
3. choice and estimation of the regional probability distribution,
4. estimation of quantiles.

In the univariate framework, Hosking and Wallis [58] introduced index-flood
based RFA using L-moments, which has become popular among practitioners.
Several natural events may be described by multivariate characteristics which are
not independent. Therefore it is important to jointly consider these characteristics
to obtain the best information about the specific event. First attention to multi-
variate RFA was given recently in work of Chebana and Ouarda [22] dealing with
generalization of the univariate Hosking and Wallis [58] L-moment homogeneity
and discordancy tests using copulas [61, 85, 105] to assess the dependence structure
between the variables of interest and multivariate L-moments [97] to construct the
test statistics. The power of the proposed methodology to detect heterogeneity
was illustrated in the bivariate case of flood events described by volume and
peak. Chebana et al. [23] also studied practical aspects of the proposed L-
moment homogeneity and discordancy tests on bivariate data corresponding to
sites from a region in Quebec, Canada. Recently, Masselot, Chebana and Ouarda
[78] introduced nonparametric procedures in the L-moment homogeneity test,
which overcome drawbacks of the parametric test consisting of fitting a four-
parametric kappa distribution and copula to the data, and also a rejection threshold
based on simulations. Hence, these tests differ in the way of generating synthetic
homogeneous regions and decision about homogeneity. Masselot, Chebana and

Ouarda [78] proposed three nonparametric alternatives using the permutation
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method, bootstrapping, and Pdlya resampling in comparison to the parametric test,
which uses the four-parametric kappa distribution and copula model when generating
synthetic homogeneous regions. Better performance of the nonparametric version
was achieved, because higher powers were obtained by Monte Carlo simulations. In
particular, the nonparametric test based on the permutation method is the most
powerfull amongst the rest of the generating methods. The quantile estimation step
in the multivariate context was treated by Chebana and Ouarda [21] by adopting
the multivariate quantile curves of Belzunce et al. [10], so the index-flood based
univariate RFA using L-moments was completely generalized and simulations were
carried out to evaluate the performance of the multivariate index-flood model. The
bivariate RFA based upon the index-flood model was first applied using real data by
Ben Aissia et al. [11]. Requena, Mediera and Garrotel [93] have recently presented
a comprehensive stepwise procedure for multivariate index-flood model application
whilst focusing on a bivariate case study situated in Spain.

This chapter is devoted to a comprehensive overview of procedure how to
estimate high quantiles using index-flood based bivariate RFA. First, multivariate
L-moments which play a key role in multivariate RFA are introduced in Section
4.2. Then, the methodology for constructing a bivariate distribution function using
copula approach is presented in Section 4.3. The next four sections (Sections
4.4-4.7) show in details the main steps of the index-flood based RFA. Sections 4.4
and 4.5 deal with the L-moment discordancy, and parametric and nonparametric
homogeneity tests, while the focus of Section 4.6 is on the selection and estimation
of the regional distribution function that is common to all sites in the region except
a site-specific scale factor. This is followed by estimating the quantile curve for
a given probability or return period at the target site (Section 4.7). The chapter
end with illustration of bivariate RFA applied to real meteorological data. This

chapter relies mainly on the articles [116, 117].
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4.2 Multivariate L-Moments

In the multivariate analysis of a d-variate random vector X = (X, X, ..., Xq)7,
the two entities, which are generalizations of the univariate mean and variance,

are usually employed. They are the mean vector
EX = (EXh EX27 s 7EXd)T = (:u(l)7 /’L(2)7 st Jlu(d))T

which consists of the means of each variable, and the variance-covariance matrix

o? cov(Xy, Xo) cov(Xy, X3) ... cov(Xy, Xy)
cov(Xa, Xi) o5 cov(Xo, X3) ... cov(Xy, Xy)
cov(Xg, X1) cov(Xg, Xo) cov(Xy, X3) ... o3

where o7 is the variance of the ith variable X;,i = 1,2,...,d, and cov(X;, X;) =
E[(X; — EX;)(X; — EX})] is the covariance of the variables X; and X,,i,57 =
1,2,...,d,7 # j. The central moments of third and higher orders were developed
into the notion of central comoments, which are the elements of so-called comoment
matrices, and they are sometimes employed in financial risk analysis (see, e.g.,
[26]). The rth central comoment of variable X; with respect to X (in this

order) is defined as
&) = cov(Xy, (X — p) =), > 2,
where 1) is the mean of the variable X ;- The second central comoment
Eaty) = cov(Xi, X; — pV) = E[(X; = u)((X; = p) = 0)] = cov(X;, X;)
is the usual covariance. The scale-free quantities are given by

Eri
wr ij] — , T 2 2,
(4] /—(7?(0]2_)“1
where o2 and (7]2« are the variances of the random variables X; and Xj, respectively.
The second, third, and fourth central rescaled comoments s[5, V335, i) are called

correlation, coskewness, and cokurtosis coefficients, respectively. The comoment
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and comoment coefficients matrices include the corresponding central comoments

and comoments coefficients

== (G g U= (Vi) e 722

Increasing interest in modeling multivariate events by distributions with heavier
tails has called for development of classical multivariate statistical analysis, because
the classical approach is limited by moments assumptions of second and higher
orders. Serfling and Xiao [97] were inspired by the idea of Hosking [55] that
it would be promising to use the concomitants of order statistics to extend L-
moments into the multivariate case. Serfling and Xiao [97] introduced multivariate
L-moments as matrices with elements so-called L-comoments. L-comoments which
measure association between two random variables are defined for all orders under
only finite mean assumptions. They are robust analogues of central comoments
and extension of univariate L-moments in the covariance representation given by
(1.4) as well. In comparison to central comoments, L-comoments possess special
features. This includes the already mentioned only first moment assumptions.
Moreover, when the variables meet certain conditions, particularly when the variables
are jointly distributed with affinely equivalent marginal distributions and one
variable has linear regression on the other one, the L-comoments reduce to scalar
multiple of univariate L-moments (see Section 4.2.1 for details). L-comoments
and L-comoment coefficients are also bounded by their corresponding univariate

L-moments and L-moment coefficients.

4.2.1 Population L-Comoments

Let us have a d-variate random vector X = (X1, X, ..., X4)T and bivariate random
vector (X;, X;)T,1 <i,j < d,i # j. Further, let (X;, X;)” has joint cumulative
distribution function F', marginal distribution functions F;, F;, and finite means
pD ). The rth L-comoment of variable X; with respect to variable X; (in this
order) defined Serfling and Xiao [97] as

M = cov(X, Py (F (X)), > 2 (42)
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(the version \,[j; is defined similarly just with reversed order of the indices). Hence,

Aglij) = 2cov (X, F(X;))
1
)\B[ij] = Gcov (Xi: sz(Xj) - Fj(Xj) + 6) )

Aajig) = cov (X0, 20F3 (X)) — B0F2(X;) + 12F;(X;) — 1) .

Generally, A.;;;) and A,[j;) are not equal. The second to the fourth L-comoments,
called L-covariance, L-coskewness, and L-cokurtosis, are robust alternatives to
classical covariance, coskewness, and cokurtosis, respectively. In the case ¢ = 7,
L-comoments reduce to univariate L-moments. When the variables X; and X; are
independent, the L-comoments of second and higher orders are equal to zero.
Here, {)\gi), )\éi), 7'3@, Tii), ...} and {)\gj), )\gj), T3(j), Tij), ... } are the sequences of
population L-moments and L-moments ratios of the variables X; and X, respectively.

The L-covariance coefficient and L-comoment coefficients are given by

Aslij)
T2lif] = ~)
(1] )\gz)
)\ri'
Trij) = ([Z-g}ﬂ“ > 3,
Ag

respectively.
Serfling and Xiao [97] proved that in special cases L-comoments reduces to scalar
multiple of univariate L-moments, that can be used in derivation of L-moments of

some multivariate probability distribution, for example those presented in Table 4.1.

Theorem 14. Let us have a bivariate random vector (X;, X;)T with joint cumulative
distribution function F' and marginal distribution functions F; and F;. If X; has

finite mean and linear regression on X;, i.e., E(X;|X;) = a+ bX;, then
i) = 029 > 2, (4.3)

Assuming also the marginal distribution functions F; and F; are affinely equivalent,

i.e., for some constants 0 and n # 0 holds Fj(x) = Fy(n~'(x — 0)), then

Trlij] = P[ij]ﬂgi),r >3, (4.4)

Az[i)

& is L-correlation.
)\2

where pjij =
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Proof. See [97], p. 15. O

Serfling and Xiao [97] also presented an important result about L-correlation
prij): Its value lies between £1 as it is in the case of the classical Pearson correlation

coefficient. Applying this result with the equality in (4.4), it is straightforward that
| 7o) < 7D < 1,7 > 3.

An equivalent way how to define L.-comoments is through a notion of concomi-
tants. Let us have a sample {Xl(i), Xl(j ), 1 <1 < n} from a bivariate distribution
with joint cumulative distribution function F' and marginal distribution functions
F; and F;. When the variables X () are ordered in non-decreasing sequence
Xl(Jn < XQ(]}I < ... < XU then the element of {Xl(i),XQ(i),...,Xs)} that is

paired with the element X) is called the concomitant of X) and it is denoted

X [(:]72] Serfling and Xiao [97] defined L-comoments in terms of expected values

of concomitants as follows

-1
r[z]] =T -1 Z ( >E)((Z])]C r] = n_1 Z w(r) [(12]71]7 T Z 2,

where the weights w,(fq)l are given by

R L S r—1\(r—1+0\(n—1\""/k-1
G R R
=0

4.2.2 Sample L-Comoments

The unbiased estimator of the rth population L-comoment A, is defined as a

linear combination of concomitants

T[%J] =n"' Z wk n'r[k n]7
where the weights are defined by (4.5).
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4.2.3 Multivariate L-Moments as L-Comoment Matrices

The multivariate L-moment of a d-variate random vector X = (X, X, ..., X,)T

of the first order is just the vector mean
Al - E(Xlu X27 R 7Xd)T7

while the second and higher orders multivariate L-moments are defined in a

matrix form with the elements being the corresponding L-comoments of variables

X, X;,1 < 4,5 < d,

Ar = (M) oo

The second, third, and fourth multivariate L-moments A5, A3, and A, are termed L-
covariance, L.-coskewness, and L-cokurtosis matrices, respectively. Scale-free versions
of L-comoment matrices A,,r > 2, labelled as L-comoment coefficient matrices A,

consist of the corresponding L-comoments coefficients 7,[;;,1 < 4,j < d,

A; = (Tr[ij])dxd'
Particularly, for » = 2 the L-covariance coefficient matrix Aj is obtained. The
diagonal elements of matrices A, and A are obviously the univariate L-moments
and L-moment ratios, respectively. Estimators of A, and A are defined analogously
with elements the L-comoment and L-comoment coefficient estimators.

Specifically, the first four L-moments of a bivariate random vector X = (X1, X»)T

are in the form

T(l) T.
A* = ( 4 4[12])
4 (2 |-
T4p21] T4

Table 4.1 presents the first four L-moments of the three selected bivariate

distributions computed using Theorem 14.
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Table 4.1: L-moments of selected bivariate probability distributions

Distribution

Joint density function and L-moments

Normal

_ 1 .
f(x,y) o 2ro1o9/ 1—p?
2 2
. __ 1 T—p _ 2p(z—pm)(y—p2) y—p
exp{ 2(1—p?) [( o1 1) 01102 - ( 022) }} ’

T, Y, o € Ryop,00 > 0,p € (—1,1)

. ' 00
Ay = (i, p2)" Ay = =M, A = - , Ay = 0.0702M,

o1 pPo1

where M =

poa 02

Pareto type I

_ ala+l) T Yy —a—2
f(xay) - o109 (0'1 + o9 1) )
r>0,>0,y>0,>0,0a>0

A= ﬁ(01702)T7A2 = WM’

— a+1 _ (a+1)(2a+1)
Az = (a—l)(2a—1)(3a—1)M’A4 - (a—l)(2a—1)(3a—l)(4a—l)M’

aoy 01

where M =

09 [67ep))

Pareto type II

oo z— — —a—2
f(x7y) = ((7'1:21) ( O'le —l_ ya;m + 1) ?

x> p,p €ERoy >0,y > po, e € R0 > 0,0 >0

Ar = (i + 25,042+ 207, A = oM

a—1"
_ a+1 _ (a+1)(2a+1)
Az = (afl)(Qai_l)(Bafl)M7A4 - (afl)(2a71)(3a71)(4a71)M’
o, 0y
where M =
09 [67ep))

It is worth mentioning that second and higher orders L-moments proposed

by Serfling and Xiao [97] in the matrix form with elements the L-moments given
by (4.2) are a special case of multivariate L-moments introduced by Decurninge
[33]. He proposed definition of multivariate L-moments under only finite mean
assumptions similar to that one of univariate L-moments expressed as projections
of the quantile function ) onto the shifted Legendre polynomials (see the definition

(1.3)).

The multivariate L-moment A, € R? of multi-index « associated to the
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transport @ : [0,1]% — R? between the uniform distribution on [0,1]¢ and any

measure v on R¢ defined by Decurninge [33] is in the form

Ao= [ Qtita . ta)Piltta, o ta)dtadts, . b, (4.6)
[0,1]
where o = (i1, i, . . ., iq) € N?is a multi-index and P2 (uq, us, . .., uq) = [Ty P (ux)

is the multivariate Legendre polynomial (P}

' _1 1s the univariate Legendre polynomial

given by (1.2)). However, there exist many ways how to transport a measure onto
another one. One of them is Rosenblatt transport which is given by the successive
conditional distributions X;|X; = x1, Xy = x9,...,X;_1 = ;1 (see Rosenblatt
[94] for the detailed transformation). The Serfling and Xiao [97] multivariate L-
moments are obtained just when the quantiles based on the Rosenblatt transports
are considered in (4.6). For a comprehensive theory of multivariate L-moments
as collections of orthogonal projections of a multivariate quantile functions see

Decurninge [33].

4.3 Bivariate Modeling

Identification and estimation of the multivariate distribution is a key task in RFA.
Modeling the dependence structure between two random variables using a bivariate
joint distribution such as a normal, Student’s ¢, lognormal, exponential or Gumbel
distribution is limited inasmuch as the margins must belong to the same family,
but that is not usual in practice. Copula models first employed by Sklar [105] can
overcome this limitation by coupling any marginal distribution functions to the
joint distribution function. Hence, the multivariate distribution consists of two
components — a copula and marginal distribution functions — which are selected
independently of each other. This property of copula-based approach offers the
possibility of constructing a large variety of joint distribution functions. For a

comprehensive introduction to copulas, see monographs by Joe [60] and Nelsen [85].
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4.3.1 Copulas

A copula is defined as a multivariate distribution function whose one-dimensional
margins are uniform on the interval [0,1]. In the particular case of a bivariate

copula, it is a function C' from [0, 1]* to [0, 1] with the following properties:
1. Vu,v €10,1]: C(u,0) = C(0,v) =0,C(u,1) =u and C(1,v) = v,

2. Yuy, vy, uz,v9 € [0,1],u1 < ug,v1 < vg 1 Clug,ve) + Clug,v1) > Clug,vy) +
C(ul,Ug).

The well-known Sklar’s theorem [105] states that the relationship between the
bivariate cumulative distribution function F', univariate margins F; and F; and

copula C' is in the form
F(x1,22) = C(Fi(z1), Fa(22)),

where F (X)), F5(Xs) are uniform on the interval [0, 1].

There exists a large variety of copula families, usually categorized into four
classes: Archimedean, extreme-value, elliptical, and other miscellaneous. Copulas
may also be categorized by the number of parameters controlling the strength of
dependence between variables. Although a wide range of families has been proposed
in the literature, the Archimedean (Gumbel, Frank, Clayton) and elliptical (normal,
Student’s t) copula families are the most frequently used for modeling the joint
distribution in hydrology and climatology [28, 39, 43, 81, 111, 122]. Let us discuss

some important members of Archimedean and elliptical class of copula families.

Normal copula The normal (or Gaussian) copula is given by

Cplu,v) = @,(27 (u), @7 (v))

& (u) &1 (v
1 /( : /( ) s? — 2pst + t* dedt
- exp | ——————| ds
oI J ) TP T ’

where p € (—1,1) is the dependence parameter, ®~! denotes the inverse of the

standard univariate normal distribution function and ®, denotes the standard
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bivariate normal distribution function with Pearson’s correlation coefficient p.
It is symmetric copula (i.e., C'(u,v) = C(v,u) Yu,v € [0, 1]) and belongs to
the elliptical class. Note that the normal copula cannot model tail dependence
(see Section 4.3.3 for explanation). The scatterplots of 500 sample points

drawn from the normal copula family are presented in Figure 4.1.
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Figure 4.1: Normal copula, § = —0.5 (left) and 6 = 0.5 (right)

Student’s ¢t The Student’s ¢ copula that is closely related to the normal copula is
given by

Couw(u.v) = to,(ty ' (u), 15" (v))

to ()t (v)

s [ ]

—00

52 — 2pst + t*

ds dt
V(1= p?) v

where p € (—1,1) is the dependence parameter, v > 0 denotes degrees
of freedom, ¢! denotes the inverse of the standard univariate Student’s
t distribution function and ¢,, denotes the standard bivariate Student’s ¢
distribution function. It is symmetric copula and belongs to the elliptical class
as well. In comparison to the normal copula the Student’s ¢ copula allows
to model tail dependence. If v — oo, the Student’s ¢ copula converges to
the normal copula. The scatterplots of 500 sample points drawn from the

Student’s ¢ copula family are presented in Figure 4.2.
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Figure 4.2: Student’s t copula, § = —0.5,v = 3 (left) and 6 = 0.5, = 3 (right)

Gumbel copula The Gumbel copula which is an extreme-value copula is given by

Co(u,v) = exp {— {[(— logu)? + (— logv)ﬂ }1/9} ,

where 0 € [1,00) is the dependence parameter. It is symmetric copula and
belongs to the Archimedean class. The Gumbel copula can model only the
upper-tail dependence. The scatterplots of 500 sample points drawn from the

Gumbel copula family are presented in Figure 4.3.

Figure 4.3: Gumbel copula, § = 1.5 (left) and § = 7 (right)
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Frank copula The Frank copula is given by

[exp(—0u) — 1][exp(—fv) — 1] }
exp(—0) — 1 ’

Co(u,v) = —%log {1 +

where 6 € (—o0,00)\ {0} is the dependence parameter. It is symmetric copula
and belongs to the Archimedean class. The Frank copula cannot model tail
dependence. The scatterplots of 500 sample points drawn from the Frank

copula family are presented in Figure 4.4.
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Figure 4.4: Frank copula, # = —10 (left) and § = 7 (right)

Clayton copula The Clayton copula is given by
Colu,v) = (u™’ +v7 = 1)7/7,

where 6 > 0 is the dependence parameter. It is symmetric copula and belongs
to the Archimedean class. The Clayton copula can model only the lower-tail
dependence. The scatterplots of 500 sample points drawn from the Clayton

copula family are presented in Figure 4.5.

4.3.2 Copula’s Parameter Estimation

When using copulas for modeling the dependence structure between two random
variables, the problems of estimation of their parameter(s) appear. The parameter

vector 8 € ® C RP,p > 1, of the copula family Cy can be estimated using a
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Figure 4.5: Clayton copula, 8 = 0.5 (left) and § = 5 (right)

nonparametric, semiparametric, or fully parametric approach. Several estimation
methods have been developed, for instance the moment method based on the
inversion of dependence measures such as the Spearman’s p and Kendall’s 7 [85],
maximum likelihood [60], maximum pseudo-likelihood [44], minimum-distance [112],
and inference function for margins [61] methods, or the method based on bivariate
L-moments [14]. Here, the focus is only on the maximum pseudo-likelihood method.
Let us have n independent copies (X7, XHT (XM, XHT, (XD, X )T
of a bivariate vector X = (XM, X®)7 The maximum pseudo-likelihood (MPL)

estimator of @ is determined by maximizing the log pseudo-likelihood function
16) = 3 log co(05, V), (47)

i=1

where U; = R;/(n+ 1) and V; = S;/(n + 1) are pseudo-observations (R; is the
rank of X" among (Xfl),Xg(l), L XINT and S; is the rank of X® among
(Xl(Q), X§2), L XYY and cp(u,v) = % is the corresponding copula density
that is absolutely continuous. Genest, Ghoudi and Rivest [44] showed that this esti-

mator is consistent and asymptotically normal under certain regularity conditions.

4.3.3 Identification of Copula

There are variety of options to compare copula models, but there is no unique best

way to do so. The selection approaches may be divided into numerical and graphical
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methods. One of the numerical method are goodness-of-fit tests, which test the null
hypothesis Hy : C € {Cy,0 € O} against the alternative H; : C' ¢ {Cy,0 € O}.
Genest, Rémillard and Beaudoin [45] present and compare a variety of goodness-of-fit

tests and recommend to use the test based on the Cramér-von Mises statistic

Sy = / C2(u,v) dCp(u, ), (4.8)
[0,1]?
where C,, = \/n(C,, — Cj ). The test statistic S, compares the distance between the
“empirical” copula C), and copula Cy obtained under the assumption of validity of
Hy, which means that the true copula model belongs to a given copula model Cy.
See [45] for more details of this technique, in particular for a parametric bootstrap
procedure to obtain approximate p-values.

Selection criteria, such as the Akaike (AIC) and Bayesian information criteria
(BIC) are standard techniques for selecting the copula model which best fits the
data among a set of possible models [3, 96]. They are not statistical tests in the
sense of testing a null hypothesis in contrast with the goodness-of-fit tests. However,

they enable to select from a group of several copula models the one which best

fits the data. The AIC and BIC are defined as

AIC = —21(8,) + 2k, (4.9)

BIC = —21(0,,) + klogn,

~

where [(6,,) is the maximized value of the log pseudo-likelihood function for a
given copula, k is the number of estimated parameters in the copula model and
n is the number of observations. Usually, for all candidates AIC (or BIC) values
are computed with the same set of observations and the best model is considered
to be the one with the lowest AIC (or BIC) value. However, Burnham and
Anderson [16] recommend to compute the AIC (or BIC) differences A; for all

candidate models as follows
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and to compare them on the basis of these differences. They also give guidelines
for model support: Models with 0 < A; < 2 have substantial support, models
with 4 < A; < 7 have considerably less support, and models with A; > 10
have no essential support.

The likelihood ratio tests, such as the Vuong test [119], are useful when comparing
two competing copula models as well. The null hypothesis Hy in the Vuong
test may be interpreted as stating that the two competing models are equally
distant from the true model. The two-sided alternative hypothesis then expresses
that one of the models is closer to the true one. If A and B are two copula
models with densities ¢4 and cg and estimated parameters 0 4 and ] B, respectively,

then the Vuong test statistic

U= =1 7
> (m; —m)?
=1
where
U, V|0
m; = log ca(Ui, Vi04)
CB( i ilgB)
and

n
m=n"" Zm,—,
i=1

has asymptotically normal distribution under the assumption of the validity of
Hy. Corrections corresponding to the penalty terms in the AIC and BIC are also
possible when the copula models have different numbers of parameters.

When choosing an appropriate copula model, the attention should be also
given to analysis of the copula behavior in extremes, i.e., in the upper-right and
lower-left quadrant of the unit square. The tail dependence coefficients (TDC)
depend on the copula dependence parameter 8 and they can be easily evaluated

for many copula families, see for example [85]. As the interest in RFA is usually
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in extreme high values, the focus is only on the upper TDC. The upper TDC

is defined by the limit (if it exists)
Ay = lim P[X, > Fy ' (1) X, > Fy (1)), (4.10)
o

where F; and F; are the distribution functions of variables X; and X5, respectively.
If C is the copula, Equation (4.10) may be rewritten to

1 —
Ay =2 — lim M

t—1- 1—1¢

(4.11)

Variables X; and X, are upper-tail dependent, if Ay € (0, 1]. The nonparametric
estimator of A\ proposed by Frahm, Junker and Schmidt [40] is

~ n Vlog U - log V
{n—lzlog{ ogUi-log V. }} (4.12)
=1

Ay =2 —2ex =
v P ~2log(max{U;, V;})

To analyze the dependence in extremes, the estimator of the upper TDC XU
computed for the set of observations is compared to the upper TDC Ay for each

candidate copula family using an estimate of the parameter 6.

4.3.4 Marginal Distributions’ Parameter Estimation

The parameters of the univariate distributions may be estimated by several methods,
such as the L-moments method, that has been already reviewed in Section 1.4,
and the traditional well-known moments and maximum likelihood methods already

used in previous sections, that do not need to be discussed.

4.3.5 Identification of Marginal Distributions

In identification of marginal distributions the goodness-of-fit tests may be first
employed to reduce a set of possible candidates of univariate distributions. There
are various tests available for testing the goodness-of-fit of the observed data to a
specific distribution. The most popular tests are the empirical distribution function

tests, which are based on comparison between the hypothetical distribution function
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Fy and empirical distribution function F,,, such as the Cramér-von Mises and

Anderson-Darling tests with test statistics

o0

W2 =n [ [Fu(z) - Fo(w)? dF (),

o FIR@-R@P
= | R Fo] O

respectively. When the parameter 0 is partially or completely unspecified, it must
be replaced by its estimator 6. The distributions of the test statistics A2 and W?2 are
then dependent on the specific distribution Fy that is tested. The estimation method,
the presence of the shape parameter, and the sample size affect the distribution
of the test statistic as well. Laio [72] presented a complete testing procedure for
a set of probability models commonly used in extreme value analysis, including
the normal, lognormal, and GEV distributions, among others.

Two or more probability distributions can be also compared by using the
AIC and BIC already introduced in Section 4.3.3, which may be written for

the marginal models as

-~

AIC = —21(0,) + 2k,
BIC = —21(6,,) + klogn,

where [(0) = En: log f(x1, e, ..., x,; 0)is the log-likelihood function, f(z1,xs, ..., xy;
0) is the prolggaility density function of a random variable X, 0., is the maximum
likelihood estimator of @, and n is the number of observations. The best marginal
distribution is selected by applying the Burnham and Anderson’s [16] guidelines for
AIC (or BIC) A; values as it has been already discussed in Section 4.3.3.

4.4 Discordancy Test

The first step in any data analysis is to check that the data are suitable for the
analysis. Sample L-moments and L-moment ratios may be used to reveal incorrect
data values and outliers of the sample. The aim of the L-moment discordancy

test is to detect those sites which are discordant with the group of sites as a
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whole. The multivariate discordancy test is just an extension of the univariate
Hosking and Wallis [58] discordancy test.

Let us have a group with N sites and the sample L-CV, A;(i), L-skewness,
ALY and L-kurtosis, A", coefficient matrices for site i. The discordancy mea-

sure for site 7 is

where

and

The site 7 is discordant if ||D;|| exceeds the critical value, which is equal to the

constant 2.6049 for large regions [22]. || - || denotes an arbitrary matrix norm,

however, the spectral matrix norm ||A|| = \/ maximum eigenvalue of AT A is the
recommended one [22]. Chebana and Ouarda [22] draw attention to the critical value
for small regions which should be obtained for example by bootstrap techniques.
The sites flagged as discordant should be further checked out for errors. When there
is an error, the discordant site must be removed from the group. But sometimes
the site is discordant due to real observed outliers, and, hence, it should not be

excluded from the further analysis.

4.5 Homogeneity Tests

Here, the steps of both parametric and nonparametric procedures introduced in
[22] and [78] are presented. In the nonparametric case, the focus is only on the
permutation test, because it is the most powerful among all compared procedures [78].
For each test suppose that the region has N sites, with site ¢ having record length n;,

the sample L-moment ratios tg), t:(f), ty) and L-covariance coefficient matrix A;(i).
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4.5.1 Parametric Test

1. Compute the statistic

1/2

Vi = | = : (4.13)

=1

_ N , N
where A3 = (Z niAZ(Z)> / 3 n; is the sample regional L-covariance coeffi-
i=1 ‘

cient matrix.

2. Determine a bivariate copula family, that is common for all sites in the
region. At each site a suitable copula is chosen by a combination of techniques
described in Section 4.3.3, and the copula which is suitable for the most of
sites is used for generating homogeneous synthetic regions. Estimate their
parameters @, for each site ¢,2 =1,--- , N, by the MPL method presented in
Section 4.3.2.

3. Obtain the regional model parameters of the regional bivariate distribution
that is given by the regional copula family determined by step 2 and the
four-parametric kappa distribution with the cumulative distribution function

given by

1— M] l/k}l/h

wis fh>0,6+ Fifh <0and k <0, or —oo if
h <0 and k > 0, and upper bound § + 7 if k > 0, or oo if £ < 0.

F(x):{l—h

with lower bound & +

(a) The regional copula’s parameters are estimated as the weighted mean

~R N ~ N
of the at-site estimates obtained by step 2, i.e., 8 = > n;0;/ > n;.
i=1 i=1

(b) The regional parameters of the four-parametric kappa distribution are
estimated using the L-moment method proposed by Hosking [55] by
fitting the four-parametric kappa distribution to the regional L-moment
ratios (1,5, t& t1) where t£ is a weighted mean of the at-site L-moment

N N
ratios for k = 2,3,4, i.e., tff = ;nitéz)/ 21 n;.
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4. Generate a large number N;,, of homogeneous regions (500 regions is enough
[22]) with N sites, each having the same record length as its real-world
counterpart. To get a sample with uniform margins use the regional copula
given by step 2 with parameters estimated in step 3 (a), and to get the desired
sample use the quantile function of a four-parametric kappa distribution with

parameters estimated in step 3 (b).

5. Compute the statistic VH(JI |) defined by formula (4.13) on each of the simulated
homogeneous region, j = 1,2,..., Ny,. Standardize V| computed on the
observed data in step 1 by the sample mean p and standard deviation o of

the computed values of V”(j‘ ‘) for a large number of simulated regions, i.e.,

Vi —
Hyj = % (4.14)

6. Categorize the region: The region is declared to be homogeneous if H | <1,
acceptably homogeneous if 1 < Hj < 2, and definitely heterogeneous if
Hyj 2 2.

Note that other measures used by Hosking and Wallis [58] may also be considered

in the multivariate case to detect heterogeneity.

4.5.2 Nonparametric Permutation Test

1. Choose a significance level a € (0, 1).

2. Calculate V|| defined by (4.13) on the observed data as in the first step of

the parametric test.

3. Generate a large number Ny, of homogeneous regions, which means to
reassign randomly the pooled data between N sites while preserving the

real-world at-site record lengths.

4. Compute the statistic VH(]H) defined by (4.13) on each of the simulated homo-

geneous regions, 7 = 1,..., Ngp,.
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5. Compute the p-value given by

#{V(j) > V||.||}. (4.15)

p — value =

stm

The null hypothesis of homogeneity is rejected if p — value < a.

4.6 Choice and Estimation of Regional Distribu-
tion

The regional distribution consists of the regional copula C*, which best describes
the dependence between the variables, and regional marginal distribution functions,
FE and FF, which best fit the univariate data, in the entire homogeneous region.
Before selection of the regional copula and regional marginal distribution functions
the observations are first standardised by the index-flood vector, which is usually
estimated by the vector of the at-site means or medians. Here, the at-site means

are used. Hence, the standardised data series at site ¢ are

1 .(2)

T
(1) ~(2 Tij~ T4 . )
(@), &7 = <N(J1)»u(j2>> =12 Nj=12. . .m

7

(1)

7

(2)

where p; 7 and p;~’ are the sample means of variables X; and X at site 7, respectively.

Then the standardised data series are pooled that they create one data series

N
(:%,(:), 5:,(62)), k=1,2,...,m, of length m = > n;. The bivariate regional distribution
i=1

is obtained on the pooled vector by using the techniques presented in Sections 4.3.3

and 4.3.5. Finally, the parameter of the bivariate regional distribution is estimated as

N .
> n;0;
ot = izt
== ’
> n;
i=1

where 6; is the estimated parameter at site ¢ obtained by the estimation methods

presented in Sections 4.3.2 and 4.3.4.
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Figure 4.6: Illustration of bivariate quantile curve

4.7 Estimation of Quantile Curves

For the event of simultaneous non-exceedance {X; < x; A Xy < x5}, Belzunce et al.

[10] expressed a bivariate quantile curve for a given probability p € (0,1) as follows

QXl,XQ(p) = {(71,22) € R?s.t. 2 = Fl_l(u)a@ = FQ_I(U);

(4.16)
u,v € [0,1] : C(u,v) = p},

where C'is the copula and I} and F;, are the marginal distribution functions of
variables X; and X, respectively. The bivariate quantile curve is an infinite set
of pairs of values x1, x5 leading to the same probability p, and it is composed of
two parts: the proper part (central part of the curve) and naive part (constant
tails), see Figure 4.6. The constant values correspond to the univariate quantiles.
This version of bivariate quantile was adopted by Chebana and Ouarda [21] to

modify the univariate index-flood model defined by (4.1).

104



The bivariate index-flood model is in the form

_ O »
(QXL)Q(p))i — (ZTQ)) dx, x,(p),i=1,2,...,N, (4.17)

where @y, , is the regional quantile curve, that is dimensionless and it is common to
— —\T

all sites in the region, and (u(l), ,u(2)>, is the index-flood vector [21]. The regional

quantile curve gy, y,(p) for a specific probability p is obtained by considering

the regional bivariate distribution consisting of C®, Ff, and F{t with the regional
T

parameter 6" in the formula (4.16). The index-flood vector (u(l), /L(Z)) ~ is estimated

by the vector of at-site means (,ugl), MEZ))T

. The index-flood vector at ungaged sites
may be estimated by multivariate multiple linear regression model with regressors
the selected physiographic characteristics of the sites [11].

Note that the bivariate quantile curve used in the index-flood model given

by (4.17) is associated to the notion of the OR return period T of a given

event, because

T = — —
X1,X2 P{Xl >xV Xy > [L’Q} 11— P{Xl <t ANXy < 1'2}
1 1

:l—C(u,v) C1-p

For example, the 95% quantile curve corresponds to the joint 20-year OR re-

turn value curve.

4.8 [Illustration of Application of Bivariate RFA

For illustration, the methodology previously described is applied to model bivariate
extreme precipitation events characterized by 1- and 5-day maximum annual

precipitation totals.

4.8.1 Study Regions

Maximum annual 1- and 5-day precipitation totals measured for the periods of
33-47 years at 210 stations covering the area of the Czech Republic were used

as the input dataset (a large majority of the station records includes the whole
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period 1961-2007, i.e., 47 years, but some station records are shorter). The data
were provided by the Czech Hydrometeorological Institute (CHMI), where they
underwent basic quality checking (the methodology used for checking for gross
errors and missing readings is described in [29]). The vast majority of the data
was also thoroughly checked for missing readings by Kysely [68].

The delineation of the area shown in Figure 4.7 is based on the delineation
obtained by cluster analysis presented in [69, 71|. Originally, the area of the Czech
Republic was divided into four regions [71]. However, the regionalization was
redefined by Kysely [69] after data from more stations and longer periods were
included in the study, because some regions did not meet the homogeneity condition.
Here, small regions la, 1b, lc, 2a, and 2b presented in [69] have been united back
together as it was in [71]. This step is justified, because the stations have similar

site characteristics. Hence, six regions were obtained:

Region 1 Seventy-five stations in the lowlands (along the Elbe, Morava, Dyje and

Svratka rivers); elevations ranging from 150 to 400 m above sea level (a.s.l.).

Region 2 Seventy-nine stations at higher altitudes in the western and central parts

of the Czech Republic; elevations ranging from 410 to 1 118 m a.s.l.

Region 3 Thirty-three stations in the northeastern part of Moravia and Silesia
(near the Jeseniky and Beskydy Mountains); elevations ranging from from 220

to 1490 m a.s.l.

Region 4 Sixteen stations in the northeastern part of Bohemia (near the Krkonose

and Orlické Mountains); elevations ranging from 255 to 572 m a.s.l.

Region 5a Four stations in the northernmost part of the Czech Republic (near

the Luzické Mountains); elevations ranging from 315 to 440 m a.s.l.

Region 5b Three stations in the northernmost part of the Czech Republic (near

the Jizerské Mountains); elevations ranging from 398 to 778 m a.s.l.

106



Y PRECIPITATION STATIONS DIVIDED region

+-|-. q% ’ TO SIX REGIONS P
4 + 7 g |
° o?
@ A 3
| ° R
o g, My 8
" L ® .. @E A Sa
' L L m 'o.. : %o ,, o0 e A L AX < Sb
" me * e ® en o A
m tes ° u o %o . A, AA
» o @ . R RN
. ] - mm o® A A, AA
e e ® m " "agm " S A A
o %o a¥g amE .-. ™ == x ° = A A A
m || [} A A
. u | | .. ] ® [ ] A
| ° [ | . .
I n® n °
- u o0 *
L) L o n.a " e B n
[ ] .. ° [ ] o ® [
| n A o
0 60 km
Made with Natural Earth.

Figure 4.7: Location of stations and delineation of six regions

Locations of stations and formation of six regions are shown in Figure 4.7. Basic
information concerning the datasets for each region is summarized in Table 4.2:
the number of stations N, overall record length, average, minimal and maximal
record length, average altitude, range of the sample Pearson’s p,, Spearman’s p;
and Kendall’s 7 correlation coefficients between maximum annual 1- and 5-day
precipitation totals. Naturally, the studied variables are positively correlated. The
sample Kendall’s 7 correlation coefficient for each station lies within [0.266,0.712],
most of them (about 92%) exceed the value 0.4. Hence, bivariate RFA should

be preferred to the univariate ones.

4.8.2 Discordancy Test

First, the datasets are checked for occurrence of discordant sites. In every region,
except regions 3, ba, and 5b, at least one site is flagged as discordant (see Table 4.3).
Since regions 5a and 5b are very small, the discordancy measure ||D;|| does not give
any information: In region 5b there are only 3 stations and the matrix S is singular,
hence, the discordancy measure ||D;|| cannot be calculated. In region ba there are 4

stations, the matrix S is already regular, but for each ¢ the matrix D; is nearly the
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Basic information on the input datasets

Table 4.2
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identity matrix and ||D;|| is equal to a constant regardless of the data values. None
of the sites recognized as discordant was excluded from the further analysis, since
all values of the discordancy measure larger than a critical value at the significance
level 5% have originated from real observed outliers. Note that the spectral matrix

norm is used for evaluating both the discordancy and heterogeneity measures.

Table 4.3: Number of discordant stations

Region 1 2 3 4 5a 5b

No. of discordant stations 4 7 0 1 - -

4.8.3 Copula Selection

To model the dependence between 1- and 5-day maximum annual precipitation

totals, 28 one-parameter bivariate copula families are considered:

22 one-parameter Archimedean copula families(C#1 — C#22) described by
Nelsen [85] including Clayton (C), Frank (F), Joe (J), and Ali-Mikhail-Haq
(AMH) copula families,

3 extreme-value copula families: Gumbel (GH), Galambos (G), and Hiisler-

Reiss (HR) [60],

2 meta-elliptical copula families: normal (N) and Student’s ¢ with 4 degrees

of freedom (S) [60, 111],

2 other miscellaneous copula families: Farlie-Gumbel-Morgenstern (FGM)

and Plackett (P) [60].

The above-mentioned copula family’s functions, their parameter and Kendall’s 7
ranges are listed in [82]. The test space is constructed on the dependence ranges for
the sample Kendall’s 7 correlation coefficient. The sample Kendall’s 7 correlation
coefficient for all stations lies within [0.266,0.712], therefore some families may be

eliminated. First, 5 Archimedean families (C#7, C#9, C#10, C#11, and C#22)
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Figure 4.8: Relative frequency of rejecting the null hypothesis that the unknown
bivariate copula family belongs to a given copula family at the 5% significance level

are excluded due to the fact that they are just negatively ordered. Since only for 4
stations the sample Kendall’s 7 is equal or smaller than %, further 3 Archimedean
(Ali-Mikhail-Haq, C#8, and C#16) and the Farlie-Gumbel-Morgenstern copula
families are excluded (the majority of computed values of the sample Kendall’s 7 are
beyond the prescribed ranges of these copulas: [%(5 — 8log 2), %} for Ali-Mikhail-
Haq, [—1, %} for C#8 and C#16, and [—%,%} for Farlie-Gumbel-Morgenstern
copula families). Finally, the test space consists of 19 copula families — see the
horizontal axis in Figure 4.8.

As a first step towards dependence model selection the formal goodness-of-fit
test is carried out by evaluating the Cramér-von Mises goodness-of-fit statistic
given by (4.8). A parametric bootstrap with the number of bootstrap samples
M =1 000 described by Genest, Rémillard and Beaudoin [45] was performed to
obtain an approximate p-value for the test based on S,. Each column of Figure
4.8 shows the percentage of rejection of the null hypothesis Hy for a given copula
family and region. The results provide sufficient evidence for rejecting the Clayton,
C#2, C#18, C#19 and C#20 copula families.

In the second stage, the log pseudo-likelihood function given by (4.7) is maximized
for the remaining candidates, and the AIC value is calculated using (4.9). Each

column of Figure 4.9 shows the percentage of stations in which a given copula
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family achieves the minimum value. Generally, it is very difficult to identify in
practice only one distribution (both univariate or multivariate), which fits well the
data for each site. From Figure 4.9 results that the copula family with the highest
percentage (about 30%) in regions 1, 3, and 4 is the Hiisler-Reiss, and in region 2 it
is the normal copula family. The copula family with the second highest percentage
(about 15%) in regions 1, 3, and 4 is the normal, and in region 2 the Hiisler-Reiss
copula family. Selection of the best fitted copula family is much more complicated
when the regions are very small. The Joe copula family fits the data best at two of
the four stations in region 5a, while the Gumbel and C#14 copula families seem to
be the best for data at the remaining stations. The normal copula family, as well
as the Hiisler-Reiss and Frank families, fit the data in the region 5b best.

The last step of the copula selection consists of analyzing behaviour in the
upper tail. There is apparently a positive dependence in the upper tail of the
distribution of the studied variables as expected due to the nature of the data:
The estimated upper TDC for each station lies within [0.382,0.787]. The normal
copula family, as well as the Clayton, Frank, Plackett, C#13, C#17, C4#19, and
C#20 copula families are upper-tail independent. On the other hand, the upper
TDC is nonzero for extreme-value (Gumbel, Galambos, and Hiisler-Reiss), Joe,

Student’s t, C#2, C#12, C#14, C#15, C#18, and C#21 copula families. When
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Table 4.4: Description of the most suitable copula families for modeling the
dependence structure between 1- and 5-day precipitation totals

Properties
(by rows: copula function;
Copula parameter range;
Kendall’s 7 range;
lower and upper TDC)
L= [1=w)’+ (1 =v)" = (1—u)’(1-v)]"/

gell
Joe € [ 7OO>
T e [-1,1]
0;2—21/0
exp {logu P (% + Zlog L‘%) +logv - ® (% +%log EEZ)}
Hiisler-Reiss 0 € [0,00)
7€ [0,1]

0;2(1 -2 (3))
exp(—{[(—logu)? + (—logv)?]}/?)
0 € [1,00)

T € [0,1]

0;2 —21/0

Gumbel

comparing the estimated upper TDC computed using (4.12) to the upper TDC
for each of the upper-tail dependent copula families obtained as the limit given
by (4.11) with the MPL estimator of 6, the Gumbel, Galambos, and Hiisler-Reiss
(therefore extreme-value), Joe and C'#15 (therefore Archimedean) copula families
indicate the smallest difference.

Finally, including results of the formal goodness-of-fit test, AIC, and estimation
of the upper TDC in the copula selection, the Hiisler-Reiss copula family was
selected as the best model in regions 1, 2, 3, 4, and 5b, whereas the Gumbel and
Joe copula families in region 5a. Summary of the copula families (their function,
parameter range, and upper TDC) that are used to model dependence between 1-

and 5-day maximum annual precipitation amounts is listed in Table 4.4.
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4.8.4 L-Moment Homogeneity Tests

To construct the parametric L-moment homogeneity test statistic, 500 homogeneous
regions were generated in accordance with the model defined by the copula family
displayed in Table 4.4 and the four-parametric kappa distribution for the margins
(the copula parameter is estimated by the MPL method, while the marginal
parameters by the L-moments method). To estimate p-values given by (4.15),
500 synthetic regions were generated by permuting bivariate data between sites.
The nonparametric L-moment homogeneity test is performed on the significance level
a = 5%. Table 4.5 compares the results obtained by parametric and nonparametric
homogeneity tests. The parametric one gives evidence about homogeneity of all
regions, because values of the heterogeneity measure H). | are less than 2, moreover
some values are even negative. The nonparametric version rejects the null hypothesis
of homogeneity only for region 1 on the chosen significance level. Note that the

unification of regions 5a and 5b would lead to a strong infraction of homogeneity.

Table 4.5: Results of bivariate homogeneity testing

) Parametric test Nonparametric test
Region
H, Decision P-value Decision
1 1.4884 Possibly homogeneous  0.006 Reject Hy
2 1.1316 Possibly homogeneous  0.226 Do not reject H
3 -1.3857 Homogeneous 0.994 Do not reject Hy
4 0.7111 Homogeneous 0.090 Do not reject Hy
-1.5404 (J) )
oa Homogeneous 0.976 Do not reject H
-1.5305 (G)
5b -0.7635 Homogeneous 0.770 Do not reject Hy
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4.8.5 Estimation of Regional Distributions and Quantile
Curves

Since the homogeneity condition has been satisfied for all regions, the bivariate
index-flood model defined by (4.17) may be employed to estimate the at-site
quantile curves, sometimes called the joint T-year OR return value curves due to
the relationship between the notions quantile and return period. For these purposes,
the regional bivariate distributions (copulas and marginal cumulative distribution
functions) have to be identified. Here, the three-parametric GEV and generalized
logistic (GLO) distributions with location £, scale o, and shape k parameters are
used for estimating cumulative distribution functions of 1- and 5-day precipitation
totals, because Kysely and Picek [70] identified the GEV distribution as the most
suitable distribution for modeling maximum annual 1- to 7-day precipitation totals
according to the goodness-of-fit test based on L-kurtosis and L-moment ratio
diagram. Only in the northeast region the GLO distribution was preferred. Hence,
the focus is not on identification of the marginal distributions, because this step has
been already carried out by Kysely and Picek [70]. For estimation of quantile curves,
the same copula families as those employed in parametric L-moment homogeneity
testing are used. This is justified by the fact that RFA assumes that all sites within
a region have a similar probability distribution (apart from a site-specific scale
factor). Moreover, problems with identification of a single copula which fits all
the standardized data from the entire region may appear, as discussed by Ben
Aissia et al. [11]. Consequently, the regional bivariate distributions are defined by
one of the Hiisler-Reiss, Joe, or Gumbel copula families, and the GEV or GLO
distributions for the margins using the regional parameters given in Table 4.6
depending on the specific region.

The estimated regional quantile curves given by (4.16) for probabilities p =
0.9,0.95,0.99,0.995, and 0.999 are illustrated in Figure 4.10. Regions 3 and 5b have
definitely the highest upper-tail quantiles as compared to the other regions. With
increasing probability p the length of the proper part shortens. For example, Figure

4.11 shows the simultaneous non-exceedance event for region 3 and p = 0.95. The
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Table 4.6: Parameters estimates of the bivariate regional distributions

Region Marginal parameters Copula parameter
1-day totals 5-day totals
19 o k & o k

1 0.8178 0.2535 -0.1195 0.8271 0.2378 -0.1234 2.0091

2 0.8122 0.2584 -0.1214 0.8292 0.2461 -0.0978 2.0934

3 0.9189 0.1670 -0.2645 0.8770 0.1688 -0.3710 1.9231

4 0.8312 0.2376 -0.1094 0.8660 0.2018 -0.0776 1.6921

ba 0.8453 0.2133 -0.1304 0.8435 0.2086 -0.1506 2.2789 (J)
1.8442 (G)

5b 0.7642 0.2924 -0.1899 0.7752 0.2742 -0.1961 2.4369

combinations (2.33,1.78) and (1.66,2.95) correspond to approximate coordinates of
the first point in which the quantile curve is constant, while the values 1.66 and
1.78 correspond to the univariate regional quantiles. When taking this combination
of univariate regional quantile values, the smaller probability p’ = 0.93 is obtained.
Hence, the univariate approach overestimates the probability of the non-exceedance
simultaneous event, and, generally, univariate RFA leads to biased results. Since
in region 5a the Joe and Gumbel copula families were identified as the best model
to describe the dependence structure, two quantile curves are obtained for each
probability p. The differences between the quantile curves in the proper part are
not at all significant, moreover the difference decreases with increasing probability
p as it is shown in Figure 4.10. Confidence regions of the quantile curves would
be of interest, however, no attention has been given to techniques to assess the
error in their estimation for bivariate RFA. Nevertheless, the approach of Coblenz,

Dyckerhoff and Grothe [27] seems to be probably developed to obtained them.
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Figure 4.10: Estimated regional quantile curves for probabilities p = 0.9, 0.95,

0.99, 0.995, and 0.999
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5.1 Introduction

All studies dealing with multivariate RFA have focused only on the bivariate case,

however, because the study of multivariate copulas becomes more complicated in

higher dimensions and, apart from the multivariate elliptical families (Gaussian,

Student’s t),

their use is in applications time consuming. Under certain conditions,
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the Archimedean class of bivariate copulas can be extended to d dimensions termed
symmetric or exchangeable Archimedean copulas (EACs) [60]. This multivariate
copula is specified by only one generator and therefore provides a little flexibility
inasmuch as the associations between all pairings of d variables are identical. A
generalization of multivariate EACs, termed nested Archimedean copulas, first
discussed by Joe [60], allows for modeling correlation by bivariate Archimedean
copulas between d — 1 pairs, the remainder being given implicitly. Pair-copula
construction, also known as vine copulas, is clearly the most flexible tool for
constructing a multivariate copula model. The vine methodology was also originally
discussed by Joe [60], and studied in detail by Aas and Berg [1], Bedford and
Cooke [8, 9], Kurowicka and Cooke [66], Kurowicka [67] and Czado, Frigessi and
Bakken [30], among others. Vine copulas enable multivariate dependence modeling
to be enhanced by specifying d(d — 1)/2 bivariate copulas that need to belong to
neither the same class nor the same family.

In this chapter the practical aspects of trivariate L-moment homogeneity tests
for extreme precipitation events in the Czech Republic are investigated. In the
case of parametric L-moment homogeneity testing, a large number of synthetic
homogeneous regions must be generated using copulas and the four-parametric
kappa distribution to construct a test statistic. Hence, a special attention should be
given to identification of an appropriate probability distribution of the considered
trivariate vector with the components representing 1-, 3-, and 7-day maximum
annual precipitation amounts that is common for all sites within the region apart
from a site-specific scale factor. Although homogeneity testing may be simplified
by using the nonparametric test, because in this case homogenous regions are
generated just by permuting the pooled data between sites in a region, identification
of an appropriate multivariate distribution still plays an essential role in RFA to
obtain reliable quantile estimates. Moreover, the parametric approach is usually the
preferred one, because when the model is well determined the information about
data and their features is taken into account in the procedure through model. This

chapter is organized as follows. First, the input dataset is described in Section 5.2.
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The copula models used are briefly presented in Section 5.3. Section 5.4 provides
results obtained in the case study, mainly choice of the appropriate trivariate copula
model, which best represents the dependence structure between the variables, and
checking of the homogeneity condition. The chapter ends with a summary section.

This chapter relies on the article [116].

5.2 Input Dataset

Maximum annual 1-, 3-, and 7-day precipitation totals (variables X, X3, and
X;) measured at stations covering the area of the Czech Republic were used as
the input dataset. The number of stations and their delineation to the regions
is the same as in bivariate analysis presented in Section 4.8, while the period of
measurements increased from 35-47 to 35-52 years. Basic information concerning
the datasets for each region is summarized in Table 5.1: the number of stations,
overall record length, average, minimum and maximum record lengths, as well
as the range of the sample Kendall’'s 7 between all pairs of variables. Naturally,

each pair of variables is positively correlated.

5.3 Multivariate Copula Models

As it has been already written the copula “couples” marginal distribution functions
into a multivariate distribution function. This is explained by the Sklar’s theorem

[105] in d dimensions
F(.’I}l,xg, NN ,.’I,’d) = C(Fl(l’l), FQ(.’L’Q), c. ,Fd(.ﬁlﬁd)),

where F' is a d-dimensional cumulative distribution function, F, Fs, ..., Fy are
univariate marginal distribution functions, and C is a copula.

Widely used copulas both bivariate and multivariate, and particularly in actuarial
and finance applications, are elliptical. The most well-known members are the
normal and Student’s ¢ copula families already discussed in Section 4.3.1. However,
these families lack the flexibility. Here, the copula models for modeling higher-

dimensional dependence are reviewed.
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Basic information on the input dataset

Table 5.1
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5.3.1 Exchangeable Archimedean Copulas

The first important class of multivariate copula models consists of the EACs. An
exchangeable Archimedean d-copula is an extension of the well-known bivariate

Archimedean copula to d dimensions

Clur, ug, ... ug) = ¢~ (P(ur) + duz) + - - + ¢(ua)),

where ¢, termed a generator of the copula C, is a continuous, strictly decreasing
function from [0, 1] to [0,00) such that lim; o @(t) = oo and ¢(1) = 0, and its
inversion ¢! is completely monotonic. Table 5.2 presents some common bivariate
Archimedean copulas, their probability and generator functions, which may be
extended to higher dimension. Despite the EACs’ simple construction, these
copulas are greatly limited in their usefulness for assessing dependence structure.
This is because the correlation between pairs of variables is identical, and that is
not usual in practical applications. The structure for the 3-dimensional case
is shown in Figure 5.1a.

The parameter of the EAC may be estimated by the usual MPL method. The

algorithm for sampling a d-variate EAC with generator ¢ is as follows [76]:

1. Sample V ~ F = LS '(¢), where LS '(¢) denotes the inverse Laplace-
Stieltjes transform of ¢ (the Laplace transform of the cumulative distribution

function F' is defined as LS[F|(t) = OfoeXp(—m’) dF(x),t € [0,00)).
0
2. Sample X; ~ U(0,1) for each i =1,2,...,d.

3. Return (Uy, Uy, ..., Uy)T, where U; = ¢(—1log(X;)/V),i =1,2,...,d.

5.3.2 Fully Nested Archimedean Copulas

More flexibility in dependence modeling is provided by another generalization of

the bivariate Archimedean copulas discussed by Joe [60] in the form
C<u17 Uz, ... ,Ud) = Cl(“da 02[ud717 03{ud727 LI Cd*l(u% ul) ce }])
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Some common bivariate Archimedean copula families

Table 5.2

o(1801—) (00'1] 29 C\ﬁ:m?moﬁlv + p(n 301 —)]}—)dxo Pqumy
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This is termed a fully nested Archimedean copula (FNAC), inasmuch as the first
variables u; and us are coupled by copula Cy_1, then variable us and copula Cy_4
are coupled by copula Cy_5, variable uy and copula C;_5 are coupled by copula
Cy_s, and so on. The generator ¢; and its inversion ¢; ' of copula C; must satisfy
the same conditions as for EACs. Moreover, ¢; o ¢; ' must belong to the class of
infinitely differentiable increasing functions from [0, 00) to [0, 00) with alternating
signs for the derivatives of all orders for all « = 1,2,...,d — 1. Note that the
generators ¢; can come from different generator families. The structure s = ((12)3)
for the 3-dimensional case is shown in Figure 5.1b.

The bivariate copulas may be selected and their parameters may be estimated

by a recursive way described by Okhrin and Ristig [87]:

1. The couple of variables with the strongest dependency is selected. The copula
of these two variables is selected and its parameters are estimated by the

usual MPL method.
2. The selected couple define a new pseudo-variable.
3. The remaining variables and the pseudo-variable create a set of variables.
4. Tterate.

The sampling procedure was presented by Hofert and Maechler [51] as follows:
Let C be a FNAC with root copula C, generated by ¢¢. Let U be a vector

of the same dimension as C.
1. Sample Vi ~ Fy = LS (¢y).

2. For all components u of Cyy that are nested Archimedean copulas do:

(a) Set Cy with the generator ¢; to the nested Archimedean copula u.
(b) Sample ‘/01 ~ F01 = £8_1(¢01('; ‘/0))
(c) Set Cy = C4, ¢o = ¢1, Vo = Vi, and continue with step 2.
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3. For all other components u of Cy do:

(a) Sample R ~ Exp(1).

(b) Set the component of U corresponding u to ¢p(R/Vp)

4. Return U.

5.3.3 Vines

Vines apparently comprise the most flexible tool for modeling dependence structure
in higher dimensions. The vine methodology is based on decomposition of the
d-variate density of a random vector into a product of d univariate densities and
d(d — 1)/2 bivariate copula densities (d — 1 of which are unconditional while the
rest are conditional). These bivariate copulas may belong to different classes. Two
main types thoroughly discussed in the literature are C-vines and D-vines [1, 8, 9,
30, 66]. Note that there are three C-vine and D-vine structures in the 3-dimensional
case but they are the same. Hence, only three different decompositions can be
obtained by permuting variables u;,us and uz in Figure 5.1c.

For the purposes of Chapters 5 (C-vines and D-vines in a 3-dimensional case are
the same) and 6 (see Section 6.2 for explanation) the focus is only on D-vine copulas.

A d-dimensional D-vine copula may be graphically represented by (d — 1) trees
T;i=1,...,d— 1, consisting of (d — 7+ 1) nodes and (d — i) edges. Each edge
corresponds to a bivariate copula density (unconditional in the first tree, conditional
in the rest of the trees). Bedford and Cooke [8] stated the density of a d-dimensional

random vector in term of a D-vine as

d d—1d—j
flzy,29,...,2q) = H fr(xg) H H Cjjti,j1 (F(xjlTy, 20, ... 25-1),
k=1 j=1i=1
F(xjyile, zo, ..., x-1)),
where fi,k =1,...,d, denotes the univariate density, ¢; ;... j—1 bivariate copula
density with the parameter 6; ; ;1 1, and F(z;|z1,...,2;-1) and F(zj1|@e, ..., 25-1)
marginal conditional distributions [F(z|v) = OCwylvy ;I};EZT:])_’)F(UﬂV_j)), where Cy 4 |v_,

is a bivariate copula distribution of variables x and v;, v; is an arbitrarily chosen
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Figure 5.1: 3-dimensional EAC, FNAC and vine copula structures
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component of the vector v, and v_; denotes the vector v excluding the component

’Uj].

For example, a four-dimensional density f(z1,z2,x3,z4) may be expressed

in term of a D-vine as

f(x1,m9,23,24) = fi(z1) - falxa) - f3(x3) - faza) - cra(F (1), F(72))
Co3(F(22), F(23)) - caa(F(23), F(24))
'C13|2(F($1|$2), F($3|$2) ) 024|3(F(1‘2|x3): F(374|=T3))

‘014|23(F(9€1|$2, $3), F($4|$2, $3))

Parameters of the D-vine copula model may be estimated by the MPL method. First,

parameters of all d(d — 1)/2 pair-copulas are estimated by a sequential procedure

and then the log psuedo-likelihood function is numerically maximized using the

parameters obtained by the sequential procedure as starting values. All pair-copulas

may be sequentially selected and estimated by the following algorithm [30]:

. Determine pair-copulas in the first tree from the original data using selection

techniques described in Section 4.3.3.

. Estimate parameters of the selected copulas in the first tree.

. Compute observations for the second tree using the estimated parameters in

the first tree and the appropriate h-functions (the h-function is the conditional

distribution function F(x|v)).

. Determine pair-copulas in the second tree from the observations obtained by

step 3.

. Estimate parameters of the selected copulas in the second tree.

. Compute observations for the third tree using the estimated parameters in

the second tree and the appropriate h-functions.

. Determine pair-copulas in the third tree from the observations obtained by

step 6.
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8. Estimate parameters of the selected copulas in the third tree.
9. Continue to the (d — 1)th tree.

Czado, Frigess and Bakken [30] presented an algorithm for sampling from the

D-vine as well.

5.4 Results
5.4.1 Discordancy Test

First, regions shown in Figure 4.7 were checked for the occurence of discordant
sites. In every region except regions ba and 5b at least one site was flagged as
discordant (see Table 5.1). The problem of determining discordant sites in very
small regions has been already discussed in Section 4.8.2. Figure 5.2 compares
spectral norms of sample L-covariance, L-coskewness and L-cokurtosis coefficient
matrices for each site in the regions. Discordant sites are the black points, while the
spectral norms of the regional L-comoment coefficient matrices are marked by +.
The sites flagged as discordant often have smaller norms of L-comoment coefficient
matrices in comparison with the centre of a group marked by +. Hence, the dataset
at sites flagged as discordant was further investigated. Because the data used were
checked for gross errors and missing readings by the CHMI and Kysely [68], there is
no reason to doubt the reliability and validity of the data. Additional screening of
datasets has shown that some 1-, 3-, and 7-day maximum annual precipitation totals
observed at discordant sites are smaller or larger than values measured at other
sites. These small and large valid values, reflecting the natural variability of the
observed data, apparently cause discordancy. Hence, none of the sites recognized as
discordant was excluded from the subsequent analysis (copula selection, homogeneity
testing) inasmuch as all values of the discordancy measure larger than a critical
value at the 5% significance level had originated from real, observed outliers and
not from errors. Moreover, Table 5.6 presents measures of heterogeneity Hj.| and
p-values for regions without discordant stations (marked by an asterisk), and it is

shown that retention of discordant sites in regions does not harm their homogeneity
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(except region 1 in the sense of nonparametric testing). The spectral matrix norm

was used for evaluating both the discordancy and heterogeneity measures.

5.4.2 Trivariate Model Test Space Construction

Here, the interest was focused in estimating the dependence structure in the
stations. Hence, the original datasets were transformed to approximately uni-
form variables using the empirical distribution functions before further analysis
(Xy = U, X3 = Us, X7 — Un).

The trivariate model test space was partly constructed on the results of the
bivariate model selection. The Hiisler-Reiss, Galambos, and Gumbel extreme-value
copula families appropriately describe the dependence structure between daily and
multidaily maximum annual precipitation amounts measured at stations in all
regions. According to these results, exchangeable Gumbel, fully nested Gumbel,
and mixed C-vine copula models, given by the bivariate Gumbel copula for the
two unconditional pair-copulas, were considered to model the dependence between
the variables (71,(73, and Us.

In the 3-dimensional case, there exist three different fully nested Archimedean
and C-vine copula structures obtained by permuting variables in Figures 5.1b and
5.1c. The appropriate ordering of variables of the fully nested Gumbel copula was
determined by the fact that the parameters must decrease from the highest to the
lowest level in the structure [80], i.e., 6 > #; > 1 in Figure 5.1b. As shown in Table
5.1, the pair with the strongest dependency is that of X3 and X7. The ordering of
variables of the mixed C-vine copula model in Tree 1 was specified by two largest
sample Kendall’s 7 values [30]. Hence, according to the values displayed in Table
5.1 the middle node in Figure 5.1c corresponds to the variable X, respectively Us
after transforming to the approximately uniform variable.

To establish the C-vine model, the appropriate bivariate copula for the con-
ditional pair-copula Cj73 had to be determined. Here, the bivariate model test
space for modeling dependence behaviour between marginal conditional distribution

functions F'(u;|as) and F'(u7|ts) consisted of the Gumbel, Frank, normal, Student’s
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t, and Plackett families. Table 5.3 gives their copula family functions, parameter(s)
and Kendall’s 7 ranges, as well as lower and upper TDCs. The best bivariate model
was determined by the goodness-of-fit test based on the Cramér-von Mises statistic
and AIC statistic. Based on MPL estimation, the estimated parameters were first
obtained. Because the number of degrees of the Student’s ¢ copula was greater
than 30 at many stations, the Student’s ¢ copula family converges to the normal
family and, hence, the Student’s t copula family was eliminated.

A bootstrap version based on the empirical copula was employed for testing the
goodness-of-fit for the remaining copulas of interest. The Cramér-von Mises statistics
and approximate p-values were obtained via parametric bootstrap procedure with
the number of bootstrap samples fixed at M =1 000 [45]. Figure 5.3 reports the
results of goodness-of-fit testing using S,,. Each column in Figure 5.3 shows the
percentage of rejecting the null hypothesis at the 5% significance level for a given
copula family and region. In that phase of bivariate copula selection none of the
families was eliminated, and the AIC was employed to choose the best one.

As displayed in Figure 5.4, the normal or Frank copula families achieve the
minimum values for more than 38% of stations in each region. Nevertheless, the
AIC statistic provides no evidence for one copula family over the other, because AIC
differences A; are less than 2 at 99% of stations (differences not presented). Analysis
of copula behaviour in extremes by estimating the TDCs did not help to identify
the optimal choice for the conditional pair-copula C7j3. That is because the copulas
of interest by definition have both lower and upper TDCs of zero (see Table 5.3).
From the aforementioned results, it was concluded that normal, Frank, and Plackett
copula families are essentially indistinguishable, and therefore three mixed C-vine
copulas models, given by the bivariate Gumbel copula for the two unconditional
pair-copulas and normal, Frank or Plackett copulas for the one conditional pair-
copula were included in the trivariate copula model test space. Table 5.4 provides

descriptions of the copula models involved in the final trivariate test space.
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Table 5.3: Description of copula families employed in bivariate copula modeling

Properties
(by rows: copula function;
Copula parameter(s) range;
Kendall’s 7 range;
lower and upper TDCs)
Dy(® ' (u), & (v))
0e(—-1,1)
Te(—1,1)
0;0
to(t ' (), 1y (v))
0e(—-1,1),vr>0
T€(-1,1)

2t,41 <—\/@> 2t (- —(u+ﬂ($9))
_%10g (1 + [QXP(_GZ))(;(IHZ;(BS_GU)_1])
0 € (—o0,00) \ {0}
Te[-1,1]
0;0
[14+(0—1) (utv)]—/[1+(0—1) (u+v)]2—40(0— 1 )uv
2(0—-1)

8 € (0,00)
T e [-1,1]

0;0
exp(—{[(—logu)’ + (—logv)’|}'/%)
6 € [1,00)
7€ 0,1]

0;2 — 20

Normal

Student’s ¢

Frank

Plackett

Gumbel
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Figure 5.3: Relative frequency of rejecting the null hypothesis that the unknown
bivariate copula family belongs to a given copula family at the 5% significance level

5.4.3 Trivariate Model Selection

The first step toward dependence model selection consisted of performing the
goodness-of-fit test. For each model displayed in Table 5.4 the Cramér-von Mises
statistic S,, was evaluated and the approximate p-values were obtained by parametric
bootstrap with the number of bootstrap samples set to M = 1 000. Each column
in Figure 5.5 represents the percentage rejection of the null hypothesis at the 5%
significance level for a given copula model and region. The results do not allow
for reducing the set of feasible copula models, because all models are similarly
rejected. However, M3 is at least rejected.

In the second stage, AIC and BIC are evaluated to compare the models. Each
column in Figures 5.6 and 5.7 shows the percentage of stations in which a given
copula model achieves the minimum value. From Figure 5.6 it follows that the

copula model with the highest percentage (more than 33%) in regions 1, 2, 3, ba,
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Table 5.4: Description of considered trivariate copula models (designation of
copulas and their parameters correspond to Figure 5.1c¢ with variable ordering

Uy = Us, Uy = Us, Us = U)

Model Model type Bivariate/trivariate copula(s) Parameter constraints

M1 EAC C' Gumbel 0>1

M2 FNAC C1, Cy Gumbel 0y >0, >1

M3 Mixed vine Cz, Co3 Gumbel; Cis)p normal 03,093 > 15032 € (—1,1)
M4 Mixed vine ('3, Co3 Gumbel; Ci3)2 Frank 012,023 > 1;6132 € R — {0}
M5 Mixed vine Cia, Co3 Gumbel; Cig2 Plackett 019,023 > 1; 0132 € (0,00)
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and 5Hb is the mixed C-vine normal, and in region 4 it is the Frank copula family. It
was not possible, however, to distinguish between the three mixed C-vine models,
since the values of the AIC statistic are very similar, and AIC differences A; do
not exceed the value of 2 in many cases. By contrast, the results surely do not
support the Gumbel EAC and FNAC as appropriately fitting the data due to their
providing less flexibility in dependence modeling. This is as has been expected in
consideration of their properties (see Section 5.3). Similar conclusions are obtained
using BIC (BIC just supports the mixed C-vine copula models given by the Frank
and Plackett conditional pair-copulas less, and supports EAC and FNAC more
than AIC in the sense of minimum achieved value).

To confirm indistinguishability of models M3, M4, and M5 also statistically,
the Vuong test corrected for the number of model parameters analogous to the

AIC was also performed. As shown in Table 5.5, which displays the percentage of
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Figure 5.6: Relative frequency of stations in which a given copula model achieves
the minimum AIC value

preference for the first, second and none of given copula models and region, none
of the non-nested pairs can be distinguished statistically at the 5% level because
almost in 100% of stations each pair of models is equally distant from the true one.

Hence, the Vuong test also supports models M3, M4, and M5.

5.4.4 L-Moment Homogeneity Testing

To construct the heterogeneity measure Hj.;, 500 synthetic homogeneous regions
were generated in accordance with the three mixed C-vine copula models, designated
M3, M4, and M5, and the four-parametric kappa distribution for the margins (the
copula model parameters were estimated by the MPL method, while the marginal
parameters were estimated by the L-moment method). The results show that
regions may be regarded as homogeneous with respect to all considered models,

because the values of the heterogeneity measure are less than 2. Moreover, some
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Figure 5.7: Relative frequency of stations in which a given copula model achieves
the minimum BIC value

Table 5.5: Vuong test results

Models compared Variant 1 2 3 4 5a  bb
M3 closer 0 0 3 0 0 0
M3 versus M4 Equally distant 100 100 97 100 100 100
M4 closer 0 0 0 0 0 0
M3 closer 1 0 3 0 0 0
M3 versus MbH Equally distant 99 100 97 100 100 100
M5 closer 0 0 0 0 0 0
M4 closer 0 1 0 0 0 0
M4 versus M5H Equally distant 100 99 100 100 100 100
M5 closer 0 0 0 0 0 0

137



Table 5.6: L-moment homogeneity test results (* denotes results when the
discordant sites were removed from regions)

Region Parametric test Nonparametric test
M3 M4 M5 P-value
) 0.8841 0.9672 1.1754 0.018
-0.9091* -0.9041* -0.8108* 0.504*
la -2.7704  -2.9466  -3.0847 0.448
1b 0.0180  -0.0727  0.1684 0.278
lc -1.1358  -1.1647  -1.0909 0.896
5 0.9322 0.7705 1.0357 0.270
-0.9437* -1.0000* -0.9219* 0.936*
5 -1.1333  -1.2115  -1.2015 0.948
-1.5291*  -1.6294* -1.6690* 0.986*
4 0.5303 0.5075 0.6697 0.168
0.3566*  0.3533*%  0.4380* 0.148*
Ha -1.9931  -1.8548  -1.8742 1.000
5b -0.6821  -0.6361  -0.6438 0.694

values are even negative. Note that the unification of regions 5a and 5b would lead
to an infraction of the homogeneity with respect to all considered models. The
permutation nonparametric test was also employed to check homogeneity. The
p-values obtained are presented in Table 5.6 as well. Except region 1 for which
p-value is equal to 0.018, the rest may be regarded as homogeneous at the 5%
significance level. Hence, region 1 should be redefined. It was divided into three
smaller regions la, 1b, and 1c as it was in the study of Kysely et al. [69] and their

homogeneity has been finally achieved (see Table 5.6).

5.4.5 Comparison of Models for Another Climate Zone

To determine whether the mixed C-vine models M3, M4, and M5 may be also
suitable for modeling 1-, 3-, and 7-day maximum annual precipitation totals from
another place and another climate, five meteorological stations located in Spain

in the central Iberian Peninsula were chosen. Daily amounts measured at stations

138



in Madrid, Navacerrada, Zamora, Salamanca and Daroca from 1950 to 1978 were
acquired online from http://www.ecad.eu. First, the interest was focused on finding
whether extreme-value copulas (Gumbel, Galambos, Hiisler-Reiss) describe well
the dependence structures between 1- and 3-day, and 3- and 7-day amounts, as it
is indicated in the study performed for data from the Czech Republic. Therefore
standard techniques, including the Cramér-von Mises goodness-of-fit test, AIC and
estimating the upper TDC, were employed in bivariate copula selection considering
a large copula test space. The copula test space consisted of 18 one-parameter
copula families: 13 Archimedean families (Clayton, Frank, Joe, and C#2, C#12—
C#15, C#17-C#21 described in [85]), 3 extreme-value families (Gumbel, Galambos,
Hiisler-Reiss), 1 elliptical family (normal), and 1 miscellaneous family (Plackett).
P-values (the first column), AIC differences A; (the second column) and estimated
upper TDCs :\U obtained are presented in Tables 5.7 and 5.8. The results clearly
show that the extreme-value copulas are suitable for modeling the dependence
structure between 1- and 3-day in all stations, except Daroca. In the case of
modeling the dependence between 3- and 7-day amounts, the extreme-value families
fit the data well only in Madrid and Daroca. However, these families have less
support in Zamora and Salamanca with AIC differences from 3 to 4.5, and in
Navacerrada these families have no support. Results presented in Table 5.9 indicate
that models M3, M4, and M5 seem to be suitable to model the complex dependence
structure between 1-, 3-, and 7-day amounts in three stations of five (namely in
Madrid, Zamora, and Salamanca). However, generally, it is not possible to claim
that resulting models M3, M4 and M5 are the most suitable to model the trivariate
distribution of 1-, 3-, and 7-day amounts in all precipitation regimes. The results of
RFA of extreme precipitation events is only based on meteorological data from the
Czech Republic, and, hence, the most suitable copula model may change from one
area to another due to different precipitation regimes. It is important to analyse
data and find the best copula model that is sufficiently common to all stations

in the region just studied. However, the approach introduced presents a general
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Table 5.7: Bivariate copula selection results for 1- and 3-day totals at Spanish
stations (p-value in the first column, AIC differences in the second column)

Copula Madrid Navacerrada Zamora Salamanca Daroca
A =0.58 A =0.74 A=063 A=064  A=055
Normal 063 39 029 38 061 00 048 19 029 1.1
Clayton 0.07 87 001 144 007 52 004 88 004 3.2
Gumbel 097 09 064 03 033 29 046 1.3 004 5.2
Frank 036 63 051 39 022 51 019 53 053 04
Joe 091 00 025 07 006 68 012 3.0 098 9.6
Galambos 098 1.0 060 06 037 22 052 08 0.04 49
Plackett 056 56 053 41 011 65 012 6.1 021 25
Hiisler-Reiss 0.96 1.0 046 1.2 053 09 067 0.0 0.03 4.5
C#2 0.00 20.0 0.01 136 001 263 0.00 209 0.00 351
C#12 0.00 61 001 60 000 13 000 35 000 23
C#13 0.00 70 003 82 002 38 000 59 000 0.6
C#14 0.00 39 000 22 000 1.1 000 1.7 0.00 24
C#15 0.00 03 007 00 011 59 002 24 000 84
C#17 0.00 70 004 55 002 50 000 58 0.00 0.0
C#18 0.00 132.0 0.01 91.9 0.01 294.8 0.00 228.9 0.00 423.2
C#19 0.00 88 001 175 003 6.0 001 109 0.00 4.8
C#20 0.00 96 001 193 004 67 001 11.8 0.00 6.0
C#21 0.00 16 003 08 010 12.0 0.01 47 0.00 14.2

procedure how to deal with homogeneity testing in trivariate RFA and it may be

applied in studies using data from other parts of the world.

5.5 Conclusion

This chapter deals with homogeneity testing in three dimensions and investigates

its practical aspects. The testing procedures were applied for extreme precipitation

data in the Czech Republic for the past three to five decades. For this purpose,

quite a lot of attention was given to selecting the joint cumulative distribution

function of the three-dimensional random vector of the interest. Several conclusions

can be drawn from this study. Standard approaches involving goodness-of-fit tests
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Table 5.8: Bivariate copula selection results for 3- and 7-day totals at Spanish
stations (p-value in the first column, AIC differences in the second column)

Copula Madrid Navacerrada Zamora Salamanca Daroca
A =0.61 A=0.76 A=08  A=077  A=062
Normal 088 1.0 026 43 034 17 027 34 007 14
Clayton 0.14 55 040 00 001 181 0.07 52 0.00 8.0
Gumbel 088 06 003 107 025 31 026 45 0.18 0.0
Frank 038 57 061 55 058 00 003 108 026 0.2
Joe 035 19 0.00 205 004 106 0.04 105 0.07 1.3
Galambos 090 04 003 108 027 30 023 44 0.16 0.1
Plackett 038 6.2 046 6.0 027 27 029 6.1 021 0.7
Hiisler-Reiss 0.90 0.0 0.02 11.3 0.24 32 027 4.0 0.14 0.0
C#2 0.02 21.0 0.00 36.6 006 20.3 0.01 242 0.06 20.7
C#12 070 19 026 19 017 49 033 00 0.04 4.2
C#13 031 49 069 03 014 60 008 6.1 003 35
C#14 093 06 006 65 029 26 031 20 011 1.8
C#15 026 27 007 149 025 43 016 7.1 008 0.3
C#17 037 59 043 42 004 6.8 012 102 0.13 14
C#18 0.02 115.6 0.00 209.7 0.00 235.8 0.00 217.1 0.02 196.4
C#19 0.13 45 004 52 000 338 003 73 000 8.6
C#20 0.14 54 006 50 000 333 004 68 0.00 10.5
C#21 062 73 0.02 231 004 109 006 122 0.29 2.1

Table 5.9: Copula model selection results for 1-, 3-, and 7-day totals at Spanish
stations (p-value in the first column, AIC differences in the second column)

Model  Madrid Zamora  Salamanca
M1 0.62 0.4 0.07 10.7 0.62 6.6
M2 0.87 1.0 0.72 0.0 0.60 5.6
M3 0.26 0.0 0.66 1.7 0.03 2.5
M4 0.06 0.3 0.27 26 024 1.8
M5 058 0.4 0.53 2.6 0.06 0.0
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based on the Cramér-von Mises and Vuong statistics and AIC/BIC were used for
selection of the appropriate trivariate copula model. Considering EACs, FNACs and
C-vine copulas in the test space, selection techniques showed that three considered
mixed C-vine copulas appropriately describe the dependence structure between 1-,
3-, and 7-day maximum annual precipitation totals in the Czech Republic. The
decomposed models consisting of bivariate copulas are clearly preferable to EACs
and FNACs, as they are more flexible in data fitting. Although only four bivariate
copula families (normal, Student’s ¢, Frank, and Plackett) were considered in the
test space for the conditional pair-copula selection in the pair-copula construction,
more simultaneously positively and negatively ordered families may be involved
in the testing procedure, see for example the list of Archimedean copula families
in [85]. The three aforementioned indistinguishable mixed C-vine copulas were
employed to obtain the heterogeneity measures for regions formed in the Czech
Republic. Regions may be regarded as homogeneous with respect to all considered
mixed C-vine models. Because those regions with small numbers of stations are not
suitable for RFA, it may be generally possible to redefine small regions and unify
them into a region with more stations while maintaining the homogeneity. This
was not possible for regions 5a and 5b, however, due to their absolutely different
precipitation patterns. Some negative values of the heterogeneity measure appeared
as a result of homogeneity testing. These values probably occur due to the presence
of cross-correlation between sites. An appropriate modification of the Chebana
and Ouarda [22] multivariate L-moment homogeneity test in order to overcome
spatial dependence is a subject of interest in the next chapter. A small analysis
of daily and multidaily maximum annual precipitation totals measured at selected
meteorological stations in Spain has showed that the best copula model may change
from one place to another. Hence, the resulting models M3, M4, and M5 are mainly
valid for regions formed in the Czech Republic. However, the study presented gives
a methodology on how to perform multivariate L-moment homogeneity testing

including identifying the best copula model.
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6.1 Introduction

Due to the nature of the simulated data such that cross-correlation between sites
was omitted, the test powers presented by Chebana and Ouarda [22] and by
Masselot, Chebana and Ouarda [78] would be accurate only if the observations
were independent between sites. Unfortunately, in practice this assumption is not
always valid (see, e.g., [2, 17, 19, 79, 107]). Several studies have already dealt with
the problem of dependence between sites for the univariate Hosking and Wallis
[58] L-moment homogeneity test [18, 54, 73]. Hosking and Wallis [54] themselves

pointed out the effect of cross-correlation: If negative values and values less than
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—2 of the heterogeneity measure H are observed, then there may be positive
correlation between the data at different sites in the proposed region. Castellarin,
Burn and Brath [18] achieved important results on the impact of cross-correlation
when they investigated limitations of the test in heterogeneity detection for cross-
correlated regions through a series of Monte Carlo experiments assuming that the
joint distribution for all sites in the region to be a multivariate normal. They found
out that cross-correlation may result in lower values of the heterogeneity measure
than would be for uncross-correlated region, that may lead to miscategorization
of region. Hence, the test detects heterogeneity less often and the power of the
L-moment homogeneity test may be reduced when cross-correlation is present.
Consequently, they proposed an empirical corrector of the test that provides an
approximate categorization of the real degree of heterogeneity of a studied region.
Recently, Lilienthal, Fried and Schumann [73] continued the results of Castellarin,
Burn and Brath [18] about the negative impact of cross-correlation and improved
the Hosking and Wallis [58] procedure by using a flexible multivariate copula
model when generating cross-correlated data which features the same dependence
structure as does the observed data. Hence, due to the fact that the presence of
cross-correlation reduces the power of the univariate Hosking and Wallis [58] test,
the impact of cross-correlation on the multivariate tests of Chebana and Ouarda
[22] and Masselot, Chebana and Ouarda [78] should be also investigated.

The idea was motivated by results of the case studies conducted in the Czech
Republic, in which relatively large negative values of heterogeneity measure have
been received as results of the L-moment homogeneity test carried out as a first
step in bivariate and trivariate RFA of extreme precipitation events (see Tables
4.5 and 5.6). It is assumed that as occurs in the univariate case and it is stated
in the above paragraph, cross-correlation between observed data values leads to
a reduction of the tests’ powers also in the multivariate framework.

This chapter shows the negative impact of cross-correlation on the bivariate
parametric and nonparametric L-moment homogeneity tests, and proposes a gen-

eralization of the Chebana and Ouarda [22] procedure to overcome the problem
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of misspecification of region due to the presence of cross-correlation. The chapter
is organized as follows: In Section 6.2 a generalization of the original bivariate
parametric testing procedure of Chebana and Ouarda [22] using D-vine copulas
is proposed. A series of Monte Carlo simulations is performed to show that the
cross-correlation diminishes the power of the multivariate L-moment homogeneity
tests and how the use of the modification improves the heterogeneity detection
(Section 6.3). Results of the simulation study are summarized and discussed in
Section 6.4. In Section 6.5 the proposed generalized test is applied to a real
meteorological dataset to demonstrate its usefulness in practice. The chapter closes

with a summary section. This chapter relies on the article [115].

6.2 Generalization of the Parametric L-Moment
Homogeneity Test

In the bivariate parametric homogeneity test of Chebana and Ouarda [22], it
is necessary to determine the regional bivariate copula that is common to all
sites. However, in the presented approach, which deals with the problem of cross-
correlations between sites, it is essential to control also the spatial dependencies.
Hence, it is necessary to generate homogeneous regions of data with predefined
regional bivariate copula at each site and also the approximate spatial dependencies.
Based on the graphical representations of D- and C-vines copulas (see Figure 6.1
for examples of 6-dimensional C- and D-vine trees that could model dependencies
between two variables measured at three sites), it is obvious that only D-vine
copulas allow this type of control.

This section presents the solution of the Chebana and Ouarda [22] L-moment
homogeneity test to overcome the problem of presence of cross-correlated data. The
modification of the Chebana and Ouarda [22] test consists in the replacement of
homogeneous uncross-correlated regions by homogeneous cross-correlated regions
in the Monte Carlo simulation step. As discussed in the previous paragraph,
data of synthetic cross-correlated homogeneous regions may be generated using

D-vine copulas.
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The use of D-vine copulas requires data series of the same length, however, in
the reality the number of measurements may differ from site to site due to different
beginning of records. If the number of missing measurements at some sites is
small, they may be omitted also at the remaining sites and the same number of
measurements available at each site may be applied to perform the test. In the case
of a very small number of the missing values, these values may be infilled. Bardossy
and Pegram [7] presented several methods used for infilling the missing data, such
as nearest neighbor, simple or multiple linear regression, kriging, or copula based
estimation, and their comparison. Note that infilled values are only estimates and
the use of any infilling method brings a source of uncertainity into further analysis
(copulas model selection and their parameters estimation). The omission of a large
number of measurements at each site may lead to a very small number of common
measurements, which may lead to inacurrate analysis. Hence, if the number of the
missing values at some site is very large compared to the number of measurements
at other sites, this site should be eliminated from analysis.

First, the variables in the tree T} must be ordered before pair-copulas selection
and estimation (the following trees are then completely determined). For a 2N-
dimensional D-vine copula model in our case of N sites, there exist 2V~!- N choices
for how to order variables in the first tree. Unfortunately, it is technically impossible
to construct all D-vine models in the sense of the variables ordering and compare
them on the basis of resulting log pseudo-likelihood functions. However, in the first
tree the variables should be order such that the copulas fitted are those corresponding
to 2N — 1 largest empirical Kendall’s 7 computed for each pair of variables. N
pairs of variables are clearly given, they are those which are measured at the sites.
These N pairs must be connected together to create the first tree. This is done
such that the sum of empirical Kendall’s 7 in the first tree is maximized: The next
feasible link is determined by the largest Kendall’s 7, which has not been used yet.

All pair-copulas are then selected and estimated by the sequential procedure
(see Section 5.3.3), while the pair-copulas at each site in the first tree must be

the same (the regional bivariate copula parameters are computed as weighted
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mean of the at-site estimates). Because the careful pair-copula selection might be
time consuming in larger dimensions, it is possible to truncate the D-vine copula
model. Brechmann, Czado and Aas [15] treated the problem of determining whether
the copula may be truncated at certain level (that means the pair-copulas in all
following trees are replaced by independence copulas) by model selection methods,
such as the AIC, BIC, and Vuong test.

The synthetic homogeneous cross-correlated regions are simulated by the appro-
priate D-vine copula and the four-parametric kappa distribution. The heterogeneity
measure )., computing the degree of heterogeneity in a region and the heterogeneity
criteria are the same as in the original test of Chebana and Ouarda [22]. Here, the
heterogeneity meausure obtained by the modified parametric test is denoted by
an asterisk to differ it from the original one. The whole modified procedure
is summarized below.

Suppose that the region has N sites, with site ¢ having record length n; and

the sample L-covariance coefficient matrix A;(l).

1. Calculate Vj given by (4.13) on the observed data as in the first step of the

original parametric test.

2. Transform data to approximately uniform variables using the empirical

distribution functions.

3. Compute empirical Kendall’s 7 for all pairs and order variables in the first

tree.

(a) Choose the largest Kendall’s 7 and check that the corresponding variables
can be linked. If it is not possible, choose the next largest Kendall’s 7

and check the possible link.

(b) Iterate until the first tree is created.

4. Identify an appropriate D-vine copula model for simulation uniform data of

synthetic homogeneous cross-correlated regions.
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(a) Select a regional bivariate copula family, that is common for all sites in
the region by a combination of techniques described in Section 4.3.3, and
estimate the regional bivariate copula parameter as @R = ]Zvjlnzél / ZNlnz-,
where éi,z‘ =1,2,..., N, are the at-site MPL estimates. - -

(b) Select and estimate the remaining unconditional pair-copulas in the first

tree of the D-vine model.

(c) Select and estimate all the conditional pair-copulas by the sequential
procedure, while the pair-copulas in the first tree are selected and

estimated in step 4(a) and 4(b).

5. Generate a large number Ng;,, of homogeneous cross-correlated regions (500
regions is again enough) with N sites, each having the same record length as
its real-world counterpart. To get a sample with uniform margins use D-vine
copula model given by step 4, and to get the desired sample use the quantile
function of a four-parametric kappa distribution. The regional parameters of
the kappa distribution are estimated using the L-moment method proposed
by Hosking [55] by fitting this distribution to the regional L-moment ratios
(1, ¢ ¢t 1) where £ is a weighted mean of the at-site L-moment ratios for

k=234.

6. Compute the statistic VH(J| |) defined by equation (4.13) on each of the simulated
cross-correlated homogeneous regions, j = 1,2, ..., Ny, and its mean p and

standard deviance o over all replications.

7. Compute the heterogeneity measure

. _ Vi —w

o

8. Categorize the region on the basis of the heterogeneity measure Hj given
by formula (6.1) as homogeneous if Hjj, < 1, acceptably homogeneous if

1< H |"|‘,|| < 2, and definitely heterogeneous if H IT'H > 2.
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6.3 Simulation Study

Monte Carlo simulation experiments were employed to assess the effect of cross-
correlation on the L-moment homogeneity tests, and to evaluate the performance
of the modification proposed in the previous section.

The simulation section was based on the simulation study carried out by Chebana
and Ouarda [22], in which the focus was on flood events characterized by volume
V and peak ). The uncross-correlated homogeneous regions with N sites were
generated by the joint distribution of a random vector (V, Q)T given by the Gumbel
copula ng to model the dependence between V and (), and the Gumbel distribution
with the cumulative distribution function

r — O

Bi

E(x):exp{—exp (— )},xER,ai eR,5,>0,i=1,2,...,N,

for margins. The selected parameters of the joint distribution at each site were

those presented in [121]:

af =1240, BY =300, a? =52, g? =16, 0, =1.41,i=1,2,...,N. (6.2
Chebana and Ouarda [22] selected several types of representative regions:
Homogeneous Parameters given by (6.2) are the same for all sites in the region.

50% completely heterogeneous All parameters given by (6.2) (except the pa-
rameters of location insomuch as V), is location invariant) increase linearly
from the 1st to the Nth station in a 50% range centered around the homo-
geneous region parameters, which means 3 € [225,375], ﬁiQ € [12,20],6; €

[1.0575,1.7625],4 = 1,2,..., N.

50% heterogeneous on the marginal parameters The dependence parame-
ter is fixed and equal to the homogeneous region parameter and the marginal
parameters increase linearly as in the completely heterogeneous region, which

means 3) € [225,375], 5% € [12,20],6;, = 1.41,i =1,2,...,N.
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50% heterogeneous on the dependence parameter The marginal parameters
are fixed and equal to the homogeneous region parameters and the dependence
parameter increases linearly as in the completely heterogeneous region, which

means 8 = 300, 8¢ = 16,6; € [1.0575,1.7625],i = 1,2,..., N.

30% completely bimodal The stations in the region are divided into two disjoint
groups: The parameters of the first group are equal to the 85% value of the
corresponding homogeneous region parameters, which means 3 = 255, @Q =
13.6,60; = 1.1985 for i = 1,2,..., {%J, and the parameters of the second
group are equal to the 115% value of the corresponding homogeneous region
parameters, i.e. 3 = 345, 37 = 18.4,0; = 1.6215 for i = [¥|,..., N, where

|-] and [-] denote the floor and ceiling functions, respectively.

30% bimodal on the marginal parameters The dependence parameter is fixed
and equal to the homogeneous region parameter and the marginal parameters
are the same as in the completely bimodal region, which means 3/ = 255, BZQ =
13.6 for i = 12[% BY = 345,89 = 18.4 for i = [g] ....,N, and
;=141 fori=1,2,... N.

30% bimodal on the dependence parameter The marginal parameters are
fixed and equal to the homogeneous region parameters and the dependence
parameter is the same as in the completely bimodal region, which means
BY =300,89 =16 fori=1,2,..., N, 6; = 1.1985 for i = 1,2, ..., m and

2
0; = 1.6215 for i = [g} ....,N.

In this simulation study these kinds of regions were adopted with the difference
that they were spatially correlated. Although other multivariate copulas, such as
elliptical copulas, could be considered for simulation of cross-correlated regions,
here representative cross-correlated homogeneous and heterogeneous regions were
generated using D-vine copulas. This was because we did not have to fit data to
the D-vine copula model, that is required for the simulation step in the modified

test, as it was known. Hence, the errors were reduced. Each synthetic region
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consisted of 2N spatially correlated series of the same length, the dependence
between variables V' and () at each site was modeled by the Gumbel copula family,
while the rest of pair-copulas in the D-vine model were modeled by the normal
copula family C;V ° representing the spatial dependence. Description of these two
bivariate copulas (their copula functions, parameter and Kendall’s 7 ranges, and
the lower and upper TDCs) used as pair-copulas of D-vine model are displayed
in Table 5.3. For simplicity the parameter p of the normal copula families C,])V °
was considered to be constant across all trees. Five correlation levels in terms
of Kendall’s 7 were selected for spatial dependence: 7 = 0 (uncross-correlated
case), 0.13,0.26,0.41, and 0.59, that corresponds to the normal copulas’s parameter
p=0,0.2,0.4,0.6, and 0.8. The structure of the 2N-dimensional D-vine copula
model is shown graphically in Figure 6.3.

For the simulation purposes, 100 regions were generated with N sites (N =
10,15,20, and 30), fixed record length n; = 30 for each site, given kind of
heterogeneity (see the list above) and spatial dependence p also given above.

The value of heterogeneity measures H.|, H, il and p-values were computed for
each replication. Means of H).; and H, ] values and rejection rates were computed
as well (the rejection rate is the ratio of the number of samples in which the value
of H. or H\T-II satisfies the condition H) > 2 or HIT'H > 2 [the parametric and
modified parametric tests|, or the number of samples where the null hypothesis is
rejected at the significance level o = 5% [the nonparametric test| to the total number
of generated regions, which is equal to 100). The computed rejection rates enabled
to estimate the empirical first type error and power of the tests: The empirical first
type error of a test is the rejection rate when the region is homogeneous, while the

power of a test is the rejection rate when the region is heterogeneous.

6.4 Simulation Results

Figures 6.4 to 6.8 illustrate results of the simulation experiments. Figure 6.4 shows
the relationship between average H)., values obtained by the original parametric

homogeneity test for uncross-correlated and cross-correlated regions with the same
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degree of heterogeneity. Figures 6.5 to 6.7 report empirical first type errors and
powers for all tests. Figure 6.8 compares average H).| and H}j values for cross-
correlated regions obtained by the original and modified parametric homogeneity
tests. It is important to note that in simulation experiments copulas and their
parameter values were known and there was no goodness-of-fit testing and parameter
estimation. Hence, sources of errors were reduced.

Several issues for consideration were raised by the performed simulation ex-
periments. First, since the simulated homogeneous regions in the parametric test
of Chebana and Ouarda [22] are both serially and spatially uncross-correlated
by definition, positive cross-correlation causes that the value of the heterogeneity
measure Hj| to be lower than the value of H). for the uncorrelated region and it
is even negative. This diminution may lead to the following miscategorizations of
the region: 1) an acceptably homogeneous cross-correlated region being categorized
as homogeneous, 2) a heterogeneous cross-correlated region being categorized as
acceptably homogeneous, and 3) a heterogeneous cross-correlated region being
categorized as homogeneous. Errors of the second and third types are definitely the
most serious. Figure 6.4 presents a comparison of average H|.| values obtained by
the original parametric homogeneity test for uncross-correlated and cross-correlated
regions with the same degree of heterogeneity. Most often, the first error occurs
such that an acceptably homogeneous region is categorized as homogeneous. Errors
of the second and third types occur much less frequently. This figure indicates that
the number of heterogeneous regions which are identified to be homogeneous by the
procedure of Chebana and Ouarda [22] rises with increasing cross-correlation, and
thus cross-correlation may significantly affect the result of the hypothesis testing
procedure in the sense of miscategorizating the region. These results agree with
those obtained by Castellarin, Burn and Brath [18], who tested homogeneity in
the univariate case, while using the multivariate normal distribution to generate
cross-correlated synthetic regions. Moreover, they observed a significant linearity
between the heterogeneity measure values for cross-correlated and uncross-correlated

regions. Note that although certain linear dependence may be also observed in
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Figure 6.4, the approach of Castellarin, Burn and Brath [18] can not be used for
bivariate homogeneity testing. This is becuse their method is based on assumption
that a region consists of a number of spatially normally distributed series with
constant population mean and variance, which is not definitely this case.

The focus now is directed to the ability of the modified parametric procedure to
detect heterogeneity. Figure 6.5 illustrates comparison of empirical first type errors of
tests for regions with various number of sites and spatial dependence. It is observed
that the empirical first type error is up to 6% for the original parametric test, up to
9% for the nonparametric test, and finally up to 7% for the modified parametric test.

Figure 6.6 illustrates empirical powers tests depending on the number of sites
and spatial dependence for completely, marginally, and dependence heterogeneous
regions. Completely heterogeneous regions are definitely well detected, with the
test power ranging between 70% and 97%. The ability of the modification to detect
heterogeneity when the regions are marginally or dependence heterogeneous is very
similar, but it differs from the completely heterogeneous case. Values of the tests
powers are considerably lower than the powers for completely heterogeneous regions
in the cases of marginally heterogeneous (ranging between 25% and 65%), and
dependence heterogeneous (between 17% and 70%) regions. Hence, the test gives
false results more often for regions that are marginally or dependence heterogeneous.
Despite the relatively low power of the modification, especially for the marginally
and dependence heterogeneous regions, the modified procedure performs clearly
better than both the original parametric and nonparametric tests when cross-
correlation is present.

The powers of the original and modified parametric tests are similar in the
independence case (7 = 0), but they differ significantly when there is nonzero cross-
correlation in the region. The power of the modified procedure is always higher.
This indicates that the proposed modification is really a suitable generalization
of the original test. When comparing the modified test to the nonparametric one,
the nonparametric test is more powerful for the independence case which is in

practice less likely, particularly when the sites are not far from each other. The
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Figure 6.4: Average H). values for uncross-correlated vs. cross-correlated regions
obtained by the original parametric test
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Figure 6.5: Comparison of empirical test first type errors for different cross-
correlations and number of sites

nonparametric test is not able to detect heterogeneity when cross-correlation is
present, and hence the modified test deals better with cross-correlation. Usually,
the power of the modification increases up to 7 ~ 0.4 and then decreases, but it
is still larger than for the other tests. This shows that the modified test does not
reveal real degree of heterogeneity when the regions are very high cross-correlated.
These results do not coincide with those obtained in the univariate simulation
study performed by Lilienthal, Fried and Schumann [73]. They also utilized the

D-vine copula model to generate cross-correlated synthetic regions, however, their
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Figure 6.6: Comparison of empirical test powers for completely (black), marginally
(blue) and dependence (red) heterogeneous regions with different cross-correlations
and number of sites

modification of the Hosking and Wallis test [58] is able to increase the power with
increasing cross-correlation, that does not apply to the proposed modification of
the bivariate Chebana and Ouarda [22] test.

Analogous observations for heterogeneous regions summarized in the two previous

paragraphs hold also for bimodal regions (see Figure 6.7).
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Figure 6.8 presents a comparison of average H). and Hj values for cross-
correlated regions obtained by the original and modified parametric homogeneity
tests. It clearly shows that use of the modified test provides approximately the
real degree of heterogeneity and may avoid miscategorization of the region in
contrast with the original one.

A small simulation study was also performed to find out the performance of the
modified parametric test for uncross-correlated regions. It can be observed that
also in originally uncross-correlated regions there are nonzero cross-correlations
between data at different sites. This fact might raise a question how to find out
whether the studied region is “originally” uncross-corellated or cross-correlated, and
which test is the best one, because the original parametric and nonparametric tests
work well for uncross-correlated regions, while the modified parametric should
be used for cross-correlated regions according to the results presented in the
above paragraphs. The results of the simulation experiment carried out for 100
homogeneous and completely heterogeneous regions show that the performance
of the original parametric, nonparametric, and modified parametric tests are very
similar. For this reason the modified parametric test is recommended, because if
there is significant spatial dependence in region, the modified parametric test might

capture it and take it into account when generating synthetic homogeneous regions.

6.5 Case Study

Here, the modified procedure is applied to real meteorological data to illustrate
its usefulness in practice. For this, homogeneity of region 3 consisting of 33
meteorological stations located in the northeastern part of Moravia and Silesia near
the Jeseniky and Beskydy mountains (see Figure 4.7) is checked also by the bivariate
modified parametric L-moment homogeneity test. The result about homogeneity is
compared to those obtained by the original parametric and nonparametric tests.

Maximum annual 1- and 5-day precipitation totals were used as the input

dataset. The minimum record length is 36 years, so at least 36 records are available
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at each station. Note that the elimination of 2 stations in the region would increase
the number of measurements to 43.

Although the region may be regarded as homogeneous according to the results
of the parametric and nonparametric tests, because H); = —1.3857 and the p-value
is 0.994, there exists correlation between data series (empirical Kendall’s 7 ranges
from —0.45 to 0.87), which could devaluate these results. For this reason, the
proposed modified homogeneity test should be preferred over the others. Because
two correlated variables are measured at each of 33 stations, the 66-dimensional
D-vine copula model is fitted to the data to assess both the dependence between
the studied variables at each station and the intersite dependence structure. Hence,
2145 pair-copulas have to be determined and their parameters estimated, but these
results are not presented due to the space limitation. Note that the Gumbel copula
family was used as the regional bivariate copula. The proposed modified parametric
test returns Hj | = 1.5395, which means that the region is acceptably homogeneous.

Hence, the region is not such homogeneous as the other tests indicate.

6.6 Conclusion

This chapter introduces a modification of the bivariate L-moment homogeneity test
proposed by Chebana and Ouarda [22] to overcome the problem of miscategorization
of region when the data are spatially correlated. D-vine copula are used to preserve
the approximate spatial dependence structure. A simulation study has been carried
out to analyze how the presence of cross-correlation impacts upon the results of
homogeneity testing and to evaluate the performance of the proposed modification.
The tests were compared on the basis of the empirical first type errors and powers.
As expected according to results of similar studies conducted in the univariate case,
the simulation results clearly show that the proposed modification deals best with
cross-correlation. The size of the modification may be slightly higher than the value
of 5% usually required, but it does not exceed 7%. The emipirical power ranges
from 17% to 97% depending on several factors (the degree of heterogeneity, number

of sites, strength of cross-correlation). Although the lower limit is quite low, the
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power of the modified parametric test is almost higher than for the other tests
(except the uncross-correlated case). The modified parametric test is recommended
to be used in practice, because it might capture spatial dependence, which impacts
the results of the original parametric and nonparametric tests.

The study presents only a first attempt how to deal with cross-correlation in
bivariate homogeneity testing in RFA. Hence, some issues should be addressed in fu-
ture. The impact of various factors, which were not included in the study performed
and may affect the performance of the proposed test should be investigated. Such
factors are for example different at-site record lengths, difficulties with specification
of a D-vine copula model (pair-copula selection and estimation), or misspecification
of pair-copulas. Different at-site record lengths represent an important limitation,
because the beginnings of records often differ from site to site in practice. This
problem may be solved by omitting some measurements at other sites, infilling the
missing values, or eliminating the site with a large number of the missing values,
however these steps may affect the test performance. Moreover, with increasing
number of sites in the region the specification of an appropriate D-vine copula
model becomes more time consuming and technically complicated. The D-vine
copula model may be simplified by truncation at certain level, which means the
use of independence copula for pair-copulas. With this issue, misspecification of
pair-copulas, which are unknown in practice, is related. Masselot, Chebana and
Ouarda [78] shown that the both univariate and multivariate nonparametric tests
are better than the parametric tests in performance as well as in implementation.
Here, the focus was only on a generalization of the parametric Hosking and Wallis
[58] homogeneity test as a first attempt to deal with cross-correlation. Moreover, it
seems that the nonparametric test can not be simply generalized for cross-correlated.
It would probably require construction of a new type of a statistical test. However, it
would be interesting to do some research also in the nonparametric area and explore,
if a nonparametric alternative could ever be proposed. Although the test procedure

has been thoroughly described and applied in a case study using real meteorological
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data in the study presented, it would be useful to investigate its practical aspects

and summarize comprehensive guidelines and recommendations for routine practice.
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Conclusions

Central moments and comoments matrices are traditionally used to characterize
a probability distribution of a random variable or vector, respectively. However,
their drawbacks lie in higher orders moments assumptions, that is unsufficient for
analysis of distributions with heavier tails, to which the attention has recently
been given not only in environmental fields, such as hydrology, meteorology, and
climatology, but also in economics and finance. On the other hand, L-moments
proposed by Hosking [55] and Serfling and Xiao [97] as alternative systems to the
conventional moments and comoments yield a tool for analysis of a random variable
or vector under just first moment assumptions.

In this thesis, both univariate and multivariate L-moments and their general-
izations have been used to develop parameter and quantile estimation, as well as
hypothesis testing. The thesis was divided into six chapters of which four bring
new results. The first one presented the definition of univariate L-moments, their
main features, and generalizations. The focus was on the L-moments method which
provides parameter estimators of a probability distribution in the same way as it is
in the usual moments method, however, they are more robust thanks to the less
weights given to the extreme observations. They provide reliable estimates even
in small to moderate samples and they are often easy to calculate as well. The
highlighted useful feature of sample L-moments based on the asymptotic theory for
linear combinations of order statistics is their asymptotic normality [55].

With generalization of L-moments into LQ- and TL-moments [38, 84|, new
alternatives to the traditional estimation methods appeared. Hence, there exists
a relatively large number of methods for estimating unknown parameters of a

univariate probability distribution, however, each of them has its strengths and

166



weakness. Hence, the second chapter dealt with derivation of L-, LQ-, and TL-
moments, and parameter and quantile estimators based on these moments of
selected univariate probability distributions, and their comparison. The considered
distributions were the three-parametric generalized Pareto and generalized extreme-
value distributions, which have been frequently used in the modeling extreme events
[42, 53, 64, 70, 88|, and, therefore, use of L-, LQ-, and TL-moments seem to provide
reliable parameter and quantile estimates with respect to their features. The focus
was on estimating high quantiles from samples drawn from these distributions. The
simulation study performed revealed that the traditional maximum likelihood and
L-moments methods surpass completely the LQ- and TL-moments methods with
respect to the mean squared error of quantile estimates. Let us note that the LQ-
and TL-moments are too robust for the considered range of the shape parameter k,
however, they would be reasonable with k& approaching to the value —1. It is worth
mentioning that the LQ-moments based estimates are much more biased than the
estimates obtained by the TL-moments method, moreover their computation is quite
difficult and it also includes finding of optimal combination of parameters (p, ).

The L-moments method is a suitable alternative to the maximum likelihood
method, and it is typically employed for estimation of unknown parameters of a
probability distribution with heavier tails in comparison to the normal distribution
when smaller sample is available. Much attention to the point estimation based on L-
moments have been given in the literature, but only a little to the confidence intervals.
Except for a few univariate probability distributions, such as the uniform or logistic
distributions, it is practically impossible to construct exact confidence intervals
based on L-moments for parameter or quantile estimates. The only convenient
attempt to construct confidence intervals may be based on the asymptotic theory via
the delta method. The third chapter presented approximate confidence intervals of
parameters and quantile estimates for the three-parametric generalized Pareto and
generalized extreme-value distributions obtained using the delta method [92]. Their
performances were compared to performances of asymptotic confidence intervals

derived for more traditional moments and maximum likelihood methods in terms of
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empirical coverage probabilities and median lengths. From results of the performed
simulation study can be concluded that the asymptotic confidence intervals based
on L-moments for quantile estimates work well even for small sample size about 50
depending on the value of the shape parameter k. In both cases, with increasing
value of the shape parameter k and sample size n the empirical coverage probability
increases and median lenght decreases. However, the use and accuracy of the
L-moments based confidence intervals for the generalized extreme-value distribution
heavily depends on the value of the shape parameter k.

Application of L-moments in estimating high quantiles, when there is a lack
of available data in a single site but the same variable is measured at many
different sites, was introduced in the fourth chapter. This part of the work just
presented an approach termed as index-flood based regional frequency analysis
in the bivariate context [22, 23, 93]. All the main steps of regional frequency
analysis were thouroughly described and special attention was given to bivariate
modeling using copulas. The chapter ended by a detailed illustration of the described
methodology to the extreme precipitation events characterized by 1- and 5-day
maximum annual precipitation totals.

There exist many practical studies dealing with regional frequency analysis,
however, all them are focused on univariate, at most bivariate cases. This is due
to the fact that multivariate analysis becomes much more complicated and time
consuming. Parametric L-moment homogeneity testing includes construction of
a multivariate distribution, which is generally not an easy task. The aim of the
fifth chapter was to present a detailed procedure of L-moment homogeneity testing
in the trivariate framework as the first step of regional frequency analysis, and
to investigate its practical aspects. The methodology presented combines recent
developments in construction of higher dimensional models, such as the exchangeable
Archimedean, fully nested Archimedean, and vine copulas, with discordancy and
homogeneity tests proposed by Chebana and Ouarda [22]. Particular attention was
devoted to estimation and simulation methods for the considered higher dimensional

dependence models. The entire testing process was applied to the three-dimensional
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precipitation dataset. Although, the methodology was illustrated on precipitation,
it provides general guidelines how to deal with homogeneity testing for higher-
dimensional data and may be adapted for various kinds of data.

Development of the parameteric L-moment homogeneity test proposed in the
last chapter was motivated by obtaining large negative values of the heterogeneity
measure in regional frequency analysis of extreme precipitation events presented
in Chapters 4 and 5. Hence, there was a suspicion of presence of cross-correlation
between sites as Hosking [54] pointed out in the univariate case. Simulation study
was performed to illustrate how cross-correlation between sites may negatively
impact results of the parametric and nonparametric L-moment homogeneity tests,
both of which do not preserve eventual spatial dependence structure of data when
generating homogeneous regions. D-vine copulas were employed to generalize the
original parametric L-moment homogenity of Chebana and Ouarda [22] to overcome
this problem. The simulation study considering various types of regions, number of
sites, and strength of spatial dependence has showed that the proposed modification
deals best with presence of cross-correlation, i.e., categorization of region is much
more reliable. Although, the empirical first type error for the modified test is slightly
higher (about 7%), the empirical power is almost always higher in comparison to
the original parametric and nonparametric tests. The improved test was also
applied to real meteorological data.

For future research, there are still many issues related to the topics discussed
in this thesis. For example, in asymptotic theory it is assumed that sample size
n grows infinitely, but in practical applications only finite samples are available
of course. Moreover, samples are often of small size and approximation by the
normal distribution in these cases may lead to inaccurate estimates. Issue for
future work may be then comparison of the asymptotic L-moments based confidence
intervals to those obtained by bootstrap techniques [36]. Further, no attention has
been given to methods for estimating the confidence regions of the quantile curves
in multivariate regional frequency analysis, although the precision of estimated

quantile curves should be of interest. The approach of Coblenz, Dyckerhoff and
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Grothe [27] to estimate confidence regions for multivariate quantiles based on
copulas could be adopted. Since only the parametric L-moment homogeneity test
has been developed to overcome the problem of presence of cross-correlation, it is a
challenge to investigate the possibilities for improvement also the nonparametric
version. However, no approach is immediately apparent. Further, although the
modified L-moment homogeneity testing procedure has been in details described and
illustrated in the case study, the practical aspects could be thoroughly investigated
and recommendations how to overcome some difficulties encountered in routine
practice would be summarized to be a guideline for practitioners. Since the L-
moment is an L-estimator, the theory of L-estimators [32, 62, 63] may be used
to obtain new results valid also for L-moments. Regional frequency analysis is
nowadays popular in hydrology, meteorology, and climatology, among others, but
in economics and finance, as fields in which extremes also often appear, it is not

common. Hence, this approach may be also adopted for these kinds of data.
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