TECHNICKA UNIVERZITA V LIBERCI

Automating Telephony Testing for

Integrated Access Devices (IADs)

Study programme:
Study brunch:

Author:

Supervising Professor:

Supervisor:

Liberec 2015

Diploma Thesis

N2612 — Electrical Engineering and Informatics
3906T001 — Mechatronics

Filip Burda
Prof. Dr.-Ing. Dietmar Scharf
Dipl.-Ing. (FH) Thomas Haak

Technical University of Liberec

Faculty of Mechatronics, Informatics and Interdisciplinary Studies

Academic year: 2014/2015

DIPLOMA THESIS ASSIGNMENT

First name and
surname:

Study program:

Identification number:

Specialization:

Topic name:

Assigning department:

(PROJECT, ART WORK, ART PERFORMANCE)

Be. Filip Burda

N2612 Electrical Engineering and Informatics
M12000266

Mechatronics
Automating Telephony Testing for Integrated Access
Devices (IADs)

Institute of Mechatronics and Computer Engineering

Rules for elaboration:

The goal is to develop an automated telephony testing system for integrated access devices.
The following steps should be completed:

1. Choosing the right hardware (ISDN card) for testing.

2. Creating of a test setup.

3. Automation of call initiating.

4. Developing a program for automated stress tests.

5. Displaying test results.

Scope of graphic works: In respect to the documentation needs

Scope of work report
(scope of dissertation): c. 40-60 pages

Form of dissertation elaboration: printed/electronical
Language of dissertation elaboration: English

List of specialized literature:

[1] BURD, N.C. ISDN Subscriber Loop. Springer Science & Business Media,
1997, 475 p., ISBN: 0-412-49730-1.

Tutor for dissertation: prof. Dr. Ing. Dietmar Scharf
Hochschule Zittau/Gorlitz, Germany
Dissertation Counsellor: Dipl.-Ing. Thomas Haak

Sphairon GmbH, Bautzen, Germany

Date of dissertation assignment: 10 October 2014
Date of dissertation submission: 15 May 2015

fnte)

7/

doc. Ing. Milan Kolaf, CSc.
Department Manager

Liberec, dated: 10 October 2014

[

Declaration

Byl jsem seznamen s tim. Z¢ na mou diplomovou praci se plné vztahuje zakon ¢. 121/2000
Sb.. 0 pravu autorském, zejména § 60 — Skolni dilo. Beru na védomi, Ze Technicka univerzita v
Liberci (TUL) nezasahuje do mych autorskych prav uzitim mé diplomové prace pro vnitini
potiebu TUL. Uziji-li diplomovou praci nebo poskytnu-li licenci k jejimu vyuziti, jsem si
veédom povinnosti informovat o této skute¢nosti TUL; v tomto piipadé ma TUL pravo ode mne

pozadovat Ghradu nakladi, které vynalozila na vytvoreni dila, az do jejich skutecné vyse.

Diplomovou praci jsem vypracoval samostatn€ s pouzitim uvedené literatury a na zakladé
konzultaci s vedoucim mé diplomové prace a konzultantem. Soucasné ¢estné prohlasuji, ze

ti§téna verze prace se shoduje s elektronickou verzi, vloZenou do IS STAG.
Datum: A, $. 2o/

Podpis:

Abstract

This Master Thesis is focused on telephony testing. At first, it describes fundamentals
of telephony itself and especially ISDN and VolP. The goal here is to develop an automated
telephony testing system for devices produced by Sphairon GmbH (a ZyXEL Company).
The thesis shows importance of testing in a development process. Also a procedure of choosing
the right hardware for the task is presented. Then all the requirements for the chosen test setup
(Asterisk, Linux Call Router, mISDN, ISDN card) are described as well as their configuration
so they work together and are able to simulate incoming and outgoing calls for device under
test. The next part of this document is about a development of the program for control of the
test setup. The program automates the telephony testing process and gets information from
Asterisk that is used for evaluating of the initiated calls. Last chapter shows output of the system
which displays results that can be further inspected and evaluated because all the necessary files
for that are archived. The automated telephony testing system is used to determine quality

of tested devices.

Keywords: ISDN, VolIP, Telephony, Testing, Automated testing

Abstrakt

Tato Diplomova prace je zaméfena na testovani telefonie. Nejdiive jsou zde popsany zaklady
pravé telefonie a to predevSim ISDN a VoIP. Cilem této prace je vyvinout systém
pro automatizované testovani telefonie v zafizenich vyrobenych spole¢nosti Sphairon GmbH
(a ZyXEL Company). Prace poukazuje na dulezitost testovani v procesu vyvoje. Je zde také
prezentovan postup vybéru spravného hardwaru pro tento tkol. Déle jsou zde popsany vSechny
pozadavky pro zvolenou testovaci sestavu (Asterisk, Linux Call Router, mISDN, ISDN karta)
stejné jako jejich konfigurace tak, aby pracovaly spolecné a bylo mozné simulovat ptichozi
a odchozi volani pro testované zafizeni. Dalsi c¢ast tohoto dokumentu se zabyva vyvojem
programu pro ovladani této testovaci sestavy. Tento program automatizuje proces testovani
telefonie a ziskdva informace z Asterisku, které jsou pouzity pro vyhodnocovani zahajenych
volani. Posledni kapitola ukazuje vystupy ze systému, kde jsou zobrazeny vysledky, které
mohou byt dale prozkoumany a vyhodnoceny, protoze vSechny nezbytné soubory z testu jsou
archivovany. Automaticky systém testovani telefonie slouzi pro stanoveni kvality testovanych

zafizeni.

Klicova slova: ISDN, VoIP, Telefonie, Testovani, Automatizované testovani

Contents

100 ¥ o{ £ o] o PSR OUURPRSPS 12
1. Fundamentals Of TelePhONY ..o 13
1.1 ANalog TEIEPNONY ..o 14
T2 ISDIN ettt bRttt r et st e et et neens 15
1.2.1 ISDN SerViCe LEVEIS......coiiiiiiieiticieeiee e 15
1.2.2 ISDIN DBVICES....ccuiiuieiieieiieite sttt sttt st bbbt n s 16
1.2.3 ISDN INTEITACES.....cciiitieieiie sttt nre e enes 16

L3 VOIP e a e 17
L4 SOTESWITCNES.....ceeiiieece ettt te e sre e ne e 19

2. WY TESHING? ..ottt bbbt b et b ettt 21
2.1 TeSting IN SPRAITON......coiiiiiiiiieie bbbt 22
3. ChOOSING HAMAWAIEccveiiecie sttt sttt et e s te e e reenne e 24
3.1 Important Properties 0f ISDN Cardscccccuvereriieniininieieiese e, 24
3. L1 SEIVICE LEVEIS ..o 24
312 NUMDEE OF POITS ..ttt 24
3.1.3 Port Configuration ProtOCOIccueiiiiiiiiieie it 24
314 MOAES OF OPEIALION.....ccueiieiiieieiiesie ettt 24
3.1.5 ACHVE/PASSIVE CalUS......cviieeerieeieiiesieesie e see e eee et ste e e sneeneesneenne e 25
316 Other PrOPEITIES.ot 25

3.2 MaArKet RESEAICHc.viiiiiiiiicieee et 26
TN T B T Tox] (o] o SO 28
O 0] o] [=T 1= 0] LA o o ISP 29
4.1 Card Installation and Call Configuration.............ccccuvvriiiriieienese e, 29
411 ISDN Card Hardware SELHINGSccerveiririririesesieieee et 30
4.1.2 MISDIN e e e st e e e s e e e s e e e ae e e s nnaeesneeeas 31
4.1.3 LINUX Call ROULETceeiiieieiieciieie ettt nnees 32
I N =] 1] USROS 36
4.1.5 SOFtPNONE (ZOIPEI) ...oi it 38

4.2 Test Setup CoNFIQUIALIONccuiiiiiieieeie e 39
4.2.1 Asterisk Server Configuration...........cccooieiiiiiie i 41
4.2.2 TeStPC CoNfIQUIAtION........ccoiiiiiiiie it 42
4.2.3 DUT CONTIQUIALION ...ouviiiiiiiieiiiee e 45

4.3 AULOMALEA TESTING ..veeeiiiieiieiieeie sttt sreente e e sreenne e 48

4.3.1 ConfIQUration FIlEccoiiiiiiiiiiccee e 49
4.3.2 MAIN SCIIPL. ..ttt 50
4.3.3 Call DABMON ...ttt nneas 53

B4 RESUILS ..ottt nb bbbt e s 57
(07]Tod 11151 (o] o FO S ST SRRRP 60
RESOUICES ...ttt b e e bt n st e e e e e Re e et e nre e e nneenneeenne e 61
(€] [0 OSSR 63
N |V - Y[0T 4) SO PSURSTRI 64
B Call DABMON ..ottt ettt nneas 73

List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

e N N Y o

Structure of telephone network with local 100p...........cccccveveiieiicii e, 14
SIP SESSION EXAMPIE ...t re e 18
DEVEIOPMENT PrOCESS. ... ettt bbbt 22
OpenVox B400E ISDN card 2.o 28
Block diagram fOr USEd SELUPDcc.veveiieie et 29
ISDN card SChEmME 221 ... 30
Architecture of MISDN P4 e 31
Block diagram of outgoing calls simulation for automated testing............cccccceevennen. 40
Block diagram of incoming calls simulation for automated testing.............cccocveue.. 41
Configuration 0f VOIP ProVIder...........cooveiiiiiecie e 45
Configuration 0f VOIP aCCOUNT...........ccoviiiiiieieicese e 46
Configuration of ISDN INEITACEcceieiiiiiiier e 46
Software desSign diagram...........ccceoieiieiiic e 48
Flowchart describing function of the main scriptccccccvvveveiieci e 51
Flowchart describing function of the call daemon.............ccocvevviieiceiiin e 54
Example of @ result html file..........cooii e 59

List of Codes

Code 1:
Code 2:
Code 3:
Code 4:
Code 5:
Code 6:
Code 7:
Code 8:
Code 9:

Code 10:
Code 11:
Code 12:
Code 13:
Code 14:
Code 15:
Code 16:
Code 17:
Code 18:
Code 19:
Code 20:
Code 21:
Code 22:
Code 23:
Code 24:
Code 25:
Code 26:
Code 27:
Code 28:
Code 29:
Code 30:

Installation of mISDNuser

Installation of Linux Call Router

Generating script for control of mISDN
Control of mISDN

Checking loading of the drivers

LCR file interface.conf

LCR file routing.conf

Generating an extension 1234 for interface Int
Commands for using LCR

Installation of Asterisk

Asterisk file sip.conf

Asterisk file extensions.conf

Starting Asterisk and loading chan_lcr module
Installation and start of ZoiPer

Example of extensions.conf in Asterisk Server
Example of sip.conf in Asterisk Server
Structure of used call file

Syslog configuration file

Restart of the syslog service

File kermrc.ttySO

Starting ckermit

Commands used in remote access to the DUT
Configuration file teltest.conf

Checking necessary processes

“Graceful” stopping

Exporting messages into log file

Checking DUT for panic messages

Waiting for reboot of DUT
Example of a log file

Example of a result text file

31
32
33
33
34
35
35
35
36
36
37
37
37
38
42
42
42
44
44
44
45
47
50
52
52
55
55
56
58
58

List of Abbreviations

ADPCM Adaptive Differential Pulse-Code Modulation
AMR Adaptive Multi-Rate compression
AOC Advice of Charge

BRI Basic Rate Interface

BSD Berkeley Software Distribution

CDPN Called Party Number

CELT Constrained Energy Lapped Transform
CFx Call Forwarding

CGPN Calling Party Number

CLIP Calling Line Identification Presentation
CLIR Calling Line Identification Restriction
Cw Call Waiting

DSL Digital Subscriber Line

DUT Device Under Test

ET Exchange Termination

GSM Global System for Mobile communication
HFC Hyper Fiber Chip

HTTP Hypertext Transfer Protocol

IAD Integrated Access Device

IAX Inter-Asterisk eXchange

iLBC Internet Low Bitrate Codec

IP Internet Protocol

ISDN Integrated Services Digital Network
LCR Linux Call Router

LPC Linear Predictive Coder

MGCP
mISDN
NAT
NT
PBX
PMP
POTS
PPP
PRI
PSTN
RTP
SCCP
SDP
sIP
SMTP
SRTP
SSH
STUN
TA
TE
TLS
UNIStim
URI
VolP
XMPP

ZRTP

Media Gateway Control Protocol
Modular ISDN

Network Address Translation
Network Termination

Private Branch Exchange

Point to Multipoint Protocol

Plain Old Telephone Service

Point to Point Protocol

Primary Rate Interface

Public Switched Telephone Network
Real-time Transport Protocol
Skinny Call Control Protocol
Session Description Protocol
Session Initiation Protocol

Simple Mail Transport Protocol
Secure Real-time Transport Protocol
Secure Shell

Session Traversal Utilities for NAT
Terminal Adapter

Terminal Equipment

Transport Layer Security

United Networks IP Stimulus
Uniform Resource Identifier

Voice over Internet Protocol
Extensible Messaging and Presence Protocol

Zimmermann’s Real Time Transport Protocol

11

Introduction

This thesis is about developing an automated test for devices which are produced
by Sphairon GmbH (a ZyXEL Company) and work as SIP gateways and IADs. Testing
Is an important part of every development process and in telephony it is not any different.
All the new software releases have to pass a set of complex tests before they can go to a market.
The outcome of this work is to be included in these tests to replace and extend a manual way

of testing which was used before.

For testing of a software a regression test is used, that investigates if the version
of the software introduced new faults and if the old errors reappeared. If there is a problem,
the new software version needs to go back into development. If all the tests succeed,

the software can be delivered to a customer.

Stress testing is a necessary part of regression tests. As the name implies, in this case, a device
is stressed in every possible way to ensure that even in unusual circumstances everything works

as it should. Stability of the device is determined by scale of intense tests.

The telephony testing is based on automatically created phone calls with different parameters
that are sent from PC. The PC should act as any ISDN telephone. The goal here is to find a way
to simulate that. At first a necessary software and hardware needs to be chosen. In this case
it means an ISDN card with required properties and a software which can control it. Then
the right configuration has to be made, so all the software and hardware works together. And
finally a program has to be developed, which can control the whole setup, create automated
calls based on given parameters, evaluate the success or fail of these calls and export results.
Also all available information from the test and a device under the test have to be extracted

so the results can be inspected and any fault can be fixed.

12

1. Fundamentals of Telephony

Telephony is a technology for electronic transmission of voice, fax and possibly other
information at long distance. There are different types of telephony. First type is classic analog
transmission. Another way is use of digitalized telephone network - ISDN (Integrated Services
Digital Network). There is also a special part of digital telephony called VolP (Voice over

Internet Protocol) which uses transmission over Internet lines.

Besides the main data carried through the network during telephone contact, there are also
data used for signalling. Signalling is exchange of information for maintaining the telephone
call (setting up, controlling, terminating). In in-band signalling is for the signalling data used
the same channel as for the telephone call. In contrast with out-of-band signalling which has its

own separated channel.]

13

1.1 Analog Telephony

The analogue telephony works in analogue PSTN (Public Switched Telephone Network)
which is also called POTS (Plain Old Telephone Service). These days most part of the network
(if not whole) is digital and the only analog part which remains is subscriber connection.
The reason is obvious. Analog telephony has to deal with all disadvantages of analog

transmission like sensitivity to distortions.

Analog telephony does not necessarily need provider of PSTN. It can also work in private
systems — local loops. In these kinds of systems the switching is managed by PBX (Private
Branch Exchange) systems. It allows to make private telephone networks for instance

in the range of some company. 2!

PBX B

Loca ™ B

loop -

Fig. 1. Structure of telephone network with local loop

14

1.2 ISDN

Integrated Services Digital Network — ISDN is a digital telephony system. It can transmit
voice, video and data through the network. Its advantages besides the typical benefits of digital
transmission are higher speed and out-of-band signaling. ! ISDN has various options
and properties. It can work in two types of service levels which use various number of different

channels.

1.2.1 ISDN Service Levels

The ISDN service levels differ by types and number of used ISDN channels. These properties

also specify the rate of the service level.

The Bearer channel (B-channel) with 64 kbps carries the main information which are data,

voice and video. For higher bandwidth the channels can be aggregated together.

The Delta channel (D-channel) can operate at 16 or 64 kbps. The bandwidth depends on used
service level of ISDN. This channel handles signaling information needed to connect

and disconnect calls and other services.

There is also a special high-speed H-channel for video transfer. There are four kinds
of H-channels with rate 384 kbps, 1472 kbps, 1536 kbps and 1920 kbps. &I

The Basic Rate Interface (BRI) has two independent B-channels for main data and one
16 kbps D-channel for signaling. This means the overall rate is 144 kbps (plus 48 kbps

for maintenance and synchronization).

The Primary Rate Interface (PRI) service level differs in several parts of the world. In North
America and Japan, it has 23 B-channels and one 64 kbps D-channel. In Europe and Australia
PRI uses 30 B-channels and one 64 kbps D-channel. So PRI can operate at 1536 or 1984 kbps. [*!

15

1.2.2 ISDN Devices

Terminal Equipment (TE) is a communicating device that complies with the ISDN standards.

It can be for instance digital telephone, ISDN data terminals or ISDN-equipped computer.

Terminal Adapter (TA) allows communicating devices that do not conform to ISDN standards

to communicate over the ISDN.

Network Termination (NT1 and NT2) forms the physical and logical boundary between
the customer premises and the carrier’s network. NT1 performs logical and NT2 physical

interface. Usually both functions are performed by one device — NT.

Exchange Termination (ET) makes the physical and logical boundary between the digital

local loop and the carrier’s switching office. [l

1.2.3 ISDN Interfaces

R interface — between a non-ISDN terminal device and a terminal adapter.

e S interface — between a terminal equipment and a network termination device
e T interface — between a network termination device 1 and 2
e U interface — between a network termination device and the carrier’s local

transmission loop. Bl

16

1.3 VolP

VoIP stands for VVoice over Internet Protocol and it is also addressed as IP telephony. It uses
internet network for transmitting a digitalized voice so there is no “fixed” connection like
in classical telephony. Instead, the voice is transmitted in packets over the internet protocol.
This means that VVolIP uses packet switching in contrast to circuit switching used in classical
telephony. The advantages of VVoIP are lower cost of calls and higher speed of data which allows
to include more services. The disadvantage can be quality of a call. The quality is monitored
using parameter of the call like latency, jitter and packet loss. The data are digitalized using
codecs and function of VVoIP is controlled by signalling protocols. The most common protocols
are H.323, MGCP and especially SIP. !

SIP - Session Initiation Protocol is application-layer control protocol that is used for
controlling real-time multimedia sessions like IP telephony. SIP for providing VoIP uses some
other protocols (SDP, RTP). It is simpler alternative to H.323 and it is based on protocols like
HTTP and SMTP. SIP uses HTTP request — response model and URI (Uniform Resource

Identifier) similar to email address from SMTP.

A communication in SIP implements a three-way handshake. At first a caller sends
an INVITE message and a callee returns OK to accept the call. Then the caller confirms the call
by ACK message. In (Fig. 2) is shown example of SIP session with names of used methods
and numbers of response codes. The session is between two users - Jane uses hardware SIP
phone with SIP URI sip:jane@callfree.com and Mike has softphone in his PC with SIP URI
sip:mike@myphone.cz. Where callfree.com and myphone.cz are their SIP service providers.
The transaction starts with Invite message from Jane to Mike which at first sent to Jane’s
provider. The next step is sending the message from callfree.com to myphone.cz. This server
knows location of Mike’s softphone and sends the Invite there. Along the way both SIP servers
send back Trying message with code starting with number one (100) which means that request
was received and is being processed. The phone on Mike’s side is ringing sends back Ringing
message with code 180 again through both proxy servers. When the call is answered Mike’s
softphone sends an OK message with code 200. Messages which start with number two mean
the action was successfully received, understood, and accepted. Jane’s SIP phone answers with
acknowledgement message but this time straight to Mike’s softphone because the locations
are already known. The media session itself starts after receiving acknowledgment. After

hang-up the Bye message is sent and it is confirmed by 200 OK message. Besides message

17

codes starting with 1 and two there are other types of messages. Message code starting with 3
means that further action needs to be taken to complete the request. 4xx code signifies that
request contains bad syntax or cannot be fulfilled at the server, 5xx indicates that server failed
to fulfill an apparently valid request and codes starting with number 6 implies that request

cannot be fulfilled at any server. [

., SIP Proxy- — — - SIP Proxy «

» callfree.com myphone.cz ™
/ N

Jane's - " Mike's
sPkPhbore —m——————-"— — —— — - — - — - softphone

Invite
100 Trying Invite
/

t 400 Tryind %J‘*
180 RingiN Ringing

g 180 RiNgiN9 200 OK Answer
200

20() OK
ACK

—
Media Session

E S
4‘%- Hangup

200 OK

Fig. 2: SIP session example

18

1.4 Softswitches

Softswitch is a device which connects telephone calls in a telecommunications network. It is
a central device in the network. A softswitch is typically used in IP telephony and it can provide
a lot of functions and possibilities. Its advantage is in programmability which can of course
differ from one product to another. Further on will be described basic properties of four tested
softswitches — Asterisk [, FreeSwitch], Yate 1 and Amooma Gemeinschaft [°1. There are
also a commercial products — Adore Softswitch 1% Dialogic Softswitch [, Technicolor

Cirpack Softswitch [*2 and many more.

First and maybe even most important thing when installing and using a new softswitch is its
documentation. The documentation is usually on a wiki website and it contains notes
for installation and basic and advanced configuration. Installation can be an easy task but it is
not always so. The next step is setting up the system for basic calls. This can be done
by configuration files which have a defined structure. The softswitch is in most cases controlled
from a command line/terminal but it can be also expanded to some graphical user interface
for more user friendly configuration and control. Very important property of every softswitch
is its list of supported VoIP protocols. Most of them supports SIP, H.323 or IAX which is
sufficient in most cases. There is also list of supported codecs which is obviously the longer
the better. The next property can be type of signalling. In-band signalling uses the same channel
as the call itself. Out-of-band signalling has its own channel. Besides these two types there
are special ones like IAX2 or SIP-INFO. All of the tested systems support voice announcements
and interactive voice response. These options are pretty much self-explanatory. Important
feature these days is support of IPv6 since the whole internet world is moving that way. Some
of the softswitches support protocol STUN (Session Traversal Utilities for NAT). It enables
a device to find its public IP address. ¥ The softswitches support various types of encryption
like TLS or SRTP. None of the tested systems offers SIP-Trunking which is method where

provider assigns range of numbers to a user and the user can divide them at will.

In (Tab. 1) is a comparison matrix for the tested softswitches where all of them were tested.
They were evaluated by marks according experience of installation and use for basic calls from

the point of view of a new user.

19

Comparison of softswitches: 1 — good (easy), 2 — medium, 3 — bad (difficult)

Asterisk FreeSwitch Yate Amooma
Documentation 1 1 1 3
Installation 1 1 1 3
Set-up 1 2 1 3
G“’?‘ph'ca' user Yes Yes Yes Yes
interface
SIP, H.323
’ ’ SIP, H.323, IAX, | SIP, IAX, H.323,
Supported VoIP | IAX,XMPP, | s \io5 " jingle " | XMPP, Jingle, SIP, 29
protocols Jingle MGCP, SCCP. Skvpe MGCP
SCCP, UNIStim 'SP
Voice Yes Yes Yes Yes
announcements
_Interactlve Yes Yes Yes Yes
voice response
ADPCM, CELT, AMR, CELT,
G.711, G.719, G.711, G.722,
G.722, G.723, G.723, G.726,
S‘éggggsd G.726, G.729a, | G.729AB, GSM, iﬁgg’ gsé'\e")’(2
GSM, iLBC, iLBC, LPC-10, » 9P
Linear, LPC-10, Speex, SILK,
Speex, SILK DVI4, OPUS
Inband, Inband, Inband,
DTMF Out -of-band, Out-of-band, Out-of-band, 2?1
SIP-INFO, IAX2 | SIP-INFO, IAX2 SIP-INFO
IPv6 support Yes Yes Yes No
STUN support Yes Yes Yes 21
. Linux, Mac OS, | Linux, Mac OS, .
Operating *BSD. Windows, | *BSD. Windows, Linux, Mac oS, Standalone
systems . : *BSD, Windows system
Solaris Solaris
: TLS, SRTP
y) ’)1)
Encryption TLS, SRTP ZRTP TLS 7
SIP trunk No No No No

D Missing information due a poor documentation.

Tab. 1:

Softswitch comparison matrix

20

2. Why Testing?

Testing is very important part of every development process. Testing helps to find bugs
in software as well as any issues caused by hardware. It can reveal problems introduced by new
features in the developed product (regression testing) and also it gives a developer “user
experience feeling”. It means that the developer sees the product from a point of view of a user
which helps him improve the product. Besides the regression testing, when new feature is added
into a software it also has to be tested to find out if it has the expected outcome. When
a customer has any requirements, all these have to be tested. In a development process,
the essential thing is to perform the tests continuously so every new version is tested. This
applies for special parts of the product as well as for the whole system with all its features. All
these procedures lead to one key goal — to ensure the quality of the product is as good
as possible. That’s why every product have to be tested before it goes on the market. There are

various types of testing:

e Black-box x Gray-box x White-box testing which differs according to the level

of internal structures testing.

e Functional x Non-functional tests where the function of the system is tested

or on the other hand the non-functional requirements of the system.

e Regression x Non-regression testing is testing whether the update or patch did not

introduce new bugs vs. testing if the update or patch had desired effect

e Unit x Integration testing is testing of isolated parts of the system vs. testing the parts

combined together

e Special tests e.g. Security, Stress, Endurance, Compatibility, Performance, Load,

Recovery, Boundary, ...

21

2.1 Testing in Sphairon

This thesis is focused on stress and endurance testing of the telephony system. A development
process which includes among other things the regression testing is shown in (Fig. 3). Every
update goes to regression testing system where it is tested whether it did not introduce new

bugs. In Sphairon GmbH (a ZyXEL Company) a Jenkins system is used for the testing.

Checkout/Build, | Head Build
l Server |

Archive

Acceptance
Test

Deploy
Iterate

Fig. 3: Development process

Automated telephony testing can be integrated in this process. It will replace non-effective
manual testing where some of the tests are not realizable. Automated telephony testing can be
used for simulating for instance high frequency of calls, long duration calls, parallel
combination of different calls and so on. It would be impossible to create for instance
on thousand calls with length of one second and with pause between them also only one second.
That’s why automation of this testing is so important. It can create conditions which would be

difficult or impossible to create manually.

22

In telephony, there is a lot of possibilities of testing. Some of them are listed below.

©)

o

o

(@]

o

o

o

(@]

Functional tests

Incoming/outgoing calls between analog/ISDN phones and VolP
Calls with/without caller ID

Emergency calls - high priority

Frequency calls

Parallel calls

Calls with different duration

Combination of different call settings

Control of tones

Control of information elements - for some supplementary services

Control of CGPN (Calling Party Number)
Control of CDPN (Called Party Number)

Supplementary services

Calling Line Identification Presentation (CLIP)
Calling Line Identification Restriction (CLIR)
Advice of Charge (AOC)

Call Waiting (CW)

Call Forwarding (CFx)

Call Hold (HOLD)

23

3. Choosing Hardware

3.1 Important Properties of ISDN Cards

3.1.1 Service Levels

As already said there are two types of service levels — Basic rate interface and Primary rate
interface. Basic rate interface has two B-channels and Primary rate interface has in Europe 30
B-channels. This makes PRI more interesting for e. g. large companies. More channels however

means of course higher price on the market.

3.1.2 Number of Ports

Typical number of ports of ISDN cards differs from one port up to eight ports. Most
of the cards of the market is equipped with two or four ISDN ports. There is also possibility

to interconnect cards (from the same manufacturer) to get a higher number of the ports.

3.1.3 Port Configuration Protocol

ISDN cards can be configured to use one of port configuration protocols. First one is
Point-to-Point Protocol (PPP) which means the communication is between two directly
connected points in a network. The other one is Point-to-Multipoint Protocol (PMP) where

communication offers several paths from single location to various locations — one-to-many.

3.1.4 Modes of Operation

The modes of operation basically copy some of ISDN devices mentioned above. The two
possibilities are Terminal equipment mode and Network terminal mode. TE is equipment which
complies with ISDN standards and NT creates physical and logical boundary between the

customer’s premises and the carrier’s network. In practical use it means that NT mode is

24

for connecting ISDN telephones to the card and TE mode is for connecting for instance

to a gateway.

3.1.5 Active/Passive Cards

Another important property of every ISDN card is whether it is active or passive card. Active
cards have their own CPU and memory to handle the communication. Passive ones use CPU
and memory of a computer to which they are connected. It is of course better to use active card
because it does not stress a used PC. On the other hand the difference in the prices of active
and passive cards is quite large.

3.1.6 Other Properties

There are also other properties of ISDN cards like support of Euro-ISDN stack, type of used
bus (usually some version of PCI or USB) or integration of Echo cancellation module. Some

of the cards also specifically support some software like mISDN drivers or some softswitches.

25

3.2 Market Research

For purposes of this thesis was necessary to buy an ISDN card. That is why a market research
was needed. In (Tab. 2) there are various ISDN PCI cards which were chosen to be considered

for telephony testing in Sphairon.

26

. . . Echo
Service | Number | Configurable | Configurable . . Euro- . .
level | of ports PPE/PMP | TE/ NT mode Active/Passive ISDN Bus omﬁw_u__wmos Support Price
WE_QMMW_M_M@H_HM BRI 4 Yes Yes Active Yes | PCl2.2 Yes Asterisk 947 €
mISDN,
T BRI 4 Yes Yes Passive | Yes | PCI22 | No ﬂwwm,“,“w_w: 290 €
Yate
PCl mISDN,
wm_vmwww/_%wg BRI 4 Yes Yes Passive Yes | Express Yes _HMMM&W_M: 393 €
10 Yate
mISDN,
mo_mmw@%m BRI 4 Yes Yes Passive | Yes | PCI22 | Yes mwwm&_mw: 391€
Yate
PCI mISDN,
%%%m/m\ mw BRI 4 Yes Yes Passive Yes | Express No ﬂDMM&WHM_: 291 €
10 Yate
Junghanns MISDN
quadBRI® 2.0 PCI| BRI 4 Yes Yes Passive Yes | PCl2.2 No . 469 €
16 Asterisk
ISDN {261
Digium B410P 71 | BRI 4 Yes Yes Passive Yes | PCI12.2 Yes Asterisk 560 €
PCI Asterisk,
Sangoma A500 181 | BRI 3 Yes Yes Passive Yes | 2.2/PCI No Freeswitch, | 238 €
Express Yate
PC Asterisk,
Sangoma B500 [*°1 | BRI 4 Yes Yes Passive Yes | o No Freeswitch, | 479 €
Xpress Yate
PCI .
Beronet BN4S0 27| BRI 4 Yes Yes Passive Yes | 22/PCl | Yes »M_M%_p 492 €

Express

Tab. 2: Comparison of ISDN cards

27

3.3 Decision

The market research was done with respect to requirements of Sphairon GmbH (a ZyXEL
Company). That is why only cards with BRI ports are listed here. Current Sphairon products
does not support Primary rate interface. Also 4 ports were needed which meant either one 4-port
card or two 2-port cards. However, the second choice was not very expedient from the financial
point of view. The next desired property was that for every port would be possible to configure
its port configuration protocol PPP/PMP and its mode TE/NT. There was also important
that the card would support Euro-1ISDN protocol with its features (call waiting, call forwarding,

advice of charge...).

According the desired features OpenVox B400E ISDN card was chosen. It fulfils all

requirements and offers the best ration of price and power.

Fig. 4: OpenVox B40OE ISDN card [?4

28

4. Implementation

4.1 Card Installation and Call Configuration

First part of an implementation of the ISDN card was to install all the necessary software
requirements and use them to make simple calls between any softphone and an ISDN telephone
connected to the ISDN card. The setup below is only to get a feeling about how the ISDN card
works and which software configuration is needed to get the card working. The card itself does
not come with any software which means that the user has to find out everything on his own.
On the other hand it also means that the card should work with standard universal Linux drivers

and software.
For creating the calls, the following is software was chosen:

e ISDN Card

e mISDN V2

e mISDNuser V2

e Linux Call Router
o Asterisk

e Softphone (ZoiPer)

'fi'r?'e\‘ MISDN Linux chan_lcr sip
ISDN ISDN Card Call Asterisk Softphone
Phone (Zoiper)

Router

Fig. 5: Block diagram for used setup

When the call is initiated in the ISDN phone it goes through ISDN line to the ISDN PCI card.
Then it continues to Linux Call Router which controls the card by mISDN drivers. Linux Call
Router is connected to Asterisk by LCR channel and Asterisk connects the call to a softphone
using Session Initiation Protocol. If the call is initiated in the softphone, it goes the other way

around. All parts of the setup are described below.

29

4.1.1 ISDN Card Hardware Settings

The first step in the setup is hardware configuration of the ISDN card. Power feeding
connector on the card has to be set to Enable/Disable (depending on used phone), the NT/TE
settings on the card should be set to NT (for connection of an ISDN phone) and the termination

on the card must be adjusted to ON. All these features are in the scheme of the card below.

=} 5470mil

NT/TE Settings

Set jumper to the left|Set jumper te the right
Select NT mode | Select TE mode

Card ID Switch: set card ID

CardiD 0 1 2 3 4 s 6 7
SWi OFF OM OFF ON OFF OM OFF ON
SW2 OFF OFF ON ON OFF OFF ON ON
SW3 OFF OFF OFF OFF ON ON ON ON

000

PCM N

g:'f‘ sssccsseee
EEEY]

Power feeding Connector

IBE3EEE T o e
PCM OUT
- | Open: Power feading 1o fawd
- - S/T imatorfoces dischle
OpenVox ssoop
EII_|
s p—

Power feeding Input

12V Input of Power feeding

Eee—T—

L 000 00 o o o

ill TR

-
-—E
i
Power Supply Selection

- 3.3V supply from the PCI Slot

R ey -
3.3V Supply from the Regulotor(defult)

Termination of S/T Interface (100 ohm)

(0
| | Connect: Termination = ON
[8_0)

Open: Termination = OFf

Fig. 6: ISDN card scheme [22]

30

4.1.2 mISDN

The mISDN I is a modular ISDN driver for Linux which supports various ISDN cards.
Mostly it supports Cologne Chips Design HFC-PCI based cards. The mISDN consist of mISDN

in the kernel space and mISDNuser in the user space.

q;f [Application j
3
[mISDNusea [libCAPI }

(mISDN W
4
AR R
Layer3
& I O £
X ayer2 [77) >
2 Y T 3
Q
X
Layer1
-
] [
= = Z =283
gla 5 I 8|S g
- c o o
SHEREEIETEIHE

Fig. 7: Architecture of mISDN [24

The task was done in Ubuntu 12.04 operating system with kernel 3.2.0-61-generic-pae which
has mISDN v2 driver already included. The next step was to download and install mISDNuser.
It was downloaded from mISDN git repository to ensure it is the latest version and then it was

configured and installed by following commands in Linux shell terminal.

git clone git://git.misdn.eu/mISDNuser.git/
make

./configure

make

make install

Code 1: Installation of mISDNuser

31

4.1.3 Linux Call Router

Linux call router 2] js an ISDN call router. It is able to work with ISDN cards through mISDN
driver which makes it very important part of this software configuration. The latest version
of LCR (1.7) can be downloaded from mISDN git repository. Then the LCR is installed
by the following commands. It has also very important feature to work with Asterisk by using
module chan_lcr.so which is generated during the installation and copied to Asterisk-modules

directory.

git clone git://git.misdn.eu/lcr.git/
./configure --with-asterisk

make

make install

cp chan lcr.so /usr/lib/asterisk/modules/

Code 2: Installation of Linux Call Router

Installation of Linux call router also includes a tool which creates a shell script for start, stop
and restart of mISDN. Start the tool by entering the following command and continue through

all options.

32

genrc

This program generates a script, which is used to
start/stop/restart mISDN
driver. Please select card only once. Mode and options are
given by LCR.
Select driver for cards:

(1) HFC PCI (Cologne Chip)

(2) HFC-4S / HFC-8S / HFC-El1 (Cologne Chip)

(3) HFC-S USB (Cologne Chip)
Select driver number[l-n] (or enter 'done'): 2
Select driver number[l-n] (or enter 'done'): done
Enter options of mISDN dsp module. For a-LAW, just enter O.
For u-LAW enter 1.24
[0..n | Oxn]: O
Enter debugging flags mISDN core. For no debug, just enter O.
[0..n | Oxn]: O
Enter debugging flags of cards. For no debug, Jjust enter 0.
[0O..n | Oxn]: O
Enter dsp debugging flags of driver. For no debug, just enter
0.
[0..n | Oxn]: O
Enter location of the mISDN modules. Enter '0O' for kernel's
default
location. Enter 'l' for binary distribution's location
'/usr/local/pbx/modules' or enter full path to the modules
dir.
[0 | 1 | <path>]: 0
Finally tell me where to write the mISDN rc file.
Enter the name 'mISDN' for current directory.
You may want to say '/usr/local/lcr/mISDN' or
'/etc/rc.d/mISDN'

mISDN

Code 3: Generating script for control of mISDN

After this, script with name “mISDN” is created. It can be used with parameters

start/stop/restart/help.

sh mISDN start
sh mISDN stop
sh mISDN restart
sh mISDN help

Code 4: Control of mISDN

33

After starting the mISDN script, the proper loading of drivers can be checked by using Ismod
command and LCR query command and the result should look like this:

lsmod

Module Size Used by

hfcpci 28300 0

mISDN dsp 203600 O

mISDN core 80396 17 mISDN dsp,hfcpci

lcr query

LCR Version 1.14
Using 'misdn info'

Found 4 ports
Port 0 'hfc-4s.1-1': TE/NT-mode BRI S/T (for phone lines &
phones)
2 B-channels: 1-2
B-protocols: RAW HDLC X75slp L2:DSP L2:DSPHDLC

Port 1 'hfc-4s.1-2': TE/NT-mode BRI S/T (for phone lines &

2 B-channels: 1-2
B-protocols: RAW HDLC X75slp L.2:DSP L2:DSPHDLC

Port 2 'hfc-4s.1-3': TE/NT-mode BRI S/T (for phone lines &

2 B-channels: 1-2
B-protocols: RAW HDLC X75slp L.2:DSP L2:DSPHDLC

Port 3 'hfc-4s.1-4': TE/NT-mode BRI S/T (for phone lines &

2 B-channels: 1-2
B-protocols: RAW HDLC X75slp L2:DSP L2:DSPHDLC
Code 5: Checking loading of the drivers

Configuration files of LCR are created in /usr/local/etc/Icr/ directory. The important ones
for this application are interface.conf and routing.conf. In both these configuration files is
possible to create various different settings which can all be found in 2. Here is the used

configuration of file interface.conf:

34

[ast]

remote asterisk
context from-lcr
earlyb yes

tones yes

[Int]
extension
msn 1234
portnum 1
bridge ast
nt

earlyb yes
tones yes

Code 6: LCR file interface.conf

The interface ast is for communication with Asterisk. The keyword remote sets Asterisk
as the remote application and on the next line there is stated that context from-lcr in Asterisk
configuration file should be used. The next two lines configure that this interface has to send
and receive tones and announcements to and from all ports of the interface. The next interface
int communicates with the ISDN card. This interface is internal, which is stated by the keyword
extension. Only the number configured in the ISDN phone is allowed (in this case 1234).
The interface uses port number 1, all calls are routed Asterisk and it runs in NT mode

so the ISDN phone can be connected to the port. Setting of routing.conf is the following.

interface=ast : intern
interface=Int : extern interfaces=ast
Code 7: LCR file routing.conf

The used settings mean that calls from interface ast are forwarded to an internal extension and

calls from interface Int are forwarded to an external interface ast.

The next step of LCR configuration is generating an extension. LCR has a command for that.
It states the internal and external number of the used ISDN phone and interface which is used

for it.

|genextension 1234 Int 1234 |
Code 8: Generating an extension 1234 for interface Int

35

The Linux Call Router can be started in normal mode or as a daemon. There is also useful

command to display information of the running instance of LCR and its log.

lcr start
lcr fork
lcradmin state

Code 9: Commands for using LCR

4.1.4 Asterisk

Asterisk [is one of the tested softswitches and due to its advantages (Tab. 1) and the
possibility to be connected to Linux Call Router it was chosen for this task. It is used
as a softswitch for this basic setting. Asterisk can be downloaded from

http://www.asterisk.org/downloads/ and installed by the following commands.

./configure
make
make install
make samples
make config
make install-logrotate
Code 10: Installation of Asterisk

The Asterisk configuration files are located in /etc/asterisk/. There are two files which has to be
modified. The first one is sip.conf. Here the numbers of SIP softphones are registered and their
handling configured. In this case, there are two parts. The general part is used when there is
no other match. Context defines part of a dialplan which is used. The 6001 is number of used
softphone, type sets whether the context is used for inbound or outbound calls or both.
The address of the phone in network is dynamically found and the password is set
as “password”. The last two lines are for resetting previous codec settings and configuring new

ones.

36

[general]
context=default

[6001]
type=friend
context=default
host=dynamic
secret=password
disallow=all
allow=ulaw

Code 11: Asterisk file sip.conf

The second important file is so called dialplan in extensions.conf. There are two contexts used
in the extensions file. The first one is default and it is used for the calls from softphone
to the ISDN phone. When the 1234 extension is dialed, the call is connected through LCR using
interface ast with identifier 1234 and timeout 20 s. The context from-Icr is used for calls issued
from ISDN phone via LCR. There are two possibilities here configured. When the number 100
is used, the call is answered, then the message hello-world is played and the call is hanged.

When the extension 6001 is dialed, the call is connected to the softphone through SIP channel.

[default]
exten = 1234,1,Dial (LCR/ast/1234,20)

[from-lcr]
exten = 100,1,Answer ()
same = n,Wait (1)
same = n,Playback(hello-world)
same = n, Hangup ()
exten = 6001,1,D1ial (SIP/6001,20)
Code 12: Asterisk file extensions.conf

The last step of Asterisk configuration is starting the Asterisk and loading the channel
for communicating with Linux Call Router. The Asterisk here is started with level 5 of verbosity
and debug for getting log messages that help to get information about calls and later on are used
to evaluate the calls.

asterisk —cvvvvvddddd
module load chan lcr.so

Code 13: Starting Asterisk and loading chan_lcr module

37

4.1.5 Softphone (ZoiPer)

ZoiPer 21 s free VoIP softphone which uses Session Initiation Protocol. Of course, any other

similar softphone can be used for this purpose. It can be downloaded, untared and started by:

wget http://www.zoiper.com/downloads/free/linux/zoiper219-
linux.tar.gz

tar -xvz zoiper2l9-linux.tar

./zoiper

Code 14: Installation and start of ZoiPer

The configuration can be done in seven steps:
e Click on options
e Add new SIP account
e Enter chosen number of your softphone (6001) for the account name => OK
e Enter the IP address of your Asterisk system in the Domain field
e Enter chosen number of your softphone (6001) in the Username field
e Enter your SIP peer's password (password) in the Password field

e Enter whatever you like in Caller ID Name or leave it blank

38

4.2 Test Setup Configuration

The requirements on the automated telephony testing are the following:

Testing of outgoing calls

Testing of incoming calls

Testing of more parallel calls at the time

Testing of calls with high frequency

Testing of long-duration calls

In (Fig. 8) there is a block diagram of a setup used for automated testing. The calls are initiated
from the Asterisk in test PC which works here as a dialer. If the call is set as outgoing, it goes
through LCR channel to Linux Call Router, then to the ISDN PCI card using mISDN drivers.
The ISDN card is connected to the ISDN ports of the Device Under Test (DUT) by ISDN cables.
The number of ISDN ports depends on the DUT. The call is then handled by the DUT and routed
according a configuration (below) to a softswitch (Asterisk-server) where it is answered.
Thus the setup acts like when the call is initiated from an inner telephony network to the outside

world.

39

Test PC i
control Device Under Test

COM COM

chan_lcr
Mb— LCR

SIP mish
Metwork ISDN
Card Card | 1sonPorts | | Lan | | wan |
I call rnutinﬁ '
control
call routing call routin

Asterisk Server

Fig. 8: Block diagram of outgoing calls simulation for automated testing

If the call is set as incoming, it uses SIP channel and goes to the Asterisk Server by LAN
connection. In the server the call is routed to the DUT and then through ISDN card and LCR
to Asterisk where it is answered. The Asterisk Server represents again the telephony provider
so the setup simulates an incoming call. The connections by LAN and serial port between test
PC and DUT are used for control of the DUT.

40

Test PC i
control Device Under Test
COM COM
chan_lcr
Asterisk LCR
*IFI misD
MNetwork ISDM
card Card | 1sonPorts || Lan | | wan |
' call rnutinﬁ I
caontrol
call routing call routin

Asterisk Server

Fig. 9: Block diagram of incoming calls simulation for automated testing

4.2.1 Asterisk Server Configuration

The first step in automating telephony testing was configuring an Asterisk Server.
For the purposes of the testing a virtual machine based on Debian 7 and accessible
in the Sphairon network was set. The server can be accessed and controlled by SSH connection.
An Asterisk instance was installed on this virtual machine with configuration for answering
calls with numbers used for outgoing calls, routing calls with numbers used for incoming calls
and registering extensions which are set in DUT. Examples of the setting are shown
in the following codes. The time for the Wait application is here set to practically infinite

so the calls can be of arbitrary length and they will be always hanged up by the initiating side.

41

[default]
exten = 990000,1,Dial (SIP/990000,20)
exten = 880000,1,Answer ()
same = n,Wait (99999999)
same = n,Hangup ()
Code 15: Example of extensions.conf in Asterisk Server

[general]
context=default

[990000]
type=friend
context=default
host=dynamic
secret=990000
disallow=all
allow=ulaw

Code 16: Example of sip.conf in Asterisk Server

4.2.2 Test PC Configuration

The configuration of the test PC is similar to the previous configuration for basic calls.
The ports of the ISDN card need to be set to TE mode and the power feeding should be disabled.
The same software is needed. In Asterisk, there is a possibility to create automated calls
by creating a call file in defined structure and the call is initiated by moving it to Asterisk
outgoing directory /var/spool/asterisk/outgoing/. The call file is located in the same directory
as the test script.

Channel: LCR/ast/<called number>
CallerID: <caller number>
Application: Wait

Data: 1

Code 17: Structure of used call file

In the first line, there is set that channel LCR is used and in Linux Call Router context ast.
Then of course the called number is necessary. CallerID sets the number of the caller. Next
lines set what happens after the call is answered. In this case application Wait is started which

42

just sticks on the line for the defined number of seconds (in this example 1 second) and then it

hangs up.

The first issue here is that calls which are initiated in Asterisk and go through chan_lcr

to Linux Call Router do not have any caller ID. It is probably due a bug in the LCR channel

so a way around this had to be found. In LCR there is a possibility to map call numbers going

through. So to each port was assigned a number to be set which corresponds to the setting of the

DUT.

[ast]

remote asterisk
context from-lcr
earlyb yes

tones yes

[te-mode0]
portnum 0
screen-out % unknown
[te-model]
portnum 1
Screen-out
[te-mode?2]
portnum 2
Screen-out
[te-mode3]
portnum 3
Screen-out

o

unknown

o\©

unknown

0\©

unknown

present 990000%

present 991111%

present 992222%

present 993333%

File interfaces.conf in test PC

[main]

interface=ast
interface="te-mode(Q"
interface="te-model"
interface="te-mode2"
interface="te-mode3"

intern
extern
extern
extern
extern

interfaces=ast
interfaces=ast
interfaces=ast
interfaces=ast

File routing.conf in test PC

All the necessary Asterisk configuration files are handled in the script so the last thing

to configure is reading log messages from the DUT. It is done using syslog-ng Ubuntu package.

After installation of this package a configuration file has to be created in /etc/syslog-ng/conf.d/.

43

source s udp {
udp (port (514)) ;
i

destination df sphairon {
file("/var/log/sphairon.log");
bi

destination df dut log {
file("/var/log/dut log.log");
b7

filter £ sphairon ({
host ("192.168.100.*");
by

log {
source (s_udp) ;
filter (f sphairon);
destination (df sphairon);
destination (df dut log);

Code 18: Syslog configuration file

After creating the file, the syslog service must be restarted to get the log messages
from the DUT. The log messages are saved into two files sphairon.log and dut_log.log.

The second one is only for usage of the script and gets cleaned at start of every test.

| /etc/init.d/syslog-ng restart |
Code 19: Restart of the syslog service

For controlling the DUT via serial port there is a software called ckermit. It has to be installed
on the test PC and file ~/kermrc.ttySO with the following structure must be created.

set line /dev/ttySO

set speed 115200

set carrier-watch off

set handshake none

set flow-control none

set prompt {kermit-ttyS0> }
log session ~/kermlog.ttySO
connect

Code 20: File kermrc.ttySO

44

The remote access is started by:

|kermit ~/kermrc.ttyS0

Code 21: Starting ckermit

4.2.3 DUT Configuration

There are currently two devices to be tested — Speedlink 5501 and Gateway 400 dp NC.
In the first one, there is only one ISDN port. In the second device, there are four ISDN ports.
Beside that the configuration is pretty much the same. It is done in a Web Interface. At first
a WAN setup has to be performed. This is done in tested devices automatically. After that

a VolIP provider needs to be configured.

Edit provider

On this page you can configure your VolP Provider. You can determine not only name and domain but also the addresses of the SIP and
proxy servers and the port areas for the SIP and RTP services.

Provider name: |virtual |
Account domain: [isdntestfilip-voice |
SIP proxy: [isdntestilip-voice | Port
SIP registrar: [isdntestilip-voice | Port
Outbound proxy: | | Port
Local port:
Start port End port
RTP portrange:
T.38 Support:
DTMF Mode:
VolP interface: [DHCP ~ VLAN 20 - DSL 7|

Fig. 10: Configuration of VolP provider

Then all used VolIP accounts must be set. These accounts are the same which are registered in
the Asterisk Server.

45

Internet telephony provider

Here you can see a list of your configured Internet telephony providers.

Select provider: | [virtuat v

VolP Account Type

Please choose a type for your VolP Account.

Choose Account Type: || SIP Account v

Edit Internet telephony account

You can configure your VolP Accounts here. Please enter the relevant data for display, access and authentication, including the
corresponding passwords and configure the call number at which you can be reached. For further details, please refer to your handbook.

Display name: [a90000 |
Access name: [a90000

Authentication name: [a90000

Password: [seenenes |
Confirm password: erenens |
Registering time: 900 Seconds

Area Code (optional): Il |

Number: 990000

Selection via: #201*

Activate: ||

Use |ocation service: v

Automatic phone number assignment: | [

Fig. 11: Configuration of VolP account

The next part (only for SIP Gateway) is setting of ISDN interfaces in the ISDN section.

Internet telephony accounts

Here you can optionally choose the type of an ISDN interface by a pre-configured VoIP Account. In this case your ISDN interface is assigned
to the selected VolP Account.

Internet telephony account (optional): | | 990000 (Account Type: SIP Account) v |

ISDN Interface

Edit current ISDN interface.

Connection type: () Pointto Point & Pointto Multipoint

Bus Mode: (e Extended passive bus () Short passive bus
Interface: s01 v

Group membership: None ¥

Echo Canceller: O

Activate: il

Layer 2 permanently active:]

Fig. 12: Configuration of ISDN interface

46

In the remote control was extended level of debug messages for better analysing of results and

a remote syslog was enabled.

voip /tmp/voip socket tr change CallCtrl 1023
voip /tmp/voip socket tr change ExosipCtrl 1023
voip /tmp/voip socket tr change DspApi 1023
voip /tmp/voip socket tr save
cfgclient "updatekey Syslog Id 1 EnableRemoteLogging \
integer:1 RemotelLoghost text:192.168.100.100;"
Code 22: Commands used in remote access to the DUT

47

4.3 Automated Testing

The automation of the testing was achieved by creating a program in shell script. The shell
script is designed to work with a Linux system. It is quite easy to control programs, processes
and files in Linux by using shell script language. The program creates automated calls in given
length with defined properties. These properties are set before the test in a configuration file
teltest.conf. The program is divided into two scripts. There is a main script start_teltest.sh
and it controls another script call_daemon.sh which as the name implies runs in the background
as a daemon. The second one originates the calls and checks the results which are returned using
a save file back to the main script. It runs as a daemon because there can be up to eight parallel

instances running and creating eight parallel calls.

ifi »
Asterisk Extensions File Sodifies Main Script Reads Configuration Fle
4|Creates 0
Result html File Readsk
4 Reads Save Fle
Createsw
1..8
LCR Log File 4Reads
Createse
Call Daemon
Call File
4|Reads
Asterisk Log File 4Writes Readsm
Teltest Log File DUT Log File

Fig. 13: Software design diagram

48

4.3.1 Configuration File

Inside the configuration file, user can set an arbitrary test. The first parameter is a caller
number. This number must correspond with the setting of Linux Call Router and the DUT
in order that the caller number works properly. The same thing applies for the second parameter
which is a called number. There must also be set a number of calls with given configuration,
length of the calls and pause between the calls. These two specify frequency with which these
calls are originated. Then the user can choose if incoming or outgoing calls should be simulated.
The last parameter is number of the group. The idea here is that quite complicated test can be
configured and executed in groups. In each group can be different number of parallel calls with
different parameters.

In the configuration file below is an example of a configuration of a test. In the first group,
there are four parallel outgoing calls with high frequency. Every call has a length of one second
and pause of one second. These calls are executed one thousand times. In the group number 2,
there are two parallel incoming calls of length 10 seconds and pause 5 seconds. They are created
50 times. In the last group, there are two long-term calls. Both are executed only ones but they
last for ten hours. One of them is set as incoming, the other one as outgoing.

49

#Configuration file for script start teltest.sh

#

#This file needs to be in the same directory as
start teltest.sh.

#Set up your telephony test here.

#

#Syntax is:

#<caller number> <called number> <number of calls>
#<length of calls> <pause between calls> <in/out>
#<group of prallel calls>

#

#Use white space between parameters.

#Time parameters are in seconds

#in/out stands for incoming/outgoing calls

#

#Example:

#470000 471111 500 2 0.5 out 1

990000 880000 1000 1 1 out 1
991111 881111 1000 1 1 out 1
992222 882222 1000 1 1 out 1
993333 883333 1000 1 1 out 1

880000 990000 50 10 5 in 2
881111 991111 50 10 5 in 2

990000 880000 1 36000 1 out 3
881111 991111 1 36000 1 in 3
Code 23: Configuration file teltest.conf

4.3.2 Main Script

The job of the main script start_teltest.sh is to read the configuration file and to create a test
according it. Also to start given number of instances of the call daemon, wait for them to finish
and at the end export results from the test in html file. In the following figure is a flowchart

which shows the function of the main script.

50

All
processes
running?

End with
error

Enter name and firmware of DUT

v

Rotate Asterisk log file

v

Create necessary directories

< For each group >{
v

| Create part of html file

v

Read number of parallel calls
and set Asterisk extension file

v

| Create part of html file l

v

For each parallel call

Read config file

| Create part of html file

v

Start Call dasmon

h 4

| Wait for daemons to finish |

v

| Read results from save files

v

| Create part of html file

v

Copy all necessary files to result folder

v

| Create part of html file

Show results

Fig. 14: Flowchart describing function of the main script

At start the program calls the CheckProcess function so the necessary processes Asterisk and

Linux Call Router are running.

CheckProcess ()
{
processNum="ps aux | grep $1°
if ["S$processNum" = "Q"]
then
echo "$1 is not running!"
exit 1
fi
}

CheckProcess "asterisk"
CheckProcess "lcr
Code 24: Checking necessary processes

If the test in manually stopped by Ctrl+C the action is detected and function Stop is called
which stops all the running subprocesses and the main script finishes all the necessary things

before stopping.

Stop ()
{
toKill=$ (ps aux |grep "call daemon.sh" |grep -v grep
lawk '{print $2}"'")
kill StoKill
}

trap "Stop" 2

Code 25: “Graceful” stopping

In the next step the program asks the user to enter a name and firmware version of the tested
device. This is saved into a save file so if the DUT has not changed it is possible to leave
the field blank and the previous information is used. According the information a directory
with DUT name, firmware version and timestamp is created (if does not already exist). Then
Asterisk log file is rotated. The log file is used to get information about the calls so if it would

be large it would make the test much slower.

52

The results are exported into html file which uses JavaScript application Google Charts
to visualize the results in pie charts. The html file is created during the test. Besides the charts
it contains tables with information about the test.

After this first part, there is the main cycle which is executed for each group. Asterisk
configuration file extensions.conf is modified according information read from the teltest.conf.
The comments and empty lines are detected using command egrep and then skipped.
For the incoming calls, there is set that the call to the given number should be answered,
then Asterisk waits for the defined length of the call and after that the call is hanged up. Asterisk

have to reload the extensions file in order to take effect of the changes.

In the next phase all of the parameters from the configuration file for the test are loaded and
the subscript call_daemon.sh is started for every parallel call. The subscript is started

with necessary parameters which have to be hand over to it.

When the subscripts are started, the main script is waiting for them to finish. If the subscript
finishes properly as planned, it returns an error status which equals to zero. If it is stopped
prematurely the error status is non-zero and the script does not start a new cycle.

After the subscripts are finished, the results are passed to the main script through temporary
save files. The main script extracts them from the files. Successful and failed calls are counted

as well as crashes of the DUT that can also lead to crash of the test PC.

Once the whole test is finished file with messages from the DUT is copied to a directory with
timestamp of the test along with all the other files important for analyzing of the test.

Then results are calculated and shown in html file.

4.3.3 Call Daemon

File call_daemon.sh serves for initiating and evaluating of the calls. It is started by the main
script and it runs in a background. During the tests, there can be up to eight instances running

simultaneously creating eight parallel calls at the same time.

53

Read information about calls

2

Check ID of last call

For each call

Y

Read Asterisk log file
for outgoing call result

Result
yes/no?

success

Measure establish time

y

Measure call length

Chrash of
DUT?

Wait for reboot

Make call

Read Asterisk log file
for incoming call result

Result
yes/no?

SUCCess

Measure establish time

y

Measure call length

>
Y

Export result into save file

End

Fig. 15: Flowchart describing function of the call daemon

54

One of the functions of the call daemon is to create a log from the test. There is a function
ExportToLog which takes care of that. The function uses a timestamp along with all
the parameters and identification number of the call. The identification number has a format
number of call/number of parallel call/number of group. After all these information the function

adds a current status, which is passed as parameter of the function.

ExportToLog ()
{
currentTime="date +"%F %H:%M:%S""
echo "Call: $i/SparallelNum/Sgroup [$currentTime] $inOut
from: $fromNumber to: StoNumber length: $lengthOfCalls s\
pause: SpauseBetweenCalls s Status: $1" | tee -a SoutputFile
return

Code 26: Exporting messages into log file

The script at first checks ID of last call. It finds the last call to given number and its
identification numbers so they can be compared with found messages in the Asterisk log file

during a call. Thus is secured that script evaluates the right call.

The next important feature of the script is checking for crash of the DUT. The crash can be
caused by the stress testing and when not handled it can bring about a crash of test PC. That’s

why a log file from the DUT is checked for panic messages.

CheckDUT ()
{
#Check state of DUT
dutLog=$ (tail -500 $dutLogFile)
if echo "$dutLog" |grep -gq "Fatal exception: panic"

then
currentTime= date +"%F %H:%M:%S""
echo "Error [ScurrentTime] DUT crash" \
|tee —a SoutputFile
echo "DUT reboots, waiting..."
errors=$ ((errors + 1))
sleep 120
WaitForReboot
fi

Code 27: Checking DUT for panic messages

55

If the panic occurs, it is detected and a function WaitForReboot is called. It waits for the DUT

to reboot and checks the DUT log file for messages of registering SIP accounts after reboot.

WaitForReboot ()
{
while true
do
dutLog=$ (tail -200 S$dutLogFile)
echo "$dutLog" |grep -g \
"User is successfully registred" && break
sleep 1
done
sleep 1

Code 28: Waiting for reboot of DUT

The call is initiated by copying a template file call_file.call.source to a local call file, which
is moved to Asterisk outgoing directory /var/spool/asterisk/outgoing/. Before the call file is
moved there, it is modified according settings of the call. One reason, why the file is copied
at first is that only one template file is needed. Second reason is that the call file needs to be
moved and not copied to the Asterisk outgoing directory. When a file is copied in Ubuntu,
the copy appears in the target folder sequentially but if it is moved, only a pointer on that file is

changed and the path of the file is changed at once.

After the call is initiated, measuring of an establish time is started and one of the functions
for checking result of the call is originated. Functions ChecklncomingResult
and CheckOutgoingResult continuously read log messages from asterisk and thus evaluate
current status of an initiated call. As the names imply one of them is for incoming and the other
one for outgoing calls. When the call is successfully established, the establish time is measured
as well as length of the call. The length of the call must be the same as defined

in the configuration file otherwise the call is evaluated as unsuccessful.

The last job of the call daemon is to export results into a file. Thus all the necessary

information are passed back to the main script.

56

4.4 Results

Results of the tests are analysed and if there is any error a source of this error has to be found.
There can be several causes. The test system is developed to discover bugs in tested software
which is the first possible cause. But there can also be a bug in any part of the test setup (the used
software, the test script). So each of the results have to be carefully examined.
For the examination are used log files from the DUT, Asterisk and the test script. If a bug of the
test setup is found it is fixed and the test is started again. If a bug of the DUT is discovered,
it has to be further inspected and the tested software version gets back to a development process
(Fig. 3). When the bug is fixed the software is tested again. Thus the quality of developed
product is ensured.

The results of each test are exported into an html file. The html file uses JavaScript application
Google Charts to create charts for each tested group and for the whole test. Besides the charts,
there are also tables with configuration of the test. The results are furthermore saved into a text

file in a simple form.

In addition to result files, there is also a file with log messages which contains results of the

whole test as well. Examples of the log file, result html file and result test file are shown below.

57

Call:
length:
Call:
length:
Call:
length:
Call:
length:
Call:
length:
Call:
length:
Call:
length:
Call:
length:
Call:
length:

Test started at:

1/1/1
1/1/1
1/1/1
1/1/1
2/1/1
2/1/1
2/1/1
2/1/1

2/1/1

1 s pause: 1

1 s pause: 1

1 s pause: 1

1 s pause: 1

1 s pause: 1

1 s pause: 1

1 s pause: 1
1 s pause: 1

1 s pause: 1

[2014-06-
[2014-06-
[2014-06-
[2014-06-
[2014-06-
[2014-06-
[2014-06-
[2014-06-

[2014-06-

25 15:43:
S Status:
25 15:43:
s Status:

25 15:43

s Status:

25 15:43

S Status:
25 15:43:
S Status:
25 15:43:
s Status:

25 15:43

s Status:
25 15:43:
S Status:
25 15:43:
S Status:

dp NC 4.38.2.1.r79486

2 calls were made in:
Successful: 1

Failed: 1

Success: 50.00 %
Crashes: 0

Call instance freed

221 out from: 990000 to: 880000
Making attempt

221 out from: 990000 to: 880000
Making a call

:25] out from: 990000 to: 880000
Call failed

:35] out from: 990000 to: 880000
Call instance freed

37] out from: 990000 to: 880000
Making attempt

37] out from: 990000 to: 880000
Making a call

:38] out from: 990000 to: 880000
Call successfully established
39] out from: 990000 to: 880000
Correct call length

39] out from: 990000 to: 880000

2014-06-25 13-53-23 on device: Gateway 400

Code 29: Example of a log file

Group=1l:
Group=2:
Group=3:
Group=4:
Group=5:
Group=6:

Success=99 Failed=1

Success=200
Success=300
Success=400
Success=499
Success=600

Failed=0
Failed=0
Failed=0
Failed=1
Failed=0

Code 30: Example of a result text file

58

Test started at: 2014-06-25_16-36-01 on device: Gateway 400 dp NC 4.38.2.1.r79486

Group 1

Caller Callee Number of Lengthof | Pause Between Average Establish
7 Number 7 Number 7 alls Calls _ Cals .EEEL_EE.EI.-* i
[eeo000 [eoo000 [200 [30 [10 [in [1z
[ea1111 [220000 [200 [0 [5 [out [13
[ee2222 [po1111 [200 [20 [10 [im [12
[ee3a33 [po1111 [z00 [10 [z0 [out [13
[eeagas [poz222 [200 [5 [a0 [in [14
_ Successful=976 Failed=24 Average Establish Time=1.3
Group 2

Caller Callee Number of Lengthof | Pause Bet: A Establish
7 Number 7 Number 7 EMmE ¢ calls ° _ mEMm:ms.ssE Incoming/Outgoing e!ma.m_h.no
[ezooo0 [2o0000 [200 [10 [5 [out [1z
[ea1111 [220000 [150 [20 [5 [in [13
[eg2222 [po1111 [500 [5 [5 [out [13
_ Successful=200 Failed=50 Average Establish Time=1.3

Results

B Successful Calls
B Failed Calls

Successful Calls
1876 (96.2%)

Results

Results

W Successful Calls
M Failed Calls

B Successful Calls
M Failed Calls

Fig. 16: Example of a result html file

59

Conclusion

The goal of this thesis was to develop a system which would automate a telephony testing of
devices produced by Sphairon GmbH (a ZyXEL Company). The testing of telephony module
in these devices was done manually which is very ineffective way. Also only some tests can be
made in this way. The aim here was to make test of the devices for determination of their

stability in unusually intense conditions — stress test.

The automated system for telephony testing developed during this thesis is able to
automatically create automated calls. It uses several combination of software which is
specifically configured so they all work together. It is capable of creating the calls in parallel
so all of the eight channels in used device under test are used at the same time. It can also
simulate incoming calls from DSL connection as well as outgoing calls from devices connected
to ISDN ports of the device under test. Furthermore there is a possibility to configure parameters
of each test like caller and called number, length and number of configured calls, pause between
them and if the call should be incoming or outgoing. Besides that, really complicated tests with

different parameters can be set in groups in one configuration file.

The produced testing system can stress the devices under test by automatically originated
calls in high frequency (minimal length of a call is one second) and it can create call of
practically unlimited length as well. Of course there is a possibility of any combination of calls
with different settings so during one test there can be several long-term calls and several calls
with high frequency which helps stress the tested devices. This would be never possible if only

manual testing is used.

Thanks to all of these properties the developed automated test system already helped to
discover some issues and bugs in tested software versions of the devices under test. It confirms
that the product of this thesis is useful and helpful in the process of a regression testing in
Sphairon GmbH (a ZyXEL Company).

In future the produced automated telephony test is supposed to be included into complex test
process in Sphairon. It will be part of a regression testing system to ensure even better quality
of produced devices. Also it would be useful to “simplify” the current setup to use only mISDN
drivers in the test PC and not Asterisk and Linux Call Router. In every software a bug can

appear so the less software is used the lower is probability of issues on the test PC side.

60

Resources

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]

[11]

[12]
[13]

[14]

ROUSE, M.: What is signalling? — Definition from Whatls.com. [online].
[cit. 2014-04-11]. <http://whatis.techtarget.com/definition/signaling>

Dialogic Corporation: Telephony Fundamentals an Introduction to Basic Telephony
Concepts. Montreal, Quebec, 2007. 11 Pgs.

BECKER, R.: ISDN Tutorial. [online]. [cit. 2014-04-30].
<http://www.ralphb.net/ISDN/>

VALDES, R. and ROOS, D.: How VolP Works. [online]. [cit. 2014-05-02].
<http://computer.howstuffworks.com/ip-telephony.htm>

Rosenberg, J.: SIP: Session Initiation Protocol. , RFC 3261, June 2002. 269 Pgs.
Asterisk.org [online]. [cit. 2014-07-16]. <http://www.asterisk.org>

FreeSWITCH | Communication Consolidation [online]. [cit. 2014-07-16].
<http://www.freeswitch.org>

Yate [online]. [cit. 2014-07-16]. <http://yate.null.ro>

Gemeinschaft 5.1 [online]. [cit. 2014-07-16]. <http://amooma.de/gemeinschaft/gs5>
Adore SoftSwitch [online]. [cit. 2014-07-16].
<http://www.adoreinfotech.com/softswitch.htmI>

ControlSwitch System [online]. [cit. 2017-07-16].

<http://www.dialogic.com/en/products/softswitch/controlswitch-system.aspx>

Cirpack [online]. [cit. 2014-07-16]. <http://www.cirpack.com>

Rosenberg, J.: Session Traversal Utilities for NAT (STUN). , RFC 5389, October 2008.
51 Pgs.

Diva 4BRI-8 | Dialogic [online]. [cit. 2014-07-16].

<www.dialogic.com/en/products/media/diva/diva-4bri-8.aspx>

[15]

[16]

[17]

ISDN BRI Cards [online]. [cit. 2014-07-16].
<www.openvox.cn/en/products/telephony-cards/isdn-bri-cards.html>
quadBRI 2.0 PCI ISDN [online]. [cit. 2014-07-16].
<www.junghanns.net/de/quadBRI12_produkt.htmI>

Digital Euro ISDN BRI Cards | Digium [online]. [cit. 2014-07-16].

<www.digium.com/en/products/telephony-cards/digital/euro-isdn-bri>

[18]

A500 2-24 port Scalable S/T BRI | Sangoma [online]. [cit. 2014-07-16].

<www.sangoma.com/products/a500-2-24-port-scalable-st-bri/>

61

[19]

Sangoma B500 4xBRI/SO PCle Card [online]. [cit. 2014-07-16]. <www.lieske-

elektronik.com/product_sangoma-b502e-b500-4xbri-sO-pcie-card__487824.htm>

[20]

[21]

[22]

[23]

[24]

[25]

[26]

The beroNet Baseboard PCI or PCle —beroNet GmbH [online]. [cit. 2014-07-16].
<www.beronet.com/product/beronet-cards>

CTI-PRO, s.r.o.. OpenVox B400E - 4 port ISDN BRI PCle card. [online].
[cit. 2014-06-06]. <http://shop.ctipro.cz/lang-cs/2618-openvox-b400e-4-port-isdn-bri-
pcie-card-.html&curr=6>

OpenVox B200P B400P B400OE User Manual. September 2007. 11 Pgs.

mISDN [online]. [cit. 2014-06-06]. < https://www.misdn.eu>

About mISDN - MISDN.org [online]. [cit. 2014-06-06].
<https://www.misdn.eu/wiki/About_mISDN/>

Eversberg, A.: Linux-Call-Router [online]. [cit. 2014-06-06].
<http://www.linux-call-router.de>

Eversberg, A.: Linux-Call-Router, Software based ISDN Private Branch Exchange for
Linux 1.2. 2004. 105 Pgs.

62

Glossary

Signalling

In-band signalling

Out-of-band signalling

Private Branch Exchange

Integrated Services Digital Network

ISDN Service Levels

Voice over Internet Protocol

Session Initiation Protocol

Softswitch

Asterisk
mISDN

Linux Call Router

Terminal equipment mode

Network termination mode

Extension

Dialer

Call file

Daemon

Information for maintaining a telephone call.

Signalling in the same channel as a telephone
call is.

Signalling in its own separated channel.
Device for switching telephone calls.
Digital telephony system.

Types of ISDN ports (BRI/PRI).

Telephony which uses internet network for
transmitting a digitalized voice.

Application-layer control protocol used for
controlling real-time multimedia sessions.

Device which connects telephone calls in a
telecommunications network.

One of the most used softswitches.
Universal Linux driver for ISDN cards.

Software engine for routing calls to/from
ISDN card.

Mode of ISDN port for connecting
gateways.

Mode of ISDN port for connecting
telephones.

Additional telephone connected to a
telephone line.

Device which automatically generates calls.

File with defined structure which after
moving into a special Asterisk directory
generates a call.

Process that runs at the background

63

A Main Script

#!/bin/bash

#

#Script for making repeted calls using Asterisk, Linux Call
#Router and ISDN card

#

#Script uses call file.call.source in the same directory
#which has to be configured

#Pathes to used files
dutLogFile="/var/log/dut log.log"
lcrLogFile="/usr/local/var/log/lcr/log"
asteriskExtensionsFile="/etc/asterisk/extensions.conf"
configFile="teltest.conf"

saveFile="saveFile"

#Default values
successfulCalls=0
failedCalls=0
errors=0
finished=0
error="false"

CheckProcess ()

{

processNum="ps aux | grep $1°

if ["S$processNum" = "Q"]
then
echo "$1 is not running!"
exit 1
fi

}

Stop ()

{
toKill=$ (ps aux |grep "call daemon.sh" \
|grep -v grep |awk '{print $2}"'")
error="true"
kill -13 S$toKill
ReleaseCalls

}

ReleaseCalls ()

{
for k in “seq 1 $((parallelCalls * 40))°
do

lcrLines=$(tail -$k SlcrLogFile)

64

if echo "$lcrLines" \
|lgrep -q "EP(.*): SETUP .* CH(.*) interface"

then
endPoint=3% (echo "S$SlcrLines" \
|grep "EP(.*): SETUP .* CH(.*) interface")
endPoint=3 (echo ${endPoint#*EP\ (})
endPoint=$ (echo ${endPoint%\)\: SETUP*})
lcradmin release $endPoint > /dev/null
fi
done
}
WaitForDaemons () {
while true
do
for pid in "S$@"
do
shift
if kill -0 "S$pid" 2>/dev/null
then
set -- "sS@" "Spid"
elif ! wait "Spid"
then
error="true"
fi
done
(("S#™ > 0)) || break
sleep ${WAITALL DELAY:-1}
done

#Functions for HTML result file
CreateHtmlHead ()
{
cat > "S$resultHtml" <<EOF
<html>
<head>
<!--Load the AJAX API-->
<script type="text/javascript"
src="https://www.google.com/jsapi"></script>
<script type="text/javascript">
google.load('visualization', '1.0"',

{'packages':['corechart']});
google.setOnLoadCallback (drawChart) ;
function drawChart () {

}
</script>
</head>
<title>Telephony Test Results</title>
<body>

65

<h2>Test started at: $fileDate on device: $device
SfirmVersion</h2>
<table>
waiting for next
EQOF
}

ConfigChart ()
{
sed -1 "s function drawChart.* \
function drawChart\ (\) { \n\
var data$Sgroup = new
google.visualization.DataTable\ (\)\n\
data$group.addColumn\ (\'string\', \'Title\'\)\n\
data$group.addColumn\ (\ 'number\', \'Value\'\)\n\
data$group.addRows\ (\ [\n\
\[\'Successful Calls\', S$successfulCallsGroup\], \n\
\[\'Failed Calls\', S$failedCallsGroup\]\n\
\T\) 7 A\n\
var options$group = {\'title\':'Results\'};\n\
var chart$group = new
google.visualization.PieChart (document.getElementById\ (\'piec
hart$Sgroup\'\)\);\n\
chart$group.draw\ (dataSgroup, optionsSgroup\) ;\n\
~g" "S$resultHtml"
}

AddTableHead ()
{
sed -1 "s waiting for next \
<tr>\n\
<td>\n\
<h5>Group S$group</h5>\n\
<table border=\"1\" style=\"width:700px; font-size:
10px; \">\n\
<tr>\n\
<th>Caller Number</th>\n\
<th>Callee Number</th>\n\
<th>Number of Calls</th>\n\
<th>Length of Calls</th>\n\
<th>Pause Between Calls</th>\n\
<th>Incoming/Outgoing</th>\n\
<th>Average Establish Time</th>\n\
</tr>\n\
waiting for next\n\
_g" "SresultHtml"
}

AddTable ()
{

sed -1 "s waiting for next \

66

<tr>\n\
<td>S$SfromNumber</td>\n\
<td>$toNumber</td>\n\
<td>Number of calls $parallelNum S$group</td>\n\
<td>$lengthOfCalls</td>\n\
<td>$pauseBetweenCalls</td>\n\
<td>$inOut</td>\n\
<td>Establish time S$parallelNum S$group</td>\n\
</tr>\n\
waiting for next\n\
_g" "SresultHtml"
}

AddGroupResutls ()

{

sed -1 "s waiting for next \
<tr>\n\

<td align="center" colspan="7">\

Successful=$successfulCallsGroup \
Failed=$failedCallsGroup Average Establish \
Time=S$establishTime</td>\n\
</tr>\n\

waiting for next\n\

_g" "SresultHtml"

}

AddChart ()
{
sed -1 "s waiting for next \
</table>\n\
</td>\n\
<td>\n\
<div id=\"piechart$group\" style=\"width: 500px; \
height: 180px;\"></div>\n\
</td>\n\
</tr>\n\
waiting for next\n\
_g" "SresultHtml"
}
AddResults ()
{
group=0
successfulCallsGroup=SsuccessfulCalls
failedCallsGroup=$failedCalls
ConfigChart
sed -1 "s waiting for next \
</table>\n\

<div id=\"piechartO\" style=\"width: 800px; height:

400px; \"></div>\n\
</body>\n\

67

</html>\n\
_g" "SresultHtml"
}

#Check if Asterisk and LCR is running
CheckProcess "asterisk"

CheckProcess "lcr"

error="false"

echo "Enter device name (if it has not changed, leave \

the field blank and press ENTER): "
read device

if [-z "Sdevice"]
then

device=$(sed '1l!d' $saveFile)
else

echo $device > S$saveFile
fi
echo "Enter firmware version (if it has not changed,
the field blank and press ENTER): "
read firmVersion

if [-z "SfirmVersion"]
then

firmVersion=S$(sed '2!d' S$saveFile)
else

echo Sdevice > SsaveFile
echo S$firmVersion >> S$saveFile
fi

echo "Set number of test runs: "
read cycles

for cycle in “seqg 1 Scycles’
do

#Rotate asterisk log file
asterisk -rx "logger rotate"

fileDate="date +"%F $H-%M-%S""

#Clear DUT log file
> SdutLogFile

#Dir for results

resultDir="SHOME/TelTest Results/S$Sdevice
$firmVersion/Test $fileDate"
outputFile="S$resultDir/Teltest log SfileDate.txt"
resultHtml="SresultDir/Result $fileDate.html"
resultTxt="SresultDir/Result S$fileDate.txt"
partResultFile="SresultDir/part result SfileDate"

leave \

68

#Create outputfile and folder for results

if [! -d "SHOME/TelTest Results/"]
then
mkdir "SHOME/TelTest Results/"
fi
if [! -d "SHOME/TelTest Results/$device S$firmVersion/"]
then
mkdir "SHOME/TelTest Results/$device $firmVersion/"
fi
if [! -d "SresultDir"]
then
mkdir "SresultDir"
fi

echo "Test started at: $fileDate on device: $device
SfirmVersion" |tee -a "SoutputFile"

> "SresultTxt"

#Start time
start="date +%s°

CreateHtmlHead

for group in "seqg 1 99°
do
parallelCalls=0
parallelNum=0
successfulCallsGroup=0
failedCallsGroup=0
establishTime=0
echo "[from-lcr]" > S$asteriskExtensionsFile

#Read number of parallel calls in current group
while read line
do
echo "$line" |egrep -gq "~ [[:cntrl:] 1*[#;]1 S| #"
&& continue #Skip comments and empty lines
set S$line
if [$7 -eg Sgroup]

then
parallelCalls=$((parallelCalls + 1))
if ["Se" = "in"]
then
echo "exten = $2,1,Answer() " \
>> SasteriskExtensionsFile
echo "same = n,Wait (99999999)" \
>> SasteriskExtensionsFile
echo "same = n,Hangup()" \
>> SasteriskExtensionsFile
fi
fi

\

69

done <S$configFile

#Break the process if no more calls found
SparallelCalls -eq 0]

if [
then

fi

echo "Reloading Asterisk dialplan..."

continue

asterisk

#Kill the subprocesses if ctrl+c
trap "Stop" 2

AddTableHead

pids:n "

#Create subprocess for every parallel call
while read line

do

done <SconfigFile

#Wait untill call daemonds are finished
WaitForDaemons Spids

#Get
for
do

if |
then

echo

&& continue #Skip comments and empty lines
set $line

if |
then

fi

data
i in

-f "SpartResultFile.$i"]

while read line

do

-rx 'dialplan reload'

"Sline" |egrep —-gq "“[[:cntrl:] J*[#;]11"S| 4" \

$7 -eq Sgroup |

parallelNum=$ ((parallelNum + 1))
fromNumber=51

toNumber=5§2

numberOfCalls=$3

lengthOfCalls=54

pauseBetweenCalls=$5

inOut=5$6

AddTable

sh call daemon.sh "$line" SparallelNum \
SparallelCalls S$group S$fileDate "SresultDir" &
pids="$pids S!"

from subsrcipt
"seq 1 S$parallelCalls’

if echo "$line" |grep —-g "successfulCalls="
then

70

done

line=$ (echo ${line#*successfulCalls=})
successfulCallsNew=S$1line
fi
if echo "$line" |grep -gq "failedCalls="
then
line=$(echo ${line#*failedCalls=})
failedCallsNew=S$1line
fi
if echo "$line" |grep -gq "errors="
then
line=$ (echo ${line#*errors=})
errors=$ ((errors+line))
fi
if echo "$line" |grep -gq "establishTime="
then
line=$ (echo ${line#*establishTime=})
establishTime=$ (echo "scale=1; \
(SestablishTime + S$line)" |bc -1)
sed -1 "s/Establish time $i \
Sgroup/$line/g" "SresultHtml"
fi
done <"S$partResultFile.$i"
sed -i "s/Number of calls $i S$group/\
S((failedCallsNew + successfulCallsNew))/g" \
"SresultHtml"
successfulCallsGroup=$ ((successfulCallsGroup \
+ successfulCallsNew))
failedCallsGroup=$ ((failedCallsGroup + \

failedCallsNew))
fi
done
establishTime=$ (echo "scale=1; \
(SestablishTime / $parallelCalls)" |bc -1)

successfulCalls=$ ((successfulCalls + \
successfulCallsGroup))

failedCalls=$((failedCalls + failedCallsGroup))

echo "Group=$group: Success=S$successfulCallsGroup \
Failed=$failedCallsGroup Establish=$establishTime" >> \
"SresultTxt"

AddGroupResutls

ConfigChart

AddChart

cp SdutLogFile "S$resultDir/dut log $fileDate.log.S$group"
> SdutLogFile

if ["Serror" = "true"]
then

break
fi

71

#Copy used part of DUT log file to results

cp teltest.conf "SresultDir/teltest S$fileDate.conf"
cp "/var/log/asterisk/messages"
"SresultDir/asterisk log SfileDate.log"

#Calculation of percentage of success and of the elapsed time

percent=$ (echo "scale=5; (($successfulCalls / \
($failedCalls + S$successfulCalls)) * 100)" |bc -1)
stop="date +%s° #Stop time

duration=$ ((Sstop - $start))

hours=$ (($duration / 3600))

minutes=S((((Sduration - (Shours * 3600)) / 60)))
seconds=$ ((Sduration - (Shours * 3600) - (minutes * 60)))

echo —-e "\nTest started at: S$fileDate on device: S$device \
SfirmVersion\n\

$((SsuccessfulCalls + S$failedCalls)) calls were made in: \
Shours:Sminutes: $seconds\n\

Successful: $successfulCalls\n\

Failed: $failedCalls\n\

Success: S$Spercent $\n\

Crashes: Serrors" |tee -a "SoutputFile"

AddResults

#Open results in browser
firefox "SresultHtml" &

if ["Serror" = "true"]
then
echo "Test interrupted”
break
fi
done

72

B Call Daemon

#!/bin/sh

line=$1
parallelNum=$2
parallelCalls=$3
group=54
fileDate=$5
resultDir="$6"

sleepAfterFail=0.1

#Pathes to used files
asteriskLogFile="/var/log/asterisk/messages"
dutLogFile="/var/log/dut log.log"
lcrLogFile="/usr/local/var/log/lcr/log"

callFile="call file.call.source"
outputFile="SresultDir/Teltest log SfileDate.txt"
asteriskExtensionsFile="/etc/asterisk/extensions.conf"
tempCallFile="temp fileSparallelNum.call"
partResultFile=\
"SresultDir/part result $fileDate.$parallelNum"

#Default values
prevline="empty"
successfulCalls=0
failedCalls=0

errors=0
sleepTime=0.05
establishTimeTotSec=0
establishTimeTotNano=0
releaseTimeTotSec=0
releaseTimeTotNano=0

ExportToLog ()

{
currentTime= date +"%F %H:%M:%S""
echo "Call: $i/$parallelNum/Sgroup [ScurrentTime]
$inOut from: S$fromNumber to: S$toNumber length: \
SlengthOfCalls s pause: S$pauseBetweenCalls s \
Status: $S1" | tee -a "SoutputFile"

}

ReadConfigFile ()
{

set S$Sline
fromNumber=51

73

}

toNumber=52
numberOfCalls=$3
lengthOfCalls=5$4
pauseBetweenCalls=$5
inOut=5$6

MakeCalls ()

{

for
do

done

i in “seqg 1 SnumberOfCalls’

#Get info for the logfile

ExportToLog "Making attempt"

CheckDUT

callResult="false” #False until it detects
#successful or unsuccessful call

callIdChecked="false"

echo "Call: i/SSparallelNum/$group [ScurrentTime] \

$inOut from: S$fromNumber to: StoNumber" >> \

/var/log/dut log.log

cp ScallFile StempCallFile

SetParameters

mv StempCallFile /var/spool/asterisk/outgoing/

startMeasureTimeSec= date +%s°

startMeasureTimeNano= date +%1N°

ExportToLog "Making a call"

if ["$inOut" = "out"]
then

CheckOutgoingResult
fi

if ["$inOut" = "in"]
then

CheckIncomingResult
fi

#Export resutls into temp file

echo "successfulCalls=$successfulCalls" > \
"SpartResultFile"

echo "failedCalls=$failedCalls" >> \
"SpartResultFile"

echo "errors=S$errors" >> "SpartResultFile"
echo "establishTime=S$establishTimeAvrSec" >> \
"SpartResultFile"

sleep S$pauseBetweenCalls

74

CheckOutgoingResult ()
{

while true

do
lastLines=$(tail -$((parallelCalls * 20)) \
SasteriskLogFile)
if ["$callIdChecked" = "false"] \

&& echo "$lastLines" \
lgrep -q "\[call=.* ast=lcr.*\] Sending setup to \
LCR. (interface=ast dialstring=S$toNumber, cid=)"
then

SetIdNumbersOut
fi
#Check for successful call
if ["ScallResult" = "false" -a \
"ScallIdChecked" = "true"] \
&& echo "S$SlastLines" \
|lgrep -q "\[call=$callld ast=lcr/$lcrId\] \
Incomming connect (answer) from LCR"

then
MeasureTime
ExportToLog "Call successfully established"
startCallTime="date +%s°
callResult="success"

fi

#Check for failed call
if ["ScallResult" = "false" -a \
"ScallIdChecked" = "true"] \
&& echo "S$SlastLines"™ \
lgrep -q "\[call=S$callld ast=lcr/S$SlcrId\] \
Incomming disconnect"
then
ExportToLog "Call failed"
echo "\033[1;31mCall failed\033[0Om"
callResult="fail"
failedCalls=$((failedCalls + 1))
ReleaseCall
sleep S$sleepAfterFail
fi

#Check for free channel

if ["S$ScallIdChecked" = "true"] \

&& echo "S$lastLines" \|grep -g \

"\ [call=S$callld ast=NULL\] Call instance freed\|\
\[call=0 ast=lcr/S$lcrId\] Freeing call instance"

then
if ["S$ScallResult" = "success"]
then
CheckCallLength
fi

75

}

ExportToLog "Call instance freed"

if ["S$callResult" = "fail"]
then
sleep $lengthOfCalls
fi
break

fi
sleep S$sleepTime
done

CheckIncomingResult ()

{

while true

do
lastLines=$(tail -$((parallelCalls * 20)) \
SasteriskLogFile)
if ["S$ScalllIdChecked" = "false"] \

&& echo "$lastLines™ \
lgrep —-q "\[call=.* ast=lcr.*\] \
Try to start pbx. (exten=S$toNumber"
then
SetIdNumbersIn
fi
#Check for successful call
if ["ScallResult" = "false" -a \
"ScallIdChecked" = "true"] \
&& echo "S$lastLines" |grep -g \
"\ [call=$callld ast=lcr/$lcrId\] Starting call"

then
MeasureTime
ExportToLog "Call successfully established"
startCallTime="date +%s°
callResult="success"

fi

#Check for failed call
if ["S$callResult" = "false"] \
&& echo "S$lastLines" |grep -g \
"\[.*\] NOTICE.* Queued call to SIP/S$StoNumber.* \
expired without completion”
then
CheckNoticeDate
if [$noticeDate -gt S$prevNoticeDate]
then
noticeDate=S$prevNoticeDate
ExportToLog "Call failed"
echo "\033[1;31ImCall failed\033[0m"
callResult="fail"
failedCalls=$((failedCalls + 1))
sleep $lengthOfCalls

76

sleep S$sleepAfterFail
break
fi
fi

#Check for free channel
if ["S$callIdChecked" = "true"] \
&& echo "$lastLines" |grep -gq \
"\ [call=0 ast=lcr/$lcrId\] Freeing call instance"
then
if ["ScallResult" = "success"]
then
CheckCallLength
fi
ExportToLog "Call instance freed"
CheckNoticeDate
prevNoticeDate=SnoticeDate
break
fi

sleep S$sleepTime
done

}

CheckLastId()

{
for 3 in “seq 1 $((parallelCalls * 20))°

do
lastLines=$(tail -$J SasteriskLogFile)
if ["S$inOut" = "out"]
then

if echo "$lastLines" |grep -g \
"\ [call=.* ast=lcr.*\] Sending setup to LCR.
(interface=ast dialstring=S$toNumber, cid=)"
then
prevId=$ (echo "$lastLines" |grep \
"\ [call=.* ast=lcr.*\] Sending setup to
LCR. (interface=ast dialstring=\
StoNumber, cid=)")
prevId=$ (echo ${prevId##*call=})
prevId=$ (echo ${prevId% ast*})
break
fi
fi
if ["$inOut" = "in"]
then
if echo "$lastLines" \
lgrep -q "\[call=.* ast=lcr.*\] \
Try to start pbx. (exten=S$toNumber"
then
prevId=S$ (echo "S$lastLines" \

\

\

7

|grep "\[call=.* ast=lcr.*\] \
Try to start pbx. (exten=S$toNumber")
prevId=$ (echo ${prevId##*call=})
prevId=$ (echo ${prevId% ast*})
break

fi

if echo "$lastLines™ \

lgrep —-q "\[.*\] NOTICE.* Queued call to \

SIP/S$toNumber.* expired without completion"

then
prevNoticeDate=$ (echo "S$lastLines" |grep \
"\[.*\] NOTICE.* Queued call to SIP\
/$toNumber. *expired without completion")
month="date +%b"
prevNoticeDate=$ (echo \
$S{prevNoticeDate##*\ [Smonth })
prevNoticeDate=$ (echo \
$S{prevNoticeDate%\] NOTICE*})
break

fi

fi
done

}

SetIdNumbersOut ()
{
callId=$ (echo "S$lastLines" \
lgrep ".*\[call=.* ast=lcr.*\] Sending setup to LCR. \
(interface=ast dialstring=S$toNumber, cid=)")
lcrId=ScallIld
callld=$ (echo S{calllId##*call=})
callId=$ (echo ${callIlId% ast*})
if ["SprevId" != "ScallId"]
then
prevId=S$callld
lcrId=S$ (echo ${lcrId##*ast=1lcr\/})
lcrId=$(echo ${lcrId%\] Sending*})
callIdChecked="true"
fi
}

SetIdNumbersIn ()
{
callId=$ (echo "S$lastLines" \
|lgrep "\[call=.* ast=lcr.*\] Try to start pbx. \
(exten=S$toNumber")
lcrId=ScallIld
calllId=$ (echo S{calllId##*call=})
callId=$ (echo ${callId% ast*})
if ["SprevId" != "ScallId"]
then

78

}

prevId=S$callId
lcrId=$ (echo ${lcrId##*ast=1lcr\/})
lcrId=$(echo ${lcrId%\] Try to*})
callIdChecked="true"

fi

#Setting new parameters for calls
SetParameters ()

{

}

sed -1 "s/Data: .*/Data: $lengthOfCalls/g" \
StempCallFile
sed -i "s/CallerID: .*/CallerID: \"Asterisk\" \
<$fromNumber>/g" StempCallFile
if ["$inOut" = "out"]
then
sed -1 "s/Channel: LCR\/ast\/.*/Channel: \
LCR\/ast\/S$StoNumber/g" StempCallFile

fi
if ["$inOut" = "in"]
then
sed -1 "s/Channel: LCR\/ast\/.*/Channel: \
SIP\/S$toNumber@192.168.115.24/g" StempCallFile
fi

CheckCallLength ()

{

callTime="date +%s°
callTime=$ ((callTime - startCallTime))
lengthOfCallsInt=$ (echo "$lengthOfCalls/1" |bc)
callDifference=$((lengthOfCallsInt - callTime))
if [ScallDifference -1t 0]
then

callDifference=$((0 - callDifference))
fi

if [$callDifference -gt 10 -a $callDifference -gt \
$((lengthOfCallsInt / 1000))]
then

ExportTolLog "Wrong call length"

failedCalls=$((failedCalls + 1))

echo "\033[1;31mCall failed\033[0m"
else

ExportToLog "Correct call length"

echo "\033[1;92mCall successful\033[0m"

successfulCalls=$ ((successfulCalls + 1))
fi

79

MeasureTime ()

{

measureTimeSec="date +%s°
measureTimeNano= date +%1IN°
measureTimeSec=$ ((measureTimeSec - startMeasureTimeSec))
measureTimeNano=$ ((measureTimeNano - \
startMeasureTimeNano))
establishTimeTotSec=$ ((measureTimeSec + \
establishTimeTotSec))
establishTimeTotNano=$ ((measureTimeNano + \
establishTimeTotNano))
establishTimeAvrNano=3 (echo "scale=1; \
($establishTimeTotNano / ($i * 10))" |bc -1)
establishTimeAvrSec=$ (echo "scale=1; \

((SestablishTimeTotSec / $i) + SestablishTimeAvrNano)" \

|bc -1)

ReleaseCall ()

{

for k in “seg 1 $((parallelCalls * 20 * lengthOfCalls)) "

do
lcrLines=$(tail -$k S$lcrLogFile)
if echo "SlcrLines™ \
lgrep -q "EP(.*): SETUP from CH(.*) \
interface from=ast .* dialing $toNumber"
then
endPoint=$ (echo "$lcrLines" \
|grep "EP(.*): SETUP from CH(.*) \
interface from=ast .* dialing S$toNumber")
endPoint=$ (echo ${endPoint#*EP\ (})
endPoint=3% (echo ${endPoint%$\)\: SETUP*})
lcradmin release S$endPoint > /dev/null
break
fi
done
}
CheckNoticeDate ()
{
if ["ScallResult" = "success"]
then
noticeDate=$ (echo "$lastLines" |grep \
"\ [call=0 ast=lcr/S$lcrId\] Freeing call instance")
else
noticeDate=$ (echo "$lastLines" |grep \
"\[.*\] NOTICE.* Queued call to \
SIP/StoNumber. *expired without completion")
fi

month="date +%b"

80

noticeDate=S (echo ${noticeDate##*\[Smonth })
noticeDate=$ (echo ${noticeDate%\] NOTICE*})
noticeDate=S (echo "SnoticeDate" |tr -d " ")
noticeDate=S (echo "SnoticeDate" |tr -d ":")
echo "SnoticeDate > S$prevNoticeDate"

}

WaitForReboot ()
{

while true

do
dutLog=$ (tail -200 SdutLogFile)
echo "$dutLog" |grep —-gq "User is successfully \
registred" && break
sleep 1
done
sleep 1
}
CheckDUT ()

{
#Check state of DUT

dutLog=$ (tail -500 S$dutLogFile)
if echo "$dutLog" |grep -gq "Fatal exception: panic"

then
currentTime= date +"%F %H:%M:%S""
echo "Error [ScurrentTime] DUT crash" \
|tee —-a "SoutputFile"
echo "DUT reboots, waiting..."
errors=$((errors + 1))
sleep 120
WaitForReboot
fi
}
ReadConfigFile

#Check call ID from previous calls
CheckLastId

MakeCalls
exit O

