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ABSTRACT

Surface roughness is one of the main characteristics of fabric responsible for hand

feeling. By using of KES the surface height variation (SHV) trace is obtained. For

characterization of roughness the mean absolute deviation MAD (denoted by Kawabata.

as SMD) is usually used. The main aim of this work is quantitative description of

complexity of roughness based on the SHV. The procedure of surface complexity

parameters evaluation from SHV traces is described. The core is inspection of power

spectral density and variogram (or autocorrelation function) behavior and classification

of SHV signal to some groups. For individual groups fractal dimension and surface

roughness characteristics are computed by suitable methods. Proposed procedure was

checked on the simulated SHV profiles and on the practical examples.

1. INTRODUCTION

Kawabata [1] revealed that surface roughness is one of the main characteristics

of fabric responsible for hand feeling. By using of KES the surface height variation

(SHV) trace can be obtained. The main part of Kawabata’s measuring device is

contactor in the form of wire (diameter 0.5 mm). This contactor is moved by constant

rate 0,1 cm/sec and SHV is registered on paper sheet. The sample length L=2 cm is

used. The SHV corresponds to the surface profile in selected direction (usually in the

weft and warp directions are used for SHV creation). Characterization of roughness is

based on the mean absolute deviation MAD (the classical descriptive statistical

approach). This statistical characteristic is useful for random SHV traces where

elements of SHV trace are statistically independent each other. The SHV profile of a lot

of fabrics has been identified as irregular and more structured.

The descriptive statistical approach based on the assumptions of independence

and normality leads to biased estimators if the SHV have short or long-range

correlations [6]. There is therefore necessary to distinguish between standard white

Gauss noise and more complex models. For description of short range correlations the

models based on the autoregressive moving average are useful [2]. The long-range

correlations are characterized by the fractal models [3,5]. The deterministic chaos

type models are useful for revealing chaotic dynamic in deterministic processes where

variation appears to be random but in fact there are predictable [4].

For the selection among above mentioned models the power spectral density

(PSD) curve evaluated from experimental SHV can be applied [11].

Especially the fractal models are widely used for rough surface description [7].

For these models the dependence of log (PSD) on the log (frequency) should be linear.

Slope of this plot is proportional to fractal dimension and intercept to the so-called

topothesy. For white noise has dependence of log(PSD) on the log(frequency) nearly

horizontal plateau for all frequencies (the ordinates of PSD are independent and

exponentially distributed with common variance [13]). More complicated rough

surfaces as result of grinding can be modeled by the Markov type processes [8]. For

these models the dependence of log(PSD) on the log(frequency) has plateau at small



frequencies then bent down and are nearly linear at high frequencies. The fractal type

models were criticized by Whitehouse, who concluded that the benefits are more virtual

than real [8]. On the other hand the deeper analysis of rough surface should use more

complex model than classical descriptive statistics.

The main aim of this work is quantitative description of roughness complexity

based on the SHV. The procedure of roughness parameters evaluation from SHV traces

is described. The core is inspection of power spectral density and variogram (or

autocorrelation function) behavior and classification of SHV signal to some groups. For

individual groups the fractal dimension and surface roughness characteristics are

computed by using of suitable methods. Proposed procedure is demonstrated on the

simulated SHV profiles and on the practical example.

2. FRACTALS

Most of man made objects are geometrically simple and can be classified as

composition of regular geometric shapes as lines, curves, planes, circles, spheres etc.

Some objects are not be approximated precisely by the regular geometric shapes. One

category of these objects is called fractals. Benoit Mandelbrot has coined term fractal in

the seventies [5]. (From Latin fractus, meaning irregular or fragmented). Fractals have

two interesting characteristics. First of all, fractals are self-similar on multiple scales, in

that a small portion of a fractal will often look similar to whole object. Second, fractals

have a fractional dimension, as opposite to integer dimension of regular geometrical

objects. Because fractals are self similar they are constructed by recursion. For

geometrical fractals is the recursion explicitly visible. Typical example is so called

Koch curve shown on fig 1.
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Fig.1 Koch curve (in each step of construction the middle portion of each segment is

removed and replaced by two new line segments.  First step is line, having length 1).

The interesting facet of the Koch curve is its length LK. In the n-th step is length of

segment equal to LS=1/3
n 

and the curve consists of 4
n 

segments. Therefore it is

LK=(4/3)
n

 .



For stochastic fractals or random fractals the recursion is more little subtle and may

be an artifact of an underlying fractal building process that occurs on multiple spatial

scales. The typical generating function is Weistrass Mandelbrot equation, which

satisfies to the self-affinity requirement (replaces of self similarity for case of

functions). The height R (d) of surface in the point d or SHV trace is equal to
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where 1<D<2 is fractal dimension, G is characteristic length scale of surface and g
i

determines the frequency spectrum of surface roughness. The suitable value of this

parameter is g=1.5. The simulated stochastic fractal generated by eqn. (1) for D = 0.8 is

shown on the fig 2.
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Fig 2. Stochastic fractal generated by eqn. (1) for D = 0.8

This curve corresponds to the nonstationary random process and describes fractional

Brownian motion fB. The lowest frequency is then related to the sample length L

according to relation L/1g 1n

= .

The evaluation of D and G from random fractals is based on the power spectral density

)(P ω  function, which has for eqn. (1) the power law form
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The power law form is typical feature of fractals. It is typical for wider class of so called

processes having long memory characteristics [16]. Long memory processes can be

defined in terms of power scaling in the length domain i.e. the power type function is

valid for autocorrelation function and variogram as well.

In some cases are fractals stationary random processes like fractional Gaussian

noise fG. The stationary fG process can be simply obtained as successive differences of

fB process. Stationary fG process corresponding to fB from fig2. is shown on the fig.3.
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Fig 3. Fractional Gaussian noise created from fractional Brownian motion - fig.2.

Fractals in the form of fG are fully characterized by the mean and autocorrelation

function C(x) in the form
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where H is Hurst coefficient. For .5<H<1 is fG process long memory type. Hurst

coefficient is directly connected with so called fractal dimension D.

The main characteristic of both fractals types is fractal dimension. The problem with

dimension is well known in measurement e.g. coastal length. English meteorologist L.

Richardson found hat the apparent length of a coastline seemed to increase whenever

the length of the measuring stick was reduced. When the log of measuring stick was

plotted against the logarithm of the total length of coastline, the points tended to lie on

the straight line. The slope of this line is measure of roughness or meandering of

coastline. Mandelbrot has introduced the same approach for characterization of fractals

by fractal dimension. Let we have measuring device for evaluation of some

characteristics (for the one dimensional measure it is length, for two dimension it is

area and in three dimensional case it is volume) having measure Q. The characteristic of

whole object is defined as N(Q)*Q, where N(Q) is number of Q units for measurement

of  the whole object (e.g. number of stick placements to measure of coastal length).

Notice that whenever we measure an object, we always have the relation N(Q)=(1/Q)
D
,

where D is dimension of object. For fractals the D is not integer but can be estimated as

limit
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For the Koch curve is in the n th stage Q= LS=1/3
n
 and N(Q)=LK/LS=4

n
. Then

D=log(4)/log(3)=1.2619. The fractal dimension of Koch curve is therefore slightly

complex in comparison with line. For random fractals is simpler to use power spectral

density or related functions. Some techniques for fractal dimension computations are

summarized e.g., in [10]. The methods for computation oh Hurst coefficient is described

in [17].



3. SURFACE ROUGHNESS DESCRIPTION

There are two reasons for measuring surface roughness. First, is to control

manufacture and is to help to ensure that the products perform well [2]. In the textile

branch the former is the case of special finishing but the later is connected with comfort

appearance and hand.

From a general point of view, the rough surface display process which have two basic

geometrical features:

(1) Random aspect: the rough surface can vary considerably in space in a random

manner, and subsequently there is no spatial function being able to describe the

geometrical form,

(2) Structural aspect: the variances of roughness are not completely independent

with respect to their spatial positions, but their correlation depends on the

distance. Especially surface of weaves is characterized by nearly repeating

patterns and therefore some periodicities are often identified.

From the SHV trace is possible to evaluate a lot of roughness parameters. Classical

roughness parameters are based on the set of points R(di ) i =1.. M defined in the sample

length interval L. The measurement points dj are obviously selected as equidistant and

then R(dj) can be replaced by the variable Rj . For identification of positions in length

scale is sufficient to know sampling distance ds = dj - dj-1 = L/M for j>1.The standard

roughness parameters used frequently in practice are [19]:

(i) Mean Absolute Deviation MAD. This parameter is equal to the mean absolute

difference of surface heights from average value (Ra). For a surface profile this is given

by
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This parameter is often useful for quality control. However, it does not distinguish

between profiles of different shapes. Its properties are known for the case when Rj’s are

independent identically distributed (.i.i.d.) random variables

(ii) Standard Deviation (Root Mean Square) Value SD. This is given by
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Its properties are known for the case when Rj’s are independent identically distributed

(.i.i.d.) random variables. One advantage of SD over MAD is that for normally

distributed data can be simple to derive confidence interval and to realize statistical

tests. SD is always higher than MAD and for normal data is SD = 1.25*MAD. It does

not distinguish between profiles of different shapes as well. The parameter SD is less

suitable than MAD for monitoring certain surfaces having large deviations

(corresponding distribution has heavy tail).

(iii) Mean Height of Peaks MP. This is calculated as the average of the profile

deviations above the reference value R (often is R = Ra). It is given as mean value of

peaks Pi ,  i =  Np where

RRP
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(iv) Mean Height of Valleys MV. This is calculated as the average of the profile

deviations below the reference value R (often is R = Ra.). It is given as mean value of

valleys Vi ,  i =  Nv where
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i
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The parameters MP and MV give information on the profile complexity. Exceptional

peaks or valleys are not considered but are useful in tribological applications.

(v) The Standard Deviation of Profile Slope PS.  This is given by
2
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(vi) The Standard Deviation of Profile Curvature CP. This quantity called often as

waviness is defined by the similar way
2
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The slope and curvature are characteristics of a profile shape. The PS parameter is

useful in tribological applications. The lower the slope the smaller will be the friction

and wear. Also, the reflectance property of a surface increases in the case of small PS or

PD.

(vii) Mean Slope of the Profile MS. This is given by
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Mean slope is an important parameter in several applications such as in the estimation

of sliding friction and in the study of the reflectance of light from surfaces.

(viii) Ten Point Average TP. This characteristic is defined as the average difference

between the five highest peaks and five deepest valleys within a surface profile. The

parameter TP is sensitive to the presence of high peaks or deep scratches in the surface

and is preferred for quality control purposes.

These parameters are useful in the case of functional surfaces or for characterizing

surface bearing and fluid retention and other relevant properties. For the

characterization of hand will be probably best to use waviness PC. The characteristics

of slope and curvature can be computed for the case of fractal surfaces from power

spectral density, autocorrelation function or variogram.

A set of parameters for profile and surface characterization are collected in [8]. These

parameters are divided to the following groups:

• Statistical characteristics of height distribution (variance, skewness, kurtosis)

• Spatial characteristics as autocorrelation or variogram (denoted in engineering as

structural function)



• Functional characteristics (connected with fluid retention or flow properties)

There exists a vast number of empirical profile or surface roughness characteristics

suitable often in very special situations. Some of them are closely connected with

characteristics computed from fractal models (fractal dimension and topothesy).

Greenwood [9] proposed a general theory for description of surface roughness based on

the distribution of heights.

General surface topography is usually broken down to the three components

according to wavelength (or frequency) [8]. The long wavelength (low frequency) range

variation is denoted as form. This form component is removed by using of polynomial

models or models based on the form shape. The low wavelength (high frequency) range

variation is denoted as roughness and medium wavelength range variation separates

waviness. The most common way to separate roughness and waviness is spectral

analysis. This analysis is based on the Fourier transformation from space domain d to

the frequency domain d/2πω = .

4. SPECTRAL ANALYSIS

The primary tool for evaluation of periodicities is expressing of signal R(d) by

the Fourier series of sine and cosine wave

))**2sin()**2cos((
2

)( 0
dkbdka

a
dR

k

k

k
ππ ++= ∑ (9)

Quantity d is often time or distance from origin and k=1,2,3,4…. The first two terms

have period 1, the second two terms have period 1/2, the third two terms have period

1/3 etc. One consequence of this is that the different pairs of terms are orthogonal

(integral of their product is zero). This fact facilitates fitting of Fourier series to

experimental data. The term ao/2 can be made zero by centralization (i.e. subtracting of

mean value). By using of Euler formula exp(ia)=cos(a)+isin(a), where i is imaginary

unit the Fourier series may be written in the compact form
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k

k
π−=∑

The complex coefficients ck have real and imaginary part ak and ibk In Fourier series

only the terms up to k=M/2 contain any useful information. After this bound are real

coefficients repeated symmetrically and imaginary coefficients repeated

antisymmetrically. The Fourier Transform is conversion of data from series according

to d to the series of frequencies )T*M/(k*2πω = , for k=1, 2, 3…

∑ −= )d**iexp(*)d(R)(RF ωω (10)

Function RF is symmetric about frequency T/πω = . For discrete data the fast Fourier

Transform (FFT) leads to transformed complex vector DRF. Vector DRF may be used

for creation of power spectral density. P(w)

222 /)(/)(*)( TDRFabsTDRFconjDRFP ==ω (11)



where conj(.) denotes conjugate vector. The P(w) is estimator of spectral density

function and contains values corresponding to contribution of each frequency to the

total variance of R(d). Frequency of global maxim on P(w) is corresponding to the

length of repeated pattern and height corresponds to the nonuniformity of this pattern.

Spectral density function is therefore generally useful for evaluation of hidden

periodicities. For continuous case has the Fourier spectrum form
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where R(x) is height amplitude function estimated as SVH trace R(d), L is sample length

and i is imaginary unit.

The estimation of the spectral density function P(ω) is relatively straightforward

in theory but in practice situation is more difficult since data are only available in

discrete samples of limited extent. For finite sample lengths if is necessary to use

windowing (avoiding leakage) de-trending (avoiding non stationarity of mean) and

filtration of parasite frequencies [14]. Several methods of estimating the spectral density

function are available. More precise estimates can be obtained by using of sophisticated

procedures as averaged periodogram of overlapped windowed signals (Welch method)

or multiple signal classification (MUSIC). The maximum entropy spectral analysis

(MEM) provides smoother and higher resolution spectra for red-noise processes, which

therefore would appear to be more suitable for good estimation. The method of MEM

spectral estimation use of the Fourier transform between P(ω) and the autocorrelation

function [16]. It is necessary to specify before computation the order of AR model. P(ω)

is then selected to maximize entropy such that the inverse Fourier transform of P(ω)

yields the autocorrelation function. These spectral estimators are available in Signal

Processing toolbox of MATLAB system [18]. For the white noise (independent

standard normal random numbers) are the estimators of spectral density shown on the

fig 4.
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Fig 4. Raw data (white noise) and estimators of power spectral density



It is clear that the rough FFT based estimator shows the random fluctuations. Both more

sophisticated estimators show on the first sight the false one or more periodicities. By

using of statistical testing are these local peaks found to be insignificant.

For simulation of these estimators behavior for periodic structure with added random

noise N(0,1) the function

R(d) =3* sin(2*pi*10*t) +4* sin(2*pi*4*t)+N(0,1)

was generated.

The estimators of spectral density and raw data are given on the fig 5.
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Fig 5. Spectral densities for periodic function with added whiter noise

For very high level of noise N(0,400) are these estimators non effective see fig 6.
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Fig 6. Spectral estimators for data from fig 2 with high level of noise N (0,400)

The spectral estimators for finite data length corrupted by random errors could be

inaccurate. The more sophisticated procedures are very sensitive to the tuning

parameters. For estimation of fractal dimension is therefore the best way to use simple

FFT based method with proper data pretreatment (detrending, windowing) [17].

4. STATISTICAL ANALYSIS

A basic statistical feature of R(d) is autocorrelation between distances. Autocorrelation

depends on the lag h (i.e. selected distances between places of thickness evaluation).

The main characteristics of autocorrelation is covariance function C(h)
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and autocorrelation function ACF(h) defined as normalized version of C(h)
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ACF is one of main characteristics for detection of short and long-range

dependencies in dynamic (time) series. It could be used for preliminary inspection of

data. The computation of sample autocorrelation directly from definition is for large

data tedious. The technique of ACF creation based on the FFT is contained in Signal

Processing toolbox of MATLAB (procedure xcorr.m) [18]. The spectral density is the

Fourier transform of autocorrelation function C(h)
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. The ACF is inverse Fourier transform of spectral density
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These relations show that characteristics in the space and frequency domain are

interchangeable.

In spatial statistics is more frequent variogram, (called often as structure

function) which is defined as one half variance of differences (R(d) - R(d+h))
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For stationary random process is mean value independent on lag h i.e. E(R(h)) = m and

then
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For random processes having stationarity of second order is valid
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Variance is then equal to
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and variogram is directly related to covariance
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The variogram is relatively simpler to calculate and assumes a weaker model of

statistical stationarity, than the power spectrum. Several estimators have been suggested

for the variogram. The traditional estimator is
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where M(h) is the number of pairs of observations separated by lag h. Problems of bias

in this estimate when the stationarity hypothesis becomes locally invalid have led to the

proposal of more robust estimators. One such estimator has been created by Cressie and

Hawkins [14]. Another estimator has been suggested by Isaaks and Srivastava [15].

The sample covariance function (ACF is normalized by variance) is defined as
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where Ra is sample mean. Corresponding sample spectral density is
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and for variogram is valid
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For the white noise (independent standard normal random numbers) are the estimators

of ACF, variogram and covariance function on the fig 7.
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Fig. 7 Estimators of autocorrelation function, variogram and covariance function for

white noise

The same estimators are given for the case of periodic function with added white noise.

(see fig.5.) on the fig 8.
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Fig 8. The ACF, variogram and covariance function for periodic function with added

white noise

For very high level of noise N(0, 400) are periodicities hidden and not detected by these

estimators. This level of noise is in practice not the result of measurement errors but

result of random fluctuations of surface profile
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N(0,400)



It can be summarized that simple statistical characteristics are able to identify the

periodicities in data but the reconstruction of “clean” dependence is more complicated.

The variogram is often sufficient for characterization of surface profiles.

6. NATURE OF SURFACE PROFILES

There exists a lot of surface profiles models. For illustration of individual

characteristics describing their complexity the main types of these models were

generated.

I. Fractal surface fB

The simulated stochastic fractal generated by eqn. (1) for D = 0.25 is shown on the fig

10 and for D=0.75 on the fig. 11. On the same figures are power spectral densities in

log-log scale, variograms in log-log scale and amplitude histogram. The practically

perfect linearity of log vartiograms and scattered linearity of log power spectral

densities are typical for self-affine curves. Histograms of amplitudes Ri indicate

multimodality or skewed distribution,
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Fig 10. Stochastic fractal generated by eqn. (1) for D = 0.25



These curves correspond to the nonstationary random process and describe fractional

Brownian motion fB.
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Fig 11. Stochastic fractal generated by eqn. (1) for D = 0.75

II.Fractional Gaussian noise fG.

Stationary fG process corresponding to fB from fig 11. is shown on the fig.12.
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Fig 12. Fractional noise corresponding to first difference of the fractional Brownian

motion from fig 11.



III. Markov model

A lot of engineering surfaces obey fractal like behavior for high frequencies. For small

frequencies the log-log power spectral density exhibits nearly constant portion. The

Markov type models can express this behavior. Simplest one has form
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where r is autocorrelation coefficient. For this process is variance C(0) equal to
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The ACF has very simple form
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where b is constant connected with r.

Markov type profile for r=0.8 is shown on the fig. 13
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It is evident that the degree of linearity for small lengths (corresponds to the high

frequencies) is still very high for log-log variogram.

Based on these and other extended simulations we can conclude that:

• Power spectral density of Gauss noise has a lot of local extremes. Variogram has

random fluctuations in small scale

• Power spectral density of composite sine waves embedded in high-level noise

exhibit no right pattern. The same is valid for variogram.

• Power spectral density of fractal type (fBm) surface profiles exhibits scattered

linear trend according to the theory. The variogram exhibits more strict linearity

with relative small scatter. Variogram is here typical power function of h.

• Fractional Gaussian surface profiles are typical by random fluctuations of

variogram.

• Markov like surface profiles have linear portion on variogram at smaller lags h.

For higher lags the plateau is visible.

The very simply calculated variogram can replace the spectral power density. For

periodic surface profiles having small noise level enables power spectral density the

identification of periodicities.

7. ESTIMATION OF THE FRACTAL DIMENSION

A convenient way of characterizing the smoothness of an isotropic surfaces is

Hausdorf or fractal dimension. If the surface is very smooth is fractal dimension equal

to Dp = 2. For extremely rough surfaces is fractal dimension approaching to limit value

Dp = 3. General definition of fractal dimension is based on the capacity principle [12] In

measurement of surface profile (thickness variation R(h)) the data are available through

one dimensional line transect surface. Such data represents curve in plane. Two

dimensional fractal dimension D is then number between 1 (for smooth curve) and 2

(for rough curve). If a surface may be modeled by a stationary, isotropic Gaussian field

then the relation

1DDp += (29)

The expected variance of the increment of Brownian motion can be expressed using a

value of the Hurst exponent H, where H = 0.5 [17]

H22 h))hd(R)d(R(E ≈+−
(30)

For fractional Brownian motion fB is H in the interval (0,1). Where H = 0 this denotes a

surface of extreme irregularity and H = 1 denotes a smooth surface. Exponents H and

fractal dimension D are in fact related

H1DD
T

−+= (31)



where DT is the topological dimension such that D is in interval (2,3) for a surface and

(1, 2) for a cut across a surface. Note that fractional Brownian motion can be expressed

in terms of a power law variogram

H

hc)h( ≈Γ (32)

where c is a constant. Similarly, for P(ω) is valid
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where exponent (1+2H) lies in the interval (1,3). Fractal dimension is conventionally

obtained through estimating the parameter from a LSE linear regression of the log-log

transformation of Equations (32) and (33). The same results can be obtained assuming

that thickness variation R(d) is stationary Gaussian process and covariance function

C(h) is sufficiently smooth[12, 13]. The behavior of this function near the origin can be

described by power type model

α

hc)h(C)0(C ≈− (34)

These formulas may also be verified for another processes related to Gaussian one. In

practice is behavior expressed by eqn. (32) valid near origin and by enq (33) in a

neighborhood of infinity. In general it is D computed from this relation denoted as

effective fractal dimension.

There are several problems with estimating fractal dimension in this fashion.

First, elevation points, points on the variogram and the error term in the LSE regression

are likely to be autocorrelated. Second, data points in log-log space are unequally

spaced and, third, decisions concerning an acceptable cutoff for goodness of fit (R
2
) of

the linear function are of an arbitrary a priori nature. Since the aim of the line fitting

exercise in estimating fractal dimension is the description of the relationship rather than

prediction, the bias introduced by the first problem is not critical. A solution to the

second is to re-sample the data using a geometric progression, but at a cost of a dramatic

reduction in the number of points used in the line fitting exercise. An alternative to the

third is to estimate the standard error SE around the slope of a regression line. Based on

these equations the program TLOU in MATLAB for estimation of fractal dimension

from variogram and power spectral density has been constructed. Based on the

preliminary testing the results of computation from variogram were more stable and

reliable. From power spectral density the d corresponding to the global maximum of

P(ω) can be evaluated as well

8.ROUGHNESS AND FRACTAL DIMENSION

It can be shown that most of classical roughness characteristics as RMS roughness, the

density of summits and the mean absolute surface slope are functions of fractal

dimension and cut-off frequencies only. These roughness parameters are not intrinsic

properties of a surface, and vary with the conditions of measurement. Self-similar

fractal curves and surfaces are described completely by a single parameter, the fractal



dimension D, which is an intrinsic property of the surface and does not change with the

scale of measurement.

Nayak {12] showed that the statistical geometry of an isotropic random

Gaussian surface could be expressed in the terms of the moment of power spectral

function
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The roughness Rq (standard deviation) is simply 
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After substituting from eqn. (33) to the eqn (35) and integration for the case when
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In other words, none of the roughness parameters defined by the moment equations is

an intrinsic property of the surface. The roughnesses Rq is independent of the sampling

interval but depends on the high/pass cut-off, while summit densities are independent of

the high/pass cut-off but depend on the sampling interval. Furthermore, eqn. (37)

require that 3 113 −<+<− α , that is to say those amplitudes of surface wavelengths

must fall off quite sharply, but not too sharply, as the wavelengths get smaller.

Fortunately this condition is usually satisfied for real surfaces.

More simple equations can be derived by using of variogram G(h). The standard

deviation of profile slope is given by [17, 20]
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In these equations is D fractal dimension estimate obtained from variogram, c is

intercept in log log variogram plot (see eqn (32)) and ds is sampling distance.

9. SHV TRACE EVALUATION

The processing of SHV traces from Kawabata device can be divided to the two phases.

In the first phase the following tasks are solved:

• Digitalization of trace picture by image analysis system

• Removing parasite objects (grid, axes, base line etc)

• Creation of PSD and variogram

. First of all the low 
L

ω and high 
H

ω surface frequency bands have to be specified.

These cut-off frequencies are related to the wavelength limits lL 

and lH   i.e. LL
/2l ωπ=



and 
HH

/2l ωπ= . The low pass cut-off is related to Nyquist criterion i.e. 2/dsl
L
=  and

the high pass cut-off is dependent on the maximum interesting wavelength. For

nonregular SHV Ll
H
=  has to be selected. The results of digitalization and parasite

object removing is set of “clean” heights R(di) of fabric in places 0<di<L (L is

maximum investigated sample length and i = 1…M is number of places). The distance

between places ds = di+1 - di is constant. For the case of Kawabata device is L=2 cm and

dp=2/(M-1) cm.

The core of pretreatment phase is creation of PSD. Rough estimator is based on the

FFT and it is vector having as elements the squared spectral amplitudes abs(Pk)
2
. The

FFT has its own drawbacks and limitations [14]. It has problems with leakage and

resolution and non-stationary signals. The removing mean value and linear trends is

then necessary. For reduction of leakage effect the windowing i.e. multiplying by

suitable spectral window is useful. In program TLOU the simple parabolic window or

hamming window are selected. Clean data and data after windowing for weave used as

example are shown on the fig. 14
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 Fig 14. Clean data (upper curve) and data after removing of trend, centering and

windowing.

The resultant spectral “leakage” distorts the actual signal but reduces effect of finite

length. The dependence of log(P(w)) on spatial frequency for pretreated signal from fig.

14. is shown on the fig. 15.
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Fig 15 Power spectral density in semi log scale



In the second phase the signal is classified according to the slope )1( += αS of

log(P(w))) on the log(frequency) dependence. The following categories have been

proposed (see [11]):

1. Fractional Gaussian noise fG for range.–1<S<0.38. In this case the fractal

dimension from power spectrum can be used but variogram is not suitable.

2. Fractional Brownian motion fB for range 1.04<S<3. In this case can be used

the variogram for estimation of fractal dimension as well.

3. Transition case for range of S between 0.38 and 1.04. For this case the

cumulative sum of SHV should be created (transformation to the case 2)

4. No fractal behavior for cases when the power law model is invalid (in two

decade range). For this case the chaotic models (broad bands) or ARIMA

models (narrow peaks) has to be used

Special techniques for estimation of fractal dimension for the above-mentioned cases

are presented in [11]. For realization of this computations and evaluation of fractal

dimension based on the definition (see eqn. (3)) the MATLAB program TLOU has

been created. This program uses the cleaned and pre-treated R(dj) for creation of

variogram and P(w)) function (based on FFT). Fractal dimensions (Dp from P(w)) and

Dv from variogram) are obtained through estimating the parameter from a LSE linear

regression of the corresponding models. The fractal dimension Dd based on the

definition is computed by using the code Divider2 described in [15]

9. EXAMPLE

The computation of surface roughness parameters based on the concept of fractality is

critically dependent on the estimation of P(w)). Our procedures in the program TLOU

has been selected based on the simulated fB and fG fractal curves by using of code

Mwfractal described in [15]. As an example of practical application of TLOU the

surface roughness profile for one weave has been measured on the Kawabata

instrument. Weave was three end twill (wef sett 35 and warp sett 16) created from ply

polyester yarns 25x2 tex. The clean SHV trace is shown on the fig.14 and P(w)) curve

on the fig.15. The log log P(w)) trace and regression lines are on the fig 16.
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Fig 16. The test of fractality (log log PSD trace). The least squares lines correspond to

the full data and portion of data having high frequencies.



The slope S about 1.48 classifies the SHV signal to the second group. The plot of

variogram in log log scale is on the fig. 17

0 1 2 3 4 5
- 0 . 5

0

0 . 5

1

1 . 5

2

2 . 5

3

3 . 5

V a r i o g r a m  l o g .

Fig. 17 Variogram in log log scale

It is visible that the linearity is acceptable up to the 3 and half decades. The computed

fractal dimensions are Dv = 1.629, Dp =1.714 and Dd = 1.536. Characteristic from

Kawabata device is for this case SMD = 4.931.

10. CONCLUSION

The analysis of SHV based on the TLOU program is in reality more complex.

The classical roughness characteristics and topothesy are computed as well and many

other techniques of fractal dimension calculation are included. In the future the analysis

will be extended to the chaotic models and autoregressive models. The roughness

parameters PC and PS will be correlated wit subjective roughness meaning. With some

modifications it will be possible to use this approach for characterization of the surface

profiles obtained from another techniques or longitudinal variability of linear (yarns) or

plane textile structures (fabric).
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