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Abstract

Initial fixation of cementless components of Total Hip arthroplasty (THA) plays a crucial
role for long term survival of implant and the overall success of the surgical procedure. Every
year a million of THA is performed and objective intra – operative assessment of initial
fixation has not been available for clinical use yet. Currently, surgeons have to rely on their
clinical experience, however they have a sophisticated screening method, but not suitable for
intra operative assessment of initial fixation. They can use RSA, EBRA or the radiographic
analysis for checking the healing process of implant, evaluating implant migration or bone
resorption and osteolysis around the bone – implant interface. These methods are suitable
for follow - up studies, but do not assist the surgeon during implantation process.

Vibrational analysis has been recognized as a promising tool in biomechanics to identify
mechanical properties of bone structure, to assess the primary and secondary stability of
dental implants and to evaluate fracture healing of bone. In literature some studies dealing
with intra – operative initial fixation assessment during THA can be found. Most of them are
focused on femoral stem fixation, although acetabular component (AC) fails with the same
rate as femoral stem or even frequently. The main objective of proposed work is to inves-
tigate the ability of vibrational methods reflect the initial fixation of acetabular implant in
some measurable quantity. The bone - implant interface is recognized as one of the potential
candidates that would explain the changes in dynamic response of bone - implant system un-
dergoes an ambient excitation. The bone - implant interface is investigated trough numerical
modeling. In the experimental part of thesis, different pres fitting forces are compared with
the dynamic response of bone - implant system. From numerical analysis it follows that there
is a different level of relation between shared contact area and modal parameters of system.
Experimental part shows also the relation between evaluation of fixation of implant and its
response parameters.

Keywords:
implant fixation; acetabular cup; total hip replacement; finite element analysis; modal analy-
sis
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Abstrakt

Počátečńı fixace acetabulárńıho implantátu hraje d̊uležitou roli v jeho dlouholetém přežit́ı.
Každý rok se provede milión implantaćı během ńıž neexituje zat́ım žádná metoda jež podala
informaci o tom jak je implantát zaveden. V současnosti se muśı operatér spolehnout na
svoje zkušenosti přestože má k dispozici celou řadu sofistikovaných zobrazovaćıch technik,
která však nejsou vhodné k intra operativńımu posouzeńı fixace implantátu. Mohou být
sṕı̌se použity pro post operativńı hodnoceńı stavu implantátu.

Vibračńı metoda se dostala do popřed́ı v oblasti diagnosticky fixace implantátu d́ıky jej́ı
úspěšné implementaci v dentálńı implantologii. Úspěšně se použ́ıvá k hodnoceńı počátečńı
i pr̊uběžné fixqce implantátu. V oblasti totálńı kyčelńı náhrady existuje řada seriózńıch
praćı zab́ıvaj́ıćı se implementaćı této metody pro femorálńı komponentu. Nicméně, klinické
reálné použit́ı zat́ım ještě neńı k dispozici. Tato práce je zaměřena na implementaci této
metody pro acetabulárńı komponentu jej́ıž fixace nebyla zat́ım touto metodou vyšetřována.
Práce pojednává o rozhrańı kosti a implantátu jako možném prediktoru počátečńı fixace im-
plantátu ve formě numerických simulaćı. Experimentálńı část je zaměřena na hledáńı vztahu
mezi stupněm počátečńı fixace a dynamickou odezvou soustavy kost - implantát. Simulace
a experimenty ukazuj́ı, že dynamické parametry soustavy jsou ovlivněny změnami počátečńı
fixace implantátu a mohou být potentiálńımi ukazately počátečńı fixace implantátu.

Kĺıčová slova:
fixace implantátu; acetabulárńı jamka; totálńı kyčelńı náhrada; metoda konečných prvk̊u;
modálńı analýza
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Chapter 1

Introduction

This chapter contains the main introduction and the motivation for this thesis. The research

context is introduced. In this section the main objective and hypothesis are defined also.
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1.1 Research Contents

Total hip replacement is often called as “Surgery of century” [1]. It is one of the most success

procedures in orthopedics. It solves the impact of degenerative pathologies of human hip joint

by using a manufactured medical implant, which replaces a missing or damaged biological

structure (ISO 13485). About a million procedures are performed a year [2]. One is believed

that THA can protect a major part of patients from pain and increase the quality of patient’s

live for the period 10 – 20 years. Despite the modern surgical procedure, sophisticated tools

and active biomaterials the survival rate is not one hundred percent. The revision operation

after failure is often needed. It brings an increased risk of complications and the results and

prognosis are poorer than in primary THA [3]. The implant ten-year revision - free survival

for younger patients is estimated in range from 72 % in Finland to 86 % in Sweden by Kaplan

– Meier method [4]. In another study it can be found the survival rate 90 % (3 to 20 years

range) [5, 6], [7]. There was even found the rate of success around 97 % at 3 years follow –

up studies [8] and 92 % at 10 years [9].

Aseptic loosening is considered to be the most common reasons of THA fail [10], [11], [12].

The percentage range of aseptic loosening is around 50 % to 90 % [13]. Following revision

THA is not only costly but it is also associated with an increasing risk of complications [14],

[15]. Aseptic loosening is a failure that occurs in a relatively long time after primary THA [16].

Possible scenarios of aseptic loosening were introduced in the last decades: the accumulated

damage; failed bonding; the particulate reaction; destructive wear; stress shielding and stress

bypass scenario [17]. Proposed scenarios are not independent to each other, but they are

related [18]. A recent study shows that another cause of implant loosening would be a fluid

pressure at the bone - implant interface during the micromotion [19].

Orthopaedic implant is mechanically stabilized in bone by press – fitting procedure or

cementing techniques. Enough implant stability is fundamental assumption for correct phys-

iological transfer and long – term outcomes of surgery. Especially in case of cementless com-

ponent the press – fit level is critical. If the surgeon does not press – fit enough the implant

than the implant is not stable and probably fails due to aseptic loosening, concretely, the

migration phenomenon, osteolysis or excessive micromotion can occur [20], [21]. On the other

hand, excessive press fitting would lead to periprothetic fractures (2 % - 28 %) [22], [23], [13].

An optimal press – fitting level strongly depends on surgeon’s experience. The optimal me-

chanical stability of the implant is a condition for osseointegration process. According [24],

osseointegration process would be defined as a direct structural and functional connection

between surrounding bone and implant surface. Osseointegration means also the direct me-

chanical connection without progressive relative movement [25], [26]. Initial implant stability

is measured in term of periprothetic micromotion that is directly related to osseointegra-

tion process. If the initial stability is not achieved, excessive micromotion during the daily

activities occurs at the periprothetic interface [27], [28], [28]. Micromotion than stimulates
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osteoclastic response of bone which leads to periprothetic osteolysis and consequently to

implant failure [29], [30]. Both the micromotion and osteolysis with wear particle increase

implant failure [31], [32]. Design of implant and press fit process should prevent exceed the

micromotion around 150 µm to keep bone ingrowth [33].

The stability measurement is a critical procedure important for early implant loosening

detection and prediction. Since the micromotion is taken as a right indicator of the implant

stability, the full evaluation useful in vivo is difficult [34]. A complete evaluation of micromo-

tion requires into account physiological conditions (muscle forces, skeletal forces and patient

activities) [35]. Currently, the diagnosis of status of implant loosening is mainly based on the

qualitative information from traditional methods (X - rays, RSA, etc.) [36], [37]. Although

the diagnostic methods are very sophisticated, a diagnostic with one hundred percent ac-

curacy is not possible to achieve [38], [39]. The migration phenomenon could be captured

by the traditional methods and seems to be as a good predictor of implant stability. It has

been found that early migration has a predictive value for long term success of implant [30].

Radiographic signs were correlated with implant instability. Another author suggested that

the migration higher than two millimetres at two years could be a good predictor of aseptic

loosening [40]. It has been also reported that radiolucent lines cover more than 50 % of the

bone – implant interface could estimate the implant stability [41]. The use of radiolucent lines

as the implant stability predictor for revision decision also has been reported [42]. However

there are cases of implants that migrated significantly but after a year they get stabilized.

No complications were reported. In another work authors argued that radiolucent lines are

not definitive hallmark of aseptic loosening in range 2 to 5 years follow – up [43].

Roentgen stereophotogrammetric analysis is an imaging technique with ability to precise

measure the implant migration in order of millimeters or better [44]. The using of tantalum

markers may be difficult and sometimes even impossible. The new techniques based on digital

contouring of traditional RSA are extensively developed [45], [46].

X – Ray based methods provide an assessment of loosening of THA components are plain

radiography, scintigraphy, substraction and nuclear arthrography [47], [48].

Dual x – ray absorptiometry (DXA) gives a value of BMD (bone mineral density), which

is related to osseointegration and remodeling bone process and, consequently, to assess the

implant stability [49].

Unfortunately, none of previously mentioned methods has an ability to be appropriate for

detecting the primary fixation of orthopaedic implants during surgery. The combination the

traditional methods with computer simulation models could be used as an alternative tool

for pre – clinical trial. Nowadays, there is no objective method of THR stability measuring,

although the implant stability significantly influences the rate of implant success.

A diagnostic method based on mechanical vibration is used by engineers to investigate ma-

terial properties or structural integrity. Damage and health monitoring of structures are main
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application of vibrational analysis. It is used for a large variety of an engineering problems

such air planes, automotive, building and bridges [50]. Vibration analysis was successfully

used to quantify the stability of dental implants by [51], [52],[53], [54], [55]. The frequency

shift is directly related to the implant stability. This method is used in commercially avail-

able device (OsstellTM, Integration Diagnosis AB, Goteborg, Sweden). Although the vibration

analysis works well for dental implant, the use for any other implants, especially for THR, is

still a challenge. Probably due to conditions for THR implants that are different from dental

implants and would be much more difficult to get sufficient reliability and feasibility of this

method for real clinical trial. The THR stability measurement protocol based on vibrational

technique was established by several authors [56], [57], [58]. All of them are focused on femoral

stem, although the survival rate of the acetabular cup is similar and the radiological diag-

nosis is even more difficult and poorer [59], [60], [61]. Previous works have an experimental

device and support by numerical approach, but suffer from insufficient clinical testing and

clear determination of influencing factors and the limitations of method.

1.2 Research Hypothesis, Focus and Organization of the The-

sis

This work is focused on the assessment of the initial fixation stability of acetabular implants

in THR. The study is funded by TACR (Technological Foundation of the Czech Republic)

– ALFA 1401. Measurement protocol is built and tested on the cementless acetabular com-

ponent – a type SF manufactured by Beznoska (Beznoska s.r.o, Kladno, Czech Republic).

The main objective of the study was to investigate an usefulness of vibrational method for

measuring the initial fixation of acetabular implant and subsequently design an experimental

device for intra - operatively assessment of the initial fixation of acetabular implant.

Research direction was formulated in several hypotheses:

• Interfacial contact surface influences a dynamic response of bone - implant system.

• The implant – bone structure behaves rather as quasi- linear system with an exception

in case of completely unstable implant.

• Between modal parameters and fixation level of an implant a relation exists.

• Alternative relation between fixation level of the implant and an evaluation of its fre-

quency response function would be find by data mining technique.

• More complex modes are more sensitive to change in bone - implant interface.
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Research questions:

• Can vibrational method be a useful tool for estimating the initial fixation of acetabular

component?

• What are the limitations of vibrational method for press fitted acetabular implant?

The organization of the work is proposed in the figure 1.1.

Research Context Hip Joint
Total Hip

Arthroplasty
Measuring of
Initial Fixation

Introduction - chapter 1.

Segmentation Density Mapping
Coordinate

Field Mapping
EMA Validation/
Model Update

Computational Model - chapter 2.

Modal Parameters
Sensitivity

Modal Parameters
Correlation

Dynamic Prop. of
Bone - Implant

Contact Surface
Evaluation

Influence of Shared Contact Area to Dynamic Response - chapter 3.

Mode Filtering Mode Tracking Correlation Index

Experimental Verification - chapter 4.

Vibrational Head Control Unit user Interface

Experimental Device Design - chapter 5.

Thesis Summary

Summary - chapter 6.

Figure 1.1: Thesis outline

1.3 Original Contribution in this Work

Original contributions in this work go in two different ways. In experimental way, a novel

concept of vibration mechanism was explored based on the positioned vibrational head with

the excitation and acquire transducer in one part. The head is completely washable, sterilize

or treatable with plasma. The mechanism of the head has an ability to be connected to both

THA component: acetabular and femoral component.

Experimental identification of modal properties of pelvis bone with cup and correlation

with press fit level of acetabular cup have never been investigated. This work brings an impor-

tant investigation of relation of resonant frequencies, damping and even modal shapes with

fixation level expressed as an impact force and a polar gap. Apart from modal parameters,
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an evaluation of the frequency response for every fixation level was examined by multivariate

supervised techniques based on Principal Component and Partial Least Square regressions.

The numerical way express the series of a computer simulations mainly done for support

the conducted hypothesis. For simulation purposes, a novel simple approach was taken in the

modeling of orthotropic material properties of curved composite structure as bone is. This

method generates complex material field based on the curvature, thickness and real material

properties of bone. The method was successfully validated with experimental modal analysis

(EMA) and updated with optimization framework for material properties. The industrial

identification algorithms in field of experimental modal analysis were successfully applied in

biomechanics of the pelvis bone and implant.
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1.4 Hip Joint Anatomy

The hip is a ball – and – socket joint with powerful surrounding muscles. It is a structural

link between the lower extremities and the axial skeleton and it allows greatest mobility

and stability. It is composed from joint cavity, articular cartilage, synovial membrane and

surrounding ligamentous capsule (figure 1.2). The hip has a very important biomechanical

function. It supports a major part of human body (∼ 2/3 of total bodyweight) and simul-

taneously serves smooth articulation of the limbs to enable bi – pedal gait. During daily

activities, transfer forces can exceed the body weight even 5.5 times. [62],[63], [64], [65].

The pelvis bone is formed from three bones: the ilium, ischium and pubis. They fuse

together and form the ox coxae. At the point of fusing the acetabulum is formed. Adjacent

joints to the pelvis are sacroiliac (SI) and pubis joint. The posterior and superior margins of

the acetabulum are reinforced with cortical bone, which enhances the stability of the joint

during weight bearing from flexed and extended positions [66]. The bony structure of the

pelvis is similar to a composite material. It consists of a dense, stiff and thin shell of cortical

bone. The thick of cortical bone is in the range 0.7 to 3.2 mm. [67]. The inner part of pelvis

is filled by much less dense trabecular bone.

The femur is the longest and strongest bone in the human body. It is composed from

head and a neck proximally, a diaphysis, two condyles distally. The diaphysis of femur has

cylindrical structure. Proximal part of femur has an irregular shape consists from spherical

head, neck and greater and lesser trochanter. Cortical bone along the diaphysis of femur has

a thick up to 7 mm and supports large tensile and compressive loads from hip loading [68].

Both joint surfaces are covered with a strong lubricated layer of hyaline cartilage ranging

from 1.2 to 2.3 mm thick in normal adults [69]. The articular cartilage on the acetabulum

forms an incomplete marginal ring called lunate surface [70].
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Figure 1.2: Hip joint anatomy

1.5 Hip Joint Diseases

The most common disorders include osteoarthritis, avascular necrosis, slipped epiphysis, bur-

sitis and developmental dysplasia.

Osteoarthritis (OA) is a degenerative disease associated with the wearing of the cartilage

covering bone – ends [71]. It involves the entire joint: cartilage, bone, synovium, labrum and

capsule. The typical manifestation of OA is a loss of cartilage in the load bearing surface

of the joint and proliferative response associated with osteophytosis [72]. This process is

followed by subsequent thickening of subchondral bone and mild – to – moderate synovial

inflammation. OA of the hip is recognized as a primary (idiopathic) or secondary (systemic

or localized) disease. Risk factors of primary OA are following: age (older is higher risk); high

bone mass; a genetic predisposition; increased body mass index (BMI); participation in weight

– bearing sports. The risks for secondary OA are: hemochromatosis; hyperparathyroidism;

hypothyroidism and more [73], [74].

Developmental dysplasia of the hip (DDH) is characterized by malorientation and reduc-

tion of contact area between femoral head and acetabulum [75]. Subluxation caused by DDH

increases the mechanical stresses in the hip joint during the gait load cycle. It is though that
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DDH causes the early damage of the hip cartilages and bones and, consequently leads to

early hip osteoarthritis. Surgical procedure of the anatomic abnormalities caused by DDH is

done by pelvis osteotomy, which involves cutting the socket free from the pelvis and rotating

it to a new position [76].

1.6 Total Hip Arthroplasty

1.6.1 Introduction

Total hip arthroplasty becomes one of the most successful surgical procedures in last decades.

THA gives a solution for patients suffering from pain, movement reduction, rigidity or defor-

mity. It is also the solution in case of osteoarthritis (OA), avascular necrosis, developmental

dysplasia (DDH), traumas and tumors. The surgical procedure has several ways how to be

performed. The most commonly performed methods for THA include the anterior (Smith - Pe-

tersen), anterolateral (Watson - Jones), muscle splitting lateral (Hardinge), transtrochanteric

lateral (Charnley) and posterior approaches (Moore, Gibson) [77]. The basic idea is depicted

in figure 1.3. The damaged hip joint is replaced by an artificial acetabular cup (AC) and

femoral head. Together these two components replace damaged natural articulation surfaces.

The AC is anchored in the pelvis bone and femoral head is connected with the femoral bone

by the stem anchored in the medullary canal [78]. This presented work is primary focused on

the cementless acetabular cup. The following chapters describe mainly the THR in mean of

cementless acetabular cup.

1.6.2 Implant Design

THA procedure includes a large variety of solution in mean of implant shape, size, modularity

and kind of purposes. The choice depends on surgeon’s skills and patient’s state. Nowadays,

THA implants are modular: polyethylene liner, hemispherical socket fixed onto the acetabu-

lum, ceramic (or metallic) head, metallic neck and femoral stem. The modularity of implants

provides a possible adapting the implant geometry to the patient’s joint morphology, which

mean much more flexibility during the primary and revision THA [79], [80]. The modularity

of the implant is useful during the DDH and when a mini approach is performed [81], [82].

The modular design allows using different materials with properties suitable for their function

[83], [84].

Nowadays, most cementless acetabular cup has a porous coated surface over their entire

circumference for bone ingrowth. They differ commonly in kind of initial fixation. Fixation

of porous shell with transacetabular screws is a common technique, but carries a risk to

intraplevic vessels and viscera (figure 1.4). It requires flexible instruments for screw insertion

[85].
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Figure 1.3: Modular construction of total hip implant [78]

Figure 1.4: Universal acetabular component (Biomet, Warsaw, Ind – left, SF, Beznoska
s.r.o, Czech Republic - right). Titanium plasma spray coating with dome and rim screw

fixation options

Pegs and spikes placed on the cup shell surface provide a rotational stability, but less than

in case of using the screws (figure 1.5). These features are especially important in patients

with marginal bone quality and when the cementless cup is repositioned after initial insertion

[86].

Other devices have a dual geometry or an enlarged peripheral rim that can be press fitted

without any ancillary fixation devices (figure 1.6) [85].

Several analyses of THR survival with supplementary AC fixation features show good

results with fixation screws, pegs [87], [88], [89]. Although there are studies that show no

increase of AC survival with screws [90], [91].

Press fitting technique is currently a common method for ensure good initial stability of

cementless AC [92], [93]. With the press-fit fixation technique, a hemispherical porous-coated

Figure 1.5: Duraloc acetabular component. Sharp spikes are driven through subchondral
bone to improve initial stability (Courtesy of Johnson & Johnson, DePuy, Warsaw, Ind.)
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Figure 1.6: Interfit acetabular component - hemispherical design with gradual transition to
enlargement in peripheral rim for improved initial stability and peripheral stress transfer

(Courtesy of Smith & Nephew, Memphis, Tenn.)

acetabular component, typically 1 to 4 mm larger than the last reamer used to prepare the

acetabulum, is forcefully impacted into the acetabulum [94]. It is essential that the surgeon

have an exact knowledge of the geometry of the cementless acetabular component they are

using, as this will have an effect on the amount of under-reaming necessary to obtain the

desired degree of interference fit and full seating of the component. Modular cups frequently

have screw holes or a central “polar hole” that allows for visual confirmation that the cup is

fully seated and well apposed to host bone after insertion [86].

1.6.3 Cemented versus Cementless Technique

Basically, there are two major types of artificial hip replacements: cemented and uncemented.

Both are widely used. Cemented prostheses are the oldest form of THA. The principle lies

in fulfilling the prepared bone bed by epoxy cement (PMMA) that attaches the stem to

the bone. Good clinical results at 10 years are achievable with this method [95]. Although

there are complications related to the PMMA behaviour. The PMMA degrades over time

and generates the cement debris causes inflammation of surrounding bone and, consequently

the loose of periprothetic interface [96]. In case of revision surgery the lack of bulk cancellous

bone during the first surgery could bring a problem. It is though that for older (65 and older

- [97]) patients with poorer or osteoporotic bone the cemented implant could bring stronger

initial fixation of implant [98].

The cementless technique is an alternative for suppressing the problems associated with

cemented implants. The essential stability of the implant is achieved by press – fit technique.

The last rasped (or reamed) cavity has a smaller diameter than the final implant. The fric-

tional and compressive forces caused by press – fit are responsible to adequate load transfer

during the gait cycle. The earlier generation of cementless THA has poorer performance than

cemented [99], but current concepts of implants have a similar survival rate to their cemented

counterparts [100].
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1.6.4 Loosening of Acetabular Component

Aseptic loosening and osteolysis are a major reason for acetabular component fail. The range

of aseptic loosening (wear, AC migration) of porous coated anatomic cup (PCA) is from

7 % to 30 %. However range of fail in PCA is relatively high, there are studies that show

the success of Harris – Galante AC (Ti shell with fiber metal mesh bonded to the shell)

much better. The long term results (more than 10 year) are excellent with a range of aseptic

loosening from 0 % to 4 % [101]. A recently published study by Della Valle and associates

evaluated 20-year follow-up of patients with the HG - 1 porous acetabular component [102]. A

total of 114 patients of the original cohort of 204 patients were available for review. Kaplan-

Meier survivorship of the acetabular component was 96 % in terms of revision for aseptic

loosening or radiographic evidence of loosening as an endpoint. Fourteen hips (12.3 %) with

well-fixed acetabular shells underwent revision for a modular liner exchange. The authors

concluded that wear-related complications continue to be the major mode of failure [103].

Another kind of AC was investigated by [104]. Their recently 20 – years follow up study

reported the survival rate of coated RM cementless AC. This AC was manufactured from

ultrahigh molecular weight polyethylene coated with a thin layer of Ti particles. Ninety-

three primary THA were performed with a survivorship of 94 % (17.4 to 20.9 years). Mainly

reason for revision THA were osteolysis and polyethylene wear. In table 1.1 another studies

of acetabular cup performance are provided for comparison.

Table 1.1: The acetabular cup performance

Author Mean Length of Number of Cups Radiographically Revised for

Follow–up [year] Loose, n [%] Loosening, n

Bojescul [105] 15.6 64 19 (30) 17

Hastings [106] 10.3 73 13 (18) 17

Healy [107] 12.3 53 6 (11) 6

Kawamura[108] 12 187 12 (6) 8

Kim [109] 11.3 116 8 (7) 8

The survivorship of the cementless AC stabilized with press fit technique was reported

in several studies. Another author reported the result from 10 – year follow up study where

the survival rate was 99.1 % with revision with the conclusion that the press fit socket is

associated with a low rate of osteolysis [110]. The most common reasons for reoperation were

still wear and disassociation of the polyethylene insert. They confirm the findings in work

done by Kwong that there is no significantly difference in stability between HG porous coated

AC with 1 mm press fit with or without supplementary screws [111]. Associated problem with

press fit implantation is periprothetic fractures. Fracture of acetabulum has been reported in

cadaveric studies. Sharkey demonstrated that acetabular fracture can clinically occur during
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uncemented cup insertion and it can lead to serious complications (9 fractures from 13 cases)

[112]. The fracture can occur during the variety of cup oversizing (2, 4 mm) [113], [114].

1.6.5 Initial Fixation of Cementless Acetabular Cup

Initial stability of the cementless acetabular component would be defined as the lack of rela-

tive micromotion between shell surface and bone bed [115], [116], [117]. The initial stability

is essential for bone ingrowth and long time performance of acetabular cup and to prevent

aseptic loosening. Sufficient initial stability is achieved by press fitted acetabular cup with

optional screws. The contact area between shell surface and surrounding bone must be max-

imal to achieve an optimal distribution of stress [118]. Roth demonstrated that cups with

higher contact area have higher the initial stability measured by the pull – out test [119].

Curtis recommend for achieving the best initial stability the press fit in range 2 to 3 mm

[114]. In this manner the cup is fixed at the outer diameter of the acetabulum, which leads

to a uniform transfer of load and homogenous, approximately physiological loading of the

acetabulum.

The micromotion and strains on the interface is a subject of studies in mean of implant

fixation and movement during the physiological gait cycle. The measuring in vivo is difficult

[120], however they have been carried out in vitro experimentally [111], [117], [116] and using

the FE modelling [121], [122], [123]. In most reported experimental studies the acetabular

cup micromotion was obtained by unidirectional LVDT in three axes. Kluess attempted to

validate the FE model of micromotion prediction by optical markers but they did not achieve

acceptable accuracy [121]. Zinkovic validated their FE model by six LVDTs probes under

a chair – rising loading [124]. Clarke tried to validate their FE model with experimental

result obtained by digitalization arm [125]. All of mentioned studies show in average a good

accuracy of micromotion and strains measuring and validation of FE model.

The threshold value of micromotion, above which fibrous layer forms, has been studied by

several authors. From literature review for bone – dental implant interface it was found the

range of micromotion 50 to 150 µm [126]. Maloney reported the axial micromotion value 40 µm

in study on eleven femoral specimens retriever at autopsy. Histological investigation showed

intimate osseointegration at the bone – implant interface with only rare intervening fibrous

tissue [127]. Engh found the similar magnitude of micromotion in case of cementless femoral

components with bone ingrowth at porous – coated implant. The higher micromotion (150

µm) was found in on areas of failed bone ingrowth [128]. Whiteside reported the micromotion

value around 80 µm on investigation the difference between AML and the Mallory Head

prosthesis. From noticed works can be concluded that the range of micromotion for bony

ingrowth process could not exceed 150 µm [129].

As it was mentioned, the computer simulations were used for the investigation of mi-

cromotion and fibrous layer formation. In a study of influence of various fibrous thicknesses
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the micromotion the thickness 58 µm was found to be sufficient to increase the micromotion

excess the threshold value (200 µm) for ingrowth process [130]. In a similar study authors

demonstrated that the viable region for bone ingrowth was completely eliminated for the

fibrous tissue layer with thick 300 µm [131].

1.7 Current Concepts of Initial fixation Measurements

1.7.1 Pull – out and torque resistance test

The radiological based methods are currently the first step of investigation in post-operative

THR [132], [133]. However radiological method can provide the information about migration,

dislocation and cup position, the intraoperative ability to assess the initial stability of cup is

not available. The most of described analyses of initial fixation of AC are based on the pull

– out and torque resistance test and vibrational analysis. Olory performed in their analysis

the pull – out test of eleven cups and obtained that the pull out strength varies from 7.63

to 55.46 Nm. He also noted that the hemisphere has the better contact to keep a good

initial stability and the highest pull - out strength force is associated with the highest initial

stability [118]. The observation the relation between contact area and initial stability is

consistent with radiological findings, where the higher peripheral contact is associated with

decreasing of peripheral radiolucencies [134], [93]. In another study Fehring quantified the

initial stability of acetabular cup with torsional load (e.g. the forces required to move the

AC greater than 150 µm) [135]. The results show unclear behaviour of acetabular cup (high

degree of variability in resisting load). Although the torque and pull- out test can provide

sufficient information about the initial stability due to micromotion and peripheral contact

area, it is not possible to use it in vivo. It is a destructive test. However, the combination of

those in vitro test and numerical analysis of micromotion, it would be obtained an interesting

alternative assessment of initial stability of acetabular component with focus on the interfacial

parameters such friction, micromotion [136], [137], [138], [139], deformation [140] and [141].

1.7.2 Vibrational Test

Vibration analysis is widely used in engineering problems to investigate structural properties.

There are many methods to determine the structural behavior. There are based on the modal

analysis, resonance frequency shift, harmonic distortion, and acoustic emission. The abilities

of vibrational methods in biomechanics were demonstrated firstly in determining of bone me-

chanical properties [142], [143], [144], [145] and clinical monitoring of fracture healing [146],

[147].The first report of vibrational analysis related to the implant fixation has been estab-

lished in dental and craniofacial medicine [148], [149]. It has been found the strong relation

between quality implant fixation and resonance frequency shift. The base idea is depicted at

figure 1.7. A transducer is attached to the implant. In opposite face the acceleration sensor
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Figure 1.7: Principle of measuring the stability by Osstell device

is attached to acquire the response. The first bending resonance frequency is measured. Suf-

ficient initial fixation increases this first bending resonance frequency and has a potential to

assess early implant failure. Currently, this method is used in commercially available device

(Osstell, Integration Diagnosis AB, Goteborg, Sweden).

Osstell device converts the resonance frequency shift to a unique unit called ISQ (Implant

Stability Quotient). The range is from zero to 100 points and higher value means better im-

plant fixation. However, it has been proved the relations between resonance shift and initial

fixation in vivo and between torque test in vitro, there are still question about the sensitiv-

ity of this method to parameters such direction of measurements, density of bone, implant

makrodesign and micro design parameters. Čapek demonstrated the resonance frequency de-

pending on the direct of measuring and concluded that is necessary to keep the orientation of

transducer unlike there is not clear if it is measured the first or second resonance frequency

[150]. In addition, Huang found that the boundary height, width and the density of specimen

influence significantly the resonance frequencies [151]. Another method for dental implant

stability assessment is based on the similar method as Osstell device. It is named Periotest

(Medizintechnik Gulden e. K., Germany). Periotest consists of small headpises probe with rod

inside. Using the electromagnetic accelerator the rod strikes an implant 16 times in 4 seconds

at a velocity of 0.2 ms−1. The contact times between rod and the implant is measured and

converted into Periotest value [152]. In comparison between Osstell and Periotest, Zix shown

that Periotest is less sensitive than the Osstell device [153]. Finally, in a recent study, Wijaya

introduced the device called Implant movement checker [154] - figure 1.8. It is based on the

assumption that mechanical mobility of the implant is directly related to response function
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Figure 1.8: Implant movement checker [154]

written as:

λ(f) =
1

i2πf

A(f)

F (f)
(1.1)

Where the force amplitude is constant.

Although there are more methods to assess the implant fixation by the vibrational prin-

ciple [155], [156], these three mentioned devices based on the vibration analysis have the

ability to use in clinical environment. However, the first version of Osstell device has suffered

from bad usability due to sterilization process. The last update of Osstell device uses wireless

probes and does not need to be connected physically to the implant (Osstell Mentor – Smart-

Peg probe). In another study, Shao designed the in vivo / in vitro measurement protocol

of osseointegration of trans - femoral implants (figure 1.9). The implant was excited with a

small mechanical shaker and the response was recorded by an accelerometer. The response

was analyzed using FFT (Fast Fourier Transform.) to obtain natural frequency. They con-

cluded that higher interfacial elastic modulus corresponds to a higher natural frequency. He

also demonstrated the influence of boundary conditions on the natural frequency [157].

The previous work was extended by Cairns, who measured also the natural shapes and

demonstrated their sensitivity to interfacial changes [158]. The conditions for using the vi-

Figure 1.9: Measuring the stability of trans - femoral implant [157]
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Figure 1.10: Measuring the stability with the force applied to knee [159]

brational method in THR are much more different from in case of dental and trans - femoral

implants. Especially that the THR implant is immediately covered after implantation and

there is no more access until the revision THR. A several studies deal with the vibrational

analysis of THR. Georgiou developed the diagnosis protocol and compared it to radiographic

findings as one of the first. The vibration technique does not need to expose the femoral

implant, because the vibration force is applied to the knee and the response is acquired on

the subcutaneous greater trochanter [159].

He focused on the number of resonant frequencies, the amplitudes of the first and second

harmonics and the number of remaining harmonics. For femoral component during the in

vivo study, they found the vibrational analysis is more sensitive than radiographs (up 20

% more). However also they pointed that the accuracy in case of acetabular component is

comparable with radiological findings (sensitivity around 50 %), which is, of course, great

challenge to improve.

Li focused his experiment on the cemented femoral component. The femoral bone and

implanted femoral stem was excited by the sinusoidal waveform. The information about stem

stability was extracted from amplitude in frequency domain and from the distortion of the

response signal. The response was obtained for 21 secure systems, 17 were loosened and

14 showed in the spectral analysis several distorted frequencies [160]. However, the relation

between early stem loosening and signal distortion was not clearly 100 %. They suggested

future improvement of the vibrational technique and concluded that the tissue fibrous layer

cement fractures are not vibrational detectable [161].

Recent studies were based on the two assumptions, that the difference in vibrational

behavior is increased with the complexity of the modal modes and is thus, the more complex

modes are more sensitive to interaction femur- stem system and the ability to detect the

insertion point of the stem [162], [163] and [164].

Study was done on the sawbones of femur with implanted stem (figure 1.11). The used
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Figure 1.11: Measuring the stability of femoral stem [163]

methods to assess the fixation quality are based on the frequency shift and the vibrational

modes. They found, that the sensitivity to a first bending mode to fixation status is very

low (frequency shift about 50 Hz). Generally, they confirm that most sensitive band is above

1000 Hz, which is in accordance with previous work [165], where the authors suggested the

most sensitive band to observed the interfacial effect in the femur – stem is above 2500 Hz.

The previous work was extended to a vivo test by Pastrav [166]. They tested two groups

with cemented and uncemented prostheses and found that FRF evaluation is dependent on

the cement curing. They conclude that the vibrational technique would assess a critical step

during the insertion of stem (end point of insertion – prevent to fracture of bone).

The previous works are based on the bending vibration and are direction dependent

[167]. Lannocca established the vibration protocol that uses the torsional stiffness measuring

by vibration as a predictive value of initial fixation of stem. The method uses excitation in

torsion [168]. The correlation between micromotion test and peak amplitude is significant

(table 1.2).

1.7.3 Summary

Vibrational analysis as a toll to assess the initial stability of femoral stem has been inves-

tigated in many forms. Basically, most of the cited studies use as a predictive variable the

frequency response function of the bone – stem. The use of the FRF expects the linear or

quasi-linear behavior of investigated system, which was demonstrated in [161], [160], [170],

[171], [172] and [166]. Spectral analysis used by Li has an ability to find the clinically mo-

bile implant due to harmonic distortion, but also shows that early loosening is rather linear

than non – linear and consequently not detectable by harmonic distortion. The femoral stem

and bone interaction were demonstrated in finite element simulation to show the sensitivity
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of vibrational modes to interfacial conditions [165], [166]. The findings show the increasing

sensitivity of vibrational modes with more complex structures in range of frequencies around

1000 - 2500 Hz.

The stability of the acetabular cup is investigated generally much less than the femoral

component. Georgiou found a poor sensitivity of the vibrational method (50 %) [159]. Pastrav

investigated in his PhD thesis modal frequencies of acetabular cup in different insertion step

on several demonstration experiments, but without deeper insight [173]. The acetabular com-

ponent was investigated in sawbone experiments by Rieger. They focused on the acetabular

cup – femoral stem as a whole body, thus, the direct possibilities of vibrational technique was

not clear [169].

Most of the previous works use the measuring structure mechanical stimulation – ac-

celeration response. The ability to detect the difference could be decreased with additional

soft tissue, the direct of excitation and the power of excitation. The wireless approach of

measuring with no mechanical contact has been investigated. Puers and Marschner tried to

build the telemetry of response data transferring from the electronics placed into the head

of the femoral implant. In vitro, or in vivo experiments was not available [174], [175]. In

another work, the femoral implant has self-exciting system based on the pendulum and the

response is measured by the accelerometer [176], [177]. The ultrasound (Doppler effect), laser

vibrometry, acoustic emissivity and modal parameter extraction have been investigated as

the potential determinant of the implant stability [178], [179], [180], [181], [182], [183].
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Table 1.2: The Summary of the vibrational analysis in field of implant stability

Author Method Excitation Analysis Conclusion

- Response

Li 1995 [161] Spectral analysis –
distortion, frequency
response

Sinusoidal force
applied to the distal
end of the femur.
Response is acquired
by accelerometer
placed near to great
trochanter

sawbone In 21 secure prosthe-
ses were two or less
resonances. From
21 specimens, 20
showed increased
number of resonance
peaks. Early loos-
ening was detected
only in three from
eight specimens.

Li 1996 [160] Spectral analysis –
distortion, frequency
response

Sinusoidal force
was applied to the
distal metaphyseal
– diaphyseal junc-
tion of the femur.
An accelerometer
was placed close to
greater trochanter

sawbone In 21 secure pros-
thesis were two
or on resonances.
From 17 macro-
scopically loosened
stems, 14 showed in-
creased resonances.
Early loosening
was detectable in 3
specimens from 16.

Georgiou [159] Frequency response
vs. radiographic
comparison

Vibration shaker
placed on the knee,
accelerometer is
placed on the sub-
cutaneous greater
trochanter

in vivo 80 % sensitivity to
assess stem failure,
50 % to assess the
cup failure was ob-
served. In compari-
son the vibrational
technique is 20 %
more sensitive than
radiograph.

Pastrav [166] Frequency response
measurement (FRF)

The shaker was
attached to the stem
neck. The force was
measured by the
impedance head at
the same place

in vivo In 45 cases from
53, it was observed
important difference
between cemented
and uncemented
stems. Detection of
insertion end point.

Varini [167] Frequency response
vs. micromotion

Vibrational head
connected to the
stem

in vitro A strong correlation
between the highest
peak amplitude and
micromotion was
observed. R2 =
0.71,p < 0.00001

Rieger [169] Frequency response,
Peak count analysis,
integration of FRF

Chirp pulse at
the lateral condyle.
Laser vibrometry, ac-
celerometers placed
on the medical knee
condyle, on the top
pf great trochanter
and at the crest of
ilium

sawbone FRF magnitude did
not provide an use-
ful information; Inte-
gral analysis is sensi-
tive to stem loosen-
ing, the Peak count
analysis is sensitive
to cup loosening
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Chapter 2

Computational Model of Pelvis

Bone and Acetabular Cup

This chapter is focused on the computational model of pelvis bone and acetabular cup implant.

The first section gives a way how a pelvis geometry and a material field were extracted. A

new method to describe an orthotropic material field with respect to curvature of a outer

pelvis surface is introduced. In the next section the computational model of the pelvis bone is

validated with experimental modal analysis. For this purpose, class of stochastic/deterministic

multi - variable identification algorithms was successfully applied in an identification of the

modal properties of the pelvis bone. A modal updating optimization procedure of the elastic

properties was developed for further refine of the elastic properties.
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2.1 The Rationale

In order to investigate an influence of bone - implant interface on their dynamic response, a

computational model was developed. The modeling process composes from three basic steps.

The first step contains extracting a real geometry of the pelvis bone from the same model

used in experiments. The geometry of pelvis bone is scanned with a CT and consequently seg-

mented to create a 3D model. The second step consists of a method to extract a material field

of the pelvis bone. Material properties are extracted from the CT data and mapped to a new

field of material properties elastic modulus E [MPa], density ρ [m
3

kg ] and Poisson ratio ν [−].

A synthetic bone was used for experiments and also for the computational model. This kind

of bone (Sawbones, The USA) is an orthotropic composite, thus the material properties must

be adequately described. The last step belongs to an updating of the computational model.

The model is calibrated and validated against experimental modal analysis, because this is a

method for dynamical testing and is rather suitable validation technique than the static one

for purposes in this work. Since the material properties of bone are expected to be density

dependent ones, they are expressed as two coefficients power law.

2.2 Preparing of Computational Model

2.2.1 Geometry and Basic Material Properties

The geometry of the pelvis bone was obtained by CT scanning (Phillips Brilliance 64, Phillips)

of the sawbone. The parameters of the CT scan procedure are described in table 2.1:

Table 2.1: Parameters of the CT scanner

Slice number 473

Slice thickness 1 mm

KVP 120 kV

Spacing between slides 0.5 mm

Rows 768

Columns 768

Pixel spacing x = 0.308593 mm, y = 0.308593 mm, z = 0.5 mm

Origin x = -118.5 mm, y = 73.5 mm, z = -804.7 mm

Intensity range -1024 to 1618

The bone is shown on figure 2.1. It is a composite bone suitable fo biomechanical testing.

It is two layered structure, where the outer part is a mixture of glass fibres and epoxy resin.

The inner part is a solid rigid polyurethane foam. The material of these two components

have similar properties as real bone structure. Material properties of synthetic pelvis bone

are described in table 2.2. Discretized bone structure and geometry were as an input to
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Figure 2.1: Synthetic left pelvis bone (Sawbone, USA)

Table 2.2: Material properties of sawbone

Cortical bone (Short fibre filled epoxy)

Longitudinal Tensile Compressive

Density[m
3

kg ] Strength [MPa] Modulus [MPa] Strength [MPa] Modulus [MPa]

1640 106 16000 157 16700

Transverse Tensile

93 10000

Cancellous bone (Rigid polyurethane foam)

Density[m
3

kg ] Strength [MPa] Modulus [MPa]

270 6 155

the segmentation procedure. Segmentation was done by software TurtleSeg (TurtleSeg.org,

[184]) and ITK-SNAP [185]. The histogram of gray density distribution was interpreted by

Gaussian mixture data clustering. Three clusters were recognized: background (-1004.6 ±
134.6), cortical bone (577.6 ± 582.6) and cancellous bone (-882.1 ± 752.1) with the weight

0.33 for all of them (figure 2.2). The automatic 3D segmentation process was finish by the

snake algorithm based on the active contour segmentation method (ACSM) [186]. The result

binary mask was manually corrected for small avoids in sites of very thin bone by manual

segmentation with the help of the interactive TurtleSeg Spotlight procedure [187]. The bone

was scanned before reaming the acetabular cavity.

The output from the segmentation procedure is a surface model of the bones (cortical

and cancellous part) in STL format and the mask of the cortical and trabecular bone. The

triangularization process generated 1, 700 000 triangles. Due to high memory consuming,

the decimation process was applied. The number of triangles was decreased to 10 % (170

000 triangles). After decimation, Laplacian smoothing was applied. In order to get the para-
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Figure 2.2: Mask generated with cluster analysis: red - cortical bone, green - cancellous bone

decimation smoothing patching grid to nurbs

Figure 2.3: Construction of CAD model from raw tessellated data

metric model of the bone, a surface fitting procedure was applied (Geomagic Studio 12, 3D

Systems, USA). Finally, the surface model of pelvis bone and the acetabular cup model were

imported into the finite element software (Comsol AB, Sweden). The finite element model

was used as reference model to validate the custom made finite element framework for up-

dating purposes. The updating framework accepts the finite element mesh from Comsol and

also the mesh generated directly from the CT and segmentation data. The CT based mesh-

ing framework is built on CGAL platform (CGAL, Computational Geometry Algorithms

Library, http://www.cgal.org -[188]). The meshing based with CGAl avoids the expensive

CAD generation model and permits generate a high quality tetrahedral mesh directly from

CT data. A deviation of normal distance was computed to compare the initial mesh model

with NURBS model (figure 2.4). Due to high curvature around the peripheral rim, the devi-

ation is higher in this site (0.2 mm). The parameters of distribution of deviation are 0.021 ±
0.025 mm (maximum 0.457 mm at iliac tuberosity – red landmark). It is taken as sufficient

accuracy of the surface fitting procedure against the initial mesh model. The thickness of the

cortical bone is measured via the algorithm that minimizes the distance between the outer

cortex surface and the interface surface between cortical and cancellous bone. The thickness

is varied from to 0.5 to 5.42 mm (figure 2.5).
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Figure 2.4: Deviation between Stl mesh and surface model [mm]

Figure 2.5: Thickness of cortical shell
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2.2.2 Coordinate system

Anatomical markers are provided for building the coordinate system and for measuring pro-

cedure. Around the peripheral part of acetabula, the four landmarks were extracted (red and

violin landmarkers – figure 2.6):

• Landmark 7: The most inferior point of the anterior end of the lunate surface of the

acetabulum.

• Landmark 8: Point on the acetabulum margin corresponding to where ilium and ilio-

pubic ramus meet.

• Landmark 9: Point on the acetabulum margin furthest away from landmark 7.

• Landmark 10: Point on the acetabulum margin furthest away from landmark 8.

The landmark number seven is associated with x - axis of the coordinate system. The rest

landmarkers are follow:

• Landmark 1: Prominent point on the Pubis.

• Landmark 2: ASIS - the most superior point of the illiac spine.

• Landmark 3: The most anterior superior point of illiac crest.

• Landmark 4: PSIS - apex of the posterior superior illiac spine.

• Landmark 5: The most inferior point on ischial tuberosity.

• Landmark 6: The most inferior point on ischial ramus.

The global coordinate frame is based on the radiological planes. A linear affine transform

was applied to get the coordinate system OGCS suitable for positioning of the acetabular

component. Translation vector is provided by location of fictions acetabular sphere. The

radius and center was obtained with fitting procedure in sense of Non - linear Squares Method

Minimization (NSMM) [189]. Rotation matrix was obtained through the built a plane XY

from four points (7, 8, 9 and 10) placed on the acetabular rim. The normal vector of fitted

plane was obtained by singular value decomposition technique (SVD) [190], [191]. Final rest

two rotation vectors were obtain from the assumption that axe x is associated with the point 7

and due to orthogonal basic the third vector is a cross product of previous two. The graphical

representation and transformation was provided with open source visualization library VTK

(Kitware Inc., USA, Python wrapper. [192])
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Figure 2.6: Anatomical landmarks on the pelvis model

2.3 Modeling of Material Field Based on Real Structural Data

Modeling of bone material properties consists of two important steps. Due to inhomogeneous

bone structure, one can not use a simple approach based on the Young modulus constant

on whole material domain. In the second step, typically, bone material properties are direct

dependent, i.e. rather than using an isotropic model is much more accurate to account an

orthotropic one or at least transversally isotropic one. With a combination of curved and

closed structure like sandwich and mentioned steps, an accurate modeling of material field

needs more carefully look. The modeling of bone anisotropy in sense of locally isotropic ma-

terial properties is a common technique in many works [193], [194], [195]. Generally, it gives

good results validated on static tests with small specimens. Works dealing with comparison

the local isotropy and orthotropy show that there could be a significant accuracy improve-

ment obtained using the orthotropic material model. The major discussion goes around the

definition of principal direction of material. Often, the material directions are based on the

principal stress direction or on technique of minimal/maximal variation of the density or fab-

ric tensor of direction [196], [197], [198], [199]. These methods are employed to estimate the

orthotropic properties, however there are various works, that successfully describe the bone

as a transversally isotropic material. The transverse isotropy was successfully formulated for

both part of the bone, i.e cortical and cancellous one [200], [201] and [202]. In this study on the
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Figure 2.7: First principal vector derived from gradient of scalar field

synthetic pelvis bone, it will not be used pointed methods to describe material orientation,

but the simple approach which could be more easy implement to a commercial software. The

idea of this simple approach is based on the synthetically modeled coordinate field extracted

from suitable sets of partial differential equations. The choose of suitable partial differential

equations is in accordance with physical background (suitable scalar, vector or tensor field).

These scalar, vector or tensor fields must fulfill defined requirements on boundaries and on

directions of coordinates.

2.3.1 Simple Approach to Model Vector Field of Coordinates

The main idea is to find a vector field that is perpendicular to boundary normals. The

basic dimensionless Laplace’s partial differential equation is computed on the pelvis domain

Ω ∈ R3. The details are provided in 2.7.3.

In the figure 2.7, three samples of cortical shell are depicted. The location A is selected

on the ischium bone, the second one B is selected close to acetabular ring and the last one

C is selected on the ramus bone. The surface coming from ischium part is quite flat without

any significant curvature. On the other hand, the curvature of part coming from location B

and C is very significant. It can be seen that vector field between inner and outer surfaces

fulfills the request of a gradient direction suitable to define the first coordinate direction. The

whole coordinate system is depicted in figure 2.8.
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Figure 2.8: Principal vectors of coordinate field

2.3.2 Scalar Field of Material Properties

After defining the coordinate vector field, the next step is to define the scalar material field.

The common procedure is based on the relationship between the CT gray values and bone

density. After calibrating the CT scale (figure 2.9), the structural density and elasticity mod-

ulus could be directly gained from gray intensity according to:

ρ(x, y, z) = grayvaluesthree dim.array (2.1)

Parameters of orthotropic elasticity (E11, E22 = E33) are defined as constants. Poisson ratio

vector (ν12, ν13, ν23) is set to be a constant (0.3, 0.3, 0.3), i.e. independent on the structural

density. Shear modulus G12 = G13 is also taken to be a constant. The shear modulus G23 is

computed as:

G23 =
E22

2(1 + ν12)
(2.2)

The shear modulus G12 is not available in technical sheet of sawbone. Thus, initial values are

taken from the literature [203], [204]:

G12 = 4.3 GPa (2.3)

Material density field represented in three dimensional grid points was interpolated by

trilinear interpolation method. This method was preferred to Least Square fitting procedure

for better performance with very similar results. Practically, due to a discretization error and

a large scatter in structural density of each bone part, the calibration coefficients (figure 2.9)
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Figure 2.9: Relationship between CT HU and material density

are computed in such way, that a difference between real and model mass is minimized (for

1M mesh: difference 1.17 g, 125k mesh: 8.06 g). Nominal values of density are taken as mean

ones. The adopted statistical approach (cluster analysis) simply explains why the magnitude

of density on figure 2.10 is not equal to nominal one. In the figure 2.10 an example of the

scalar field of density is shown for a raw FE mesh generated by CGAL Mesher. The mesh

consists of around 1M linear elements. The field is interpolated by trilinear interpolation core

and integrated in gauss points of mesh. The lower range of density is cut of, because due to

small gaps in the model (technological gaps in synthetic pelvis bone). So, there should not

be an element with density equal to zero.

2.4 Validation and Update of the Numerical Model

In order to validate and calibrate numerical model of the pelvis, the experimental modal

analysis were performed. The modal analysis as comparison criterion was chosen because it is

not a destructive test. Experimental results are compared with the numerical modal analysis

of the computational model. The following steps were considered to take as the most accurate

comparing as possible:

• Compute modal parameters from finite element model of the pelvis.

• Perform experimental modal analysis(EMA).

• Extract modal parameters from EMA by MIMO identification algorithms.

• Validation EMA results.

• Compare EMA results with numerical ones and consequently update numerical model.
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Figure 2.10: Scalar field of density [ kg
m3 ]

2.4.1 Numerical Modal Analysis of the Pelvis Bone Model

Finite element model was created in Comsol software (Comsol AB). Mesh convergence ex-

pressed at L2 norm was monitored for the first five deformable modes. The convergence

tolerance was set to 5 %. Two cases of mesh quality were considered. The best one consists

of 2M elements with average length 0.6 mm for cortical shell and 4 mm for cancellous core.

This mesh was taken as the converged one and it was referred with EMA results. The worst

mesh consists of 100 000 elements with average length 4 mm for both part of the bone (figure

2.11). Boundary conditions are very simple. The model is in free-free mode that is suitable

to sufficient replicate in real model. Geometry is replicated according to CT data. Material

properties are modeled according to previous section 2.3. Linear tetrahedral element was se-

lected. Energy dissipation was not considered. The solution was obtained with direct solver

(MUMPS). The results are shown in table 2.3 and the convergence plot for first five modes in

figure 2.12. Corresponding modal vectors are shown in figure 2.13. The vectors were normal-

ized to M - norm (vTMv = 1). It can be clearly recognized that the first mode is torsional,

where the middle part (around acetabulum) makes a node and the ischium and ramus part

are moving in anti - phase. The next modes are much more complicated, but it can still be

recognized the combination of the bending and torsional shape.
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Figure 2.11: Finite element mesh scenarios [m]
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Figure 2.12: Convergence plot for the first five modes
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Table 2.3: Natural frequencies of the numerical model [Hz]

# mode converged mesh worst mesh error [%]

1. 870 944 8.51

2. 932 1018 9.23

3. 1306 1432 9.65

4. 1401 1540 9.92

5. 1711 1880 9.88

mode 1. mode 2. mode 3. mode 4. mode 5.

Figure 2.13: Modal shape vector of pelvis model from numerical analysis

2.4.2 Experimental modal analysis of the pelvis sawbone

Experimental modal analysis (EMA) was performed on the sawbone of the right hemipelvis.

As excitation source, an impact hammer with hard tip was used. The chosen of only one

driven point seems to be enough for accurate description of dynamical behavior of the pelvis

bone. For adequate acquiring, 228 points were excited. These 228 points are normal degree of

freedom (DOF). Obtained response is always just the projection of the response to a surface

normal as the excitation as well. The points were selected in grid with approximate distance

(10 mm) between each nodes (figure 2.14). Modal analysis were performed with configuration

in table 2.4. The output of frequency response estimator is composed from real, imaginary

part and coherence function formulated according H1. The pelvis bone was placed on a

soft foam. First rigid mode starts in frequency at 18 Hz. This is far enough from the first

deformable mode (879.23 Hz), thus it could be taken as a boundary that does not affect the

free - free configuration of the pelvis model. The mass loading effect could not occur because

the used accelerometer is only 3 g weight. The whole pelvis is 317.29 g. The reciprocity test

showed the correlation between two FRFs r2 = 92 % (p < 0.001).
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(a) Experimental configuration(DAQ, accelerometer
and impact hammer)

driving point

(b) Measuring grid

Figure 2.14: Measuring configuration and virtual grid on the geometry of pelvis

Table 2.4: Configuration of modal analysis experiment

sampling frequency [Hz] 4000

FFT block size[samples] 4000

window exponential

trigger level [N] 10 %

pre-trigger samples [samples] 100

FRF estimator H1

averaging RMS

number of hint 10

weighting mode linear

2.4.3 MIMO Identification of Modal Parameters

The modal parameters were extracted from frequency response at each normal DOF. For this

purpose the algorithm based on the least square complex frequency (LSCF) was employed. To

refine the results (add FRF (co)variances), extended iterative stochastic algorithm in sense

of Maximum likelihood (ML) was developed [205], [206], [207], [208], [209]. All algorithms

are coded in Python language (www.python.org), critical part are implemented in C, with

Math Kernel Library support (MKL). An average of all FRFs is shown in bode plot depicted

in figure 2.15. The natural frequency, damping ratio, residues and uncertainty parameters

were extracted (table 2.5). For finite model update, proportional damping scalar coefficients

were calculated (α = 0.589674332, β = 1.48727709e − 06). The identified frequencies are

clearly seen in so called stabilization diagram (figure 2.16). Where red dots mean poles which

are not stable (i.e., real part is positive). Green dots mean the stable pole, but the damping

ratio is out of range (0.05 - 10 %). Finally, black circles mean the stable physical pole. The
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Figure 2.15: Bode plot for averaged FRF

Table 2.5: Identified Modal Parameters

# mode f [Hz] σf [Hz] ξ [%] σξ [%] MPC [-]

1. 879.23 0.09363 0.8315 0.0106 0.9826

2. 952.51 0.07241 0.9454 0.00753 0.9201

3. 1304.63 0.1919 1.048 0.0143 0.9715

4. 1408.76 0.2814 1.286 0.0197 0.9398

5. 1719.93 0.2415 1.259 0.013 0.9712

stabilization diagram was constructed for 25 orders of the polynomial base. However it is clear

that the order of this system is much smaller (fifth order), the over modeling is acceptable to

recognize unstable computational poles from stable physical ones. The stabilization diagram

shows the average of all FRFs. For real polynomial coefficients, the desired order is reached

with the doubled one.

2.4.4 Validation EMA Results

To achieve high quality modal model, it is necessary to validate modal parameters. For this

purpose, there are several approaches based on the correlation between each modal shape

vectors [210], [211], [212]. Due to low level excitation or low SNR ratio, the mode could not

be well excited and than it could face the low degree of orthogonality to the others modes. The

idea of vector orthogonality is used in MAC (modal assurance criterion). Another criteria,

developed for the shape vector, is MVC (Modal Vector Complexity), MPC (Modal Phase

Collinearity) which basically mean the degree of the vector complexity. The auto MAC matrix
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Figure 2.16: Stabilization plot up to twenty fiftieth order

is represented by the bar graph (figure 2.17). The value close to one means no orthogonality

between two vectors and the value close to zero means existing orthogonality between two

vectors. In the picture is clearly seen that are almost orthogonal. The MSF (Modal Scale

Factor) gives the additional information about the proportionality between two vectors(figure

2.17). The vector complexity is graphically shown in figure 2.18. It can be seen that second

mode is slightly more complex.

2.4.5 Comparing

The modal frequency and modal shape vector from experimental modal analysis are correlated

with the numerical modal output. The frequency correlation is expressed in relative error term

in table 2.6. Modal shapes correlation is expressed in MAC values (figure 2.19) and visual

Table 2.6: Relative error between experimental and numerical results (natural frequency
[Hz])

# mode experimental numerical (converged mesh) error [%]

1. 879.23 870.33 1.02

2. 952.51 932.94 2.11

3. 1304.63 1306.12 0.15

4. 1408.76 1401.22 0.49

5. 1719.93 1711.54 0.47
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Figure 2.17: Auto MAC and auto MSF of identified modal shape vectors

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0.05
0.10

0.15
0.20

0.25

(a) mode 1.

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0.02
0.04

0.06
0.08

0.10
0.12

0.14
0.16

0.18

(b) mode 2.

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0.05
0.10

0.15
0.20

0.25

(c) mode 3.

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0.05
0.10

0.15
0.20

0.25
0.30

(d) mode 4.

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0.02
0.04

0.06
0.08

0.10
0.12

0.14
0.16

0.18

(e) mode 5.

Figure 2.18: Modal vector complexity
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Figure 2.19: MAC correlation between EMA and numerical results

correlation (figure 2.20). Because the experimental shape vectors are obtained in the normal

DOF (in outer normals of pelvis surface), also the numerical modes have to be projected

to the normals of the outer surface. The experimental modal shapes correlated well with

numerical ones, computed in Comsol. The worst correlation was found for the second mode

(MAC = 65 %). Usually the threshold 65 % is taken as the bottom range to recognize the

mode as correlated.

2.5 Update of FE Model

However the model is accurate with the initial parameters, the model would be updated

with experimental results from modal analysis. In this thesis, an update technique based

on sensitivity analysis is employed. The updating procedure is described in chapter 2.7.4.

Basically, it is an optimization process, where the objective function is minimized in sense of

natural frequency from EMA and FE model. The material constants described in previous

section are the minimization parameters. After obtaining a converged solution of iteration

solver (usually 3 - 10 iterations, figures 2.21, 2.22), the updated material parameters are gained

(table 2.7). Together with sensitivity analysis (figure 2.23) and assumptions that material

parameters are normally distributed, standard deviation can be optionally described (tabs.

2.7 and 2.8).

Table 2.7: Updated material parameter [GPa]

G12 σG12

4.531 0.0122
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Figure 2.20: Modal shape vectors from EMA and from numerical modal analysis
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Figure 2.21: Iteration solver output - a converged solution
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Table 2.8: Updated relative error between experimental and numerical results (natural
frequency [Hz])

# mode experimental numerical (converged mesh) error [%]

1. 879.23 879.21 0.002

2. 952.51 952.01 0.053

3. 1304.63 1304.98 0.027

4. 1408.76 1408.95 0.014

5. 1719.93 1719.11 0.048

2.6 Summary

This section describes a complete survey of modeling and validation of computational model

of the pelvis. The computational model is represented in discretized form suitable for finite

element method. It provides a complex material properties based on the real bone. In this case

the real data are based on the simplified synthetic bone model. The real bone data are not

available yet and even are not suitable for the first validation process, which is mainly focused

on the proposed algorithm. But, in the possible future work, the use of data from real bone

could increase the model versatility. The geometry of the pelvis bone was segmented with

semi automatic process based on the sophisticate machine learning and graph cut algorithms.

The orthotropic material behavior of the bone was modeled with approach based on the like -

diffusion process. This implementation requires only small amount of the computational time

because of solving just simple Laplace equation with easy boundary conditions. It would be

pointed out that it is a method, which not reflects the real physical behavior, but just fits

the orthonormal direction of the material field as well as possible in contrast the method

that are based on the Wolf’s law or haversian system orientation [197], [213]. The material

field generated with diffusion equation could be problematic in some very sharp corners. It is

possible to make some tune up with the coefficients or use it another class of equations which

have a similar properties suitable for modeling the vector coordinate field. The composite

structure of the bone was modeled as inner and outer surface by manual way - this is a

drawback of proposed model of vector field, which needs specify the boundaries explicitly. In

a future work a more robust solution based on the combination of the finite element meshing

algorithm, graph cut partitioning to formulate appropriate boundaries automatically would

be used. Validation process based on the experimental modal analysis was used because it is

non destructive test, however possible just in the sense of expectation of the linear properties

of the specimen under the test. The modal analysis has been recognized useful in problematic

pelvis bone in real in vitro environment, but with some limitation [214], [215], [216]. The

pelvis bone has a quite difficult geometry and the damping properties are not available yet.

It is a time consuming process, but it leads to very important results to help to understand
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the biomechanical behavior of the pelvis bone. In this chapter the EMA was successfully

used to correlate finite element model with experimental results with very good agreement

(MAC in range 65 - 85 %). Also the simple damping properties were extracted (damping

ratio or Rayleigh coefficients). This model expects the proportional damping, however some

shape vectors were slightly complex. It suggest some errors in validation process, or the non

proportional behavior of the damping. In case of real pelvis bone it is necessary to refine

the damping model and use more sophisticated registration of measuring grid. In this ex-

perimental modal analysis the stochastic/deterministic identification algorithms successfully

used in common structural engineering were employed. The refinement of material properties

was done by the sensitivity based optimization scheme. This update leads to an accurate

identification of linear material properties with uncertainty level including the uncertainties

of experimental frequencies, initial material guess and discretization process.

2.7 Theoretical Background

2.7.1 Estimation of Modal Parameters

Formulation of Transfer Matrix

The estimation framework is based on the optimization procedure on the experimental fre-

quency response of linear invariant system in so called Matrix Description formulation. Con-

sider Newton’s equation of motion:

Mẍ(t) + Cẋ(t) +Kx(t) = f(t) (2.4)

With M , C and K respectively the mass, damping and stiffness matrices, and f(t), x(t) the

applied force and structural response vector. The frequency equivalent given by the Laplace

transform is formulated as:

G(s)X(s) = F (s) (2.5)

where G(s) = Ms2 + Cs+K is the dynamic stiffness. After a matrix inversion this yields

F (s)H(s) = X(s) (2.6)

With H(s) the transfer function matrix. This can by further expressed as

H(s) = G(s)−1 =
Gadf (s)

|G(s)| (2.7)

The numerator Gadj is an (Nm×Nm) matrix of polynomials of order 2(Nm−1). The denom-

inator is a polynomial of order 2Nm. Both are in the s - domain. Therefore, Eq. (2.7) could
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be rewritten

H(s) =
B(s)

A(s)
=


B1,1(s) · · · B1,Nm(s)

...
. . .

...

BNm,1(s) · · · BNm,Nm(s)


A(s)

(2.8)

This formulation of the transfer function matrix is also called common denominator model

and it is a special case of the more general Matrix Fraction Description (MFD) applied in

Polyreference Least Square Complex Frequency Estimator (PLSCF) [217], [218]. In order to

get the modal residue matrices, a pole - residue parametrization is useful.

H(s) =

Nm∑
r=1

Rr
s− pr

+

Nm∑
r=1

R∗r
s− p∗r

(2.9)

with pr and Rr the poles and (Nm ×Nm) residue matrices of rth mode. Further, to get the

modal shape φr and modal participation factor vector Lr, the non defective residue matrix

can be decomposed as [219]

Rr = Qrφrφ
T
r = φrL

T
r (2.10)

The estimation model according Eq. (2.8) at discrete frequency f between output o and input

i is modeled as

Ĥk(Ωf , ϑ) =
Bk(Ωf , ϑ)

A(Ωf , ϑ)
(2.11)

where

Bk(Ωf , ϑ) =

n∑
j=0

bkjΩ
j
f , A(Ωf , ϑ) =

n∑
j=0

ajΩ
j
f (2.12)

for k = 1, 2, ..., NoNi and order n. The coefficients aj , bkj are the unknown parameters ϑ to

be estimated. A discrete time domain model with generalized transform variable Ωf is used.

Ωf = e−iωfTs (2.13)

To obtain non - trivial solution of Eq. (2.11), the constraint must be imposed, for example,

fixing the highest denominator coefficient , i.e. an = 1. After linearisation proposed in [220],

the model from Eq. (2.11) can be estimated as

Wk(ωf )

 n∑
j=0

bkjΩ
j
f −

n∑
j=0

ajΩ
j
fHk(ωf )

 ≈ 0 (2.14)

for k = 1, ...NoNi and f = 1, ...Nf the number of spectral lines. The quality of the estimation

in sense least squares and further maximum likelihood is improved by introducing weighting

function Wk(ωf ). The choice of this function is discussed later. The cost function to minimize
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according to least square sense is given

l(ϑ)LS =

NoNi∑
k=1

Nf∑
f=1

|Bk(Ωf , ϑ)Wk(ωf )−A(Ωf , ϑ)Hk(ωf )Wk(ωf )|2 (2.15)

Linearized Least Square Solution

A least square solution of Eq. (2.15) is formulated with explicit Jacobi matrix J as

JHJϑ = 0 (2.16)

where the expression JHJ has a following structure

JHJ =


ΓH1 Γ1 0 · · · ΓH1 Φ1

0 ΓH2 Γ2 · · · ΓH2 Φ2

...
...

. . .
...

ΦH
1 Γ1 ΦH

2 Γ2 · · · ∑NoNi
k=1 ΦH

k Φk

 (2.17)

With the entries of the submatrices given as

[ΓHk Γk]rs =

Nf∑
f=1

|Wk(ωf )|2Ωr−1H

f Ωs−1
f

[ΦH
k Φk]rs =

Nf∑
f=1

|Wk(ωf )Hk(ωf )|2Ωr−1H

f Ωs−1
f

[ΓHk Φk]rs =−
Nf∑
f=1

|Wk(ωf )|2Hk(ωf )Ωr−1H

f Ωs−1
f (2.18)

The structure of these submatrices is a Toeplitz one and could be efficiently constructed by the

FFT algorithm. Since the submatrices ΓHk Γk are not subjected to errors and the parameter

constraint affected only the denominator coefficients ϑA, the numerator coefficients ϑBk
can

be eliminated from the Eqs. (2.17).

ϑBk
= −[ΓHk Γk]

−1[ΓHk Φk]ϑA (2.19)

and therefore, the solution for the denominator coefficients ϑA[
NoNi∑
k=1

[ΦH
k Φk]− [ΓHk Φk]

H [ΓHk Γk]
−1[ΓHk Φk]

]
ϑA = DϑA ≈ 0 (2.20)
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Which is found as

ϑALS
=

(
−D[1 : n, 1 : n]−1D[1 : n, n+ 1]

1

)
(2.21)

Another possibility solution for denominator coefficients is to force the norm ATA = 1. This

yields to a generalized eigenvalue problem with diagonalized covariance matrix on the right

side(Generalized mixed Least Square - GTLS).

The roots of the computed denominator polynomial A(Ω, ϑA) have to be transformed to

the Laplace domain in sense of impulse - invariant transformation (z = esTs). Than, from the

poles (roots) pr (r = 1, ..., Nm) the modal damped frequency fdr and damping ratio ζr are

obtained

fdr =
Im(pr)

2π
, ζr =

Re(pr)

|pr|
(2.22)

Residue matrix Rr (No ×Ni) is computed from the coefficients ϑ as

Rkr = lim
Ω→pr

Ĥk(Ω, ϑ)(Ω− pr) (2.23)

Maximum Likelihood Estimator

With assumption that model uncorrelated FRFs are complex normally distributed, the max-

imum likelihood cost function is

l(ϑ) =

NoNi∑
k=1

Nf∑
f=1

Wk(ωf )2 |Ĥk(Ωf , ϑ)−Hk(ωf )|2
var(Hk(ωf ))

(2.24)

The solution is obtained by minimization of the non - linear cost function Eq.(2.24) respect

to the parameters ϑ. Due to quadratic cost function, the Gauss - Newton like algorithm is

used to solve the optimization problem. The mth G - S iteration step solved for δϑ is given

as

JHmJmδϑ = −JHm em (2.25)
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where em is the residual vector and Jm the Jacobian matrix. The residual vector is defined

as

e(ϑ) =



W1(ω1)
Ĥ1(ω1, ϑ)−H1(ω1)

var(H1(ω1))
...

W1(ωNf
)
Ĥ1(ωNf

, ϑ)−H1(ωNf
)

var(H1(ωNf
))

W2(ω1)
Ĥ2(ω1, ϑ)−H2(ω1)

var(H2(ω1))
...

WNoNi(ωNf
)
ĤNoNi(ωNf

, ϑ)−HNoNi(ωNf
)

var(HNoNi(ωNf
))



(2.26)

The explicit Jacobi matrix has the same block structure as Jacobi matrix (2.17) with sub-

matrices Γk and Φk.

Γk =


Wk(ω1)

Ω0(ω1)√
var(Hk(ω1))A(ω1, ϑ)

· · · Wk(ω1)
Ωn(ω1)√

var(Hk(ω1))A(ω1, ϑ)
... · · · ...

Wk(ωNf
)

Ω0(ωNf
)√

var(Hk(ωNf
))A(ωNf

, ϑ)
· · · Wk(ωNf

)
Ωn(ωNf

)√
var(Hk(ωNf

))A(ωNf
, ϑ)


(2.27)

and

Φk =


−Wk(ω1)

Ω0(ω1)Bk(ω1, ϑ)√
var(Hk(ω1))|A(ω1, ϑ)|2

· · · −Wk(ω1)
Ωn(ω1)Bk(ω1, ϑ)√

var(Hk(ω1))|A(ω1, ϑ)|2
... · · · ...

−Wk(ωNf
)

Ω0(ωNf
)Bk(ωNf

, ϑ)√
var(Hk(ωNf

))|A(ωNf
, ϑ)|2

· · · −Wk(ωNf
)

Ωn(ωNf
)Bk(ωNf

, ϑ)√
var(Hk(ωNf

))|A(ωNf
, ϑ)|2


(2.28)

Thus, the solution is rewritten as


ΓH1 Γ1 0 · · · ΓH1 Φ1

0 ΓH2 Γ2 · · · ΓH2 Φ2

...
...

. . .
...

ΦH
1 Γ1 ΦH

2 Γ2 · · · ∑NoNi
k=1 ΦH

k Φk





δϑB1

δϑB2

...

δϑBNoNi

δϑA


= −



ΦH
1 Φ1e1

ΦH
2 Φ2e2

...

ΦH
NoNi

ΦNoNieNoNi∑NoNi
k=1 ΦH

k ek


(2.29)
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According to decoupling denominator and numerator parameters in Eq. (2.19), the pertur-

bation δϑBk
of the parameters ϑBk

can be computed

δϑBk
= −[ΓHk Γk]

−1
(
[ΦH
k Φk]

Hek + [ΓHk Φk]δϑA
)

(2.30)

And finally, the solution of the perturbation δϑA can be computed according to elimination

on Eqs. (2.25) and (2.30)[
NoNi∑
k=1

[ΦH
k Φk]− [ΓHk Φk]

H [ΓHk Γk]
−1[ΓHk Φk]

]
δϑA = −

[
NoNi∑
k=1

ΦH
k − [ΓHk Φk]

H [ΓHk Γk]
−1ΓHk

]
ek

(2.31)

Choice of Weighting Function

The weighting function improves the LS estimator performance. In this estimator, a determin-

istic weighting function was selected according to [221] for the iterative approach as function

of parameters from previous step

W 2
k (ωf ) =

1

|A(ωf , ϑm−1)|2 (2.32)

In the case of linear solution, the weighting function is [222]

W 2
k (ωf ) =

|Hk(ωf )|2
var(Hk(ωf ))

(2.33)

Computational Notes

The expression of the ϑA coefficients is done by substituting the Eq. (2.19) to the last n+ 1

equations in Eq. (2.16). The G - S iteration scheme uses the well known algorithm named

Levenberg - Marquardt with additional Fletcher’s modification. The main advantages of

proposed algorithm is the adaptive control of the iteration step (i.e. it is a combination

of the Gauss - Newton and gradient descent method) [223], [224], [225]. More information

about the implementation remarks can be found in [226], [227] and [228].

Estimation of Uncertainties

The uncertainty propagation framework is based on the [229], [230], [231]. Due to statistical

nature of ML estimator, it is possible derive the Gaussian uncertainties of the modal param-

eters from the covariance matrix of common denominator parameters in the last converged

iteration step. Thus, the covariance matrix of poles is computed by linearisation as

Cov(z) ≈ ∂z

∂d
Cov(d)

(
∂z

∂d

)T
(2.34)
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Where the differentiation of poles z respect to denominator coefficients d is computed ac-

cording to [232]. After transforming the covariance matrix of poles into Laplace domain via

Impulse Invariant Transform, the variance of poles, frequency and damping can be computed.

2.7.2 Modal Quality Factors

Modal Assurance Criterion (MAC)

The reliability and quality of the estimated model is expressed in a well known comparing of

two vectors, in modal analysis called as MAC (Modal Assurance Criterion). This evaluating

variable is formulated for the two real or complex valued vectors as

MAC(ψ1, ψ2) =

(
| ψH1 · ψ2|+ |ψT1 · ψ2|

)2(
ψH1 · ψ1 + |ψT1 · ψ1|

) (
ψH2 · ψ2 + |ψT2 · ψ2|

) (2.35)

This is an extended expression of the MAC from [210]. It avoids some drawbacks of the

classical MAC.

Modal Phase Collinearity (MPC)

In order to quantify if the vector is monophase (close to real valued vector), the variances

and covariances between real and imaginary part is evaluated [233], which results to a simple

expression

MPC(ψ) =

( | ψH · ψ∗|
‖ψ‖ · ‖ψ∗‖

)2

(2.36)

Modal Scale Factor (MSF)

The function of modal scale factor provides a normalized estimate of modal participation

factors for two references of a specified mode [211].

MSF (ψ1, ψ2) =
ψH1 · ψ∗2
ψH1 · ψ∗1

(2.37)

2.7.3 Coordinate Field Formulation

The coordinate field was interpreted as a simple vector field, where only normal component

is computed from scalar field defined by the Laplace equation presented a potential field.

−∇ · (∇U) = 0 (2.38)

With adequate Dirichlet boundary condition on opposite faces ∂Ωa, ∂Ωb

U = 0 on ∂Ωa and U = 1 on ∂Ωb (2.39)
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and Neumann type boundary at any other boundary

n · (∇U) = 0 (2.40)

The solution U represents a scalar field and its gradient

−∇U (2.41)

Solution of the potential field was found with Galerkin finite element method.

Transformation Rules

The base vector starts from the first basis vector v obtained from as the gradient or vector

from solving the previous equalizations on given domain Ω. The first base vector is defined

as

e1 =
v

|v| (2.42)

The second base vector is defined:

e2 =
v̄ − (v̄ · e1)e1

|v̄ − (v̄ · e1)e1|
(2.43)

where v̄ represents a vector defined by user. Usually, v̄ is one of the global base vector. And

finally, the third base vector is a cross product of previous two ones.

e3 = e1 × e2 (2.44)

In order to recognize a different quantification of the mathematical object such vector or

tensor undergoes non orthonormal transformation, it is useful to note contravariant and

covariant transformation.

Lets begin with example of transformation in sense of tensor transformation and write

down it in Einstein summation notation.

Tn = niT
i (2.45)

The superscript indicates contravariant indicies and subscript indicates covariant indices.

More, precisely - contravariant formulation:

T i,x =
∂ui
∂xj

T j,u (2.46)
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or - covariant formulation

Ti,x =
∂xj
∂ui

Tj,u (2.47)

Metric tensor g is also formulated in two manner:

gij = (ei, ej) =
∂ui

∂xk

∂uj

∂xk
or gij = (ei, ej) =

∂xk
∂ui

∂xk
∂uj

(2.48)

Transformation is than given by the three orthonormal column vectors. Although, if the

transformation is orthonormal, than the both formulation coincidence and the metric tensor is

identity. This assumption of orthonormality is required and fulfilled. Than, the transformation

matrix is given by three orthonormal base column vectors.

n =

 e11 e12 e13

e21 e22 e23

e31 e32 e33

 (2.49)

And any vector or tensor is transformed according to transformation rule (2.45).

2.7.4 Experimental - Numerical Model Updating

Problem Formulation

The finite model is updated by natural frequencies from EMA. The identification procedure

forces the cost function to be minimized.

Θ =

I∑
i=1

Wi

(
f̂i − fi
f̂i

)2

(2.50)

with the weighting matrix

Wi =


1

var(f̂1)
0

. . .

0 1
var(f̂I)

 (2.51)

The Eq. (2.50) is minimized in LS sense, which needs the differentiation of natural frequencies

λ respect to the design variables p. After finite element discretization, the discrete algebraic

equations are obtained in the matrix form

KΨ +MΨΛ = 0 (2.52)
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After rearranging the Eq. (2.52) and pre - multiplying by the ith eigenvector

ΨT
i (K +Mλi)Ψi = 0 (2.53)

Differentiating of Eq. (2.53) respect to design variables pi and taking the symmetry of stiffness

and mass matrices yields

2
∂ΨT

i

∂pj
(K − λiM) Ψi + ΨT

i

(
∂K

∂pj
− ∂λi
∂pj

M − λi
∂M

∂pj

)
Ψi = 0 (2.54)

Fulfill the Eq. (2.53) requests that differentiation of eigenvector respect to design variables

must be zero. Further assuming that eigenvectors are mass normalized and mass matrices

are design variable independent, the differentiation of natural frequencies respect to design

variables is
∂fi
∂pj

=
1

8π2fi

(
ΨT
i

∂K

∂pj
Ψi

)
(2.55)

with λi = (2πfi)
2 Assuming Ke element matrix contains the operators Be independent on

design variables, differentiation reduces to

∂fi
∂pj

=
1

8π2fi

Ne∑
e=1

(
(ΨT

i )e

∫
Ve

BT
e

∂Ce
∂pj

BedVe(Ψi)e

)
(2.56)

This expression results to an important first order linearized model response in terms of sen-

sitivity coefficients Sij . Due to ill conditioned sensitivity matrix (different magnitude between

the design variables), every coefficient Sij is expressed as

Sij =
∂fi
∂pj

pj
fi

(2.57)

Build the quadratic cost function from sensitivity matrix S with penalization matrix W

results to a local quadratic approximation of cost function

e = (Sx−∆f)TW (Sx−∆f) (2.58)

where ∆f = fnew−fold
fold

and x = pnew−pold
pold

are vectors containing relative changes of objective

and design variables.

Bounds and Constraints

The bounds must be formulated for the relative change of criteria in optimization routine.

The box constraints for maximum allowable parameter change during one iteration step and

absolute value of parameters are imposed. The second sets of constraint must be handled in
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parameter correction. The bounds are

x ≥ xs and x ≤ xs (2.59)

with respect to updated parameters

pk+1 = (1 + x)pk (2.60)

It follows that absolute bounds must be imposed as

x ≥ ps
pk
− 1 and x ≤ ps

pk
− 1 (2.61)

In order to preserve the positive definiteness of elasticity matrix, non - linear constraints must

be imposed such

|µ12| >
√
E1

E2
; |µ23| >

√
E2

E3
; |µ31| >

√
E3

E1
(2.62)

and linear constraints

E11 > 0; E22 > 0; E33 > 0; G12 > 0; G23 > 0; G31 > 0 (2.63)

Solution of Cost Function

The evaluation of cost function is based on the FE model. The finite element model is fo-

mulated via Galerking method with linear tetrahedral elements. The generalized eigenvalue

problem is solved with Davidson type eigen solver implemented in SLEPc library [234], [235],

[236] and [237]. The minimization of the cost function formulated in eq. (2.7.4) is solved by Se-

quential Least Squares Programming optimization method (SLSQP). Unlike searching global

minimum of cost function, the minimum of local approximation is searched. This approach

avoids expensive FE evaluation in every steps [238], [239], [240] and [241]. The identification

framework was written in python language with Numpy/Scipy modules [242], [243], [244] and

[245]. The fast algorithmic differentiation of elasticity matrix was solved via Theano package

[246], [247].
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Chapter 3

Influence of Shared Contact Area

to Dynamic Response

This chapter provides a numerical analysis of pelvis bone - implant - probe analysis with

various contact conditions. These conditions are changed in mean of different depth of reaming

of acetabular bed. This leads to a parametric change of shared contact area. For every level

of reaming, numerical modal analysis is performed. Computational model is based on model

proposed in chapter 2. Results show a potential correlation of modal parameters and contact

area.
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3.1 Introduction

Behavior of a bone - implant interface in time or frequency domain under various conditions

can reflect the anchoring of an implant in a bone bed. There could be expected that a factor

influencing a response of the system is quite complex. One could have to account phenomenon

of the stress stiffening, contact surface varying, material properties distribution in a bone

around the implant and phenomenon of friction in the interface. However, modeling of those

phenomenons together is an expensive task with possible uncertain results. Especially, a

combination of strong non - linearities such friction with stiffening effect would be a challenge.

In this part of thesis, a much more clear and reliable simulation is presented. It is based on

a validated computational model (chapter 2) with different reaming conditions of acetabular

bed. Although this model does not account complicated frictional contact behavior, it can

still gives an important information how the different shared contact area impacts a dynamic

properties of bone - implant - probe system.

3.2 Method

3.2.1 Computational Model

Geometrical and material model of the pelvis bone is taken from chapter 2. The acetabular

implant is SF - type (Beznoska, Czech Republic). The diameter of the implant is 58 mm. A

measuring device is connected through the thread placed in the central hole to the implant.

This beam represents a measuring probe of the initial fixation (figure 3.1). The connected

beam is 100 mm length and diameter is 10 mm. The material properties are in table 3.1. The

measuring probe is taken as an essential part of measuring strategy. This solution preferable

because there is no other option how measure an initial fixation of acetabular implant after

insertion in a patient. Numerical model was formulated with finite element method (Comsol

Table 3.1: Material properties of implant - probe system

Young modulus [MPa] Poisson ratio [-] density [ kg
m3 ]

implant (Ti alloy 6Al–4V) 110000 0.3 4500

probe (Steel) 210000 0.3 7800

Multiphysics, Comsol AB). The implant and the probe were discretized with linear tetrahedral

elements. The mesh of bone was taken from chapter 2 with additional convergence study

(figure 3.2).

The bone is in free - free conditions for modal analysis. Hemispherical cup of implant is

positioned at 45◦ abduction and 25◦ anteversion [122]. The coordinates and orientation of

the implant are recomputed according to local coordinate system defined in chapter 2. The

material properties of implant and probe are assumed to be linear and homogeneous.
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pelvis bone implant

probe

Figure 3.1: Computational model of the pelvis - implant - probe

3.2.2 Modal Parameters Sensitivity and Correlation

To find out whether the modal parameters are influenced by the parametrized reaming depth,

a sensitivity and a correlation analysis are performed. The sensitivity analysis for the ith

damped modal frequency fi, modal shape vector(magnitude, shape) φi and further Qi quality

factor, modal participation factors (ui, vi, wi). The last two variables are additional for

monitoring of changes in energy losses and relative change in modal shape contribution. Due

to problematic formulation of the explicit sensitivity matrix, the parametric sensitivity was

taken into account. This method employs a so called sensitivity ratio SR as:

SR =
∂F (x)

∂x

x0

F0

∣∣∣∣
x=x0

(3.1)

This expression means local normalized partial derivation in normal point. The perturbation

around the normal point is usually 5 % [248],[249]. In order to account global sensitivity

amount, a modified version of SR is proposed.

SRglobal =
1

N

i=N∑
i=1

SR2
i (3.2)

Where N means number of evaluation points. The correlation between the contact area and

the modal parameters is expressed in terms of linear regression including a determination
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Figure 3.2: Convergence plot of first ten modes of computational model

parameter and non - parametric Spearman rank - order correlation coefficient [250], [251],

[252].

3.3 Results

3.3.1 Dynamic Properties of Implant - Probe

In order to identify and properly match the modal shape vectors and frequencies to each

component, the separate modal parameters of the hemispherical cup implant and assembly

implant - probe were investigated. The models of the implant and the assembly were in

free - free conditions to capture their behavior after implanting into a bone. First modes

were selected in according to the experimental frequency range. In the figure 3.3, the modal

shape vector of the implant are depicted In the figure 3.4 the modal shapes of the assembly

are depicted. The modal shapes and associated modal frequencies are show in figure 3.5.

According to shape and contribution of each mode, the modes were associated with every

part of measured system (i.e. bone, implant, beam). First five modal solution without rigid

modes were extracted and identified to be possibly excitable by the experimental device. As

one can see, the first natural frequencies of the implant starts in significantly higher frequency

range compared to the implant - probe system. Due to strong symmetry of the implant, the

shapes are symmetric too. In the case of the beam connected to the implant, its modal shapes

are also symmetric with mainly bending mode. The whole system (bone - implant - probe)
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(a) mode 1.
4591 Hz

(b) mode 2.
4599 Hz

(c) mode 3.
112081 Hz

(d) mode 4.
11241 Hz

(e) mode 5.
19346 Hz

Figure 3.3: Modal shape vectors and frequencies of the implant

(a) mode 1.
694 Hz

(b) mode 2.
695 Hz

(c) mode 3
4238 Hz

(d) mode 4.
4239 Hz

(e) mode 5.
7935 Hz

Figure 3.4: Modal shape vectors and frequencies of the implant - probe

(a) mode 1.
697 Hz

(b) mode 2.
713 Hz

(c) mode 3
1001 Hz

(d) mode 4.
1067 Hz

(e) mode 5.
1401 Hz

Figure 3.5: Modal shape vectors and frequencies of the bone - implant - probe
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shows that the modal properties of the bone are strong influenced by the added mass from

cup - beam system and also the additional stiffness coming from the implant (implant and

bone surfaces are bonded).

3.3.2 Contact surface influence

Contact interface is recognized as the one of the possible factor influencing the stiffness of the

contact interface. In that order, the contact surface should be investigated to quantify the

influence of the contact surface area on the response of the bone - implant - probe system.

For that, the implant system is placed into the different depth of reamed cavity around the

rotational axis of the implant - probe. The different inserting depth of implant reflects the

different amount of the shared contact area between the implant and the bone. The contact

level statuses are depicted in figure 3.6. The graphical representation of the surface contact

area is shown on figure 3.7. It is clear that due to composite structure of the bone, the

different evaluation of the partial contributions of both cortical and trabecular surface are

seen. The sensitivity of the modal parameters to shared contact surface was investigated.

-5.0 -4.5 -4.0 -3.3 -2.8

-1.5 -0.9 0.0 1.0 1.5

Figure 3.6: Evaluation of shared contact surface between implant and bone in dependence
on the reaming distance [mm]

In the global sense, the sensitivity was evaluated on the whole model to see the difference in

global parameters such modal ith quality factor Qi, participation factors ri(u, v, w) and modal

damped natural frequency f . The first five deformable modes were searched. In special cases,

the frequency range was extended to account the eigenvalues of the acetabular cup itself.

The special attention was paid in investigation of the change in modal shape vectors. The

modal shape vectors are compared in different acetabular cup implant and beam separately.
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Table 3.2: Shared contact area between implant and bone

reamed cavity [mm] Scort [mm2] Strab [mm2] S [mm2]

-5.0 948.661 3307.465 4256.126

-4.5 1026.307 3127.361 4153.668

-4.0 1137.974 2916.448 4054.422

-3.3 1405.884 2506.943 3912.827

-2.8 1674.152 2097.585 3771.737

-1.5 2825.755 644.754 3470.509

-0.9 3179.401 117.215 3296.616

0.0 2926.972 0 2926.972

1.0 1502.596 0 1502.596

1.5 969.189 0 969.189

The sensitivity of undamped natural frequency, participation factors and quality factor to

change of contact area is shown on the figure 3.7. From the scatter plot (figure 3.7) it is

seen that there is probably non significant influence of the distance parameter to the modal

parameters. The most sensitive parameters are participation factors, but there is attention

necessity, because the order of the magnitude of the participation factor is close to numerical

instability. Other parameters are not sensitive to distance parameter. This fact is also seen

in the figure 3.8. The sensitivity ratio SR is evaluated in two critical points (the highest

change of the contact area and the inflection point on the curve represented the cortical area

evaluation). In both cases the sensitivity of the participation factors is much higher than

the sensitivity of the quality factor and damped frequency. The correlation between distance

parameters and modal ones is significant only for the damped frequency. The variance of the

parameters (figure 3.7 - a) is most significant for participation factors, where the maximum

is reached in participation factor w (var = 0.45) in third mode. The variance of the quality

factor and frequency is much lower (maximum variance is for the quality factor in fifth mode,

var = 0.0011). Determination coefficient (figure 3.7 - b) shows the best linear correlation

for the damped frequency for every mode except the third one(range from 0.35 to 0.48).

Sensitivity ratio (figure 3.7 - c, d) for two evaluating points shows the highest sensitivity

for the participation factors, where the highest value is reached in second mode, for the

variable w and distance -0.9 mm. Cumulative sensitivity 3.7 - e) has a similar evaluating as a

variance and also gives information that the participation factors are most sensitive to change

in distance parameter. The last description parameter 3.7 - f) shows rank order correlation

as the best for the damped frequency (maximum 0.7 for the first mode). The sensitivity of

the modal shape vectors was analyzed for the acetabular cup itself and for the beam. The

correlation matrix based on the MAC criterion is shown in figure 3.9 and 3.11 for every

mode. It is evident that modes are very similar in all orthogonal direction, the mac values is

around 0.8 - 0.99 for non diagonal members. The case of the acetabular cup itself, there is
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Figure 3.7: Scatter plots of modal parameters as a function of contact area
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Figure 3.8: Control variables
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a significant difference between shape vector component - w of the second mode. The most

difference is in range of distance from 4.1 to 5.0 mm. The case of the beam has a similar

evaluation as the cup. In the second mode of the vector component w, the mac matrix show

significant difference between vectors in range of distance 4.1 to 5.0 mm. On the figure 3.10

is shown the evaluating of the MAC with modal shape complexity increasing. It is clearly

seen, that the more complex modal vectors are more sensitive to changes in contact area.

3.4 Summary

This chapter provides a look inside to the one possible explanation of relations between the

dynamic response of the system bone - implant - beam and the interfacial conditions. One

can see the strong correlation between the resonance frequency and the interfacial stiffness

in dental implantology, where this method is commonly used. The direct influence of the

interfacial contact surface on the dynamic response of bone - implant system has not been

investigated yet. Thus, the contact surface amount was taken as control parameter during

the performing of numerical modal analysis. From the simulations of different contact area it

was not proven the significant influence of modal parameters. The modal frequency change

was smaller than 1 % (var = 0.0011). The quality factor indicator was also not proven to

be sensitive variable to change in contact are. The change in participation factors of every

mode was little bit harder to understand due to relative small contribution of deformable

modes in free - free conditions. Although, there was no proven the relation with the contact

surface area changing, the sensitivity to the change was relative high, but possibly in order of

numerical instability (local SR = 0.73, var = 0.48). Although the determination and rank -

order coefficients show possible relationship between natural damped frequency and distance

parameter, the frequency change is probably very small compared to the reliability error

occurs in real situation.

A special effort is taken in case of modal shape vector and its maximal value. The sensi-

tivity of modal shape vector was calculated for the acetabular cup itself and for the model

composed the beam. The direct comparison of every mode vector was taken, ie every mode

was compared with the others. From the shape point of view, there was not proven a signifi-

cant difference between the modal vectors and the change in contact surface amount in whole

range of distance parameter. The highest difference was found in range of parameter from 4.1

to 5.0 mm, where the correlation between modes was very low, ie around 10 %. This result

was found for both of the configuration (acetabular cup and beam). This behavior was not

expected, because there is not probably reason for those relative high changes in component

of modal shape vector. However, taken the closer look into an extended frequency range (see

appendix A), one can seen the significant sensitivity increasing of the modal shape vector

with increasing its complexity. This implies to account the wide frequency band in measuring
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and not to focus just on the low frequency band, where the shape modes are not so sensitive.

This fact could be also supported by the extended results of sensitivity of the damped natural

frequency, quality factor and modal participation factors. These variables don’t change their

behavior significantly in higher modes. From figure 3.10 is clear the previous mentioned hy-

pothesis that increasing shape complexity provides a higher sensitivity to the changes shared

contact area. However, expression of the correlation between shapes and contact area was

not investigated yet.

63



−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9936

0.9944

0.9952

0.9960

0.9968

0.9976

0.9984

0.9992

1.0000

M
A

C
[-]

(a) mode #1 - u

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9955

0.9960

0.9965

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

M
A

C
[-]

(b) mode #1 - v

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9885

0.9900

0.9915

0.9930

0.9945

0.9960

0.9975

0.9990

M
A

C
[-]

(c) mode #1 - w

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9960

0.9965

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

M
A

C
[-]

(d) mode #2 - u

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9982

0.9984

0.9986

0.9988

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000

M
A

C
[-]

(e) mode #2 - v

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

M
A

C
[-]

(f) mode #2 - w

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9280

0.9360

0.9440

0.9520

0.9600

0.9680

0.9760

0.9840

0.9920

1.0000
M

A
C

[-]

(g) mode #3 - u

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9920

0.9930

0.9940

0.9950

0.9960

0.9970

0.9980

0.9990

1.0000

M
A

C
[-]

(h) mode #3 - v

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9640

0.9680

0.9720

0.9760

0.9800

0.9840

0.9880

0.9920

0.9960

1.0000

M
A

C
[-]

(i) mode #3 - w

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9976

0.9979

0.9982

0.9985

0.9988

0.9991

0.9994

0.9997

1.0000

M
A

C
[-]

(j) mode #4 - u

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9680

0.9720

0.9760

0.9800

0.9840

0.9880

0.9920

0.9960

1.0000

M
A

C
[-]

(k) mode #4 - v

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9440

0.9520

0.9600

0.9680

0.9760

0.9840

0.9920

1.0000

M
A

C
[-]

(l) mode #4 - w

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9928

0.9936

0.9944

0.9952

0.9960

0.9968

0.9976

0.9984

0.9992

1.0000

M
A

C
[-]

(m) mode #5 - u

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9775

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

M
A

C
[-]

(n) mode #5 - v

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9936

0.9944

0.9952

0.9960

0.9968

0.9976

0.9984

0.9992

1.0000

M
A

C
[-]

(o) mode #5 - w

Figure 3.9: MAC for acetabular cup - 5 modes
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65



−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9968

0.9972

0.9976

0.9980

0.9984

0.9988

0.9992

0.9996

1.0000

M
A

C
[%

]

(a) mode #1 - u

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9980

0.9982

0.9985

0.9988

0.9990

0.9992

0.9995

0.9998

1.0000

M
A

C
[%

]

(b) mode #1 - v

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9998

0.9998

0.9998

0.9999

0.9999

0.9999

0.9999

1.0000

1.0000

1.0000

M
A

C
[%

]

(c) mode #1 - w

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9980

0.9982

0.9985

0.9988

0.9990

0.9992

0.9995

0.9998

1.0000

M
A

C
[%

]

(d) mode #2 - u

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9999

0.9999

0.9999

0.9999

0.9999

1.0000

1.0000

1.0000

M
A

C
[%

]

(e) mode #2 - v

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

M
A

C
[%

]

(f) mode #2 - w

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9936

0.9944

0.9952

0.9960

0.9968

0.9976

0.9984

0.9992

1.0000
M

A
C

[%
]

(g) mode #3 - u

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.8200

0.8400

0.8600

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

1.0000

M
A

C
[%

]

(h) mode #3 - v

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9946

0.9952

0.9958

0.9964

0.9970

0.9976

0.9982

0.9988

0.9994

1.0000

M
A

C
[%

]

(i) mode #3 - w

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9960

0.9965

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

M
A

C
[%

]

(j) mode #4 - u

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9964

0.9968

0.9972

0.9976

0.9980

0.9984

0.9988

0.9992

0.9996

1.0000

M
A

C
[%

]

(k) mode #4 - v

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.8000

0.8250

0.8500

0.8750

0.9000

0.9250

0.9500

0.9750

1.0000

M
A

C
[%

]

(l) mode #4 - w

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9860

0.9880

0.9900

0.9920

0.9940

0.9960

0.9980

1.0000

M
A

C
[%

]

(m) mode #5 - u

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9680

0.9720

0.9760

0.9800

0.9840

0.9880

0.9920

0.9960

1.0000

M
A

C
[%

]

(n) mode #5 - v

−5−4−3−2−101
−5

−4

−3

−2

−1

0

1

0.9972

0.9976

0.9980

0.9984

0.9988

0.9992

0.9996

1.0000

M
A

C
[%

]

(o) mode #5 - w

Figure 3.11: MAC for beam - 5 modes
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Chapter 4

Experimental Verification

The main part of this thesis is described in this chapter - experimental protocol for measur-

ing of initial fixation. The acetabular cup implant is press fitted into the reamed acetabula

cavity with different reamer diameter to account different press fit level in range from 0 mm

(clinically mobile implant) to 1.5 mm. The upper range is taken as a completely stable cup

implant. In the first stage, the experiments are done on the sawbone pelvic bone with real

geometry. On this bone are reamed a different press fit levels with one type of the acetabular

cup. For every press fit level, the modal properties with impact hammer on the outer surface

along the peripheral rim of the acetabular cup are measured. To find patterns characterizes

the changes in FRFs, the class of machine learning algorithm is employed to try to predict

the initial fixation of the acetabular implant.
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4.1 Experiment Aim and setup

The level of initial fixation is related to the common used press fit implantation technique.

The main idea of the experimental part is to find out any relation between level of initial

fixation and dynamic response of the acetabular cup. Thus, experimental modal analysis

was performed on the acetabular cup for every fixation level. For every impact, the impact

force and polar gap distance are measured and together present an energy needed to insert

the acetabular cup into the acetabular bed. It is hypothesized that this energy positively

correlates with the interfacial stiffness and thus with the initial fixation of the implant.

The experiment was performed on the three acetabular cups with the same initial diameter

57.4 mm (without plasma spraying) and with one reamer with diameter 57 mm. And finally,

three press fit levels was obtained with three different thickness of plasma surface:

1. pressfit 0.5 mm (AC diameter: 57.5 ÷ 57.6 mm)

2. pressfit 1.0 mm (AC diameter: 58.0 ÷ 58.1 mm)

3. pressfit 1.5 mm (AC diameter: 58.5 ÷ 58.6 mm)

cup # 1 cup # 2 cup # 3

Figure 4.1: Three type of cups used at experiment

The higher press fit than 1.5 mm caused a rapture of peripheral rim of bone and neither was

not considered in this experiment. A hemispherical cup was used (Beznoska, Czech Republic,

type SF, nominal diameter 58 mm, figure 4.1). The implant was approximately positioned

at 45◦ abduction and 25◦ anteversion. The polar gap in the notch is always expected. The

clinically mobile cup is taken at initial configuration, where is no press fit, i.e zero press fit.

The minimal polar gap value for completely inserted cup was found to be 4.9 mm. It is a

threshold that the polar gap distance is changed less than 5 % during the impacting (figure

4.2). The experimental protocol is composed from five steps:

1. Initialize the press fit: reaming the cavity −→ insert the implant (with impact) into the

pelvis bone.

2. Measure the axial displacement (figure 4.3) ∆s, force response F(t)
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3. Modal test on peripheral ring of the cup: perform modal analysis on twelve points

regularly spaced on the ring (figure 4.4). Each point includes two degrees of freedom

(axial and radial).

4. Extract frequency series from response and excitation.

5. Finish the modal measuring: repeat the first step with the new press fit level.

polar gap

Figure 4.2: Measuring position for polar gap

polar gap point

Figure 4.3: Cup displacement according to polar gap value in axial direct of AC

The overall mechanical tools are shown on figure 4.5. Polar gap value is measured by dig-

ital caliper at centering point on reamed acetabular surface. The impact force for the cup

inserting and for the modal analysis is measured by the impact hammer Kistler 9724A5000

with maximal force range 5 kN. The acceleration response is measured by the small weight
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Figure 4.4: Measuring points on AC peripheral rim

Table 4.1: Configuration of modal analysis measuring

sampling frequency [Hz] 10000

FFT block size [samples] 10000

window exponential

trigger level [N] 10 %

pre - trigger samples [samples] 1000

FRF estimator H1

averaging RMS

number of hints 10

weighting mode linear

accelerometer Kistler 5812794. Raw data are acquired by specialized measuring device DAQ

4431 (National Instruments, Czech Republic). Modal analysis is performed by home made

software written in Labview 2012 (National Instrument) and the setup of the modal program

is shown in table 4.1.
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Figure 4.5: Tools used in experiment
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4.1.1 Mode Filtering

Every change in structure is reflected in changes of modal parameters. The recognition ability

if the pole is physical or structural is strongly dependent on identification procedure, the

quality of structural response. From the results is clearly seen that basically there are two

frequency ranges where the observed FRFs are different in their quality. In range from 100

to 2100 Hz the FRFs have a good quality, but in the range from 2100 to 5000 Hz, the

quality is poor (figure 4.6). Due to a large amount of FRFs from different fixation levels, an
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Figure 4.6: Typical bode plot of FRFs

autonomous qualification of physical modes is necessary. A similar approach introduced in

[207], [226], [253] and [254] is used. Firstly, the typical results are shown in figure 4.7. The

MLE uses the log - like cost function with better convergence behavior. Maximum allowable

iteration is 100, which usually leads to converged solution of MLE. The modal data are firstly

filtered by physical threshold. This means the 3% of frequency cut off around the band edges.

Poles with a damping ration smaller than 0.01 % and higher than 10 % were removed. Due

to large discrete over - modeling, computational modes are presented in the model. This is

the reason for using a next level of filtering. The filter consists of stochastic and deterministic

criteria. The stochastic criteria based on the MLE natural statistic properties are defined:

• Frequency and damping variance - σf , σξ are used as criteria. Poorly excited

physical modes or computational modes have a large variance.

• Pole - zero interaction. Computing an uncertainty circle of rth pole p for counting

how many zeros zk fall inside the circle can help recognize computational mode, since

computational pole has a large number of zeros inside its uncertainty circle of pole.

R =
√
−2log(1− pb)σpr (4.1)
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Ipr = |pr − zk| ≤ R (4.2)

• Individual SISO analysis. Counting how many times the tracked pole occurs in

the individual frf in uncertainty circle of globally estimated pole This can prevent the

misclassifying the real mode in case of local or poorly excited mode. Mathematically

written as:

Kpr = |pr − pkSISO
| ≤ R (4.3)

where pb means the probability that a true pole falls inside the circle. According to

work [226], the typical standard deviation of a computational mode is around 10 - 100

higher than for physical one. This was proven in this thesis where common value of

standard deviation of computational pole is around 5 - 72 times higher than common

value of standard deviation for physical pole.

The stochastic criteria are robust to noisy data, however it can still happen that in case of

poorly excited modes, the stochastic criteria recognizes the physical pole as computational

one. For this reason, a class of deterministic criterion is used. Namely:

• Mode Phase Collinearity (MPC). This variable is defined in chapter 2. MPC de-

scribes the possible linear relation ship between the real and imaginary part of pole.

For case of real or slightly complex modes, the value is close to unity.

• Enhanced Modal Assurance Criterion (MAC - described in 2). High non-diagonal

MAC values around the rth mode can indicate its quality with defined threshold, which

was taken as 0.1.

The SISO analysis provides a useful insight into individual mode quality. In the figure 4.8

is a typical Nyquist plot of poles after physical thresholding with varying of each SISO

analysis. The indexing numbers corresponds with Figure 4.7. The color of circles corresponds

with actual number of global pole. The radius corresponds with pole variance scaled five

times to be bigger for better visualizing. The real part is transformed to positive values

and logarithmically scaled. However the MPC variable can fail in some of computational

modes, where it detects a higher value common for physical pole. The variables describing

the behavior of pole are the arguments of a supervised machine learning algorithm. Next

algorithm arguments are two states belongs to decision if the pole is computational or physical.

The variables are firstly rescaled to unity with subtracted minimum. A typical evaluation of

variables is in Figure 4.9. There are several machine learning algorithms used in identification

of physical poles. Many of them are based on cluster analysis (hierarchical and portioning

clustering) [255], [256],[257] or a combination of cluster and support machine vector method

[258]. In this thesis, a class of fuzzy cluster analysis (Scikit - fuzzy) is used for improving of

quality of training data. Modal data are partitioned into two clusters that separate surely
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(b) 1900 - 5000 Hz - typical stablization analysis

Figure 4.7: Typical identification results from MLE algorithm

spurious and probably physical poles according their numerical behavior. After preparing

training sets, the simple SVM (Scikit-learn [259]) is trained to predict a new set of modal

data. The training data are taken from measuring with the smallest implant. The training set

is composed of several identification runs with different order of system and noise contribution.

This approach seems to be sufficient, since modal data come from similar structural analysis

in all cases of experiments. A performance of the trained svm estimator is presented in figure

4.10, where the cross validation score and confusion matrix show a good estimation behavior.

The figure also shows the planar space of training data, obtained by projecting of feature

vectors in the space formulated by the two principal axes of the original feature space (PCA

analysis). As it is expected, the spurious and physical modes occur in two separable clusters

easily detectable with a cluster analysis or with SVM technique. The SVM is validated by

Random permutation cross - validation and tunned by Grid search method (both available

in Scikit-learn).
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Figure 4.8: SISO pole analysis
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Figure 4.9: Variables for learning algorithm

75



0 20 40 60 80 100 120 140

Training examples

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Sc
or

e

Learning Curves (SVM, linear kernel, γ = 0.027826)

Training score
Cross-validation score

Cluster pre - Classification

SVM Classification

Physical Spurious
Predicted label

P
hy

si
ca

l
Sp

ur
io

us
T

ru
e

la
be

l

Normalized Confusion matrix

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4.10: Classification performance of SVM
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4.1.2 Mode Tracking

Due to structural changes in different fixation levels, there is a possibility that modes cross

each other. This crossing is necessary to catch and consequently switch crossing modes index.

The tracking algorithm is based on the MAC criterion [260]. Another way, in case of small

number of sensors, is based on the residual matrix distance approach [226]. In this thesis, the

first mentioned solution is used, because of sufficient number of sensors and simple implemen-

tation. In the figure 4.11 a typical MAC evaluation for eight levels in frequency range 100 -

2100 Hz of fixation is shown. After thresholding (usually 0.3 - 0.8), some modes are switched,

i.e. mode 5 and 6 in the second level and so one. The mode tracking algorithm changes

the evaluation of the modal properties at each fixation level. The switched mode evaluation
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Figure 4.11: MAC matrices for mode tracking

example is shown in figure 4.12 for frequency and damping ratio. Almost modes are tracked

well except the mode number seven. This mode is a result from tracking algorithm that was

not filtered with the threshold how many times the mode must be tracked to be qualified

as a traceable mode. The threshold is usually N − 2, where N is the level number. Thus,

the mode number seven after thresholding will be rejected. The need of tracking algorithm is

clearly seen in case of damping evaluation, where due to switching of modes, damping ratio

can be successfully tracked.
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Figure 4.12: Tracking process of modal parameters

4.1.3 Correlation Step

After having identified and properly matched modal parameters, the set of the those ones

enter into the correlation phase, which is based on unsupervised methods. First, the cross

correlation method was used to explore relation between impact force, gap distance, modal

frequency and damping at each fixation level. This leads to a weighted correlation matrix for

each identified and tracked physical mode in both frequency ranges. The Spearmann’s rank

coefficient was used as a metric. As an independent variable the impact force is chosen. How-

ever, statistical properties of correlation coefficient are not taken as an descriptive information

since the data are not statistically valuable (small sample). Due to high dimensionality of

Modal shapes and FRFs frequency data, an exploratory analysis based on a cluster and PCA

analyses is used. A possible relation between inserted energy (impact force and gap distance),

shape modes and FRFs data is searched in reduced feature space. The idea of correlation

between levels of gaps and impact force and the shape of every modal vector is following:

1. Formulate distance matrix from observations of every modal shapes in measured

DOFs. As a metric, the MAC criterion is chosen.

2. Perform linear dimensional reduction into the first eight principal component with
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highest eigenvalues.

3. Calculate linear regression coefficients on the projected data.

4. Transform regression coefficients back in to the original space.

5. Perform cross validation process and evaluate estimator quality.

This formulation of regression process is known as a Principal Component Regression (PCR)

with cosine metric as distance one. The regression models must be adequately validated.

In this thesis, a common validation method was used, namely cross validation with outliers

detection and interpretation. The cross validation helps to determine which component has

the best correlation potential and whether the correlation is meaningful.

4.2 Results

First of all, due to rapture of the pelvis bone during the early insertion phase of the third

implant, the data coming from this experiment are considered to be unfinished and would

be comparable only from normalized energy (figure 4.13). The evaluation of the insertion

phase for every implant is shown in figure 4.14. In the graph is clearly seen the phase of

rapture of the bone. Probably the crack was initiated during the extraction phase of the

smaller implants, but without any visual significance. The polar gap and impact(cumulated)

force shows a correspondence, which is confirmed by a strong correlation after all. Polar gap

was measured with a statistical manner and qualified as a normally distributed variable (10

samples). The confidence intervals are also shown in the figure 4.14. For every diameter of

crack propagation

Figure 4.13: Bone rapture after insertion impact

implant the initial polar gap was measured. The initial polar gap values are shown in table

4.2, there is clearly seen that bigger diameter corresponds with bigger initial polar gap.
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Figure 4.14: Evaluation of mechanical response of the cup to the impact force

In the experiments, 576 FRFs were obtained from modal analysis including three implants

and 24 fixation levels. Due to limited excitations performance of modal impact hammer in

range higher than 2500 Hz, the frequency range was split into two. The first frequency range

is 100 - 2100 Hz and second is 1900 - 5000 Hz. The order of the system in the first frequency

range was reduced from initial 25 to 18. The order of system in the second frequency range

was always set up to 25. The maximum allowable iteration of MLE was set to 100. Filtering

criteria for the first frequency range was taken from 4.1.1. In the second frequency range,

the allowable standard deviation of the frequency and damping must be doubled. Thus, from

every fixation level the modal parameters are extracted and matched by tracking mechanism.

This leads to sets of parameters which are correlated each other.

Table 4.2: Initial polar gap value [mm]

implant #1 implant #2 implant #3

10.74 13.54 15.28

4.2.1 Frequency and Damping Correlation

The evaluation of modal parameters is in figure 4.15. There are always four graphs with

modal frequencies and damping on a vertical axis and with gap distance and impact force

on a horizontal axis. Those graphs contain two frequency bands as was mentioned in the

experimental set up for each value of diameter of implant. In the figure 4.15 only data for the

first implant is shown. The rest of two implants data is in appendix D. In the first frequency

range 100 - 2100 Hz six, eight and seven modes were recognized suitable for correlation for

implant number one, two and three. In the range 1900 - 500 Hz fourteen, fifteen and fourteen

modes were recognized for implant number one, two and three. Every mode was tracked during

each fixation level. In the figure 4.15 one can seen that modal data somehow corresponds
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with changes of fixation level. An evaluation of natural frequencies in both frequency ranges

shows a variability every mode for all tested implants due to change of fixation level. Natural

frequencies vary from 10 to 200 Hz within the first frequency band (100 - 2100 Hz) for both

gap distance and impact force. The frequency changes for the band 2100 - 5000 Hz are much

higher and commonly reach 1kHz difference. The damping ratio evaluation is significantly

more sensitive than natural frequencies. As is expected (better data quality and low damping),

in the low frequency range the ramping ratio i usually around 0.8 - 2.4 for all implants. In

the second frequency band, the damping ratio is much higher, even more than 80 % (mode

1 - implant 1) or 40 % (mode 1 - implant 2) or 42 % (mode 1 - implant 3). These high

values of damping are not a real character of mode, but it is a results of behavior of the

identification procedure. For this reason, both frequency ranges should overlap. However

the modal data does not always monotonically correspond with gap and force variables, an

interesting corresponding is obtained in the value of polar gap distance (around 6 mm). In

this fixation phase, the impact force is decreased(or constant for implant 2). This suggests

that the implant reaches position, where the stiffness of interface decreases. It could suggest

that a crack is initiated (not found for implant 1 and 2) or during the last insertion phase

the implant passes the acetabular rim edge that is a main stiffness contributor. A similar

phenomenon Pastrav found in his thesis [173].

In order to quantify relations between fixation variables(polar gap and impact force) and

modal parameters, correlation matrices with Spearman’s coefficients was built. In the figure

4.16 one can see the correlation structure for the first implant. The rest of implants is in

appendix E. In almost cases the modal frequencies, damping ratios and fixation variables

correlate. In the lower frequency range (100 - 2100 Hz), the correlation tends to be higher

than in range 2100 - 5000 Hz. Also, the modal frequencies are correlated more often than

damping ratios.
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Figure 4.15: Evaluation of modal properties for implant # 1
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Figure 4.16: Evaluation of modal properties for implant # 1
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4.2.2 Modal Shape Correlation

A correlation between modes shape is formulated with multivariate analysis. Typical nor-

malized shapes of modes for the first implant are depicted in figures 4.17 and 4.18. Only

peripheral ring is shown with deformed status projected into three planes. Due to a complex

character of shape vectors, modes are shown at the initial time t = 0. Green marker shows

the center of implant rim. Blue markers show the first two measure points (from right to left)

in clock wise direction. These markers ensures the orientation of rim on real implant. The

red curves mean a deformed status of the rim. In the first frequency range, the estimation

quality of the modes is higher than in second one. This fact explains a weird deformation of

modes in the second range (comparing to modes from computational model of acetabular cup

in chapter ??), especially in the axial direction. However in modes of the acetabular cup, the

overall modes (of pelvis) are projected also, which distorts modes of acetabular cup itself.
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Figure 4.17: Modal Shape for implant # 1
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Figure 4.18: Modal Shape for implant # 1
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The possible relations between modes and fixation levels presented by gap distance and

impact force are shown in figures 4.19, 4.20, 4.21. Where one can see a number of graphs

showing a predictive performance of PCR for every mode. Correlation coefficients are shown

only for the best matched principal component (tables 4.3, 4.4,4.5, 4.6). The potential real

correlation in mode shapes is quite difficult to derive. For this purpose, the determination

coefficient, number of correlated principal component and predictive performance are moni-

tored. Filter criterion is based on the number of principal component (max. third component)

and coefficient of determination (min. 0.75) of the validated model. Due to a small sample

number (10 samples) and high features vector (3000 features), the regression technique tends

to perform poor fit with over - fitting. This drawback of experiment will be discussed later.

From the performance plots of PCR a general relation of modal shapes and fixation variables

can be seen, however with some PCR behavior keeping in mind. Higher principal component

explains more local variance or even a noise in a data. For some dummy uncorrelated data, the

highest component shows a high linear correlation but the validation of model predictability

always shows no any performance. In the tables the fitting parameters are described for both

calibrated and validated model. For the first frequency range (100 - 2100 Hz) of implant #

1, the first (polar gap), second (impact force) and fourth (impact force) mode was selected

to be the most related to fixation variables. The second frequency range (2100 - 5000 Hz)

contains the first (impact force) and second (impact force) mode that potential correlated.

Similar results were obtained for implant # 2, where the number of potentially correlated

modes is even smaller compared to the first implant.

Table 4.3: Regression parameters for implant # 1 - frequency range 100 - 2100 Hz and gap
distance [mm]

Calibration Validation
# mode Slope [-] interp. [mm] RMSE [mm] R2[−] Slope [-] interp. [mm] RMSE [mm] R2[−]
1. 0.89 0.86 1.01 0.84 0.56 1.93 10.15 0.53
2. 0.86 0.90 0.58 0.86 0.47 3.67 1.11 0.62
3. 0.81 1.21 0.68 0.81 0.64 2.32 0.99 0.69
4. 0.96 0.27 0.38 0.96 0.66 2.22 0.91 0.83
5. 0.37 4.18 1.26 0.37 0.08 6.15 1.58 0.23
6. 0.33 4.34 1.36 0.33 0.04 6.51 1.85 0.10

Table 4.4: Regression parameters for implant # 1 - frequency range 100 - 2100 Hz and
impact force [N]

Calibration Validation
# mode Slope [-] interp. [N] RMSE [N] R2[−] Slope [-] interp. [N] RMSE [N] R2[−]
1. 0.84 1.62e3 2.62e3 0.83 0.48 4.86e3 4.04e3 0.68
2. 0.94 650.97 1.39e3 0.94 0.61 4.25e3 2.71e3 0.82
3. 0.82 1.92e3 2.40e3 0.82 0.67 3.53e3 3.14e3 0.73
4. 0.97 267.47 1.06e3 0.97 0.68 3.63e3 2.93e3 0.83
5. 0.47 5.82e3 4.17e3 0.47 0.17 8.73e3 5.25e3 0.34
6. 0.48 5.95e3 4.31e3 0.48 0.20 8.28e3 5.95e3 0.28
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Table 4.5: Regression parameters for implant # 1 - frequency range 2100 - 5000 Hz and gap
distance [mm]

Calibration Validation
# mode Slope [-] interp. [mm] RMSE [mm] R2[−] Slope [-] interp. [mm] RMSE [mm] R2[−]
1. 0.77 1.51 0.81 0.77 0.63 2.63 1.25 0.59
2. 0.73 1.76 0.81 0.73 0.52 3.15 1.12 0.61
3. 0.87 0.86 0.68 0.87 0.32 4.95 1.52 0.54
4. 0.83 0.94 0.33 0.83 0.43 3.09 0.66 0.55
5. 0.99 0.06 0.15 0.99 0.59 2.73 1.17 0.58
6. 0.79 1.29 0.55 0.79 0.44 3.54 0.86 0.62
7. 0.66 2.22 0.91 0.66 0.15 5.86 1.46 0.34
8. 0.26 4.55 1.03 0.26 -0.11 6.86 1.47 -
9. 0.23 5.05 1.39 0.23 -0.02 6.92 1.17 0.11
10. 0.21 4.91 1.07 0.21 -0.08 6.82 1.38 0.04
11. 0.99 0.02 0.09 0.99 -0.01 6.02 1.63 0.26
12. 0.99 8.81e-5 0.01 0.99 0.62 2.72 0.78 0.87
13. 0.99 0.006 0.07 0.99 -0.16 7.89 2.75 0.02
14. 0.96 0.16 0.06 0.96 -0.09 5.82 0.42 0.26

Table 4.6: Regression parameters for implant # 1 - frequency range 2100 - 5000 Hz and
impact force[N]

Calibration Validation
# mode Slope [-] interp. [N] RMSE [N] R2[−] Slope [-] interp. [N] RMSE [N] R2[−]
1. 0.89 1.13e3 1.91e3 0.89 0.81 1.62e3 2.82e3 0.84
2. 0.85 1.62e3 2.23e3 0.85 0.65 3.77e3 3.13e3 0.77
3. 0.91 863.56 1.92e3 0.91 0.19 5.95e3 6.06e3 0.32
4. 0.92 1.06e3 1.14e3 0.92 0.45 9.36e3 3.25e3 0.55
5. 0.99 35.23 327.45 0.99 0.69 3.37e3 3.09e3 0.78
6. 0.71 3.62e3 2.68e3 0.78 0.41 7.27e3 3.81e3 0.54
7. 0.75 2.67e3 2.88e3 0.75 0.21 8.11e3 4.98e3 0.43
8. 0.37 7.77e3 3.86e3 0.37 0.03 1.22e3 5.36e3 0.13
9. 0.23 8.45e3 5.02e3 0.23 -0.03 1.14e3 6.23e3 0.16
10. 0.06 1.15e3 4.74e3 0.06 -0.2 1.46e3 6.29e3 -
11. 0.96 504.23 1.11e3 0.96 0.08 1.28e3 5.61e3 0.32
12. 0.99 8.25 182.24 0.99 0.61 4.18e3 3.30e3 0.85
13. 0.98 133.93 828.65 0.98 -0.05 1.29e3 8.03e3 0.19
14. 0.99 23.46 119.97 0.99 0.06 1.51e3 2.97e3 0.48
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Figure 4.19: Performance of PCR for implant # 1 in range 100 - 2100 Hz
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Figure 4.20: Performance of PCR for implant # 1 in range 2100 - 5000 Hz - gap distance
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Figure 4.21: Performance of PCR for implant # 1 in range 2100 - 5000 Hz - impact force
[kN]
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4.2.3 FRF Raw Correlation

Previous correlation analysis are based on the data that come from the identification process

and thus they depend on the estimator quality. The way how to overcome estimation quality

is to perform exploratory analysis on the raw spectral data for each dof. This idea leads

to a multidimensional correlation problem with possible collinear data. Such problem can

be handled by similar technique as PCR named Partial Least Square Regression (PLSR).

The raw FRF data is sorted according the spatial positions around the rim of acetabular

implant and the direct of excitation source (radial and axial). Thus, 24 dofs are measured

for every implant. The figures 4.22, 4.23 and 4.24, 4.25 show a polar spatial performance of

the regression for both frequency bands and directions. The plots represent calibration and

validation values for coefficient of determination (blue and red). Circles contains the number

of principal component. The dof that fulfills the threshold criteria (PC <= 3 and R2 >= 0.75)

are marked by green color. The number of potentially correlated DOF with fixation variables

is general higher for the radial direct (19 vs 9). Also, it seems to be that from the calibration

values point of view, the second frequency band confirms a higher determination coefficients

(blue structure). This could be given by the real assumption that higher modes are more

correlated or just higher noise. However, the validation of regression models is still poor for

all implants and frequency bands.
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Figure 4.22: Correlation plot for implant # 1 - radial DOF
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Figure 4.23: Correlation plot for implant # 2 - radial DOF
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Figure 4.24: Correlation plot for implant # 1 - axial DOF
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Figure 4.25: Correlation plot for implant # 2 - axial DOF
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4.3 Summary

In this chapter, the complete experimental survey of correlation between initial fixation and

modal properties was described. In the first part of the chapter the experimental protocol

is built with respect to different initial fixation of the acetabular cup in saw bone pelvis.

This assumption leads to simplified conditions which may not correspond with real situation

in vivo, however in process of correlation, a complicated in - vivo conditions can generate

difficulties. The overall model is composed from three different acetabular cups and with one

type of pelvis bone with the same geometry and material properties distribution. Every cup

is inserted into the pelvis acetabular and than the modal analysis is performed on cup rim.

Modal analysis step is an important step since it is a key process which provides dynamic

properties of the system. To correct identify measured mechanical system through its dy-

namic parameters, the MLE algorithm is employed. This identification process provides also

statistical properties of dynamic parameters, which leads to better separation of physical and

computational modes. After physical thresholding, most significant computational modes are

removed and the rest of them is detected by trained machine learning algorithm. This ap-

proach seems to be an almost fully automated process of modal analysis. To properly match

the modes in every insertion phase, a tracking process must be imposed. Due to limited ap-

plicability of the modal impact hammer, the frequency range was split into two ones. The

first range contains a high quality FRF and the identification is very robust and efficient. On

the other hand, the second range, unfortunately more important, has a poor quality and the

results are impacted by high uncertainty, which is seen in the estimated variances estimated

by MLE.

In this work, the algorithm based on the modified MAC criterion was successfully used to

track modes. The algorithm also gives an additional information about bad identified modes,

which usually have a small neighborhood connectivity in the tracking plot. Although, in

the case of high noise data (second freq. range), mode tracking need manual verification and

correction and it does not still guarantee the properly tracked modes. The fixation level of each

cup is represented by impact force and polar gap distance. This description of level fixation

is comparable with a classical definition of primary stability (as interface stiffness or push

out test). Monitoring of both variables (polar gap and impact force) gives us the information

about the bone - implant interface behavior and even from the geometry of acetabulum,

diameter of implant and polar gap is possible to compute shared contact area theoretically.

A potential relation between modal parameters (frequency and damping ratio) and fixation

variables was investigated with help of correlation analysis based on the Spearman’s criterion.

A simple plot analysis and correlation method show that modal parameters are responsive

to level of fixation. However the relation is not strictly linear or even monotonic in the case

where rapid changes start in the interface stiffness. From the quantity point of view, the

absolute frequency sensitivity especially in the second band are much more significant. It
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would be a prove that higher modes (modes of acetabular cup) are more sensitive to changes

in interface stiffness. On the other hand, it would be a result of poor data quality.

A possibility that modal shapes would be a candidate reflecting the initial fixation was

investigated in a similar manner as modal frequencies and damping. To capture the multidi-

mensional nature of shape vector, Principal Component Regression was used to investigate

a possible correlation of modal shapes and fixation variables. The results from multidimen-

sional regression analysis indicates a potential correlation of some modes, but in almost cases

without sufficient validation. Similar results were obtained with regression analysis for raw

FRF data. Since the interpretation of local changes is possible via the modal parameters,

global changes are investigated on raw FRF data. Although the multidimensional analysis

seems to be a promising tool to found a correlation, but it does tell a little or even nothing

about physical background. This is because the reduced feature vector is hard to interpret.
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Chapter 5

Measuring device design

In this chapter the author developed an experimental device for measuring the initial fixation

of the acetabular and femoral component. The device is designed to fulfill medical norm re-

quirements according to ISO 60601. The device is able to operate at the clinical environment.

This is an essential step, which provides an advance in real clinical usability and opens the

door to start performing real clinical experiments.
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5.1 Introduction

Experimental device for the initial fixation measuring is composed mainly from three parts:

• Vibrational Head - measuring probe

• Control Unit

• User computer

Every part is designed according to ISO 60601. The main idea of the measuring is the vibra-

tional principle.

5.2 Vibrational Head

The vibrational head is composed of three parts. The first part is a frame from medical steel

with plastic cover. The mechanism of the fasting to the implant is very simple, base on the

thread to lock up the system (figure 5.1). Firstly, the mechanism is disconnect to be than freely

attached to the femoral neck or acetabular beam. After properly positioning the vibration

head, the final position is fixed by the thread. The measuring head is designed as two channel

(a) Opened (b) Lock Up

Figure 5.1: Fixation mechanism

measuring probe. The one channel is the vibration signal to drive the electromechanical

actuator and second one is dedicated to acquire the response the system to the vibration

from actuator. The response is acquired by an accelerometer. The position of the measuring

devices is depicted in figure 5.2.

The electromechanical actuator is a stacked piezoelectric block. The force is generated in

reaction sense, thus, on the top of the actuator, the seismic mass (10 grams) is added. The

actuator and accelerometer are isolated according to the norm by the ceramic insulator. The
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piezo actuator

seismic mass
accelerometer

Figure 5.2: Position of the actuator and accelerometer

actuator is driven by the voltage driver up to 150 V. The maximal displacement is 17.4 µm.

The accelerometer is based on the piezo principle. The sensitivity is 10 mV/g and the range is

±500 g. The accelerometer and actuator are protected from the aggressive sterilizing process

by the bio - silicone gasket.

5.3 Control Unit

The control unit has a function of generating and acquiring the signal. It is battery supplied

electronics. the heart of the system is the microchip ATMEL x51 family, which provides

the communication between external computer and the driven voltage generator for piezo

actuator. The generation of the high voltage signal is provided by the specialized power

MOSFET transistor. The wireless connectivity is provided by the specialized IO block OWS

451 with 60601 certification. The block scheme is depicted in figure 5.3. The energy for the

WIFI

RAM

A
tm

el
x
5
1

amp

A/D

Figure 5.3: Block scheme of the control unit

piezo actuator is provided by two Li-pol batteries. Electromagnetic field compatibility is
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secured with proper circuit topology and adequate external shield (aluminum chassis - figure

5.4).

aluminum chassis

Figure 5.4: Control unit design

5.4 User Interface

The control unit communicates directly with the user interface composed of tablet with

adequate software. The tablet is certified for the ISO 60601 and does not need further spec-

ification. The software provides basic functionality such internal communication protocol,

generation of the excitation signal and acquiring. The software also controls the temperature

in the control unit, properly connected measuring probe and status of wireless connection.

Raw data from the control unit could be quickly evaluated in the provided software, but for

more sophisticated evaluation, the external software is needed.
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5.5 Summary

This chapter contains a quick introduction into the design of the experimental device used

for measuring initial fixation of THR implants (figure 5.5). Main technologies were presented

with focus on the vibrational head. The vibrational head is the most critical part of designing,

because it is directly connected to the human body and it needs for its properly function a

voltage source to driven a piezo stack. The technology and design of this device are patented

in internal scope [261].

Figure 5.5: Final device design
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Chapter 6

Summary

Assessment of the initial fixation of the acetabular cup in per operative conditions can bring

an important information about its future survive. The social and economical benefit of this

information for a surgeon and also for a patient is significant. The knowledge about the

quality of implantation plays a crucial role in prevention the revision surgery. Decreasing the

probability of revision surgery leads to an increasing of patient live quality and decreasing

the price of THR surgery. However such information is not easy obtain. In dental surgery

the environmental conditions permit the clear enter to the implant during the whole healing

period. It was proven that dental implant shape is much more suitable to find a significant

relation between the implant fixation and change in its dynamic parameters. However in

other disciplines such orthopedic it is not easy implement, and, there is even a question if

it would work in such a way. The most studies deal with the initial fixation of the femoral

component, however the survival of the acetabular component is the same or even worst as it

was found from literature studies. Another aspect that significantly contributes to decrease

of the implant survival is a problematic radiographic evaluation of the implant performance.

All of these problems lead to finding a new technique how to asses the implant performance

that would outperform all drawbacks of traditional diagnostic methods. The initial fixation of

the implant is taken as a promising variable to predict the implant performance. The initial

fixation is taken as an amount of the micromotion at the bone - implant interface or as u micro

deformation. These two variables strong correspond with the common stabilizing techniques

(fixation with pegs, spikes and press fitting) during te insertion step. However the experiments

are performed in vitro with precise experimental equipment. Also, the experiments itself often

use a destructive testing, which is not acceptable in clinical environment.

Dynamic response of the measured system bone - implant - (probe) on the different fix-

ation level was shown mainly in dental implantology, but also in the case of the femoral

component. where the implant response was measured for different press fit level for bend-

ing and torsional modes. Although, the clinical using is not still available, probably due to

problematic measuring mechanism usable in vivo. It can be hypothesize that femoral com-
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ponent would be more suitable for this kind of initial fixation assessing due to its similar

topology as the dental implant has. There is a lot of publications dealing with initial fixation

related to the dynamic response, however there is a little about the why it should work, why

a relation should exist between the fixation and dynamic response of implant. An attempt of

explanation was perform in chapter 3, where the relation between shared contact area and

the dynamic response of the system bone - implant - (probe) was investigated. The contact

area is an essential measurable variable, which probably strong influences the initial fixation

of the implant. It influences the mechanical properties as amount of micromotion, friction

and even bio - integration process. From interface point of view, the surface also influences

the interfacial stiffness. For accepting or rejecting hypotheses about the interfacial stiffness

influences the dynamic response of the system, a mathematical model with various inter-

facial contact level was investigated. The modal analysis was performed for every contact

level with different shared contact area. Output modal parameters were than correlated with

the control parameter of insertion phase. The computational model confirms the hypothesis

that dynamic properties of bone - implant - probe are influenced by a different amount of

shared contact surface. This influence was demonstrated on the sensitivity analysis of modal

parameters respect to the control insertion parameter. Investigating the complexity of modal

shapes and its MAC criterion related to the control variable supports the hypothesis that

more complex modes are more sensitive to changes in the bone - implant interface. This

was shown through the relation between minimal value of MAC criterion of every mode and

control variable. The results shows that the minimal value of MAC decreases with increasing

the mode complexity.

The mathematical model takes as real data as possible to obtain relevant results. The

synthetic model of the pelvis bone was firstly digitalized by the CT scanner and consequently

reconstructed with sophisticated segmentation process. The material field is based on the

linear elastic model with continuous material properties extracted from the density of raw

CT data. Due to a simplified, nearly homogeneous properties of the synthetic bone with

known material properties, there was not used a power relation between Young modulus and

density, but only the boundary between the cancellous and cortical bone was adopted. The

orthotropic nature of the outer cortical part was modeled by a simplified coordinate field

based on the curvature of the shell and the thickness of the cortical bone. This assumption

works well for this synthetic bone model, where the manufactures guarantee the transversally

isotropic properties and the transversal direction is parallel to outer shell normal. In a real

case the coordinate could be modeled rather from gray density data. The model consists

of another three coordinate system (global anatomic, local acetabular and boundary). The

global anatomical coordinate system is a base frame given by the position in the CT scanner.

The local coordinate system was defined for the easier manipulation with the acetabular cup.

The coordinate origin was placed at the acetabular sphere center, which was found by the
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non linear optimization scheme. The coordinate base vectors were constructed with singular

value decomposition with direction at an unique anatomical land markers. The position of

the implant cup was then recomputed to the radiographic one. The boundary coordinate

system was constructed from curvature properties of the bone surfaces.

The mathematical model of the pelvis - implant - probe was based on finite element

method. The model was validated against the experimental modal analysis. The experimental

modal analysis was performed on the synthetic pelvis bone in 228 measuring points with one

driven point. This leads to an sufficient description of the modal vectors, damped modal

frequencies and damping ratio. The maximum relative error in the damped frequencies was

around 2% for the second mode. The modal vectors were compared with MAC criterion. The

significant correlation was found for all measured modes (five modes) in frequency range 10 -

2000 Hz. The minimum correlation 65 % was found for the second mode, but it is taken as still

sufficient correlation. This relative low correlation could reflect the errors between measuring

position in real and digital model. Better results can be obtained with refinement on the

measuring grids and normals. However modal vectors are complex, the complexity and phase

collinearity show that the vectors are nearly monophasic. This implicates somewhat error in

the measuring way - probably due to some bad impact or local damping. The computational

model was successfully validated by the experimental modal analysis with the initial material

parameters, however the refinement was applied via optimization scheme that allows account

a possible spatial variation of Young modulus with structural density. After successful update

of finite element model of the pelvis bone, the uncertainty of estimated parameters was

computed via the first order sensitivity method.

Going back to purpose of the computational model, a parametric sensitivity of the modal

properties of the system bone - implant - (probe) to a different contact area amount was

investigated. The different contact area was obtained with parametric changes of the reamer

position, this goes to the different uncovered portion of the cortical (subchondral) and tra-

becular bone. The different contact area amount always occur in the real situation and it is

important know what influences the initial fixation. The origin position of the reamer lies

in the plane rotated according a common surgical procedure. The reamer was positioned

negatively close into a notch and also positively more out of the plane. These two opposite

directions express a possible scenarios of the reamed cavity. With closer look how the contact

are is changing during the different reamer displacement, there is seen the non linear depen-

dence of the cortical and trabecular area. This simply mean that there exists a displacement

position where the cortical area is dominant (if it is expected that shared cortical area has

much more significant positive impact to the initial fixation). The sensitivity of the modal

parameters was monitor through their variance and sensitivity ratio, since the direct explicit

formulation of the sensitivity matrix was problematic. The participation factors seem very

sensitive to change in contact area, but this result has to be taken with careful interpretation,
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since their magnitude is in range of accuracy of the computational model. The change of the

quality factor was also monitored for controlling purposes. The sensitivity of quality factor

was not significant. The damped frequencies are sensitive to change of the contact area and

even there exists a correlation with changing of contact area. The first five deformable modes

were monitored for possible experimental comparing with impact hammer testing, however,

the extending of the frequency range could uncover more complicated modes, which may be

much more sensitive to a local changes in contact area. For example, there first five modes

do not account the natural frequency of the cup itself, because it is in much higher frequency

range (4.3 kHz - first deformable rim mode of the cup). The special attention was paid to

quantify the changes in the modal shape vectors. The correlation matrix all to all was created

for every parts of the modal shape vector. The shape vectors are sampled in gauss points on

the one template mesh with adequate rigid transformation according to implant displacement

change. Modal vectors were sampled also on the special beam, connected through the threat

at cup pole. This measuring probe is expected to have an ability reflect the cup response

in its dynamic properties. This solution was designed for easy manipulation and measuring

in vivo. The frequencies of the modal probe is in similar range as frequencies of the pelvis.

From the correlation matrices is seen that in almost cases, the shape vectors are not sensitive

to change in contact area. But there are exceptions in case of the second deformable mode,

which has a character of the bending mode with dominant deformation on the probe, the

third coordinate of the shape vector seem to be sensitive to the changes in contact area. If

one try to hypothesize that it is a relevant information, it would mean that there is a signif-

icant change in contact boundaries in defined direct. This would be a good observation and

thus it needs more refinement and experimental background. The correlation matrices were

constructed on the MAC criterion in all to all configuration. Another support interest is that

increasing shape complexity corresponds with decreasing of the MAC values. This simply

means that more complex modes are more sensitive to changes in bone - implant interface.

The experimental part is focused mainly on investigation of potential relation between

input data, namely modal parameters (frequencies, damping and shapes), raw FRF data and

output response defined as fixation variables (polar gap and impact force). It is supposed that

response variables represent fixation level of implant. This assumption is based on the strong

relation of impact force and pull out test commonly referred as a quantification of initial

fixation. Putting these variables together, the axial stiffness could be obtained as another

fixation description. Before implementing the main experimental protocol, algorithms for

automatically performing modal analysis were developed. The main core of estimation of

modal parameters is the Maximum likelihood estimator with uncertainty framework. The

ability of uncertainty estimation is an advantage during the second step for detecting spurious

modes. Classification of spurious and real modes is based on a combination of cluster analysis

and support vector machine algorithm. The last step is to involve tracking mechanism to have
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a properly matched identified modes for every fixation level. The algorithm is based on the

enhanced MAC criterion. The main experimental protocol consists of three acetabular cups

with different press fit level inserted into sawbone pelvis. During the insertion phase, every

impact is recorded by impact hammer and the polar gap is measured with in a statistical

manner. Experimental modal analysis is performed for 24 dofs (12 radial and 12 axial) on

cup rim. The results from experimental modal analysis are split into two frequency bands,

because of different quality of frequency responses. All results from the second band are

impacted by much lower quality and this is taken as one of the important drawback of

experimental protocol. The lower quality of frf data is cased by the insufficient ability of

excitation hammer to work in higher frequency (i.e. higher than 2500 Hz). Despite to high

uncertainty in the FRFs, robust log MLE with machine learning recognition of physical

modes identified properly most modal parameters. The problem of quality was a little more

significant in case of tracking mechanism, especially in the higher frequencies. After having

tracked modes, the correlation analysis goes to be the next step. Generally, the correlation

analysis was performed in a local and a global sense. Modal parameters such frequency

and damping ratio have a local character. The global behavior is more referred to modal

shapes and raw FRF data. In order to account multidimensional character of shape vectors

and FRF data, regression methods (Principal Component Regression (PCR) and Partial

Least Square Regression (PLSR)) were used to determine the relation in the frequency data.

Correlation analysis for local and global variables as well shows potential relations that would

be candidates describing the initial fixation of acetabular implants. Although, the regression

models were always validated, the sample size is one of the factors negatively influencing

the quality of regression models. Another, very important drawback of the correlation study,

is a difficult physical interpretation of reduced data (PCA). This leads to focus only on

quantifying the relation rather than qualifying.

At the final chapter, the real clinical device is designed and tested according to ISO

60601. The capability of designed device opens wide possibilities how to get the real clinical

data and thus how to describe real fixation of the bone much more accurate. The uniqueness

of the designed device is that it can measure initial fixation of the both part of THR, i.e.

femoral and acetabular component. The device contains vibrational head and control unit.

The control unit communicates with common medical tablets by wireless way.

The using of experimental modal analysis confirms the hypothesis that bone - implants

can be taken as a linear system. From computer simulations and experiment done in this

thesis it can be concluded, that the level of initial fixation of acetabular implant correlates

with dynamic properties of the bone - implant - (probe) system. All modal properties and

the raw FRF data were potentially correlated with insertion force and polar gap distance.

Modal parameters (mainly natural frequencies or amplitudes) are commonly used for inves-

tigating the initial stability of implant, however without proper handling of uncertainties
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and modal shapes. The importance of modal shapes for initial fixation of implant has never

been accounted, partially because obtaining of modal shapes can be a time consuming op-

eration. The known modal shapes bring important information about the possible switch of

closely spaced modes (mode tracking). Insufficient mode tracking can lead to an misinter-

pretation of modal parameters and consequently distorts the correlation phase. In this thesis

a precise modal analysis was performed with mode tracking. All modal parameters (natural

frequencies, damping and shapes) and their uncertainties were monitored and correlated with

insertion variables of implantation process.

All hypotheses about vibration method for assessment of initial fixation of acetabular im-

plant were supported with computational and experimental investigation. Modal parameters

and raw FRF data can potentially reflect the initial fixation level of cup. The raw FRF data

as description parameters of implant stability is a novel approach and could overcome the

traditional approach based on the modal parameters. Using sophisticated machine learning

techniques (in this thesis regression methods were used) would bring a new look including

a complicated correlation in spectral data and shapes of FRF response. The response data

from vibrational measuring for machine learning algorithms must not be necessarily in the

frequency domain. This is another advantage against the traditional approach based on the

modal analysis, which expects that measured system is linear one. The next step in the devel-

oping of the device measuring real initial fixation of acetabular implant is to employ machine

learning techniques on the data obtained from designed device in clinical environment.
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• Petr Henyš and Lukáš Čpek. Numerical and experimental results from measuring spinal

implant stability. Journal of Vibroengineering, 15(2), 2013
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[39] Henrik Malchau, Johan Kärrholm, Yu Xing Wang, and Peter Herberts. Accuracy of migration
analysis in hip arthroplasty digitized and conventional radiography, compared to radiostereom-
etry in 51 patients. Acta Orthopaedica, 66(5):418–424, 1995.

[40] A. Kobayashi, W. J. Donnelly, G. Scott, and M. A. R. Freeman. Early radiological observations
may predict the long-term survival of femoral hip prostheses. Journal of Bone and Joint Surgery,
British Volume, 79-B(4):583–589, 1997.

[41] Edward J. Vresilovic, William J. Hozack, and Richard H. Rothman. Radiographic assessment
of cementless femoral components: Correlation with intraoperative mechanical stability. The
Journal of Arthroplasty, 9(2):137 – 141, 1994.

[42] Cyna Khalily and Leo A. Whiteside. Predictive value of early radiographic findings in cement-
less total hip arthroplasty femoral components: An 8- to 12-year follow-up. The Journal of
Arthroplasty, 13(7):768 – 773, 1998.

[43] Ilkka A. Lautiainen, Jaakko Joukainen, and E.Antero Mäkelä. Clinical and roentgenographic
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[171] Petr Henyš and Lukáš Čpek. Numerical and experimental results from measuring spinal implant
stability. Journal of Vibroengineering, 15(2), 2013.
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[214] Béatrice Couteau, Marie-Christine Hobatho, Robert Darmana, Jean-Claude Brignola, and Jean-
Yves Arlaud. Finite element modelling of the vibrational behaviour of the human femur using
ct-based individualized geometrical and material properties. Journal of biomechanics, 31(4):383–
386, 1998.

[215] Roger Scholz, Falk Hoffmann, Sandra von Sachsen, Welf-Guntram Drossel, Carsten Klöhn, and
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[261] L. Čapek, P. Henyš, and Fencl J. Tool for measuring of implant stability, 2014.
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Appendix B

Correlation Data - Cup
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Figure B.1: MAC for acetabular cup - 6:10 modes
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Figure B.2: MAC for acetabular cup - 11:15 modes
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Figure B.3: MAC for acetabular cup - 16:20 modes
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Figure B.4: MAC for acetabular cup - 21:25 modes
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Figure B.5: MAC for acetabular cup - 26:30 modes
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Figure B.6: MAC for acetabular cup - 31:35 modes
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Figure B.7: MAC for acetabular cup - 36:40 modes
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Figure B.8: MAC for acetabular cup - 41:44 modes
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Figure C.1: MAC for beam - 6:10 modes
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Figure C.2: MAC for beam - 11:15 modes
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Figure C.3: MAC for beam - 16:20 modes
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Figure C.4: MAC for beam - 21:25 modes
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Figure C.5: MAC for beam - 26:30 modes
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Figure C.6: MAC for beam - 31:35 modes
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Figure C.7: MAC for beam - 36:40 modes
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Figure C.8: MAC for beam - 41:44 modes
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Figure D.1: Evaluation of modal properties for implant # 2
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Figure D.2: Evaluation of modal properties for implant # 3
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Figure E.1: Correlation of modal properties for implant # 2
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Figure E.2: Correlation of modal properties for implant # 3
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Appendix F

Modal Shapes of Cups
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Figure F.1: Modal shape for implant # 2
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Figure F.2: Modal shape for implant # 2
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Figure F.3: Modal shape for implant # 3
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Figure F.4: Modal shape for implant # 3
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Appendix G

Modal Shape Correlation Data

G.1 Model Performance
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Figure G.1: Cumulative variance explained by data [%] - implant # 1 - 2100
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Figure G.2: Cumulative variance explained by data [%] - implant # 1 - 5000
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Figure G.3: Cumulative variance explained by data [%] - implant # 2 - 2100
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Figure G.4: Cumulative variance explained by data [%] - implant # 2 - 5000
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G.2 Model Accuracy
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Figure G.5: Performance of PCR for implant # 2 in range 100 - 2100 Hz - gap distance [mm]
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Table G.1: Regression parameters for implant # 2 - frequency range 100 - 2100 Hz and gap
distance [mm]

Calibration data Predictive data
# mode Slope [-] interp. [mm] RMSE [mm] R2[−] Slope [-] interp. [mm] RMSE [mm] R2[−]
1. 0.92 0.83 0.22 0.92 0.27 7.65 0.74 0.32
2. 0.92 0.75 0.21 0.92 0.56 4.63 0.56 0.61
3. 0.98 0.20 0.11 0.98 0.32 6.99 0.65 0.48
4. 0.05 10.24 1.15 0.05 -0.33 14.43 1.63 -
5. 0.96 0.36 0.15 0.96 0.60 4.09 0.41 0.79
6. 0.93 0.65 0.20 0.93 0.72 2.94 0.39 0.81
7. 0.58 4.43 0.76 0.59 0.33 7.12 1.07 0.34
8. 0.81 2.02 0.36 0.81 0.53 4.82 0.56 0.65
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Figure G.6: Performance of PCR for implant # 2 in range 100 - 2100 Hz - impact force [kN]
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Table G.2: Regression parameters for implant # 2 - frequency range 100 - 2100 Hz and
impact force [N]

Calibration data Predictive data
# mode Slope [-] interp. [N] RMSE [N] R2[−] Slope [-] interp. [N] RMSE [N] R2[−]
1. 0.98 254.31 960.94 0.98 0.44 7.02e3 5.49e3 0.53
2. 0.90 1.33e3 2.21e3 0.90 0.57 5.43e3 5.79e3 0.49
3. 0.96 622.71 1.51e3 0.95 0.51 8.31e3 5.28e3 0.57
4. 0.01 1.26e4 7.96e3 0.01 -0.32 1.68e4 1.06e4 -
5. 0.94 764.13 1.66e3 0.94 0.71 4.65e3 3.09e3 0.85
6. 0.95 640.72 1.52e3 0.95 0.76 2.99e3 2.83e3 0.87
7. 0.59 5.14e3 5.09e3 0.59 0.39 7.78e3 6.48e3 0.45
8. 0.81 2.48e3 3.14e3 0.81 0.59 5.61e3 4.34e3 0.75
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Table G.3: Regression parameters for implant # 2 - frequency range 2100 - 5000 Hz and
gap distance [mm]

Calibration data Predictive data
# mode Slope [-] interp. [mm] RMSE [mm] R2[−] Slope [-] interp. [mm] RMSE [mm] R2[−]
1. 0.99 0.01 0.02 0.99 0.52 4.92 0.29 0.82
2. 0.70 3.15 0.45 0.70 0.15 8.81 0.79 0.30
3. 0.98 0.12 0.13 0.99 0.11 9.42 0.12 0.23
4. 0.78 2.23 0.38 0.78 0.46 5.73 0.61 0.58
5. 0.91 0.99 0.36 0.91 0.11 9.32 1.15 0.24
6. 0.99 0.03 0.06 0.99 0.50 5.47 0.86 0.61
7. 0.99 3.49e-6 2.56e-4 0.99 0.394 6.13 0.50 0.49
8. 0.99 0.09 0.07 0.99 0.24 7.94 0.70 0.40
9. 0.16 8.77 0.77 0.16 -0.06 11.07 0.93 0.06
10. 0.82 1.92 0.51 0.82 -0.08 11.65 1.39 -
11. 0.86 1.42 0.45 0.86 0.19 8.32 1.14 0.35
12. 0.05 10.26 1.16 0.05 -0.11 12.02 1.33 -
13. 0.99 2.08e-6 1.95e-4 0.99 0.17 8.41 0.57 0.33
14. 0.79 2.11 0.30 0.79 -0.14 11.84 0.79 0.20
15. 0.98 0.12 0.08 0.99 0.06 9.59 0.69 0.41

Table G.4: Regression parameters for implant # 2 - frequency range 2100 - 5000 Hz and
impact force [N]

Calibration data Predictive data
# mode Slope [-] interp. [N] RMSE [N] R2[−] Slope [-] interp. [N] RMSE [N] R2[−]
1. 0.99 81.01 458.95 0.99 0.52 6.62e3 3.61e3 0.75
2. 0.75 3.33e3 3.64e3 0.75 0.29 1.04e3 6.08e3 0.47
3. 0.98 162.35 942.89 0.98 0.43 6.91e3 5.65e3 0.61
4. 0.88 1.56e3 2.49e3 0.88 0.46 6.72e3 4.99e3 0.64
5. 0.82 2.14e3 3.28e3 0.82 0.23 1.11e3 7.21e3 0.33
6. 0.98 192.88 1.01e3 0.98 0.48 6.63e3 5.14e3 0.67
7. 0.99 49.26 357.90 0.99 0.51 8.47e3 4.52e3 0.61
8. 0.97 287.78 1.02e3 0.97 0.24 1.05e4 6.12e3 0.42
9. 0.16 1.23e4 6.67e3 0.16 -0.07 1.59e4 8.19e3 0.03
10. 0.68 4.14e3 4.44e3 0.68 -0.06 1.35e4 8.69e3 0.06
11. 0.69 4.44e3 4.41e3 0.69 0.21 1.23e4 7.22e3 0.36
12. 0.07 1.17e4 7.68e3 0.07 -0.11 1.36e4 9.08e3 nan
13. 0.99 27.99 269.80 0.99 0.04 1.56e4 6.91e3 0.08
14. 0.92 1.23e3 1.84e3 0.92 -0.02 1.59e4 6.94e3 0.36
15. 0.99 12.36 200.60 0.99 0.08 1.44e4 6.55e3 0.46
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Figure G.7: Performance of PCR for implant # 2 in range 2100 - 5000 Hz - gap distance
[mm]
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Figure G.8: Performance of PCR for implant # 2 in range 2100 - 5000 Hz - impact force [kN]
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Appendix H

Raw FRF Correlation Data

H.1 Model Performance

H.1.1 Radial DOFs
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Figure H.1: Cumulative variance explained by data [%] - implant # 1 - 2100 - rad. DOF
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Figure H.2: Cumulative variance explained by data [%] - implant # 1 - 5000 - rad. DOF
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Figure H.3: Cumulative variance explained by data [%] - implant # 2 - 2100 - rad. DOF
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Figure H.4: Cumulative variance explained by data [%] - implant # 2 - 5000 - rad. DOF
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H.1.2 Axial DOFs
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Figure H.5: Cumulative variance explained by data [%] - implant # 1 - 2100 - ax. DOF
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Figure H.6: Cumulative variance explained by data [%] - implant # 1 - 5000 - ax. DOF
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Figure H.7: Cumulative variance explained by data [%] - implant # 2 - 2100 - ax. DOF
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Figure H.8: Cumulative variance explained by data [%] - implant # 2 - 5000 - ax. DOF
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H.2 Model Accuracy
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Figure H.9: Performance of PLSR for implant # 1 - 2100 - rad. DOF - polar gap distance
[mm]
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Figure H.10: Performance of PLSR for implant # 1 - 2100 - rad. DOF - impact force [N]
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Figure H.11: Performance of PLSR for implant # 1 - 5000 - rad. DOF - polar gap distance
[mm]
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Figure H.12: Performance of PLSR for implant # 1 - 5000 - rad. DOF - impact force [N]
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Figure H.13: Performance of PLSR for implant # 2 - 2100 - rad. DOF - polar gap distance
[mm]
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Figure H.14: Performance of PLSR for implant # 2 - 2100 - rad. DOF - impact force [N]

183



0 50 100 150 200
−50

0

50

100

150

200
DOF # 1 - PC4

0 50 100 150 200
−50

0

50

100

150

200
DOF # 2 - PC6

0 50 100 150 200
−50

0

50

100

150
DOF # 3 - PC2

0 50 100 150 200
−50

0

50

100

150

200
DOF # 4 - PC6

0 50 100 150 200
−50

0

50

100

150

200
DOF # 5 - PC5

0 50 100 150 200
−50

0

50

100

150

200
DOF # 6 - PC7

0 50 100 150 200
−50

0

50

100

150

200
DOF # 7 - PC3

0 50 100 150 200
−50

0

50

100

150

200
DOF # 8 - PC3

0 50 100 150 200
−50

0

50

100

150

200
DOF # 9 - PC3

0 50 100 150 200
−50

0

50

100

150

200
DOF # 10 - PC4

0 50 100 150 200
−50

0

50

100

150

200
DOF # 11 - PC4

0 50 100 150 200
−50

0

50

100

150

200
DOF # 12 - PC4

Figure H.15: Performance of PLSR for implant # 2 - 5000 - rad. DOF - polar gap distance
[mm]
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Figure H.16: Performance of PLSR for implant # 2 - 5000 - rad. DOF - impact force [N]
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H.2.2 Axial DOFs
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Figure H.17: Performance of PLSR for implant # 1 - 2100 - ax. DOF - polar gap distance
[mm]
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Figure H.18: Performance of PLSR for implant # 1 - 2100 - ax. DOF - impact force [N]
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Figure H.19: Performance of PLSR for implant # 1 - 5000 - ax. DOF - polar gap distance
[mm]
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Figure H.20: Performance of PLSR for implant # 1 - 5000 - ax. DOF - impact force [N]
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Figure H.21: Performance of PLSR for implant # 2 - 2100 - ax. DOF - polar gap distance
[mm]
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Figure H.22: Performance of PLSR for implant # 2 - 2100 - ax. DOF - impact force [N]

191



0 50 100 150 200
−50

0

50

100

150

200
DOF # 1 - PC4

0 50 100 150 200
−50

0

50

100

150

200
DOF # 2 - PC4

0 50 100 150 200
−50

0

50

100

150

200
DOF # 3 - PC3

0 50 100 150 200
−50

0

50

100

150

200
DOF # 4 - PC6

0 50 100 150 200
−50

0

50

100

150

200
DOF # 5 - PC6

0 50 100 150 200
−50

0

50

100

150

200
DOF # 6 - PC5

0 50 100 150 200
−50

0

50

100

150

200
DOF # 7 - PC4

0 50 100 150 200
−50

0

50

100

150

200
DOF # 8 - PC5

0 50 100 150 200
−50

0

50

100

150

200
DOF # 9 - PC2

0 50 100 150 200
−100

−50

0

50

100

150

200
DOF # 10 - PC1

0 50 100 150 200
−50

0

50

100

150

200
DOF # 11 - PC2

0 50 100 150 200
−50

0

50

100

150

200
DOF # 12 - PC5

Figure H.23: Performance of PLSR for implant # 2 - 5000 - ax. DOF - polar gap distance
[mm]
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Figure H.24: Performance of PLSR for implant # 2 - 5000 - ax. DOF - impact force [N]
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