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am extremely grateful for numerous remarks, corrections, and pieces of advice

he gave me during the whole period of my doctoral study. I also appreciate

the patience and understanding I received from my wife Scarlet and both of my

children Dominika and David.



Contents

Mathematical Notation vi

Physical Notation viii

1 Introduction 1

2 Motivation 4

3 Mathematical Background 11

3.1 Summary of Linear Functional Analysis . . . . . . . . . . . . . . . 11

3.1.1 Linear Operators on Banach Spaces . . . . . . . . . . . . . 11

3.1.2 Bilinear Forms and Lax–Milgram Lemma . . . . . . . . . . 12

3.1.3 Sobolev Spaces and Integral Identities . . . . . . . . . . . 13

3.1.4 Function Spaces for Nonstationary Problems . . . . . . . . 16

3.2 Elementary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Simple Probabilities . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Binomial Distribution . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Hypotheses Testing . . . . . . . . . . . . . . . . . . . . . . 20

3.2.4 An Example – Coin Flipping . . . . . . . . . . . . . . . . . 22

3.3 Volume and Surface of a Ball in the d-dimensional Euclidean Space 24

4 Radiation Heating Model 30

4.1 Heater Representation . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Heat Flux Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1 Mould Representation . . . . . . . . . . . . . . . . . . . . 31

4.2.2 Calculation of the Heat Radiation Intensity on an Elemen-

tary Surface . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.3 Heat Radiation Intensity and Uniformity of Its Distribution 32

iv



CONTENTS v

5 Optimization of the Heat Flux Distribution 34

5.1 General Remarks and Concepts Introduction . . . . . . . . . . . . 34

5.2 Evolutionary Computing . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Classic Differential Evolution Algorithm . . . . . . . . . . . . . . 36

5.4 Classic Differential Evolution Algorithm and the Global Convergence 38

5.4.1 Counterexample to Global Convergence of CDEA . . . . . 38

5.4.2 Numerical Example Description . . . . . . . . . . . . . . . 40

5.4.3 Numerical Example Statistics . . . . . . . . . . . . . . . . 42

5.5 Modified Differential Evolution Algorithm . . . . . . . . . . . . . 44

5.5.1 Modification to Ensure the Asymptotic Global Convergence 44

5.5.2 Numerical Example: Comparison CDEA - MDEA . . . . . 45

5.6 Asymptotic Global Convergence . . . . . . . . . . . . . . . . . . . 46

5.6.1 Optimal Solution Set . . . . . . . . . . . . . . . . . . . . . 46

5.6.2 Convergence in Probability . . . . . . . . . . . . . . . . . . 46

5.7 Probabilistic Convergence Analysis . . . . . . . . . . . . . . . . . 49

5.7.1 Sampling of the Search Space by Random Individuals . . . 49

5.7.2 More Probabilistic Estimates . . . . . . . . . . . . . . . . 53

5.8 Lipschitz Continuous Cost Functions . . . . . . . . . . . . . . . . 58

5.8.1 Lipschitz Continuity of the Cost Function . . . . . . . . . 58

5.8.2 Consequences of the Lipschitz Continuity . . . . . . . . . . 59

6 Models of Heat Conduction 63

6.1 Own Heat Radiation and the Stefan–Boltzmann Law . . . . . . . 64

6.2 Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Weak Formulation of the Stationary Heat Conduction . . . . . . . 69

6.4 Weak Formulation of the Nonstationary Heat Conduction . . . . . 70

7 Numerical Results 73

7.1 Optimization of Infrared Heaters Positioning . . . . . . . . . . . . 73

7.2 Temperature Modelling . . . . . . . . . . . . . . . . . . . . . . . . 77

7.3 Optimization of a System with Equivalent Components . . . . . . 81

8 Conclusions 83



Mathematical Notation

Symbol Meaning/Page

A linear operator

B nonlinear operator

Ck(Ω) space of k-times continuously differentiable

functions defined on Ω ⊂ Rd

u, v vector as an element of a linear vector space

X,Y Banach space

V Hilbert space

f linear functional defined on Hilbert space V

p, P probability

Bd ball in the d-dimensional Euclidean space

EX expected value of a random quantity X

DX variance of a random quantity X

F (x) cost function with multidimensional variable x

Vd(R) volume of a ball with radius R in the d-dimensional

Euclidean space

Sd(R) surface of a ball with radius R in the d-dimensional

Euclidean space

Γ(n) gamma function value for a natural number n

n! factorial of a natural number n

n!! double factorial of a natural number n

NP number of individuals in a generation of a differential

evolution algorithm

NG number of generations of a differential evolution algorithm

G generation number

G(k), k = 0, 1, 2, . . . k-th generation of a differential evolution algorithm

vi



MATHEMATICAL NOTATION vii

D dimension of an optimization task, number of variables

CR crossover probability

F mutation factor

R parameter in a modified differential evolution

algorithm (MDEA) that specifies the ratio of random

individuals that are replaced by random individuals

Rd d-dimensional Euclidean space

S search space – the domain of the cost function

S∗ solution set, set containing global minima of the cost

function F (x)

S∗
ε optimal solution set

µ(S) measure of the search space S

L Lipschitz constant

dist(x1, x2) distance of points x1, x2

∆f Laplace operator applied on the function f

⌊x⌋ lower integer part of number x

⌈x⌉ upper integer part of number x

d dimension of a Euclidean space

αS significance level

CR relative certainty



Physical Notation

Symbol Meaning/Page Unit

α coefficient of the heat transfer

between a material body and air W/(m2 ·K)

αr coefficient of radiation absorption 1

c material specific heat J/(kg ·K)

c0 speed of light in vacuum c0 = 2.998 · 108m/s
εr radiation emissivity 1

Fdev deviation function – function

quantifying the deviation of radiation

intensity on the mould surface from

the recommended intensity Irec

h Planck constant h = 6.626 · 10−34 Js

I intensity of the heat radiation W/m2

Ij total radiation intensity incident

on the j-th elementary surface W/m2

from all heaters

Ijl heat radiation intensity generated

by the l-th heater incident on the j-th W/m2

elementary surface

Irec recommended radiation intensity on the W/m2

mould surface

j power radiated from a unit surface W/m2

kB Boltzmann constant kB = 1.381 · 10−23 JK−1

λ̂ tensor of heat conductivity W/(m ·K)

λ heat conductivity W/(m ·K)

Λ thermal conductivity m2/s

viii



PHYSICAL NOTATION ix

ρ density kg/m3

ρr coefficient of radiation reflectivity 1

Q density of volume heat sources W/m3

σ Stefan–Boltzmann constant σ = 5.67 · 10−8Wm−2K−4

t time s

T temperature K, ◦C
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Chapter 1

Introduction

The subject matter of this thesis consists in principle of two main parts that

are closely interconnected. The first part deals with an optimization technique

used to optimize heating of a shell metal mould by a set of infrared heaters. The

target of the optimization is to achieve a uniform field of heat flux that guarantees

the technologically given temperature range for the whole mould body. Finally,

the method of differential evolution algorithm proved itself most suitable for this

task.

Nevertheless, during the work on the project it became apparent that even

the classic differential evolution algorithm has its intrinsic limits regarding the

ability to guarantee the convergence to the global minimum of the cost function.

We found out that a principal weakness of the classic differential evolution algo-

rithm is its tendency to premature convergence to the local minimum of the cost

function.

This fact was a starting point for a pursuit of an improvement of the classic

differential evolution algorithm that could provide better results regarding the

global convergence. The modified differential evolution algorithm is the result of

these aspirations. The modified algorithm brings substantial improvement not

only from theoretical but also from practical point of view.

As far as the theory is concerned, we were able to prove for the modified

algorithm the ability to converge to the global minimum of the cost function in

asymptotic sense. From the practical point of view this means that the algorithm

is immune to the premature convergence. That is the generations of the algorithm

do not stagnate around a local minimum of the cost function. This potential

stagnation is a principal weakness of the classic differential evolution algorithm.

1



CHAPTER 1. INTRODUCTION 2

Substantial energy was also invested in the effort to extract some usable infor-

mation from the situation when even the modified differential evolution algorithm

does not find any improvement in seeking for the global minimum of the cost func-

tion. Since the full theoretical analysis of the differential evolution analysis is not

available at this stage, we concentrated primarily on the role of random individ-

uals in the convergence process. We present several statements in this field that

make it possible to interpret quantitatively this negative result.

The second part of the thesis is focused on the task to utilize the optimized

heat flux as an input quantity in the process of modelling the temperature field

inside the mould and in particular on the mould working surface. Here, the

starting point is represented by the heat equation together with boundary and

initial conditions. Since the infrared heating of the mould is used, we can hardly

neglect the own heat radiation of the mould itself in the numerical calculation.

This own radiation is described quantitatively by Stefan–Boltzmann law.

The doctoral thesis is divided into eight chapters. Following this introduction,

the second chapter (Motivation) provides the reasons for research in the area

of infrared heating and other important circumstances and connections of the

investigated topics.

The third chapter (Mathematical Background) summarizes some mathemat-

ical prerequisites that are used in the following text. The fourth chapter (Radia-

tion Heating Model) describes the theoretical models that are used to represent

real infrared heaters and shell metal moulds. It also provides a brief account

how the radiation heat flux is calculated on the mould surface. Additionally, it

introduces the cost function that evaluates the uniformity of the heat flux on the

heated surface of the mould.

The fifth chapter (Optimization of the Heat Flux Distribution) starts with a

brief account of evolutionary computing methods. Then it provides a thorough

description of the classic differential algorithm including the counterexamples to

its global convergence. Then, the modified differential evolution algorithm is in-

troduced. For the modified differential evolution algorithm it is possible to prove

the convergence to the global minimum of the cost function in asymptotic sense

using relatively weak assumptions. Subsequently, the role of random individuals

in the operation of modified differential evolution algorithm is examined.

The chapter six (Models of Heat Conduction) describes the heat equation

including the boundary and initial conditions and methods leading to the weak

solution of this heat equation.
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The chapter seven (Numerical Results) provides an account of specific meth-

ods and techniques used to find a solution of the practical task. The task consists

in the optimization of a set of 16 infrared heaters over a test mould. The first

stage of the task is focused on the optimization leading to a uniform heat flux

field on the heated surface of the mould. The second stage is concentrated on

modelling of the temperature field in the mould including the numerical results.

The chapter eight (Conclusions) provides a brief summary of considerable

findings and relevant results the author achieved during the work on the doctoral

thesis project.



Chapter 2

Motivation

Heating of bodies is relatively frequent in technical practice. It mostly takes part

in technological procedures when a given material or a semiproduct has to be

processed at a technologically given temperature. In this thesis we concentrate

specifically on the method of radiation heating. The radiation heating is realized

by a set of infrared heaters that are suitably positioned over the heated body.

As far as the heated bodies are concerned we concentrate on shell metal

moulds. By a shell mould we mean a body in the three dimensional Euclidean

space whose thickness is relatively small compared to its length and width. In-

stances of two shell moulds used in the real production are given in Figure 2.1.

Such shell moulds are used in the automotive industry in the production

of a plastic imitation of leather. The plastic imitation of leather, hereinafter

referred to as plastic leather, serves for surfacing of some parts of cars interiors

that potentially come into contact with driver’s or passenger’s body. The usual

examples where the plastic leather is used are dash boards, doors fillings and

elbow supports. The purpose of the plastic leather is to improve the surface

properties of hard plastic parts and to contribute to better overall impression

from the car interior. The technology of the plastic leather production is called

the Slush Moulding.

The Slush Moulding Technology consists in the following procedure: A rel-

atively large shell metal mould of possibly complicated shape is preheated to a

required temperature. Subsequently, powder of polyethylene, polyurethane or

PVC is sprinkled evenly over the working side of the mould, that is over the side

where the plastic leather is formed. The high temperature causes gradual sinter-

ing of the plastic powder that constitutes the base of the plastic leather. At the

4
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Figure 2.1: Examples of shell moulds used in the Slush Moulding Technology
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same time more plastic powder is added which leads to the increase in thickness

of the plastic layer. Simultaneously, the mould is heated to keep the technolog-

ical temperature of the mould stable. After the thickness of the plastic leather

achieves the required value (approximately after three minutes), the whole mould

is cooled down by cold water and the plastic leather is carefully detached from

the mould.

In principle, the heating of the mould can be realized by several different

procedures. The reasonable alternatives are heating by hot air, hot oil or hot sand,

and heating by infrared heaters. The infrared heating uses no auxiliary medium

that would be necessary to heat up (air, oil or sand), which is the base for better

energy efficiency of the infrared heating (by approximately 30%). Additionally, it

is possible to switch off and on selectively a part of the heaters which contributes

to higher flexibility of the heating. The high cleanness of the infrared heating

when compared with the other alternative heating techniques is an important

advantage as well.

The infrared heating is realized by a set of several up to several tens of stan-

dard infrared heaters. The number and heating power of heaters depend on the

size and complexity of the mould. The heaters radiate on the heated side of the

mould (the side where the plastic leather is not formed). Examples of infrared

heaters are given in Figures 2.2 and 2.3.

Figure 2.2: Infrared heater Phillips with nominal power 1000 W

The incident heat flux gradually raises the temperature on the heated side and

subsequently in the whole body of the mould. The achievement of the proper

technological temperature and also the uniformity of the temperature field on

the whole working side of the mould (where the plastic leather is formed) is a
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Figure 2.3: Infrared heater Ushio with nominal power 2000 W

necessary prerequisite for production of high quality plastic leather with perfect

surface structure and even colour shade. In real production conditions it is hardly

possible to attain fully the exact temperature and thoroughly uniform tempera-

ture field, but it is possible to come relatively close to the ideal conditions. The

real target is thus the state when the average temperature on the working side

of the mould achieves approximately the required technological value and the

differences between the real and average temperature do not exceed the techno-

logically set limits. This target is attained by a suitable positioning of a set of

infrared heaters over the surface of the heated side of the mould.

The reasons that complicate the achievement of the uniform temperature field

are primarily:

– shape complexity of the heated mould,

– time limits ensuing from requirements for high production productivity and

cost effectiveness,

– energy consumption limits; in principle, the uniformity of the temperature

field can often be improved by increasing the number of infrared heaters,

but this leads to higher energy consumption.

In the real production the infrared heaters are mostly set by a try and error

procedure. This means that qualified technicians guess suitable positions for in-

frared heaters over the mould. Then a test heating takes place. If the temperature

field on the working side of the mould attains the required level and uniformity,

then this setting is considered acceptable and it is subsequently used in the Slush

Moulding Technology. Otherwise, corrections of heaters positions and orienta-

tions have to be made and the temperature field is again thoroughly monitored

during another test heating. These procedures are repeated until the temperature

field on the working side of the mould surface has the required temperature level

and uniformity. This manual approach is tedious and time consuming. It usually
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takes from one to three weeks depending on the mould dimensions, its complexity

and the number of heaters. Additionally, such a setting is not accurate and it is

not obvious how to quantify the quality of the specific setting.

We can summarize that the manual positioning of infrared heaters has the

following principle disadvantages:

– the dependence of the temperature field on the qualifications and practical

experience of the competent technicians,

– long times necessary for the adequate setting,

– the quality of the manual setting is not certain and besides it is hardly

quantifiable.

In order to simplify and accelerate the procedure of finding suitable positions

of infrared heaters over the mould the authors of article [33] created a simulation

programme in software environment IREviewBlender in cooperation between the

Technical University of Liberec and company LENAM. This software tool makes

it possible to simulate graphically on a computer the setting of individual infrared

heaters providing simultaneously the corresponding total intensity of the heat

radiation incident on the mould surface. This simulation programme does not

optimize the heaters setting in any way, it only visualizes the resulting intensity

of the heat flux. The programme is described thoroughly in the article [33].

Another attempt in this field is a programme modelling the heating radiation

intensity field in the space region around infrared heaters considering their specific

technical parameters. For details see [15].

The developed software tools mentioned above provide useful auxiliary imple-

mentations to be utilized during the infrared heaters setting in the production.

Nevertheless, up to now no real practical method optimizing the infrared heaters

positioning has been available.

It is preferable to have theoretically based and quantifiable procedure for the

setting of infrared heaters over the mould. That is why we used a different

approach proposed by the doctoral thesis supervisor. This approach uses the

fact that the heat radiation intensity is an additive quantity. This means that

the total heat radiation can be calculated as a sum of intensities generated by

individual heaters for each part of the mould. Besides, the producer of plastic

leather can provide the recommended heat intensity Irec that should be used for
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the heating. In these circumstances the task to find the optimal infrared heaters

setting can be reformulated as an optimization task.

This optimization task can be solved by various optimization techniques. Nev-

ertheless, due to complexity of the cost function the standard optimization tech-

niques (e.g. gradient methods) fail to provide usable results. We tested several

other alternative optimization techniques. Finally, differential evolution algo-

rithms and in particular the modified differential evolution algorithm proposed

by the author proved best as a feasible optimization tool. The results received by

the original classic differential evolution algorithm are summarized in articles [27],

[28], [29], and [30]. The modified differential evolution algorithm, its properties

and comparison to the classic differential evolution algorithm were extensively

studied. The connected findings and results are described in articles [12], [13],

[14], and [23].

Since the quality of the produced plastic leather is strongly dependent on the

temperature on the working side of the mould it is important to have a detailed

information on the temperature field in the mould. In the real production the

temperature field is monitored by temperature sensors at several up to several

tens of points on the surface of the mould during the test heating. There exist

several standard methods how to measure the temperature of the mould:

� Measuring by thermocouples

� Measuring based on electrical resistance change with temperature (resis-

tance sensors, termistors)

� Measuring based on dependence of electromagnetic waves radiated by hot

bodies on temperature (infrared detectors, pyrometers)

Although temperature measurements are frequently used their proper exper-

imental arrangement is relatively demanding and costly. Besides, some methods

of temperature monitoring affect negatively either the temperature field or the

production technology. Further, the deviations in the measured temperatures are

sometimes relatively significant inducing uncertainty in the temperature field and

its uniformity. For details on temperature measuring and temperature monitoring

experimental arrangements see [31].

This is the reason to try to replace the experimental temperature measuring

by modelling the temperature field virtually by means of a computer. We use the
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programme package ANSYS that makes possible to calculate the temperature

field on the basis of known heat sources and material parameters of the mould.

Of course also the boundary conditions play an important role in the tempera-

ture field modelling. This procedure makes possible to calculate and depict the

temperature field in the mould in a suitable way and to check it against the tech-

nological temperature requirements ensuing from the plastic leather production.

The results of the temperature field modelling are described and summarized in

articles [22], [24], [25], and [26].

On the assumption that a uniform temperature field is generated by a uni-

form infrared heating (such an assumption is not self-evident and it should be

properly motivated), we can divide the modelling of the temperature field into

two relatively independent parts:

1. The heating optimization

The optimization task that provides the infrared heaters positioning over

the mould and the radiation heat flux incident onto the heated side of the

mould.

2. The temperature field modelling

The numerical calculation of the temperature field generated by the uniform

heating considering proper boundary and initial conditions and its compar-

ison with the target state (comparing it with the target temperature range

and analyzing of the uniformity of the temperature field).

With respect to the fact that the infrared heaters have a relatively complex

heat radiation diagram (a scheme describing the directional dependence of the

heat radiation distribution in the neigbourhood of the heater), it is not possible

to optimize only the positions of the heaters but it is essential to optimize their

space orientation as well.

The temperature field modelling is on the other hand a construction of a solu-

tion of a specific partial differential equation (the heat equation) with boundary

and initial conditions. The optimized heat flux is here used as a heat source

modifying the boundary condition on the heated side of the mould. The method

of finite elements and software package ANSYS are used for the numerical calcu-

lations of the temperature field in the mould.



Chapter 3

Mathematical Background

In this chapter we summarize the mathematical concepts and statements that

have a relation to the topics and models described in the following parts.

3.1 Summary of Linear Functional Analysis

In this section we briefly summarize some definitions and statements from the

area of functional analysis and partial differential equations. We suppose that

the reader is familiar with the following general concepts: vector space, scalar

product, norms on vector spaces, Banach space and Hilbert space. The below

mentioned concepts are in full detail introduced and motivated in books [10], [18],

[19], [20], and [43].

3.1.1 Linear Operators on Banach Spaces

The theory of operators on Banach and Hilbert spaces is a general tool used in

the theory of partial differential equations. First we recapitulate some definitions.

Definition 3.1.1. Let X and Y be Banach spaces. We say that A is a linear

operator from X into Y if

A(u+ v) = A(u) + A(v)

and

A(αu) = αA(u)

for all u, v ∈ X and for all α ∈ R.

11
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Definition 3.1.2. Let X and Y be Banach spaces with norms ∥ · ∥X and ∥ · ∥Y ,
respectively. We say that a linear operator A is continuous if there exists a

constant C > 0 such that

∥A(u)∥Y ≤ C∥u∥X ∀u ∈ X.

The relation between operator linearity and continuity is straightforward in Ba-

nach spaces of finite dimension. In this case each linear operator is continuous.

In general, this is not the case for Banach spaces of infinite dimension.

Proposition 3.1.1. Let X and Y be Banach spaces. If the space X is of finite

dimension then each linear operator A : X → Y is continuous.

Based on Definition 3.1.2 we can define a norm for continuous operators.

Definition 3.1.3. Let A : X → Y be a continuous operator from a normed space

X into a normed space Y . Then

∥A∥ = inf{C ≥ 0 : ∥A(u)∥Y ≤ C∥u∥X} ∀u ∈ X.

Remark 3.1.1. The infimum in the previous definition is attained as the set of

all such C is closed, nonempty, and bounded from below.

A linear operator whose values are real numbers (scalars) is called a linear form

or a linear functional.

Theorem 3.1.2 (Riesz). Let V be a Hilbert space with a scalar product (·, ·)V .
Then for each linear continuous functional f defined on V there exists a unique

element u ∈ V such that

f(v) = (u, v)V ∀v ∈ V.

3.1.2 Bilinear Forms and Lax–Milgram Lemma

Let us remind that a scalar mapping a(·, ·) defined on V ×V , where V is a linear

vector space is a bilinear form if for each fixed v ∈ V the mappings a(·, v) and

a(v, ·) are linear.

Definition 3.1.4. We say that the bilinear form a(·, ·) is continuous if there

exists a constant C1 > 0 such that

|a(u, v)| ≤ C1∥u∥V ∥v∥V ∀u, v ∈ V.



CHAPTER 3. MATHEMATICAL BACKGROUND 13

Lemma 3.1.3 (Lax-Milgram). Let V be a Hilbert space and let a(·, ·) be a con-

tinuous bilinear form for which there exists a constant C2 > 0 such that

|a(u, u)| ≥ C2∥u∥2 ∀u ∈ V. (3.1)

Then for each linear continuous functional f defined on V there exists a unique

element u ∈ V such that

a(u, v) = F (v) ∀v ∈ V. (3.2)

The property defined by the relation (3.1) is called V -ellipticity.

Definition 3.1.5. The bilinear form a(·, ·) defined on V ×V , where V is a linear

vector space is called symmetric if

a(u, v) = a(v, u) ∀u, v ∈ V.

Under the assumption that the bilinear form is symmetric and nonnegative the

Lax-Milgram lemma can be reformulated as the following theorem.

Theorem 3.1.4. Let the assumptions of the Lax-Milgram lemma be satisfied. Let

additionally the bilinear form a(·, ·) be symmetric and a(v, v) ≥ 0 for all v ∈ V .

Then the problem (3.2) is equivalent to the task: Find u ∈ V such that

J(u) = inf
v∈V

J(v),

where J is a quadratic functional given by the formula

J(v) =
1

2
a(v, v)− f(v), v ∈ V.

3.1.3 Sobolev Spaces and Integral Identities

The solutions of many problems described by partial differential equations are

looked for in special function spaces called Sobolev spaces. We have to limit in a

suitable way the domains on which the above mentioned problems are solved. We

consider the Sobolev spaces defined exclusively on bounded regions with Lipschitz

continuous boundaries. Such domains form a reasonably wide class of regions for

practical tasks. Additionally, such domains embody the property that the outer

normal is defined almost everywhere, which is important for concepts such as

normal derivatives or normal components of some quantities.
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Definition 3.1.6. A bounded domain Ω ⊂ Rd is said to have a Lipschitz con-

tinuous boundary if for any x ∈ Γ = ∂Ω there exists a neighbourhood U = U(x)

such that the set U ∩ Ω can be expressed, in a Cartesian coordinate system

(x1, . . . , xd), by the inequality xd < F (x1, . . . , xd−1), where F is a Lipschitz con-

tinuous function. We denote by the symbol L the set of all bounded domains with

Lipschitz continuous boundary.

From now on we consider only domains Ω ⊂ Rd with Lipschitz continuous bound-

aries. That is Ω ∈ L.
We also need a concept of the weak derivative. For any v ∈ C∞(Ω̄) and the

multiindex m = (m1, . . . ,md) we define the classical m-th derivative

Dmv =
∂|m|v

∂xm1
1 · · · ∂xmdd

,

where m1, . . . ,md are nonnegative integers and

|m| = m1 + . . .+md.

We say that a function v ∈ L2(Ω) has the m-th weak derivative in L2(Ω) if

there exists a function z ∈ L2(Ω) such that∫
Ω

zw dx = (−1)|m|
∫
Ω

vDmw dx ∀w ∈ C∞(Ω).

The function z is called the m-th weak derivative of v and we set Dmv = z.

Now, we can define Sobolev spaces in the following way. For k = 0, 1, . . . the

Sobolev space Hk(Ω) is defined as

Hk(Ω) = {v ∈ L2(Ω) : Dmv ∈ L2(Ω), |m| ≤ k}.

The Sobolev space Hk(Ω) equipped with scalar product

(v, w)k,Ω =
∑
|m|≤k

∫
Ω

DmvDmw dx ∀v, w ∈ Hk(Ω),

is a Hilbert space.

We further introduce the induced norm

∥v∥k,Ω =

 ∑
|m|≤k

∫
Ω

|Dmv|2 dx

 1
2

∀v ∈ Hk(Ω),
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and the seminorm

|v|k,Ω =

 ∑
|m|=k

∫
Ω

|Dmv|2 dx

 1
2

∀v ∈ Hk(Ω).

Weak formulations of tasks involving partial differential equations are derived

by means of Green’s theorems. The first Green theorem can be expressed in the

following way(see [19] or [36]) .

Theorem 3.1.5. Let Ω ⊂ Rd be a bounded domain with Lipschitz continuous

boundary, Ω ∈ L. Then for each i ∈ {1, . . . , d} the following equality holds∫
Ω

∂u

∂xi
v dx+

∫
Ω

u
∂v

∂xi
dx =

∫
∂Ω

niuv dS

for all u, v ∈ H1(Ω). Here ni stands for the corresponding component of the outer

normal n.

The integral identity can also be expressed in the vector form∫
Ω

(∇u)v dx+
∫
Ω

u(∇v) dx =

∫
∂Ω

uvn dS. (3.3)

The second Green’s theorem can be formulated in the following way (see [4] or

[6]).

Theorem 3.1.6. Let Ω ⊂ Rd be a bounded domain with Lipschitz continuous

boundary, Ω ∈ L. Let u ∈ C2(Ω), v ∈ C1(Ω), where Ck(Ω) denotes the space of

k-times continuously differentiable functions defined on Ω̄. Then∫
Ω

(∆u)v dV =

∫
∂Ω

∂u

∂n
v dS −

∫
Ω

∇u · ∇v dV,

where the symbol ∂u
∂n

denotes the derivative of the function u with respect to the

outer normal n.

Proof: The proof of the statement follows easily from the theorem of Gauss–

Ostrogradski. We can write the integral identity of Gauss–Ostrogradski in the

following vector form ∫
Ω

∇ · F dV =

∫
∂Ω

F · n dS,

where F is a differentiable vector field.
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Next, we use the obvious differential identity

∇ · (vG) = ∇v ·G+ v∇ ·G,

which holds for any differentiable scalar field v and differentiable vector field G

and get ∫
Ω

∇v ·G dV +

∫
Ω

v∇ ·G dV =

∫
Γ

vG · n dS.

By putting G = ∇u we obtain∫
Ω

∇v · ∇u dV +

∫
Ω

v∇ · ∇u dV =

∫
Γ

v∇u · n dS.

Because ∇ · ∇u = ∆u and ∇u · n = ∂u
∂n
, we finally get∫

Ω

(∆u)v dV =

∫
∂Ω

∂u

∂n
v dS −

∫
Ω

∇u · ∇v dV,

which was to prove.

�

3.1.4 Function Spaces for Nonstationary Problems

Nonstationary evolution problems require the construction of function spaces that

include a time variable. The introduced concepts are inspired primarily by books

[4] and [37].

We consider a function u(x, t) with x ∈ Ω, Ω ∈ L, and t ∈ ⟨0, τ⟩, τ ∈ (0,∞)

and assume that for all or almost all t the function u(x, t) belongs to a suitable

Hilbert space V (for instance H1(Ω)). The meaning of this assumption is a sort

of separation of space and time variables and is motivated by the fact that the

requirements laid on space and time variables are usually different.

Then we can consider u as a generalized function of a real variable t with

values in the function space V

u : ⟨0, τ⟩ → V.

This means that we can further on use the notation u(t), u̇(t) instead of u(x, t)

and ∂
∂t
u(x, t). Since we deal with evolution tasks containing the time derivative

of the solution, we have to introduce the concept of integration of the generalized

functions u(t), u̇(t).
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The standard procedure is to use the concept of measurability and then to

define the integral. First we introduce the set of simple functions s : ⟨0, τ⟩ → V

such that they attain only a finite number of values. They can be written as

s(t) =
n∑
j=1

χEj(t)uj, 0 ≤ t ≤ τ, (3.4)

where u1, . . . , un ∈ V and E1, . . . , En are measurable mutually disjoint subsets of

⟨0, τ⟩. The function χEj(t) is a characteristic function of the set Ej.

We say that f : ⟨0, τ⟩ → V is measurable if there exists a sequence of simple

functions sk : ⟨0, τ⟩ → V such that for k → ∞ we have

∥sk(t)− f(t)∥V → 0 for almost all t ∈ ⟨0, τ⟩.

The integral is defined first for simple functions. If s is given by the relation

(3.4), we define ∫ τ

0

s(t) dt =
n∑
j=1

|Ej|uj.

For a generalized function f : ⟨0, τ⟩ → V we can introduce the integral in the

following way.

Definition 3.1.7. We say that the function f : ⟨0, τ⟩ → V is integrable on ⟨0, τ⟩
if there exists a sequence of simple functions sk : ⟨0, τ⟩ → V such that∫ τ

0

∥sk(t)− f(t)∥V dt→ 0 for k → ∞.

It is possible to verify that {sk(t)} is a Cauchy sequence, so that the limit in the

definition above is properly defined and does not depend on the specific selection

of the sequence {sk(t)}.
Then the following statement is valid.

Proposition 3.1.7. The measurale function f : ⟨0, τ⟩ → V is integrable on ⟨0, τ⟩
if the real function t→ ∥f(t)∥V is integrable on ⟨0, τ⟩. Additionally, it holds∥∥∥∥∫ τ

0

f(t) dt

∥∥∥∥ ≤
∫ τ

0

∥f(t)∥V dt and

(
u,

∫ τ

0

f(t) dt

)
V

=

∫ τ

0

(u, f(t))V dt ∀u ∈ V.



CHAPTER 3. MATHEMATICAL BACKGROUND 18

3.2 Elementary Statistics

In this section we present several concepts from the theory of mathematical statis-

tics that will be necessary in Section 5.7.

3.2.1 Simple Probabilities

We will need probabilistic estimates dealing with random points from the cost

function domain. These estimates can be based on the concept of geometric

probability (as introduced in the book [50], page 56) and elementary calculus.

We can formulate the following problem: We have a domain D with the total

volume V that is divided into m parts of equal volume v. We choose one of these

parts as target and then generate the same number m of random points from the

domain D. The question is what is the probability that we hit the target region

at least once.

Since the volumes of individual parts are equal, the probability to hit specific

regions are also equal. Let us denote the probability to hit a specific region with

one random point as p. It clearly holds

p =
1

m
=

v

V
.

The probability to hit the target region at least once generating m random points

is

P (m) = 1−
(
1− 1

m

)m

.

Let us take a closer look at the sequence

αm =

(
1− 1

m

)m

=
1(

1 + 1
m−1

)m .
From elementary analysis it is clear that the sequence αm is increasing with a

limit

lim
m→∞

αm =
1

e
.

The probability P (m) then forms a decreasing sequence with a limit

lim
m→∞

P (m) = 1− 1

e
.
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But that obviously indicates that the number 1 − 1
e
represents a lower estimate

of the probability P (m).

This probability estimate works analogously also for different numbers of ran-

dom points n. Let us now evaluate the probability of hitting the target region

using n random points. For the sake of simplicity we denote

n = χ ·m.

Here the number χ is a factor specifying the ratio between the actual number of

random points n and the number of regions m.

Then the probability P (m,n) that we hit the target region at least once is

P (m,n) = 1−
(
1− 1

m

)n

= 1−
(
1− 1

m

)χm

= 1−
[(

1− 1

m

)m]χ
> 1− 1

eχ
.

(3.5)

The number on the right is a limit of P (m,n) for m → ∞ and therefore a good

lower estimate of this probability for m finite. For instance for m = 32 the

deviation is less than 1% and for bigger m it is quickly decreasing.

3.2.2 Binomial Distribution

In the theory of probability and statistical modelling the binomial distribution

plays an important role. It is a discrete probability distribution describing the

probability of positive results in independent experiments.

More specifically, let us have a random quantity X with two possible out-

comes. The probability of the first (positive) outcome is p, the probability of the

second (negative) outcome is q = 1−p. We perform a sequence of n independent

experiments and ask what is the probability that we obtain the positive outcome

exactly k times. Of course k can acquire only values 0, . . . , n.

The random quantity X is characterized by the binomial distribution, which

is described by the formula (see [2], page 140)

P (X = k) =

(
n

k

)
pkqn−k. (3.6)

Similarly to other random distributions, the principal quantities characterizing

the binomial distribution are the expected value EX and the variance DX (for
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details see [2]). The value EX can be obtained directly from the defining formula

(3.6) by

EX =
n∑
k=0

k

(
n

k

)
pkqn−k.

The variance is defined by the relation

DX = E(X − EX)2 = EX2 − (EX)2.

Several straightforward algebraic manipulations give us

EX = np

for the expected value and

DX = npq = np(1− p)

for the variance.

3.2.3 Hypotheses Testing

In this part we briefly describe how to test the value of the parameter p used in

the definition of the binomial distribution on the basis of performed experiments.

Let us say we have an experiment with a positive and negative outcome de-

scribed by the binomial distribution (3.6). We suppose that the probability of

the positive outcome is ppos = p0. This probability value represents the so called

null hypothesis H0

H0 : ppos = p0.

The validity of the hypothesis H0 can be tested experimentally by performing

the experiment n times. Thus, we perform this experiment n times and no pos-

itive result occurs. The question now is what conclusion can be made regarding

the hypothesis H0.

To quantify this situation we introduce a quantity called the significance level

and denoted by αS. The quantity αS represents the probability that we decline

the hypothesis H0 although it is true

αS = P (H0 true, but declined),
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where P denotes the probability.

This indicates that we want to keep αS reasonably small. Its value is usually

put equal to alternatively αS = 0.01, αS = 0.005 or αS = 0.001. But it is just a

common convention, its value can be chosen arbitrarily. In statistics, the quantity

αS is sometimes called the error of the first kind.

The hypotheses testing then works in the following way: We determine the

critical part of the binomial distribution. In our circumstances it is the result

Bi(n, 0, p0) = (1− p0)
n.

If H0 is valid the probability of Bi(n, 0, p0) is small and decreasing with increasing

n. The number of experiments n has to be chosen, so that

Bi(n, 0, p0) = (1− p0)
n < αS. (3.7)

Since the result Bi(n, 0, p0) has a small probability, we interpret its occur-

rence as an indication that rather H0 is false. This implies that the probability

ppos < p0. This conclusion is not absolutely certain. There still exists a risk

corresponding to the value αS that H0 is true implying ppos = p0.

Further, we can introduce a quantity CR called the relative certainty by the

relation

CR = 1− αS.

Using the concept CR we can claim that ppos < p0 holds with the relative certainty

CR.

The situation can be also generalized to the case when some positive outcomes

of the experiment occur. The difference is only in the fact how many positive

outcomes we want to consider. This means that we extend the critical part of

the distribution to the cases when we get positive outcomes. The probability of

one positive outcome is according to (3.6)

Bi(n, 1, p0) =

(
n

1

)
p0(1− p0)

n−1 =

(
n

1

)
p0

1− p0
(1− p0)

n.

The probability of k positive outcomes is

Bi(n, k, p0) =

(
n

k

)
pk0(1− p0)

k−1 =

(
n

k

)(
p0

1− p0

)k

(1− p0)
n.
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When we declare that all the cases with 0, 1, . . . , k positive outcomes belong

to the critical part of the distribution we have to modify the relation (3.7) in the

following way

k∑
i=0

Bi(n, i, p0) = (1− p0)
n

[
1 +

(
n

1

)
p0

1− p0
) + · · ·+

(
n

k

)(
p0

1− p0

)k
]
< αS.

(3.8)

From the relation (3.8) we can again determine the number of experiments n

necessary to perform to be able to decline the hypothesis H0 with a reasonable

risk of error less than αS. We can formulate the following proposition.

Proposition 3.2.1. Let us suppose we perform n experiments where n is deter-

mined by relation (3.8). If we obtain up to k positive outcomes, we can decline

the hypothesis H0 : ppos = p0 with a risk at most αS. In other words, we can

claim that ppos < p0 with the relative certainty CR = 1− αS.

Proof: The proposition follows from the considerations that precede it.

3.2.4 An Example – Coin Flipping

Let us assume we have a regular coin with heads and tails sides. We expect that

the probability to get the heads side should be equal to 1
2
. So, we form a null

hypothesis H0 claiming that the probability to get the heads ph is equal to p0 =
1
2
,

H0 : ph = p0 =
1

2
.

Now, we toss the coin several times and record the results. If the coin is really

regular, we should get heads approximately in one half of experiments. If we get

tails more often we can have a suspicion that the coin is not regular.

If we toss the coin several times and get no heads, we would like to make a

conclusion regarding the value ph. The conclusion would probably be that the

hypothesis H0 is not valid that is that ph <
1
2
. But in principle we can also get

the no heads result by a pure coincidence. The probability of this outcome on

the assumption that H0 is true is (
1
2
)n when the coin was flipped n times. So, the

probability of such coincidence can be small, but such event is perfectly possible.

The only thing we can do is to flip the coin in some more experiments. Further

no heads results support the conclusion thatH0 is not true indicating that ph <
1
2
.
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In accordance with the previous part we choose significance levels αS1 = 0.01,

αS2 = 0.005 and αS3 = 0.001. If H0 is true then the probability of no heads result

in n experiments amounts to(
1− 1

2

)n

=

(
1

2

)n

< αS.

Since these results are rather improbable for higher n, we say that their oc-

currence is caused rather by non validity of the hypothesis H0. The term on the

left side of the relation is smaller than αS1 = 0.01 for n1 = 7, for αS2 = 0.005 for

n2 = 8 and for αS3 = 0.001 for n3 = 10.

The conclusion is that when we have the no heads result in 7 consecutive ex-

periments we can claim with the relative certainty CR1 = 0.99 that the hypothesis

H0 is not valid which means ph <
1
2
. When we have 8 consecutive experiments

with no heads we can state the non validity of H0 with the relative certainty

CR2 = 0.995. With 10 consecutive no heads result we can claim that H0 is not

valid with the relative certainty CR3 = 0.999.

When we permit some positive results we have to use relation (3.8) instead of

(3.7) for some specific value of k. As an example we present the cases when we

get heads just once (k = 1) and twice (k = 2).

For k = 1 we get n = 11 to guarantee CR ≥ 0.99, n = 12 to guarantee CR ≥ 0.995

and n = 14 to guarantee CR ≥ 0.999. For k = 2 we get n = 14 to secure

CR ≥ 0.99, n = 15 to secure CR ≥ 0.995 and n = 18 to secure CR ≥ 0.999.
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3.3 Volume and Surface of a Ball in the d-dimen-

sional Euclidean Space

In this section we present simple formulas for volumes and surfaces of a ball

in the d-dimensional Euclidean space. These formulas are necessary for the sub-

sequent probability estimates.

Volume and surface of a ball is usually expressed by means of the Γ function

in the form (see for instance book [38], page 316)

Vd(R) =
π
d
2

Γ(d
2
+ 1)

·Rd (3.9)

and

Sd(R) =
2 · π d

2

Γ(d
2
)
·Rd−1. (3.10)

Here Vd(R) and Sd(R) stand for the volume and surface of a ball with the radius

R in the d-dimensional Euclidean space. The Γ function itself is defined by the

integral formula

Γ(x) =

∫ ∞

0

e−ttx−1 dx = 2

∫ ∞

0

e−t
2

t2x−1 dx.

The integral is convergent for any real x > 0 and divergent for x = 0.

Nevertheless, after substituting for the term containing the Γ function into

the denominator we get different formulas for volumes and surfaces for even and

odd dimensions:

V2k(R) =
πk

k!
·R2k (3.11)

and

V2k+1(R) =
2k+1 · πk

(2k + 1)!!
·R2k+1, k = 0, 1, 2, . . . (3.12)

for volumes and

S2k(R) =
2πk

(k − 1)!
·R2k−1 (3.13)

and
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S2k+1(R) =
2k+1 · πk

(2k − 1)!!
·R2k, k = 1, 2, 3, . . . (3.14)

for surfaces. Here k = 1, 2, . . . In particular, the expressions for d odd are rather

clumsy.

By the term n!! we denote here the double factorial of the integer n. The

double factorial is defined as

n!! = n · (n− 2) . . . 4 · 2,

for n even and

n!! = n · (n− 2) . . . 3 · 1,

for n odd. We also define 1!! = 0!! = 1.

All the expressions (3.11) – (3.14) have two principal disadvantages: They

either contain Γ function values that are not quite common to remember or

lead to different formulas for even and odd dimensions. Therefore, we present

equivalent simple formulas containing only elementary functions.

After some simple deductions and manipulations we get for the volume and

surface of an d-dimensional ball with radius R the following lemma.

Lemma 3.3.1. The volume and surface of a ball of radius R in the Euclidean

space of dimension d are given by the formulas

Vd(R) =
2⌈

d
2⌉ · π⌊

d
2⌋

d!!
·Rd, d = 1, 2, 3, . . . (3.15)

and

Sd(R) =
2⌈

d
2⌉ · π⌊

d
2⌋

d!!
· dRd−1, d = 1, 2, 3, . . . (3.16)

Here, the symbols ⌈x⌉, ⌊x⌋ stand for the upper and lower integer part of a number

x, respectively.

Proof: In the current proof we demonstrate that the new formulas (3.15) and

(3.16) are equivalent to formulas (3.9) and (3.10). The readers interested in

the derivation of formulas (3.9) and (3.10) can consult the book [38] where the

procedure of getting these relations is presented in full detail.

We suppose that the surface of the unit ball is in accordance with (3.10) given

by the formula
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Sd =
2 · π d

2

Γ(d
2
)
.

This implies S1 = 2, S2 = 2π.

Now, we take the ratio Sd
Sd+2

. After some simple manipulations we get

Sd
Sd+2

=
d

2π
.

Let us concentrate on the presented new formula (3.16) for the surface of the unit

ball. We denote for a while the surface by S ′ to be able to differentiate between

original and new formulas.

S ′
d =

2⌈
d
2⌉ · π⌊

d
2⌋

d!!
· d.

We again form the first two terms, specifically S ′
1 = 2 and S ′

2 = 2π which

exactly corresponds to the previous results for the original formula. Analogously,

we again take the ratio
S′
d

S′
d+2

. We also get

S ′
d

S ′
d+2

=
d

2π
.

These ascertainments prove that both formulas for the surface of the unit ball

are fully equivalent.

The surface of a ball with radius R in the d-dimensional Euclidean space is then

given by the formula

Sd =
2⌈

d
2⌉ · π⌊

d
2⌋

d!!
· dRd−1.

Since the volume and surface of a ball with radius R are bound by the relations

Sd(R) =
d

dR
[Vd(R)]

and

Vd(R) =

∫ R

0

Sd(r)dr,

it follows immediately that the volume of an d-dimensional ball is given by the

formula
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Vd(R) =
2⌈

d
2⌉ · π⌊

d
2⌋

d!!
·Rd.

�
The deduced formulas (3.15) and (3.16) are not only simpler to use and easier

to remember but also provide a certain insight how the formulas evolve with the

increasing dimension d. The volumes and surfaces of balls in Euclidean spaces

for several dimensions d are presented in the Table 3.1.

Dimension Volume of a ball Surface of a ball

of the Euclidean space with radius R with radius R

d Vd(R) Sd(R)

1 2R 2

2 πR2 2πR

3 4
3
πR3 4πR2

4 1
2
π2R4 2π2R3

5 8
15
π2R5 8

3
π2R4

6 1
6
π3R6 π3R5

7 16
105
π3R7 16

15
π3R6

8 1
24
π4R8 1

3
π4R7

9 32
945
π4R9 32

105
π4R8

10 1
120
π5R10 1

12
π5R9

12 1
720
π6R12 1

60
π6R11

14 1
5040

π7R14 1
360
π7R13

16 1
40320

π8R16 1
2520

π8R15

Table 3.1: Dependence of the volume and surface of a ball on the dimension of

the Euclidean space into which the ball is embedded

From the Table 3.1 it is obvious that the volume Vd(R) of a ball with fixed

radius R quickly decreases with the increasing dimension d of the Euclidean
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space into which the ball is embedded. More specifically, for a fixed radius R the

volume Vd(R) approaches 0 when d tends to ∞. The following lemma describes

the asymptotic behaviour of Vd(R) for d→ ∞.

Corollary 3.3.2. The volume Vd(R) of a ball with radius R in the d-dimensional

Euclidean space for d→ ∞ can be estimated by the formula

Vd(R) ∼
1√
πd

(
2πe

d

) d
2

Rd. (3.17)

Proof: Let us take the formula (3.15) for the volume of a ball with radius R in

the d-dimensional Euclidean space, d even (d = 2k, k = 0, 1, 2, . . . ). Then we

have

Vd(R) =
2
d
2 · π d

2

d!!
·Rd, d = 0, 1, 2, . . . (3.18)

For n = 2k the following relation for double factorials holds

n!! = 2kk!.

The double factorial in the denominator of (3.18) can then be expressed as

d!! = 2
d
2

(
d

2

)
!.

This means we have

Vd(R) =
π
d
2(
d
2

)
!
·Rd, d = 0, 1, 2, . . .

Now, we apply the Stirling formula for the term containing the factorial

n! ∼
√
2πn

(n
e

)n
, n→ ∞,

implying

(
d

2

)
! ∼

√
πd

(
d

2e

) d
2

, d→ ∞.

This finally provides

Vd(R) ∼
1√
πd

(
2πe

d

) d
2

·Rd, d→ ∞.

�
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Remark 3.3.1. Since the Stirling approximation is a lower estimate of the cor-

responding factorial value, the formula (3.17) is in fact an upper bound for the

volume of a d-dimensional ball.



Chapter 4

Radiation Heating Model

We need a suitable mathematical model to analyze the radiation heating of the

shell mould. We model the infrared heaters and the mould in a three dimensional

Euclidean space R3 with Cartesian coordinate system (O, x1, x2, x3) and the base

vectors e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1).

4.1 Heater Representation

Each heater is represented by a straight line segment with length d (see the left

part of Figure 4.1). The position of the heater is described by the following

parameters:

(i) The coordinates of the centre of the heater C = [C1, C2, C3].

(ii) The unit vector u = (u1, u2, u3) that is oriented in the direction of the

maximal heat radiation. We shall suppose that the component u3 < 0

which means that the heater radiates downward.

(iii) The unit vector r = (r1, r2, r3) in the direction of the longitudinal heater

axis o.

In this case we would have 9 quantities describing the position and orientation

of the heater. Nevertheless, some of these quantities are dependent. For instance

the vectors u and r are perpendicular.

It is a well known fact in mechanics of a solid body that for the full description

of the position and orientation of the body in the three dimensional space 6

parameters are sufficient. That means that it is necessary to reduce the number

30
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Figure 4.1: The model of the infrared heater (left) and an example of a real

heater (right)

of quantities that determine the position of the heater. It is convenient to use the

first two coordinates u1, u2 of the vector u. The vector r can then be described

by one parameter, for instance by angle ϕ between its vertical projection onto

the horizontal plane x1x2 and the positive part of the axis x1 (0 ≤ ϕ < π). Thus

the position of each heater Hi, i = 1, . . . ,M , can be fully and uniquely defined

by the following 6 parameters

Hi = (Ci
1, C

i
2, C

i
3, u

i
1, u

i
2, ϕ

i). (4.1)

4.2 Heat Flux Modelling

In this part we give a brief account how we evaluate the radiation heat flux

coming onto the mould surface. In principle, we have to combine several entities.

First, we need an adequate approximate model of the mould surface. Second, it is

necessary to know how the generated heat radiation intensity is distributed in the

neighbourhood of the heater. Third, we also need a reasonable prescription how

to combine the radiation intensity incident onto the mould surface simultaneously

from several heaters. We start with a suitable approximate model of the mould.

4.2.1 Mould Representation

The outer mould surface P can be described by small elementary surfaces pj,

where 1 ≤ j ≤ N , such that
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P =
N∪
j=1

pj and (int pi) ∩ (int pj) = ∅ for i ̸= j, 1 ≤ i ≤ N, 1 ≤ j ≤ N,

where int pi denotes the interior of elementary surface pi.

Each elementary surface pj can be determined by the following parameters:

(i) The centroid Tj = [T j1 , T
j
2 , T

j
3 ] of the elementary surface pj.

(ii) The unit vector of the outer normal vj = (vj1, v
j
2, v

j
3) at the point Tj (we can

suppose vj faces “upwards”and therefore is defined through the first two

components vj1 and vj2).

(iii) The area cj of the elementary surface.

Each elementary surface pj can then be defined by the following 6 parameters

pj = (T j1 , T
j
2 , T

j
3 , v

j
1, v

j
2, cj). (4.2)

4.2.2 Calculation of the Heat Radiation Intensity on an

Elementary Surface

To be able to calculate the heat radiation intensity incident on each elementary

surface from one heater we need to know how the heat radiation intensity is

distributed in space in the heater neighbourhood. The heaters manufacturers

do not usually provide such heat radiation distribution diagrams which describe

the heat radiation intensity field around the heater. These heating diagrams for

individual types of heaters have to be determined experimentally.

The measuring of these heat radiation diagrams does not form a part of this

thesis. The detailed description of the experimental arrangement can be found

in article [23].

4.2.3 Heat Radiation Intensity and Uniformity of Its Dis-

tribution

Now, we describe the numerical computation of the heat radiation intensity on the

mould surface. Let us suppose that all the heaters are located in fixed positions.

We denote by Lj the set of all heaters radiating on the j-th elementary surface pj
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(1 ≤ j ≤ N). By Ijl we denote the heat radiation intensity from the l-th heater

incident on the pj elementary surface. Then the total radiation intensity Ij on

the elementary surface pj is according to [5] given by

Ij =
∑
l∈Lj

Ijl . (4.3)

The producer of artificial leather recommends a constant value of the heat

radiation intensity on the heated surface of the mould. Let us denote this constant

value as Irec. This specific value is hardly attainable with a limited number of

heaters. The goal is to achieve approximately uniform intensity close to the

recommended value on the whole heated mould surface. We can define a deviation

function F (H1, H2, . . . , HM) that quantifies the deviation of the intensity from

the recommended value Irec by

F =
1

W

N∑
j=1

(Ij − Irec)
2 cj , (4.4)

where W =
∑N

j=1 cj. Let us recall that cj denotes the area of elementary sur-

face pj. Each symbol Hi represents six parameters describing the position and

orientation of an individual heater.

Thus, the arguments of the deviation functions are 6·M parameters describing

the positions and orientations of all heaters in compliance with (4.1). We need to

find such locations of the heaters that minimize the value of deviation function

F (H1, H2, . . . , HM).



Chapter 5

Optimization of the Heat Flux

Distribution

In this chapter we present techniques used to optimize the heat flux distribution

on the heated side of the mould. The optimization is realized by means of dif-

ferential evolution algorithms. It is shown that the original differential evolution

algorithm does not guarantee the global convergence. Therefore, the original dif-

ferential evolution algorithm was modified with the aim to increase the potential

to identify the global minimum of the cost function. The chapter also includes

some theoretical and practical conclusions regarding the original and modified

algorithm.

5.1 General Remarks and Concepts Introduc-

tion

In general, optimization tasks represent an important part of application mathe-

matics. The optimization algorithms are frequently used in engineering, science

and production practice. Besides, optimization is a fascinating area of study

because of its universal applicability. Broadly speaking, to optimize a system

means to maximize the system’s desirable properties minimizing simultaneously

its unfavourable characteristics.

The optimized system has several parameters that influence the property be-

ing optimized. The optimization task can typically be described by means of an

objective function. The parameters of the system then represent the variables of

34
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the objective function. The optimization problem is then transformed into the

task to identify extreme values of this objective function. When we search for the

minimum of the objective function then the term cost function is mostly used.

On the other hand if we look for the maximum of the objective function then the

term fitness function is usual. For an extensive survey of various optimization

techniques see for instance books [35] or [39].

5.2 Evolutionary Computing

At present, evolutionary algorithms (including differential evolution algorithms)

are used for optimization tasks with intricate costs functions and complicated

constraints. The evolutionary algorithms are primarily utilized in situations when

other usual methods fail to converge to the optimized stated. For example the

commonly used gradient methods require that the cost function is differentiable.

Additionally, they mostly do not identify the global minimum when the cost

function has a lot of local minima. In these cases the gradient methods are prone

to converge to a local minimum. This means that their results strongly depend

on the choice of the search starting point.

The evolutionary methods try to overcome this problem by a different ap-

proach. They create whole generations of potential solutions. The creation of

potential solutions is partly random. This contributes to more extensive exploring

of the cost function domain. The potential solutions are then assessed according

to their cost function value. The solutions with lower cost function values have

better prospects to take part in the creation of the subsequent generation.

Evolutionary algorithms are formed in principal by two main groups. The

first group is the family of genetic algorithms. The algorithms in this group

simulate quite closely the natural selection in nature. For instance they utilize

a cross over and mutation mechanisms when creating new individuals (potential

solutions). The genetic algorithms are extensively studied in the book [1] and

[21]. The second group consists of differential evolution algorithms. In this work

we focus primarily on differential evolutions algorithms.

These algorithms were first introduced by Storn and Price in [34] and [41].

Because of the random creation of individual potential solutions, the convergence

analysis of differential algorithms is relatively demanding. This is probably the

reason why the published results concerning the sufficient conditions for the global
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convergence of the differential evolution algorithms are relatively rare.

The differential evolution algorithms now consist of a larger group of similar

algorithms that differ in implementation details. We concentrate on the standard

DE/rand/1/bin algorithm which is best known and mostly used. That is why

it is termed as the classic differential evolution algorithm in [35]. Hereafter it is

referenced to as CDEA.

5.3 Classic Differential Evolution Algorithm

In this part we briefly describe the operation of CDEA. Generally, CDEA seeks

for the minimum of the cost function by constructing whole generations of indi-

viduals. Each individual is an ordered set of specific values corresponding to one

point from the cost function domain. In this way each individual represents a

potential solution of the optimization task. The quality of this individual is de-

termined by the evaluation of the cost function corresponding to this individual.

The next generation is formed from the existing generation by means of muta-

tion and crossover operators. Specifically, we go successively through all individ-

uals in the generation G. To each individual yGi (termed as the target individual)

we select randomly three other (different) individuals yGr1, y
G
r2, y

G
r3 from the current

generation. We form in a specific way (including randomness) a combination of

these three individuals and the target individual. This combination is termed as

the trial individual and denoted ytriali . Then we evaluate the cost function for the

target yGi and trial individual ytriali and compare the results. The individual with

lower value of the cost function advances to the position of the target individual

of the next generation yG+1
i . When this procedure is completed for all target

individuals in generation G, we have the new generation of individuals numbered

G+ 1.

The next part illustrates CDEA operation more specifically in the form of the

pseudo code.

Input:

Optimization task parameters:

f denotes the cost function, D is the dimension of the cost function domain,

⟨ximin, ximax⟩ is a domain of each cost function variable xi.

CDEA parameters:
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NP denotes the generation size (the number of individuals in each generation),

NG is the total number of generations, F stands for the mutation factor, F ∈
⟨0, 2⟩, and CR denotes the crossover probability, CR ∈ ⟨0, 1⟩. The symbol G

stands for the generation number, index i is the number of the individual in the

generation, index j describes the j-th component of a specific individual yi.

Computation:

1. create the initial generation (G = 1) of NP individuals yGi , 1 ≤ i ≤ NP ,

randomly or according to a prescribed scheme

2. (a) evaluate all individuals yGi of the generation G (calculate f(yGi ) for

each individual yGi )

(b) store the individuals yGi and their evaluations f(yGi ) into the matrix

A with NP rows and D + 1 columns

3. repeat until G ≤ NG

(a) for i = 1 to NP do

i. randomly select three different indices r1, r2, r3 ∈ {1, 2, . . . , NP},
rm ̸= i, m ∈ {1, 2, 3}

ii. randomly select an index ki ∈ {1, . . . , D}
iii. for j = 1 to D do

if (rand⟨0, 1) ≤ CR or j = ki)

then ytriali,j = yGr3,j + F (yGr1,j − yGr2,j)

else ytriali,j = yGi,j
endif

endfor(j)

iv. if f(ytriali ) ≤ f(yGi )

then yG+1
i = ytriali

else yG+1
i = yGi

endif

endfor(i)

(b) store the individuals yG+1
i and their evaluations f(yG+1

i ), 1 ≤ i ≤ NP ,

of the new generation G+ 1 into the matrix A, G = G+ 1

endrepeat.
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Output:

The matrix A with NP rows and D+1 columns contains the final generation of

individuals including their evaluations. The row of matrix A that contains the

lowest cost function value represents the best found individual ymin.

5.4 Classic Differential Evolution Algorithm and

the Global Convergence

In this part we present some simple considerations indicating that the CDEA

has in some simple situations rather limited ability to determine the global min-

imum of the cost function. The conclusion following from this fact is that the

CDEA guarantees in general only the convergence to a local minimum of the cost

function. We demonstrate this fact by means of a specific cost function.

5.4.1 Counterexample to Global Convergence of CDEA

It is not difficult to find counterexamples to the global convergence of the CDEA.

Let us consider for instance the following two graphs of cost functions with the

domain in Euclidean space R2, see Figure 5.1.

Even for the cost function shown in Figure 5.1(a) the probability that the

CDEA finds the global minimum of the cost function is less than one. The

reason is that the CDEA can converge in some cases relatively fast to the local

minimum missing completely the global minimum. This results in concentrating

the individuals in subsequent generations around the local minimum. As soon

as the size of the generation falls under some critical value, the generation is too

small to produce trial individuals that could hit the the region around the global

minimum. This situation is called a premature convergence. In this case even

increasing the number of generations does not lead to increasing the chances to

find the global minimum.

Moreover, the probability that the CDEA finds the global minimum falls with

the decreasing measure of the global minimum region. The probability of finding

the global minimum for the cost function in Figure 5.1(b) is substantially smaller

than for the cost function in Figure 5.1(a). Additionally, by a sufficient reduction

of the measure of the global minimum region this probability can be made as

close to zero as possible.
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Figure 5.1: Examples of cost functions with domains in R2
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5.4.2 Numerical Example Description

We can present a specific cost function to demonstrate the limited ability of

CDEA to converge to the global minimum of the cost function. To keep things

simple we consider the domain of the cost function as a subset of the two-

dimensional Euclidean space R2. We will construct the cost function F (x1, x2)

as a composition of two simple functions

F (x1, x2) = FB(x1, x2) + FM(x1, x2). (5.1)

The term FB(x1, x2) represents the base function. This function should be

smooth, relatively shallow and attain one minimum. It can be defined for instance

in the following way

FB(x1, x2) = x21 + x22,

with the domainD(FB) = ⟨−H,H⟩×⟨−H,H⟩, whereH determines the boundary

values of the domain.

The term FM(x1, x2) denotes a modifier function. This function should be

relatively steep and with a rather small domain. We use the function FM(x1, x2)

to modify the underlying base function FB(x1, x2). The role of the function

FM(x1, x2) is to realize the global minimum of the cost function F (x1, x2). To

be able to construct the function FM(x1, x2) effectively, we introduce another

auxiliary function FP(x1, x2)

FP(x1, x2) = x21 + x22 − 1,

with the domain D(FP) = {x1, x2 : x21 + x22 ≤ 1}.
It is obvious that the function FP(x1, x2) is defined exclusively on a unit circle

and attains values from the closed interval ⟨−1, 0⟩. The graph of the function

FP(x1, x2) is a circular paraboloid presented in Figure 5.2.

The function FM(x1, x2) is then formed as

FM(x1, x2) = λh · FP

(
1

ρ
(x1 − xG1),

1

ρ
(x2 − xG2)

)
.

Here the number λh defines the height of the resulting circular paraboloid, ρ

denotes the radius of the domain on which the modifier function FM(x1, x2) is

defined. Obviously, the modifier function FM(x1, x2) is defined only for points

that are closer to the point [xG1, xG2] than the radius of its domain ρ. The
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Figure 5.2: Graph of the auxiliary function FP(x1, x2)

coordinates xG1, xG2 specify the point, where the modifier function FM(x1, x2)

attains its minimum.

The overall cost function F (x1, x2) is then defined according to the relation

(5.1) by the composite formula

F (x1, x2) = x21 + x22 + λh · FP

(
1

ρ
(x1 − xG1),

1

ρ
(x2 − xG2)

)
. (5.2)

We have to choose the parameters λh, ρ, xG1 and xG2 in a reasonable way

to attain the required result. It is clear that we can control the dimensions of

modifier function domain by the parameter ρ. The point [xG1, xG2] is to be placed

relatively close to the boundary of the cost function domain. This means it is

relatively far from the point [0, 0] representing the local minimum of the cost

function analogously to the cost functions presented in Figure 5.1.

Since the base function FB(x1, x2) is positive definite, it attains a positive value

FB(xG1, xG2) at the point [xG1, xG2]. This means we have to take the parameter

λh sufficiently large, so that the global minimum is essentially lower than the local

minimum at the point [0, 0]. A reasonable value for λh is 2FB(xG1, xG2). This

choice implies that the cost function value F (xG1, xG2) at the point [xG1, xG2] is

−FB(xG1, xG2) and thus substantially lower than the value F (0, 0) = 0 at the

point [0, 0] representing the local minimum of the cost function F (x1, x2).
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This simple setting has one more important advantage. As mentioned before,

the CDEA is greedy. This means it does not abandon a point with a low cost

function value unless it finds a point with an even lower cost function value. This

fact implies that to find the global minimum of the cost function F (x1, x2) in our

case, it is not enough to hit only the part of the cost function domain F (x1, x2),

where the modifier function FM(x1, x2) is defined. It is necessary to hit a point

from the modifier function FM(x1, x2) domain, where the value of F (x1, x2) is

lower than at the local minimum at the point [0, 0]. If the algorithm hits such

a point it never abandons it unless it goes further closer to the global minimum

of the cost function F (x1, x2). This indicates the subsequent convergence of the

algorithm to the global minimum.

So, it is important to have the information what is the measure of FM(x1, x2)

domain with F (x1, x2) values lower than the value at the local minimum. In our

setting this measure can easily be calculated. In fact, it is exactly one half of the

measure of FM(x1, x2) domain. This fact makes possible to compare the results

of CDEA statistical testing with our preliminary probability expectations.

Specific parameters of the cost function F (x1, x2):

We putH = 4. This value indicates that the domain of the cost function F (x1, x2)

is a set ⟨−4, 4⟩ × ⟨−4, 4⟩ with the measure µ(D(F )) = 82 = 64.

We set x1G = x2G = 3. This means that the global minimum of the cost func-

tion F (x1, x2) is at the point [3, 3] and the base function value at this point is

FB(3, 3) = 32 + 32 = 18.

We put λh = 36. This value implies the cost function value F (3, 3) at the global

minimum to be −18.

We set ρ = 1
10
. This determines the radius of the domain of the modifier function

FM(x1, x2). The measure of the modifier cost function domain is µ(D(FM)) =

πρ2
.
= 3.14 · ( 1

10
)2 = 0.0314.

From the above mentioned it follows that the measure of the part of the cost

function domain F (x1, x2) with values less than the value at the point of the local

minimum is

µ(D(F ) ∩ (F (x1, x2) ≤ F (0, 0)) = 1
2
πρ2

.
= 0.0157.

5.4.3 Numerical Example Statistics

The above mentioned numerical example was programmed in the Matlab environ-

ment to verify the hypothesis that the success rate of CDEA in finding the global
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minimum of the cost function under such circumstances is relatively low. We

performed 200 numerical experiments with the following parameters: number of

individuals in each generation NP = 200, number of generation NG = 160. The

algorithm CDEA identified the global minimum of the cost function F (x1, x2)

in 37 cases out of 200. In 163 experiments the CDEA ended up at the local

minimum of F (x1, x2) at the point [0, 0]. This gives a conclusion that CDEA

finds under such circumstances the global minimum of the cost function only in

approximately 18.5% of cases which is rather poor result.

Additionally, the success rate can be lowered arbitrarily by reducing the quan-

tity ρ implying the decrease in the measure of the region with the cost function

values below the cost function value at the local minimum.

To demonstrate this fact, we reduced the parameter ρ to 1
16

and peformed

another 200 experiments. This time the algorithm CDEA identified the global

minimum of the cost function F (x1, x2) in 15 cases out of 200. In 185 experiments

the CDEA ended up at the local minimum of F (x1, x2) at the point [0, 0]. This

gives a percentage success rate to identify the global minimum only 7.5%.

These results illustrating the limited ability of CDEA to identify the global

minimum under these circumstances are summarized in the following table.

CDEA Local minimum Global minimum Success rate

hits hits in %

ρ = 1
10

163 37 18.5

ρ = 1
16

185 15 7.5

Table 5.1: Experimental testing of CDEA

Another unfavourable feature of CDEA is the fact that even if the number

of generations NG is essentially increased it does not lead to a higher success

rate, because if the algorithm does not hit the region of the global minimum in

several first generations the subsequent generations concentrate relatively quickly

around the local minimum. Losing generations diversity results in impossibility

to hit the region of the global minimum in any of the following generations.
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5.5 Modified Differential Evolution Algorithm

In the first part of this section we describe the modification of CDEA called

MDEA ensuring the asymptotic global convergence. In the second part we present

better global convergence abilities of MDEA by a numerical example including

simple statistics.

5.5.1 Modification to Ensure the Asymptotic Global Con-

vergence

As mentioned in the previous part, CDEA does not in general guarantee the con-

vergence to the global minimum of the cost function. This is caused by the too

fast convergence of CDEA to the local minimum (premature convergence) result-

ing in rapid reduction of the generation size (loss of diversity). This observation

gives us a hint how to modify CDEA, so that it provides better results regarding

the global convergence. The most straightforward way is to limit the prema-

ture convergence by replacing some individuals with the highest values of the

cost function in each generation by random individuals. Though these random

individuals reduce partially the convergence speed they increase substantially

the diversity of the generation. The increased diversity ensures then even the

asymptotic global convergence of the modified algorithm.

Therefore, it is in principle necessary to make one simple change in the algo-

rithm. We present only the differences with respect to CDEA. See the pseudo-

code description of CDEA in Chapter 5.3.

Input:

We add another parameter R that determines the ratio of random individuals in

each generation, R ∈ ⟨0, 1⟩, e.g., R = 0.1 means that 10% of individuals in each

generation are generated randomly.

Computation:

We add another procedure to the part (3), specifically:

(c) determine in matrix A the quantity ⌊NP ·R⌋ of individuals with the highest

cost function values and replace these individuals by random individuals from

the search space.

Here the symbol ⌊x⌋ denotes the integer part of the real number x.
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5.5.2 Numerical Example: Comparison CDEA - MDEA

We can perform the same testing using the identical cost function F (x1, x2) de-

fined by the relation (5.2) with MDEA. All parameters of the test are the same as

before: number of individuals in each generation NP = 200, number of genera-

tions NG = 160, the number of experiments again 200. Additionally, for MDEA

it is necessary to set the value R specifying the ratio of random individuals in

each generation. We put R = 0.1 implying 10 % of random individuals in each

generation.

The algorithm MDEA identified the global minimum of the cost function

F (x1, x2) in 166 cases out of 200 for ρ = 1
10

and in 130 cases out of 200 for ρ = 1
16
.

The results are summarized in the Table 5.2.

CDEA MDEA

Local Global Success Local Global Success

minimum minimum rate minimum minimum rate

hits hits in % hits hits in %

163 37 18.5 34 166 83.0

185 15 7.5 70 130 65.0

Table 5.2: Experimental comparison of CDEA and MDEA. The first row repre-

sents the data for ρ = 1
10
, the second row presents the data for ρ = 1

16
.

Another positive feature of the algorithm MDEA is that if we increase the

number of generations NG the global minimum will be identified with an in-

creased probability. This probability can come close to 1 for a sufficiently high

number of generations. We call this aspect of the MDEA an asymptotic global

convergence. We describe this topic in the following part.



CHAPTER 5. OPTIMIZATION OF THE HEAT FLUX DISTRIBUTION 46

5.6 Asymptotic Global Convergence

In this part we present several theoretical concepts and statements that can be

used to prove the asymptotic global convergence of MDEA. More specifically, we

are able to show that when the number of generations G → ∞ than the proba-

bility that MDEA finds the global minimum of the cost function approaches 1.

5.6.1 Optimal Solution Set

We have an optimization task to identify the minimum of a cost function

F (x1, x2, . . . , xd) defined on an d-dimensional bounded domain. For brevity

we denote by the symbol x the ordered d-tuple x1, x2, . . . , xd. In this notation

x = (x1, x2, . . . , xd). That is we should find the minimum of the function F (x).

In general this function may have more local and global minima. We would like

to find the minimum with the lowest cost function value

min{F (x) : x ∈ S}, (5.3)

where S is a measurable search space of a finite measure representing all possible

configurations of variables x. We suppose that the global minimum of function

F exists on S. The solution set can be defined as

S∗ = {x∗ : F (x∗) = min{F (x) : x ∈ S}},

where x∗ represent global minima of the function F . To be able to prove the

convergence in probability we consider an expanded solution set

S∗
ε = {x ∈ S : |F (x)− F (x∗)| < ε}, (5.4)

where ε > 0 is a small positive real number. Denoting by µ the Lebesgue measure,

we suppose that for each ε it holds that µ(S∗
ε ) > 0.

Definition 5.6.1. We call the set S∗
ε defined by relation (5.4) the optimal solu-

tion set.

5.6.2 Convergence in Probability

To examine the global convergence of MDEA we need to introduce a concept of

the convergence in probability defined in [11].
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Definition 5.6.2. Let {G(k), k = 1, 2, . . .} be a generation sequence created by a

differential evolution algorithm to solve the optimization problem (5.3). We say

that the algorithm converges to the optimal solution set in probability if

lim
k→∞

p{G(k) ∩ S∗
ε ̸= ∅} = 1, (5.5)

where p denotes the probability of an event.

Now we can prove the following theorem.

Theorem 5.6.1. Let us suppose that for each generation G(k) of a differential

evolution algorithm there exists at least one individual y such that

p{y ∈ S∗
ε} ≥ α > 0,

where α is a small positive value. Then the algorithm converges to the optimal

solution set S∗
ε in probability. That is the relation (5.5) holds.

Here p{y ∈ S∗
ε} denotes the probability that y belongs to the optimal solution

set S∗
ε .

Proof: Let us suppose that an individual yrand ∈ S is created randomly in each

generation G(k). The probability that it hits the optimal solution set is given by

the relation

p{yrand ∈ S∗
ε} =

µ(S∗
ε )

µ(S)
= α > 0.

It means that the relation

p{yrand /∈ S∗
ε} = 1− α

holds for each generation. We can estimate that the first k generations do not

include an individual y ∈ S∗
ε by the relation

k∏
i=1

p{G(i) ∩ S∗
ε = ∅} ≤ (1− α)k.

The inequality in this relation follows from the fact that in principle the set S∗
ε

can be achieved not only by random individuals but also by the individuals that

were created by the differential evolution mechanism. Based on the construction

of individuals in generation G(k), the best individual in generation G(k) has
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the same or better evaluation than the best individual from all the previous

generations implying

lim
k→∞

p{G(k) ∩ S∗
ε = ∅} = lim

k→∞

k∏
i=1

p{G(i) ∩ S∗
ε = ∅} ≤ lim

k→∞
(1− α)k = 0,

which induces

lim
k→∞

p{G(k) ∩ S∗
ε ̸= ∅} = 1− lim

k→∞
p{G(k) ∩ S∗

ε = ∅} = 1− 0 = 1

that was to prove.

�

Remark 5.6.1. Since the probability that a random individual hits the optimal

solution set with a positive measure is strictly positive, MDEA (in contrast to

CDEA) complies with the assumptions of the theorem. This implies the global

convergence of MDEA in probability.
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5.7 Probabilistic Convergence Analysis

The operations of algorithms CDEA and MDEA are relatively straightforward

to describe (for details see Sections 5.3 and 5.5). On the other hand their exact

theoretical analysis is relatively demanding and up to now not available in any

publications. Nevertheless, the analysis of the role of random individuals in

MDEA is relatively simple. By a random individual we mean a random point

from the search space S. Since these random individuals form the part of the

algorithm that ensures the asymptotic convergence to the global minimum of the

cost function, it definitely has sense to have a clear idea about how this feature

of MDEA works. That is the reason we focus in this part on the mechanism how

random individuals contribute to the identification of the global minimum of the

cost function.

From the description of CDEA and MDEA (see Section 5.3 pseudocode part

(3)(a)(iv)) it is apparent that both algorithms are greedy in the following sense:

When they attain a point in the search space with a small value of the cost

function they will not lose it unless they replace it by another point with even

smaller value of the cost function.

This feature complements conveniently with the random sampling part in

the MDEA (see Section 5.5 pseudocode part (3)(c)). The random sampling ex-

plores the search space and can be characterized by the fact that more random

individuals provide more detailed exploration of the search space. Technically

speaking, when performing a practical calculation, the random sampling can

bring the MDEA close to the global or very low (acceptable) local minimum and

the mechanism of the differential evolution ensures the effective convergence to

this minimum.

5.7.1 Sampling of the Search Space by Random Individ-

uals

Let us suppose we have somehow identified a local minimum of the cost function

F at the point xL with the cost function value F (xL) (index L stands here for

Local). We would like to try the possibility to find a better local minimum or

preferably the global minimum of the cost function F (x).

We make an assumption that there exists a part of the search space S with cost

function values lower than F (xL). We denote this region as the target region σ
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σ = {x ∈ S : F (x) < F (xL)}. (5.6)

We denote the measure of the target region σ as µ0(σ). Additionally, we

suppose µ0(σ) > 0. By the symbol µ(S) we understand the measure of the whole

search space S. The target region σ is thus the part of the search space S that

according to our assumption contains a minimum or minima with lower cost

function values than F (xL).

Subsequently, we use the algorithm MDEA that includes the generation of

random individuals, that is a random sampling. Now, we formulate a null hy-

pothesis H0. The hypothesis H0 states that the probability p to hit the target

region with one random individual is p = p0. The probability p0 that we hit the

target region σ with one random individual is given by the ratio of µ0(σ) and

µ(S)

p0 =
µ0(σ)

µ(S)
. (5.7)

In this way the hypothesis H0 determines the measure of the target region µ0(σ)

as well.

The hypothesis H0 can be expressed symbolically as

H0 : p = p0, (5.8)

where p denotes the probability to hit the target region σ with one random

individual.

In principle, we can confirm or reject the hypothesis H0 by generating a

quantity of random individuals and monitoring whether some of them hit the

target region σ or not. The number k of random individuals that should hit the

target region σ is described by the binomial distribution (see [2], page 140)

Bi(n, k, p0) =

(
n

k

)
pk0(1− p0)

n−k. (5.9)

After we generated n random individuals there exist in principle two different

results:

1. We got some individuals from the target region σ. This means we have

found some points xB with cost function values F (xB) lower than F (xL)

(index B here stands for Better). This result is considered positive and we
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can decide whether the lowest value of F (xB) is acceptable as a result of

the optimization or whether to continue with the search for even better cost

function values.

2. No random individuals hit the target region σ, that is we did not find any

points xB. What conclusion can we make based on this negative result?

There are in principle three alternatives:

� The target region σ does not exists at all. This means that the point

xL can be considered as a global minimum.

� The target region σ does exist but its measure µ(σ) is smaller than

the supposed value µ0(σ). This implies that the probability to hit the

target region σ with one random individual is smaller than p0.

� The target region σ does exist and its measure µ0(σ) is right but we

did not hit it by accident, since we used exclusively random individuals

that missed the target region.

The probability that the target region σ should not be hit even once after

generating n random individuals is according to (5.9)

Bi(n, 0, p0) = (1− p0)
n. (5.10)

It is obvious that this probability converges to 0 with the increasing n for

p0 > 0. Even if the random individuals indicate that the probability p to hit the

target region σ is 0 or significantly smaller than the value p0 we do not know this

for sure, just because the generated individuals are random. We can claim this

only with a relative certainty.

Now, it is suitable to utilize some terminology from the statistical hypotheses

testing. It is necessary to set a fixed significance level αS. The quantity αS

represents the probability that we decline the hypothesis H0 : p = p0 although it

is true

αS = P (H0 true, but declined), (5.11)

where P denotes the probability of the event.

The value of αS depends on circumstances and in particular on the fact what

quantity of risk to reject the right hypothesis is for us acceptable. It is usually

chosen 0.05, 0.01, 0.005, . . . , but in fact it can be set arbitrarily. The significance
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level αS is sometimes called the error of the first kind in statistical hypotheses

testing.

The logic of the hypotheses testing is that we determine some part of the

binomial distribution Bi(n, k, p0) with a small probability αS and declare this

part of the distribution as critical. Since the probability αS is small, it is relatively

improbable that we hit the critical part. In our case the critical part corresponds

to the “no hit of the target region σ”area that is to the result Bi(n, 0, p0). Since

the value Bi(n, 0, p0) is according to (5.10) decreasing with increasing n and

p0 > 0 we have to take the number n in such a way that the result Bi(n, 0, p0) is

a part of the binomial distribution Bi(n, k, p0) with probability equal to or less

than αS.

Now, it is possible to determine the smallest such n denoted by n0. We

calculate it from the equation

(1− p0)
n0 = αS

as the minimal number guaranteeing to attain the significance level αS which

gives

n0 =
log(αS)

log(1− p0)
, (5.12)

where log(x) stands for the decadic logarithm of a positive real number x.

From the considerations above it follows that if we generate n ≥ n0 random

individuals and none of them hits the target region σ we can claim that the

probability p to hit the target region σ is p < p0 only with the risk αS. We

introduce finally the concept of the relative certainty CR (see Section 3.2.3 for

more information) by the relation

CR = 1− αS.

Now, we can formulate the following proposition.

Proposition 5.7.1. Let us assume that we generate at least n = n0 random

individuals, where n0 is defined by the relation (5.12), and not even one hits the

target region σ. Then we can claim with relative certainty at least CR = 1 − αS

that the actual probability p to hit the target region with one random individual

is less than p0. This also implies that the measure of the target region is smaller

than µ0(σ) with the same relative certainty CR.
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Proof: The statement of the proposition follows easily from the meaning of the

significance level αS and the value n0 given by the relation (5.12). Suppose we

generated n ≥ n0 random individuals and not even one hits the target region σ.

Since it definitely holds

n ≥ n0 =
log(αS)

log(1− p0)
,

we have

n log(1− p0) ≤ n0 log(1− p0) = log(αS),

which implies

(1− p0)
n ≤ (1− p0)

n0 = αS.

The last relation expresses the fact that when the hypothesis H0 is true then

the probability that no random individual out of n hits the target region σ is

smaller than αS. Since the value αS is relatively small we declare this situation

as relatively improbable and accept the risk αS to decline the hypothesis H0 with

a relative certainty CR = 1− αS. In other words we say that since this situation

is on the assumption p = p0 relatively improbable its occurence is caused rather

by the fact that p < p0. �

Remark 5.7.1. It is apparent from the relation (5.12) that the number n0 is

dependent on the significance level αS and on the assumed probability p0.

5.7.2 More Probabilistic Estimates

In spite of the fact that the formula (5.12) is relatively simple, it can be further

simplified. Let us introduce an auxiliary quantity

ψ = np0 (5.13)

that expresses the relation between the number n of generated random individuals

and the assumed probability to hit the target region p0 defined by (5.7). Now,

we can express the probability that not even one random individual out of n hits

the target region σ in the following way

(1− p0)
n = (1− p0)

ψ
p0 =

[
(1− p0)

1
p0

]ψ
.
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When we again make use of the significance level αS defined by the relation (5.11)

we can write [
(1− p0)

1
p0

]ψ
≤ αS.

Introducing the quantity ψ0 as a minimal value of ψ complying with the previous

inequality, we get an equation[
(1− p0)

1
p0

]ψ0

= αS.

We need to estimate in a suitable way the term in the square brackets. The task

can be reformulated in the following way: Find the supreme of the function

g : y = (1− x)
1
x

with domain D(g) = (0, 1⟩. Elementary analysis gives us an estimation

(1− p0)
1
p0 ≤ 1

e
.

Using this estimate gives (
1

e

)ψ0

= αS.

From this relation we immediately get

ψ0 = − ln(αS), (5.14)

where ln(x) stands for the natural logarithm of the positive real number x. The

quantity ψ0 gives us a useful representation for the term

ψ0 = N0p0.

The last relation expresses the fact that when we assume the hypothesis H0 : p =

p0 and no random individual hits the target region σ we need to take N0 in such

a way that

N0p0 ≥ − ln(αS)

to be entitled to claim that H0 : p = p0 does not hold implying p < p0.

In case we need to express explicitly the number of individuals not hitting the

target region σ we can use the relation (5.13) and get
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N0 = − 1

p0
ln(αS). (5.15)

Analogously to Proposition 5.7.1 we can state the following:

Proposition 5.7.2. Let us assume we generate at least n = N0 random indi-

viduals where N0 is defined by the formula (5.15) and not even one individual

hits the target region σ. Then we can claim with the relative certainty at least

CR = 1− αS that the actual probability p to hit the target region is less than p0.

Proof: The proof follows from the preceding considerations.

Remark 5.7.2. The principal advantage of the formula (5.15) over the formula

(5.12) is the fact that in the former the dependence on the value p0 is much

simpler than in the latter. This is based on the fact that ψ0 according to (5.14)

does not depend on the value p0 at all.

To illustrate the dependence of the quantities ψ0 and N0 on values αS for three

different levels of the probability p0 we summarized these quantities in Table 5.3.

The Table 5.3 demonstrates the fact that when we suppose a fixed value of prob-

ability p = p0 and perform N0 experiments with a negative result we can claim

with a relative certainty CR that p < p0. The higher relative certainty we require

the more experiments have to be performed, in other words the more random

individuals have to be generated.

It is not complicated to verify that formulas (5.12) and (5.15) for the numbers

n0 and N0 are equivalent under the condition p0 ≪ 1.

Lemma 5.7.3. Formulas (5.12) for the value n0 and (5.15) for the value N0 are

equivalent on the assumption p0 ≪ 1.

Proof: The following formula holds for logarithms with different bases

loga(x) · logb(a) = logb(x).

Using this formula in our context gives

log10(αS) · ln(10) = ln(αS),

where ln(x) denotes the natural logarithm of a positive real number x. Substi-

tuting the last formula into the (5.12) gives
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αS CR ψ0 N0 N0 N0

p0 = 10−6 p0 = 10−9 p0 = 10−12

0.1 0.9 2.302 586 2 302 586 2 302 586 000 2 302 586 000 000

0.05 0.95 2.995 733 2 995 733 2 995 733 000 2 995 733 000 000

0.01 0.99 4.605 171 4 605 171 4 605 171 000 4 605 171 000 000

0.005 0.995 5.298 318 5 298 318 5 298 318 000 5 298 318 000 000

0.001 0.999 6.907 756 6 907 756 6 907 756 000 6 907 756 000 000

0.000 5 0.999 5 7.600 903 7 600 903 7 600 903 000 7 600 903 000 000

0.000 1 0.999 9 9.210 341 9 210 341 9 210 341 000 9 210 341 000 000

0.000 05 0.999 95 9.903 488 9 903 488 9 903 488 000 9 903 488 000 000

0.000 01 0.999 99 11.512 926 11 512 926 11 512 926 000 11 512 926 000 000

0.000 005 0.999 995 12.206 073 12 206 073 12 206 073 000 12 206 073 000 000

0.000 001 0.999 999 13.815 511 13 815 511 13 815 511 000 13 815 511 000 000

Table 5.3: Values of ψ0 and N0 for different levels of probability p0 and different

values αS

n0 =
log(αS)

log(1− p0)
=

ln(αS)

log(1− p0) · ln(10)
=

ln(αS)

ln(1− p0)
.

Assuming p0 ≪ 1, we can approximate

ln(1− p0) ≈ −p0.

Using the last approximation gives

n0 ≈
ln(αS)

−p0)
= N0,

which was to prove. �

It is interesting to note that the Proposition 5.7.1 and its equivalent Proposition

5.7.2 can be reformulated in another rather unexpected way.
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Corollary 5.7.4. Let us assume that the probability p to hit the target region σ

with one random individual is equal to p0. When considering n random individ-

uals, we denote by P1 the probability to hit the target region σ with at least one

individual. The probability P1 is obviously

P1 = 1− (1− p0)
n.

When none of these n random individuals hits the target region σ, we can claim

with relative certainty CR = P1 that the probability p < p0.

Proof: The probability P0 that none out of n random individuals hits the target

region σ0 is apparently

P0 = (1− p0)
n.

The probability P1 is obviously given by

P1 = 1− P0 = 1− (1− p0)
n.

But by considerations in Proposition 5.7.1 we have (1−p0)n = αS and the relative

certainty CR is given by CR = 1− αS implying

CR = P1.

�

Remark 5.7.3. The conclusion p < p0 obviously implies that the measure of the

target region is smaller than µ0(σ) in accordance with relation (5.7).
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5.8 Lipschitz Continuous Cost Functions

The Lipschitz continuity of the cost function is a prerequisite that makes the

prospective of finding the global minimum of the cost function more realistic. It

ensures that the cost function changes its values in a rather limited way and that

its deep minima occupy relatively larger regions.

Additionally, it offers another possibility how to interpret the negative results

in sampling the search space with random individuals. Since we know that the

cost function does not change its values extremely rapidly, we can transform the

estimates of the target region size into the lower estimate of the cost function

value at the global minimum. In other words, if we found a local minimum of

the cost function at the point xL and none of random individuals provides any

result that is better than F (xL), we can claim that the lowest possible value of

the cost function is limited from below by a certain value.

5.8.1 Lipschitz Continuity of the Cost Function

The Lipschitz continuity of a function can be defined in the following way:

Definition 5.8.1. Let us have a function F (x) with a domain D. We say that

the function F (x) is Lipschitz continuous on the domain D if there exists a real

constant L > 0 and for any two points x1, x2 from the domain D the following

relation holds:

|F (x1)− F (x2)| ≤ L · dist(x1, x2). (5.16)

The symbol |x| denotes the usual absolute value of a real number x and L > 0 is

a constant (in this context called the Lipschitz constant). The term dist(x1, x2)

stands for a metrics of the domain D, in our case the usual Euclidean metrics in

an d-dimensional Euclidean space which is defined as

dist(x1, x2) =

[
d∑
i=1

(x1i − x2i)
2

] 1
2

, (5.17)

where x1i, x2i are individual coordinates of points x1 and x2.
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5.8.2 Consequences of the Lipschitz Continuity

Assuming that the cost function F is Lipschitz continuous, we can further extend

the results of Section 5.7. Thus, from now on we assume that the cost function

F (x) is Lipschitz continuous that is it complies with the requirement (5.16). We

also suppose that the search space S (which is the domain of the cost function

F (x)) is a compact set. In Euclidean spaces this means that the search space S

is bounded and closed.

Based on these assumptions we get immediately the following statement.

Proposition 5.8.1. When the search space S is a compact set and the cost

function F (x) is Lipschitz continuous on S, then the cost function F (x) has at

least one global minimum.

Proof: The Lipschitz continuity of the function F implies its pointwise con-

tinuity. The statement of the proposition is then an easy consequence of the

Weierstrass extreme value theorem of elementary analysis stating that any con-

tinuous function defined on a compact domain attains on this domain its extrema.

�
When we generate N0 random individuals (N0 is defined by relation (5.15))

and none of them hits the target region σ then we know according to Section

5.7 that with relative certainty CR the measure of the target region σ is smaller

that a given value µ0, where µ0 corresponds to a certain probability p0 to hit the

target region σ with one random individual. In other words the value µ0 is an

upper limit for the size of the target region σ

µ0 > µ(σ). (5.18)

The Lipschitz continuity of the cost function F makes then possible to for-

mulate the following statement.

Proposition 5.8.2. Let us assume the following setting: We look for a global

minimum of the Lipschitz continuous cost function F (x) defined on the

d-dimensional search space S ⊂ Rd. We have identified a minimum of the cost

function F (x) at a point xL with the value F (xL). Further, we have generated

more than N0 random individuals from the search space S (where N0 is defined

by the relation (5.15) ) and not even one attained a cost function value lower

than F (xL). Then we can claim with a relative certainty CR = 1 − αS that the

cost function values are limited from below by the value FM, where
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FM = F (xL)− L · ρ, (5.19)

where

ρ =

(
d!! · µ0

2⌈
d
2
⌉ · π⌊ d

2
⌋

) 1
d

(5.20)

and L is the constant defining the Lipschitz continuity of the cost function F (x)

(see the relation (5.16)).

Proof: According to our assumption we have generated n random individuals,

where n > N0 = − 1
p0
ln(αS). If we have no random individual x with F (x) <

F (xL) (no positive result), then according to the Proposition 5.7.2 we can claim

with the relative certainty CR = 1 − αS that p < p0 indicating that µ(σ) <

µ(σ0) = µ0. So, the value µ0 represent and an upper limit for the measure of

the target region σ. Since the cost function F (x) is Lipschitz continuous, there

exists a certain limit concerning how deeply relatively to the value F (xL) the cost

function F (x) can go. This limit evidently depends on the shape of the target

region σ and is the biggest when the target region σ is of spherical shape. In

this case this limit achieves the value L · ρ, where ρ is the radius of the spherical

target region. Since the volume of a ball in the d-dimensional Euclidean space is

given by the formula (see (3.15)

Vd(R) =
2⌈

d
2⌉ · π⌊

d
2⌋

d!!
·Rd,

where R is the radius of the ball, we can put

2⌈
d
2⌉ · π⌊

d
2⌋

d!!
· ρd = µ0

to obtain the radius ρ. This equation implies

ρ =

(
d!! · µ0

2⌈
d
2
⌉ · π⌊ d

2
⌋

) 1
d

,

which is the relation (5.20).

The relation (5.19) is an obvious consequence of the Lipschitz continuity of the

cost function F (x).

�
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An Example

Let us illustrate the meaning of Proposition 5.8.2 on a simple example. We

suppose three different values of the quantity µ0 = µ(σ0) = p0 · µ(S); µ0 = 10−6,

µ0 = 10−9 and µ0 = 10−12. We calculate the quantity ρ for different dimension d

of the Euclidean space. The results are summarized in the Table 5.4.

ρ

d µ0 = 10−6 µ0 = 10−9 µ0 = 10−12

2 5.6419 · 10−4 1.78412 · 10−5 5.6419 · 10−7

4 0.021217 0.003773 6.70938 · 10−4

6 0.076053 0.024050 0.007605

8 0.149263 0.062944 0.026543

10 0.228741 0.114642 0.057457

12 0.308700 0.173595 0.097619

16 0.461605 0.299758 0.194657

20 0.601746 0.426004 0.301587

30 0.902212 0.716652 0.569257

40 1.151008 0.968452 0.814851

50 1.365331 1.189154 1.035710

60 1.555319 1.386179 1.235434

80 1.885040 1.729102 1.586064

100 2.168981 2.024211 1.889104

Table 5.4: Values of ρ for different values of µ0 and different dimensions d

The numbers in the Table 5.4 illustrate the fact that the estimate (5.19),

(5.20) works best for search spaces with small dimensions d. In this case it limits

the value of the minimum of the cost function considerably more than in cases

with the high dimension d. This fact is caused by the reality that in Euclidean
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spaces of high dimension a ball with a small volume can have relatively large

radius (compare the relation (3.17) for the asymptotic formula for the volume of

ball in the d-dimensional Euclidean space).



Chapter 6

Models of Heat Conduction

It is possible to define several alternative mathematical models of heat conduction

in three dimensional bodies that correspond to various physical situations. The

principal quantity in each model is a temperature field. The temperature field

is usually denoted as T (x) for stationary models and T (x, t) for nonstationary

models. The symbol x denotes an arbitrary point inside or on the surface of the

body and t stands for the time within a relevant time period. The temperature

field describes how the temperature T is distributed within the body.

An integral part of the model is represented by so called boundary conditions

that model the heat transfer mechanisms on the surface of the body. Another

important aspect of the model is an initial condition that determines the temper-

ature field in the model at the beginning of the relevant time period. The initial

condition applies of course only to nonstationary models.

Heat sources also play a significant role in the model. Heat sources represent

mechanisms that generate heat leading to temperature increase. In principle, we

can divide them into two kinds. Volume heat sources that generate heat inside

the volume of the body. Surface heat sources on the other hand generate heat

exclusively on the surface of the body. Typically, volume heat sources are repre-

sented by a term in the partial differential equation describing the model. Surface

heat sources by contrast mostly constitute a part of the boundary condition.

Since we deal with radiation heating in this thesis, we concentrate now on the

topic of the heat radiation.

63
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6.1 Own Heat Radiation and the Stefan–Boltzmann

Law

Hot bodies cool down not only because they are surrounded by colder environ-

ment. The also lose energy by their own heat radiation. Exemplary examples

are stars that find themselves in practical vacuum but despite this fact they lose

enormous amounts of energy by radiation.

Every body radiates electromagnetic energy. The quantity of this energy de-

pends strongly on the absolute temperature of the body and also on its surface

properties. Bodies in general are characterized by three mechanisms that describe

their behaviour with respect to the incident radiation energy. These are absorp-

tion, reflectivity and transmission. The relation between these mechanisms is

described by a simple relation (see [31])

αr + ρr + τr = 1. (6.1)

Here αr, ρr and τr denote the coefficients of absorption, reflectivity and trans-

missivity respectively. The relation (6.1) expresses the fact that the incoming

radiation energy is partly absorbed, partly reflected and the rest is transmitted

through the body. When a body is in thermodynamic balance with its environ-

ment, then it radiates the same amount of energy as it absorbs from the incident

radiation. A black body approximates the situation when all incident radiation

energy is absorbed by the body.

That is why we introduce a notion of an ideal radiator (the perfect black

body). Such a perfect black body absorbs all incoming radiation energy. This

means that no radiation is reflected and no radiation is transmitted through the

body (αr = 1, ρr = 0, τr = 0). That is all incident radiation energy is transformed

into the body’s own heat radiation.

The Stefan-Boltzmann law describes quantitatively the power radiated by the

black body due to its temperature. Specifically, the Stefan-Boltzmann law states

that the total power emitted from a unit surface area of a black body is directly

proportional to the fourth power of the black body’s absolute temperature T . It

is usually expressed is the form (see [42], page 320)

j = σT 4,

where j is the power radiated from a unit surface area, σ stands for the Stefan–
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Boltzmann constant and T is the absolute temperature. The numerical value of

σ is σ = 5.670 · 10−8 Wm−2K−4.

It is interesting to note that the Stefan–Boltzmann constant can be derived

theoretically from other fundamental physical constants (see [42]),

σ =
2π4k4B
15c20h

3
,

where kB is the Boltzmann constant, kB = 1.381 · 10−23 JK−1, h denotes the

Planck constant, h = 6.626 · 10−34 Js, and c0 stands for the speed of light in

vacuum, c0 = 2.998 · 108ms−1.

Bodies that do not absorb all incident radiation are called grey bodies. They

emit less total energy compared to black bodies. This fact is characterized by a

parameter called emissivity ε (0 < ε < 1). For grey bodies the Stefann-Boltzmann

law has the form

j = εσT 4.

Max Planck formulated in 1900 the relation for the intensity of the monochro-

matic temperature radiation of the black body. This formula describes quanti-

tatively how the radiated energy is distributed between various wave lengths in

dependence on the absolute temperature of the black body (see [31])

E(λ) =
2πhc20

λ5
(
e

hc0
kBTλ − 1

) . (6.2)

Here E(λ) denotes the energy radiated on the wave length λ and T is the absolute

temperature. The Planck law (6.2) is illustrated by the Figure 6.1. It is interesting

to note that the Planck formula (6.2) is one of the milestones marking the twilight

of the classical physics, since it was deduced on the assumption that energy is not

a continuous quantity and can be released only in discontinuous amounts called

energy quanta (for details see [3]).

6.2 Heat Equation

Let us consider a bounded body Ω ⊂ R3 with Lipschitz continuous boundary

Γ = ∂Ω (see Definition 3.1.6). It is possible to introduce the following general

model described by a parabolic partial differential equation of the second order
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Figure 6.1: Illustration of the Planck law for the black, grey and real bodies

c(x)ρ(x)
∂T (x, t)

∂t
−∇ · (λ̂(x)∇T (x, t)) = Q(x, t). (6.3)

The function T (x, t) denotes the temperature field we want to determine, the

symbol ∂T (x,t)
∂t

represents the partial derivative of the temperature field according

to the time t, the point x = (x1, x2, x3) ∈ Ω, t ∈ (0, τ), where τ is the total time

during which we investigate the temperature field. The quantities c(x) and ρ(x)

represent the specific heat of the body material at a steady pressure and material

density, respectively. The symbol ∇ denotes the vector Hamilton operator that

can be expressed as

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
in Cartesian coordinates.

The quantity λ̂(x) is a tensor of the heat conductivity which is in a general case

a tensor field of the second order. Material properties are in general dependent

on the position in the body.

With respect to the fact that the shell mould are produced of a homogeneous

and isotropic metal, we can consider the quantities c(x), ρ(x), and λ(x) as mate-
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rial constants c, ρ, and λ. Then it is possible to rewrite the equation (6.3) in the

following way

cρ
∂T (x, t)

∂t
− λ∆T (x, t) = Q(x, t), (6.4)

where the symbol ∆ denotes the Laplace operator with respect to the space

variables. That is in the Cartesian coordinates

∆T (x, t) =
3∑
i=1

∂2T (x, t)

∂x2i
,

where the symbol ∂2T (x,t)

∂x2i
denotes the second derivative of the function T (x, t)

with respect to the corresponding space variable.

There are no volume heat sources in Ω in our case the body is heated exclu-

sively by infrared heaters. Therefore, we can put Q(x, t) = 0 in (6.4) and write

the equation in the form

∂T (x, t)

∂t
= Λ∆T (x, t), (6.5)

where Λ = λ
cρ

is a coefficient of the thermal conductivity.

As an initial condition we use

T (x, 0) = T0 in Ω, (6.6)

where T0 denotes the initial temperature of the body.

Boundary Conditions

We can use a Newton boundary condition for the considered model of the tem-

perature field. The Newton boundary condition describes best the situation when

the body is surrounded by air and heat transfer between the body and air takes

place by the mechanism of heat convection. The Newton boundary condition can

be defined in the form

λ
∂T (x, t)

∂n
= −α(T (x, t)− Tair) + I(x) (6.7)

for the heated side of the body Ω and

λ
∂T (x, t)

∂n
= −α(T (x, t)− Tair) (6.8)
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for the rest of the body surface. Here the symbol α denotes the coefficient of

the heat transfer between the material of the body and air, Tair stands for the

temperature of the surrounding air and n is a unit vector of the outer normal.

The symbol ∂T (x,t)
∂n

means the derivative of the temperature field according to the

outer normal n. The quantity I(x) represents intensity of the radiation heating

at a point x on the heated part of the surface Γ.

The model with the Newton boundary condition is linear concerning the dif-

ferential equation as well as the boundary condition. This implies a linearity of

the model as a whole, which is an advantage from the theoretical point of view

as well as with respect to the complexity of computations based on this model.

Own Heat Radiation

The above mentioned Newton boundary condition can be further approximated

to the physical reality by introduction another term representing the own tem-

perature radiation of the body according to the Stefan–Boltzmann law. The own

heat radiation is strongly dependent on the temperature of the body, it is propor-

tional to the fourth power of the absolute temperature. On the hand the mould

receives heat energy by radiation not only from infrared heaters but also from all

bodies in the vicinity of the mould. It is natural to put the temperature of these

bodies equal to the temperature of air Tair.

In this case the boundary condition (6.7) and (6.8) are modified in the fol-

lowing way (see [5])

λ
∂T (x, t)

∂n
= −α(T (x, t)− Tair)− εσ(T 4(x, t)− T 4

air) + I(x) (6.9)

and

λ
∂T (x, t)

∂n
= −α(T (x, t)− Tair)− εσ(T 4(x, t)− T 4

air). (6.10)

Here the symbol ε denotes emissivity of the mould and σ is the Stefan–Boltzmann

constant, σ = 5.670 · 10−8 Wm−2K−4. The boundary conditions (6.9) and (6.10)

are not linear which means that the whole model is nonlinear. Neglecting the

mechanism of own heat radiation leads to higher temperatures of the mould

compared with reality.
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6.3 Weak Formulation of the Stationary Heat

Conduction

In this part we concentrate on the weak formulation of the stationary heat con-

duction task with Newton boundary conditions. We look for a function u(x)

satisfying the elliptic partial differential equation

∆u(x) = 0 in Ω, (6.11)

∂u(x)

∂n
= −αu(x) on Γ0, (6.12)

∂u(x)

∂n
= I(x)− αu(x) on ΓH . (6.13)

The symbol ∂u(x)
∂n

denotes the derivative of the solution u(x) with respect to

the outer normal. The symbol α ≥ α0 > 0 stands for the coefficient of the heat

transfer between the mould material and air, I(x) is the intensity of the radiation

heating. The symbol Γ0 denotes the nonheated side of the mould, ΓH stands for

the heated side of the mould. Naturally, it holds Γ = Γ0 ∪ ΓH . We assume that

the solution u(x)is an element of the Hilbert space H1(Ω).

Now, we use the standard procedure to obtain the weak formulation of the

problem (6.11) – (6.13). We take a function v ∈ H1(Ω) as a test function, multiply

the equation (6.11) by v and integrate over the volume Ω. We get∫
Ω

(∆u(x))v dV = 0.

Multiplying by −1 and using the Green theorem (see the Theorem 3.1.5) implies∫
Ω

∇u(x).∇v dV −
∫
Γ

∂u(x)

∂n
v dS = 0.

By substituting for the term ∂u(x)
∂n

from the relations (6.12) and (6.13), we obtain∫
Ω

∇u(x).∇v dV α
∫
Γ

u(x)v dS =

∫
ΓH

Iv dS.

The last integral relation can be written in the form

a(u, v) = b(v).
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The bilinear form a(·, ·) and the functional b(·) satisfy the assumptions of the

Lax–Milgram lemma. This gives the existence and uniqueness of the solution

u(x).

6.4 Weak Formulation of the Nonstationary Heat

Conduction

In this part we focus on the weak formulation of the nonstationary heat con-

duction task with Newton boundary conditions (6.7) and (6.8). We look for a

function u(x, t) satisfying a parabolic partial differential equation with an ini-

tial condition and Newton boundary conditions. The boundary conditions are

different for the heated side of the mould ΓH and nonheated side of the mould

Γ0.

The classical formulation of the task can be expressed by the following rela-

tions

∂u(x, t)

∂t
= Λ∆u(x, t) in Ω× (0, τ), (6.14)

u(x, 0) = u0(x) in Ω, (6.15)

∂u(x, t)

∂n
= −αu(x, t) on Γ0 × (0, τ), (6.16)

∂u(x, t)

∂n
= I(x)− αu(x, t) on ΓH × (0, τ). (6.17)

The symbols ∂u(x,t)
∂t

and ∂u(x,t)
∂n

denote the derivative of the solution u(x, t)

according to the time t or according to the outer normal n, respectively. The term

u0(x) represents the initial condition, Λ stands for the coefficient of the thermal

conductivity, α ≥ α0 > 0 denotes the coefficient of the heat transfer between

the mould material and air, I(x) is the intensity of the radiation heating. The

symbol Γ0 denotes the nonheated side of the mould, ΓH stands for the heated

side of the mould. Naturally, it holds Γ = Γ0 ∪ ΓH . Finally, (0, τ) is the relevant

time interval in which we look for the solution u(x, t).

The equation (6.14) is the differential equation describing the nonstationary

task, the relation (6.15) represents the initial condition, the relation (6.16) is the
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boundary condition for the nonheated side of the mould Γ0, the relation (6.17)

is the boundary condition for the heated side of the mould ΓH .

The expression for the weak solution of the task (6.14) – (6.17) can be obtained

by the standard procedure. We utilize test functions v from the test space V =

H1(Ω), where H1(Ω) is the corresponding Sobolev space. We can construct the

solution u(x, t) as a mapping u(t) that to each t ∈ (0, τ) assigns a function u(x)

from H1(Ω). This means that u(t) represents the generalized function with the

domain (0, τ) and range a part of the space H1(Ω).

When we multiply the equation (6.14) by a test function v and subsequently

integrate over Ω, we get∫
Ω

du(t)

dt
v dV = Λ

∫
Ω

(∆u(t))v dV.

Since u(t) are elements of the space H1(Ω), the time derivative du(t)
dt

also

belongs to the space H1(Ω). Using the Green’s formula (see Theorem 3.1.5) gives

1

Λ

∫
Ω

du(t)

dt
v dV +

∫
Ω

∇u(t).∇v dV =

∫
Γ

∂u(t)

∂n
v dS.

By substituting for the term ∂u(t)
∂n

from the boundary conditions (6.16) and

(6.17) we obtain an integral identity

1

Λ

d

dt

∫
Ω

u(t)v dV +

∫
Ω

∇u(t).∇v dV + α

∫
Γ

u(t)v dS =

∫
ΓH

I(x)v dS

that can be rewritten as

1

Λ

d

dt

∫
Ω

u(t)v dV +

∫
Ω

∇u(t).∇v dV + α

∫
Γ

u(t)v dS =

∫
ΓH

I(x)v dS.

Finally, we can write

1

Λ

d

dt
(u(t), v) + a(u(t), v) = ⟨I, v⟩, (6.18)

where

(u(t), v) =

∫
Ω

u(t)v dV,

a(u(t), v) =

∫
Ω

∇u(t).∇v dV + α

∫
Γ

u(t)v dS
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and

⟨I, v⟩ =
∫
(ΓH)

I(x)v dS.

The equation (6.18) represents a weak formulation of the problem (6.14) – (6.17).

The weak solution corresponding to the weak formulation (6.18) is inves-

tigated in full detail in [37]. Existence and uniqueness of the weak solution is

guaranteed by Proposition 11.1. Nevertheless, this proposition assumes simplified

initial and boundary conditions; specifically, zero initial condition and homoge-

neous boundary conditions.

The case with a nonzero initial condition is also solved in [37] by Propositions

13.1., 13.2. and 13.3. Nonhomogeneous boundary conditions are considered in

Propositions 13.8., 13.9. and 13.10.

The solution of the general problem can then be obtained as a composition

of three partial solutions specified by Propositions 11.1., 13.1., 13.2. and 13.8 in

[37]. This procedure is based on the linearity of the problem and cannot be in

general used for a problem containing any type of nonlinearity.

Useful introductory information on solving nonlinear problems can be found

in article [9]. Regarding nonlinear problems with nonlinearity in the boundary

conditions only partial results were up to now achieved. See for instance the

articles [16], [17], and [7], where the nonlinear boundary condition is studied

for a stationary heat conduction task, and [8], where a nonstationary task in

a 2-dimensional domain is investigated. In general, nonlinearities in the area

of partial differential equations can be of different kinds and they may require

various specialized methods for solving. For an extensive information in this

respect see monographs [44] – [48].



Chapter 7

Numerical Results

This part describes the specific techniques and parameters used to optimize the

infrared heating of a test mould. The target is to attain a uniform temperature

field within the temperature range 255 – 265 °C on the working side of the mould,

where the plastic leather is formed. We can come out from the usual assumption

that a uniform heating generates a uniform temperature field. This assumption

is here justified, because we deal with a shell mould of the uniform thickness and

with homogeneous material and surface parameters.

The optimized positioning of infrared heaters over the mould and the corre-

sponding heat flux incident onto the heated side of the mould is subsequently used

as an input quantity for the modelling of the temperature field inside the mould.

Specifically, the optimized heat flux forms a part of the boundary condition on

the heated side of the mould according to the relation (6.9).

7.1 Optimization of Infrared Heaters Position-

ing

In this section we present the numerical optimization of the infrared heaters

positioning over the mould. The optimization is realized for the mould shown

in Figure 7.1. The dimensions of the mould are 0.8m × 0.4m × 0.15m. The

thickness of the mould is 8mm.

The mould is divided into 2064 elementary triangles. Each triagle is described

by 6 quantities according to the relation (4.2). The mould is heated up by 16

infrared heaters of the type Phillips with the heating power 1000W (see Figure

73
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Figure 7.1: Shell mould to be heated by the set of 16 infrared heaters

2.2). The heaters are of a tubular shape and they are equipped with a mirror

that reflects the heat radiation into the required direction. The length of the

heater is 150mm, width 40mm. Each heater is characterized by six parameters

according to the relation (4.1).

The initial setting of the infrared heaters is shown in Figure 7.2. The heaters

are located in a horizontal plane 0.1m above the mould highest point and they

form a 4×4 equidistant array. This initial setting generates a corresponding heat

flux on the heated side of the mould. The initial heat flux is also illustrated in

Figure 7.2, where the heat flux in kW/m2 incident at each elementary triangle is

represented by different colour shades (see the legend of Figure 7.2).

We used the MDEA algorithm to optimize the heaters setting over the mould

to obtain a uniform infrared heating. The parameters of the algorithm are:

Number of generations NG = 8000

Number of individuals NP = 192

Crossover probability CR = 0.98

Mutation factor F = 0.6

Ratio of random individuals R = 0.1
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Figure 7.2: The initial setting of infrared heaters above the mould including the

heat flux generated on the upper side of the mould in kW/m2

To be able to start the algorithm, we need to create the first generation.

This first generation is formed by a suitable randomization of the initial setting

presented in Figure 7.2. Specifically, each infrared heater is moved randomly by

a certain quantity from its initial position. The random change is also applied to

the space orientation of the infrared heater. In this way all individuals in the first

generation of the algorithm are created. Then the algorithm starts its standard

operation as described in Sections 5.3 and 5.5.

During the operation of the algorithm it is necessary to deal with some special

conditions. Since the heaters have finite dimensions it is possible that two or

more heaters (as a part of one individual) collide or that a heater is too close

to another heater or to the heated mould. Such individuals can be declared as

illegal, expelled from the current generation and replaced by a legal individual.

We used a different approach when these individuals are not expelled but only

penalized. The cost function value of such an individual was raised by a certain

quantity according to the collision degree.

Another anomalous state occurs when a part of an individual goes out of

the prescribed domain. For instance when the centre of a heater is outside the

prescribed region above the mould. To solve this situation we designed a so called
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Bounce Back mechanism. The component of the individual out of its domain is

reflected back into its domain and other components remain the same.

During the operation of the MDEA algorithm the value of the cost func-

tion of the best individual systematically decreases with the increasing number

of generations. The decrease is extrememly rapid during first generations and

successively approximates a limit value. In our case the starting value of the

cost function was F (y0) = 20.3435 and the final value after 8000 generations

amounted to F (yopt) = 2.0201. The value of the cost function in dependence on

the generation number is displayed in Figure 7.3.

Figure 7.3: The value of the cost function during the MDEA operation

The optimization procedure realized by the MDEA provides the optimized

positions and orientations of all 16 infrared heaters and the corresponding in-

tensities of the radiation heat flux incident on individual elementary triangles of

the mould. The time of calculation attained 26496 s which is almost 8.5 hours.

Hardware specification: CPU IntelCore i7-3770, 3.4 GHz, 4 cores, RAM 32 GB.
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Figure 7.4: The optimized setting of infrared heaters above the mould including

the heat flux generated on the upper side of the mould in kW/m2

7.2 Temperature Modelling

The modelling of the temperature field in the mould is based on the parabolic

equation (6.5), initial condition (6.6), and boundary conditions (6.9) and (6.10).

There are no volume heat sources in the mould. The radiation heat flux cor-

responding to the optimized positioning of the 16 infrared heaters is used as a

surface heat source. Technically, it forms a part of the boundary condition (6.9).

The boundary conditions also include cooling down by air around the mould and

own heat radiation of the mould according to the Stefan–Boltzmann law.

The numerical calculation was realized by means of the programme package

ANSYS 15.0.7. The calculation model includes the geometry of the mould and

physical parameters of the mould material. We assume the temperature of the

surrounding air Tair = 22◦C, which is also the initial temperature of the mould

T0 = 22◦C. The modelling itself takes place in the system ANSYS Mechanical.

The used finite elements according to the ANSYS specification are Solid90 and

Surf152.

The mould material parameters are:

� Mould material: Aluminium alloy

� Density: ρ = 2770 kgm−3
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� Specific heat: c = 875 J kg−1K−1

� Coefficient of the heat transfer between mould material and air: α =

20Wm−2

� Heat conductivity λ: dependent on temperature (148.62Wm−1K−1 at 22◦C,

165Wm−1K−1 at 100◦C, 175Wm−1K−1 at 200◦C and higher

� Emissivity of the mould: ε = 0.75

� Time period: τ = 180 s

The modelling of the temperature field was realized for three different alter-

natives of the infrared heating.

1. The initial positioning of the heaters in the horizontal plane and equidistant

array shown in Figure 7.2.

2. The optimized positioning of infrared heaters by means of the MDEA al-

gorithm illustrated in Figure 7.4.

3. The ideal absolutely uniform heating with the constant heat flux 47 kW/m2.

The resulting temperature field on the working side of the mould is repre-

sented in Figure 7.5 for the initial positioning of the heaters, in Figure 7.6 for

the optimized positioning of heaters, and in Figure 7.7 for the ideal heating with

the uniform heat flux 47 kW/m2. It should be noted that the colour shades

correspond to a different scaling in each picture.

From Figure 7.5 it follows that the initial setting of heaters generates a tem-

perature field that is mostly inhomogeneous. The temperature differences attain

as much as 130 ◦C. Of course this is what we expected because in this case no

optimization of the heaters positioning took place. The resulting temperature

field serves exclusively for the comparison with the optimized state.

Figure 7.6 confirms that the optimized heaters positioning generates a rela-

tively uniform temperature field on the working side of the mould. The maximal

temperature difference is 13.5 ◦C, which is an acceptable uniformity level for the

Slush Moulding technology.

Figure 7.7 demonstrates the temperature field corresponding to the ideally

uniform heating which is not attainable by any real heating technology. Never-

theless, the maximal temperature difference is almost 8 ◦C.
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Figure 7.5: The temperature on the working side of the mould in °C for the initial

positioning of the infrared heaters after 180 s of the heating

Figure 7.6: The temperature on the working side of the mould in °C for the

optimized positioning of the infrared heaters after 180 s of the heating
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Figure 7.7: The temperature on the working side of the mould in °C for the

absolutely uniform heating flux 47 kW/m2 after 180 s of the heating

If we use Figure 7.7 as a reference and compare the maximal temperature

differences for the optimized and ideal heating we come to a conclusion that

the temperature difference 8 ◦C is caused exclusively by the geometry of the

mould and cannot be removed by any optimization. It remains only a rest of

approximately 5.5 ◦C that is connected with deficiencies in the optimized heating.

Even this nonuniformity of the temperature field could be in principle reduced

by using more infrared heaters that would be placed in bigger distances from the

heated side of the mould. Nevertheless, such a solution leads to higher energy

consumption which is mostly not feasible from the cost effectiveness point of view.
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7.3 Optimization of a System with Equivalent

Components

Optimization tasks typically have several up to several tens of optimized pa-

rameters. The difficulty of the optimization increases with the number of these

parameters. The parameters represent variables in the search space S that has

to be explored with the target to find the optimized minimum of the cost func-

tion. This means that each parameter corresponds to one dimension of the search

space S.

Roughly speaking, we can say that the size of the search space S exponentially

increases with its dimension d. To illustrate this fact let us suppose that we have

a problem with d optimized parameters (variables) and the range of each variable

is ρvar. Then the measure of the search space S amounts to

µ(S) = ρdvar.

For ρvar > 1 we get the exponential increase. This implies that to optimize

problems with tens of parameters is a demanding task because we explore a

search space S that can be extremely huge and we look for a small part of it (the

immediate neighbourhood of the optimized minimum).

Nevertheless, high numbers of optimized parameters are often caused by the

situation when the optimized system includes several identical parts. The infrared

heating optimization described in this doctoral thesis is a typical example. Each

heater is represented by 6 parameters which means that for 16 heaters we have a

search space S with the dimension d = 96.

On the other hand the heaters are identical. This means that a specific num-

bering of heaters is not physically important. The heaters can be interchanged

without any physical impact on the generated radiation heat flux. It follows that

to any specific physical setting there exist in the search space S 16! distinct states

that differ only by a renumbering of the heaters.

Suppose now that the task has one optimal heaters positioning. Then in

terms of the search space S this optimal positioning corresponds to 16! of global

minima of the cost function defined in S. This of course applies to any specific

setting of the infrared heaters, in particular to any potential local minimum of

the cost function. This implies that each local minimum of the cost function has

in the search space S 16! of ”equivalent” local minima with the same value of
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the cost function.

To conclude, we remind that 16!
.
= 2.0923 · 1023 which is considerably more

than the number of people on the Earth (∼ 1010) or stars in the Gallaxy (∼ 1011).

This provides the reader with an approximate idea about complexity of the search

space S corresponding to a relatively common optimization task.



Chapter 8

Conclusions

In this doctoral thesis we solve an interconnected problem of the infrared heating

of the shell metal mould and the subsequent modelling of the temperature field

in the mould body.

The heating of the mould is realized by a system of 16 infrared heaters. How-

ever, the generalization to any number of heaters is quite obvious. Because the

shell mould is potentially of complicated shape and the number of heaters is rel-

atively high, the task of positioning the heaters over the mould is hardly solvable

by any analytic method.

Therefore, the problem was reformulated as an optimization task. The cost

function of the task evaluates the measure of deviation from the required heat-

ing. Even so, this optimization task is beyond reach of standard optimization

techniques. This is because the cost function might have extremely many local

minima. This fact implies that for instance gradient methods would end up at a

local minimum and their result would be strongly dependent on the starting point

of the optimization. This was the reason we started experimenting with evolu-

tionary computing methods. These techniques include genetic algorithms and

differential evolution algorithms. Finally, the differential evolution algorithms

proved best to solve the optimization task.

Nevertheless, during the use and study of differential evolution algorithms we

revealed principle limitations of the standard differential evolution algorithms.

The principle weakness of the CDEA algorithm is a possible premature conver-

gence of the computing process to a local minimum of the cost function. This fact

was the reason for a search of an improved algorithm that could provide better

results regarding the convergence to the global minimum of the cost function.

83
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The MDEA algorithm is the result of these efforts.

The second part of the thesis was motivated by the demandingness of temper-

ature measurements on the mould. Since the temperature is of principle impor-

tance for the Slush Moulding technology, there is a trend to replace the exper-

imental temperature monitoring by a computer modelling of the corresponding

temperature field. Therefore, we used the programme system ANSYS 15.0.7 to

model the temperature field generated by the optimized positioning of the in-

frared heaters.

To conclude, we summarize the considerable findings and results.

1. The algorithm CDEA guarantees in general only convergence to a local

minimum of the cost function. This phenomenon is caused by possible

stagnation of the generations of the CDEA algorithm around a local min-

imum (premature convergence). This fact constitutes the principal weak-

ness of CDEA. The result is demonstrated by a specific example of the cost

function presented in full detail including the statistic data in Section 5.4.

2. This was the reason we looked for an improvement of the CDEA algo-

rithm that would provide better results concerning the ability to identify

the global minimum of the cost function. The MDEA algorithm is a result

of these aspirations. The MDEA brings an essential improvement of the

algorithm not only from theoretical but also from practical point of view.

3. The improved algorithm MDEA is not prone to the premature convergence

because a certain ratio of random individuals in each generation makes it

immune to the stagnation process. Besides, it is possible to prove that the

algorithm MDEA converges asymptotically to the global minimum of the

cost function in probabilistic sense (Section 5.6).

4. The role of random individuals in MDEA algorithm can be viewed from

two different perspectives:

� They eliminate the risk of premature convergence

� In the long run they provide a random sampling of the search space

of the given optimization task by random individuals

5. In case even MDEA algorithm stagnates and does not bring any improve-

ment of the optimized minimum of the cost function, the random sampling
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part of the algorithm can be used for quantitative estimates of the proba-

bility to find a state with a better cost function value. These results are

the substance of Propositions 5.7.1 and 5.7.2.

6. When we suppose that the cost function is Lipschitz continuous we can

use the results contained in Propositions 5.7.1 and 5.7.2 to estimate with

a definite relative certainty the value of the cost function at the global

minimum. This is the substance of Proposition 5.8.2.

7. In Chapter 6 we bring out the temperature field model used for the calcu-

lation of the temperature field in the mould. Since the temperature of the

mould attains approximately 250 °C, the own heat radiation of the mould

cannot be neglected.

8. Chapter 7 summarizes the practical task combining the optimization of

the infrared heaters setting over the mould and the numerical modelling

of the temperature field corresponding to the optimized heat flux. The

temperature fields corresponding to the initial setting of heaters and to the

optimized setting of heaters are presented. We also model the temperature

field generated by fully uniform heat flux 47W/m2 to have a comparison

to the optimized positioning. The calculated results confirm that the tem-

perature field generated by optimal positioning of infrared heaters is fully

acceptable for the Slush Moulding technology.

From the practical point of view, the presented thesis brings a theoretically

based and fully quantifiable method for infrared heaters positioning over the shell

metal mould. Up to now, no other comparable technique has been available.

Together with the temperature field modelling it brings a feasible contribution

to the Slush Moulding technology.

On the other hand, unlike the infrared heating and temperature field mod-

elling, the MDEA algorithm is a universal and efficient optimization tool. It can

be tested and utilized in a wide range of optimization tasks with a very good

prospective. The presented theoretical statements and conclusions concerning

the MDEA algorithm have general validity and go far beyond the area of heat

phenomena modelling.
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[42] A. Štrba: Optics, General Physics 3. Technical Literature Publishing, Prague

(1979). (In Slovak.)

[43] E. Zeidler: Applied Functional Analysis, Applications to Mathematical Physics.

Applied Mathematical Sciences 108, Springer-Verlag, New York Berlin Heidelberg

Inc., ISBN 0-387-94442-7, (1999).

[44] E. Zeidler: Nonlinear Functional Analysis and Its Applications I, Fixed Point

Theorems. Springer-Verlag, New York Berlin Heidelberg Inc., ISBN 0-387-90914-

1, (1993).

[45] E. Zeidler: Nonlinear Functional Analysis and Its Applications II/A, Linear

Monotone Operators. Springer-Verlag, New York, Berlin, Heidelberg Inc., ISBN

0-387-96802-4 (1990).

[46] E. Zeidler: Nonlinear Functional Analysis and Its Applications II/B, Nonlinear

Monotone Operators. Springer-Verlag, New York, Berlin, Heidelberg Inc., ISBN

0-387-97167-X (1990).

[47] E. Zeidler: Nonlinear Functional Analysis and Its Applications III, Variational

Methods and Optimization. Springer-Verlag, New York Berlin Heidelberg Tokyo

Inc., ISBN 0-387-90915-X (1985).

[48] E. Zeidler: Nonlinear Functional Analysis and Its Applications IV, Applications

to Mathematical Physics. Springer-Verlag, New York, Berlin, Heidelberg Inc.,

ISBN 0-387-96499-1 (1997).

[49] J. Zhang, A. C. Sanderson: Adaptive Differential Evolution. Springer-Verlag,

Berlin, Heidelberg (2009).
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