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Abstract: In 1989, R. Coifman suggested the design of orthonormal wavelet systems with vanishing moments for both
scaling and wavelet functions. They were first constructed by |. Daubechies [15, 16], and she named them
coiflets. In this paper, we propose a system of necessary conditions which is redundant free and simpler
than the known system due to the elimination of some quadratic conditions, thus the construction of coiflets is
simplified and enables us to find the exact values of the scaling coefficients of coiflets up to length 8 and two
further with length 12. Furthermore for scaling coefficients of coiflets up to length 14 we obtain two quadratic
equations, which can be transformed into a polynomial of degree 4 for which there is an algebraic formula to
solve them.
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1. Introduction

Approximation properties of multiresolution analysis and the smoothness of wavelet and the scaling functions depend on
the number of vanishing wavelet moments. In [14] Daubechies constructed orthonormal wavelets with arbitrary number
N of vanishing wavelet moments and minimal length of support 2N — 1. The filter coefficients were computed there by
an analytical method and exact values could be found only for filters up to length 6. In [26] Shann and Yen calculated
the exact values of the filter coefficients of Daubechies wavelets of length 8 and 10. Other approaches for constructing
Daubechies wavelets which enable us to find exact values of some coefficients can be found in [9, 10, 23, 24].

In addition to the orthogonality, compact support and vanishing wavelet moments, Coifman has suggested that also
requiring vanishing scaling moments has some advantages. In practical applications these wavelets are useful due to
their “nearly linear phase” and “almost interpolating property”, see [22]. Daubechies created coiflets by prescribing an
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equal number N of vanishing wavelet moments and vanishing scaling moments for even N and the length of support
3N, see [15, 16]. It was noticed in [4] that these coiflets have one more additional vanishing scaling moment than is
imposed. Tian constructed coiflets with N vanishing moments for odd N and the length of support 3N — 1 in [27, 29].
Burrus and Odegard constructed coiflets with N vanishing moments for odd N and length of support 3N + 1 which have
two additional vanishing scaling moments, see [7]. In this paper the computation of exact values of filter coefficients of
coiflets up to filter length 14 is presented.

There exist a number of coiflet filter design methods, such as Newton’s method [16, 25] or iterative numerical optimization
[7]: These methods enable us to derive one particular solution for each system. The convergence and the obtained solution
depend on the initial starting point though, and thus it is difficult to find all possible solutions. Moreover, the coefficients
for length greater than 16 are given with less precision due to the roundoff error [15]. As an alternative one can use
the Grobner basis method [1, 6, 21]. This method is geared toward solving a polynomial system of equations with finite
solutions. The idea consists of finding a new set of equations equivalent to the original set, which can be solved more
easily. The advantage of such an approach is that solutions can be computed to arbitrary precision and that in some
cases it gives all possible solutions for a given system of polynomial equations. In this paper we derive a redundant
free and simplified system of equations and then aplly the Grébner basis method. Using this approach we are able to
find some exact values of filter coefficients and all possible solutions for filters up to length 20.

2. Preliminaries

The scaling function ¢, which generates a coiflet, is constructed as the solution to the scaling equation

$=2) ho@2 —k), (1)
keZ
where the scaling coefficients {h,} are determined so that the corresponding scaling functions and wavelets have required
properties.

Definition 2.1.
An orthonormal wavelet ¢y with compact support is called a coiflet of order N, if the following conditions are satisfied:

L)/ xX"g(x)dx =0 for n=0,...N—1,

u)/ K'px)dx =8, for n=0,...N—1,

o)

where ¢ is the scaling function corresponding to ¢ and 9, is Kronecker delta, i.e. 6o =1 and d, =0 for n # 0.

Since the length of support also plays a role, it is common to consider a wavelet satisfying i) and ii) which has the
minimal length of support. The existence of a coiflet for an arbitrary order N is still an open question. We rewrite
this definition in terms of filter coefficients {h}. It is known that for an orthonormal wavelet with compact support the
number of filter coefficients is an even number, which we denote by 2M.

Lemma 2.1.
Let {hk}lk\z,\,1 be real coefficients with N, = Ny + 2M — 1. If the orthonormal wavelet corresponding to the scaling

function ¢(-) = 2 ZL\ZM he ¢(2 - —k) is a coiflet of order N, then the following three conditions are satisfied:

Ny—N;3—2m
i) 6n=2 )  hnyjhnans for 0<m<M—1,
j=0
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ii) thknzén for 0<n<N-—1,

k=N;

iii) Z hek" =0 for 0<n<N-—1.
k=N,

Condition i) is necessary but not sufficient for a wavelet to be orthonormal. Conditions ii) and iii) are equivalent to
vanishing wavelet and vanishing scaling function moments, respectively. In summary, the conditions in Lemma 2.1 are
only necessary. It is known that they are not sufficient to generate a coiflet system. There exist functions given by (1)
with filter coefficients satisfying i) —iii) from Lemma 2.1 which are very rough. Hence after finding coefficients satisfying
i)—iii), orthonormality should be verified, for example using the Cohen [11] or Lawton [20] conditions. Typically there are
multiple wavelets satisfying these conditions and some of them, despite zero wavelet moments, are very rough. Likewise,
in spite of zero scaling function moments, some are not at all symmetric. In practical applications the most reqular
wavelet or the wavelet with the most symetrical scaling function is typically chosen.

3. Construction

It is well known that coiflets have more vanishing scaling moments than required in the above definition. This was first
noted by G. Beylkin et al. in [4]. In this paper, we derive a redundant free and simpler definition of coiflets. The key
component of our approach is formed by the following Theorem.

Theorem 3.1.
Let N, = Ny +2M —1. Then

Ny—2m
On =2 hihjon for 0<m<M—1 2)
j=MN
is equivalent to
P M) (1) bib for 0<n<M—1 3
i Z ( (GGZn,‘f‘ 2n1) or S n< — 1, ()
i=0
where
M—1 M—1
= Z(N‘| + Zk)lh/\/1+2k and bl = (N1 + 2k + 1) h/\/1+2k+1. (4)
k=0 k=0
Proof. Since condition (2) is equivalent to the condition
|m (@) [* + |m (@ + 7) P =1, (5)
where
Ny
m(w) = Z hee=e,
k=N
we can repeat the proof of Theorem 3.1 in [19] with some obvious changes. O

Due to Theorem 3.1 we are now able to impose necessary conditions on filter coefficients to generate a coiflet which
are equivalent to conditions from Lemma 2.1 and the arising system is without redundant conditions.
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Corollary 3.1.
Let {hk},/ji,\/1 be real coefficients, N, = Ny +2M — 1 and let a; and b; be defined by (4). Then conditions i) — iii) from
Lemma 2.1 are equivalent to the following conditions:

2n

2 .

i) 0= Z ( 1n) (=N)'(aia20—i + biby,—;) for N <n<M-—1,
i=0

1
>
iii) ap,=b, =0 for 1<n<N-1,

l'l'*) ag = b() =

iv*') a4+ by =0 for N <2n <2N -2

Proof. It is clear that ii) and iii) are equivalent to ii*) and iiix). The rest follows from Theorem 3.1. O

The consequence of this Corollary is that the minimal length of support of coiflet of order N is 3N for even N and
3N —1 for odd N and that some coiflets have more vanishing moments than are imposed. Thus, we have three classes

of coiflets, see Table 1.

Table 1. The length of filter 2M, the number of vanishing scaling and wavelet moments for coiflet of order N

N | 2M |number of vanishing|number of vanishing
scaling moments wavelet moments
set actual set actual

even| 3N N N+1 N N

odd |3N-1| N N N N

odd |3N+1|{N+1 N+2 N N

Now we further simplify the system by replacing some quadratic conditions by linear ones.

Lemma 3.1.
Let a;, b; be defined by (4). Then a; is a linear combination of ay, ...an—y for i > M, and b; is a linear combination of
by, ...by_q fori > M.

Proof.  Coefficients hn,, Any+2, - .. hn +2m—2 are a solution of the system of linear algebraic equations (4). Since the
matrix of this system is regular, the solution exists and is unique. a; is a linear combination of hn,, hn 42, - .. Any+2m—2
and thus for i > M, a; is a linear combination of a; for 0 < i <M —1:

a; = Cjpdo + cndy + ... Cip—1aM—1,

where the coefficients of this linear combinations are given by

1 N1 N12 . N?A_1 Cio N1l
1 Ny +2 (Ny +2)? e (Ny +2)M1 ci (N + 2)F
1T Ny 4+2M =2 (N; +2M =22 ... (N +2M — )M~ CiM—1 (Ny +2M = 2)!
The situation for b; is similar. O
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Now we summarize the construction procedure which enables us to find exact values of coefficients of coiflets up to
length of support 14:

1. For a given N, take the system of algebraic equations given by Corollary 3.1.

2. Replace apy, ...aam—2 by linear combinations of ag,...am—1 and by, ...ba—2 by linear combinations of
bo, e bM,p

3. Solve the arising system for ay, ... anm—1, bo, ... bm—1. For larger N use the Grobner basis method to simplify the
system.

4. Compute filter coefficients hy,, ..., hn, by solving the system of linear algebraic equations (4).

4. Examples

At last we provide two examples to illustrate our approach based on Corollary 3.1.

Example 4.1.
For N =4 and N; = -5, the following system will be obtained:

1
00=b0=§ and G1=Uz=03=b1=b2=b320,

as+by=0 and as+bs =0, (6)
as +bg +140b5 =0 and a1 + big + 840 by bg — 252(a2 + b2) = 0. 7)

Now ag, ag, a1, bg, bg, byy are linear combinations of aq...as, bg...bs. We find these linear combinations and
substitute them into (6) and (7). Then after simplification we obtain the system

—135+412b,y +8b5 =0, a4+ by =0,

75 —10b4 + 4b5 = 0, 32a2 + 12300b,4 — 28575 = 0.

In this case we can easily find both real solutions in closed form. See Table 2 and Table 3.

Example 4.2.
For N =5 and N; = =5, the following system will be obtained:

1
UOZbOZE and 01202203:042131=b2=b3=b4=0,

ag+bg=0 and ag+ bg=0, (8)

a0+ bo—252(a2 + b2) =0 and a1y + b1y — 1584 bs b; — 1584 a5 a; + 924(a2 + b2)

0. (9)

Now a7, ag, @i, a12, bg, bg, big, b1y are linear combinations of ag...ag, bg...bg. We find these linear combinations
and substitute them into (8) and (9). Consequently we simplify the arising system and finally compute its Grobner bases.
The following system is obtained:

11419648 b2 + 246374400 b3 — 13765248000 b2 — 497539800000 b5 — 4303042734375 = 0,

iSic]
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Table 2. Error of approximation of the function 7 by 50 coefficients for coiflets of order N, length of support 2M and Sobolev exponent of
smoothness o

N[2M| a L of error L% norm of error H' seminorm of error
x107° x10~7 x10~*

11 4 |0.604 743 1986 1358

11 4 |0.050 2800 7332 5642

216 (0.041 402 978 706

2|1 6 |1.232 44 116 46

21 6 10.590 184 469 234

216 |1.022 83 200 87

31 8 [0.147 103 225 137

3| 8 |1.775 2 6 1

3| 8 |1.422 20 31 13

31 8 [0.936 44 97 33

31 8 [1.464 15 33 10

318 [1.773 3 5 1

298890000 a5 — 5709824 b3 + 3945600 bz + 6931764000 bs + 94943559375 = 0,
8ag+64bs5+525=0, —525—-64bs +8bs = 0.

Then by using an algebraic formula for the solution of polynomials of degree 4 we obtain two different real roots:

15 (\/EW4 — 401000y & \/ﬁ\/w)

bs = ,
> 11152016174

where
u = 4854802096 + 369 /15 v/66685436848043, v = 8475076 u'? + 697 u?? — 3366028373,

w = 16950152 u' /v — 697 /v u?”® + 3366028373 /v + 13383342756 V15 /u.

Once we have the values of bs, we simply find as, as, and bs. And finally we transform coefficients a; and b; to scaling
coefficients h;.

5. Properties of coiflets

Let us now mention the properties of such constructed wavelets. It is well-known that the approximation properties
depend on the number of vanishing wavelet moments. More precisely, let P;f be an approximation of f € L? (R) on level
. Le.

Pif =3 (£, ) b (10)
keZ
and for J < j,
=
Pit =Y (fd) i+ > () g, (1)
kEZ =] keZ

where ¢ = 22¢ (2 - —k) and ¢y = 2% (2" - —k) for |, k € Z. Let us further denote I = supp @i, Jix = Supp Yix.
The wavelet coefficients satisfy

(f, ) = /jo f(x)2"7¢ (2'x — k) dx, (12)
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Table 3. Scaling coefficients of coiflets of order N, length of filter 2M and Sobolev exponent «

[n] h, | ] n
N=12M=2[0| 1} 1 23]
Haar wavelet |1 1 2 —“;%/7
N=1,2M=4[-1]3 -2 3| 27

a=0604 |0[2+L| N=22M=6 |-2 17
114+8 a=102 |1 347
2|3 — ? most symmetrical| 0 —p;gﬁ
N=1,2M=4[1]3 +2 1 =a
_ 3_\V3 1-V7
1 3 73
25+ ¢| N=32M=8 |1 64+3%é£,‘f
_ _ 9+V15 _ 59 V1495
N=2,2M =6|-1 +3§ﬁ a=0.147 0] 35 5
13-V15 15 _ 91495
a = 0.041 0 3\% | &~ e
315 3v1495
1 1\6ﬁ 2 28 T T
3 V
2 +1615 3 5t 91&&1?5
3 1+V/15 4 |—15 _ 3V14%
32 128 832
4 —3-V15 5|3 _ 3/14%
= " s
_ _ 9—
N=2,2M=6|-1 3% 6 128 + Y55
_ 13+V15 _ _ 15 _ 3v1495
a=1.232 0 E\Zﬁ N=32M=8 |-1| & —
3415 59 , V14%
1 *1} a=1.775 0 @ + %5
3-V15 9v/1495
2 16 1 @ + “ooa
3 1-V15 2| 15 _ 3/1495
32 128 832
4 —3+V15 3| 5 _ 9/14%
7 5 s
N=2,2M=6|-2 E%/’ 4 —@—i- )
a=0590 |-1] =7 5| -2 +
0 7—V7 6 5 _ V149
16 28 832

k
and if f € CV(Jx), then expanding f about = S it follows by Taylor's formula that for all x € Jix,

T R R e e S R

where & depends on x and belongs to the interval Jix. If ¢4 has N vanishing moments, i.e. if condition i) in Definition
2.1 is satisfied, then the first N terms don’t contribute and

o £(N) N
f¢lk|—‘] i E(X (x—%) 22y (2'x — k) dx

< CZ*[(NJrT/Z)’ (1 4)

where
maxgey,, |f

c=—|/ I ¢ ) dy. (15)

Thus for [ large, the wavelet coefficients are small except for those which are near singularities of the function f or its
derivatives. Small coefficients can be set to zero and the function f can be represented by a small number of coefficients.
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This compression property of wavelets has many applications. Most important are data compression, signal analysis
and efficient adaptive schemes for PDE’s. Note that more vanishing wavelet moments imply a faster decay of wavelet
coefficients and that only local smoothness of the function f is involved in the above estimate. It was observed in [2]
that also regularity of the scaling function plays a role. We confirmed in our experiments that this is true for coiflets as
well. As an example, let us consider

f(x)=x if 0<x<0.5,
=(1—=x)° if 05<x<1,
=0 otherwise,
and its n-term approximation
=3 (Ledgit+ Y (Lyn (16)
A=(Lk)ENy A=(Lk)END

where A C {A=(J,k), k € Z}, N C {A=(Lk),J << j keZ}and NjUA] is the set of indexes of the n largest
coefficients. In our case, the coarsest level is / = 3, the finest level is j = 9 and the number of preserved coefficients
is n = 50. The function f has a sharp derivative near the point x = 0.5 and the approximation is automatically refined
near this point. Errors of approximation for some of the constructed coiflets are shown in Table 2. We can see that the
most reqular coiflet of prescribed order gives the best result.

The significance of vanishing scaling moments highly depends on the type of application. In [16], it is proved that all
real orthonormal wavelets with compact support are asymmetric. However, vanishing scaling moments result in “almost
symmetry” of the scaling function and filter. In image coding, more symmetry would result in greater compressibility for
the same perceptual error and it makes it easier to deal with the boundaries of the image. Vanishing scaling moments
also cause a “nearly linear phase”, which is a desired quality in many applications, e.g. transmission of audio and video
signals, because it does not cause phase distortion. In numerical analysis, vanishing scaling moments are important due
to their “almost interpolating property”. It means that any f € C}'(R) can be approximated by

[ =2y s ( . ) bix (17)

keZ

and if the number of vanishing scaling and wavelet moments is N then this approximation satisfies the following estimate
|f— 1] < 27X, (18)

where C depends only on f and the scaling function ¢, see [28]. Due to this property, some types of operators can
be treated efficiently. Thus coiflets have some interesting properties and for some applications are more suitable than
orthonormal wavelets with vanishing wavelet moments only. The price to pay is of course the length of support, which
can make the computation more expensive. We should also mention that we can obtain symmetric wavelets by giving
up orthonormality. Symmetric biorthogonal wavelets were constructed in [12], and construction of biorthogonal coiflets
can be found in [28, 29]. However, there are applications where orthogonality plays a role and the disadvantage of
biorthogonal wavelets is their bad stability when adapted to the interval, see [5, 13].

In literature, one can find coiflets which are the most symmetrical among all coiflets of a given order and length of
support, see [7, 15, 16, 27, 29]. As we could see above, these coiflets need not be the best, and other solutions of
equations given in Corollarry 3.1 may be better suited for some types of applications. Typically the most reqular coiflet
for a given order N has the best compression property and due to the almost interpolating property and the ability
to generate a stable wavelet basis on a bounded domain it seems to be very well suited for some applications, e.g.
numerical solutions of PDE’s.
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Table 4. Scaling coefficients of coiflets of order N, length of filter 2M and Sobolev exponent a

‘ n ‘ hy ‘ n ‘ h,
N=32M=8[-2|2L - 38| N=32M=8 |3 S
a=142 |12+ a=1773 |2 .
0 g% + 932C most symmetrical|-1 % + %
1147 _ 9v31 0 73
320 640 128
2| 83 _ 9v31 1 9 _ 37
640 3\2/(3)7 32 9128
—47 | 9V31
—21 |, 3V3 1 7
450 T 50 3 —ptis
5 9 _ 3v31 4 3
320 640 128 VTN
_ _ 21 3V31 _ _ V31 336+82V/31
N=32M=38|2|& + 3\% N=42M=12|-5 @"'1024 rzm
_ 51 3V31 _ 7 3V31
0|27 _ 93t | DR B N 5/336+82v/31
640 3\% 1024 1024 rzo4s
147 | 931 1
1 20 T 640 -2 _M + i
2|8 4 9v31 Y i V3T _ 5V/336+82V31
640 320 512 T 512 1024
3|z _ et 0 55 7V31
320 640 1024 1024
4 =2 _ ﬂ 1| BV 5v/336+82v/31
640 \ﬁ 512 512 \/m24
3 3
&) ﬁ"' 640 2 _W"' 1024
— _ V7 53 331 5V 336+82V31
N=32M=8-3 _§+@ 3_m_m_r 1024
_ 3
a=1464 |-2 T8 4 509 T 2048
11 & _ 3V7 5 + \ﬁ V/336+8231
N 327 28 W 1024 1024
0 73 6 1 V31
128 v 2048 2048
9 | 37
T 5+ 3%
9
2 128\[
1 7
3|=m— 1=
3
il v

6. Conclusion

The arising system from the Corollary 3.1 is redundant-free, more simple (due to the elimination of some quadratic
conditions) and enables us to find directly the exact values of the scaling coefficients of coiflets up to length 8 and two
further with length 12 in closed form. The results are given in Table 3, Table 4 and Table 5. We verified orthonormality
using the Lawton criterion, and all the results correspond to orthonormal scaling functions. As mentioned earlier, the
solutions are not of the same quality, since smoothness and symmetry also play a role. For this reason the most
symmetrical scaling function among all scaling functions of order N is denoted in the Tables, and the Sobolev exponents
of smoothness are computed using the method from [17, 31]. Furthermore, for the remaining coiflets up to length 14 we
obtain two quadratic equations of two variables. These can be transformed into polynomials of degree 4, for which there
is an algebraic formula to find solutions in closed form. We do not provide these solutions because of their length and
complicated structure. Moreover, one can use our approach to find all possible solutions to a given system up to the
length of filter 20. For longer filters the computation failed since the coefficients of the polynomials in the Grobner basis
were too large.
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Table 5. Scaling coefficients of coiflets of order N, length of filter 2M and Sobolev exponent «

[n] h,
_ _ 7 V3T, V/336+82V31
N =42M=12|-5 0 T 021 T \/72048
= - 7 _ 331
a=2174 4 2048 ~ 2048
3|33 _ 3v31 _ 5V/336+82V31
1024 1024 \/72048
39 1V31
-2 —3208 T 2088
| 154 VAT 5V/336482v3T
512 512 1024
0 555 _ 731
1024 1024
1| B Ve 5V/336+82v/31
512 512 ﬁy
47 3V31
2 —0 T Tou
3|53 _ 3v31 4 5V336+82V31
1024 1024 1024
51 31
4 2088 T 2028
5 74 V3T V/336+82/31
1024 T 1024 1024
6 _1 Ve
2048 2048
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