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Abstract: In 1989, R. Coifman suggested the design of orthonormal wavelet systems with vanishing moments for both
scaling and wavelet functions. They were first constructed by I. Daubechies [15, 16], and she named them
coiflets. In this paper, we propose a system of necessary conditions which is redundant free and simpler
than the known system due to the elimination of some quadratic conditions, thus the construction of coiflets is
simplified and enables us to find the exact values of the scaling coefficients of coiflets up to length 8 and two
further with length 12. Furthermore for scaling coefficients of coiflets up to length 14 we obtain two quadratic
equations, which can be transformed into a polynomial of degree 4 for which there is an algebraic formula to
solve them.
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1. Introduction

Approximation properties of multiresolution analysis and the smoothness of wavelet and the scaling functions depend onthe number of vanishing wavelet moments. In [14] Daubechies constructed orthonormal wavelets with arbitrary number
N of vanishing wavelet moments and minimal length of support 2N − 1. The filter coefficients were computed there byan analytical method and exact values could be found only for filters up to length 6. In [26] Shann and Yen calculatedthe exact values of the filter coefficients of Daubechies wavelets of length 8 and 10. Other approaches for constructingDaubechies wavelets which enable us to find exact values of some coefficients can be found in [9, 10, 23, 24].In addition to the orthogonality, compact support and vanishing wavelet moments, Coifman has suggested that alsorequiring vanishing scaling moments has some advantages. In practical applications these wavelets are useful due totheir “nearly linear phase” and “almost interpolating property”, see [22]. Daubechies created coiflets by prescribing an
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equal number N of vanishing wavelet moments and vanishing scaling moments for even N and the length of support3N, see [15, 16]. It was noticed in [4] that these coiflets have one more additional vanishing scaling moment than isimposed. Tian constructed coiflets with N vanishing moments for odd N and the length of support 3N − 1 in [27, 29].Burrus and Odegard constructed coiflets with N vanishing moments for odd N and length of support 3N+ 1 which havetwo additional vanishing scaling moments, see [7]. In this paper the computation of exact values of filter coefficients ofcoiflets up to filter length 14 is presented.There exist a number of coiflet filter design methods, such as Newton’s method [16, 25] or iterative numerical optimization[7]. These methods enable us to derive one particular solution for each system. The convergence and the obtained solutiondepend on the initial starting point though, and thus it is difficult to find all possible solutions. Moreover, the coefficientsfor length greater than 16 are given with less precision due to the roundoff error [15]. As an alternative one can usethe Gröbner basis method [1, 6, 21]. This method is geared toward solving a polynomial system of equations with finitesolutions. The idea consists of finding a new set of equations equivalent to the original set, which can be solved moreeasily. The advantage of such an approach is that solutions can be computed to arbitrary precision and that in somecases it gives all possible solutions for a given system of polynomial equations. In this paper we derive a redundantfree and simplified system of equations and then aplly the Gröbner basis method. Using this approach we are able tofind some exact values of filter coefficients and all possible solutions for filters up to length 20.
2. Preliminaries
The scaling function φ, which generates a coiflet, is constructed as the solution to the scaling equation

φ = 2 ∑
k∈Z

hkφ(2 · −k), (1)
where the scaling coefficients {hk} are determined so that the corresponding scaling functions and wavelets have requiredproperties.
Definition 2.1.An orthonormal wavelet ψ with compact support is called a coiflet of order N, if the following conditions are satisfied:

i) ∫ ∞
−∞

xnψ (x)dx = 0 for n = 0, . . . N − 1,
ii) ∫ ∞

−∞
xnφ (x)dx = δn for n = 0, . . . N − 1,

where φ is the scaling function corresponding to ψ and δn is Kronecker delta, i.e. δ0 = 1 and δn = 0 for n 6= 0.
Since the length of support also plays a role, it is common to consider a wavelet satisfying i) and ii) which has theminimal length of support. The existence of a coiflet for an arbitrary order N is still an open question. We rewritethis definition in terms of filter coefficients {hk}. It is known that for an orthonormal wavelet with compact support thenumber of filter coefficients is an even number, which we denote by 2M.
Lemma 2.1.
Let {hk}N2

k=N1 be real coefficients with N2 = N1 + 2M − 1. If the orthonormal wavelet corresponding to the scaling
function φ(·) = 2 ∑N2

k=N1 hk φ(2 · −k) is a coiflet of order N, then the following three conditions are satisfied:

i) δm = 2 N2−N1−2m∑
j=0 hN1+jhN1+2m+j for 0 ≤ m ≤ M − 1,
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ii)
N2∑

k=N1
hkkn = δn for 0 ≤ n ≤ N − 1,

iii)
N2∑

k=N1
(−1)khkkn = 0 for 0 ≤ n ≤ N − 1.

Condition i) is necessary but not sufficient for a wavelet to be orthonormal. Conditions ii) and iii) are equivalent tovanishing wavelet and vanishing scaling function moments, respectively. In summary, the conditions in Lemma 2.1 areonly necessary. It is known that they are not sufficient to generate a coiflet system. There exist functions given by (1)with filter coefficients satisfying i)−iii) from Lemma 2.1 which are very rough. Hence after finding coefficients satisfying
i)−iii), orthonormality should be verified, for example using the Cohen [11] or Lawton [20] conditions. Typically there aremultiple wavelets satisfying these conditions and some of them, despite zero wavelet moments, are very rough. Likewise,in spite of zero scaling function moments, some are not at all symmetric. In practical applications the most regularwavelet or the wavelet with the most symetrical scaling function is typically chosen.
3. Construction
It is well known that coiflets have more vanishing scaling moments than required in the above definition. This was firstnoted by G. Beylkin et al. in [4]. In this paper, we derive a redundant free and simpler definition of coiflets. The keycomponent of our approach is formed by the following Theorem.
Theorem 3.1.
Let N2 = N1 + 2M − 1. Then

δm = 2 N2−2m∑
j=N1

hjhj+2m for 0 ≤ m ≤ M − 1 (2)
is equivalent to 12 δn = 2n∑

i=0
(2n
i

)(−1)i(aia2n−i + bib2n−i) for 0 ≤ n ≤ M − 1, (3)
where

ai = M−1∑
k=0 (N1 + 2k)ihN1+2k and bi = M−1∑

k=0 (N1 + 2k + 1)ihN1+2k+1. (4)

Proof. Since condition (2) is equivalent to the condition
|m (ω) |2 + |m (ω+ π) |2 = 1, (5)

where
m (ω) = N2∑

k=N1
hke−ikω,

we can repeat the proof of Theorem 3.1 in [19] with some obvious changes.
Due to Theorem 3.1 we are now able to impose necessary conditions on filter coefficients to generate a coiflet whichare equivalent to conditions from Lemma 2.1 and the arising system is without redundant conditions.
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Corollary 3.1.
Let {hk}N2

k=N1 be real coefficients, N2 = N1 + 2M − 1 and let ai and bi be defined by (4). Then conditions i)− iii) from
Lemma 2.1 are equivalent to the following conditions:

i*) 0 = 2n∑
i=0
(2n
i

)(−1)i(aia2n−i + bib2n−i) for N ≤ n ≤ M − 1,

ii*) a0 = b0 = 12 ,
iii*) an = bn = 0 for 1 ≤ n ≤ N − 1,
iv*) a2n + b2n = 0 for N ≤ 2n ≤ 2N − 2.

Proof. It is clear that ii) and iii) are equivalent to ii∗) and iii∗). The rest follows from Theorem 3.1.
The consequence of this Corollary is that the minimal length of support of coiflet of order N is 3N for even N and3N − 1 for odd N and that some coiflets have more vanishing moments than are imposed. Thus, we have three classesof coiflets, see Table 1.
Table 1. The length of filter 2M, the number of vanishing scaling and wavelet moments for coiflet of order N

N 2M number of vanishing number of vanishingscaling moments wavelet momentsset actual set actualeven 3N N N+1 N Nodd 3N-1 N N N Nodd 3N+1 N+1 N+2 N N
Now we further simplify the system by replacing some quadratic conditions by linear ones.
Lemma 3.1.
Let ai, bi be defined by (4). Then ai is a linear combination of a0, . . . aM−1 for i ≥ M, and bi is a linear combination of
b0, . . . bM−1 for i ≥ M.

Proof. Coefficients hN1 , hN1+2, . . . hN1+2M−2 are a solution of the system of linear algebraic equations (4). Since thematrix of this system is regular, the solution exists and is unique. ai is a linear combination of hN1 , hN1+2, . . . hN1+2M−2and thus for i ≥ M, ai is a linear combination of ai for 0 ≤ i ≤ M − 1:
ai = ci0a0 + ci1a1 + . . . ciM−1aM−1,

where the coefficients of this linear combinations are given by
1 N1 N21 . . . NM−111 N1 + 2 (N1 + 2)2 . . . (N1 + 2)M−1... ...1 N1 + 2M − 2 (N1 + 2M − 2)2 . . . (N1 + 2M − 2)M−1




ci0
ci1...
ciM−1

 =


Ni1(N1 + 2)i...(N1 + 2M − 2)i

 .

The situation for bi is similar.
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Now we summarize the construction procedure which enables us to find exact values of coefficients of coiflets up tolength of support 14:
1. For a given N, take the system of algebraic equations given by Corollary 3.1.
2. Replace aM , . . . a2M−2 by linear combinations of a0, . . . aM−1 and bM , . . . b2M−2 by linear combinations of
b0, . . . bM−1.

3. Solve the arising system for a0, . . . aM−1, b0, . . . bM−1. For larger N use the Gröbner basis method to simplify thesystem.
4. Compute filter coefficients hN1 , . . . , hN2 by solving the system of linear algebraic equations (4).

4. Examples
At last we provide two examples to illustrate our approach based on Corollary 3.1.
Example 4.1.For N = 4 and N1 = −5, the following system will be obtained:

a0 = b0 = 12 and a1 = a2 = a3 = b1 = b2 = b3 = 0,
a4 + b4 = 0 and a6 + b6 = 0, (6)

a8 + b8 + 140b24 = 0 and a10 + b10 + 840b4 b6 − 252(a25 + b25) = 0. (7)
Now a6, a8, a10, b6, b8, b10 are linear combinations of a0 . . . a5, b0 . . . b5. We find these linear combinations andsubstitute them into (6) and (7). Then after simplification we obtain the system

−135 + 12b4 + 8b24 = 0, a4 + b4 = 0,
75− 10b4 + 4b5 = 0, 32a25 + 12300b4 − 28575 = 0.

In this case we can easily find both real solutions in closed form. See Table 2 and Table 3.

Example 4.2.For N = 5 and N1 = −5, the following system will be obtained:
a0 = b0 = 12 and a1 = a2 = a3 = a4 = b1 = b2 = b3 = b4 = 0,

a6 + b6 = 0 and a8 + b8 = 0, (8)
a10 + b10 − 252(a25 + b25) = 0 and a12 + b12 − 1584b5 b7 − 1584a5 a7 + 924(a25 + b25) = 0. (9)

Now a7, a8, a10, a12, b6, b8, b10, b12 are linear combinations of a0 . . . a6, b0 . . . b6. We find these linear combinationsand substitute them into (8) and (9). Consequently we simplify the arising system and finally compute its Gröbner bases.The following system is obtained:
11419648b45 + 246374400b35 − 13765248000b25 − 497539800000b5 − 4303042734375 = 0,
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Table 2. Error of approximation of the function f by 50 coefficients for coiflets of order N, length of support 2M and Sobolev exponent of
smoothness α

N 2M α L∞ of error L2 norm of error H1 seminorm of error
×10−6 ×10−7 ×10−4

1 4 0.604 743 1986 13581 4 0.050 2800 7332 56422 6 0.041 402 978 7062 6 1.232 44 116 462 6 0.590 184 469 2342 6 1.022 83 200 873 8 0.147 103 225 1373 8 1.775 2 6 13 8 1.422 20 31 133 8 0.936 44 97 333 8 1.464 15 33 103 8 1.773 3 5 1
298890000a5 − 5709824b35 + 3945600b25 + 6931764000b5 + 94943559375 = 0,8a6 + 64b5 + 525 = 0, −525− 64b5 + 8b6 = 0.Then by using an algebraic formula for the solution of polynomials of degree 4 we obtain two different real roots:

b5 = 15(√15u3/4 − 4010u1/6v1/4 ±√15√w)11152u1/6v1/4 ,

where
u = 4854802096 + 369√15√66685436848043, v = 8475076u1/3 + 697u2/3 − 3366028373,

w = 16950152u1/3√v − 697√v u2/3 + 3366028373√v + 13383342756√15√u.Once we have the values of b5, we simply find a5, a6, and b6. And finally we transform coefficients ai and bi to scalingcoefficients hi.
5. Properties of coiflets
Let us now mention the properties of such constructed wavelets. It is well-known that the approximation propertiesdepend on the number of vanishing wavelet moments. More precisely, let Pjf be an approximation of f ∈ L2 (R) on level
j , i.e.

Pjf =∑
k∈Z

〈
f, φj,k

〉
φj,k , (10)

and for J < j ,
Pjf =∑

k∈Z

〈f, φJ,k〉 φJ,k + j−1∑
l=J
∑
k∈Z

〈f, ψl,k〉 ψl,k , (11)
where φl,k = 2l/2φ (2l · −k) and ψl,k = 2l/2ψ (2l · −k) for l, k ∈ Z. Let us further denote Il,k = supp φl,k , Jl,k = supp ψl,k .The wavelet coefficients satisfy

〈f, ψl,k〉 = ∫ ∞
−∞

f (x) 2l/2ψ (2lx − k)dx, (12)
164
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Table 3. Scaling coefficients of coiflets of order N, length of filter 2M and Sobolev exponent α

n hn n hn
N = 1, 2M = 2 0 12 1 7+√716Haar wavelet 1 12 2 1+√716
N = 1, 2M = 4 -1 38 − √38 3 −3−√732
α = 0.604 0 38 + √38 N = 2, 2M = 6 -2 1−√7321 18 + √38 α = 1.022 -1 5+√7322 18 − √38 most symmetrical 0 7+√716

N = 1, 2M = 4 -1 38 + √38 1 7−√716
α = 0.050 0 38 − √38 2 1−√7161 18 − √38 3 −3+√7322 18 + √38 N = 3, 2M = 8 -1 1564 + 3√14951664

N = 2, 2M = 6 -1 9+√1532 α = 0.147 0 59128 − √1495832
α = 0.041 0 13−√1532 1 1564 − 9√149516641 3−√1516 2 15128 + 3√14958322 3+√1516 3 564 + 9√149516643 1+√1532 4 − 15128 − 3√14958324 −3−√1532 5 − 364 − 3√14951664

N = 2, 2M = 6 -1 9−√1532 6 5128 + √1495832
α = 1.232 0 13+√1532 N = 3, 2M = 8 -1 1564 − 3√149516641 3+√1516 α = 1.775 0 59128 + √14958322 3−√1516 1 1564 + 9√149516643 1−√1532 2 15128 − 3√14958324 −3+√1532 3 564 − 9√14951664

N = 2, 2M = 6 -2 1+√732 4 − 15128 + 3√1495832
α = 0.590 -1 5−√732 5 − 364 + 3√149516640 7−√716 6 5128 − √1495832

and if f ∈ CN (Jl,k ), then expanding f about k2l , it follows by Taylor’s formula that for all x ∈ Jl,k ,
f (x) = f

(
k2l
)+ f ′

(
k2l
)(

x − k2l
)+ . . .+ f (N−1) ( k2l )(N − 1)!

(
x − k2l

)N−1 + f (N) (ξ)
N!

(
x − k2l

)N
, (13)

where ξ depends on x and belongs to the interval Jl,k . If ψ has N vanishing moments, i.e. if condition i) in Definition2.1 is satisfied, then the first N terms don’t contribute and
|〈f, ψl,k〉| = ∣∣∣∣∣∫ ∞−∞ f (N) (ξ (x))

N!
(
x − k2l

)N 2l/2ψ (2lx − k)dx∣∣∣∣∣ ≤ C2−l(N+1/2), (14)
where

C = maxξ∈Jl,k ∣∣f (N) (ξ)∣∣
N!

∫
Jl,k
|y|N ψ (y)dy. (15)

Thus for l large, the wavelet coefficients are small except for those which are near singularities of the function f or itsderivatives. Small coefficients can be set to zero and the function f can be represented by a small number of coefficients.
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This compression property of wavelets has many applications. Most important are data compression, signal analysisand efficient adaptive schemes for PDE’s. Note that more vanishing wavelet moments imply a faster decay of waveletcoefficients and that only local smoothness of the function f is involved in the above estimate. It was observed in [2]that also regularity of the scaling function plays a role. We confirmed in our experiments that this is true for coiflets aswell. As an example, let us consider
f (x) = x5 if 0 ≤ x ≤ 0.5,= (1− x)5 if 0.5 < x ≤ 1,= 0 otherwise,

and its n-term approximation
fn (x) = ∑

λ=(l,k)∈Λnφ
〈f, φλ〉 φλ + ∑

λ=(l,k)∈Λnψ
〈f, ψλ〉 ψλ, (16)

where Λn
φ ⊂ {λ = (J, k) , k ∈ Z}, Λn

ψ ⊂ {λ = (l, k) , J ≤ l < j, k ∈ Z} and Λn
φ ∪ Λn

ψ is the set of indexes of the n largestcoefficients. In our case, the coarsest level is J = 3, the finest level is j = 9 and the number of preserved coefficientsis n = 50. The function f has a sharp derivative near the point x = 0.5 and the approximation is automatically refinednear this point. Errors of approximation for some of the constructed coiflets are shown in Table 2. We can see that themost regular coiflet of prescribed order gives the best result.The significance of vanishing scaling moments highly depends on the type of application. In [16], it is proved that allreal orthonormal wavelets with compact support are asymmetric. However, vanishing scaling moments result in “almostsymmetry” of the scaling function and filter. In image coding, more symmetry would result in greater compressibility forthe same perceptual error and it makes it easier to deal with the boundaries of the image. Vanishing scaling momentsalso cause a “nearly linear phase”, which is a desired quality in many applications, e.g. transmission of audio and videosignals, because it does not cause phase distortion. In numerical analysis, vanishing scaling moments are important dueto their “almost interpolating property”. It means that any f ∈ CN0 (R) can be approximated by
fj = 2−j/2∑

k∈Z

f
(
k2j
)
φj,k (17)

and if the number of vanishing scaling and wavelet moments is N then this approximation satisfies the following estimate
∥∥f − fj∥∥ ≤ C2−jN , (18)

where C depends only on f and the scaling function φ, see [28]. Due to this property, some types of operators canbe treated efficiently. Thus coiflets have some interesting properties and for some applications are more suitable thanorthonormal wavelets with vanishing wavelet moments only. The price to pay is of course the length of support, whichcan make the computation more expensive. We should also mention that we can obtain symmetric wavelets by givingup orthonormality. Symmetric biorthogonal wavelets were constructed in [12], and construction of biorthogonal coifletscan be found in [28, 29]. However, there are applications where orthogonality plays a role and the disadvantage ofbiorthogonal wavelets is their bad stability when adapted to the interval, see [5, 13].In literature, one can find coiflets which are the most symmetrical among all coiflets of a given order and length ofsupport, see [7, 15, 16, 27, 29]. As we could see above, these coiflets need not be the best, and other solutions ofequations given in Corollarry 3.1 may be better suited for some types of applications. Typically the most regular coifletfor a given order N has the best compression property and due to the almost interpolating property and the abilityto generate a stable wavelet basis on a bounded domain it seems to be very well suited for some applications, e.g.numerical solutions of PDE’s.
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Table 4. Scaling coefficients of coiflets of order N, length of filter 2M and Sobolev exponent α

n hn n hn
N = 3, 2M = 8 -2 21640 − 3√31320 N = 3, 2M = 8 -3 − 132 − √7128
α = 1.422 -1 51320 + 3√31640 α = 1.773 -2 − 31280 257640 + 9√31320 most symmetrical -1 932 + 3√71281 147320 − 9√31640 0 731282 63640 − 9√31320 1 932 − 3√71283 −47320 + 9√31640 2 − 91284 −21640 + 3√31320 3 − 132 + √71285 9320 − 3√31640 4 3128

N = 3, 2M = 8 -2 21640 + 3√31320 N = 4, 2M = 12 -5 71024 + √311024 −
√336+82√312048

α = 0.936 -1 51320 − 3√31640 α = 1.707 -4 72048 − 3√3120480 257640 − 9√31320 -3 − 531024 − 3√311024 + 5√336+82√3120481 147320 + 9√31640 -2 − 392048 + 11√3120482 63640 + 9√31320 -1 151512 + √31512 − 5√336+82√3110243 −47320 − 9√31640 0 5551024 − 7√3110244 −21640 − 3√31320 1 151512 + √31512 + 5√336+82√3110245 9320 + 3√31640 2 − 471024 + 3√311024
N = 3, 2M = 8 -3 − 132 + √7128 3 − 531024 − 3√311024 − 5√336+82√311024
α = 1.464 -2 − 3128 4 512048 + √312048-1 932 − 3√7128 5 71024 + √311024 + √336+82√3110240 73128 6 − 112048 − √3120481 932 + 3√71282 − 91283 − 132 − √71284 3128

6. Conclusion
The arising system from the Corollary 3.1 is redundant-free, more simple (due to the elimination of some quadraticconditions) and enables us to find directly the exact values of the scaling coefficients of coiflets up to length 8 and twofurther with length 12 in closed form. The results are given in Table 3, Table 4 and Table 5. We verified orthonormalityusing the Lawton criterion, and all the results correspond to orthonormal scaling functions. As mentioned earlier, thesolutions are not of the same quality, since smoothness and symmetry also play a role. For this reason the mostsymmetrical scaling function among all scaling functions of order N is denoted in the Tables, and the Sobolev exponentsof smoothness are computed using the method from [17, 31]. Furthermore, for the remaining coiflets up to length 14 weobtain two quadratic equations of two variables. These can be transformed into polynomials of degree 4, for which thereis an algebraic formula to find solutions in closed form. We do not provide these solutions because of their length andcomplicated structure. Moreover, one can use our approach to find all possible solutions to a given system up to thelength of filter 20. For longer filters the computation failed since the coefficients of the polynomials in the Gröbner basiswere too large.
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Table 5. Scaling coefficients of coiflets of order N, length of filter 2M and Sobolev exponent α

n hn

N = 4, 2M = 12 -5 71024 + √311024 + √336+82√312048
α = 2.174 -4 72048 − 3√312048-3 − 531024 − 3√311024 − 5√336+82√312048-2 − 392048 + 11√312048-1 151512 + √31512 + 5√336+82√3110240 5551024 − 7√3110241 151512 + √31512 − 5√336+82√3110242 − 471024 + 3√3110243 − 531024 − 3√311024 + 5√336+82√3110244 512048 + √3120485 71024 + √311024 −

√336+82√3110246 − 112048 − √312048
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