Marek Skála:
Problémy současné teorie firmy
(disertační práce)

květen 2007
Doktorand: Ing. Mgr. Marek Skála
Školiček: Prof. Ing. Jiří Krafft, CSc.
Rok předložení disertační práce: 2007
Obsah

Úvod ... 1

I. PROBLÉMY APLIKACE TEORIE FIRMY DO SOUČASNÉHO PODNIKOVÉHO PROSTŘEDÍ

1. Problémy současné teorie firmy ... 4
 1.1 Neoklasička firma ... 4
 1.2 Současná firma .. 6
 1.3 Reakce mikroekonomie .. 7

II. REAKCE SOUČASNÉ MIKROEKONOMIE NA DISKREPCI TEORIE FIRMY A PRAXE

2. Behaviourální modely ... 10
 2.1 Herbert Simon: Model aspirační úrovni .. 10
 2.2 Cyertův a Marchův model ... 12
 2.3 Peter Doyle: Teorie zón tolerance .. 14

3. Manažerské teorie ... 21
 3.1 Scitovského model .. 21
 3.2 Baumolův model .. 23
 3.3 Williamsonův model ... 28
 3.4 Marrisův model ... 55

4. Model zmocnitel-zmocněného („Principal-Agent“ model / Agency teorie) 41
 4.1 Hidden knowledge ... 41
 4.1.1 Popis modelu .. 41
 4.1.2 Optimum v případě symetrických informací 44
 4.1.3 Optimum v případě asymetrických informací 47
 4.1.4 Revelation princíp ... 56
 4.2 Hidden action ... 57
 4.2.1 Popis modelu .. 57
 4.2.2 Optimální funkce odměny ... 62
 4.2.3 Optimum v případě symetrických informací 73
 4.2.4 Srovnání optima v případě symetrických a asymetrických informací .. 76

5. Postkeynesiánské modely firmy .. 81
 5.1 Kaleckého model přirážkové tvorby cen .. 81
 5.2 Eichenerův model tvorby cen s požadovanou mírou výnosu 82
 5.3 Labínského model límitní tvorby cen .. 85

6. Institucionální pojítky firmy ... 88
 6.1 Meansova teorie firmy .. 88
 6.2 Galbraithova teorie firmy ... 90
 6.3 Potchikova teorie firmy .. 92
 6.4 Baranova a Sweezyho teorie firmy ... 94

7. Wardův model (Zaměstnanecky model firmy) ... 96

III. PŘÍNOSY ALTERNATIVNÍCH TEORIÍ FIRMY PRO SOUČASNOU MIKROEKONOMI

8. Vylučuji změny předpokladů maximalizaci zisku? 105

9. Závěr .. 110

Matematické dodatky .. 123
 4.1 Změna αv v souvislosti se změnou pravděpodobnosti λ 123
 4.2 Úpravy rovnice očekávaných hodnot .. 123
 4.3 Ekonomická interpretace multiplykátorů 123
 4.4 Úvod optimální funkce odměny ... 124
 4.5 Optimální funkce odměny v případě rizikoverznosti zmocnitelů a zmocněnců .. 125
 4.6 Optimální funkce odměny v případě rizikoverznosti zmocnitelů a zmocněnců .. 125
 4.7 Rostoucí funkce odměny v Paretově optimu (First-Best) 126
7.1 Krátkodobá nabídková křivka v zaměstnanecké firmě.. 127

Seznam obrázků .. 129
Seznam použitých symbolů ... 130
Literatura .. 133
<table>
<thead>
<tr>
<th>Obrázek</th>
<th>Název</th>
<th>Strana</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Scitovského model I</td>
<td>21</td>
</tr>
<tr>
<td>3.2</td>
<td>Scitovského model II</td>
<td>22</td>
</tr>
<tr>
<td>3.3</td>
<td>Baumolův model: statická verze</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>Baumolův model: výdaje na reklamu</td>
<td>25</td>
</tr>
<tr>
<td>3.5</td>
<td>Baumolův model: dynamická verze</td>
<td>27</td>
</tr>
<tr>
<td>3.6</td>
<td>Williamsonův model s výdaji na zaměstnance</td>
<td>29</td>
</tr>
<tr>
<td>3.7</td>
<td>Williamsonův model s vedlejšími výhodami</td>
<td>32</td>
</tr>
<tr>
<td>3.8</td>
<td>Williamsonův model: syntéza</td>
<td>34</td>
</tr>
<tr>
<td>3.9</td>
<td>Marrisův model I</td>
<td>38</td>
</tr>
<tr>
<td>3.10</td>
<td>Marrisův model II</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Hidden knowledge I</td>
<td>42</td>
</tr>
<tr>
<td>4.2</td>
<td>Hidden knowledge II</td>
<td>45</td>
</tr>
<tr>
<td>4.3</td>
<td>Hidden knowledge III</td>
<td>48</td>
</tr>
<tr>
<td>4.4</td>
<td>Hidden knowledge IV</td>
<td>48</td>
</tr>
<tr>
<td>4.5</td>
<td>Hidden knowledge V</td>
<td>50</td>
</tr>
<tr>
<td>4.6</td>
<td>Hidden knowledge VI</td>
<td>54</td>
</tr>
<tr>
<td>4.7</td>
<td>Hidden action I</td>
<td>59</td>
</tr>
<tr>
<td>4.8</td>
<td>Hidden action II</td>
<td>78</td>
</tr>
<tr>
<td>4.9</td>
<td>Hidden action III</td>
<td>80</td>
</tr>
<tr>
<td>5.1</td>
<td>Kalleckého model</td>
<td>82</td>
</tr>
<tr>
<td>5.2</td>
<td>Eichnerův model I</td>
<td>83</td>
</tr>
<tr>
<td>5.3</td>
<td>Eichnerův model II</td>
<td>85</td>
</tr>
<tr>
<td>6.1</td>
<td>Meansův model</td>
<td>90</td>
</tr>
<tr>
<td>7.1</td>
<td>Wardův model: fixní kapitál</td>
<td>96</td>
</tr>
<tr>
<td>7.2</td>
<td>Wardův model: trh práce</td>
<td>99</td>
</tr>
<tr>
<td>7.3</td>
<td>Wardův model: variabilní kapitál</td>
<td>101</td>
</tr>
<tr>
<td>7.4</td>
<td>Wardův model: nabídková křivka</td>
<td>102</td>
</tr>
</tbody>
</table>
Seznam použitých symbolů:

3. Manažerské teorie

3.1 Scitovského model

- i: nečinnost vlastníka
- IC: indifferenční křivka vlastníka
- m: peněžní příjmy vlastníka
- NTR: celkové čisté příjmy
- TR: celkové příjmy
- TC: celkové náklady

3.2 Baumolův model

- AC: průměrné náklady
- AE: výdaje na reklamu
- g: míra růstu
- GPB: hranice možností růstu (GPB = Growth Possibility Boundary)
- i: úrokové míra (alternativními náklady kapitálu)
- I: investice
- IC: indifferenční křivka manažerů
- IS: přírøka konstantních dlouhodobých příjmů
- Q: výstup
- S: dlouhodobé celkové příjmy
- TR: celkové příjmy (běžné příjmy)
- TC: celkové náklady
- π: zisk
- π_1: požadovaný minimální zisk
- π_{MAX}: maximální čoasažitelný zisk

3.3 Williamsonův model

- IC: indifferenční křivka manažerů
- M: vedlejší výhody manažerů
- S: výdaje na zaměstnance
- T: autonomní daň
- t: důchodová daň
- TR: celkové příjmy (běžné příjmy)
- TC: celkové náklady
- T_F: celkové daně
- U: užitek manažerů
- u_1,u_2,\ldots: parcíální derivace
- π_A: skutečný zisk
- π_D: diskreční zisk
- π_R: vykazovaný zisk
- π_0: požadovaný minimální zisk

3.4 Marrisův model

- C_k: úroveň výdajů na udržitelný růst vzhledem k velikosti firmy
- C: ostatní náklady trvalého růstu
- g: míra růstu firmy
- i: úroková míra
- I: investiční náklady
- IC: indifferenční křivka
- K: velikost firmy
- r: diskontní míra
4. Model zmocnění- zmocněnec („Principal-Agent“ model / Agency teorie)

\[\begin{align*}
V & \text{ tržní hodnota firmy} \\
V^c & \text{ relativní hodnota firmy} \\
\pi_0 & \text{ základní zisk} \\
\pi_R & \text{ vykazovaný zisk} \\
\pi^k & \text{ vykazovaná míra zisku na aktiva} \\
\pi^0_k & \text{ základní míra zisku na aktiva}
\end{align*}

ACL \quad \text{méně efektivní zmocněnec} \\
A_h \quad \text{více efektivní zmocněnec} \\
a \quad \text{pracovní usilí} \\
a_h \quad \text{pracovní vylížení více efektivního zmocněnce} \\
a_L \quad \text{pracovní vylížení méně efektivního zmocněnce} \\
E \quad \text{očekávaný užitek zmocněnce/zmocněnec} \\
H \quad \text{směřová pro více efektivního zmocněnce} \\
L \quad \text{směřová pro méně efektivního zmocněnce} \\
PPS \quad \text{podmínka přijetí smlouvy} \\
PSP \quad \text{podmínka smluvní přitažlivosti} \\
R \quad \text{očekávaný užitek} \\
SS \quad \text{smluvní sankce} \\
u \quad \text{užitek zmocněnec} \\
\nu_h \quad \text{užitek zmocněnec ze smlouvy uzavřené s více efektivním zmocněncem} \\
\nu_L \quad \text{užitek zmocněnec ze smlouvy uzavřené s méně efektivním zmocněncem} \\
\nu \quad \text{užitek zmocněnce} \\
\nu \quad \text{minimální požadovaná úroveň užitku zmocněnce} \\
y \quad \text{průměrné zmocněnce} \\
y_H \quad \text{odměna více efektivního zmocněnce} \\
y_L \quad \text{odměna méně efektivního zmocněnce} \\
y \quad \text{odměna nezávislá na výsledku} \\
x \quad \text{výstup} \\
Z \quad \text{pracovní újma} \\
\theta \quad \text{individuální angažovanost zmocněnce} \\
\theta_h \quad \text{vyšší osobní angažovanost zmocněnce} \\
\theta_L \quad \text{nižší osobní angažovanost zmocněnce} \\
\chi \quad \text{produkční funkce} \\
\lambda \quad \text{pravděpodobnost výskytu více angažovaného zmocněnce v populaci} \\
(1-\lambda) \quad \text{pravděpodobnost výskytu méně angažovaného zmocněnce v populaci} \\
\theta \quad \text{nahlašený typ zmocněnce} \\
\sigma \quad \text{postoj k riziku} \\
\sim \quad \text{optimální množství, veličina} \\
\approx \quad \text{paretoefektivní kombinace (First-Best) = při symetrických informacích} \\
\approx \quad \text{definováno}
\end{align*}

5. Postkeynesiánské modely firmy

ACL \quad \text{průměrný odvod do rezervního fondu korporace} \\
AFC \quad \text{průměrné fixní náklady} \\
AVC \quad \text{průměrné variabilní náklady} \\
Q^* \quad \text{normální objem produkce (standardnímu využívání instalovaných kapacit)} \\
Q_M \quad \text{technicky určená kapacita} \\
Q_0 \quad \text{standardní operační kapacita} \\
Q_D \quad \text{vyrobené množství odpovídající poptávce D} \\
Q_D^* \quad \text{vyrobené množství odpovídající poptávce D'} \\
I \quad \text{úroková míra} \\
K \quad \text{fixní kapitál} \\
P \quad \text{cena} \\
P_C \quad \text{cena ochrany trhu}
\(P_k \) cena vyhnání konkurentů
\(P_{MN} \) cena s minimální ziskovou marží
\(r \) požadovaná míra výnosnosti
\(VC \) variabilní náklady
\(z \) přírůstek
\(\pi \) zisk

6. Institucionální pojetí firmy

AP administrované ceny
\(Q_p \) vyrobené množství odpovídající poptávce D
\(Q_p^* \) vyrobené množství odpovídající poptávce D'
SATC standardní jednotkové celkové náklady (standard average total costs)
SFRO standardního objemu produkce (standard flow rate of input)
\(\mu \) zisková přírůstek

7. Wardův model (Zaměstnanecký model firmy)

\(F \) fixní náklady na vlastníka
\(G \) tržby na vlastníka
\(K \) kapitál
\(K_I \) fixní kapitál
\(L \) počet zaměstnanců
\(LAC \) dlouhodobé průměrné náklady
\(LMC \) dlouhodobé mezni náklady
\(MRP \) mezni příjem z produktu práce
\(P \) cena
\(Q \) výstup
\(r \) cena kapitálu
\(S \) dlouhodobá nabídková křivka
\(w \) mzda
\(y \) příjem na vlastníka
\(\pi \) zisk

8. Vylučuji změny předpokladů maximalizaci získu?

\(c_t \) část získu vyplacená ve formě dividend v časovém období t
\(r \) diskontová míra
\(V_D \) diskontovaná hodnota dividend
\(V_M \) maximální hodnota firmy
\(V_S \) hodnota firmy na kapitálovém trhu (tržní ohodnocení)
\(\pi_t \) zisk v časovém období t
Literatura

Williamson, O. E.: The Economics of Discretionary Behaviour. Markham, Chicago 1967

Úvod

Moderní neoklasická mikroøonomie vytváøí stabilní a konzistentní celek. Konzistentnost se projevuje vzájemnou provázaností a solidním propracováním jednotlivých problematic mikroøonomické analýzy jako jsou chování spotřebitelé, teorie firmy, analýza trhù výrobních faktorù a problematika všebecné rovnováhy vøetnì trøních seùhání. Analýza řeší všechny reálné mikroøonomické problémy.

Nebezpeølivnosti v budoucnosti je rozpor reality a uøebnické teorie. Matematická metoda je sice přesná, ale ji popisovaná realita zaèina být jiná. Fundamentálnì je ohroøena předevìm teorie firmy. A právì závìry a øedpoklady teorie firmy jsou pro podnikovou øekonomiku signifikantní. Souèasìná mikroøonomie musí reagovat, pokud nechce skonèit ve vlastní „pasti exaktnosti“.

Cílem práce je analýza souèasné teorie firmy a její aktuality pøi řeøení problémù moderní firmy.

Disertaèní práce má za cíl nalezení odpovìdì na následující problémy:
1. Jaké je prostøedí souèasné firmy na rozdíl od „uøebnické firmy“?
2. Je tato disperesance významná a mohla by vést k chybìm závìrùm?
3. Trpì moderní mikroøonomická analýza absenci nìkterých fenoménù zmìnneného podnikového prostøedí?
4. Nabízí alternativní teorie reálnìjì odpovìdì pro teoriì firmy a mohou nahradi neoklasickou teorii?

Kromì snahy odpovìdìt na tyto otázky je formulována následující hypotéza:
Neoklasická teorie firmy tak, jak je reprezentována v moderních uøebnických mikroøonomi, i přes dramatickou zmìnu podnikového prostøedí, dává správné odpovìdì týkající se chování firem.

Přínosem práce mìbìt 1 ucelený a detailnìjì popis všech alternativních modelù firem, který chybí jak v domácí tak zahranièní literatuìe.

S ohledem na zodpovìzení otázek a verifikování hypotézy byla stanovená následující struktura práce.

První kapitola představuje výchozí analýzu disertaèní práce, snaží se identifikovat podnikové prostøedí firmy v 21. století a nalézt rozpory mezi øedpoklady uøebnické teorie firmy a tìmto prostøedí. Zmìna podnikového prostøedí implikuje jednak zmìnu øedpokladù, se kterými teorie firmy pracuje a jednak výskyt nových jìvù, kterým mikroøonomická analýza doposud nevøenovala pozornost.

Na danou disperesanci teorie a prostøedí reagovaly alternativní teorie, které částeènì nebo úplnì zpochybnìvou øedpoklady a tím i závìry neoklasické teorie firmy. Odpovìď alternativních konceptù firmy na danou diskrepanci je rozebrána v druhé částì. Alternativní koncepty nejsou jednotlivé teorie, často stojí i proti sobì, spoleènì je pro nì jen jejich vymezení proti neoklasické teorii. Školy se liøí metodologií, nìkteré z nich uznávají maximalizaèní chování, ale zamìřují se na hledání maximizace jiných parametrù cílové funkce neø je zisk, jiné školy metodologii maximizace plnì odmítají.

Behaviorální teorie (2. kapitola) kritizují „univerzitní“ mikroøonomi z absence analýzy chování sociálních skupin ve firmì a postulují døusledky, které z této absence vyplývají. Dokazují, že procesy, ve kterých se formulují cíle, jsou odliøné od chování, které øedpokladá maximalizaci zisku.

Manaøerské teorie (3. kapitola) vèene pozornost firmám ðízeným manaøery. Manaøení v tøechto modelech mají jiné priority neø vlastníci, coø povede k odliøním závìrùm ve srovnání s neoklasickou teorií. Právì oddìlení vlastníctví od ðízení je charakteristické pro souèasné øekonomiky.
Novým fenoménem v životě firmy je nebezpečí morálního hazardu ze strany manažerů. Vlastníci jsou vystaveni nebezpečí morálního selhání ze strany manažerů, kteří mohou zneužít svou informační výhodu. Problematickou morálního hazardu se zabývá model zmocnitél-zmocněnec („Principal-Agent“ model / Agency teorie) ve čtvrté kapitole. Obecně je analýza tohoto jevu pro podnikovou ekonomiku důležitá.

Pro moderní otevřenou ekonomiku jsou charakteristické silné oligopolní tržní struktury. Charakteristice a popis chování velkých firem (korporací) venují pozornost institucionální (v 5. kapitole) a postkeynesiánské (v 6. kapitole) modely firmy. Postupují diametrně odlišně závěry o chování velkých firem než učebnicová mikroekonomie.

Mimo předmět zkoumání neoklasické teorie zůstal jev zaměstnané firmy (kapitola 7), kde vlastníci jsou jedinými zaměstnanci. V praxi se jedná například o situaci, kdy společníci společnosti s ručením omezeným jsou i jedinými zaměstnanci firmu. I tento fenomén neguje řadu závěrů „univerzitní“ mikroekonomie.

Významnou pro verifikaci hypotézy je třetí část, kde se v kapitole 8 (Vylučují změny předpokladů maximalizace zisku?) snažíme souhlasně konfrontovat alternativní modely s neoklasickou teorií firmy (tato metoda je částečně zvolena již při dřívím rozboru modelů). Odpovězení otázek, verifikace hypotézy a hodnocení alternativních modelů jsou obsahem závěrečné kapitoly.

Pro prezentaci manažerských modelů, zaměstnané firmie a modelu zmocnitél-zmocněnec je zvolen matematicko-grafický aparát, pro postkeynesiánské, institucionální a behaviourální modely verbálně dedukční metoda. Všechny modely pracují s abstrakcí. Pro zodpovězení otázek, verifikaci hypotézy a hodnocení modelů je použita metoda komparace alternativních modelů s neoklasickou teorií.

Vzhledem k tomu, že jsou ve většině kapitol použity matematické nástroje s odlišnými symboly, které se mezi jednotlivými kapitolami značně liší, je v závěrečné části disertace pro lepší orientaci uveden seznam použitých symbolů členěný podle kapitola a někde i modelů.

Část I.

Problémy aplikace teorie firmy do současného podnikového prostředí

1. kapitola Problémy současné teorie firmy
1. Problémy současné teorie firmy

V této kapitole je srovnávána neoklasická firma s moderním podnikovým prostředím.

1.1 Neoklasická firma

Proč neoklasická firma představuje typickou průmyslovou organizaci v mikroekonomické teorii

Teorie firmy je formulována pro firmy. Jaké logické kroky vedly tradiční mikroekonomii k volbě firmy jako reprezentanta průmyslové aktivity?

V mikroekonomické literatuře (Gravelle, Reese 1992: 168) se uvádí dva důvody. Neoklasická firma představuje výhody oproti jiným formám průmyslové organizace. Tato forma průmyslové organizace snižuje náklady pro majitele oproti jiným formám. Pokud by průmyslová organizace fungovala jako spolupracující skupina (producer co-operative), pro skupinu by vznikl obtížný problém měření a odměňování výkonu každého člena skupiny. Co se stane pokud nějaký člen skupiny buď podvadí? Tyto dva důvody vedly k etablování neoklasické firmy s dominantní rolí vlastníka jako typické průmyslové organizace v mikroekonomické teorii.

Současná ekonomové O. E. Williamson, S. Grossman a O. D. Hart se snažili podívat hlouběji na podstatu firmy. Snaží se dát odpověď na otázku, proč je pro firmu výhodnější některé aktivity integrovat do firmy a jiné nakupovat jako tržní transakce.

Jelich vysvětlení je založeno na konceptech:

a) neúplných smluv
b) specifických aktiv

c) oportunistického chování

d) reziduálním právu rozhodování a kontroly.

a) neúplné smlouvy

Smlouvy jsou uzavírány za nejistoty, jaké budou budoucí podmínky, za kterých budou smlouvy plněny. Je asi nereálné pro firmu formulovat ve smlouvě všechny možné změny podmínek, ke kterým by mohlo v budoucnosti dojít. Z tohoto hlediska jsou smlouvy neúplné. Důvodem je i to, že úplné smlouvy (obsahují všechny možné varianty a řešení, ke kterým by mohlo eventuálně dojít) jsou pro firmu velmi nákladné a časově náročné. Firma ani nemůže ex ante počítat s tím, že podmínky, které nebyly projednány, budou vynahaditelné v soudním sporu.

1 Jedná se o tyto články:

4
b) specifické aktiva

c) oportunistní chování
V obchodním světě platí pravidlo „business is business“. Obchodní partneři budou výhledávat každou situaci, kdy budou moci využít výhody ve svůj prospěch na úkor druhého.

d) reziduální práva rozhodování a kontroly
Smlouvy jsou neúplné. Vlastnictví umožňuje rozhodování v případech, které nejsou smluvně ošetřeny. Vlastnictví umožňuje v těchto případech rozhodnout o použití aktiv.

Jaké jsou limity pro růst firmy? Tradiční mikroekonomie vidí limity růstu firmy v růstu nákladů, pokud firma expanduje. Při růstu výnosů firmy roste i organizační hierarchie, tedy byrokracie a snižuje se možnost kontroly firmy. Tradiční mikroekonomie vysvětluje limity pro růst firmy logicky správně. Neješí však otázku, které aktivity budou integrovány do firmy a které budou realizovány vně firmy.

Coasova teorie transakčních nákladů limituje velikost firmy počtem aktivit, které vlastník aktiv (popřípadě delegované manažer), který má reziduální práva rozhodování a kontroly, může získově integrovat do organizační struktury firmy. Coasova teorie vysvětluje, které aktivity budou integrovány uvnitř firmy a které organizačně vně firmy.

Neoklasická teorie firmy

Neoklasická teorie firmy může být charakterizována:
- vysokým stupněm abstrakce, který souvisí s problémem optimalizace
- základní formulace se odehrávají v prostředí jistoty
- předmětem zkoumání je formalizace (matematizace) optimalizačního problému
- snahou o transformování výsledků do vysvětlení a predikcí chování firmy
1.2 Současná firma

Ve srovnání s mikroekonomickou teorií současná firma žije v následujícím prostředí.

Současná firma se vyznačuje komplikovaným vlastnictvím

Dochází k rozdělení role majitele a manažera

V současné ekonomice je většina ekonomické aktivity v rukou korporací, pro které je typické oddělení vlastnictví a řízení. Korporace jsou vlastněny velkým množstvím akcionářů.

Co je charakteristické pro akcionáře (moderální vlastník)?
- akcionáři nemají riziko snížení zisku (snížením dividend)
- nemají riziko nových investicí, které kupují nové emitované akcie nebo tím, že financují nové investice ze zadrženého zisku
- na druhé straně příjmy vlastníků umožňují jedincům snižovat riziko podnikání tím, že investují do různých korporací nebo skrze investiční fondy.

Závěr: v současné podnikové prostředí se na rozdíl od mikroekonomické teorie mohou zájmy vlastníků a řídících pracovníků lišit. Manažéři odvozuji svůj užitek z platů a ostatních výhod manažerské pozice jako jsou služební auto, prestiž, moc. V ekonomické teorii předpokládáme, že subjekty přijímají rozhodnutí s ohledem na svůj vlastní užitek. Manažéři tedy maximalizují vlastní užitek. Budou přijímat rozhodnutí ohledně vstupů, vystupu firmy, investování s ohledem na vlastní užitek. Zájmy akcionářů (vlastníků) budou brát v potaz pouze jako vnější omezení jejich činnosti (většinou se jedná o požadavek minimálního dosahovaného zisku).
Organizování současných firem je poměrně komplikované

Produkce se stává náročnější jak z hlediska množství tak i různorodosti. Výroba i prodej jsou mnohem komplikovanější. To vyvolává nároky na organizační strukturu firmy. Organizační struktura má především zajistit předělení vizi a cílů do konkrétních plánů na nižších řídících úrovních, koordinovat aktivity na nižších řídících úrovních, garantovat konzistentnost plánů, kontrolovat aktivity nižších řídících úrovní, zpracovávat tok informací, zajišťovat implementaci rozhodnutí. Důsledkem je, že organizační struktura dnešní firmy je velmi složitá.

V neoklasické světě firmy není problém v předělení vizi a cílů do konkrétních plánů na nižším stupni řízení.

Neoklasická firma žije ve světě jistoty, současná firma ve světě nejistoty

Firma pracuje s informacemi. Jsou pro ni nejcennějším „vstupem“. Nižší úrovně organizační struktury získávají informace z prodeje, výroby, nákupu, z marketingového výzkumu, z vědy a výzkumu, etc. Tyto informace musí být transformovány do podoby, které umožní přijmout rozhodnutí. Tyto informace nejsou úplné, proto toto rozhodnutí jsou přijímány v podmínkách nejistoty (za rizika).

Pro všechna svá rozhodnutí (i pro mezičasová rozhodnutí) má neoklasická firma úplné informace. Tradiční mikroekonomická firma nezná rozhodování za podmínek nejistoty.

Rozhodování v moderní firmě není snadné

V neoklasické teorii firmy není rozpo mezi cílů firmy (tedy maximizací zisku) a rozhodnutí manažerů.

1.3 Reakce mikroekonomie

Pokud se podíváme na neoklasickou teorii firmy a srovnáme ji s podnikovým prostředím 21. století vidíme tyto rozdíly:

- neoklasická teorie firmy se nezabývá kontrolou ani významem organizační struktury pro úspěch firmy
- skoro zanedbatelná pozornost je věnována podstatě vlastnictví ve firmě
- tradiční teorie firmy nezná rozhodování za nejistoty.

Nebezpečné ale je, že neoklasická teorie firmy neumí analyzovat novou důležitou problematiku, která vychází ze změny podnikového prostředí. I když tato problematika nemusí být signifikantní pro stanovení výsledů firmy, poptávku po výrobních faktorech.

Mezi tuto novou problematiku dle teoretiků (Gravelle, Reese 1992: 172) patří:
- důsledky oddělení vlastnictví od kontroly firmy
- limity (franice) pro velikost firmy
(Transakční náklady se sníží při integraci činností do firmy. Proč proto není celá ekonomika jedna firma?)
- optimální organizační architektura firmy z hlediska rozhodování
- optimální portfolio vlastního a cizího kapitálu firmy
- problematika interního (uvnitř firmy) trhu práce

Mikroekonomově se snažili reagovat na mezery, které vznikaly mezi teorií a realitou.
Reakci na diskrepanci teorie a reality jsou tyto alternativní koncepce:
a) manažerské teorie firmy
b) behaviourální modely
c) model zaměstnanecké firmy
d) alternativní přístupy k firmě - institucionální a postkeynesiánské modely
e) model zmocnitel-zmocněnec

a) manažerské teorie firmy
Manažerské teorie však nadstaví pozornost důsledků oddělení vlastnictví a kontroly ve velkých korporacích.
Jedná se o Baumolův model, Maršíkův model, Scitovského model a Williamsonův model. Manažerské
teorie se snaží koncipovat upravené modely maximizace. V případě Baumolova modelu se jedná o
maximalizaci tržeb, v Maršíkův model je maximalizován růst. Williamsonův model pracuje s funkcí
uzávěru, jejíž proměnnými jsou skutečné zájmy manažerů jako jsou výdaje na zaměstnance, platy,
výhody manažerů. Zájmy akcionářů jsou v modelech vyjadřeny minimálním požadovaným ziskem.
Minimální požadovaný zisk v modelech je zisk, který ochraňuje manažery před převzetím firmy a je
něžší než zisk maximální. Přínosem manažerské teorie je přediskové volby optimálního vystupu, které
se odlišují od tradičních modelů (maximalizace zisku).

b) behaviourální modely
Ve velké firmě existují různě zájmové skupiny. Tyto skupiny mají odbírat preference a pokoušejí se je
prosadit do rozhodování o chodu firmy. Prosesování zájmů jednotlivých skupin popř. koalice vede
k jednání firmy, které nemusí odpovídat modelu chování firmy v neoklasické teorii. Reprzentanty
behaviourálních přístupů jsou Simonův model, Cyertův a Marchův model, Doylův model zón tolerance.

c) model zaměstnanecké firmy
U některých těrem podnikání (např. u živností nebo družstev) je těžké odlučit vlastníky a zaměstnance.
Vlastnici jsou často jen zaměstnanci firmy. Výsledkem je chování firmy, které nebude odpovídat
chování firmy, jak jej předpokládá neoklasická mikroekonomie. Tato problematika je analyzována
ve Wardově modelu.

d) alternativní přístupy k firmě - institucionální a postkeynesiánské modely
Nové přístupy k firmě se snaží nepořádat na firmu izolovaně. Důraz je kladen na velké firmy a jejich
výhody proti malým firmám. Analýzováno je vliv velkých firm na ekonomické, sociální i politické
prostředí. Mezi současně institucionální autory zabývající se touto problematikou patří P. Baran, J. K.
Galbraith, G. C. Means, K. V. Rotschild, P. M. Sweezy. Mezi významné postkeynesiánské autory
patří M. Kalecki, A. S. Eichner, P. S. Laibinis.

e) model zmocnitel-zmocněnec
Model zmocnitel-zmocněnec se snaží odstranit mezerní explicitní analýzy role informací a chování
vlastníka firmy v moderní mikroekonomii. Důsledkem oddělení vlastnictví a řízení je asymetrie
informací mezi vlastníkem a manažerem. Principál – agent teorie je velkým přírodním současné
mikroekonomie pro porozumění důsledků oddělení vlastnictví a kontroly, ale jako každá teorie pracuje
se zjednodušením. V teorii je principál jediný, ve skutečnosti je firma vlastněna velkým počtem
akcionářů. Problematika nakonec podkud akcionář budou mít různé preference, pak ani manažer
nezumí/nemůže jednat ve prospěch akcionářů. Principál – agent teorie je diskutována v pokročilých
učebnicích mikroekonomie.

Manažerské teorie firmy, behaviourální teorie, koncepce zaměstnanecké firmy a alternativní přístupy k
firme jsou alternativními teoremi k neoklasické teorii firmy. Zmocnitel-zmocněnec analýza doplnila
neoklasickou mikroekonomii.
Část II.

Reakce současné mikroekonomie na diskrepanci teorie firmy a praxe

2. kapitola Behaviourální modely
3. kapitola Manažerské teorie
4. kapitola Model zmocniitel-zmocněnec („Principal-Agent model / Agency teorie)
5. kapitola Postkeynesiánské modely firmy
6. kapitola Institucionální pojetí firmy
7. kapitola Wardův model (Zaměstnanecký model firmy)
2. Behaviourální modely

Behaviourální teorie věnuje nově pozornost chování sociálních skupin, teorií strategického řízení a teorií organizace. Společným prvkem (ale velice ostřeným) s neoklasickou teorií je maximalizační úsilí jedinců, které se ale odehrává v komplikovaném sociálním systému a za podmínek nejistoty a je tedy sociálně i technicky omezeno. Proto behaviourální modely označují toto úsilí jedinců jako „omezenou racionality“ („bounded rationality“).

Metodické srovnání behaviourálních teorií a neoklasické teorie:
A. Behaviourální přístupy se zaměřují více na vlastní chování subjektů ve srovnání s neoklasickou teorií, která věnuje pozornost pouze výsledku chování (statistická rovnováha). Dle behaviourálních autorů je ekonomické svět více komplexní a změny probíhají dramaticky rychle, proto potřebujeme vědět více o mechanismech a procesech, kterými se subjekty adaptují na tyto nové podmínky a kterými jsou dosahovány cíle.
B. Neoklasická teorie činí závěry bez toho, aby pozorovala chování subjektů, a na základě silných předpokladů racionality a dokonalých trhů.
C. Neoklasická teorie používá metodu dedukce z předpokladů, vše bez kontaktu s empirickými daty, které by verifikovaly správnost závěrů. Subjekty se jako by musí vztahovat k pravděpodobnosti exaktní teorie.
D. Své ekonomických subjektů se stává komplexní (provázaný) a nestabilní, pro vysvětlení jejich chování je nutné porozumět mechanismům, kterými dochází k adaptaci. Není možné popisovat pouze rovnovážné stavě, tak jak činí neoklasický přístup.
F. Neoklasická teorie je postavena na racionálii aktérů. Racionalita v neoklasickém světě vyžaduje, aby jeden z aktérů odhalil chování ostatních aktérů, ale nepočítá s tím, že by jeho chování bylo odhaleno ostatními. Behaviourální teorie kritizuje nekonzistentnost tohoto předpokladu, pokud je racionálii očekávána u všech aktérů.
G. Behaviourální přístupy zdůrazňují složitost popisu rozhodování a procesu hledání alternativ v ekonomické teorii. Mezi světem jedince a realitou je složitý perceptivní a kognitivní proces: vnímání svět může být diametrně odlišný od „reálného“ světa. Naproti tomu neoklasický přístup zjednodušeně počítá s tím, že subjekt vybírá z konstantního počtu známých alternativ a ke každé alternativě zná výsledky.

V následujícím textu je věnována pozornost významným behaviourálním modelům.

2.1 Herbert Simon: Model aspirační úrovni

Fungování modelu
V Simonově modelu je klíčovým cílem pro firmu přežít na trhu. Tento obecný cíl se v každodenním životě firmy transformuje do hledání takových řešení, která jsou uspokojivá pro jednotlivé zájmové skupiny, jež v rámci firmy existují. Simon se více (v srovnání s neoklasickou teorií) zaměřuje na procesy, kterými jsou příměny rozhodnutí, než na výsledky rozhodovacích procesů (což je typické pro neoklasickou teorii).

Při stanovování cílů se Simonova firma chová následovně:
1. management stanoví výchozí cíle
2. s určitým časovým odstupem dohádá k vyhodnocení cílů
3. pokud byly stanovené cíle dosaženy, může management stanovit nově vyšší cíle (zvýšenou aspiraci firmy)
4. pokud cíle dosaženy nebyly, dohádá k následujícím změnám v chování
 a) protože výsledek je horší než aspirační úroveň firmy, dohádí k hledání řešení.
 b) souběžně se adaptuje (klesá) aspirační úroveň až na úroveň dosažitelného výsledku.
c) nefunguji-li předchozí mechanismy dostatečně rychle, emoční chování (apatie nebo agrese) nahradi racionalně adaptivní chování.

Pokud má firma k dispozici alternativy na své nebo vyšší aspirační úrovni, Simon předpokládá, že si zvolí tu, která je nejlepší a dosažitelná. Jestliže žádná z dosažitelných variant neuspokojuje aspirační úroveň, Simon předpokládá v krátkém období hledání řešení a revizi cílů, v dlouhém období frustraci.

Psychologické studie zobrazující se formováním a změnami aspirace verifikují dle Simona Simonovy mechanismy při stanovování cílů (Simon 1959: 263). Postupné zvýšování úrovni cílů může (ale i nemusí) vést k naplnění cílů, které jsou totožné s maximalizačními (neoklasickými) cíli firmy. Simon pracuje s hypotézou, že operativní cíle (spojené s okamžitým pozorováním úspěchu) hrají důležitější roli při rozhodování než cíle neoperativní (neměří okamžitý úspěch).

Zpochybňování maximalizace

behaviourální autoři zpochybňují maximalizační pojed, teorie firmy. Simon vidi tyto nedostatky neoklasicke teorie firmy (Simon 1959: 262):
- zjednodušené předpokládá maximizaci zisku v dlouhém i v krátkém období
- zapomení, že majitel ziskává z činnosti firmy i „duševním přijímem“ (uspokojení). Pokud maximalizuje užitek z tohoto „duševního přijímu“, bude srovnávat ztrátu zisku s nákladem užití a „duševního přijímu“, který ziskává pokračováním činnosti firmy. Zaveden „duševního přijímu“ zpochybňuje maximalizační chování.
- „duševní přijíme“ vede k hledání pouze uspokojivé (ale ne maximální) výše zisku. Toto hledání může být vyjadřeno maximalizací užití, avšak ne operativní (matematickou) cestou.

Firma v teorii uspokojení

Behaviouální teorie zdůrazňuje roli uspokojení v chování subjektů. V psychologii motiv něco udělat je dán všich, aktivita pak určuje, zda je vše spokojena s výsledkem. Hranice uspokojení není pevné dána, ale mění se s úrovní aspirace jedince, která je determinována zkušenostmi.

Pokud se díváme na chování firmy tímto pohledem, pak firma bude hledat určitou uspokojivou úroveň zisku, tržního podílu, prodeje (firma bude více „uspokojovat“ než „maximalizovat“). Simon ve svém článku argumentuje proti očekávání, že v dlouhém období je vlastně dosažitelná aspirační úroveň shodná s maximalizačním účelem firmy takto: „Empiricky výzkumy naznačují statistickou majoritu v populaci jedinců s adaptivním chováním nad skupinou s maximalizačním postojem“ (Simon 1959: 263). Modely firmy založené na teorii uspokojení (behaviouální modely) jsou pestřejší než maximalizační modely, protože nepopisují pouze rovnováhu ale i mechanizmy jejího dosahování.

Behaviouální modely obecně pracují s hypotézou, že člověk je více uspokojující jedinec, jenž při řešení se snaží dosáhnout určité aspirační úroveň, než maximalizující jedinec, který hledá nejlepší alternativu za specifických kritérií.

Lidské vnímání v behaviouální ekonomii

Neoklasicke teorie je teorií člověka, který vybírá z fixního počtu známých možností a zná předem obsahuje jednotlivé rozhodnutí. Dle behaviouálních autorů skutečnost je jiná. Behaviouální teorie věnuje pozornost problematice lidského vnímání reálného světa a zpracování informací při rozhodování jedince. Dle Simona neoklasicke teorie nedává adekvátní odpověď (Simon 1959: 272). Behaviouální přístup popisuje proces rozhodování, počítá s tím, že alternativy nejsou dány (musí být vyhledány) a jedinec stojí před komplikovaným problémem úspěchu důsledků jeho rozhodnutí.

V behaviouálních přístupech je vnímání svět diametrně odlišný od reálného světa. Odlíšnost je dána opomenutím a zkrácením reality a to se odrazí ve vnímání a myšlení. Vnímání není pouze pasivní selekce části reality, ale aktivní proces (obsahuje i možnost zkrášlení), který zahrnuje zaměření pozornosti na důležitou část celku a vyloučení všeho, co není významné. K podobnému aktivnímu procesu (obsahuje i možnost zkrášlení) dochází, když se informace dostanou do mozku. Důsledky implikující z jednotlivých rozhodnutí jsou vyvolávány komplikovaným aktivního procesu (obsahuje i možnost zkrášlení) v mozku. Simon (Simon 1959: 273) přirovnává proces myšlení k řešení diferenciálních rovnic: "jak každý matematik ví, jedna věc je mít soustavu diferenciálních rovnic a jiná věc je najít jejich řešení".
Zhodnocení modelu

Přinosem behaviourálního konceptu firmy H. Simona je pozorost, kterou nově věnuje chování sociálních skupin, popisu rozhodování a procesu hledání alternativ a cílů. Neoklasická mikroekonomie odvzduje závěry bez pozorování chování subjektů a na základě silných předpokladů racionality. Simonův model firmy pracuje s hypotézou, že člověk je více uspokojující jedinec, jenž při hledání řešení se snaží dosáhnout určité aspirační úrovně, než maximalizující jedinec, který hledá nejlepší alternativu za specifických kritérií. Slabinou argumentace H. Simona je verbální dedukce.

2.2 Cyertův a Marchův model

Fungování modelu

V roce 1963 Američané Cyert a March formulovali nejvýznamnější behaviorální model firmy. V modelu využili myšlenek, pojmového aparátu Herberta A. Simona. Model se zaměřuje na studium rozhodovacích procesů uvnitř velké korporace, která existuje na nedokonalých trzích a v prostředí nejistoty.

Firma v jejich pojetí (na rozdíl od neoklasické firmy):
- není jediná rozhodovací jednotka s jediným cílem nebo s uspořádanou množinou cílů popsanou účelovou funkcí, ale složitá organizace s mnoha rozhodovacími centry,
- rozsáhlým specifrem cílů,
- různými zájmovými skupinami
- a komplikovaným procesem dosahování rozhodnutí v podobě kompromisů, které jsou výsledkem sociálních her, které hrají různé sociální skupiny uvnitř i vně organizace.
- interními hráči jsou především vrcholový management, nižší management, administrativa, odborový předáči, vysoce kvalifikovaní zaměstnanci a běžní zaměstnanci
- externími pak akcionáři, věřitelé, dodavatelé a zákaznici.

Každá sociální skupina má vlastní množinu cílů, aby byla mohla realizovat uzavírací různé účelové koalice (krátkodobé i dlouhodobé) s ostatními skupinami proti jiným skupinám. Sociální hry, které skupiny a koalice hrají jsou podstatou rozhodovacích procesů ve firmě. Cíle firmy jsou syntézou cílů zájmových skupin. Cyert a March formulovali cíle do pěti skupin:
A. plynulost a objem produkce
B. úroveň zásob s mezemí (stanovení maximální a minimální zásoby) a plynulosti jejich fluktuace
C. fyzický objem prodejů a hodnota tržeb
D. podíl na trhu
E. zisk (je ukazatelem kompetentnosti vrcholového managementu)

Od těchto cílů se odvíjí praktická politika: úroveň cen, výroba, prodeje, etc.

Cíle jednotlivých zájmových skupin jsou u Cyerta a Marche proměnné v čase. Jsou determinovány momentálním postavením datních skupin vzhledem k ostatním skupinám, postavením firmy ve vztahu ke konkurenci a postavením stejných zájmových skupin u ostatních firem. Z těchto faktorů vyplyvá okamžitá úroveň aspirací skupin.

Proces formulování cílů

Cyert a March vnímají firmu jako koalicí složenou z jedinců. Velká pozorost v modelu je věnována procesu determinace cílů. Cíle jsou formulovány jako omezení a jsou výsledkem vyjednávání mezi potenciálními partnery v koalici. Cíle jsou nestabilní a mění se v krátkém období na základě vnějších

2 Manažer sice formálně přijímá rozhodnutí, ale ve skutečnosti je nucen zhlednit vedle svých vlastních zájmů i zájmy ostatních skupin.
změn. Cíle se mění i proto, že firma je koalicí s různými a proměnlivými zájmy a firma není schopna uspokojit cíle všech skupin simultánně (ve stejný okamžik). V dlouhém období se cíle firmy adaptují změně struktury koalice (jejích členů). Autoři postulují (až na výjimku dramatických změn ve struktuře koalice), že tyto změny jsou pozvolné.

Firma se nachází v komplikované situaci nalezení řešení pro rozporuplné a různorodé cíle při dodržení omezujejících podmínek. Řešením je dle Cyerta a Marche v:
- decentralizaci rozhodování (i cílů)
- sekvenčním (postupném) řešení cílů
- odstranění „firemní Jenosti“

Koalice determinují své cíle v tomto modelu většinou třemi způsoby:
1. cíle jsou výsledkem vyjednávání
 Cíle jsou stanoveny na základě vyjednávání mezi jednotlivými skupinami. Protože cíle jsou kompromisem jsou nedokonale racionální. Racionality cílů je deformována například silnými osobnostmi, četností sekvenci nových vyjednávání, agresivitou jednotlivých skupin, výjimečným postavením skupin ve firmě.

2. vnitřní systém kontroly stabilizuje a blíže specifikuje cíle

3. ke změně cílů dochází skrze nové zkušenosti.
Při popisu procesu změny cílů používají autoři behavourální model aspirační úrovni:
- ve stabilním stavu aspirační úroveň nevýrazně převyšuje skutečnost
- pokud dojde dramaticky ke zvýšení výkonu firmy, aspirační úroveň bude očividně zaostávat za zvýšeným výkonem.
- klesně-li výkon firmy, je aspirační úroveň vyšší než momentálně výkon firmy.

Cíle firmy
Cyert a March statisticky prokázali signifikantnost stanovení cílů v pěti oblastech života firmy:

1. výroba – požadavek plynulosti a využití kapacit
 Plynulost je požadována proto, aby se produkce dramaticky nevychovala v jednotlivých obdobích. Navýšené výroby je žádoucí pouze do využití kapacit.

2. zásoby – optimální zásoby vstupů a výstupů
 Podobně jako u výroby i zásoby jsou centrem pozornosti různorodých zájmových skupin: zásobovacího oddělení, prodejů, zákazníků. Všeobecným požadavkem je vyvarování se extrémní situace, kdy firma nemá na skladě žádné výrobky
 - a má k dispozici kompletní a z hlediska nákladu optimální skladování vstupů

3. prodej – podmínka existence firmy
 Většina zájmových skupin si uvědomuje důležitost prodeje pro samotnou existenci firmy. Na druhé straně prodej je předněm zájmu hlavně skupin, které jsou s ním spojeny a skupin, které vznímají prodej jako klíčový pro stabilitu firmy.

4. podíl na trhu – alternativa k efektivitě prodeje
 Podíl na trhu je alternativou pro efektivitě prodeje. Používání závisí na odvětví a zkušenostech firmy. Zájmové skupiny (vrcholový management, manažéři prodeje), které preferují srovnání s konkurenty, budou upřednostňovat ukazatel podílu na trhu.

3 Firemní „Jenost“ (organizational slack) vzniká jako důsledek výjimečnosti nějaké skupiny ve firmě. Tato skupina pak může vydirat ostatní členy koalice. Firma se stává díky jejich chování neefektivní („Jíná“).
5. Zisk
Autoři předpokládají, že firma choa vytváří zisk. V některých případech se zisk vyjadřuje ve formě zisku na akci (ROE) nebo návratnosti investic (ROE). Zisku věnuji větší pozornost ty skupiny, které mají na rozdělení zisku a úspěšnosti firmy zájem: vrcholová manažer, vlastníci, investoři.

Rozhodování ve firmě
Behaviorální koncept věnuje velkou pozornost rozhodování firmy (neoklasický model abstrahuje od rozhodovacího procesu).

V Cyertově a Marchově modelu probíhá rozhodování uvnitř firmy v devíti krocích:

1. Posouzení chování konkurentů
2. Odhad poptávky
3. Odhad nákladů
4. Specifikace (upřesnění) cílů
5. Evaluace plánu

6. Přezkoumání opodstatnění nákladů
Pokud po přezkoumání nákladů existuje akceptovatelná alternativa, dojde k volbě alternativy. Jinak následuje krok 7.

7. Přezkoumání možnosti zvýšení poptávky
Jsou přezkoumány možnosti zvýšení poptávky v různých alternativách. Pokud jsou nalezeny možnosti zvýšení poptávky, následuje krok 5.

8. Přezkoumání cílů
Koncept předpokládá, že v případě nenalezení vhodné alternativy (krok 5), se prosazuje tendence revize cílů: a to směrem dolů. Po úpravě cílů, následuje jako v předchozím kroku evaluace plánu (krok 5).

9. Volba vhodné alternativy (Rozhodování)
Metody rozhodování:
- preferována jsou řada rozhodnutí, která jsou podobná minulým zvoleným alternativám, nebo už byly úspěšně aplikovány jinými firmami.
- pokud jsou varianty realizovány po sekvenci (etapách), je rozhodování jednoduše: zvolena je ta varianta, která jako první splnila očekávané cíle. V další etapě může být realizována i jiná varianta.
- pokud je k dispozici více možností, je rozhodování náročnější. Je možné například aplikovat pravidlo maximizace.

Z hodnocení modelu

Model se zaměřuje na studium rozhodovacích procesů uvnitř velké korporace, která existuje na nedokonalých trzích a v prostředí nejistoty. Přírooum Cyertova a Marchova konceptu firmy je zabudování chování sociálních skupin do teorie firmy, deskripce rozhodování a procesu hledání alternativ. Negativem je metoda verbální dedukce, se kterou autoři pracují. Nabízí se otázka, jak lze přesvědčivě dokázat, že sociální skupiny ve firmě se skutečně chovají v procesu formulování, stanovení cílů a rozhodování tak, jak autoři postupují.

2.3 Peter Doyle: Teorie zón tolerance

Novějším behaviourálním modelem firmy je model Petera Doylea publikovaný v roce 1994 v European Management Journal s názvem „Setting Business Objectives and Measuring Performance“.

Fungování modelu
U Doylea firma sleduje současně několik cílů:
- tržní hodnotu firmy
- kvalitu produkce
- minimalizaci rizika
- podíl firmy na trhu
- motivaci zaměstnanců
- dobré odběratelské a dodavatelské vztahy
- růst firmy
- výnos z akcí

Různorodé zájmové skupiny ve firmě se v odsličně miří ztotožňují s cíli. Firma by se neměla zaměřit pouze na plnění jednoho cíle, protože alternativní náklady rostou, pokud firma neplní cíle ostatní. Přílišná zaměřenost na plnění jednoho cíle určité skupiny může znamenat destabilizaci (nerovnováhu), možná i zánik firmy; např. pokud vlastníci mají pocit, že dostávají neadekvátní výnosy, mohou sesadit management nebo pokud věřitelé počítají příliš velkou rizikovost, mohou požadovat likvidaci společnosti a podobně zaměstnanci a manažéři mohou zaúmit neutralní postoj k vůči firme. Dle Doylea nejsou ale nerovnováhy ve vztazích mezi skupinami běžné. Očekávání zájmových skupin jsou racionalní i reališké, navíc počítá s dvěmi mechanismy, které usměrňují chování skupin (Doyle 1994: 127):
- maximizační chování (porovnávání přínosů a nákladů): pokud ekonomické a společenské náklady vyvolané změnou činnosti firmy převyšují přínosy skupin, budou skupiny provádět korekci svých požadavků
- brzdící mechanismus („dampening mechanism“): v organizaci působí automaticky brzdící (tlumící) mechanismus, který usnadňuje firmě adaptaci na požadavky skupin.

Při plnění všech cílů je doporučené se pohybovat v zóně tolerance, která představuje akceptovatelnou úroveň cílů všech zájmových skupin. Vné zóna tolerance se firma přehnává soustředí pouze na některé cíle a zanedbává jiné cíle. Firma tak nenaplní minimální očekávání zájmových skupin, což může vyvolat silnou novou zájmových skupín uvnitř firmy. Zóna tolerance představuje vyjednávací prostor, který mají k dispozici manažéři, aby sladili různé (konfliktní) zájmy skupin.

Cílem managementu je rozšiřovat tuto zónu tolerance (vyjednávací prostor) v zájmu stabilní existence firmy na trhu. To management může dělat např. hledáním společných zájmů, zlepšením komunikace, etc.

Měření výkonnosti firmy

Pro teorii firmy je zajišťovává Doyleová analýza kritérií (Doyle 1994: 123 - 127), které firmy používají pro hodnocení úspěchu nebo selhání:

A. Zisk
B. Tržní podíl
C. Ukazatelé kapitálového trhu
D. Růst cíky akvizicím
E. Ostatní cíle (především spokojení zaměstnanců)

Manažer i analytický mají dle Doylea (1994: 123) tendenci z důvodu přehlednosti nebo osobních teoretických preferencí si zvolit jeden ukazatel, který pro ně symbolizuje selhání nebo úspěch. Toto zjednodušení může vést:
- k hazardním předpovědím budoucího výkonu společnosti
- k jednostrannému pohledu na výkon společnosti jednou zájmovou skupinou
- každý ukazatel je v rozporu s ostatními (maximalizace jednoho ukazatele znamená minimalizaci ostatních).

A. Zisk

4 Peter Doyle je profesorem marketingu a strategického managementu na Univerzitě ve Warwicku v Anglii. Byl konzultantem řady mezinárodních firem jako Shell, IBM, BP, Philips, Hewlett-Packard, Unilever, Marks and Spencer, Jaguar.
Tabulka 2.1: Ranking cílů amerických a japonských manažerů

<table>
<thead>
<tr>
<th>Cíle</th>
<th>US</th>
<th>Japonsko</th>
</tr>
</thead>
<tbody>
<tr>
<td>Návratnost investic</td>
<td>2.43</td>
<td>1.24</td>
</tr>
<tr>
<td>Kapitálová příjem pro akcionáře</td>
<td>1.14</td>
<td>0.02</td>
</tr>
<tr>
<td>Nárůst tržního podílu</td>
<td>0.73</td>
<td>0.43</td>
</tr>
<tr>
<td>Koefficent nových výrobků</td>
<td>0.21</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Převzato z (Doyle 1994: 124)

Komentář: Manažeři měli příitat význam jednotlivých cílů: 3 = největší, 2 = druhý důležitý, 1 = třetí důležitý, 0 = nevětší. Skore je průměrem odpovědí všech manažerů v dané zemi.

Doyle vidi nebezpečí tohoto ukazatele v podnikovém prostředí z těchto důvodů:
a) různé účetní metody odpisování, ocenění zásob, účtování nákladů na vědu a výzkum, účtování měnových kurzů, metody účtování akvizic mohou být pružně zneužívány pro fiktivní zvýšování nebo snížování zisku.
b) firmy mají tendenci zvyšovat obrat národní zadluženosti firmy (snaží se využít finanční páků). Zisk na akci síce roste, ale na druhé straně cena akcie klesne z důvodu vyššího finančního rizika;
c) účetní zisk představuje velké nebezpečí při měření hodnoty podniku z tohoto důvodu: zisk na akci, návratnost investic měří výkon společnosti v minulém období, ne jeho schopnost vytvořit hotovost v budoucnosti. Současná zisk může bit jednoduše vytvořen na úkor budoucnosti firmy například kráčením výdajů na vývoj výrobků, výdajů na podporu odběr, výdajů na vzdělávání zaměstnanců, atd. Zaměřením se na krátkodobý zisk manažeři ohrozují (substituji) zájmy akcionářů, zaměstnanců, zákazníků, celkově šanci firmy na přežití.

B. Tržní podíl

Západní firmy sledují finanční hodnoty, tržní podíl je dluhopád. Je ze zcela běžné v podnikové praxi, že pod tlakem klesajícího zisku západní firmy osekyávají rozšířující investice, které měly právě zajistit nárůst tržního podílu. Tento trade-off ukazuje zaměření západních manažerů na finanční hodnotu; při sledování finančního hodnot ochraňují manažeři dle Doyla zájmy akcionářů.

Tabulka 2.2: Odpovídá krátkodobý zisk strategii vaši společností?

| Japonsko 27% | USA 80% | VB 87% |

Převzato z (Doyle 1994: 124)

C. Ukazatel kapitálového trhu

Ukazatel kapitálového trhu jsou teoreticky označovány jako správné cíle firmy. Argumentují tím, že společnost patří svým vlastníkům. Manažeři by měli proto maximizovat majetek vlastníků.

Majetek akcionářů se zvyšuje třemi způsoby:
- výplatou dividend
- kapitálovými výnosy při prodeji akcií
- zpětným odkupem akcií společnosti

Pokud management sleduje cíl maximizace ukazatelů kapitálového trhu (majetku vlastníků), bude věnovat více pozornosti vytvoření hotovosti než účetním ziskům. Společnost by měla investovat pouze, pokud investice vytvoří větší výnos než by vlastníci získali investováním hotovostí jinde. Pokud je za část společnosti nabízena částka, která je vyšší než hodnota vzniknoucí současným managementem, měl by management v tomto konceptu tuto část společnosti prodan a peníze převést na vlastníky.

Maximalizace ukazatelů kapitálového trhu narazí na praktické problémy a konflikty mezi zájmovými skupinami. Doyle ve svém článku uvádí, že momentální kapitálového zhodnocení
je pouze z 8 procent podmíněno výplatou dividend v daném roce.
je z 29 procent determinováno současnou hodnotou dividend očekávaných během příštího let.
je z 50 procent určeno současnou hodnotou dividend očekávaných během děsi let.
Z čehož vyplývá závěr, že značná hodnota firmy je determinována jinými faktory než dividendou (faktory, které managementu nemůže jednoznačně ovlivnit). Problematický je i odhad ekonomických veličin v budoucnosti. V praxi proto manažer skončí u zisku jako náhradu pro hodnotu firmy.

Typickými sektory, ve kterých manažerů maximizují majetek vlastníků, jsou služby a zralá odvětví (společnosti v životní fázi stabilizace). V těchto odvětvích lze totiž snížit dlouhodobé investice, výdaje na vědu, výzkum a vzdělávání zaměstnanců a tak zvýšit zisk (majetek vlastníků). V teorii zón tolerance tato práce znamená pro zaměstnance nižší reálný příjem, větší nebezpečí ztráty zaměstnání. Manažer v těchto sektorech nebudou příliš vyhledávat šance pro akvizice.

D. Růst díky akvizicím

V podnikové praxi je známo pravidlo dominance: „být světovým favoritem je výborné, být druhým je nebezpečné, třetím ohraničující a čtvrtým fatalní“. Velikost firmy se stala dominantním cílem managementu v osmdesáti letech. Hlavní důvody, proč se management zaměřuje na akvizice, jsou následující:

- prestíž z omděný manažerů závisí na růstu společnosti
- účetně jsou náklady akvizice daňově uznatelným nákladem; snižují daňový základ a tak zvyšují zisk na akci.

V praxi se akvizice neosvědčily z těchto důvodů:
- enormní růst firmy znamená vyšší finanční riziko a zadlužení firmy
- akvizici smlouvy byly uzavírány s očekávaným nárůstem společného trhu a cen aktiv, ale kapitálové trhy reagují opačně na právě očekávané synergické efekty akvizice (nedostávají se efekt „look good value“).

E. Ostatní cíle

Společnosti poskytující služby budou sledovat cíl spokojenosti zaměstnanců: když zaměstnanci mají rádi svou práci, jsou motivováni, počítají garanci pracovního místa, pracují s vysokým nasazením, spokojený zákazník, který opakovaně využil služeb, doporučí firmu ostatním, rostoucí zisk znamená spokojenost vlastníků. Jiným důvodem je skutečnost, že většina institucíálních investorů nemá dlouhodobé zájmy ve společnosti a ani se nechtějí podílet na řízení společnosti; nejsou tedy z povodu Doyta primární zájmová skupina. Tento investor vede jde o rozumne míru výnosu, ale ne na úkor ostatních zájmových skupin. Tito vlastníci nebudou narušovat strategii managementu zaměřenou na zaměstnance. Jednostranné zaměření na zaměstnance může být nebezpečné a i pro firmu (např. ztráta konkurenceschopnosti díky ztrátě možnosti snížit náklady na zaměstnance).

Doytův závěr: jednotlivé izolované cíle nejsou vhodné pro popis úspěchu či neúspěchu firmy z těchto důvodů:
- jednotlivé cíle zohlednění zájmy specifických zájmových skupin
- každý z těchto cílů je v konfliktu s jinými; např. maximizace krátkodobého zisku, snižuje konkurenceschopnost v dlouhodobém období nebo dramatický růst vede ke spirálovému nárůstu rizika, které nesou vlastníci a věřitelé.

Zájmové skupiny: jejich zájmy a omezení

VLASTNÍCI

Vlastníci investovali do společnosti s očekávaným výnosů ve formě dividend, zhodnocení na kapitálovém trhu, kapitalizace při zpětném odkupu akcii firmou; pokud jsou nespokojení, mohou propustit management, prodávat nebo uzavírat společnost. Právě je moc vlastníků velká, ale v dnešní době jsou vlastníci většinou institucionální investorů, ti mají široké investiční portfolio a pravděpodobně raději prodávají akcie neúspěšné společnosti než by měnili management společnosti. Institucionální investoři nehrají příliš aktivní roli při řízení společnosti, z tohoto důvodu management často nemaximalizuje majetek vlastníků, management ziskává naopak širokou zónu tolerance. Na druhé straně vlastníci jsou cílivi, pokud ostatní zájmové skupiny ziskávají výhody na jejich úkor tak, že hodnota dividend nebo majetku je pro vlastníky neakceptovatelná; pak investoři většinou vymění top management nebo majetek k pro vlastníky neakceptovatelný; pak investoři většinou vymění top management nebo majetek k pro vlastníky neakceptovatelný.
MANAGEMENT

ZÁKAZNÍCI
Zákazníci jsou potenciálně nejvíce zájemčtí skupina (za podmínky konkurence). Pokud nejsou jejich požadavky splněny, mohou přejít ke konkurenci, což by mohlo narušit stabilitu přijem a ohrozit stabilitu mezi ostatními zájmovými skupinami. Na druhé straně zákazníci vyhledají značnou toleranci: zákazníci jsou zdrženi při změně dodavatelů, obávají se nákladů a rizika spojených s změnou.

ZAMĚSTNANCI
Pro zaměstnance je důležitá garance zaměstnání, odměna, uspokojení s prací. Jako zájmová skupina jsou více závislí na úspěchu firmy (zdobě příjmů) než vlastníci, mají daleko menší kontrolu nad společností než manažerů. Jejich stavební moci závisí na jejich postavení na trhu práce (nabízení exkluzivní pracovní schopnosti), zájmu manažerů a vlastníků na kvalifikovanou pracovní sílu, měří důležitost zaměstnanců na fungování firmy. Zaměstnanci si uvědomují náklady změny místa, nejistotu, tlak vnějšího prostředí, proto akceptují přijetelný přijem od současného zaměstnavatele. Na druhé straně, pokud nejsou splněna jejich minimální očekávání, není možné počítat s kvalitou a servisem ostatním skupinám.

VĚRITELÉ

OSTATNÍ
Mezi skupiny, které ovlivňují existenci firmy, patří dodavatelé, vláda a vládní instituce, komunální správa, etc. Firma potřebuje pro svou existenci jejich podporu nebo alespoň toleranci.

Management zóny tolerance
Ve svém konceptu Doyle předpokládá ve většině případů, že jsou „očekávání skupin rozumná a splnitelná“ (Doyle 1994: 127), přesto se zmíní mezi čtyři mechanismy, které společně nerovnovážně situace ve firmě:

1. Nedostatečný výkon
Nedostatečný příjem neuspokojuje minimální očekávání skupin.

2. Změna okolí
Změna podnikového prostředí může způsobit chaos v silných stránkách firmy nebo v očekáváních skupin. Například změna technologie, znehodnění dosavadní silnou pozici firmy nebo nedostatek specifikálně pracovní síly na trhu práce, zvýši očekávání této skupiny ve firmě a naruší tak dosavadní rovnováhu.

3. Externí intervence
Vnější intervence může aktivovat militantnost zájmových skupin. Při nabídce o převzetí firmy si majitelé uvedeni slabý výkon firmy a budou požadovat razantní změny v řízení firmy popř. výměnu managementu.

5) Jedná se v jeho pohledu o rovnovážnou situaci ve firmě.
První tři mechanismy jsou vyvolány vnějším prostředím. Čtvrtý je důsledkem zaměření se managementu na jeden cíl.

4. Výjimečnost

Behaviourální koncept Doyle si uvědomuje nebezpečí zón mimo zónu tolerance: na jedné straně se jedná o zónu eskalace konfliktů, kde se management zaměří externě pouze na jeden cíl a zanedbává zájmy ostatních skupin, na druhé straně se jedná o oblast, kde management není schopen špatným řízením společnosti splnit minimální požadavky skupin. Optimální je zóna tolerance, kde jsou splněny minimální požadavky skupin a vztahy mezi skupinami jsou v rovnováze.

Pokud management řídí firmu s omezenou zónou tolerance, nemá příliš manévrovacího prostoru pro řízení firmy, protože klíčové skupiny budou požadovat zmenšení managementu. Rozšířením zóny tolerance management získá:
- větší prostor pro zavádění změn, cítí a strategii, které jsou v zájmu všech skupin.
- management není nucen substituovat (nahrazovat) krátkodobé cíle za dlouhodobé, aby splnil zájmy určité skupiny, u které došlo k eskalaci zájmů.
- management může pružněji reagovat na negativní hrozby, jako jsou nová konkurenci, škody z vnějšího prostředí nebo „militarizaci“ některých skupin, bez vyvolání nerovnovážné situace mezi skupinami.

Jakými nástroji může management rozšířit zónu tolerance? V prvním kroku by se měl snažit formulovat vizím firmy společnou zájmovou skupinám. Podstatou vize by měla být formule, kdo jsou klíčové skupiny a na které jejich cíle by se měla firma zaměřit. V druhém kroku přicházejí praktické kroky napišování vize: formulování konkrétních kvantitativních cílů, strategie, rozpočtů. Doyle se ve svém článku zmiňuje o dvou sociálních programech ve firmě, které mají napomoci k rozšíření zóny tolerance (Doyle 1994: 131):
- interní socializace
- externí socializace

Jedná se o dva závěrové skupiny: zaměstnance a manažery. Zvyšuje vzájemný respekt, zlepšuje komunikaci a adaptaci na ménící se vnější podmínky.

- interní socializace
- externí socializace

Interní socializace půlčasí jen dělí vědy, protože se zaměřuje pouze na dvě skupiny a může vyvolávat napětí mezi ostatními skupinami. Tento nedostatek odstraňuje externí socializace, která zahrnuje do programu socializace i ostatní skupiny jako jsou vlastníci, věřitelé, zákazníci, distributoři, etc. Autorka článku přikládá konfliktům jen významného vztahu mezi významnými japonskými firmami a jejich dodavateli, odběrateli, věřitelí, zákazníky a ostatními skupinami. Vnější i vnější skupiny jsou spojeny vzájemnými zájmy a přínosy. Každý z účastníků se divá na vztahy s dlouhodobou (permanentní) perspektivou. Všichni účastníci vědí, že budou profitovat z dobrého vývoje firmy. Tyto japonské firmy mají širokou zónu tolerance (manévrovací prostor) v případě vnějších šoků, potíží.

Závěry pro teorii firmy vyplývající z Doylova modelu:
2. Usušení konfliktů mezi skupinami není komplikované, protože skupiny hledají více uspokojení než maximizaci zájmů. Management by se měl zaměřit na úspěšné fungování firmy a změny ve vnějším prostředí, které by mohly eskalovat vztahy mezi skupinami.
3. Firma může rozšířovat zónu tolerance omezováním přehnaných požadavků. To vyžaduje rozvíjení firemní kultury, která respektuje a sladuje odlišné zájmy skupin.
4. Firma by měla formulovat svou vizi, ve které identifikuje významné skupiny a jejich zájmy. Důležité je, aby firma formulovala svou dlouhodobou vizi i vně.

Zhodnocení modelu

3. Manažerské teorie

Metodické srovnání manažerských teorií a neoklasické teorie:

A. Manažerské teorie se zaměřují na oddělení vlastnictví od řízení.
B. Vycházejí z předpokladu optimalizace (maximalizace) chování. Manažerské teorie jako jediné z alternativních škol používají shodně s neoklasickou teorií metodologii optimalizace. Jsou tedy z hlediska používaných nástrojů často neoklasické teorie pině integrované.
D. Předpokládají nedokonalou konkurenci
E. Manažerské teorie se snaží nalézt podmínky, za kterých by manažeři sledovali maximalizaci zisku, kdy se tedy maximalizace jejich užitku shoduje s maximalizací zisku.

3.1 Scitovského model

Model odpovídá na otázku, kdy se maximalizace užitku manažera shoduje s maximalizací zisku.

Pro nalezení odpovědi zavedeme indifferenční křivku vlastníka, která představuje kombinace nečinnosti a peněžního příjmu a odvodíme křivku celkových čistých příjmů.

Křivku celkových čistých příjmů (NTR) odvodíme z obrázku 3.1, kde (i) je nečinnost vlastníka a (m) je jeho peněžní příjem. I je bod nulové aktivity vlastníka (nepodniká). Logicky jsou pak v tomto bodě celkové příjmy (TR) i celkové náklady (TC) nulové. Křivka celkových čistých příjmů (NTR) je rozdílem mezi celkovými příjmy (TR) a celkovými náklady (TC) souvisejícími s nečinností vlastníka. Náklady rostou s aktivitou vlastníka. Za průběhem celkových příjmů je schován předpoklad nedokonalé konkurence (mění se elasticity). Křivka čistých příjmů (NTR) je identická se ziskovou funkcí, kde menší pasivita znamená větší množství produkce.

Obrázek 3.1
Scitovského model

Převzato z (Poštůva 2006: 65), upraveno autorem
Indiferenční křivka vlastníka vyjadřující kombinace nečinnosti a peněžního příjmu, které mu přináší stejný užitek jsou zaneseny na obrázku 3.2.

Pomocí křivky celkových čistých příjmů a indiferenční křivky vlastníka můžeme zodpovědět otázku, kdy se maximalizace užitku manažera bude shodovat s maximalizací zisku. Model pracuje s dvěma zisky: normálním ziskem, který odpovídá implicitním nákladům a ekonomickým ziskem (rentou), který je rozdílem mezi realizovaným ziskem a normálním (běžným) ziskem. Ekonomický zisk závisí na osobním nasazení vlastníka. Ekvivalentem maximalizace zisku z hlediska neoklasické teorie je v modelu maximalizace ekonomického zisku vlastníkem, tedy osobní nasazení vlastníka je takové, že dosahuje maximálního ekonomického zisku.

Obrázek 3.2
Scitovského model II

![Diagram](image)

Převzato z (Pošta 2008: 68), upraveno autorem

Z grafické analýzy (obrázek 3.2) vyplývá, že ekonomický zisk je maximální při největší vzdálenosti mezi křivkou celkových čistých příjmů (NTR) a indiferenční křivkou vlastníka (IC1). Indiferenční křivka (IC1) prochází bodem nulové aktivity vlastníka (i), a proto je indiferenční křivkou při běžném zisku. Při aktivitě (nečinnosti) i = A je běžný zisk (AB) a maximální ekonomický zisk (BC). Vzdálenost (AC) odpovídá celkovému čistému příjmu. Geometricky platí, že v bodě maximální vzdálenosti mezi křivkami mají tečny ke křivkám stejný sloh. Potom vlastník bude maximizovat ekonomický zisk (ekvivalentně zisk v neoklasické teorii), pokud sklon tečen k indiferenčním křivkám bude stejný (neměnný).

Zhodnocení modelu

Scitovského model představuje výchozí analýzu, na kterou ostatní manažerské teorie navazují. Pokládá si oprávněnou otázku, zdá po oddělení vlastnictví a managamentu, se bude chování

3.2 Baumolův model

V Baumolově modelu firma sleduje maximalizaci příjmů.
Jako důvody, proč firma maximalizuje příjemy místo zisku, se uvádí tyto argumenty:
- pokles nebo stagnace příjmů, kdy příjmy ostatních firem v odevzdání rostou, mohou ohrozit management. Tržní podíl (celkové příjmy) může být kritériem hodnocení úspěšnosti managementu.
- firma se nucena snižovat výdaje na podporu prodeje. Konkurence může tak získat její tržní podíl.
- firma s klesajícími příjmy přestává být zajímavá pro distributory.
- v případě, že příjmy firmy klesají, dochází k propouštění, což zvyšuje napětí mezi skupinami ve firmě.
- odměny manažerů nejsou většinu vazány na zisk, ale na prodej (tedy příjmy).
- akcionáři se zajímají nejen o rentabilitu svých investic (zisk), ale i o růst firmy (tržního podílu, tedy tržeb).
- tržní podíl (příjmy) firmy je ukazatelem, který sledují subjekty na finančním trhu při rozhodování o investicích.

V modelu je explicitně uvedeno omezení minimálního požadovaného zisku. Důvody jsou následující:
- pokud si manažer či tým udrží své postky, musí uspokojit požadavek akcionářů v podobě určité výše dividend.
- dlouhodobého růstu příjmů firma dosahuje rozšiřováním svých aktivit. K tomu tedy, aby mohla růst potřebuje ziskat prostředky, které bude moci investovat. Tyto prostředky pocházejí jednak z interních zdrojů (zisku) tak i z externích zdrojů (emise dlouhopisů nebo akcií, bankovních úvěrů).
- externí zdroje jsou také závislé na zisku: pokud firma nebude dosahovat zisku, nebude atraktivní pro nové investory a těžko bude přesvědčovat banky, aby ji půjčily finanční prostředky.

Přičemž příliš vysoký zisk snižuje současně příjmy, příliš nízký zisk na druhé straně snižuje disponibilitu finančního zdroje pro růst firmy. Proto krátkodobý zisk bude požadován od vlastníků, zatímco dlouhodobý zisk je motivem managementu z důvodu expanze firmy.

A. Baumolův model (Statická verze)

Výdaje na reklamu

Maximalizace příjmů ze strany manažerů je spojena se stimulací prodeje skrze reklamu. Proč manažerů preferují reklamu před (méně nákladným) snížením cen? Při snížování cen v neelastické části poptávky, by celkové příjmy firmy klesly. Proto jsou výdaje na reklamu z pohledu manažerů bezpečnějším nástrojem.

Baumol pracuje s hypotézou, že rozhodování o výdajích na reklamu je z pohledu maximalizace zisku opět suboptimální.

a) Grafické potvrzení hypotézy

Obrázek 3.4 prokazuje, že při minimálním požadovaném zisku firma utrácí více peněžních prostředků za reklamu (rozdíl $AE_2 - AE_1$) než by utrácela při maximalizaci zisku (AE_1).
b) Matematické potvrzení hypotézy

Manažeři maximalizují funkci celkových příjmů

\[(3.1) \quad TR = P \cdot Q\]

Omezujícími podmínkami je nezápornost výstupu \(Q \geq 0\) a došažení zisku, který odpovídá alespoň požadované úrovní, tedy \(\pi \geq \pi_0\).

Matematicky můžeme omezující podmínky napsat ve tvaru

\[(3.2) \quad Q \geq 0\]
\[(3.3) \quad \pi_0 - (TR - TC) \leq 0,\]

kde \(Q\) je výstup, \(TR\) celkové příjmy, \(TC\) celkové náklady, \(\pi_0\) minimální požadovaný zisk, \(\pi = (TR - TC)\) dosa瑄ovaný zisk.

Matematicky lze problém vyřešit aplikací Lagragersovy funkce zjednodušením podmínek (3.3) do tvaru \((TR - TC) = \pi_0\). Skutečný zisk se právě rovná požadovanému minimálnímu zisku.

Lagrangerova funkce má tvar

\[(3.4) \quad L(Q, \lambda) = P \cdot Q + \lambda \left[(TR - TC) - \pi_0 \right]\]

Derivace Lagragersovy funkce (3.4) jsou

\[(3.5) \quad \frac{\partial L}{\partial Q} = \frac{\partial TR}{\partial Q} + \lambda \cdot \left(\frac{\partial TR}{\partial Q} - \frac{\partial TC}{\partial Q} \right) = 0\]
\[
\frac{\partial L}{\partial \lambda} = (TR - TC) - \pi \phi = 0
\]

Derivací (3.5) můžeme upravit do tvaru

\[
\frac{\partial TR}{\partial Q} = \frac{\lambda}{1 + \lambda} \cdot \frac{\partial TC}{\partial Q}
\]

I. \(\lambda = 0 \)

Pokud je \(\lambda = 0 \), manažer nejsou limitováni při svých rozhodovacích požadavkem minimálního zisku, pak má rovnice (3.7) tvar

\[
\frac{\partial TR}{\partial Q} = 0
\]

Manažer tedy stává platným bez omezení požadovaného minimálního zisku svůj cíl maximalizace celkového příjmu (mezní příjmy jsou rovny nule).

II. \(\lambda \neq 0 \)

V tomto případě manažer musí při svých rozhodovacích respektovat požadovací minimální zisku. Aby byla splněna rovnost (3.7) musí být \(\frac{\partial TC}{\partial Q} \) větší než \(\frac{\partial TR}{\partial Q} \), protože zlomek \(\frac{\lambda}{1 + \lambda} < 1 \). Tedy

\[
\frac{\partial TR}{\partial Q} < \frac{\partial TC}{\partial Q}
\]

Což je obecným znakem firmy, která se snaží maximalizovat příjmy (firma je za bodem maximalizace zisku: MR< MC), ale je limitována požadavkem minimálního zisku ze strany vlastníků. Ve srovnání se situací \(\lambda = 0 \), kdy manažer nebyli omezeni požadavkem minimálního zisku, nyní příjmy nejsou maximální.

B. Baumolův model (Dynamická verze)

Manažer se uvědomuje, že maximalizace příjmu z dlouhodobého hlediska je podmíněna expanzi (růstem) firmy. Proto se manažer budou snažit generovat určitou výši zisku v současnosti:
- která, nesmí být příliš vysoká, aby nesnížovala současné příjmy
- a na druhé straně poskytovala dostatek peněžních prostředků potřebných pro růst.

Baumolův model (dynamická verze):

\[
\pi = f(TR, g, i)
\]

Vztah (3.10) postuluje, že zisk \(\pi \) je určen příjmy \(TR \) v současnosti, dynamici růstu \(g \), a alternativními náklady kapitálu \((\text{úrokovou mírou}) \) \(i \).

\[
S = \sum_{1}^{\infty} TR \cdot \frac{(1 + g)^t}{(1 + i)^t} = TR \cdot \frac{(1 + i)^t}{(1 + g)^t}
\]

Rovnice (3.11) udává, že příjmy v dlouhém období \(S \) jsou determinovány růstem současných příjmů \(TR \cdot (1 + g)^t \), které musí být diskontovány k současnosti.

\[
g = f(l, TR)
\]

Baumolův model (rovnice 3.12) předpokládá, že míra růstu \(g \) závisí na investicích \(l \) a běžných příjmeh \(TR \).
\[l \leq l(\pi^e) \]

Investice (l) závisí na očekávaném zisku (\(\pi^e \)).

Hypotéza míry růstu

Baumol pracuje s hypotézou, že firma, která maximalizuje zisk, bude vykazovat menší míru růstu, než firma, která je zaměřena na maximalizaci příjmu.

Výše zmíněné předpoklady a hypotéza míry růstu jsou zachyceny v obrázku 3.5.

Obrázek 3.5

Baumolův model: dynamická verze

Křivka a body uvnitř hranice možností růstu (GPB = Growth Possibility Boundary) představují kombinace možností růstu (g) a příjmů (TR), kterých může firma při dané míře investic (úrovní zisku) dosáhnout.

Příběh konstantních dlouhodobých příjmů (IS) zachycuje kombinace míry růstu firmy (g) a příjmů (TR) při konstantních dlouhodobých růstech. Je odvozena z rovnice (3.11) a zachycuje již v modelu zmíněný trade-off mezi velikostí současného příjmu (TR) a mírou růstu (g); vyšší příjem (TR) v současnosti tak snižuje zisk, tedy i investice a tím i míru růstu v budoucnosti. Dané souvislosti jsou i zabudovány matematicky do rovnice (3.11): vyšší příjem (TR) musí být vykompensován nižší mírou růstu (g) tak, aby dlouhodobý příjem (IS) zůstal matematicky konstantní.

Grafické vyjádření souvislosti z Baumolova modelu:

1. Firma, která sleduje maximalizaci dlouhodobých příjmů má vyšší míru růstu.
 V obrázku 3.5 je bod maximalizace dlouhodobých příjmů určen dotekem přímky konstantních dlouhodobých příjmů (IS) a hranice možností růstu (GPB). Pro srovnání bod maximalizace zisku je označen šipkou.
2. V situaci, kdy by se firma zaměřila na maximalizaci příjmu v současnosti (TR), bude její míra růstu (g) nižší než při maximalizaci dlouhodobého příjmu a vyšší než při maximalizaci zisku. Bod maximalizace příjmu v současnosti (TR) je nejvyšší vertikální bod na hranici možností růstu (GPB).

Z hodnocení modelu

3.3 Williamsonův model

Williamsonův model pracuje s užitkovou funkcí manažerů. Williamson definoval tyto priority manažerů (komponenty užitkové funkce):

- plat
- jistotu
- status
- moc
- prestiž

Status, moc a prestiž jsou shrnovány v modelu pod pojmem dominance.

- sociální službu

Sociální služba však není Williamsonem zařazena jako proměnná do užitkové funkce, protože sociální služba není signifikantní (dostatečně významná) pro chování manažerů.

- vysokou profesní výkonnost

Aby bylo možné při analýze chování manažerů aplikovat matematické nástroje, je nutné kvalitativní priority manažerů vyjádřit kvantitativními ekvivalenty:

- výdaje na zaměstnance

Výdaje na zaměstnance mají prokazatelnou vazbu na dominance. Čím více podřízených manažer má, tím vyšší je jeho moc, postavení ve firmě, prestiž. Podobně lze nalézt vazbu mezi výdaje na zaměstnance a platem. Růst počtu zaměstnanců znamená pro manažera možné povýšení spojené s růstem platu.

- vedlejšími výhodami

Model předpokládá, korelace (vazbu) mezi vedlejšími výhodami na jedné straně a postavením a prestiži na druhé straně. Čím vyšší postavení a prestiž manažerů ve firmě mají, tím vyšší jsou jejich vedlejší výhody. Manažerů by preferovali pouze finanční odměny, ale z daňových důvodů a skrytostí vedlejších výdajů před akcionáři, usilují o vedlejší výhody v nepeněžním podobě.

- diskrečním ziskem

Diskreční zisk je rozdílem mezi skutečným ziskem a požadovaným minimálním ziskem. Diskreční zisk představuje pro manažery peněžní prostředky potřebné pro expanzi, zisk je i symbolem úspěchu.

A. Williamsonův model s výdaji na zaměstnance

Výdaje na zaměstnance mají tendenci zvyšovat příjmy, na druhé straně zvyšují i náklady. Williamson předpokládá, že do určité vyš výdajů na zaměstnance, příjmy rostou víc než náklady, roste tedy zisk.
Od určité výše výdajů náklady rostou více než příjmy, zisk proto klesá. Vztah mezi rostoucím a klesajícím ziskem (Π_d) a výdají na zaměstnance (S) je vyjádřen v obrázku 3.6.

a) Grafická analýza
Firma, která by sledovala maximalizaci zisku by zvolila objem výdajů na zaměstnance na úrovni (S₀). Manažeři vzhledem ke svým preferencím (vyjádřené indifferenční křivkou IC), by volili vyšší výdaje (S₁), což vede k tomu, že skutečný zisk je nižší.

Obrázek 3.6
Williamsonův model s výdají na zaměstnance

Převzato z (Pošta 2006: 75)

b) Matematické řešení
Williamson rozlišuje ve svém modelu tyto zisky:
- skutečný zisk (Π_A), který definuje
 \[\Pi_A = TR - TC - S, \]
 kde (TR) jsou celkové příjmy, (TC) celkové náklady a (S) výdaje na zaměstnance.
- vykazovaný zisk (Π_R), který je skutečným ziskem sníženým o vedlejší výdoby manažerů (M)
 \[\Pi_R = \Pi_A - M \]
- diskreční zisk (Π_D), který je rozdílem mezi skutečným ziskem (Π_A), požadovaným minimálním ziskem (Π_C) a daněmi (T_F).
 \[\Pi_D = \Pi_A - \Pi_C - T_F \]
Manažeři se snaží maximalizovat užitkovou funkci
 \[U = U(S, \Pi_A - \Pi_C - T_F). \]
jejímiž komponentami jsou výdaje na zaměstnance (S) a diskreční zisk ($\Pi_A - \Pi_C - T_F$). (Ve funkčním zápisu diskrečního zisku je uveden skutečný zisk místo vykazovaného zisku, protože v tomto dílčím modelu nepředpokládáme vedlejší výdoby manažerů (M).)
Omezujičí podmínkou pro manažery je vyšši skutečného zisku \((\Pi_A)\), která musí být větší nebo rovna součtu minimálního požadovaného zisku \((\Pi_0)\) a dané \((T_1)\)

\[(3.18) \quad \Pi_A \geq \Pi_0 + T_1\]

Rovnici (3.18) lze přepsat do tvaru

\[(3.19) \quad \Pi_A - \Pi_0 - T_1 \geq 0\]

Podmínka (3.19) je komponentou užitkové funkce (3.17), což znamená, že bude vždy splněna. Manažeři budou vždy vytvářet zisk větší než jsou minimální požadovaný zisk akcionáří \((\Pi_0)\) a dané \((T_1)\).

Zavedeme-li autonomní daň \((T)\) a důchodovou daň \((t)\), lze funkci užitku manažerů (3.17) vyjádřit ve tvaru

\[(3.20) \quad U = U(S, (1-t) \cdot (TR - TC - S - T) - \Pi_0)\]

Podmínky optimizace jsou, že derivace cílové funkce (3.20) podle výstupu \((Q)\) a podle výdajů na zaměstnance \((S)\) musí být rovny nule:

\[(3.21) \quad \frac{\partial TR}{\partial Q} - \frac{\partial TC}{\partial Q} = 0\]

\[(3.22) \quad u_1 + (1-t) \cdot u_2 - (1-t) \cdot u_2 = 0,\]

kde \(u_1, u_2\) jsou příslušné parciální derivace funkce (3.20).

Podmínku (3.22) upravíme do tvaru

\[(3.22a) \quad \frac{\partial TR}{\partial S} = 1 - \frac{1}{1-t} \cdot \frac{u_1}{u_2}\]

Ekonomická interpretace podmíněk maximalizace:

1. Výstup
Z podmínky (3.21) vyplývá, že manažeři maximizují zisk, co se týká výstupu.

2. Výdaje na zaměstnance
Naopak co se týká optimalizace výdajů na zaměstnance se manažeři chovají suboptimálně. Výdaje na zaměstnance jsou vyšší než při maximizaci zisku. V případě maximalizace zisku by se výraz (3.22a) rovnal jedné \((\frac{\partial TR}{\partial S} = 1)\). Při maximalizaci zisku je poměr parciálních derivací \(\frac{u_1}{u_2}\) vyjadřující substituci mezi ziskem a výdaji na zaměstnance roven nule (firma zvolila takové výdaje na zaměstnance, kdy zisky jsou maximální).

Williamson předpokládá, že manažeři mají zájem na zvyšování výdajů na zaměstnance z mnoha důvodů: více podřízených znamená vyšší moc, postavení, prestiž; růst zaměstnanců je spojen i s růstem platů. \(\frac{u_1}{u_2}\) tedy není rovno nulo jako při maximalizaci zisku a celá rovnost (3.22a) je menší než jedna, což znamená, že nárůst výdajů na zaměstnance vyvolává menší nárůst příjmu \((\frac{\partial TR}{\partial S} < 1)\). Manažeři jsou při volbě výdajů na zaměstnance za bodem maximalizace zisku.
B. Williamsonův model s vedlejšími výhodami

Užitková funkce manažerů má dvě proměnné, kterými jsou diskretní zisk \((\pi_D) \) a vedlejší výhody manažerů \((M) \).

\[
U = U (M, \pi_D - \pi_0 - T_f)
\]

Výdaje na zaměstnance \((S) \) nejsou nyní explicitní proměnnou, ale jsou „schovány“ v rovnici skutečného zisku \((\text{viz} \text{ rovnice 3.14}) \)

\[
\text{viz 3.14} \quad \pi_A = TR - TC - S
\]

a) Grafická analýza

Volba diskuze diskretního zisku \((\pi_D) \) a vedlejších výhod manažery \((M) \) je zobrazena na obrázku 3.7.

Linie rozpočtu vyjadřuje možnost manažerů substituovat mezi vedlejšími výhodami \((M) \) a diskrétním ziskem \((\pi_D) \). Vyšší důchodová daň \((t) \) motivuje manažery k preferenci vedlejších výhod \((M) \) před diskrétním ziskem \((\pi_D) \) z daňových důvodů. Preference manažera jsou zachyceny v indifferenční křivce \((IC) \).

V obrázku 3.7 jsou naznačeny dvě situace:

1. Nulová důchodová daň \((t = 0) \)

V situaci, kdy bude uvažována nulová daňová sazba \((t) \), je sklon linie rozpočtu 45°, což vyjadřuje, že nahrazování diskrétního zisku \((\pi_D) \) a vedlejších výhod \((M) \) je 1:1.

2. Situace s důchodovou daní \((t > 0) \)

V případě, že by existovala důchodová daň \((t) \), sklon rozpočtové přímky bude menší než 45°. Lze očekávat, že zvýšení důchodové daně \((t) \), povede manažery k zvýšení vedlejších výhod \((M) \) na úkor diskrétního zisku \((\pi_D) \), který se stal dražším.

V této situaci by manažer volil kombinaci diskrétního zisku \((\pi_D) \) a vedlejších výhod \((M) \).

Závěr:

Z grafické analýzy plyne závěr, že vyšší důchodová daň \((t) \) povede manažery z daňových důvodů k preferenci vedlejších výhod \((M) \) před diskrétním ziskem \((\pi_D) \).
Obrázek 3.7
Williamsonův model s vedlejšími výhodami

\[\Pi_0 \]
\[\Pi_{c1} \]
\[\Pi_{c2} \]
\[IC_1 \]
\[IC_2 \]

\[M_1 \quad M_2 \quad M \]

Převzato z (Pošta 2006: 78)

b) Matematické řešení

Užitková funkce manažerů má tvar

(3.24) \[U = U (M, \pi_R - \pi_0 - T_T) \]

Omezující podmínka pro manažery je výše vykazovaného zisku (\(\pi_R \)), která musí být větší nebo rovna minimálnímu požadovanému zisku (\(\pi_0 \)) a daným (\(T_T \))

(3.25) \[\pi_R \geq \pi_0 + T_T \]

Rovnici (3.25) lze přepsat do tvaru

(3.26) \[\pi_R - \pi_0 - T_T \geq 0 \]

Podmínka (3.26) je opět komponentou užitkové funkce (3.24), což znamená, že bude vždy splněna. Manažerům budou vždy vytvářet zisk větší než jsou minimální požadovaný zisk akcionářů (\(\pi_0 \)) a dané (\(T_T \)).

Zavedeme-li autonomní daň (\(T \)) a důchodovou daň (\(t \)), lze funkci užitku manažerů (3.24) vyjádřit ve tvaru

(3.27) \[U = U(M, (1-t) \cdot (TR - TC - S - M - T) - \pi_0) \]

Podmínky maximalizace vyžadují, aby se derivace funkce (3.27) podle výstupu (\(Q \)), výdajů na zaměstnance (\(S \)) a vedlejších výhod (\(M \)) rovnaly nule:

(3.28) \[\frac{\partial TR}{\partial Q} - \frac{\partial TC}{\partial Q} = 0 \]
\[\frac{\partial \mathcal{R}}{\partial S} = 1 \]

\[u_1 - (1-t) \cdot u_2 = 0 \]

Rovnice (3.30) upravíme do tvaru

\[\frac{u_1}{u_2} = (1-t) \]

\(u_1 \) a \(u_2 \) jsou parcíální derivace funkce.

Ekonomická interpretace podmínek maximalizace:

1. Výstup
 Manažerí budou vyrábět výstup, při kterém maximalizují zisk. Mezní příjmy se rovnají mezním nákladům, jak je vidět z rovnice (3.28).

2. Výdaje na zaměstnance
 Výdaje na zaměstnance jsou také na úrovni, kdy firma maximalizuje zisk (rovnicí 3.29). V modelu s výdají na zaměstnance se manažerí při výdajích na zaměstnance chovají suboptimálně (utrácí na zaměstnancích více než by odpovídalo maximalizaci zisku). Rozdílné chování je dánо tím, že v tomto modelu jsou výdaje na zaměstnance součástí užitkové funkce, kterou manažerí maximalizují, proto jsou i výdaje na zaměstnance na úrovni maximalizace zisku.

3. Vedlejší výhody manažera
 V případě vedlejších výhod se manažerí chovají suboptimálně. Poměr \(\frac{u_1}{u_2} \) v rovnici (3.30a) vyjadřuje mezní míru substituce mezi diskrétním ziskem a vedlejšími výhodami.

Rovnice (3.30a) potvrzuje závěr grafické analýzy, že vyšší daňová sazba stimuluje manažery k vyšším čerpání vedlejších výhod na úkor diskrétního zisku z daňových důvodů. Zisk se stává s vyššími daněmi pro manažery méně atraktivní.

C. Williamsonův model s výdají na zaměstnance a vedlejšími výhodami (syntéza)

V této části propojíme předchozí dílčí modely.

a) Grafická analýza

Na obrázku 3.8 je zachycen dopad vedlejších výhod na výdaje na zaměstnance. Levý graf ukazuje volbu manažera mezi diskrétním ziskem a vedlejšími výhodami. Pravý část analyzuje rozhodování mezi výdaji na zaměstnance a diskrétním ziskem.

Ve výchozi situaci manažer nespouštěvá částečné vedlejší výhody. Graficky se jedná o bod \(\Pi_{00} \).

V okamžiku, kdy manažer začne spotřebovat své vedlejší výhody (\(M_1 \)), dochází k poklesu jak diskrétního zisku (\(\Pi_{01} \)) tak výdajů na zaměstnance (\(S_1 \)).
Z grafické analýzy vyplývá závěr, že jak v případě výdajů na zaměstnance (S) tak i vedlejších výhod (M) se manažer chovají suboptimálně (utrácí více než by odpovídalo maximalizaci zisku).

b) Matematické řešení

V této části potvrdíme exaktněji závěry grafické analýzy.

Manažer maximalizuje svou funkci užitku

\[U = U(S, M, \pi_R - \pi_0 - T_T) \]

V tomto souhrnném modelu manažer maximalizuje tři proměnné: výdaje na zaměstnance (S), vedlejší výhody (M) a diskretní zisk \(\pi_0 = \pi_R - \pi_0 - T_T \).

Omezující podmínka pro jejich rozhodování je formulována

\[\pi_R \geq \pi_0 + T_T \]

Rovnicí (3.32) lze přepsat do tvaru

\[\pi_R - \pi_0 - T_T \geq 0 \]

Podmínka (3.33) je opět komponentou užitkové funkce (3.31), což znamená, že bude vždy splněna. Manažer budou vždy vytvářet zisk větší než jsou minimálně požadovaný zisk akcionáří \(\pi_0 \) a dané \((T_T) \).

Podobně jako v předchozích situacích přepíšeme funkci užitku (3.31) do tvaru

\[U = U(S, M, (1-t) \cdot (TR - TC - S - M - T) - \pi_0) \]
Podmínky maximizace funkce jsou, aby se jednotlivé parciální derivace podle množství \((Q)\), výdajů na zaměstnance \((S)\) a vedlejších výhod \((M)\) rovnaly nule:

\[
(3.35) \quad \frac{\partial TR}{\partial Q} - \frac{\partial TC}{\partial Q} = 0 \\
(3.36) \quad u_1 + (1-t) \cdot u_3 \cdot \frac{\partial TR}{\partial S} - (1-t) \cdot u_2 = 0 \\
(3.37) \quad u_2 - (1-t) \cdot u_3 = 0
\]

Rovnici (3.37) upravime do tvaru

\[
(3.37a) \quad \frac{u_2}{u_3} = (1-t)
\]

\(u_1, u_2\) a \(u_3\) jsou parciální derivace funkce užitku (3.34).

Ekonomická interpretace podmínk maximizace:

1. **Výstup**
 Manažeři vybírají výstup, při kterém maximizují zisk. Mezní příjmy se rovnají mezním nákladům, jak je vidět z rovnice (3.35).

2. **Ke stejnému závěru jsme došli i v dílčích modelech.**

3. **Výdaje na zaměstnance**
 Výdaje na zaměstnance jsou v současné době suboptimální (manažeři utrací na zaměstnancích více než by odpovídalo maximizaci zisku). Jak vyplývá z předchozí analýzy při maximizaci zisku by se \(\frac{\partial TR}{\partial S} = 1\).

3. **Vedlejší výhody manažera**
 I v případě vedlejších výhod se manažeři chovají suboptimálně. Poměr \(\frac{u_2}{u_3}\) v rovnici (3.37a) vyjadřuje mezní míru substituce mezi diskořešním ziskem a vedlejšími výhodami.

Rovnice (3.37a) postuluje závěr známý z dílčího modelu, že vyšší daňová sazba stimuluje manažery k vyššímu čerpání vedlejších výhod na úkor diskořešního zisku z daňových důvodů. Zisk se stává s vyššími daněmi pro manažery méně atraktivní.

Zhodnocení modelu

3.4 Marrisův model

V Marrisové modelu se manažeři zaměřují na dvě proměnné: růst firmy a jistotu setrvační ve firmě.

Expanzi firmy a jistotě věnuje pozornost z následujících důvodů:
- plat, status a moc manažerů závisí na růstu firmy.
- na druhé straně dramaticky růst firmy může ohrozit finanční stabilitu, zastavit nebo snížit vyplacení dividend na nepřijatelnou úroveň pro akcionáře. Prodej akcii by mohl ukončit každou manažerů.
Z důvodu zavedení veličin je nejprve zvolena matematická analýza. Grafická analýza v tomto případě shrnuje poznatky matematické analýzy.

A. Matematická analýza chování manažerů

Marrisův model pracuje s následujícími pojmami:

a) **velikost firmy** (K)
Velikost firmy je definována jako účetní hodnota aktiv včetně peněžních prostředků.

b) **náklady na růst** = investiční náklady (I) + ostatní náklady trvalého růstu (C)
Náklady na růst jsou dvojího druhu: investiční náklady (I) spojené s tvorbou nových kapacit a ostatní náklady trvalého růstu (C). Mezi ostatní náklady trvalého růstu patří např. náklady spojené s expanzi, náklady na získání trhu.

c) **základní zisk** (π₀)
Jedná se o hrubý zisk minus odpisy. Počítáme s výnosy, které by firma realizovala bez pokusů o růst.

Pokud firma neroste, vykazovaný zisk (πₐ) se rovná základnímu zisku

(3.38) \[\piₐ = \pi₀ \]

Při expanzi je pak základní zisk snížen o ostatní náklady trvalého růstu (C)

(3.39) \[\piₐ = \pi₀ - C \]

d) **vykazovaná míra zisku na aktiva** (πₖₐ)
Abychom mohli srovnávat firmy různé velikosti, vydělíme rovnici (3.39) velikostí kapitálu firmy (K)

(3.40) \[\piₖₐ = \piₐ \frac{C}{K} \]

kde \((\piₖₐ)\) je vykazovaná míra zisku na aktiva, \((\pi₀)\) základní míra zisku na aktiva a \((C/K)\) je úroveň výdajů na udržitelný růst vzhledem k velikosti firmy.

e) **míra růstu firmy** (g)
Míru růstu firmy je dána nárůstem investic (I) k současně kapitálové vybavenosti (K)

(3.41) \[g = \frac{I}{K} \]

f) **tržní hodnota akcií** (V)
V Marrisově modelu manažeň usiluje o co nejrychlejší růst firmy, který by ale na druhé straně nebyl příliš rizikantní. Ochranu manažerů před převzetím firmy je spojena s ukazatelem tržní hodnoty akcií.

Tržní hodnota akcií (V) je určena za následujících předpokladů:
1. firma se oceňuje diskontovanou hodnotou očekávaných dividend.
 Dlouhodobý růst tržních cen akcií je determinován pouze očekávaným růstem dividend. Tento předpoklad vede k zhotovení očekávaného výnosu a očekávaného kapitálového výnosu.
2. nemění se poměr vlastního a cizího kapitálu.
 Firma nemítí nové akcie ani se nemění poměr dlouhodobých závazků k aktivům.
3. z tohoto předpokladu vyplývá, že očekávaná míra růstu dividend se rovná očekávané míře růstu firmy.
4. očekávané dividendy se diskontují základní úrokovou mírou pro dlouhodobé závazky zvýšenou o přímězi za nejistotu.

Dále souvislosti můžeme zapsat následujícím vztahem
\((3.42) \quad V = \frac{D}{r - g} \)

(D) jsou očekávané dividendy, \((r)\) je diskontní sazba a \((g)\) míra růstu firmy.
Dividends (D) must be calculated as the difference between earnings (\(\pi_a\)) and investment costs (I)
\((3.43) \quad D = \pi_a - I \)
Investici náklady (I) jsou dány součinem velikosti firmy \((K)\) a mírou růstu \((g)\)
\((3.44) \quad I = g \cdot K \)
Rovnici (3.42) lze pomocí rovnic (3.43) a (3.44) přepsat do tvaru
\((3.45) \quad V = \frac{K \cdot \pi^K - K \cdot g}{r - g} \)

\underline{g) relativní ukazatel hodnoty firmy \((V^K)\)}
Abychom mohli srovnávat jednotlivé firmy mezi sebou vydělíme rovnici aktivity firmy \((K)\)
\((3.46) \quad V^K = \frac{V}{K} \)
Pak hodnota firmy vyjádřená rovnicí (3.45) má relativní tvar
\((3.47) \quad V^K = \frac{\pi^K - g}{r - g} \)

\underline{Předpoklady}

Při formulaci modelu Marris vychází ze tří předpokladů o expanzi firmy:

1. Růst firmy \((g)\) je moderovaný. Firma může růst pouze na stabilní úrovni míry růstu \((g)\).

2. Firma s nižší mírou růstu \((g)\) bude mít vyšší náklady na růst \((c)\) než firma s vyšší mírou růstu \((g)\). Vztah mezi ostatními náklady trvalého růstu \((c)\) a mírou růstu \((g)\) je tedy nelineární (progresivní).

\underline{Předpoklad 2 je možné vyjádřit rovnicí}
\((3.48) \quad c = -\alpha \cdot g + \beta \cdot g^2. \)

Parametry rovnice jsou v těchto intervalech
\(\alpha \in \{1,2\} \)
\(\beta \in <10,50> \)

Pomocí podmínky 2 můžeme přepsat rovnicí (3.40)
\((3.49) \quad \pi^K = \pi_0^K + \alpha \cdot g - \beta \cdot g^2 \)

3. Rychlejší míra růstu \((g)\) je rizikovější než nižší míra růstu \((g)\). Z tohoto důvodu diskontní míra \((r)\) roste nelineárně (progresivně) s mírou růstu \((g)\).
Předpoklad 3 zachycuje rovnici

\[(3.50) \quad r = i + \gamma \cdot g + \delta \cdot g^2\]

Parametry rovnice jsou v těchto intervalech

\[\gamma, \delta \in <0, 1>\]

Pomocí předpokladů 2 a 3 můžeme rovnici (3.47) relativní hodnoty firmy přepsat do tvaru

\[(3.51) \quad V^k = \frac{\frac{\pi_0 + \alpha \cdot g \cdot \beta \cdot g^2 - g}{i + \gamma \cdot g + \delta \cdot g^2 - g}}{V^k} \]

B. Grafická analýza chování manažerů

Jakými způsoby naleznete manažerů maximální míru růstu při rozumné míře jistoty?

Varianta 1
Manažer mají svou vlastní představu o minimální bezpečné relativní hodnotě firmy \((V^m)\). Křivka na obrázku 3.9 vyjadřuje vztah mezi relativní hodnotou firmy \((V^m)\) a mírou růstu \((g)\). Křivka zachycuje předpoklad 3, že rychlejší míra růstu \((g)\) je rizikovější než nižší míra růstu \((g)\), proto křivka v určitém momentě růstu začne klesat.

Manažer si na základě své představy o minimální bezpečné relativní hodnotě firmy (jedná se o horizontální přímku na úrovni \((V^m)\), zvolí maximální možnou míru růstu \((g_0)\).

Obrázek 3.9
Marrisův model I

Varianta 2
V tomto případě manažer vycházejí přímo ze své užitečné funkce. Manažer si vyberou optimální kombinaci míry růstu \((g)\) a relativní hodnotu firmy \((V^m)\), která odpovídá jejich nejvyšší indiferencní křivce (IC). Míra růstu \((g)\) a relativní hodnota firmy \((V^m)\) jsou konfliktní cíle, proto si musí zvolit pro ně nějakou příjatelnou variantu.
Křivka na obrázku 3.9 vyjadřuje opět vztah mezi relativní hodnotou firmy \(V^k \) a mírou růstu \(g \). Křivka zachycuje předpoklad 3, že rychlejší míra růstu \(g \) je rizikovější než nížší míra růstu \(g \), proto křivka v určitém momentě růstu začne klesat.

Obrázek 3.10
Marrisův model II

Závěry

Následující závěry budou odvozeny za předpoklady:
- chování konkurentů je dané
- podobně neměnné je i makroøekonomické prostředí

Závěr 1: Chování manažerů je vedeno ziskem

Ocítovodnění:
Křivka vyjadřující vztah mezi relativní hodnotou firmy \(V^k \) a mírou růstu \(g \) v obrázku 3.9 se při vyšším vykazovaném zisku posune nahoru, což povede k tomu, že manažerův budou moci při dané zvolené minimální úrovni relativní hodnoty firmy dosahovat vyšší udržitelné míry růstu \(g \).

Posun křivky vyjadřující vztah mezi relativní hodnotou firmy \(V^k \) a mírou růstu \(g \) je dán růstem základního zisku \(\pi_0 \), růstem koeficientu \(\alpha \), růstem koeficientu \(\beta \) nebo kombinací těchto změn jak vyplývá z rovnice (3.51).

\[
V^k = \frac{\pi_0 + \alpha \cdot g - \beta \cdot g^2 - g}{i + \gamma \cdot g + \delta \cdot g^2 - g}
\]

(3.51)

Manažerů se tedy chovají efektivně, protože jejich chování přínáší hodnotu pro vlastníky (a tedy jistotu pro manažery) a poskytuje prostředky pro expanzi firmy.

Závěr 2: Pokles minimální požadované relativní hodnoty firmy, snižuje strach managementu z převzetí a zvyšuje tak míru udržitelného růstu.

Ocítovodnění:
Posun přímky minimálního požadované relativní hodnoty firmy (V^0) na obrázku 3.9, snižuje strach manažerů z převzetí, proto budou zvyšovat míru růstu (g).

Na tento přehnaný optimismus managementu (tedy riziko ze strany investorů) bude kapitálový trh reagovat růstem diskontní míry (r). V rovnicí (3.50) diskontní míry rostou koeficienty γ, δ, která snižuje relativní hodnotu firmy (V^0) a tak i míru růstu (g).

Zhodnocení modelu

4. Model zmocnitel-zmocněnec

Model zmocnitel-zmocněnec je reakcí moderní mikroekonomie na oddělení vlastnictví od řízení. Tato změna podnikového prostředí způsobuje informační asymetrii, která by mohla vést k morálnímu selhání. Zmocnitel (anglicky Principal) je osoba, která si najímá zmocněnce (anglicky Agent). V podnikovém prostředí je zmocnitel vlastníkem a zmocněnec manažerem. Obecně lze závěry modelu aplikovat do vztahů, kde jedna osoba si najímá jinou osobu, aby pro ní něco vykonala (vztah právníka a jeho klienta, etc.).

Model bude formulován na základě následujících předpokladů:
4. Zmocnitel je méně informován než zmocněnec.

4.1 Hidden knowledge

V části „hidden knowledge“ zmocnitel není schopen dokoly informační asymetrií ex ante rozpoznat angažovanost jednotlivých zmocněnců. V modelu jsou uvažovány pouze dva typy zmocněnců: méně angažovaný a více angažovaný zmocněnec. Angažovanost zmocněnců vyjadřuje jejich produktivitu. Zmocnitel hledá smlouvu (odměnu a pracovní vylíčení) pro více efektivního zmocněnce a pro méně efektivního zmocněnce. Smlouva musí být formulována tak, aby se každý typ zmocněnce rozhodl pro svou smlouvu (a ne druhého zmocněnce) a současně každý z zmocněnců dosáhne skrze svou smlouvu minimální požadované úrovně užitku.

4.1.1 Popis modelu

ZMOCNĚNCE

Užitek zmocněnce

Užitek (v) zmocněnce je dán příjemem (y), pracovním úsilím (a) a individuální angažovaností (θ):

\[v = V(y, a, \theta) \equiv y - Z(a, \theta) \]

Budeme předpokládat lineární funkci užitku, ve které je komponent (Z) pracovní újmy.

Komponent (Z) pracovní újmy má tyto vlastnosti:
a) při žádném pracovním úsilí je i pracovní újma nulová.

\[Z(0, \theta) = 0 \]

b) pracovní újma roste s pracovním nasazením více než proporcionálně. Další pracovní nasazení více „boli“.

\[\frac{\partial Z}{\partial a} > 0 \]

c) jedná se exponenciálně rostoucí funkci (jsou zakřiveně doleva).
\[(4.2c) \quad \frac{\partial^2 Z}{\partial a^2} > 0 \]

d) s individuální angažovaností \((\theta)\) se snižuje „mezni“ pracovní újma \(\frac{\partial Z}{\partial a}\).

\[(4.2d) \quad \frac{\partial^2 Z}{\partial a \partial \theta} < 0 \]

e) s větším individuální angažovaností \((\theta)\) se snižuje pracovní újma \((Z)\)

\[(4.2e) \quad \frac{\partial Z}{\partial \theta} < 0 \]

Hidden knowledge spočívá v tom, že zmocnitel nezná individuální angažovanost \((\theta)\) zmocněnce. V modelu přichází do úvahy pouze dvě možné hodnoty \((\theta_1)\) a \((\theta_2)\). Index H („high“) vyjadřuje vyšší individuální angažovanost, index L („low“) znamená nižší individuální angažovanost. Individuální angažovanost \((\theta)\) je možné vyjádřit produktivitou zmocněnce.

Z obrázku 4.1 vidíme, že méně produktivní (méně angažovaný) zmocněnec při stejnému příjmu a užitku pracuje méně.

Obrázek 4.1
Hidden knowledge I

\[\text{Pevzato z (Reetz 2001: 457)}\]

Indiferenční křivky zmocněnce
Indiferenční křivka zmocněnce (konstantní v)

\[(4.3) \quad y = v + Z(a, \theta) \]

má tyto vlastnosti:

a) nulové pracovní úsilí udává průsečík úrovni užitku s osou y

\[(4.4a) \quad y = v \text{ pro } a = 0 \]
b) zmocněncové křivky jsou rostoucí a mají všechny stejný sklon

\[\frac{\partial y}{\partial a} = \frac{\partial z}{\partial a} > 0 \]

(c) indifferenční křivky jsou exponentiálně rostoucí křivky (zakřivené doleva)

\[\frac{\partial^2 y}{\partial a^2} = \frac{\partial^2 z}{\partial a^2} > 0 \]

d) indifferenční křivky více a méně angažovaného zmocněnce se protínají právě jednou (single crossing property)

\[\frac{\partial^2 y}{\partial a \partial \theta} = \frac{\partial^2 z}{\partial a \partial \theta} < 0 \]

e) při stejné úrovni užitku i příjmů pracuje více efektivní zmocněnc více než méně produktivní zmocněnc

\[\frac{\partial a}{\partial \theta} = - \frac{\partial \theta}{\partial z} > 0 \]

ZMOCNITEL

Užitek zmocnitele
Užitek zmocnitele je dán vyrobeným výstupem \(x \) a odměnou \(y \), kterou získává zmocněnc:

\[u = U (x, y) \equiv x - y \]

Rovnice užitku zmocnitele bude zjednodušeně považována za lineární. Výstup \(x \) je determinován produkční funkcí

\[x = \chi (a). \]

Produkční funkce má následující vlastnosti:

a) při nulovém pracovním úsilí není vyroben žádný výstup

\[\chi(0) = 0 \]

b) mezní produkt je kladný

\[\frac{\partial \chi}{\partial a} > 0 \]

c) mezní produkt je klesající

\[\frac{\partial^2 \chi}{\partial a^2} > 0 \]

Indifferenční křivky zmocnitele
Indifferenční křivku zmocnitele (při konstantním užitku \(u \)) lze zapsat

\[y = \chi(a) - u. \]
Indiferenční křivky mají následující vlastnosti:

a) při nulovém pracovním úsilí zmocněnce má zmocnitel negativní užitek

\[y = -u \text{ pro } a = 0 \]

(4.9a)

b) indiferenční křivky jsou rostoucí a všechny mají stejný sklon pro dané (a)

\[\frac{\partial y}{\partial a} = \frac{\partial x}{\partial a} > 0 \]

(4.9b)

c) indiferenční křivky jsou zakrivené doprava

\[\frac{\partial^2 y}{\partial a^2} = \frac{\partial^2 x}{\partial a^2} < 0 \]

(4.9c)

Zmocniteli je známa pravděpodobnost (\(\lambda \)) s jakou narazí v populaci na více efektivního zmocněnce. S pravděpodobností (1 - \(\lambda \)) zaměstná zmocnitel méně efektivního zmocněnce.

Zmocnitel bude maximalizovat svůj očekávaný užitek

\[E(u) = \lambda \cdot [\chi (a_n) - y_n] + (1 - \lambda) \cdot [\chi (a_l) - y_l] \]

(4.10)

Zmocnitel hledá smlouvu (odměnu a pracovní výtižení) pro více efektivního zmocněnce (\(a_n, y_n \)) a pro méně efektivního zmocněnce (\(a_l, y_l \)). Smlouvy musí být formulovány tak, aby

- byla splněna podmínka smluvní přítažlivosti (Incentive Compatibility Condition)

Každý typ zmocněnce se při maximalizaci užitku rozhodne pro svou smlouvu, více efektivní zmocněnců (\(a_n, y_n \)) a méně efektivní zmocněnců (\(a_l, y_l \)). M微ekonomická teorie označuje tuto podmínu za podmínku smluvní přítažlivosti.

- byla splněna podmínka přijetí smlouvy (Participation Condition)

Každý zmocněnců dosáhne minimální své požadované úrovně užitku. Dá se předpokládat, že více efektivní zmocněnců bude vyžadovat vyšší úroveň minimálního požadovaného užitku. Minimální požadovaný užitek představuje i náklady ztracené příležitosti zmocněnce v případě, že zmocněnců uzavře s zmocnitelem smlouvu.

V dalším textu budeme předpokládat, že oba zmocněnci mají stejnou minimální požadovanou úroveň užitku (\(v \)).

4.1.2 Optimum v případě symetrických informací

A. Grafické řešení

V případě symetrických informací zmocnitel zná individuální angažovanost (\(\theta \)) zmocněnce. Zmocnitel má právo rozhodování (nabízi smlouvu), proto donutí zmocněnce přijmout smlouvu, které představuje jeho minimální požadovanou úroveň užitku. Tato smlouva zaručí představuje maximalizi užitku zmocnitele. Z tohoto chování zmocnicta vyplývají dva typy smluv (\(H = (a_n, y_n) \) pro více efektivního zmocněnce a \(L = (a_l, y_l) \) pro méně efektivního zmocněnce.

Graficky (obrázek 4.2) je optimem bod dotyku indiferenční křivky požadovaného minimálního užitku zmocněnce a indiferenční křivky zmocnitele. Každý tento bod je z alokačního hlediska paralele efektivní (First-Best) kombinaci pro zmocnitele a daného zmocněnce. Bez ohledu na požadovanou minimální úroveň užitků zmocněnů platí jednoznačné \(a_l < a_n \) (důsledek rovnice 2d), pracovní úsilí méně efektivního zmocněnce je menší než více efektivního zmocněnce. Vztah mezi přijmem zmocněnů (\(y_n \) a \(y_l \)) nelze graficky jednoznačně určit, závisí na úrovní požadovaného minimálního užitku (\(v, L \) a \(v, N \)).

Při symetrických informacích nabídné zmocnitel smlouvu pouze jednomu zmocněnci:
a) v případě rovnosti úrovní minimálních požadovaných užitků \(\bar{v}_H = \bar{v}_L = \bar{v} \) nabídne zmocnění smlouvu H pouze více efektivnímu zmocnění.

b) pokud více efektivní zmocnění má vyšší požadovaný minimální užitek než méně efektivní zmocnění \(\bar{v}_H = \bar{v}_L < \bar{v}_H^* \), nabídne zmocnění smlouvu H pouze více efektivnímu zmocnění. Užitek zmocnitéle je stejný v obou případech (T a H*), ale více efektivní zmocnění garantuje větší odvedené pracovní nasazení. Zmocnění nabídnou zmocněnci díky symetrickým informacím smlouvu H (ne H*).

c) jestliže více efektivní zmocnění má nižší požadovaný minimální užitek než méně efektivní \(\bar{v}_H = \bar{v}_L > \bar{v}_H^* \), nabídne zmocnění smlouvu pouze méně efektivnímu zmocnění. (Tato varianta není pro přehlednost zobrazena v obrázku 4.2). Užitek zmocnitéle je stejný v obou případech, ale méně efektivní zmocnění garantuje větší odvedené pracovní nasazení.

Zmocnění nabídnou smlouvu vždy, pokud bude jeho (maximální) užitek pozitivní.

Obrázek 4.2
Hidden knowledge II

Převzato z (Reetz 2001: 461)

B. Matematické řešení

Pro exaktnost je nutno závěry z grafického řešení potvrdit analytickým řešením.

Cílová funkce zmocnitéle je

\[
(4.11) \quad \max_{a_i, y_i} u_i = \chi(a_i) - y_i \quad (i = L, H)
\]

Zmocnění musí při svém rozhodování zohlednit dvě podmínky:

a) podmínku přijetí smlouvy

Podmínka přijetí se týká zmocněnce a zaručuje mu minimální požadovaný užitek.
\[(4.12a)\] \[y_i - Z(a_i, \theta_i) \geq \tilde{v}_i\]

b) podmínku racionality

Splnění podmínky racionality bude vyžadovat zmocnitel, který by neakceptoval záporný výsledek.

\[(4.12b)\] \[u_i \geq 0\]

Zmocnitel podle předpokladů maximalizuje užitek, proto bude v podmínce přijetí smlouvy požadovat rovnost. Z rovnice (4.12a) lze vyjádřit \(y_i\) a substituovat do rovnice (4.11). Cílová funkce zmocnitaře má potom tvar:

\[(4.13)\] \[\text{Max } u_i = \chi(a_i) - Z(a_i, \theta_i) - \tilde{v}_i\]

Z rovnice (4.13) získáme podmínka optima (první derivace rovná nule)

\[(4.14)\] \[\frac{\partial \chi}{\partial a_i}(a_i) = \frac{\partial Z}{\partial a_i}(a_i, \theta_i)\]

Rovnice optima (4.14) vyjadřuje stejný sklon indiferencních křivek zmocnence a zmocnitéle. Při symetrických informacích je řešení \((a^*_i, y^*_i)\) paretoefektivní (First-Best). \((A^*_i)\) získáme z rovnice (4.14) a z rovnice (4.12a) při rovnosti \(y^*_i = v_i + Z(a^*_i, \theta_i)\). Zmocněnec může jen maximalizovat svůj užitek \(u^*_i = \chi(a^*_i) - y^*_i\) pro \(i = L\) a \(i = H\). Pokud je Max \((u^*_L, u^*_H) \geq 0\) uzavře zmocnitel smlouvu \((a^*_i, y^*_i)\) s tím zmocněncem, který pro něj znamená větší užitek \((u^*_i)\).

Diferencováním rovnice (4.14) – podmínky optima, dostaneme

\[(4.15)\] \[\frac{\partial^2 Z}{\partial a_i \partial \theta_i} = \frac{\partial^2 Z}{\partial a_i^2} - \frac{\partial^2 Z}{\partial a_i \partial \theta_i} > 0\]

Protože pracovní angažovanost více efektivního zmocnence je vyšší, platí \(\theta_H > \theta_L\), je i pracovní nasazení více efektivního zmocnence vyšší, tedy \(a^*_H > a^*_L\).

Diferencováním podmínky přijetí smluv (4.12a), dostaneme

\[(4.16)\] \[\frac{\partial y_i}{\partial \theta_i} = \frac{\partial Z}{\partial a_i} \frac{\partial a_i}{\partial \theta_i} + \frac{\partial Z}{\partial \theta_i} + \frac{\partial \tilde{v}_i}{\partial \theta_i}\]

Bude přijem více efektivního zmocnence vyšší než méně efektivního zmocnence, \(y^*_H > y^*_L\)? První člen na první straně rovnice (4.16) je kladný: s větším pracovním nasazením roste i pracovní újma (člen \(\frac{\partial Z}{\partial a_i}\) je kladný), více efektivní zmocněnec pracuje i více (člen \(\frac{\partial a_i}{\partial \theta_i}\) je kladný). Druhý člen \(\frac{\partial Z}{\partial \theta_i}\) je nezávislý: více efektivní zmocněnec pociťuje menší pracovní újmu při práci. Proto nemůžeme jednoznačně stanovit relaci mezi \(y^*_H > y^*_L\), ale předpokládat, že čím více kladný je člen \(\frac{\partial \tilde{v}_i}{\partial \theta_i}\), s větší pravděpodobností bude i člen \(\frac{\partial y_i}{\partial \theta_i}\) kladný.
(vice angažovaný zmocněnec dostane i vyšší příjem) a tedy \(y^*_H > y^*_L \). Člen \(\frac{\partial y}{\partial \theta} \) určuje vztah mezi osobní angažovaností zmocněnce a jeho odměnou.

4.1.3 Optimum v případě asymetrických informací

V případě asymetrických informací si více efektivní zmocněnec zvolí v obrázku 4.2 stejnou smlouvu (bod T) jako méně efektivní zmocněnec. Více efektivní zmocněnec má v bodě T vyšší užitek než měl v bodě H při symetrických informacích.

Zmocnitel musí dodržet při nabízení smlouvy tyto podmínky:

a) podmínky přijetí smlouvy (Participation Condition)

\[
\begin{align*}
(y_L - Z(a_L, \theta_L)) & \geq v \\
(y_H - Z(a_H, \theta_H)) & \geq v
\end{align*}
\]

pro méně produktivního zmocněnce

pro více produktivního zmocněnce

b) podmínky smluvní příňazivosti (Incentive Compatibility Condition)

\[
\begin{align*}
(y_L - Z(a_L, \theta_L)) & \geq y_H - Z(a_H, \theta_L) \\
(y_H - Z(a_H, \theta_H)) & \geq y_L - Z(a_L, \theta_H)
\end{align*}
\]

Podmínky smluvní příňazivosti mají zaručit zmocnителi, že více efektivní zmocněnec se nebude vydávat za méně efektivního zmocněnce a naopak.

Jak musí být formulována smlouva, aby byly splněny podmínky (4.17a a 4.17b), každý z aktérů maximalizoval svůj užitek a zároveň dosáhl své minimální úrovni užitku (v pro zmocněnce a \(\theta \) pro zmocnitelu)?

A. Grafické řešení

Zmocnител musí při maximizaci svého užitku dodržet upravené podmínky (4.17a a 4.17b):

\[
\begin{align*}
(y_L - Z(a_L, \theta_L)) = v \\
(y_H - Z(a_H, \theta_H)) = y_L - Z(a_L, \theta_H)
\end{align*}
\]

podmínka přijetí smlouvy pro méně efektivního zmocněnce

podmínka smluvní příňazivosti pro více produktivního zmocněnce

Důvody pro úpravu podmínek jsou následující:

a) Každá smlouva na indifferenciáni křivce v méně efektivního zmocněnce \(A_L \) a výše splňuje podmínku přijetí smlouvy ze strany více efektivního zmocněnce \(A_H \). Racionální zmocnitel ve svém zájmu se bude snažit méně efektivního zmocněnce \(A_L \) státčit na zmocněncovu požadovanou minimální úrovni užitku. Podmínka přijetí smlouvy méně efektivního zmocněnce \(A_L \) je důležitá, naproti tomu podmínka přijetí více efektivního zmocněnce \(A_H \) je nadbytečná při stanovení smlouvy.

b) Obě podmínky smluvní příňazivosti jsou splněny ve šťáfované oblasti na obrázku 4.3. Zmocnител ve svém zájmu zvolí pro více efektivního zmocněnce \(A_H \) smlouvu \(H' \) napravo od bodu T na \((v_{H'}) \) (na spodní části šťáfované oblasti). Tato smlouva \(H' \) nebude nikdy \(A_L \) akceptována (představuje nižší indifferenciáni křivku než je minimální požadovaná úroveň užitku), proto je podmínka smluvní příňazivosti pro méně efektivního zmocněnce nadbytečná.
Obrázek 4.3
Hidden knowledge III

Na obrázku 4.4 obě smlouvy T, H' splňují podmínky (4.18), zároveň odlišují od sebe jednotlivé typy zmočněných. Jsou dokonce paretoefektivní (Fist-Best) kombinace. Přesto se racionální zmocničel bude snažit (má moc nabízet smlouvu) posunout smlouvy z bodu T a H' ve směru šipek. Tento posun znamená pro zmocniče vyšší užitek a zároveň mu stále umožňuje selektovat zmocniče.

Obrázek 4.4
Hidden knowledge IV

Převzato z (Reetz 2001: 464, 465)
K jakým změnám v užitku zmocnitéle dojde při posunu?

a) marginální posun z bodu \(T \)
Užitek zmocnitéle ze smlouvy \(T \) je

\[
(4.19) \quad u_L = \chi(L) - [Z(a_L, \ \theta_L) + v_L]
\]

Diferencováním rovnice (4.19) získáme

\[
(4.20) \quad du_L = \left[\frac{d\chi}{da}(a_L) - \frac{dZ}{da}(a_L, \ \theta_L) \right] da_L - dv_L
\]

Výraz v hranatých závorkách je roven nule (jedná se bod dotyku indifferenčních křivek zmocnitéle a zmocněnce, sklon tečen je stejný, viz rovnice 4.13). Výraz \(dv_L \) je roven nule, neboť podél indifferenční křivek je užitek konstantní: \(v_L = \bar{v} \). Proto i

\[
(4.21) \quad du_L = 0.
\]

Marginální (velmi malé) posuny smlouvy \(T \) nezmění užitek zmocnitéle ze smlouvy.

b) marginální posun z bodu \(H \)
Užitek zmocnitéle ze smlouvy \(H \) je

\[
(4.22) \quad u_H = \chi(H) - [Z(a_H, \ \theta_H) + v_H]
\]

Diferencováním rovnice (4.22) získáme

\[
(4.23) \quad du_H = \left[\frac{d\chi}{da}(a_H) - \frac{dZ}{da}(a_H, \ \theta_H) \right] da_H - dv_H
\]

Výraz v hranatých závorkách je opět roven nule (jedná se bod dotyku indifferenčních křivek zmocnitéle a zmocněnce, sklon tečen je stejný, viz rovnice 4.13), alespoň je negativní, proto má zmocnělec ze smlouvy \(H \) přírůstek užití

\[
(4.24) \quad du_H = -dv_H > 0
\]

Důkaz, že \(dv_H \) je záporný

Z podmínky (4.18) přijetí smlouvy méně efektivní zmocněncem \(y_L = Z(a_L, \ \theta_L) = \bar{v} \), vyplývá

\[
(4.25) \quad dy_L = \frac{dZ}{da}(a_L, \ \theta_L) da_L.
\]

Z rovnice (4.1) \(v_H = y_H = Z(a_H, \ \theta_H) \) a podmínky (4.18) smluvní přítažlivosti \(y_H = y_L + Z(a_H, \ \theta_H) - Z(a_L, \ \theta_L) \) pro \((A_L) \) vyplývá

\[
(4.26) \quad v_H = y_L - Z(a_H, \ \theta_H)
\]

diferencováním dostaneme

\[
(4.27) \quad dv_H = dy_L - \frac{dZ}{da}(a_L, \ \theta_H) da_L
\]
Dosazením (4.25) do předchozí rovnice dostaneme

\[dv_H = \left[\frac{dZ}{da} (a_H, \theta_H) - \frac{dZ}{da} (a_i, \theta_H) \right] da_i < 0 \]

Protože (4.2d) \(\frac{d^2 Z}{da \, d\theta} < 0 \) (více efektivní zmocněnec počítá menší újmu při stejném pracovním nákladě) je výraz v hranatých závorkách kladný, zatímco (da_i) je záporný. Z této argumentace vyplývá, že \(dv_H < 0 \).

Zmocnitel marginální (velmi malou) změnou smluv z bodů \(T, \, H \) zvyšuje svůj užitek; neboť (jistý) minimální užitek zmocnitele z bodů \(T \) zůstane stejný, ale existuje zde možný vyšší užitek, pokud zmocněnec \((A_H) \) akceptuje novou smlouvu (viz předchozí matematické důkazy).

Pro zmocnité existuje další ekonomicky zájem pokračovat ve změně smluv. Pokračující změny smluv vedou na rozdíl od (4.21) k poklesu \(u_i \), protože zmocnitel je na nižší indifferenční křivce (obrázek 4.5). Z grafické analýzy (obrázek 4.5) je vidět, že zmocnitel bude mít zájem pokračovat ve změně smluv, pokud očekávaný úbytek užitku ze smlouvy s \((A_i) \), bude vykompensován nárůstem užitku ze smlouvy s \((A_H) \). Zmocnitel je v případě smlouvy s \((A_L) \) na nižší indifferenční křivce, uzavírá-li smlouvu s \((A_H) \), bude na vyšší indifferenční křivce.

Obrázek 4.5
Hidden knowledge V

\[y \]
\[\theta_L \]
\[\theta_H \]
\[v \]
\[a \]

Převzato z (Reetz 2001: 467)

Rozdílné smlouvy
Jaká bude situace, pokud zmocnitel nabídne zmocněncům rozdílné (různé) smlouvy? Pokud zmocnitel nabídne zmocněncům různé smlouvy, dojde k oddělené rovnováze. Tato oddělená rovnováha je důsledkem vlastností (4d): indifferenční křivky \((A_i) \) a \((A_H) \) se protínají pouze v jednom bodě (indifferenční křivka více efektivního zmocněnce \((A_H) \) je vždy menší střední). Paretoefektivní rovnováha je pouze v případě smlouvy s \((A_H) \). Pokud zmocnitel uzavírá smlouvu se zmocněncem \((A_i) \),

1 Pokračováním ve změnách smluv se už nejedná o marginální (velmi malé) změny. U rovnice (4.21) je použit diferenciál, který používá marginální změny. Proto je jen zdánlivý rozpor mezi závěry matematické a grafické analýzy.
nejedná se o paretoefektivní smlouvu. Neefektivnost (zmočnitel i zmocněnec by mohli svou situaci vylepšit) je vyjádřena v obrázku 4.5 vyřafovánou plochou.

Proč se zmočnitel i zmocněnec \((A_i) \) nebudou snažit skrze nová vyjednávání o smlouvě svoji situaci vylepšit? Zmočnitel umí rozpoznat \((A_m) \) (skrze volbu smlouvy v bodě \(T \)). Pro zmocnitele ale hrozí nebezpečí, že racionalní zmocněnec \((A_H) \) se bude vydávat za méně efektivního zmocněnce. Volba smlouvy \(T^* \) by mu sice na začátku přinesla stejný užitek jako v bodě \(H^* \), ale skrze nová vyjednávání (ve šťastnější oblasti) by si polepšil (získal by vyšší užitek než by měl v bodě \(H^* \). Informační asymetrie (není schopen rozpoznat, zda více efektivní zmocněnec se nemaskuje za méně efektivního zmocněnce) nedovolí zmocniteli, použít institut nových (opakovaných) vyjednávání. Z toho vyplývá, že za daných institucionálních omezení, nelze nalézt jiné lepší řešení než \(T^*, H^* \): jedná se o omezené paretoefektivní řešení.

Díky asymetrickým informacím při rozdílných smlouvách bude \((A_H) \) realizovat informační rentu o velikosti \(HH^* \). Informační renta znamená, že \((A_i) \) získává vyšší užitek než by byl minimálně požadovaný užitek. Jedná se o přerozdělení užitků mezi zmocněncem a zmocnitelom.

Stejné smlouvy

K jakým změnám v chování zmocnitele a zmocněnců by došlo, pokud by byly oběma zmocněncům nabízeny stejné smlouvy (jezdí se o častý příklad tříháček smluv z praxe)? Pokud by zmocnitel byl nucen použít jednotné (stejné) smlouvy pro \((A_H) \) i \((A_i) \), přichází se pro něj do úvahy jako optimální bod pouze bod \(T \) na obrázcích 4.2 až 4.5. Problém spočívá v tom, že zmocnitel není schopen doporučit (ex post) rozpoznat \((A_H) \) a \((A_i) \) (tito schopnost měl díky rozdílným smlouvám). Nemá ani prostor pro nová vyjednávání jako v případech (je nucen používat jednotné smlouvy). Pokud by zmocněncům nabídl jinou smlouvu než \(T \) na indifferenční křivce \((A_H) \) (není schopen odlišit, proto se pohnou na křivce \((A_i) \)), získal by zmocnitel nižší užitek než by měl v bodě \(T \). Vyšší užitek by zmocnitel získal pouze v případě, že by měl efektivní zmocněnec akceptovat smlouvu na nižší indifferenční křivce, což racionalní \((A_i) \) nebude nikdy akceptovat.

Za normálních okolností nebudou zmocnitel preferovat stejné smlouvy. Na obrázku 4.3 je užitek zmocnitele ze stejné smlouvy na křivce užitku \((u_{ii}) \). Pokud by nabídl zmocněncům rozdílné smlouvy, mohlo by získat stejný užitek \((u_{ii}) \), pokud by nabídl zmocněnci \((A_H) \) smlouvu \(T \) nebo by mohl získat větší užitek \(u_{ii} \), pokud by nabídl zmocněnci \((A_H) \) smlouvu \(H^* \). Tato argumentace je zasílána i faktum, že v případě rozdílných smluv existují pro zmocněnity prostor pro opakované změny smluv, které umožňují zmocněnci získání vyššího užitku.

B. Matematické řešení

Závěry grafického řešení ověříme analytickým řešením problému asymetrických informací v případě „hidden knowledge“.

Zmočnitel maximalizuje funkcí očekávaného užitku²:

\[
(4.29) \quad \max_{a_{ii}, y_{ii}, a_{il}, y_{il}} E(u) = \lambda \cdot [\chi(a_{ii}) - y_{ii}] + (1 - \lambda) \cdot [\chi(a_{il}) - y_{il}]
\]

Případ musí zohlednit podmínky přijetí ze strany zmocněnců

\[
(4.30) \quad \begin{align*}
y_{ii} - Z(a_{ii}, \theta_{ii}) & \geq v \quad \text{pro méně produktivního zmocněnce} \\
y_{il} - Z(a_{il}, \theta_{il}) & \geq v \quad \text{pro více produktivního zmocněnce}
\end{align*}
\]

a podmínky smluvní přitažlivosti

\[
(4.31) \quad \begin{align*}
y_{ii} - Z(a_{ii}, \theta_{ii}) & \geq y_{il} - Z(a_{il}, \theta_{il}) \quad \text{pro méně produktivního zmocněnce} \\
y_{il} - Z(a_{il}, \theta_{il}) & \geq y_{il} - Z(a_{il}, \theta_{il}) \quad \text{pro více produktivního zmocněnce}
\end{align*}
\]

² Zmočnitel v případě asymetrických informací značně pouze pravděpodobnost s jakou v populaci narazí na méně efektivního nebo více efektivního zmocněnce, proto je nutné použít funkci očekávaného užitku.
V části A byly podmínky přijetí a smluvní přítažlivosti zjednodušeny do upravených podmínek

\[(4.32)\]
\[
y_l - Z(a_l, \theta_l) - \bar{v} = 0 \quad \text{podmínka přijetí smlouvy pro } A_l
\]
\[
y_H - y_l - \left[Z(a_H, \theta_H) - Z(a_l, \theta_l) \right] = 0 \quad \text{podmínka smluvní přítažlivosti pro } A_H
\]

upraveným podmínk (4.32) získáme

\[(4.33)\]
\[
y_l = \bar{v} + Z(a_l, \theta_l)
\]
\[
y_H = \bar{v} + Z(a_l, \theta_l) + Z(a_H, \theta_H) - Z(a_l, \theta_H)
\]

Dosazením (4.33) do zmocnělovy funkce očekávaného užitku (4.29) dostaneme

\[(4.34)\]
\[
\text{Max } E(u) = \lambda \cdot \chi(a_l) + (1 - \lambda) \cdot \chi(a_H) + \lambda \cdot \left[Z(a_l, \theta_H) - Z(a_H, \theta_H) \right] - \lambda \cdot \bar{v}
\]

Podmínky optima získáme derivováním

\[(4.35a)\]
\[
\frac{\partial E(u)}{\partial a_l} = (1 - \lambda) \frac{dx}{da} (a_l) + \lambda \frac{\partial Z}{\partial a} (a_l, \theta_l) - \frac{\partial Z}{\partial a} (a_l, \theta_l) = 0
\]

\[(4.35b)\]
\[
\frac{\partial E(u)}{\partial a_H} = \lambda \frac{dx}{da} (a_H) - \lambda \frac{\partial Z}{\partial a} (a_H, \theta_H) = 0
\]

Druhá podmínka (4.35b) implikuje paretoefektivní kombinaci \((\bar{a}_H)\) (geometricky jde o rovnost sklonu řešení indifferencí křivek zmocnitel a zmocněce), pokud zmocnitel uzavírá smlouvu s \((a_H)\). Optimální požadované množství práce \((a_L^*)\) je závislé pouze na osobní angažovanosti \((\theta_H)\).

\[(4.36)\]
\[
\frac{dx}{da} (a_H) = \frac{\partial Z}{\partial a} (a_H, \theta_H) \Rightarrow \quad a_L^* = \bar{a}_H = f (\theta_H)
\]

První optimální podmínka (4.35a) pro smlouvu s meně efektivním zmocněncem \((A_l)\) se nechá přefomulovat

\[(4.37)\]
\[
\frac{dx}{da} (a_l) - \frac{\partial Z}{\partial a} (a_l, \theta_l) = \frac{\lambda}{1 - \lambda} \left[\frac{\partial Z}{\partial a} (a_l, \theta_l) - \frac{\partial Z}{\partial a} (a_l, \theta_H) \right] \Rightarrow \quad a_L^* = g (\theta_H, \theta_l, \lambda)
\]

Optimální množství požadované práce \((a_L^*)\) je determinováno osobní angažovanosti obou zmocněnců a pravděpodobnosti \((\lambda)\), se kterou zmocnitel v populaci natreli na více efektivního zmocněnce. Výraz v hranaté závorce je kladný, neboť \((4.2d\) \(\frac{\partial^2 Z}{\partial a \partial \theta}\) je záporný (více efektivní zmocněnc počítuje menší újmu při stejném pracovním nasazení). Celkově je pravá strana (4.37) kladná, neboť \(0 < \lambda < 1\), tím i levá strana (4.37)

\[(4.38)\]
\[
\frac{dx}{da} (a_l) - \frac{\partial Z}{\partial a} (a_l, \theta_l) > 0
\]

Nerovnost (4.38) znamená, že smlouva s \((A_l)\) není paretoefektivní kombinace (nerovnost geometricky neniimplikuje tangenční bod).

Daným \((a_L^*)\) z (4.37) a \((a_L^*)\) z (4.36) odpovídají i příjmy zmocněnců \((y_l)\) a \((y_H)\) z (4.33).
Jaké jsou vzájemné vztahy mezi $a^*_L, a^*_H, \text{ popř. } y^*_L, a y^*_H$?

Diferencováním rovnice (4.36) získáme

\[
\frac{da}{d\theta} = \frac{\partial^2 Z}{\partial a \partial \theta} > 0
\]

a diferencováním levé strany \(\frac{d\chi}{da} (a_L) - \frac{\partial Z}{\partial a} (a_L, \theta_L) \) podle (a) v rovnici (4.37) dostaneme

\[
\frac{\partial (\frac{d\chi}{da} - \frac{\partial Z}{\partial a})}{\partial a} = \frac{d^2 \chi}{d\theta^2} - \frac{\partial^2 Z}{\partial a^2} < 0
\]

Z rovnice (4.39) vyplývá, že více efektivní zmocněnec pracuje více \(\frac{da}{d\theta} > 0 \), zároveň rovnice (4.38) ukazuje, že v případě smlouvy s méně efektivním zmocněncem se nejedná o paretoefektivní kombinace. Mezi pracovními nasazeními je proto tento vztah

\[
a^*_H > a^*_L > a^*_H,
\]

Vztah (4.41) potvrzuje, že méně efektivní zmocněnec pracuje méně, v případě smlouvy s \((a_H)\) se jedná o paretoefektivní kombinaci, v případě smlouvy s \((a_L)\) se nejedná o paretoefektivní kombinaci.

Pro splnění podmínky (4.31) smluvní přítažlivosti pro \((A_H)\) musí platit následující relace

\[
y_H \geq y_L \Leftrightarrow Z(a_H, \theta_H) \geq Z(a_L, \theta_L) \text{ nebo } y_H < y_L \Leftrightarrow Z(a_H, \theta_H) < Z(a_L, \theta_L)
\]

\[
\frac{\partial Z}{\partial a} > 0 \text{ (s větším pracovním nasazením pociťuje zmocněnec větší pracovní újmu) a zároveň platí vztah } a^*_H > a^*_L, \text{ proto platí } Z(a^*_H, \theta_H) > Z(a^*_L, \theta_H).\text{ Aby byla splněna podmínka smluvní přítažlivosti (4.31) (viz relace 4.42), musí být}
\]

\[
y^*_H > y^*_L
\]

Relace (4.43) potvrzuje, že zmocněnec \((A_H)\) dostane větší příjem než \((A_L)\).

Z rovnice smluvní přítažlivosti pro \((A_H)\) ve tvaru (4.33) vyplývá

\[
y^*_H = \left[\bar{v} + Z(a^*_H, \theta_H) \right] + \left[Z(a^*_L, \theta_L) - Z(a^*_L, \theta_H) \right]
\]

První člen v hranaté závorce vyjadřuje odměnu zmocněnce \((A_H)\) při symetrických informacích. Proto druhý člen v hranaté závorce musí vyjadřovat informační rentu, kterou získává zmocněnec díky informační asymetrii. Informační renta je kladná (rovnic 4.44): \(\frac{\partial Z}{\partial \theta} < 0 \) (vás schopný zmocněnec pociťuje menší pracovní újmu) a zároveň \(\theta_L < \theta_H \).

Díky informační rentě je tedy odměna \((A_H)\) vyšší v případě asymetrických informací

\[
y^*_H > \bar{y}_H
\]

53
Pro informační rentu platí vztah

\[(4.46) \quad IR = Z(a^*_\text{L}, \theta_\text{L}) - Z(a^*_\text{L}, \theta_\text{H}) > 0.\]

Pro odměnu zmocněnce \((A_L)\) v případě asymetrických informací platí naopak vztah

\[(4.47) \quad \tilde{y}_\text{H} < \tilde{y}_\text{L} \]

Nížší odměna \((A_L)\) v případě asymetrických informací vyplývá z rovnice (4.33) a vztahu \(\tilde{a}_\text{L} > a^*_\text{L}\).

Obrázek 4.6 shromažďuje závěry dosavadní formální analýzy.

Obrázek 4.6
Hidden knowledge V

\[\text{Převzato z (Reetz 2001: 471)}\]

Souvislosti mezi } a^*_\text{H} \text{ a } \lambda.

Požadované množství práce \((a^*_\text{H})\), jak vyplývá z rovnice (4.37) závisí i na pravděpodobnosti \((\lambda)\), s jakou zmocnitel v populaci narazi na více efektivního zmocněnce. Tento fakt nebyl patrný z grafické analyzy.

Z rovnice (4.36) vyplývá, že požadované množství práce \((a^*_\text{H})\) nezávisí na \((\lambda)\). Tedy

\[(4.48) \quad \frac{da^*_\text{H}}{d\lambda} \equiv 0\]

Diferencováním podmínky (4.37) pro \((A_L)\) získáme
(4.49) \[
\frac{d a\lambda}{d\lambda} = \left(1 - \lambda\right) \left[(1 - \lambda) \frac{\partial^2 Z}{\partial a^2} (a^*, \theta_\lambda) - \frac{\partial Z}{\partial a} (a^*, \theta_\lambda) \right] \frac{d^2 \varphi}{d a^2} (a^*) - \frac{\partial^2 Z}{\partial a^2} (a^*, \theta_\lambda) + \lambda \frac{\partial^2 Z}{\partial a^2} (a^*, \theta_\mu) \right].
\]

Rovnice (4.49) je odvozena v matematickém dodatku (4.1).

Čtenáře zloučku je kladný díl tomu, že více efektivní zmocnenec pocituje menší pracovní újmu \(\frac{\partial^2 Z}{\partial a \partial \theta} < 0 \). Pro určení, zda je jmenovatel (4.49) kladný nebo záporný je nutná hlubší analýza.

Vratíme se k rovnici optima (4.35a a 4.35b), aby se matematicky jednalo o maxima, je nutné splnit postačující podmínky:

\begin{align*}
(4.50a) & \quad \frac{\partial^2 E[u]}{\partial a^2} < 0 \\
(4.50b) & \quad \frac{\partial^2 E[u]}{\partial a \partial \theta} < 0 \\
(4.50c) & \quad \frac{\partial^2 E[u]}{\partial a^2} \cdot \frac{\partial^2 E[u]}{\partial a \partial \theta} - \left(\frac{\partial^2 E[u]}{\partial a \partial \theta} \right)^2 > 0
\end{align*}

Postačující podmínky (4.50a a 4.50b) pro maximum jsou splněny pro \((a_\mu^*, a_\nu^*)\), neboť \((a_\mu^*), (a_\nu^*)\) jsou maxima. Protože \(\frac{\partial^2 E[u]}{\partial a \partial \theta} = 0 \) a pokud jsou splněny podmínky (4.50a a 4.50b) je splněna i podmínka (4.50c).

Derivováním podmínky (4.35a) dostaneme

(4.51) \[
\frac{\partial^2 E(u)}{\partial a^2} = (1 - \lambda) \frac{\partial^2 \varphi}{\partial a^2} (a^*) + \lambda \frac{\partial^2 Z}{\partial a^2} (a^*, \theta_\mu) - \frac{\partial^2 Z}{\partial a^2} (a^*, \theta_\lambda) < 0
\]

S použitím rovnice (4.51) je zlomek (4.49) záporný

(4.52) \[
\frac{da\lambda}{\partial a} < 0
\]

Čím větší je pravděpodobnost uzavřít smlouvu \(s(A_\mu) \), tím menší je pracovní nasazení \((a_\mu)\) zmocněnce \(A_\mu \) v případě smlouvy \(T^* \). V obrázku 4.6 se dá tento závěr intuitivně potvrdit. Čím větší je pravděpodobnost \(\lambda \) zaměstnátl \(A_\mu \), tím větší jsou i výnosy pro zmocnitele z této varianty; zmocněl ztrácí užitek při posunu doleva z bodů \(T^* \) na indifferenci cílové minimálního požadovaného užitku \(A_\mu \), ale zároveň očekává možný vyšší užitek skrze uzavření smlouvy \(H < T^* \) s \(A_\mu \). Čím vyšší je pravděpodobnost v populaci uzavřít smlouvu \(s(A_\mu) \), tím je i vyšší pravděpodobnost pro zmocnitele realizovat očekávaný přínos změny užitku, pokud uzavře smlouvu \(H < H^* \) s \(A_\mu \).

\textit{Souvislosti mezi } y_L^*, y_H^* \text{ a } \lambda.
Změny v odměnách zmocněnců v souvislosti s pravděpodobností ($\hat{\lambda}$) zaměstnat (A_h), se dají odvodit z rovnice (4.33), rovnice (4.44) za předpokladů $\frac{\partial^2 Z}{\partial \alpha \partial \theta} < 0$ a $\frac{\partial a^*}{\partial \lambda} < 0$.

(4.53a) $\frac{dy_L}{d\lambda} = \frac{\partial Z}{\partial a} (a_L^*, \theta_L), \frac{\partial a^*}{\partial \lambda} < 0$

(4.53b) $\frac{dy_H^*}{d\lambda} = [\frac{\partial Z}{\partial a} (a_H^*, \theta_H) - \frac{\partial Z}{\partial a} (a_L^*, \theta_L)] \frac{\partial a^*}{\partial \lambda} < 0$

Výraz v hranaté závorce v rovnici (4.53b) představuje informační rentu (A_h), která je kladná, jak vyplývá z rovnice (4.44).

Odměna obou zmocněnců klesá (rovnice 4.53) s pravděpodobností zaměstnání více efektivního zmocněnce.

Pro informační rentu (4.46) platí

(4.54) $\frac{dR}{d\lambda} = \frac{dy_H^*}{d\lambda} < 0$

Informační výhoda více efektivního zmocněnce klesá s pravděpodobností zaměstnání (A_h).

4.1.4 Revelation princip

„Revelation“ princip je mechanismus, který pomáhá zmocniteli rozpoznat jednotlivé zmocněnce a umožňuje zmocniteli podle tohoto rozpoznání konsturovat jejich smlouvy tak, aby zmocnitel maximalizoval úžitek.

Nepřímý mechanismus

Odměna zmocněnců y je vázána na pozorovatelný výsledek (x):

(4.55) $y = Y(x) \equiv \begin{cases} y_i^*, \text{v případě } x = \chi(a_i^*) & i = L, H \\ 0, \text{v ostatních případech} \end{cases}$

Toto odměňování zmocněnců je jednodušší než v případě stanovení smluv T^* a H^*. Zmocnitel stanovením (a_i^*) a (y_i^*) dodržel podmínku přijetí a podmínku smluvní přitažlivosti a zmocněncům nezbyvá nic jiného než si optimální (a_i^*) zvolit (podobně jako v případě smluv T^* a H^*).

Přímý mechanismus

Přímý mechanismus, při kterém zmocněnci ex ante deklaruji typ zmocněnce (A_l) nebo (A_h), zmocnitel pak uzavře se zmocněnci jin odpovídající smlouvu. Mechanismus musí zaručit, že zmocněnci označení zmocniteli opravdu typ zmocněnce (A_l) nebo (A_h). Zmocnitel docílí opravdovosti, když dopředu (ex ante) uveřejní, jakým způsobem budou uzavírány jednotlivé typy smluv. V tomto případě bude zmocnitel nabízet odměnu (y) v závislosti na nahlášení ($\hat{\theta}$) typu zmocněnce:

(4.56) $y = \gamma(\hat{\theta}) \equiv \begin{cases} y_i^*, \text{když } x = \chi(a_i^*), \text{ nahlášení } \hat{\theta} = \theta_i & i = L, H \\ 0 \text{ jinak, nahlášení } \hat{\theta} = \theta_L \\ y_H^*, \text{když } x = \chi(a_H^*), \text{ nahlášení } \hat{\theta} = \theta_H \\ 0 \text{ jinak, nahlášení } \hat{\theta} = \theta_H \\ 0, \text{ nahlášení } \hat{\theta} \neq \theta_L \text{ a } \hat{\theta} \neq \theta_H \end{cases}$
Zmocnitel mechanismem (4.56) dodržel podmínku přijetí a podmínku smluvní přítalžlivosti, proto bude ve vlastním zájmu zmocněnců nahlásit pravdivý typ zmocněnec. Jinak by zmocnitel v případě \(\bar{\theta} = \theta_L \) a \(\bar{\theta} = \theta_H \) (zmocněnci neidentifikovali) neuvázel s nimi žádnou smlouvu. Pokud by se zmocnitel \((A_H) \) identifikoval jako \(\bar{\theta} = \theta_L \) (předstíral by, že je méně efektivní zmocněnec) nebo by se zmocnitel \((A_L) \) identifikoval jako \(\bar{\theta} = \theta_H \) (předstíral by, že je více efektivní zmocněnec), v obou případech by si zmocnitelé zvolili horší variantu než kdyby se identifikovali pravdivé: pravdivá identifikace je pro oba zmocnění dominantní strategie.

Tento příznak mechanismu bývá označován jako „revelation“ princip. Mechanismus umožňuje doporučení (ex ante) odhalení (revelation) pravdivého zmocněnec a zaručuje optimální výsledky pro zmocněně v případě jednotlivých zmocněnců.

4.2 Hidden action

V situaci „hidden action“ je výsledek snažení zmocněnců ovlivněn náhodnými okolnostmi. Zmocnitel neumí informační (asymetrie) odlišit vliv okolností a pracovního nasazení zmocněnec na konečný výsledek. Proto nemůže zákazovat pracovní nasazení do smlouvy a odměna závisí pouze na konečném výsledku. Cílem modelu je nalezení takové funkce odměny, která by donutila zmocněnce ve vlastním zájmu odvstát zmocnitelem požadované množství práce.

4.2.1 Popis modelu

V případě „hidden action“ je velikost produkcí \(x \) při každém pracovním nasazení \((a) \) ovlivněna náhodnými vlivy, které ovlivňují produkcí. Budeme předpokládat, že zmocniteli je ex post známo pracovní nasazení \((a) \) zmocněnec, ale nemůže jeho pracovního nasazení kontrolovat. V tom spočívá informační asymetrie mezi zmocněncem a zmocnitelem. Z důvodu absence kontroly ze strany zmocnitéle, nemůže zmocněnec pracovní nasazení zmocněnce zákazovat do smlouvy. Odměna zmocněnce musí z tohoto důvodu záviset na výsledku. Funkce odměny zmocněnce je \(y = Y(x) \). Tato funkce musí být zvolena tak, aby zmocněnec ve vlastním zájmu odvstal zmocnitelem požadované pracovní nasazení.

Průběh hry mezi zmocněncem a zmocnitélem:
- zmocnitél stanoví pevně funkci odměny \(y = Y(x) \)
- zmocněnec se rozhoduje, zda smlouvu přijme nebo odmítne
- okolností ovlivňují stochasticky výsledek
- zmocněnec i zmocnitél identifikují realizovaný výsledek \(x \). Zmocnitél dá zmocněnci odměnu podle dohodnuté funkce odměny.

A. Vliv náhody na velikost produkce

Náhodnost okolností má následující strukturu a je obou aktérům známa.

Pro jednoho z nich je velikost výstupu \(x \) omezena nezázise na pracovním nasazením \(a \)

\[
(4.57) \quad x \in [x, \bar{x}] \text{ přičemž } 0 \leq x < \bar{x}.
\]

Pro druhého z nich je dána hustota rozdělení pravděpodobnosti

\[
(4.58) \quad \phi(x|a) > 0 \text{ pro každé } x \in [x, \bar{x}] \text{ a } a > 0.
\]

\(\phi(x|a) \) je pravděpodobnost, že výstup \(x \) bude roven hodnotě \(\bar{x} \) \((x = \bar{x})\) při daném kladném \(a \). Bez pracovního nasazení není vyroben žádný výstup; pro \(x = 0 \) to znamená...
(4.59) \[\phi(x|0) = 0 \quad \text{pro} \ x > 0 \\
= 1 \quad \text{pro} \ x = 0 \]

V dalším textu budeme předpokládat, že \(a > 0 \). Platí

(4.60) \[\int_{x}^{\bar{x}} \phi(\xi | a) \cdot d\xi = 1 \]

Očekávaná hodnota výstupu je

(4.61) \[E[x|a] = \int_{x}^{\bar{x}} \xi \cdot \phi(\xi | a) \cdot d\xi \]

Z hustoty rozdělení pravděpodobnosti (4.58) dostaneme distribuční funkci

(4.62) \[\Phi(x|a) \equiv \int_{x}^{\bar{x}} \phi(\xi | a) \cdot d\xi \]

S pravděpodobností \(\Phi(x|a) \) dostaneme výstup \(x \leq \bar{x} \) pro dané pracovní nasazení \(a \).

Pro rovnicí (4.62) z rovnice (4.60) vyplývá

(4.63) \[\Phi(x|a) = 0 \quad a \Phi(x|a) = 1 \]

Důležitým předpokladem modelu pro distribuční funkci je

(4.64) \[\frac{\partial \Phi(x|a)}{\partial a} \equiv \int_{x}^{\bar{x}} \frac{\partial \phi(\xi | a)}{\partial a} \cdot d\xi < 0 \quad \text{pro} \ x < x^- \]

Z předpokladu (4.64) vyplývá, že s rostoucím pracovním nasazením \(a \) by měla pravděpodobnost \(\Phi(x|a) \) dosažení výsledku \(x \leq \bar{x} \) klesat (pravděpodobnost dosažení horšího výsledku než \(\bar{x} \) při vysokém pracovním nasazení je vešker malá). V obrázku 4.7 jsou naznačeny důsledky předpokladu (4.64) pro dvě pracovní nasazení \((a_0) \) a \((a_1) \), kde \(a_0 < a_1 \). V jednom intervalu \((x^- x) \) musí \(\phi(x|a_i) < \phi(x|a_0) \) a v jiném intervalu \((x^- x) \) opačně \(\phi(x|a_1) > \phi(x|a_0) \). Proto musí existovat minimálně jeden bod \(x^* \), pro který platí \(\phi(x^*|a_0) = \phi(x^*|a_1) \). Z obrázku 4.7 se dá předpokládat, že svíse vyšrafovaná plocha je větší než horizontálně vyšrafovaná plocha, proto \(\phi(x|a_0) - \phi(x|a_1) = \int_{x}^{\bar{x}} \phi(\xi | a_0) - \phi(\xi | a_1) \cdot d\xi > 0 \). Z předpokladu (4.64) tedy vyplývá, že v intervalu \((x^- x) \) pro relativně malý \(x \) platí \(\frac{\partial \phi(x|a)}{\partial a} < 0 \) a v intervalu \((x^* x) \) pro relativně velký \(x \) platí \(\frac{\partial \phi(x|a)}{\partial a} > 0 \).

Shrnujte předpoklad (4.64):

Lepších výsledků (většího výstupu \(x \)) lze dosáhnout s vyšší pravděpodobností jen při vyšším pracovním nasazení. Naproti tomu menších výsledků (výstupu) lze dosáhnout s vyšší pravděpodobností při menším pracovním nasazení.
B. Funkce užitku a očekávaný užitek zmocněnců a zmocnitéle

Funkce užitku obou zmocněnců je stejná

\[(4.65) \quad v = V(y, a) \equiv R(y) - Z(a)\]

s těmito vlastnostmi \(R(0) = 0, \frac{dR}{dy} > 0, \frac{d^2R}{dy^2} \leq 0, Z(0) = 0, \frac{dZ}{da} > 0, a \frac{d^2Z}{da^2} > 0\).

Funkce užitku zmocněnců (4.65) má proti funkci užitku (4.1) následující vlastnosti. Chyba zde osobní angažovanost zmocněnců (\(\theta\)) (není předmětem analýzy), na druhé straně je ve funkcích očekávaného užitku \(R(\cdot)\) zabudován vliv odměny \((y)\). Protože odměna \((y)\) zvislá na výsledku \((x)\), který je ovlivňován okolnostmi, proto i odměna zvislá na okolnostech (proto je matematicky použita funkce očekávaného užitku \(R(\cdot)\)). Nerovnost \(\frac{d^2R}{dy^2} \leq 0\) představuje různé postoje zmocněnců k riziku. Nerovnost \(\frac{d^2R}{dy^2} \leq 0\) vylučuje postoj vyhledávání rizika ze strany zmocněnců. V textu bude analyzován postoj neutrality k riziku \((\frac{d^2R}{dy^2} = 0)\) a averze k riziku \((\frac{d^2R}{dy^2} < 0)\).

Z rovnice (4.65) se dá napsat rovnice očekávaného (je zde zakomponován vliv okolnosti) užitku zmocněnců

\[(4.66) \quad E[v|a] = \int_x^\infty R(Y(\xi)) \cdot \phi(\xi|a) \cdot d\xi - Z(a)\]

Funkce užitku zmocnitéle je stejná jako v případě hidden knowledge (viz rovnici 4.5)

\[(4.67) \quad u = U(x - y)\]

s těmito vlastnostmi \(U(0) = 0, \frac{dU}{d(x-y)} > 0, \frac{d^2U}{d(x-y)^2} \leq 0\)
U(·) je rovnoběžně funkce očekávaného užitíku. Zmocnění skrze nerovnost \(\frac{d^2U}{d(x - y)^2} \leq 0 \) je riziko neutrální \(\frac{d^2U}{d(x - y)^2} = 0 \) nebo má averzi k riziku \(\frac{d^2U}{d(x - y)^2} < 0 \). Z rovnice (4.67) můžeme napsat očekávaný užitek zmocněně

\[
(4.68) \quad E[u[a]] = \int_{x} \Phi(\xi[a]). d\xi
\]

Očekávané hodnoty E[x|a] (4.61), E[v|a] (4.66) a E[u|a] (4.68) závisí na pracovním nasazení a. Jak se mění očekávané hodnoty s pracovním nasazením? Pro zjednodušení bude v integrálu pouze funkce f(x) se pravděpodobností \(\Phi(x|a) \). Definujeme

\[
(4.69) \quad E[f|a] = \int_{x} f(\xi) \cdot \Phi(\xi[a]). d\xi
\]

Paričním integrováním (4.69) a použití rovnice (4.63)

\[
(4.70) \quad E[f|a] = f(x) - \int_{x} \frac{df}{d\xi} \cdot \Phi(\xi[a]). d\xi
\]

Rovnice (4.70) je odvozena v matematickém dodatku (4.2).

Diferencováním E[f|a] podle (a) v rovnici (4.70) dostaneme

\[
(4.71) \quad \frac{dE[f|a]}{da} = -\int_{x} \frac{df}{d\xi} \cdot \frac{\partial \Phi(\xi[a])}{\partial a}. d\xi
\]

Použitím předpokladu (4.64) platí

\[
(4.72) \begin{align*}
\frac{df}{dx} & \geq 0 \text{ pro každé } x \Rightarrow \frac{dE[f|a]}{da} \geq 0 \\
\frac{df}{dx} & < 0 \text{ pro každé } x \Rightarrow \frac{dE[f|a]}{da} < 0
\end{align*}
\]

Převedeme-li zpět obecnou funkci f(x) v rovnících (4.71) a (4.72) na očekávanou hodnotu výstupu, tedy f(x) \equiv x, dostaneme

\[
(4.73) \quad \frac{\partial E[x|a]}{\partial a} = -\int_{x} \frac{\partial \Phi(\xi[a])}{\partial a}. d\xi > 0
\]

Pro rovnici (4.68) očekávaného užitíku zmocněně vyplývá z rovnice (4.71) pro f(x) \equiv U(x - Y(x))

\[
(4.74) \quad \frac{\partial E[u|a]}{\partial a} = -\int_{x} \frac{dU}{d(x - y)} \cdot \left(1 - \frac{dY}{dx}\right) \cdot \frac{\partial \Phi(\xi[a])}{\partial a}. d\xi
\]

Protože \(\frac{dU}{d(x - y)} > 0 \) a z předpokladu (4.64) platí
(4.75) \[
\frac{dY}{dx} \leq 1 \text{ pro každé } x \Rightarrow \left(\frac{\partial E[u | a]}{\partial a}\right) \geq 0
\]
\[
\frac{dY}{dx} > 1 \text{ pro každé } x \Rightarrow \left(\frac{\partial E[u | a]}{\partial a}\right) < 0
\]

Ekonomická interpretace rovnice (4.75):
Očekávaný užitek zmocnění se roste (klesá) s větším pracovním nasazením (a), pokud sklon funkce odměny zmocnění je menší (větší) než jedna. Pokud je sklon funkce odměny zmocnění roven jedné, je očekávaný užitek zmocnění konstantní.

Pro rovnici (4.66) očekávaného užitku zmocnění vyplývá z rovnice (4.71) pro \(f(x) \equiv R(Y(x)) \)

\[
(4.76) \quad \frac{\partial E[v | a]}{\partial a} = -\int \frac{dR}{\partial y} \cdot \frac{dY}{\partial x} \cdot \frac{\partial \phi(\xi | a)}{\partial a} \cdot \frac{dZ}{\partial a}
\]

Protože zlomky \(\frac{dR}{\partial y} \) a \(\frac{dZ}{\partial a} \) jsou kladné, platí s předpokladem (4.64)

\[
(4.77) \quad \frac{dY}{dx} \leq 0 \text{ pro každé } x \Rightarrow \left(\frac{\partial E[v | a]}{\partial a}\right) < 0
\]

Ekonomická interpretace rovnice (4.76):
Očekávaný užitek zmocnění klesá se větším pracovním nasazením, když funkce odměny je konstantní nebo klesá s rostoucím výstupem.

C. Vlastnosti funkce odměny pro diskrétní pracovní nasazení

V textu bude pracovní úsilí nabývat pouze dvou hodnot \((a_{s}) \) nebo \((a_{t}) \), pro které platí

\[
(4.78) \quad 0 < a_{s} < a_{t}
\]

Tato skutečnost je známa zmocněcům i zmocněnci. V diskrétním případě (4.78) má předpoklad (4.64) s (4.63) tento tvar

\[
(4.79) \quad \phi(x|a_{t}) = \int_{x}^{\infty} \phi(\xi | a_{t}) \, d\xi < \int_{x}^{\infty} \phi(\xi | a_{s}) \, d\xi \equiv \phi(x|a_{s}) \text{ pro } x < x_{<}
\]

\[
\phi(x|a_{s}) = \phi(x|a_{t}) = 0
\]

Vztah (4.73) je v diskrétním případě nahrazen

\[
(4.80) \quad E[x | a_{t}] = \int_{x}^{\infty} \xi \phi(\xi | a_{t}) \, d\xi > \int_{x}^{\infty} \xi \phi(\xi | a_{s}) \, d\xi = E[x | a_{s}]
\]

Relace (4.80) je „produkční funkce“ v případě diskrétních hodnot (a).

Relace (4.75) a (4.77) se dají v případě diskrétních hodnot přepsat

\[
(4.81) \quad \frac{dY}{dx} \leq 1 \forall x \Rightarrow E[u | a_{t}] = \int_{x}^{\infty} U(\xi - Y(\xi)) \phi(\xi | a_{t}) \, d\xi \geq \int_{x}^{\infty} U(\xi - Y(\xi)) \phi(\xi | a_{s}) \, d\xi = E[u | a_{s}]
\]

61
\[
\frac{dY}{dx} > 1 \; \forall x \implies (E \left[u|a_n \right] = \int \limits_x U(\xi - Y(\xi)) \phi(\xi | a_n) \; d\xi \leq \int \limits_x U(\xi - Y(\xi)) \phi(\xi | a_n) \; d\xi = E \left[u|a_n \right])
\]

(4.82) \[
\frac{dY}{dx} \leq 0 \; \forall x \implies (E \left[v|a_n \right] = \int \limits_x R(Y(\xi)) \phi(\xi | a_n) \; d\xi - Z(a_n) \leq \int \limits_x R(Y(\xi)) \phi(\xi | a_n) \; d\xi - Z(a_n) = E \left[v|a_n \right])
\]

Ekonomická interpretace relací (4.81):
Vztah (4.81) ukazuje, že zmocnitel je indifferenční k pracovnímu nasazení zmocněnců

\(E \left[u|a_n \right] = E \left[u|a_n \right]\), když změna odměny zmocněnce (\(y\)) ke změně výstupu jsou stejně \(\left(\frac{dY}{dx} \equiv 0 \right)\).

Zmocnitel bude upřednostňovat výšší (nižší) pracovní nasazení \(a_n (a_n)\), pokud přírůstek odměny menší (vyšší) je než přírůstek výstupu.

Ekonomická interpretace vztahu (4.82):
Rovnice (4.82) ukazuje, že zmocněnec preferuje menší pracovní nasazení, když odměna nezávisí na pracovním nasazení \(\left(\frac{dY}{dx} \equiv 0 \right)\), nebo odměna klesá a zároveň výstup stoupá.

Z rovní (4.81) a (4.82) vyplyvá fundamentální vlastnost hledané funkce odměny \(Y(x)\): **odměna** y musí **minimálně dočasně růst**, když **roste výstup** x. Pokud by tomu bylo jinak, bylo by \(\frac{dY}{dx} \leq 0\) pro každé x, pak zmocnitel podle rovnice (4.81) požadoval množství práce \(a = a_n\) (pokud tato volba pro něj znamená kladný očekávaný užitek), ale zmocněnec podle rovnice (4.82) si zvolí \(a = a_n\) (pokud tato volba pro zmocněnce představuje alespoň minimální požadovaný užitek).

4.2.2 Optimální funkce odměny

A. Optimalizační problém

Volba \((a_n)\) nebo \((a_n)\) zmocnitelem závisí na funkcí odměny \(Y(x)\). Pokud si zmocnitel zvolí \((a_n)\), musí splnit zmocněncovou minimální požadovanou úroveň užitku

\[
(4.83) \quad E \left[v|a_n \right] = \int \limits_x R(Y(\xi)) \phi(\xi | a_n) \; d\xi - Z(a_n) \geq \, \bar{v}
\]

a podmínku smluvní přítažlivosti

\[
(4.84) \quad E \left[v|a_n \right] = \int \limits_x R(Y(\xi)) \phi(\xi | a_n) \; d\xi - Z(a_n) \leq \int \limits_x R(Y(\xi)) \phi(\xi | a_n) \; d\xi - Z(a_n) = E \left[v|a_n \right]
\]

Pokud by se zmocnitel rozhodl pro \((a_n)\), musí splnit zmocněncovu podmínku minimální požadované úrovni užitku

\[
(4.85) \quad E \left[v|a_n \right] = \int \limits_x R(Y(\xi)) \phi(\xi | a_n) \; d\xi - Z(a_n) \geq \, \bar{v}
\]

a podmínku smluvní přítažlivosti

3) Z logického důvodu je vyloučena variantá, kdy by odměna nezávisela na výsledku \(\frac{dY}{dx} \equiv 0\)
(4.86) \[E \left[v \mid a_n \right] = \int_{\mathcal{X}} R(Y(\xi) \phi(\xi \mid a_i)) \ d\xi - Z(a_n) \geq \int_{\mathcal{X}} R(Y(\xi) \phi(\xi \mid a_i)) \ d\xi - Z(a_n) = E \left[v \mid a_n \right] \]

Podmínky minimálního požadovaného užitku a podmínky smluvní přitažlivosti vedou zmocněnce k racionalnímu chování. Zmocnění musí najít obě funkce odměny \(Y^*_H(x) \) a \(Y^*_L(x) \), které upravují pracovní nasazení \(a_H \) a \(a_L \) a zaručují maximalizaci očekávaného užitku zmocnitého. Když zmocnění vytvoří tento problém, nabídne zmocněncům jako návrh smluvy funkci odměny:

(4.87) \[Y^*(x) \equiv Y^*_H(x), \quad \text{pokud } E \left[v \mid a_H \right] \geq E \left[v \mid a_L \right] \]

popř. \[\int_{\mathcal{X}} U(\xi - Y^*(\xi)) \phi(\xi \mid a_H) \ d\xi \geq \int_{\mathcal{X}} U(\xi - Y^*(\xi)) \phi(\xi \mid a_L) \ d\xi \]

\[Y^*(x) \equiv Y^*_L(x), \quad \text{pokud } E \left[v \mid a_H \right] < E \left[v \mid a_L \right] \]

popř. \[\int_{\mathcal{X}} U(\xi - Y^*(\xi)) \phi(\xi \mid a_H) \ d\xi < \int_{\mathcal{X}} U(\xi - Y^*(\xi)) \phi(\xi \mid a_L) \ d\xi \]

Zmocnění hledá optimální podmínky, ze kterých bude moci konkretizovat funkci odměny \(Y^*(x) \) pro i = H, L. Pokud se zmocnění rozhodne pro \(a_i \), musí řešit tento problém

(4.88) \[\max_{\mathcal{X}} U(\xi - Y^*(\xi)) \phi(\xi \mid a) \ d\xi, \quad \text{pro } i = H, L \]

\[Y^*(x) \]

tak, aby byla splněna podmínka minimálního požadovaného užitku zmocněnců

(4.89) \[\int_{\mathcal{X}} R(Y(\xi)) \phi(\xi \mid a) \ d\xi - Z(a) \geq v \text{ pro } i = H, L \]

a podmínka smluvní přitažlivosti

(4.90) \[\int_{\mathcal{X}} R(Y(\xi)) \left[\phi(\xi \mid a_i) - \phi(\xi \mid a_j) \right] d\xi \geq Z(a_i) - Z(a_j) \text{ pro } i, j = H, L, i \neq j \]

Formulace problému (4.88) až (4.90) představuje teoretický problém, který se dá řešit „maximem principem”.

Označme omezující podmínky (4.89) a (4.90)

(4.91) \[B(x) = \int_{\mathcal{X}} R(Y(\xi)) \phi(\xi \mid a) \ d\xi \]

(4.92) \[A(x) = \int_{\mathcal{X}} R(Y(\xi)) \left[\phi(\xi \mid a_i) - \phi(\xi \mid a_j) \right] d\xi \]

ve tvaru

(4.93) \[\frac{dB}{dx} = R(Y(x)) \phi(x \mid a) \text{ s těmito vlastnostmi } B(x) = 0 \text{ a } B(x) \geq Z(a) + v \]

a

\footnote{Léonard D., Van Long N.: Optimal Control theory and static optimazation in economics, Cambridge 1992.}
(4.94) \[\frac{dA}{dx} = R(Y_i(x)) \left[\phi(x|a_i) - \phi(x|a_j) \right] \] s těmito vlastnostmi \(A(x) \geq Z(a) \) a \(A(x) = \bar{Z}(a) \).

Rovnice (4.93) nahrazuje podmínku minimálního požadovaného užitku (4.89). Rovnice (4.94) nahrazuje podmínku smluvní příslušnosti (4.90). Maximální problém má proto tento nový tvar:

(4.95) \[
\max \; u = \int U(x; Y_i(x)) \psi(x; a) \; dx
\]

\(Y_i(x) \)

za podmínek

(a) \[\frac{dA}{dx} = R(Y_i(x)) \left[\phi(x|a_i) - \phi(x|a_j) \right] \]

(b) \[\frac{dB}{dx} = R(Y_i(x)) \phi(x|a_i) \]

(c) \[A(x) = 0 \]

(d) \[B(x) = 0 \]

(e) \[A(x) - [Z(a) - Z(a_j)] \geq 0 \]

(f) \[B(x) - [Z(a) + \bar{v}] \geq 0 \]

Hledanou proměnnou je optimální průběh \(Y_i(x) \) při zohlednění nových proměnných \(A(x) \) a \(B(x) \) a za splnění podmínek (c) až (f). Podmínky (a) až (d) jsou nutné. Podmínky (e) a (f) jsou nadbytečné (bude dokázáno v průběhu řešení maximalizačního problému. Podmínka (e) je podmínkou smluvní příslušnosti, (f) je podmínkou minimálního požadovaného užitku zmocněnce.

B. Řešení maximalizačního problému

Hamiltonova funkce

Prvním krokem pro matematické vyřešení problému je vytvoření Hamiltonovy funkce

(4.96) \[
H(Y_i(x), A(x), B(x), x) \equiv \]

\[U(x; Y_i(x)) \phi(x; a_i) + \mu^A(x) \cdot R(Y_i(x)) \left[\phi(x; a_i) - \phi(x; a_j) \right] + \mu^B(x) \cdot R(Y_i(x)) \phi(x; a_i) \]

Hamiltonova funkce je součet cílové funkce a upravených podmínek vynásobených funkcí multiplikátorů z (4.95).

Nutné podmínky pro maximum Hamiltonovy funkce (tedy i cílové funkce z (4.95)) za dodržení podmínek (a) a (b) z (4.95) jsou

(4.97) \[
\frac{dH}{dY_i(x)} = -\frac{dU}{d(Y_i(x))} \phi(x; a_i) + \mu^A(x) \cdot \frac{dR}{dY_i(x)} \left[\phi(x; a_i) - \phi(x; a_j) \right] + \mu^B(x) \cdot \frac{dR}{dY_i(x)} \phi(x; a_i) = 0
\]

\[\frac{dH}{dA(x)} = 0 = -\frac{d\mu^A}{dx} \]

\[\frac{dH}{dB(x)} = 0 = -\frac{d\mu^B}{dx} \]

Z dvou posledních podmínek z (4.97) vyplývá, že multiplikátořy jsou konstantní. (Proto budou pro zjednodušení v dalším textu používány jen symboly \(\mu^A \) a \(\mu^B \) bez proměnné \(x \).)
Z první podmínky úpravami dostaneme

\[
\frac{dU}{R(Y(x))} = \mu^a + \mu^A \left[1 - \frac{\phi(x | a)}{\phi(x | a_0)} \right]
\]

(4.98)

Rovnice (4.98) je podmínkou optimu (maxima) proměnné \(Y_i(x) \).

Hodnoty multiplikátorů

Jaké hodnoty mohou multiplikátorů \((\mu^A)\) a \((\mu^B)\) nabývat? Dvě poslední podmínky \((e)\) a \((f)\) v (4.95) povedou k nutným podmínkám, které budou potřebné pro řešení optimalizačního problému.

\[
\begin{align*}
\mu^A(x) & \geq 0, \quad A(x) - [Z(a) - Z(a_0)] \geq 0, \quad \mu^A(x) \cdot \{ A(x) - [Z(a) - Z(a_0)] \} = 0 \\
\mu^B(x) & \geq 0, \quad B(x) - [Z(a) + v] \geq 0, \quad \mu^B(x) \cdot \{ B(x) - [Z(a) + v] \} = 0
\end{align*}
\]

(4.99)

Multiplikátorů jsou konstantní (tento závěr vyplývá z rovnice (4.97)). Proto i jejich hodnota na homi hranicí intervalu \((x)\) je rovna konstantní hodnotě.

Interpretace rovnic (4.99) je následující:

a) když je podmínka smluvní přitažlivosti na spodní hranici \((A(x) - [Z(a) - Z(a_0)] = 0)\), potom \(\mu^A(x) > 0\). Pokud je \(A(x) - [Z(a) - Z(a_0)] > 0\), potom je \(\mu^A(x) = 0\).

b) když je podmínka přijatí smlouvy na spodní hranici \((B(x) - [Z(a) + v] = 0)\), potom \(\mu^B(x) > 0\). Pokud je \(B(x) - [Z(a) + v] > 0\), potom je \(\mu^B(x) = 0\).

Pokud multiplikátor nejsou rovny nule, pak jsou v nerovnicích (4.89) a (4.90) rovnosti a lze druhý a třetí člen v podmínce (4.97) přepsat do tvaru: \(\mu^A(x) \cdot \{ A(x) - [Z(a) - Z(a_0)] \} = 0\) a \(\mu^B(x) \cdot \{ B(x) - [Z(a) + v] \} = 0\).

Ekonomická interpretace multiplikátorů vyplývá z optimálního očekávaného užitku zmocnitéle

(Pro přehlednost je matematické odvození rovnic (4.100) v matematickém dodatku (4.3).)

\[
\frac{\partial E[u^* | a]}{\partial A(x)} = -\mu^A(x) = \mu^A \text{ při dodržení } A(x) \geq Z(a) - Z(a_0)
\]

\[
\frac{\partial E[u^* | a]}{\partial B(x)} = -\mu^B(x) = \mu^B \text{ při dodržení } B(x) \geq Z(a) + v
\]

kde

\[
E[u^* | a] = \int_{\mathbb{R}} U(x - Y) \phi(x | a) \, dx
\]

Ekonomická interpretace rovnic (4.100):

Je-li podmínka smluvní přitažlivosti na své minimální hranici (tedy \(\mu^A(x) > 0\) a \(A(x) = Z(a) - Z(a_0)\)), pak marginální zvýšení pracovní úmry při preferovaném pracovním nasazení \((a)\) a naprosto alternativním pracovním nasazení \((a)\) snižuje maximální očekávaný užitek zmocnitéle \((\mu^A)\).

Multiplikátor vyjadřuje náklady ztracené příležitosti zmocnitéle při marginálním přírůstku \(Z(a) - Z(a_0)\) (zmocnitem preferované pracovní nasazení představuje větší pracovní úmry pro zmocněnec než alternativní). Obdobně \((\mu^B)\) vyjadřuje náklady ztracené příležitosti marginálního přírůstku alternativního požadovaného užitku zmocněnec (nebo také pracovního nasazení zmocněnce) při
preferovaného pracovního nasazení, pokud je podmínka přijetí na své minimální hranici \(B(\tilde{x}) = Z(a) + v \), \(\mu^B(\tilde{x}) > 0 \). Pokud podmínky nejsou na své minimální hranici, což znamená \(\mu^A = \mu^B = 0 \), pak zmocnitel nemá žádné náklady ztracené příležitosti, když \(Z(a) - Z(a) \) nebo \(Z(a) + v \) rostou.

Formálně je optimalizační problém (4.95) skrze (4.98) a (4.99) vyřešen.

Závaznost podmínky smluvní příležitosti a podmínky přijetí smlouvy
Pokud by obě podmínky nebyly současně na své minimální úrovni a za předpokladu, že \(Y^*(x) \geq 0 \), byla by pouze možná optimální funkce odměny

\[
Y^*(x) = 0.
\]

Pokud by optimální funkce odměny byla (4.101), pak by ale byla porušena podmínka přijetí smlouvy ze strany zmocněnců, neboť \(E[v|a] = Z(a) < 0 \) a v případě \(i = H \) je porušena i podmínka smluvní příležitosti, protože \(E[v|a] = Z(a) < Z(a) = E[v|a] \). Z této argumentace vyplývá, že alespoň jedna z podmínek musí být na své minimální úrovni.

Uvažujeme nejprve případ, že podmínka smluvní příležitosti (PSP) je na své minimální úrovni, podmínka přijetí smlouvy (PPS) naopak není:

\[
(4.102) \quad R(Y^* - (x)\phi(x | a)) \geq -R(Y^* - (x)\phi(x | a)) = -R(Y^* - (x)\phi(x | a)) > v
\]

Definujeme bod \(x^* \), pro který platí \(\phi(x^* | a) = \phi(x^* | a) \). Tento bod existuje alespoň jeden, jak vyplývá z obrázku 4.7.

Nahraďme optimální funkci odměny \(Y^*_t(x) \)

\[
(4.103) \quad Y^*_t(x) = Y^*_t(x) \text{ pro } x \leq x^* - \eta \text{ a } x^* + \eta \leq x \leq x^*
\]

Pro velmi malé \(\eta \) a \(\varepsilon \) může být původní optimální funkce odměny \(Y^*_t(x) \) nahrazena novou \(Y^*_t(x) \) a přítom PSP není skrze velmi malé \(\eta \) nahrazena (PSP je na své minimální úrovni) a PPS stále plati pro velmi malé \(\varepsilon \). Vztah (4.102) platí tedy i pro novou funkci odměny. Ze (4.103) vyplývá, že pro velmi malé \(\eta \) a \(\varepsilon \) a skrze nahrazení \(Y^*_t(x) \) za \(Y^*_t(x) \), rostou očekávaný užitek zmocnění (nová funkce odměny v malém intervalu snížila odměnu pro zmocnence \(Y^*_t(x) \). Což je rozpor, protože optimální funkce odměny je podle předpokladu \(Y^*_t(x) \). Potom musí být předpoklad, že PSP je na své minimální úrovni a PPS není, chybný. Pokud PSP je na své minimální úrovni, musí být i PPS na své minimální úrovni. Pokud by měla být pouze jedna podmínka na své minimální úrovni, tak PPS bude na své minimální úrovni vždy.

Proto platí

\[
(4.104) \quad \mu^B > 0
\]

a

\[
(4.105) \quad \int_x^\tilde{x} R(Y^* - (x)) \phi(x | a) \, dx - Z(a) = v \geq \int_x^\tilde{x} R(Y^* - (x)) \phi(x | a) \, dx - Z(a).
\]
Očekávaný úžitek zmocněnců nemůže překročit jeho minimální požadovanou úroveň. Pokud by PSP nebyla na své minimální požadované úrovni \((v > \int_a^x R(Y_i^*(x)) \phi(x \mid a_i) \, dx - Z(a_i) \text{ a } \mu^A = 0) \), potom zmocněnci - vzhledem ke své minimální požadované úrovni užitku - nemají žádnou volbu: jedná se o situaci, kde by bylo možné jen pracovní nasazení \((a_i) \). Pokud zmocněnci mají možnost v rámci optimální funkce odměny volit mezi \((a_i) \) a \((a)^* \), potom musí být PSP také na své minimální úrovni \((v = \int_a^x R(Y_i^*(x)) \phi(x \mid a_i) \, dx - Z(a_i) \text{ a } \mu^A > 0) \).

Po těchto úvahách platí pro funkci optimální odměny \(Y_i^*(x) \) pro implementaci \((a_i) \) tyto vztahy:

\[
\frac{dU}{d(Y - Y(x))} = \mu^B + \mu^A \left[1 - \frac{\phi(x \mid a_i)}{\phi(x \mid a)} \right]
\]

(4.106)

\(\mu^B > 0 \)

(4.98)

\[
\int_a^x R(Y_i^*(x)) \phi(x \mid a_i) \, dx - Z(a_i) = v
\]

(4.104)

\[
\mu^A > 0 \text{ a } v = \int_a^x R(Y_i^*(x)) \phi(x \mid a_i) \, dx - Z(a_i)
\]

nebo

\[
\mu^A = 0 \text{ a } v > \int_a^x R(Y_i^*(x)) \phi(x \mid a_i) \, dx - Z(a_i)
\]

(4.105)

Vlastnosti optimální funkce odměny

Jaké jsou vlastnosti optimální funkce odměny \(Y_i^*(x) \) definované v (4.106) pro \(i = H, L ? \) Jak by měla vypadat funkce odměny v závislosti na postoji zmocněnců k riziku?

V podmínce optima (4.98) hraje významnou roli „Likelihood-Ratio“

\[
LR = \frac{\phi(x \mid a_i)}{\phi(x \mid a)} \text{ pro } a_i > a_L
\]

(4.107)

V dalším textu budeme předpokládat, že „Likelihood-Ratio“ roste s rostoucím \(x \)

\[
\frac{dLR}{dx} > 0
\]

(4.108)

(4.108) postuluje, že s rostoucím výstupem relativně roste pravděpodobnost, že určitý výstup bude vyroben s větším pracovním nasazením, k pravděpodobnosti, že by tento výstup byl vyroben s nižším pracovním nasazením.

67
\[
\frac{dU}{dY_i(x)} = \mu_{i}^0 + \mu_{i}^A \cdot [1 - LR(x)] \text{ pro } i = L \\
\frac{dU}{dY_i(x)} = \mu_{i}^B + \mu_{i}^A \cdot \left[1 - \frac{1}{LR(x)}\right] \text{ pro } i = H
\]

Differencováním rovnic (4.109) a doplněním absolutních koeficientů azer k riziku

\[
\frac{d^2U}{d^2x} = \frac{d(x - Y_i(x))^2}{dU} \geq 0 \text{ pro zmocnitele (principála)}
\]

a

\[
\frac{d^2R}{d^2x} = \frac{d(Y_i(x))^2}{dR} \geq 0 \text{ pro zmocněnce (agenta)}
\]

dostaneme stoupání funkce odměny

(Pro přehlednost je matematické odvození rovnic (4.111) v matematickém dodatku (4.4.).)

\[
\frac{dY_i^*(x)}{dx} = \frac{1}{\sigma_P + \sigma_A} \left[\sigma_P + \mu_i^A \frac{dR}{dY_i(x)} - \frac{dR}{dU} \cdot f_i(x) \right]
\]

pro \(f_i(x) = -\frac{dLR}{dx} < 0 \text{ pro } i = L \)

pro \(f_i(x) = \frac{dLR}{dx} > 0 \text{ pro } i = H \)

Před diskusi vlivu postojů zmocněnců k riziku na funkci odměny je nutné vyloučit případ, kdy jsou oba zmocněnci rizikoneutrální (\(\sigma_P = 0 \) a \(\sigma_A = 0 \)). Tento případ nelze analyzovat pomocí Hamiltonovy funkce\(^5\), protože \(\sigma_P + \sigma_A = 0 \).

SITUACE ZMOCNITEL JE RIZIKONEUTRÁLNÍ A ZMOCNĚNEC RIZIKOAVERZÍNÍ

Jedná se o situaci \(\sigma_P = 0 \) a \(\sigma_A > 0 \).

Z rovnice (4.111) vyplývá

\(^5\) Tento případ bude analyzován později.
\[
(4.112) \quad \frac{dY^*_L(x)}{dx} = \frac{1}{\sigma_p} \mu^L \cdot \frac{dR}{dU} \cdot \frac{d(Y(x))}{d(x - Y(x))] \cdot f(x) \quad \leq 0 \text{ pro } i = L
\]

\[
\frac{dY^*_H(x)}{dx} < 0 \text{ by znamenalo } \mu^L > 0 \text{ podle rovnice (4.112), tedy PSP by byla na své minimální úrovni.}
\]

Ale podle vztahu (4.82) PSP není na své minimální úrovni, tedy \(\mu^L = 0 \). Tento rozpor vyřešuje variantu \(\frac{dY^*_H(x)}{dx} < 0 \). V případě \(\frac{dY^*_L(x)}{dx} = 0 \) by zmocnitel podle (4.81) volil pracovní nasazení \((a_u) \), protože pro něj znamená větší úžitek. \(Y^*_L(x) \) nepřichází tedy do úvahy jako řešení \(Y^*(x) \) v tomto případě. \(\frac{dY^*_H(x)}{dx} = 0 \) znamená \(\mu^L = 0 \) (PSP není na své minimální úrovni). Ale podle (4.82), když je \(\frac{dY^*_H(x)}{dx} = 0 \), je porušena sama podmínka směrové přitaživosti \((a_u \text{ znamená vyšší úžitek než } a_u) \).

\[\]

Jako jediné řešení tedy zůstává implementace \(a_H \) do funkce odměny \(Y^*(x) \equiv Y^*_H(x) \) pro \(\frac{dY^*_H(x)}{dx} > 0 \), za dodržení podmínek PPS a PPS.

SITUACE ZMOCNITEL JE RIZIKOAVERZNÍ A ZMOCNĚNEC RIZIKOANEUTRÁLNÍ

V tomto případě je \(\sigma_p > 0 \) a \(\sigma_A = 0 \).

Z rovnice (4.111) vyplývá

\[
(4.113) \quad \frac{dY^*_L(x)}{dx} = 1 + \frac{1}{\sigma_p} \mu^L \cdot \frac{dR}{dU} \cdot \frac{d(Y(x))}{d(x - Y(x))] \cdot f(x) \quad \leq 1 \text{ pro } i = L
\]

\[
\frac{dY^*_H(x)}{dx} \geq 1 \text{ pro } i = H
\]

\(\frac{dY^*_L(x)}{dx} \leq 1 \) znamená podle (4.81), že zmocnitel bude implementovat \((a_u) \), protože má z této implementace vyšší úžitek než v případě \((a_L) \). Případ \(\frac{dY^*_H(x)}{dx} > 1 \) nemůže nastat, v případě \(\frac{dY^*_H(x)}{dx} > 1 \) by zmocnitel podle (4.81) preferoval implementaci \((a_L) \). V obou případech by zmocnitel raději zaměstnal odlišného zmocnitého než plánoval. Proto jako jediné řešení přichází do úvahy implementace \((a_H) \) do funkce odměny \(Y^*(x) \equiv Y^*_H(x) \) pro \(\frac{dY^*_H(x)}{dx} \equiv 1 \) (tedy \(\mu^L = 0 \)) za dodržení podmínek PPS a nedodržení podmínek PPS.

V tomto případě se nechá odvodit konkrétní tvar funkce odměny \(Y^*_H(x) \). Jedná se o lineární funkci

\[
(4.144) \quad Y^*_H(x) \equiv x - k
\]

Integrační konstanta \((k)\) se nechá vyjádřit ze speciální funkce užitku

(Pro přehlednost je matematické odvození rovnice (4.114) v matematickém dodatku (4.5).)

\[
(4.115) \quad R(y) \equiv c_A \cdot y \text{ pro } c_A > 0
\]

pro rizikoneutrálního zmocněnce za dodržení PPS.
\((4.116) \quad k = \mathbb{E} \left[x | a_h \right] - \frac{1}{c_A} \left[Z(a_h) + v \right] \)

(Pro přehlednost je matematické odvození rovnice (4.116) v matematickém dodatku (4.5).)

Tímto získáme funkci odměny

\((4.117) \quad Y^*(x) \equiv Y_H^*(x) \equiv x - \left\{ \mathbb{E} \left[x | a_h \right] - \frac{1}{c_A} \left[Z(a_h) + v \right] \right\} \)

SITUACE ZMOCNITEL I ZMOCNĚNÍC JSOU RIZIKOAVERZÍ

Jedná se o situaci \(\sigma_P > 0 \) a \(\sigma_A > 0 \)

Z rovnice (4.111) vypírává \(\frac{dY_H^*(x)}{dx} \leq \frac{\sigma_P}{\sigma_P + \sigma_A} < 1 \), zmocnitel si zvolí podle rovnice (4.81) \((a_h) \) a ne \((a_l) \).

\(\frac{dY_H^*(x)}{dx} > 1 \) není možné, neboť by si zmocnitel přál implementovat \((a_l) \), v rozporu s tím je \((a_l) \) implementováno podle rovnice (4.81). Tyto dvě varianty tedy nepříhodí do úvahy (zmocnitel by si volil jiné pracovní nasazení než původně zamýšlel). Protože \(\frac{dY_H^*(x)}{dx} \geq \frac{\sigma_P}{\sigma_P + \sigma_A} > 0 \) a současně

\(\frac{\sigma_P}{\sigma_P + \sigma_A} < 1 \), může být \(\mu_H^A = 0 \) ale i \(\mu_H^A > 0 \) v souladu s (4.81). Zmocnitel bude tedy implementovat \((a_h) \) do funkce odměny \(Y^*(x) = Y_H^*(x) \) pro \(1 \geq \frac{dY_H^*(x)}{dx} \geq \frac{\sigma_P}{\sigma_P + \sigma_A} \) za dodržení podmínky PPS.

Podmínka PSP bude zpravidla dodržena také.

DOSAVADNÍ ZÁVĚRY ANALÝZY

Jeden z aktéřů je rizikoverzí, potom:

- implementuje zmocnitel vyšší pracovní nasazení \(a_h \).
- optimální funkce odměny roste: \(Y^*(x) \equiv Y_H^*(x) \) s vlastností \(\frac{dY_H^*(x)}{dx} > 0 \).
- zavazná je podmínka přijalší směr

- podmínka smluvní příčasnosti
 - je zavazná, pokud je zmocnitel rizikoneutralní,
 - není zavazná, pokud je zmocněnec rizikoneutralní,
 - zpravidla zavazná, pokud žádný z aktéřů není rizikoneutralní.

Problém oba aktéři jsou rizikoneutralní

Jedná se o specifickou situaci, kterou nebylo možné řešit pomocí Hamiltonovy funkce. Funkce užitku mají specifické tvary

\((4.118) \quad R(y) \equiv c_A \cdot y \) pro \(c_A > 0 \)

pro zmocněnce a

\((4.119) \quad U(x - y) \equiv c_P \cdot (x - y) \) pro \(c_P > 0 \)

pro zmocnitéle.

Očekávaný výsledek zmocnítel je
\[(4.120) \quad E \left[u(a_i) \right] = \mu \cdot E \left[x(a_i) \right] - \frac{\mu}{C_A} \int_{x}^{\tilde{x}} Y_i(x) \phi(x | a_i) \, dx. \]

Očekávaný užitek zmocněnce je
\[(4.121) \quad E \left[v(a_i) \right] = \mu \int_{x}^{\tilde{x}} Y_i(x) \phi(x | a_i) \, dx - Z(a_i). \]

Upravami získáme
\[(4.122) \quad E \left[u(a_i) \right] = \mu \cdot E \left[x(a_i) \right] - \frac{CP}{C_A} \left\{ E \left[v(a_i) \right] + Z(a_i) \right\}. \]

Protože
\[(4.123) \quad \frac{dE[u | a_i]}{dE[v | a_i]} = - \frac{CP}{C_A} < 0 \]
a je splněna podmínka přijetí smlouvy
\[(4.124) \quad E \left[v(a_i) \right] = \bar{v} \quad \text{pro} \quad i = H, L. \]

Získáme z rovnic (4.122) a (4.124) relace
\[(4.125) \quad E \left[u(a_i) \right] \geq E \left[u(a_j) \right] \iff E \left[x(a_i) \right] - E \left[x(a_j) \right] \geq \frac{1}{C_A} [Z(a_i) - Z(a_j)] \]

\[E \left[u(a_i) \right] < E \left[u(a_j) \right] \iff E \left[x(a_i) \right] - E \left[x(a_j) \right] < \frac{1}{C_A} [Z(a_i) - Z(a_j)] \]

Očekávané hodnoty produkce a pracovní nasazení jsou dány exogenně, proto pro nalezení funkce odměny záleží na zmocnění, zda bude preferovat \((a_i)\) nebo \((a_j)\). Zmocnitel musí nalézt libovolnou funkci odměny, která splní podmínku přijetí smlouvy a která by nahrazovala podmínku smluvní přitažlivosti (separuje preferované pracovní nasazení od méně preferovaného).

V situaci \(E \left[u(a_i) \right] < E \left[u(a_j) \right]\) zmocnilet bude preferovat podle relace (4.125) \((a_i)\). V této situaci je řešením maximizačního problému funkce odměny, která nezáleží na výsledku \(Y_i(x) = \tilde{y}\). \(\tilde{y}\) musí splňovat podmínku smluvního přijetí, její tvar dostaneme z (4.124) a (4.121)
\[(4.126) \quad Y_i(x) \equiv \tilde{y} = \frac{1}{C_A} [Z(a_i) + \bar{v}] \]

Funkce odměny (4.126) nahrazuje i podmínku smluvní přitažlivosti (oddělení preferovaného pracovního nasazení od méně preferovaného); z rovnic (4.124) a (4.121) vyplývá
\[(4.127) \quad E \left[v(a_i) \right] = \bar{v} - \frac{1}{C_A} [Z(a_i) - Z(a_j)] < \bar{v} \]

Pracovní nasazení \((a_i)\) znamená větší pracovní újmu a proto i nižší užitek než minimální požadovaný užitek \((\bar{v})\) pro pracovní nasazení \((a_j)\), proto více produkční zmocnilet nebude mít zájem se nachat při dané funkci odměny zaměstnat.

Podmínka přijetí smlouvy je touto funkcí odměny splněna, podmínka smluvní přitažlivosti není splněna (ale funkce odměny její roli - separování více preferovaného pracovního nasazení od méně preferovaného - nahrazuje).

Pokud \(E \left[u(a_i) \right] \geq E \left[u(a_j) \right]\) pak z relace (4.125) vyplývá, že by zmocnilet implementoval pracovní nasazení \((a_j)\). Analogicky k předchozí situaci lze zvolit funkci odměny \(Y_i(x) = \frac{1}{C_A} [Z(a_i) + \bar{v}], \) která opět nezávisí na výsledku. Problém je ale v tom, že tato funkce odměny není schopna oddělit
preferované pracovní nasazení od méně preferovaného (nahradit podmínku smluvní přitažlivosti):
\[E [v(a_l)] = v + [Z(a_l) - Z(a_u)] > v = E [v(a_u)]. \]
V tomto případě je nutno použít lineárně rostoucí funkci odměny

\[(4.128) \quad Y^*(x) \equiv Y^*_H(x) = bx + e \]

(Pro přehlednost je matematické odvození rovnice (4.128) v matematickém dodatku (4.6.).)

Parametry \(b \) a \(e \) jsou zvoleny tak, aby byla splněna podmínka přijetí smlouvy \(E [v(a_u)] = v \) a podmínka smluvní přitažlivosti \(E [v(a_u)] = E [v(a_l)] \) byla na její minimální úrovni:

\[(4.129) \quad b = \frac{1}{CA} \frac{Z(a_H) - Z(a_l)}{E[x | a_H] - E[x | a_l]} \]

\[e = \frac{1}{CA} \left\{ v + \frac{Z(a_l)E[x | a_H] - Z(a_H)E[x | a_l]}{E[x | a_H] - E[x | a_l]} \right\} \]

(Pro přehlednost je matematické odvození parametrů (4.129) v matematickém dodatku (4.6.).)

Z relace (4.125) pro \(E [u | a_H] \geq E [u | a_l] \) vyplývá \(c_A \{ E [x | a_H] - E [x | a_l] \} \geq Z(a_H) - Z(a_l) \), proto \(0 < b \leq 1 \).

Všechny výsledky v případě asymetrických informací jsou shrnuty v tabulce (4.1).

<p>| Tabulka 4.1 – Funkce odměny v případě asymetrických informací |
|------------------|------------------|------------------|</p>
<table>
<thead>
<tr>
<th>Zmocněné</th>
<th>Zmocnitel</th>
<th>Rizkoneutrální (\sigma_A = 0)</th>
<th>Rizikoaverzní (\sigma_A > 0)</th>
</tr>
</thead>
</table>
| Zmocněnec | Rizkoneutrální \(\sigma_P = 0 \) | 1. Implementace \(a_H \), pokud \[E [x | a_H] - E [x | a_l] \geq \frac{1}{CA} [Z(a_H) - Z(a_l)] \], pokud \(a_u \) | 1. Implementace \(a_u \).
2. Funkce odměny \[\frac{dY_H^*(x)}{dx} > 0 \] 3. PPS je splněna.
4. PSP je splněna. |
| Rizkoaverzní \(\sigma_P > 0 \) | 1. Implementace \(a_H \).
2. Funkce odměny \[Y_H^*(x) = x - k \] 3. PPS je splněna.
4. PSP není splněna. | 1. Implementace \(a_u \).
2. Funkce odměny \[\frac{dY_H^*(x)}{dx} = 0 \] 3. PPS je splněna.
4. PSP může, ale nemusí být splněna. |
4.2.3 Optimum v případě symetrických informací

V případě symetrických informací zmocnitel může identifikovat pracovní nasazení zmocnitelů. Proto nepotřebuje podmínky směrníků příčivosti (4.84) popř. (4.86): zmocnitel si může vynutit požadované množství práce v pracovní smlouvě skrze sankce, které by posunuly zmocněnce pod jeho rezervační (minimálně požadovanou) úroveň užitku v případě, že by neodvedl silnější pracovní nasazení.

Ačkoliv zmocnitel může pozorovat pracovní nasazení a je vynutilně díky pracovní smlouvě, nebude zmocnител fixovat odměnu na pracovní nasazení. Podle postojů k riziku bude riziko, které ovlivňuje výsledek (ξ), rozdělovaný mezi sebe a zmocněnce. Z tohoto důvodu je nutné použít opět Hamiltonovu funkci. Protože podmínka smluvní příčivosti je nadbytečná v případě symetrických informací vypadne v podmínce (4.98) člen s (μ^2). Podmínka optima v případě symetrických informací má tento tvar:

\[
\frac{dU}{d(x-y)}(x - Y(x)) \frac{dR}{dy} \gamma_i(x) = \mu_i^8 \text{ pro } i = L, H
\]

(4.130)

Optimální podmínka určuje implicitně funkci odměny (platí pro všechna x). Vezmeme-li dvě hodnoty (x_0) a (x_1) z intervalu [x, x], x_0 < x_1 pak z (4.130) vyplývá

\[
\frac{dU}{d(x-y)}(x_0 - Y(x_0)) \frac{dR}{dy} \gamma_i(x_0) = \frac{dU}{d(x-y)}(x_1 - Y(x_1)) \frac{dR}{dy} \gamma_i(x_1)
\]

(4.131)

Výrazy \(\frac{dU}{d(x-y)}(x_0 - Y(x_0)) \) popř. \(\frac{dU}{d(x-y)}(x_1 - Y(x_1)) \) jsou mezní míry substituce mezi (x_0) a (x_1) zmocnitele.

Popř. zmocněnce. Protože se mezní míry shodují (geometricky tangenciální body), jedná se o Paretovo optimum (First-Best) nezávisle na tom, zda bude implementováno (a_i) nebo (a_i).

Diferencováním optimální podmínky (4.130) podle (x), při dodržení (4.110) dostaneme sklon funkce odměny

\[
0 \leq \frac{d\tilde{y}^*_i(x)}{dx} = \frac{\sigma_P}{\sigma_P + \sigma_L} \leq 1
\]

(Pro přehlednost je matematické odvození rovnice (4.132) v matematickém dodatku (4.7).)

Z (4.81) proto vyplývá, že zmocnитель bude (a_i) implementovat. Pokud odpovídající optimální funkce odměny \(\tilde{y}_i(x) \) nebude pro zmocněnce zajímavá (4.86), použije zmocnitel smluvní sankce (SS)

\[
SS \geq E[\varphi|a_i] - E[\varphi|a_i] = \int_x R(\tilde{y}_i(x)).[\varphi|a_i] - \varphi|a_i] dx + [Z(a_i - Z(a_i)] > 0
\]

(4.133)

dohodnuté ve smlouvě, které zaručí volbu (a_i) zmocněncem. Smluvní sankce snížuje očekávaný užitek zmocněnce, ale nebude muset být při racionálním chování zmocněnce uplatněna. Smluvní sankce bude uplatněna pouze v případě, kdy by si vše produktivní zmocněnce zvolil pracovní nasazení (a_i).

Analogicky k (4.111) má (4.132) pouze vypovídací hodnotu, pokud je alespoň jeden z aktérů rizikoaverzní. Podle postojů k riziku dostaneme tyto výsledky
<table>
<thead>
<tr>
<th>Zmocněníc</th>
<th>Zmocněníc je rizikoneutrální a zmocněníc rizikoaverzní</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rizikoneutrální</td>
<td>Zmocněníc je rizikoneutrální a zmocněníc rizikoaverzní</td>
</tr>
<tr>
<td>(\sigma_A = 0)</td>
<td>(\sigma_A > 0)</td>
</tr>
<tr>
<td>Rizikoneutrální</td>
<td>Rizikoaverzní</td>
</tr>
<tr>
<td>(\sigma_A = 0)</td>
<td>(\sigma_A > 0)</td>
</tr>
<tr>
<td>(\frac{d\tilde{Y}_h(x)}{dx} = 1)</td>
<td>(0 < \frac{d\tilde{Y}_h(x)}{dx} < 1)</td>
</tr>
</tbody>
</table>

(4.134) \(\tilde{Y}_h(x) \equiv \bar{y} \)

\(\bar{y} \) vyplyná z podmínky přijetí smlouvy

(4.135) \(E [\psi \{ a_i \}] = \frac{1}{\pi} R(\tilde{Y}_h(x)).\phi(x \mid a_i) \phi x - Z(a_i) = \bar{v}. \)

Tato podmínka má v tomto případě speciální tvar

(4.136) \(R(\bar{y}) - Z(a_i) = \bar{v} \)

Z rovnice (4.136) dostaneme

(4.137) \(\tilde{Y}_h(x) \equiv R^{-1}(\bar{v} + Z(a_i)) \).

Protože

(4.138) \(E [\psi \{ a_i \}] = \bar{v} + [Z(a_i) - Z(a_i)] > \bar{v} = E [\psi \{ a_i \}] \),

je porušena podmínka smluvní přitažlivosti; řešením je smluvní sankce

(4.139) \(SS_{il} \geq Z(a_i) - Z(a_i) > 0 \)

Rizikoneutrální zmocněníc garantuje funkci odměny (4.137) rizikoaverznímu zmocněnci minimální požadovanou úroveň užitku \(\bar{v} \) a nese veškeré riziko sám: realizuje ze své funkce užitku (4.119) užitek \(U(x - y) \equiv c_{a_i} (x - y) \). Pro konkrétní \((x) \) má užitek tvar \(c_{a_i} \cdot \left[x - R^{-1}(\bar{v} + Z(a_i)) \right] \).

(4.134) \(\tilde{Y}_h(x) \equiv x - k \)

Konstanta \((k) \) vyplyná z podmínky přijetí smlouvy (4.135). Protože rizikoaverzní zmocněníc má lineární funkci užitku ve tvaru (4.118) \(R(y) \equiv c_{a_i} \cdot y \), platí

(4.141) \(c_{a_i} E [x \{ a_i \}] - k - Z(a_i) = \bar{v} \)

jako konkrétní tvar podmínky přijetí smlouvy (4.118).
Funkce odměny má tento tvar

\[(4.142) \quad \tilde{Y}(x) \equiv x - \left(E \left[x|a_u \right] - \frac{1}{c_A} \left[v + Z(a_u) \right] \right). \]

Z (4.142) vyplývá

\[(4.143) \quad E \left[v|a_k \right] - E \left[v|a_L \right] \geq 0 \iff E \left[x|a_k \right] - E \left[x|a_L \right] \leq \frac{1}{c_A} \left[Z(a_L) - Z(a_k) \right] \]

\[E \left[v|a_k \right] - E \left[v|a_H \right] < 0 \iff E \left[x|a_H \right] - E \left[x|a_L \right] > \frac{1}{c_A} \left[Z(a_H) - Z(a_L) \right] \]

Pokud \(E \left[v|a_k \right] - E \left[v|a_H \right] > 0\), musí být zmocnitelí sjednaná smluvní sankce

\[(4.144) \quad SS_H \geq c_A \left(E \left[x|a_k \right] - E \left[x|a_H \right] \right) + Z(a_H) - Z(a_L). \]

Funkce odměny (4.142) je identická s funkcí odměny (4.117) pro asymetrické informace. Důvodem je skutečnost, že podmínka smluvní příjaživosti není v obou případech dodržena. Z tohoto důvodu neexistuje rozdíl mezi symetrickými a asymetrickými informacemi. Rizikoavérzní zmocnitel přenesí na funkci odměny (4.142) veškeré riziko na rizikoneutrální zmocněnce; neboť užitek zmocnitéle je \(U(E \left[x|a_L \right] - \frac{v + Z(a_L)}{c_A})\) je nezávislý na výsledku \(x\), zatímco

\[užitek \ zmocněnce \ c_A \cdot \left(\frac{v}{c_A} - E \left[x|a_L \right] \right) + v \ závisí \ na \ výsledku \ (x) \ (garantován \ je \ jen \ minimální \ požadovaný \ užitek). \]

ZMOCNITEL I ZMOCNĚNEC JSOU RIZIKONEUTRÁLNÍ

V tomto případě je cílová funkce zmocnitéle jen zmiňovaná funkce

\[(4.145) \quad E \left[u|a \right] = c_B \cdot E \left[x|a \right] - c_B \left(E \left[v|a \right] + Z(a) \right) \]

Očekávaný užitek je nezávislý na funkcí odměny \(Y(x)\), proto je jakákoli funkce odměny, která splňuje podmínku přijíti smlouvy

\[(4.146) \quad E \left[v|a \right] = \int_{c_A}^{x} Y(x). \quad \varphi(x|a) \quad dx - Z(a) = \bar{v} \]

řešením optimalizačního problému. Toto platí i např. pro funkci odměny, která nezávisí na výsledku \(x\)

\[(4.147) \quad \tilde{Y}(x) \equiv \frac{1}{c_A} \left[\bar{v} + Z(a) \right]. \]

Tato funkce odměny přenesí veškeré riziko na zmocnitéle. Analogicky lineární funkce odměny (4.142)

\[(4.148) \quad \tilde{Y}(x) \equiv x - \left(E \left[x|a \right] - \frac{1}{c_A} \left[\bar{v} + Z(a) \right] \right) \]

přenáší veškeré riziko na zmocněnce.

Neutrální postoj zmocnitéle i zmocněnce k riziku znamená, že zmocněnec je indiferentní mezi očekávanou odměnou, která vyrovnává jeho minimální požadovaný užitek a pracovní újmu, a jistým přijním. Zmocnitel je indiferentní k jistému výnosu a k očekávanému výnosu, se kterým může počítat.

Jestli zmocnitel bude \((a_L)\) nebo \((a_H)\) implementovat závěs na relaci (4.125). Bude-li implementováno \((a_1)\), pak funkce odměny (4.148) má stejný tvar jako (4.126), protože podmínka smluvní příjaživosti není v obou případoch dodržena. Při implementaci \((a_2)\) je možné použít také funkci odměny (4.148),
která nezávisí na výsledku. V tomto případě musí být smluvně dohodnuta sankce, protože podmínka smluvní půjčivosti není dodržena.

\[(4.148)\]
\[\sigma_S \geq Z(a_1) - Z(a_2) > 0.\]

Výsledky optimální funkce odměny v Paretové optimu jsou shrnuty v tabulce 4.3.

<table>
<thead>
<tr>
<th>Tabulka 4.3 – Funkce odměny v Paretové optimu (First-Best)</th>
</tr>
</thead>
</table>
| {\begin{tabular}{|c|c|}
| Zmocněnec & Zmocněnec \\
| {\begin{tabular}{c|c|}
| Články & Rizikoneutrální & Rizikoavérzní \\
| & \(\sigma = 0\) & \(\sigma > 0\) \\
| Zmocněný & \(\tilde{V}_h(x) \equiv \frac{1}{\sigma_A} \left[-[v + Z(a_1)] \right] \) & \(\tilde{V}_h(x) \equiv R^{-1} \left(v + Z(a_1) \right) \) \\
| 1. Pokud & & a \\
| & \(E \left[x \mid a_1 \right] - E \left[x \mid a_2 \right] \geq \frac{1}{\sigma_A} \left[Z(a_1) - Z(a_2) \right] \) & \(SS_S \geq Z(a_1) - Z(a_2) \) \\
| potom & & \\
| & \(\tilde{V}_h(x) \equiv \frac{1}{\sigma_A} \left[-[v + Z(a_1)] \right] \) & \\
| & a & \\
| & \(SS_S \geq Z(a_1) - Z(a_2) \) & \\
| 2. Pokud & & \\
| & \(E \left[x \mid a_1 \right] - E \left[x \mid a_2 \right] < \frac{1}{\sigma_A} \left[Z(a_1) - Z(a_2) \right] \) & \\
| potom & & \\
| & \(\tilde{V}_h(x) \equiv \frac{1}{\sigma_A} \left[-[v + Z(a_1)] \right] \) & \\
| & & \\
| & & \\
\end{tabular}} & {\begin{tabular}{c|c|}
| Zmocněný & \(\tilde{V}_h(x) \equiv R^{-1} \left(v + Z(a_1) \right) \) \\
| 1. Pokud & a \\
| & \(SS_S \geq Z(a_1) - Z(a_2) \) \\
| & \\
\end{tabular}} \end{tabular}} |

\[4.2.4\] Srovnání optima v případě symetrických a asymetrických informací

Pro nalezení optima v případě asymetrických informací musí zmocněnec stanovit podmínku smluvní půjčivosti (aby mohl rozpoznat méně efektivní zmocněnce od více efektivního), naproti tomu u symetrických informací je podmínka smluvní půjčivosti nadbytečná. Aby si ale zmocněnec zaručil požadované pracovní nasazení, sjednává se zmocněncem ve smlouvě sankci pro případ, kdy by se zmocnilem požadované pracovní nasazení odlišovalo od zmocněncova skutečného pracovního nasazení.
Závěr 1: Není-li nutno dodržet podmínku smluvní přítažlivosti v případě asymetrických informací, pak je optimum Paretovým optimem a funkce odměny je identická pro symetrické i asymetrické informace.

Pokud není nutno dodržet podmínku smluvní přítažlivosti v případě asymetrických informací (je automaticky v optimu splněna), pak se výsledek neodlišuje v případě asymetrických i symetrických informací.

Toto je případ, kdy je zmocněnec rizikonetrální a zároveň zmocnitel je buď rizikonetrální nebo rizikoaverzní s preferencí menšího pracovního nasazení. Stejná situace nastane, jestliže jsou oba aktéři rizikoaverzní.

Je-li nutno splnit podmínku smluvní přítažlivosti v případě asymetrických informací, je nutno rozlišovat, zda jsou oba aktéři rizikonetrální nebo ne:

a) jsou-li oba aktéři rizikonetrální, potom má zmocnitel v případě symetrických informací větší výběr funkcí odměny než v případě asymetrických informací, které mu zaručují implementaci většího pracovního nasazení. Může zvolit i nápěť místo funkce odměny, která roste s vyšší výsledkem x, funkci odměny, která nezávisí na výsledku x.

Závěr 2: Je-li nutno dodržet podmínku smluvní přítažlivosti v případě asymetrických informací a jsou-li oba aktéři rizikonetrální, potom optimum je Paretovým optimem.

b) nejsou-li oba aktéři rizikonetrální, pak je pro srovnání optim v případě symetrických a asymetrických informací významný averzní postoj zmocněnce k riziku. Tato situace vede v případě neutralního postoje zmocněnce k riziku k dodržení podmínky smluvní přítažlivosti, v případě averzního k riziku je možné počítat s dodržením podmínky smluvní přítažlivosti. Bez ohledu na charakter informací bude zmocnitel vyžadovat vždy vyšší pracovní nasazení. Rozdíl je vidět v podmínkách optima

\[
\frac{dU}{d(x - YH^*(x))} = \mu_i^B + \mu_i^A \cdot \left[1 - \frac{1}{LR(x)} \right] \text{ v případě asymetrických informací}
\]

\[
\frac{dU}{d(x - \tilde{Y}(x))} = \tilde{\mu}_i^B \text{ v případě symetrických informací}
\]

Multiplikátory \((\mu_i^B), (\mu_i^A)\) a \((\tilde{\mu}_i^B)\) jsou konstantní a kladné. Protože předpokládáme, že \(\frac{dLR}{dx} > 0\), není Likelihood-ration LR(x) konstantní. Ze (4.149) vyplývá

Závěr 3: Je-li nutno dodržet v případě asymetrických informací podmínku smluvní přítažlivosti a nejsou-li oba aktéři rizikonetrální, pak optimum není Paretovým optimem.

Ze stejného důvodu nejsou funkce odměny \(YH^*(x)\) a \(\tilde{Y}(x)\) identické. Jaký je vztah mezi odměnami? Budeme předpokládat, že očekávaný úžitek zmocněnce v Paretově optimu (při symetrických informacích) musí být minimálně tak velký jako v optimu při asymetrických informacích:

\[
E[\tilde{Y} | \alpha_i] \geq E[U^* | \alpha_i] \quad \text{popř.} \quad \frac{1}{x} \left[\int U'(x - YH^*(x)) - U'(x - \tilde{Y}(x)) \right] dx | \alpha_i \geq 0
\]

Zmocnitel by mohl zvolit také v případě symetrických informací při nedodržení podmínky smluvní přítažlivosti funkci odměny \(YH^*(x)\), zvolil by \(\tilde{Y}(x)\), potom by se neměl změnit jeho očekávaný
užitek. V případě $Y_{H}^{*}(x) \equiv \tilde{Y}_{H}(x)$ by byla podmínka (4.151) splněna, ale tento případ, jak vyplývá ze srovnání (4.149) a (4.150), nemůže nastat. Do úvahy proto přicházejí dvě možnosti: buď platí $U(x - \tilde{Y}_{H}(x)) > U(x - Y_{H}^{*}(x))$ pro všechny x, tedy $\tilde{Y}_{H}(x) < Y_{H}^{*}(x)$ pro všechna x; nebo se funkce odměny protínají. Situace, kdy $\tilde{Y}_{H}(x) \geq Y_{H}^{*}(x)$ pro všechny x, nenastane. Pro diskusi dvou případů, které mohou nastat, je významný průběh funkce $LR(x) = \frac{\phi(x | a_{H})}{\phi(x | a_{L})}$. Bylo dokázáno, že $\phi(x | a_{H})$ a $\phi(x | a_{L})$ se protínají alespoň v jednom bodě. V tomto bodě je $LR = 1$. Protože předpokládáme, že $\frac{dLR}{dx} > 0$, může být tento bod pouze jeden.Existuje tedy pouze jeden bod (x_{LR}), pro který platí $\phi(x | a_{H}) = \phi(x | a_{L})$ popř. $LR = 1$. Průběh funkce $LR(x)$ je zachycen v obrázku 4.8.

Obrázek 4.8
Hidden action II

![Obrázek 4.8](image)

Převzato z (Reetz 2001: 508)

Pro funkce užitku zmocnitéle a zmocněnce tedy při vzájemně opačném postojí k riziku platí

(4.152)
\[U(x - \tilde{Y}_{H}(x)) \geq U(x - Y_{H}^{*}(x)) \Leftrightarrow \tilde{Y}_{H}(x) < Y_{H}^{*}(x) \]

\[U(x - \tilde{Y}_{H}(x)) < U(x - Y_{H}^{*}(x)) \Leftrightarrow \tilde{Y}_{H}(x) > Y_{H}^{*}(x) \]

\[\frac{dU}{d(x - \tilde{Y}_{H}(x))} \geq \frac{dU}{d(x - Y_{H}^{*}(x))} \Rightarrow \tilde{Y}_{H}(x) \geq Y_{H}^{*}(x) \]

\[\frac{dU}{d(x - \tilde{Y}_{H}(x))} < \frac{dU}{d(x - Y_{H}^{*}(x))} \Rightarrow \tilde{Y}_{H}(x) < Y_{H}^{*}(x) \]

\[R(\tilde{Y}_{H}(x)) \geq R(Y_{H}^{*}(x)) \Leftrightarrow \tilde{Y}_{H}(x) \geq Y_{H}^{*}(x) \]

\[R(\tilde{Y}_{H}(x)) < R(Y_{H}^{*}(x)) \Leftrightarrow \tilde{Y}_{H}(x) < Y_{H}^{*}(x) \]

a tedy

(4.153)
\[\frac{dU}{d(x - \tilde{Y}_{H}(x))} \geq \frac{dU}{d(x - Y_{H}^{*}(x))} \Rightarrow \tilde{Y}_{H}(x) \geq Y_{H}^{*}(x) \]

\[\frac{dU}{d(\tilde{Y}_{H}(x))} \geq \frac{dU}{d(Y_{H}^{*}(x))} \Rightarrow \tilde{Y}_{H}(x) \geq Y_{H}^{*}(x) \]
\[
\frac{dU}{d(x - \tilde{Y}_H(x))} < \frac{dU}{d(x - Y_H^*(x))} \iff \tilde{Y}_H(x) < Y_H^*(x)
\]

Varianta \(\tilde{Y}_H(x) < Y_H^*(x) \) pro všechny \(x \), znamená ze (4.149), (4.150) a (4.153)

\[
(4.154) \quad \tilde{\mu}_H^B = \frac{dU}{d(x - \tilde{Y}_H(x))} < \frac{dU}{d(x - Y_H^*(x))} = \mu_H^{B_+} + \mu_H^{A_+} \cdot [1 - \frac{1}{LR(x)}]
\]

tedy

\[
(4.155) \quad \frac{\tilde{\mu}_H^B - \mu_H^{A_+}}{\mu_H^{A_+}} < 1 - \frac{1}{LR(x)} \text{ pro všechna } x.
\]

Protože pravá strana nerovnice (4.155) mění znaménko v bodě \((x_{LR})\) a levá strana je konstantní, je varianta \(\tilde{Y}_H(x) < Y_H^*(x) \) možná pouze v případě, když \(\tilde{\mu}_H^B < \mu_H^{A_+} \).

Pro nalezení druhé varianty (kdy se mohou funkce odměny protinout) je významný sklon funkcí odměn. Z rovnice (4.111) pro \(i = H \) a (4.131) za dodržení předpokladu (4.108) \(\frac{dLR}{dx} > 0 \) dostaneme:

\[
(4.156) \quad \frac{dY_H^*(x)}{dx} = \frac{\sigma_\phi}{\sigma_\phi + \sigma_A} + \frac{1}{\sigma_\phi + \sigma_A} \mu_H^{A_+} \frac{dU}{d(x - Y_H^*(x))} \frac{dLR}{dx} > \frac{\sigma_\phi + \sigma_A}{\sigma_\phi + \sigma_A} \frac{d\tilde{Y}_H(x)}{dx} \geq 0
\]

Pokud je dodržena podmínka smluvní přitažlivosti \(\mu_H^{A_+} > 0 \), pak se mohou funkce odměny protinout nejvice jednou, protože \(\frac{dY_H^*(x)}{dx} > \frac{d\tilde{Y}_H(x)}{dx} \). Tedy existeuje bod \((x_i)\) (viz obrázek 4.9), kde platí \(\tilde{Y}_H(x) = Y_H^*(x) \) a platí

\[
(4.157) \quad \tilde{Y}_H(x) \geq Y_H^*(x) \iff x \geq x_i
\]

\(\tilde{Y}_H(x) < Y_H^*(x) \) \iff \(x < x_i \).
Obrázek 4.9
Hidden action III

\[y = Y^H_t(x) \]

\[x_t \]

Bod \((x_L, r)\) je determinován exogeně (vně) průběhem hustoty rozdělení pravděpodobnosti \(\phi(x | a) \). Zatímco bod \((x, r)\) – pokud existuje – může být určen optimalizací. Z rovnice

\[
\begin{align*}
\hat{\mu}^B_H &= \frac{dU}{d(x - Y^H_t(x))}(x_t) = \frac{dU}{dR}(x_t) \cdot \frac{d(x - Y^H_t(x))}{dY^H_t(x)}(x_t) = \mu^B + \mu^A \cdot \left[1 - \frac{1}{LR(x)} \right]
\end{align*}
\]

vyplývá

\[
(4.159)
\begin{align*}
\hat{\mu}^B_H &\geq \mu^B \Leftrightarrow x_t \geq x_L, \\
\hat{\mu}^B_H &< \mu^B \Leftrightarrow x_t < x_L
\end{align*}
\]

\(\hat{\mu}^B_H < \mu^B \) je nutná, ale ne postačující podmínka pro existenci průsečíku, protože zaručuje pouze \(Y^H_t(x) < Y^* \) pro všechna \(x \). Nerovnost \(\hat{\mu}^B_H \geq \mu^B \) zaručuje průsečík \((x_t)\), protože znamená \(Y^H_t(x) > Y^* \) pro všechna \(x \) a muselo tedy dojít k protnutí funkcí.

Závěr 4: Pokud se funkce odměny \(Y^H_t(x) \) a \(Y^* \) protínají, tak právě jednou. V intervalu, kde \((x)\) jsou větší hodnoty, je odměna v optimu při symetrických informacích menší než v případě optima při asymetrických informacích. Při menších hodnotách \((x)\) je vztah opačný.

Plátí-li \(\hat{\mu}^B_H \geq \mu^B \), potom se funkce protínají.

Je-li \(\hat{\mu}^B_H < \mu^B \), potom existuje možnost, že odměna v optimu při symetrických informacích je menší než v optimu při asymetrických informacích (funkce odměny se neprotnou).

Model zmocnění-zmocněnců představuje významné doplnění mezer v mikroekonomické analýze firmy. Metodologie a předpoklady je plně kompatibilní s neoklasickou teorií.
5. Postkeynesiánské modely firmy

Metodické srovnání postkeynesiánských modelů a neoklasické teorie:

Pro postkeynesiánské teoretické koncepty jsou typické následující přístupy k teorii firmy:
A. Striktně odmítají neoklasický předpoklad maximalizace zisku.
B. Důraz je kladen na význam nejistoty v chování subjektů.
C. Analýza se soustředí na rozhodování firm během výroby (neoklasická teorie se více zaměřuje na chování firmy na trhu výrobků).
D. Tyto modely mají jak mikroekonomické tak makroekonomické aspekty, které nelze striktně oddělit.
E. Zhodnotí se úloha instituce v ekonomice.
F. Pro vyjádření závěrů používají formalizovaný jazyk matematiky.

5.1 Kaleckého model přirážkové tvorby cen

Kaleckého model odmítá metodologii maximalizace zisku. Firma žije ve světě permanentní nejistoty, což se odráží i v tvorbě cen, proto nelze ani předpokládat, že by se firma pokoušela o maximalizaci zisku.

V Kaleckém modelu firma stanovuje ceny (P) na základě přirážky (mark-up pricing) k variabilním nákladům:

\[P = VC . (1 + z) \]

Přirážka (z) přidává částí zisk firmy.Variabilní náklady (VC) jsou původem konstantní pro běžně využívaná nainstalované kapacity. Při stanovování přirážky (z) firma přihlíží k cenám konkurentů a monopolizaci odvětví.

Model pracuje s následujícími hypotézami o chování firmy:

Hypotéza 1: Při konstantních variabilních nákladech je nabídka firmy dokonale elastická

Změny v poptávce vedou za předpokladu neměnných variabilních nákladů ke zvýšení nabízeného množství produkce, aniž by musely vzrůst ceny.

Hypotéza 2: Růst nákladů se převádí do růstu ceny

Dojde-li k růstu nákladů, firmy obvykle nemění (nesníží) přirážku (z), naopak zvyšují ceny.

Hypotéza 3: Při pozitivní technologické změně ceny zůstávají nepružné

Při poklesu nákladů (například díky technologickému pokroku), firmy nesnížují přirážku, naopak udržují nadále stejné ceny. Díky tomu firmy zvyšují nejen zisky ale i mzdy.

Závěry modelu jsou shromážděny na obrázku 5.1.
Zhodnocení modelu

M. Kaleckii používá metodu deskriptce a metodu verbální dedukce, kterou dochází k závěrům na základě předpokladů. Je otázkou, zda existuje signifikantní důkaz, že firmy v praxi tvoří ceny metodou mark-up pricing. Ve srovnání s manažerskými teoriemi Kaleckii řeší komplexnější problémy teorie firmy (problematika cen, vystupu, etc.). V tomto směru by Kaleckého model mohlo substituovat neoklasickou teorii firmy. Problémem ale zůstává statická průkaznost tvorbey cen přirážkou v praxi.

5.2 Eichnerův model tvorby cen s požadovanou mírou výnosu

V Eichnerově modelu jsou ceny tvořeny tak, aby firmy dosahovaly při daném normálním objemu produkce (standardním využívání instalovaných kapacit) požadovanou míru výnosnosti fixního kapitálu.

Požadovanou míru výnosnosti fixního kapitálu (r) je možné zapsat rovnicí

\[(5.2) \quad r = \frac{\pi}{K}\]

kde (\(\pi\)) je zisk a (K) je fixní kapitál.

Při tvorbě cen firma proto nejdríve odhaduje své standardní výrobní kapacity a na základě této informace stanovuje cenovou přirážku tak, aby přirážka pokryla fixní náklady a tvorbu rezervního fondu korporace.

Cena hradi variabilní náklady (VC) a přirážku k variabilním nákladům.

Formálně je možné princip tvorby cen zapsat následovně

\[(5.3) \quad P = VC + r \cdot \frac{K}{Q^*}\]

kde (VC) jsou variabilní náklady, (r) míra výnosnosti, (K) fixní kapitál, (Q\(^*\)) je normální objem produkce odpovídající standardnímu využívání instalovaných kapacit.
Hypotéza 1: Cenová přirážka je stanovena tak, aby pokryla fixní náklady a tvorbu rezervního fondu korporace.

Model pracuje s dvěma výrobními kapacitami:
1. technicky určenou kapacitou \(Q_M \), to je maximální výrobní kapacitou.
2. a standardní operací kapacitou \(Q_0 \), která stanovuje množství produkce, od kterého je vytížení výrobních kapacit optimální.

Obě kapacity jsou naznačeny na obrázku 5.2.

Obrázek 5.2
Eichnerův model I

Převzato z (Sojka 1999: 97), upraveno autorem

Předpoklad 1: Při standardním využití instalovaných kapacit (úsek od \(Q_0 \) do \(Q_M \) na obrázku 5.2) je nabídka firmy dokonale elastická.

Při dané ceně \(P_0 \), která hradí variabili náklady a zahrnuje požadovanou přirážku, je firma ochotna vyrábět jakýkoliv výstup.

Předpoklad 2: Průměrné variabilní náklady \((AVC) \) jsou v rozsahu optimálního vytížení kapacit konstantní. Při překročení výrobních možností \((Q_M) \) rostoucí.

Předpoklad 3: Eichner předpokládá, že průměrné fixní náklady \((AFC) \) jsou v úseku optimálního vytížení kapacit klesající, při překročení maximální kapacity \((Q_M) \) konstantní.

Předpoklad 4: Průměrný odvod do rezervního fondu korporace \((ACL) \) je v rozsahu optimálních kapacit klesající, při překročení maximální kapacity konstantní.

Rezervní fond korporace představuje pro firmu možnost financování investičních výdajů z vnitřních zdrojů. Tvorbou rezervního fondu je autonomní (nezávislá na výstupu), proto s rostoucím výstupem průměrný odvod do rezervního fondu korporace \((ACL) \) klesá.

Hypotéza 2: Při standardním využití kapacit je cena tvořena na základě principu tvorby cen s cílovou mírou výnosu.

Důkaz, že podmínka \(P \geq AC + ACL \) odpovídá principu tvorby cen s cílovou mírou výnosu:

Podle principu tvorby cen v tomto modelu musí cena hradit variabili náklady a přirážku. Přirážka musí pokrývat fixní náklady a tvorbu rezervního fondu korporace.
Při převodu principu na jednotku produkce budeme proto používat průměrné (jednotkové) validity: jednotková cena musí hradit průměrné variabilní náklady (AVC) a přirážku na jednotku produkce.

Přičemž přirážka na jednotku produkce kryje průměrné fixní náklady (AFC) a průměrný odvod do rezervního fondu korporace (ACL). Přirážka na jednotku produkce se tedy rovná AFC + ACL.

Formálně lze zapsat princip tvorby cen na jednotku produkce následovně:

\[(5.4) \quad P = AVC + (AFC + ACL) \]

Po úpravě dostáváme rovnici

\[(5.4a) \quad P = AC + ACL \]

Rovnice (5.4a) potvrzuje hypotézu 2.

V úseku optimálního vytížení kapacit (na obrázku 5.2 produkce od Q₀ do Q₀₀) cena (P₀) hradí minimálně průměrné náklady (AC) a průměrný odvod do rezervního fondu korporace (ACL), tedy odpovídá principu tvorby cen s cílovou mírou výnosu.

Hypotéza 3: Implicitní úroková míra je rostoucí funkce přirážky

Firma má dvě možnosti financování investic: buď vnější financování nebo vnitřní financováním z rezervního fondu korporace. Při vnějším financování investic firma platí za poskytnuté peněžní prostředky úrok. Pokud používá interiédro jedno financování musí uvažovat ztracenou příležitost z alternativního využití interiédroch zdrojů, která se vyjadřuje implicitní úrokovou mírou.

Zvýšení přirážky je jedinou cestou, jak si firma může obstarat interní zdroje financování investic za předpokladu, že vlastníci nejsou ochotni akceptovat nižší úroveň dividend.

Tento zdroj financování je spojen v Eichově modelu s následujícími nebezpečími:

1. substitučním efektou
 Při zvýšení ceny může část spotřebitelů ztratit zájem o produkci firmy.

2. nebezpečím vstupu konkurentů
 Růst cen zvyšuje pravděpodobnost vstupu nových konkurentů do odvětví.

3. hrozbou státních intervencí
 Zvýšení ceny může vyvolat protiopatření ze strany státu (například soudní žalobu a následný postih podle protimonopolních zákonů, zavedení cenové kontroly, etc.)

Tato nebezpečí se logicky odrazí v růstu implicitní úrokové míry, tedy v požadované výnosnosti vnitřních zdrojů. S větším nebezpečím spojeným s odvodem peněžních prostředků do rezervního fondu firma požaduje vyšší výnosnost vnitřních zdrojů (implicitní úrokovou mírou).

Hypotéza 4: Velikost přirážky je determinována úrokovou mírou (implicitní nebo komerční)

Na obrázku 5.3 jsou naznačeny dva zdroje financování. Horizontální přímka nabídky kapitálu odpovídá externímu financování za danou (neměnnou) úrokovou míru. Rostoucí nabídka kapitálu je ovlivněna hypotézu 3, kde vyšší tvorba rezervního fondu, je spojena s vyšším rizikem a tedy s vyšší očekávanou výnosností vnitřních zdrojů (implicitní úrokovou mírou).

Při poplatce po investicích D₁ bude firma využívat pro financování jen vnitřní zdroje. Naopak při vyšší poplatce po investicích D₂ bude kombinovat jak vnitřní tak vnější zdroje financování. Část kapitálu K₁ bude financována z vnitřních zdrojů, zbytek K₁ + K₂ bude kryt z externích zdrojů kapitálového trhu. V první situaci bude zisková přirážka stanovena tak, aby hradila implicitní úrokovou míru (vnitřníf rentní požadovanou úrokovou míru) i při vyšší poplatce po investicích firma stanoví cenu tak, aby přirážka kryla komerční úrokovou míru i₀.

Cena kapitálu se odráží v přirážce a v konečném důsledku v ceně produkce.
Obrázek 5.3
Eichnerův model II

Převzato z (Sojka 1999: 98), upraveno autorem

Zhodnocení modelu

5.3 Labinho model limitní tvorby cen

V Labinho modelu se firma snaží najít limitní cenu, která má za cíl odradit potenciální konkurenty od vstupu do odvětví popřípadě zlikvidovat současné konkurenty. Této cenové politice pak odpovídá i stanovení míry výnosu z fixního kapitálu (f) firmou.

Model pracuje s následujícími cenovými politikami:

1. cena s minimální ziskovou marží (P_{MIN})
Jedná se o cenu, která obsahuje nejmenší ještě přijatelnou míru výnosu pro firmu.

2. cena ochrany trhu (P₀)
Tato cena má zabránit potenciálním konkurentům ve vstupu na trh. Cenu ochrany firma stanovuje pod cenou s minimální ziskovou marží

\[
(5.5) \quad P_0 < P_{MIN}
\]

3. cena vyhnání konkurentů (P_E)
Cílem této cenové politiky je odchod konkurentů z odvětví.

A. krátké období

Jako taktiku pro odchod konkurentů firma použije cenu, která nehradí ani variabilní náklady

\[
(5.6) \quad P_0 < VC
\]
Firma může přežít v krátkém i dokonce v dlouhém období situací, kdy cena je pod úrovní celkových nákladů, kdy tedy dosahuje ztráty. Ale v podmínkách, kdy cena už nehradí ani variabilní náklady, se firma udrží „nad vodou“ jen krátce, protože ukončení činnosti ji přináší menší ztrátu než pokračování v činnosti. Firmy jsou tak nuceny odvětví opustit.

B. dlouhé období

V dlouhém období firma pro zlikvidování konkurentů může stanovit cenu jen na úrovni ceny ochrany trhu

\[(5.7) \quad P_E = P_C\]

Nerealizuji-li firmy v dlouhém období ceny, které hradí variabilní náklady a přírůstku, která kryje fixní náklady a minimální míru výnosu, dobrovolně odvětví opouští.

Hypotéza 1: cena s minimální ziskovou marží i cena vyhnání konkurentů klesá s velikostí podniku.

Model pracuje se třemi typy firem:

a) malá firma
Malé firmy mají v modelu nízkou produktivitu práce, vyrábí malý objem produkce, mají vysoké variabilní náklady i průměrné fixní náklady.

b) střední firma
Tyto firmy mají střední produktivitu práce, vyrábí střední objem produkce a mají střední variabilní náklady i průměrné fixní náklady.

c) velká firma
Naproti tomu velké firmy se těší velké produktivitě práce, vyrábí velký rozsah produkce a mají nízké variabilní i průměrné fixní náklady.

Limitní ceny (i.e. ceny s minimální ziskovou marží i cena vyhnání konkurentů) budou vyšší pro malou firmu. Naopak velká korporace bude schopna přežít při daleko nižší limitní ceně.

Jak firmy postupují při hledání limitních cen svých konkurentů?
1. Nařezení minimální požadované úrokové míry
Minimální požadovaná míra výnosu je determinována požadovanou úrokovou mírou (firemní nebo komerční).

V tomto ohledu model navazuje na závěr Eichrova modelu minimální požadované míry výnosu. Požadovaná úroková míra se bude lišit pro velkou, střední a malou firmu.

2. Stanovení cen s minimální ziskovou marží (P_{min})
Podle principu tvorby cen s minimální požadovanou mírou výnosu a se znalostí požadovaných úrokových měr tři firem lze pak získat ceny s minimální ziskovou marží pro malou, střední a velkou firmu.

3. Cena vyhnání konkurentů
Pokud se firem podaří získat i informaci o variabilních nákladech konkurentů, může firma jednoduše stanovit ceny vyhnání konkurentů pro velkou, střední a malou firmu.

Závěr 1: Rovnovážnou cenou je cena, která nevyvolává změnu struktury odvětví

Při této ceně nové firmy do odvětví nevstupují a stávající z něho neodcházejí. Naopak, když je cena nestabilní, dochází ke změnám (vystupují/vstupují) v odvětví.

Labíři ukazuje, že identická struktura odvětví může existovat i při několika rovnovážných cenách. Struktura odvětví se nemění při více variantách rovnovážných cen.

Tento závěr modelu zpochybňuje existenci jediné rovnovážné ceny v neoklasické teorii.

Hypotéza 2: Firma je při výrobě omezena svou technologií. Není schopna vyrábět spojitý objem produkce, jak předpokládá neoklasická teorie.
Model předpokládá, že firmy jsou při výrobě výstupu omezeny svou technologií. Firmy nemohou snižovat nebo zvyšovat rozsah produkce libovolně mimo technologicky dané rozmezí výrobní kapacity. Většina firem vyrábí sériově unifikovanou produkci, rozsah produkce se tedy nemůže zvyšovat nebo snižovat neomezeně, ale ve skočích tak, jak se do výroby zapojují nebo z výroby vyřazují technologické jednotky (například filiály, linky, atd.) Důsledkem je, že výroba nemůže flexibilně reagovat na změny v poptávce a dochází k výrobnímu „mezerám“.

Hypotéza 2 zpochybuje předpoklad neoklasické teorie, že rozsah produkce, se kterým firma efektivně vstupuje na trh nebo z trhu vystupuje, je zanedbatelně malý. Naopak Labiního model postuluje, že firma je schopna vyrábět jen v produkčních skočích.

Zhodnocení modelu

6. Institucionální pojednání firmy

Metodologická komparace neoklasické teorie firmy a institucionálních konceptů firmy:

A. Institucionální teorie firmy se zaměřují na chování velkých korporací (většinou se jedná o oligopolní tržní struktury). Zobecnější empirické poznatky o jejich chování (používají tzv. induktivně empirický přístup).

B. Institucionální koncepty zdůrazňují spojitost mezi institucionálním uspořádáním firm a prostředím, ve kterém korporace žije.

C. Institucionální teorie kladou důraz na historičnost sociálně-ekonomických procesů, které ovivnily současnou korporaci. Tvrdí, že moderní korporace žije v úplně jiném světě, než ve kterém žila firma v neoklasické teorii.

D. Institucionální pojednání se snaží do výkladu mikroekonomických jevů integrovat řadu kulturních, sociologických, politických a psychologických faktorů.

E. Institucionální teorie předpokládají, že v chování firmy se odrážejí nejistota. Dle institucionálních teorií korporace nejsou schopny odhadnout budoucí úroveň ekonomických veličin a neumí jim přiřadit racionální pravděpodobnostní hodnoty, jak postuluje neoklasická teorie.

F. Institucionální koncepty firmy odmítají zjednodušující přístup neoklasické teorie „racionálně se chovajících subjektů“. Motivace a chování subjektů jsou komplikovaně.

G. Institucionální pojednání firmy neguje neoklasické maximalizační chování ekonomických subjektů. Místo maximalizačního chování korporace usilují o strategii jednak zamezení vstupu konkurence do odvětví a jednak růstu korporace (mocenské pozice).

H. Institucionální firmy pro uskutečnění těchto strategií používá nástroje jednak tvoření cen a jednak aktivního boje s konkurencí.

6.1 Meansova teorie firmy

Hypotéza 1: Současná korporace uplatňuje politiku administrovaných cen.

Korporace v běžném cenovém období, které je definováno jako období s neměnnými cenami vstupů, určuje cenu a tuto cenu „administruje“ (sděluje) jednak zákazníkům a jednak konkurenci, pro nějž je informace o ceně stejně důležitá jako pro zákazníky. Korporace v administrovaném sektoru určuje cenu před vstupem na trh.

Korupce zároveň stanovuje politiku výroby, která upravuje množství výrobků, které dodá na trh v závislosti na změně poptávky při administrované cenie.

Jakmile korporace stanoví ceny, udržuje je neměnné. Při změně poptávky mění jen množství vyrobené produkce při daných cenách.

Ceny mění korporace pouze se změnou běžného cenového období, tedy jestliže růst nákladů překročí určitý přijatelný limit.

V Meansově konceptu změny ve vyrobeném množství nevedou k fluktuacím průměrných nákladů a neovlivňují tedy ani administrované ceny.

Předpoklad 1: V moderních korporacích jsou průměrné variabilní náklady konstantní.

Průměrné variabilní náklady tvoří významnou část průměrných nákladů.

G. C. Means předpokládá na základě empirických údajů, že průměrné variabilní náklady jsou neměnné s množstvím produkce a že tvoří podstatnou část průměrných nákladů, tedy že průměrné fixní náklady jsou v moderní korporaci nevýznamné.

Manažeři tak mohou pracovat se standardními jednotkovými celkovými náklady (standard average total cost, SATC), které jsou neměnné pro standardní (běžný) objem produkce a během běžného cenového období.
Hypotéza 2: Management nemění během běžného období ziskovou marži. Zisková marž je determinována cílovou mírou výnosu z kmenového jmění korporace.

V modelu při změně poptávky manažerů nemění během běžného období ziskovou marži. Ziskovou marži manažerů připočítávají ke standardním jednotkovým celkovým nákladům (SATC)

\[AP = (1 + \mu \cdot SATC) \]

kde (AP) je administrovaná cena, (\mu) je zisková přírůstka a (SATC) jsou standardní jednotkové celkové náklady.

Jak korporace postupuje při volbě míry výnosu z kmenového jmění?

1. Management stanovuje výši zisku, kterou chce docílit, aby si korporace zajistila prostředky a předpoklady pro přiměřený růst.
 Přiměřený růst odpovídá růstu, který neohrozí postavení korporace na trhu a je spojen s finančním zdravím.

2. Cílová míra výnosu z kmenového jmění korporace je pak volena s ohledem na zisk potřebný pro přiměřený růst.
 Míru výnosu management určí i podle stupně konkurencese v odvětví a s ohledom na ceny konkurentů.

Závěr 1: Cílová míra výnosu z kmenového jmění se nemůže měnit během běžného cenového období.

Závěr je odvozen na základě tvorby administrovaných cen a stanovení míry výnosu z kmenového jmění v modelu. V běžném období jsou ceny vstupů neměnné a míru výnosu korporace stanovuje s ohledem na postavení na trhu a ceny konkurentů, které budou v běžném období také neměnné. Při změně míry výnosu by korporace mohla ohrozit své postavení na trhu nebo své finanční zdraví.

Chování korporace lze proto v běžném období charakterizovat jako statické.

Hypotéza 2: Velké korporace reagují na změny nákladů zvýšením ceny. Zatímco ziskovou přírůstku mění pouze tehdy, pokud očekává, že změna poptávky je signifikantní a dlouhodobá.

Formulaci této hypotézy Means vyvozoval z empirické analýzy chování moderních korporací.

Grafické shrnutí modelu

Chování korporace v běžném období je možno vyjádřit individuální nabídkovou křivkou, která je horizontální. Korporace se schopna v rozmezí standardního objemu produkce vyrobit jakékoliv poptávané množství produkce.

V rámci standardního objemu produkce (SFRO) jsou standardní jednotkové celkové náklady konstantní (SATC). Administrovaná cena (AP) je tvořena připočítáním ziskové přírůstky (\mu) k jednotkovým celkovým nákladům (SATC).
Obrázek 6.1
Meansův model

Převzato z (Sojka 1999: 92)

Zhodnocení modelu

Pozitivně Meanysov modell je deskripce chování velkých korporací při stanovení cen a výstupu v oligopolní struktúre. Analýza oligopolní sektoru je poměrně komplikovaná i v neoklasické teorii firmy, a proto mikroekonomická teorie používá pro deskripci řady modelů. Ve srovnání s behavourálními a institucionálními modely G. C. Means odvozuje závěry na základě empirických údajů. Meanysova teorie by mohla doplnit modely, které analyzují oligopolní struktury.

6.2 Galbraithova teorie firmy

A. Teorie „vyvažující síly“

Dle J. K. Galbraitha mechanismus konkurence neoklasické teorie byl existenci oligopolů, monopolů a kartelu nahrazen mechanismem „vyvažující síly“: vznik monopolní síly na jedné straně trhu se transfereuje a vzniku monopolní síly na straně druhé. Realita dnešních ekonomiky je, že korporace často prodávají jiným korporacím a ne přímo zákazníkům (toto změnu neoklasická teorie opomíjí). Jako příklad J. K. Galbraith uvádí velký řetězec maloobchodů, který může nabídnout nízkou cenu spotřebiteli a to zvyšuje jeho monopolní pozici vůči několika dodavatelům. Přítomnost několika dodavatelů vyvolala koncentraci (reakci) na straně odběratelů tak, aby neutralizovaly jejich monopolní moc. Podobně by reagovaly výrobců na monopolní koncentraci na straně maloobchodu.
Závěr 1: Ceny na zmonopolizovaném trhu jsou pevně stanovené a dohodnuté.

V důsledku vzájemného působení neutralizujících se sil monopolů jsou pak ceny v moderní ekonomice pevně stanoveny a dohodnuté. Ceny v zmonopolizované ekonomice neplní už funkci alokace omezených zdrojů, jak předpokládá neoklásická mikroekonomie. V dnešní ekonomice se spíš jedná o jejich neformálně kontrolované rozdělování.

B. Teorie technostruktury

Pod pojmem technostruktura J. K. Galbraith označil rozhodovací elitu korporací, která de facto korporace ovládá. Elitu korporací tvoří specialisté na řízení a marketing, vedoucí výzkumu a vývoje. Technostruktura není identická s top managementem, její pojetí je širší a zahrnuje všechny, kteří tvoří „mozek“ korporace.

Hypotéza 1: Technostruktura má zájem na hospodářské stabilitě.

Moderní megakorporace, které používají nákladné technologické zařízení a disponují rozsáhlým fixním kapitálem, mohou hospodařit efektivně pouze ve stabilním prostředí. Technostruktura si uvědomuje, že její existence v korporaci je s hospodářskou stabilitou provázná. Na druhé straně znalostí a kompetencí technokratů jsou zdrojem jejich moci.

Hypotéza 2: Technokraté usiluji o stálý hospodářský růst

Technostruktura si uvědomuje, že prosperita korporace je závislá na růstu celé ekonomiky. Proto cílem jejich snažení je trvalý hospodářský růst.

Hypotéza 3: Odvětví megakorporací se v dnešní ekonomice chová jako plánovaný sektor.

Hlavní pozornost věnuji manažeři velkých korporací podle J. K. Galbraitha plánování svých aktivit. Dělají to proto, že se snaží minimalizovat životnost trhu. Tato skutečnost pak vede k tomu, že celé odvětví moderních megakorporací se chová jako plánovaný sektor. Tato tendence plánovaného hospodaření se pak prosazuje v celé ekonomice.

Hypotéza 4: Technostruktura sleduje osobní zájmy, které nemusí odpovídat maximizaci zisku.

Rozhodovací elita v korporaci má zájem sledovat osobní zájmy a pokud jim nejsou kladeny předkážky tak, jejich chování může být i destruktivní.

Osobní zájmy elity korporace jsou především:

a) zachování autonomie
 Aby si technostruktura zachovala svou autonomii, musí dosahovat určité míry zisku, a to jednak z obvodu výplaty přijatelné míry dividend pro akcionáře a tak i z důvodu vytváření dostatečného kapitálu pro obnovovací investice. Pokud by tomu tak nebylo, akcionáři se budou snášet zasáhnout, korporace bude muset financovat své investice z vnějších zdrojů. Toto představuje nebezpečí pro autonomii technostruktury.

b) růst tržeb
 Růst obratu je cílem všech skupin elity (viz hypotéza 2).

J. K. Galbraith postuluje, že vlastníci jsou bez významného vlivu v korporaci. A představenstvo je pasivním nástrojem managementu.

J. K. Galbraith ale počítá i s možností, kdy korporace bude maximalizovat zisk. V tomto případě by musela být maximalizace zisku i cílem technostruktury.
Závěr 2: Rozhodovací elita je ohrožena neočekávanými změnami v poptávce, nabídce a změnami vlastních cen nebo cen konkurence.

Jak se bude snážit technostruktura vyhnout těmto rizikům?

1. Nepružné ale vyvážené ceny

Pokud jsou ceny stanoveny, zůstávají neměnné po delší období tak, aby se zamezilo cenovým válkám ze strany konkurentů a z důvodu jednoduššího plánování aktivít korporace.

2. Ovlivňováním poptávky skrze reklamu
Technostruktura manipuluje poptávku skrze reklamu tak, aby zákazníci koupovali jimi požadované množství produkce a za neměnnou cenu, kterou považuje rozhodovací elita za vyváženou. Přestože technostruktura nemůže ovlivňovat poptávku absolutně, J. K. Galbraith postuluje, že ekonomika je bližší k suverenitě výrobce než spotřebitelů.

Hospodářská politika státu má za cíl stabilizaci agregátní poptávky, což činí rozhodovací elitě plánování aktivit jednodušším.

3. Technostruktura je nezávislá na vnější nabídce kapitálu, vzdělanou práci jí dodává stát.
Technostruktura může být v určité míře nezávislá na vnější nabídce kapitálu tím, že vytváří interní zdroje ze zadrženého zisku. Z tohoto důvodu nemusí omezovat své chování požadavky bank a investorů.

Důležitým vstupem pro korporaci je vzdělaná pracovní síla, kterou ji předána „vytváří“ stát. V tomto případě jsou zájmy státu a technostruktury shodné.

Zhodnocení modelu

6.3 Rotchildova teorie firmy
K. V. Rotchild ve své analýze zaměřuje pozornost na oligopolní trhy.

Rotchildův oligopol má tyto specifické vlastnosti:
1. Oligopol je v permanentním nebezpečí útoků ze strany ostatních konkurentů.
2. Oligopol disponuje určitou oligopolní mocí, a proto může ovlivňovat náklady i poptávku.

Hypotéza 1: Na většině trhů jsou ceny tvořeny jiným způsobem než na základě poptávky a nabídky.

V modelu K. V. Rotchild argumentuje, že převážnou část odvětví dnes nelze analyzovat na základě neoklasické přístupy rozboru poptávky a nabídky. Je tomu tak proto, že malý počet konkurentů bude mít tendenci zneužívat oligopolní postavení a bude stanovovat cenu jiným způsobem.

Závěr 1: Firmy touží po bezpečném zisku. Je to dokonce jeden z jejich hlavních cílů.

Tento závěr je důsledkem vlastností Rotchildova oligopolu: nebezpečí permanentního ohrožení ze strany konkurentů a oligopolní moci.
Tato snaha o bezpečný zisk je typická pro oligopolní strukturu. Monopol je na trhu jedinou firmou, a proto je jeho zisk bezpečný. Na druhé straně na trhu dokonalé konkurence panují tak dynamické podmínky, že je firma v dokonalé konkurenci nemůže ovlivnit a pouze se jím pasivně přizpůsobuje. Dokonale konkurenční firma využívá každé situace, která se jí nabízí, ale sama nemůže okolnosti ovlivnit. Oligopol disponuje určitou monopolní silnou, která mu umožňuje ochránit bezpečný zisk.

Hypotéza 2: Oligopol uplatňuje politiku nepružných cen. Důvodem je ochrana bezpečného zisku.

Při lich častými změnami cen se oligopol vystavuje nebezpečí odezvy ze strany konkurentů (maloobchodní válce) nebo může motovat nové firmy ke vstupu do odvětví. Proto se oligopol bude snažit udržet cenu neméněno co nejdéle to bude možné. Tomuto účelu bude přizpůsobovat reklamu, kvalitu, atd.

Jak Rothschildův oligopol stanovuje velikost fixní ceny?

Při stanovení ceny zohledňuje následující fakty:
1. Jednou z vlastností oligopolu je určitá oligopolní síla, kterou ale může uplatňovat jen v omezené míře ve svazích se monopolem.
2. Oligopol si uvědomuje, že při stanovování ceny se může pohybovat v intervalu, kde dolní hranici je cena, která by mohla vyvolat reakci konkurentů (maloobchodní válku), a horní hranici je cena, jež by motivovala vše stojící konkurenty ke vstupu do odvětví.
3. Cenu stanovuje i s ohledem na zákazníky (snaha o udržení dobrého jména) nebo reakcím na agresivní chování konkurentů.
4. Oligopol pracuje také s cenou, kterou vnímá jako minimální pro své setržení odvětví.

Konkrétní cena pak zohledňuje snahu oligopolu po bezpečí a odráží jeho částečnou monopolní sílu. K. V. Rothschild předpokládá, že v rámci těchto limitů a minim, oligopol bude usilovat o maximální zisk.

Hypotéza 3: Jinou cestou pro upevnění pozice oligopolu na trhu je jeho finanční síla, velikost, dopředná a zpětná integrace popř. politický vliv.

Oligopol používá především cenu, aby si upevnil svou pozici na trhu a zajistil si bezpečný zisk. Vedle cenové politiky bude Rothschildův oligopol upevňovat svou pozici i dalšími nástroji jako je finanční moc, růst firmy, dopředná a zpětná integrace.

Při dopředné integraci firma expanduje na trh výstupu, při sestupné integraci rozšiřuje svou činnost na trh vstupů. Rothschildův oligopol při dopředném růstu používá reklamu, aby vytvořil imunitu u svých zákazníků na případné invaze konkurentů. Při zpětné integraci se Rothschildův oligopol snaží získat kontrolu nad dodavateli vertikální integrace.

Rothschildův oligopol používá i neekonomické nástroje, konkrétně politické aktivity, kterými upevňuje svou pozici na trhu. Tyto aktivity zahrnují lobbying u vlády a zákazodavců ohledně tarifů, daní, získání vládních zakázek atd.

Z hodnocení modelu

Rothschildova teorie popisuje oligopol se specifickými vlastnostmi a model by tak mohl rozšířit neoklasické modely oligopolu. K. V. Rothschild však neodvozuje závěry na základě empirických údajů, ale na základě metody verbální dedukce z předpokladů.
6.4 Baranova a Sweezyho teorie firmy

P. Baran a M. Sweezy se ve své analýze zaměřují na vlastnosti moderní megakorporace:

1. manažerská revoluce
Manažerská revoluce v Baranově a Sweezyho konceptu ale není tak signifikantní jako v manažerských teoriích.

2. management má instinkt sebezáchovy
Management se snaží přiznat za každou cenu. Tomuto cíli pak plně podřizuje své chování.

3. manažerů usilují o finanční nezávislost
Finanční samostatnost management dosahuje vytvářením fondů ze zadrženého zisku. Tato varianta financování je dle Barana a Sweezyho manažery preferována před vnějším financováním.

Kritika: neoklasická teorie vnímá firmu příliš izolovaně

P. Baran a M. Sweezy se snaží analyzovat firmu v širším společenském a ekonomickém kontextu. Zdůraznění, že chování firmy nejež zůstává na problematiku determinace cen, výstupu, rozhodování o investicích, jak je tomu v neoklasické teorii.

Jejich kritika neoklasické teorie zahrnuje následující oblasti:

1. megakorporaci není možné vnímat jako podnik jednotlivce
Tento přístup odpovídá neoklasické teorii, která nepředpokládá oddělení vlastnictví od kontroly (manažerskou revolucí). Přesto Baranův a Sweezyho koncept postuluje, že není žádný rozpor mezi zájmy manažerů a vlastníků. Úspěch manažerů je derivován od úspěchu korporace, kterou řídí.

2. manažerů usilují o zisk, ale nedosahují maximálního zisku díky nedokonalým informacím
Megakorporace usiluje o co největší možný zisk kvůli její zmítanému instinktu sebezáchovy manažerů: zisk je spojen s odměnami, naopak neúspěch s postihy. Zisk má na žebříčku motivace manažerů top postavení.
Synonymem pro zisk v pojatí manažerů může být i úsilí o růst korporace, prestiž, etc.

3. moderní megakorporace dosahuje zisku efektivněji než jej dosahovala neoklasická firma
Megakorporace je schopna dosahovat zisku jednodušším díky technickému pokroku, specializaci, výnosům z rozsahu, etc. než malá firma.

4. manažerů maximalizují současnou hodnotu firmy
P. Baran a M. Sweezy interpretují maximalizaci zisku po manažerské revolucí jako maximalizaci současně hodnoty firmy. Tato současná hodnota firmy je zjednodušeně pojata jako současná hodnota současných a budoucích dividend.
Manažer řeší v tomto modelu dva problémy:
a) usilují o maximální nebo alespoň o co největší tok zisku
b) pak řeší problém jak tento zisk rozdělit mezi zadržený zisk a dividendy

Závěr 1: Větší akcionáři a manažeři svým chováním snižují současnou hodnotu firmy.

P. Baran a M. Sweezy postulují, že větší akcionáři a manažeři mají zájem na nižších dividendách a větším zadrženém zisku. Uvádějí tyto argumenty:
- manažeři preferují pozdější výplatu dividend ze zadrženého zisku do období, kdy budou vlastníky (např. uplatnění opětného práva na nákup akcií, nákup akcií v budoucnosti).
- dalším důvodem může být nižší sazba dané z kapitálové výnosu ze zadrženého zisku než dané z příjmu v případě dividend pro velké investory.
- manažeři mohou upřednostňovat výplatu zadrženého zisku v budoucnosti ve formě dividend, kdy budou pobírat účet.

Větší akcionáři a manažeři tak realizují růst korporace na úkor současné hodnoty korporace.

Zhodnocení modelu

Přínosem je analýza vlastností moderní velké korporace a deskriptce slabých míst v neoklasické teorii firmy. Model zabudovává závěry finančního managementu do chování manažerů. Slabým místem je absence jednoznačného, matematizovaného modelu a testování hypotéz.
7. Wardův model

Model analyzuje specifickou situaci, kdy vlastníci jsou i jedinými zaměstnanci firmy.

Wardův model je formulován za následujících předpokladů:
1. všichni pracovníci jsou stejně talentováni, jejich práce je tedy identická.
2. vlastníci se podílí na zisku ekviproportičně.
3. firma nevlastní žádný kapitál, ale půjčuje si jej za tržní cenu.
4. na trhu práce i kapitálu předpokládáme dokonalou konkurenci.
5. firma vytráví pouze jeden výrobek.
6. firma má postavení nedokonalého konkurenta a ovivíuje cenu produkce.
7. budeme předpokládat, že poptávka po produkcii firmy je klesající přírůstek.
8. jenoduhovým předpokladem pro formulování modelu je předpoklad klesajícího průměrného i mezniho produktu práce (důsledky tohoto předpokladu budou zdůrazněny v textu).

Maximalizace příjmu na vlastnika

Ve Wardově modelu se počítá s tím, že zaměstnanci řídí firmu společně a rozhodnutí jsou přijímány demokraticky. Abychom odstranili nebezpečí neefektivnosti, zpomalení popř. zablokování tohoto interního rozhodování, budeme předpokládat, že řízení firmy lze rozdělit na dvě části: exekutivní a strategické. Majitelé si ustanoví úroveň řad manažerů, který disponuje autoritou realizovat okamžité strategické rozhodnutí, na kterých se majitelé společně dohodli.

Majiteli v tomto modelu mají odlučné cíle od vlastníků v neoklasické firmě. Majitelé nebudou chtít maximizovat zisk, ale jejich cílem bude maximalizace příjmu na vlastnika.

Příjem na vlastnika (y) zapíšeme ve tvaru

\[(7.1) \quad y = w + \frac{\pi}{L}\]

kde w je plat, \(\frac{\pi}{L}\) je zisk na jednoho vlastnika.

Funkce zisku má běžný tvar

\[(7.2) \quad \pi = P \cdot Q - w \cdot L - rK\]

kde P je cena, Q výstup, v mzda, L počet zaměstnanců, r cena kapitálu, K je kapitál.

Dosadíme-li rovnici zisku (7.2) do rovnice příjmu vlastnika (7.1), získáme po úpravě

\[(7.3) \quad y = \frac{PQ - rK}{L}\]

Z rovnice (7.3) vyplývají dva důležité závěry:

Závěr 1: Příjem na vlastnika ve Wardově modelu je determinován počtem spolupracovníků

Příjem na vlastnika v zaměstnanecké firmě závisí na počtu spolupracovníků. Neoklasická firma počítá pouze s abstraktním ziskem celé firmy, zisk firmy v neoklasické teorii tedy není počtem vlastníků determinován.

Závěr 2: Mzda vlastnika neovlivňuje jeho chování

Výše mzdy neovlivňuje příjem na vlastnika (y), není tedy pro jeho chování signifikantní.
Chování firmy při fixním kapitálu

Jaký výstup bude vyrábět firma, pokud bude v krátkém období disponovat fixním množstvím kapitálu?

a) Analytické řešení

V krátkém období (tedy při limitovaném kapitálu) bude firma pracovat s produkční funkcí ve tvaru

\[Q = f (L, K_i) \]

kde \(Q \) je výstup, \(K_i \) je fixní kapitál, \(L \) je počet zaměstnanců Wardovy firmy.

Derivujeme-li rovnici (7.3) příjmu vlastníka podle práce (L) při zohlednění krátkodobé produkční funkce (4), dostaneme

\[\frac{\partial y}{\partial L} = \frac{1}{L^2} \left(L \cdot P \cdot \frac{\partial Q}{\partial L} - P \cdot Q + r \cdot K_i \right) = 0 \]

Rovnici (7.5) upravíme do tvaru

\[\frac{P \cdot \frac{\partial Q}{\partial L}}{L} = \frac{P \cdot Q}{L} - \frac{rK_i}{L} = y \]

Kolektiv vlastníků může rozšířovat firmu o další partnery, pravidlo, které při tomto rozhodování použije, je vyjádřeno rovnicí (7.6). Vlastníci budou rozšiřovat firmu o další partnery pouze, pokud noví partneři budou zvyšovat příjem každého z vlastníků (y). Maxima průměrného příjmu na vlastníka (y) dosáhne, když se příjmy na vlastníka (y) budou rovnat měrní příjmu z produktu práce (levá strana rovnice 7.6).

Alternativně se dá problém rozšířování firmy o další partnery vyjádřit následovně. Vlastníci budou rozšiřovat firmu o další partnery, pokud noví partneři zvýší více tržby na vlastníka \(G = \frac{P \cdot Q}{L} \) než náklady na vlastníka \(\left(F = \frac{rK_i}{L} \right) \).

Kolektiv vlastníků proto bude zvyšovat počet partnereň, dokud se

\[\frac{\partial G}{\partial L} = \frac{\partial F}{\partial L} = 0 \]

Dá se analytickým okamžitě, že podmínka (7.7) vyjadřuje optimální chování partnereň ohledně maximálního příjmu na vlastníka (podmínku 7.6).

Důkaz

Derivace G podle L má tento tvar

\[\frac{\partial G}{\partial L} = \frac{L \cdot P \cdot \frac{\partial Q}{\partial L} - P \cdot Q}{L^2} = \frac{1}{L} \left(P \cdot \frac{\partial Q}{\partial L} - P \cdot \frac{Q}{L} \right) \]

Sklon křivky tržeb na vlastníka závisí na vztahu mezi mězním příjmem z produktu práce \(P \cdot \frac{\partial Q}{\partial L} \) a průměrným příjmem z produktu práce \(P \cdot \frac{Q}{L} \).

A derivace F podle L je

97
(7.9) \[\frac{\partial F}{\partial L} = \frac{-rK}{L^2} \]

Z derivace (7.9) vyplývá, že sklon křivky fixních nákladů na vlastníka klesá s více partnery (L).

Příjem na partnera bude maximální při dodržení podmínky (7.7)

(7.7) \[\frac{\partial G}{\partial L} = \frac{\partial F}{\partial L} \]

Dosazením derivací do rovnice (7.7) dostaneme

(7.10) \[\frac{1}{L} \left(P \cdot \frac{\partial Q}{\partial L} - P \cdot \frac{Q}{L} \right) = \frac{-rK}{L^2} \]

Úpravami dostaneme

(7.11) \[P \cdot \frac{\partial Q}{\partial L} = y \]

která je identická s rovnicí (7.6).

b) Grafické řešení

Při konstrukci křivek vyjde z předpokladů modelu:
- celkové náklady jsou dány pouze vyšší fixní náklady (FC = r \cdot K_0)
- vlastníci jsou jedinými zaměstnanci jsou jedinými zaměstnanci (nemají žádné pracovní náklady), a proto v modelu nepracujeme s variabilními náklady.
- funkce příjmů z práce (TR) roste klesajícím tempem

Tvar funkce je determinován předpokladem klesajícího mezního i průměrného produktu práce. Podle tohoto předpokladu sklon tečny ke křivce příjmů musí klesat.

Obrázek 7.1
Wardův model: chování firmy při fixním kapitálu

Převzato z (Soukup 2001: 111), upraveno autorem
Geometrickým ekvivalentem příjmu na vlastníka (y) je sklon přímky vedené z průsečíku fixních nákladů (FC) s osou y k křivce celkových příjmů (TR). Příjem na vlastníka (y) je maximální v bodě, kde přímka je tečnou ke křivce celkových příjmů (TR). Vzdálenost AB vyjadřuje příjem podle odčetku fixních nákladů.

Geometrická analýza potvrzuje analytickou analýzu (rovnic 7.7): v bodě A a v bodě B se rovnají sklon přímky vedené z průsečíku fixních nákladů s osou y (pravá strana rovnice 7.7, vyjadřující sklon přímky přímý na vlastníka C) a sklon přímky z počátku k přímce fixních nákladů (levá strana rovnice 7.7, vyjadřující sklon fixních nákladů na vlastníka F). V L* partneri proto dosahují maximálního příjmu na vlastníka (y).

Srovnání firmy maximizing příjem na vlastníka a firmy maximizing zisk

Závěr 3: Zaměstnanecká firma nereaguje na změnu mzdové sazby

V obrázku 7.2 je zakreslen příjem na vlastníka (rovnice 7.3), který má inverzní U-tvar. Tvar příjmu na vlastníka je determinován sklonem přímky z průsečíku fixních nákladů s osou y ke křivce tržeb na obrázku 7.1. Tento sklon nejvíce roste a po dosažení maxima klesá. Mezní příjmy z produktu práce (MRP) protínají příjem na vlastníka v maximu. Jedná se o důsledek rovnic 7.6, ze které vyplývá, že maxima příjmu na vlastníka (y) partneri dosahují, pokud se v rovné mezní příjme z produktu práce.

V obrázku 7.2 jsou zakresleny různé úrovně mzdy a reakce neoklasiscky firmy. Neoklasiscká firma maximalizuje zisk na trhu práce při dodržení podmínek rovnosti mezních příjmů z produktu práce (MRP) a mezních nákladů na faktor práce (MFC = w), které se v dokonalé konkurenci rovnají mzdové sazbě (w).

Obrázek 7.2
Warduš model: trh práce

Z grafické analýzy vyplývá, že neoklasiscká firma musí odpovídat na změnu mzdové sazby (při růstu mzdy poklesne najímané práce a naopak), aby maximalizovala zisk.

Počet zaměstnanců (vlastníků) je ve Wardově modelu determinován maximálním příjmem na vlastníka (y). Wardova firma na obrázku 7.2 by proto zvolila vždy počet vlastníků (zaměstnanců) na úrovni L2 bez ohledu na výši mzdy.

Jaké anomálie vyplývají z chování firmy řízené zaměstnanci na trhu práce?

a) v případě ztráty bude pracovat více partnerů
Při záporném zisku musí být mzda \((w)\) vyšší než příjem na vlastníka \((y)\), jak vyplývá z rovnice 7.1. Tento situaci odpovídá na obrázku 7.2 mzdová sazba \((w_t)\).

Wardova firma bude mít tendenci zaměstnávat více partnerů \((L_1 < L_2)\) a tím i více vyrábět než neoklasická firma. Důvodem je rozdělení ztráty mezi více partnerů.

Toto chování vysvětluje vyskyt většího počtu firem řízených zaměstnanci v upadajících sektorech i jejich „přezaměstnanost“.

b) při kladném zisku bude pracovat méně partnerů

Abysta firma realizovala kladný zisk musí být mzda \((w_2)\) nižší než příjem na vlastníka \((y)\), jak vyplývá z rovnice 7.1. V těto situaci bude zaměstnanecká firma uplatňovat restriktivní přístup k zaměstnanosti proti neoklasické firmy \((L_2 < L_3)\) a zaměstnávat méně partnerů.

Závěr 4: Wardova firma má atypickou klesající nabídkovou křivku

Firma nabízí v krátkém období s rostoucí cenou méně výstupu.

Zaměstnanecká firma by usilovala přirozeně o co nejmenší počet partnerů (podle to by bylo možné jen jedno) za účelem zvýšení příjmu na vlastníka \((y)\), jestliže by nebyla vystavena omezení fixních nákladů. Fixní náklady nutí firmu rozšířovat řady partnerů, protože fixní náklady na vlastníka klesají s větším počtem s partnerů. Rovnováha je ustanovena, když mezni výhoda z nárůstu příjmu na vlastníka se rovná mezni nevýhodě z nárůstu fixních nákladů na vlastníka v důsledku snížení počtu partnerů.

Nárůst ceny sice neovlivňuje mezni nevýhodu z poklesu počtu partnerů na druhé straně rostoucí cena navýšuje mezni přínos tím, že se zvyšuje příjem na vlastníka pro jakýkoliv počet partnerů. Toto uvolnění z omezení fixních nákladů, vede Wardovu firmu ke snížení partnerů tedy i produkce při zvýšení ceny. Z tohoto důvodu je nabídková křivka firmy řízené zaměstnanci klesající.

Analytické potvrzení klesajícího tvaru nabídkové křivky Wardovy firmy je v matematickém dodatku 7.1.

Závěr 5: Firma usiluje o co nejmenší počet partnerů

Příjem na vlastníka roste s menším množstvím partnerů, omezením pro firmu jsou ale fixní náklady, jak bylo zmíněno v předchozím textu.

Wardova firma při volbě počtu partnerů zvažuje dva efekty: dopad změny partnerů na mezni příjem na vlastníka a efekt na mezni fixní náklady na vlastníka. Větší počet partnerů snižuje na jedné straně negativně mezni příjmy na vlastníky, na druhé straně snižuje pozitivně mezni náklady na vlastníka. Pokud pozitivní změna převáží negativně, okruh partnerů Wardovy firmy se rozšiřuje a napak. Přirozeně bude Wardova firma usilovat o co nejmenší počet partnerů.

Závěr 6: Na růst fixních nákladů reaguje Wardova firma zvýšením počtu zaměstnanců

Vzrostlé například cena kapitálu \((z_{r_0} na r_i)\), který si firma podle předpokladu připojuje, zvyšují se ji fixní náklady. Wardova firma musí tedy reagovat na změnu fixních nákladů na zaměstnanci zvýšením počtu partnerů. Tento krok sniží zpět fixní náklady na zaměstnance.

Na obrázku 7.3 je naznačena reakce Wardovy firmy na růst fixních nákladů. Firma musí zvýšit počet zaměstnanců, aby při změné fixních nákladů maximalizovala příjem na vlastníka \((y)\).
Obrázek 7.3
Wardův model: variabilní kapitál

Pro srovnání neoklasická firma by při změně fixních nákladů neměnila výstup a tedy ani zaměstnанost. Pro maximizaci zisku firma dodržuje podmínku rovnosti mezních nákladů a mezních příjmů. Neoklasická firma proto reaguje pouze na změnu variabilních nákladů, které ovlivňují mezní náklady.

Nabídková křivka v dlouhém období

V dlouhém období jsou flexibilní jak kapitál tak i práce. Úvahy týkající se nabídkové křivky v dlouhém období budou prováděny za předpokladu neexistence vstupů popř. výstupů z odvětví.

Wardova firma i v dlouhém období maximalizuje průměrné příjmy \(y \), ale pro dlouhodobou produkční funkci:

\[
y = \frac{P \cdot Q}{L} \cdot \frac{rK}{L}
\]

kde

\[
Q = f(K, L)
\]

Podmínky determinující optimální volbu kapitálu i práce, při kterých Wardova firma bude maximalizovat průměrné příjmy \(y \), získáme položením parciálních derivací rovnice nule.

\[
\frac{\partial y}{\partial L} = \frac{1}{L^2} (L \cdot P \cdot \frac{\partial Q}{\partial L} - P \cdot Q + r \cdot K) = 0
\]

\[
\frac{\partial y}{\partial K} = \frac{1}{L} (P \cdot \frac{\partial Q}{\partial K} - r) = 0
\]

Podmínka (7.5a) je identická s podmínkou (7.5) pro volbu partnerů v případě fixního kapitálu. Podmínka (7.13) je identická s podmínkou volby kapitálu, pro firmu maximizující zisk (podmínka se dá upravit do tvaru: mezní příjmy z produktu kapitálu se rovnají ceně kapitálu). Záměna proměnné při maximizaci (průměrného příjmu \(y \) místo zisku) tedy ovlivňuje pouze volbu práce, ale ne volbu kapitálu.

Protože zaměstnanci jsou vlastníky, ziskávají tak celý tok zisku (viz rovnice 7.1). V zaměstnanecké firmě nezůstává proto žádný Nerozdělený zisk.
Rovnice (7.5a) a (7.13) lze upravit do tvaru

\[(7.5a') \quad P \cdot \frac{\partial Q}{\partial L} = \frac{PQ}{L} - \frac{rK}{L} = \gamma \]

\[(7.13') \quad P \cdot \frac{\partial Q}{\partial K} = \tau \]

Z rovnice (7.5a') a (7.13') vyplývá, že „odměna“ (včetně podílu zisku na faktor práce) každého z faktorů odpovídá jeho meznímu příjmu. Jedná se o analogickou situaci firm, maximalizujících zisk na trhu faktorů (mezní příjmy se rovnaměně ceně vstupu). Zároveň Wardova firma jako celek nemá žádný zisk, protože celý zisk je distribuován partnerům. Mikroekonomická teorie implikuje v rovnováze lineární homogenní produkční funkci, pokud jsou faktory placeny právě mezním příjmem z produktu daného faktoru a zisk firmy je roven nule. Přičemž lineární produkční funkce je spojena s konstantními výnosy z rozsahu. Pokud předpokládáme běžnou produkční funkci s rostoucími, konstantními a klesajícími výnosy z rozsahu, dosahuje Wardova firma dlouhodobé rovnováhy v miním průměrných nákladů.

Jak vyplývá z obrázku 7.4, zaměstnancová firma bude vyrábět v minimu průměrných nákladů \((Q^*)\), kde dosahuje konstantních výnosů z rozsahu. Při ceně \((P_1)\) bude chování neoklasické firmy a Wardovy firmy totožné, obě budou vyrábět stejný výstup \((Q^* = Q_c)\) a dosahovat nulového zisku. Ale při ceně vyšší \((P_2)\) vyrábí firma maximalizující zisk výstup \((Q^*_c)\), avšak zaměstnancová firma bude vyrábět stále výstup \((Q^*)\). I zaměstnancová firma dosahuje vyššího zisku, který zvyšuje příjmy na zaměstnance \((\gamma)\), protože zisk bude vyplácen zaměstnancům. Dlouhodobá nabídková křivka Wardovy firmy je proto vertikální (absolutně neelastická).

Obrazek 7.4
Wardův model: nabídková křivka

![Diagram](image_url)

Převzato z (Laidler, Estrin 1999: 299), upraveno autorem
Situace volných vstupů do odvětví

Cílem zaměstnanecké firmy je maximalizace příjmu na vlastníka (\(y \)). Maximalizace příjmu na vlastníka (\(y \)) bude motivem i chování jednotlivců. Za předpokladu nulových nákladů na vstup a odchod firmy ze sektoru budou mít partneři zájem vstupovat do odvětví, kde by mohli dosahovat vyššího příjmu na vlastníka a naopak opouštět sektory, ve kterých příjem není příliš vysoký.

Jak vyplyvá z rovnice (7.1) příjem na vlastníka (\(y \)) závisí na zisku dosahovaném v sektoru

\[
y = w + \frac{\pi}{L}
\]

Příjem na vlastníka (\(y \)) bude vyšší než mzda, jestliže zisk je kladný a naopak nižší v případě ztráty. Z tohoto důvodu zaměstnanecké firmy budou vstupovat do odvětví, kde by firmy maximalizující zisk dosahovaly kladného zisku. Naopak budou opouštět sektory, kde by firma maximalizující zisk dosahovala ztráty. Jedná se tedy o identické podmínky, za kterých by neoklasicá firma měla zájem vstupovat nebo odcházet z odvětví.

Tvar dlouhodobé nabídkové křivky by se změnil, pokud bychom nepředpokládali nulové náklady založení a ukončení činnosti firmy. Dlouhodobá nabídková křivka odvětví by byla v tomto případě neelastická.

Zhodnocení modelu

Přínosem Wardova modelu je doplňující popis chování firmy, kde vlastníci jsou jedinými zaměstnanci. Neoklasicá teorie nevěnuje tomuto případu pozornost. Jak vyplyvá z Wardova modelu, firma, ve které pracují pouze vlastníci, vykazuje řadu specifik ve srovnání s neoklasickou firmou. Model dochází k závěrům přesnou matematicko-grafickou metodou a je z hlediska použitých nástrojů a stejného předmětu zkoumání (determinace výstupu, ceny, nabídka firmy a odvětví) do neoklasicke teorie firmy plně aplikovatelný.
Část III.

Přínosy alternativních teorií firmy pro současnou mikroekonomii

8. kapitola Vylučují změny předpokladů maximalizaci zisku?
9. kapitola Závěr
8. Vylučují změny předpokladů maximalizaci zisku?

Většina alternativních konceptů zdůrazňuje, že po změně podnikového prostředí a tedy neplatnosti některých předpokladů, na kterých je neoklasická teorie vybudována, firma jednak nemůže maximalizovat zisk (například kvůli permanentní nejistotě, morálnímu hazardu ve vztahu zmocněného a zmocněného) a také zisk ani maximalizovat nechce (například firmy řízené manažery mají jiné motivy než je maximalizace zisku). Naopak fundamentálním předpokladem neoklasické teorie je maximalizace zisku firmou. Zjednodušeně by se dal spor mezi alternativními koncepty a neoklasickou teorií firmy převést na spor o maximálníci zisku. V následujícím textu je pozornost věnována tomuto sporu.

Má firma možnost maximalizovat zisk?

Neoklasická teorie postuluje, že firma zná svou ziskovou funkci, která ji nabízí libovolný zisk při libovolném výstupu. Ona si samozřejmě volí tento výstup, při kterém dosahuje maximálního zisku.

Alternativní koncepty zpochybnují tento přístup, následující kritiku:

1. Je firma schopna obdržet úplné informace o své ziskové funkcii?

Pokud má firma dostatečné informace o své poptávce, nákladech a pokud jsou náklady na změnu výstupu nulové, pak firma může zvolit výstup odpovídající maximálníci zisku.

V tržních strukturách monopolu a dokonalé konkurence by firmy měly být schopny maximalizovat zisk, pokud mají úplné informace o svých nákladech a poptávce. Schopnost maximalizovat zisk bude ohraněna, jestliže existuje nedostatek informací o poptávce a nákladech nebo změna výstupu je spojena se změnou nákladů.

Problém je v tom, že typickou tržní strukturou dnešní ekonomiky je oligopol. Oligopol nepotřebuje znát jen poptávku a náklady, ale potřebuje i umět předpovídat chování konkurentů.

2. Nejistota vylučuje maximálníci zisku.

Proč oligopol neumí předpovídat chování konkurentů?

V dynamicky měnícím se prostředí, má oligopol minimální šanci uchovat vynaložené zareagovat a v momentě reakce může být situace už zase jiná. Proto bude většinou oligopol maximalizovat očekávaný zisk, který zahrnuje pravděpodobnost jednotlivých variant.

Z hlediska mikroekonomické teorie by firma maximálnívala zisk ve světě rizika pouze, pokud by její postoj k riziku byl rizikoneutrální. V tomto případě se spojí s očekávaným výsledkem (očekávaným ziskem). Což je velmi nereálný předpoklad.

Z těchto dvou důvodů většina alternativní konceptů zpochybnuje schopnost firmy maximalizovat zisk.

Umí firma maximalizovat jakoukoliv veličinu (např. růst, tržby)?

Část alternativních teorií zpochybnuje přístup manažerských konceptů, které nahrazují maximalizaci zisku maximalizací jiných veličin (tržeb, růstu, etc.)

Argumentují, že firmy se neadaptují nové situaci ihned, ale naopak nové situaci se přizpůsobují postupně. Jinými slovy firmy neskočí přímo do maximalizace dané veličiny, jak předpokládají manažerské teorie, ale posouvá se do pozice maximalizace postupně. Například při maximalizaci tržeb (v Baumolově modelu) firma mění cenu a reklamu, analyzuje efekty na tržbě a na zisk jako omezení. Pokud se tržby posouvají žádoucím směrem a nebyla stále porušena podmínka minimálního zisku, firma bude pokračovat ve změnách, etc.

Aby se firmy dostaly postupně do maximizační pozice:
- musí být prostředí stabilní
- varianty, které firmy zvažují musí být omezené.
Chce firma vůbec maximalizovat zisk?

Manažerské teorie zpochybňují zájem samotné firmy maximalizovat zisk. Manažerské teorie postulují na místo maximalizace zisku jiné cíle, které manažerňi díky oddělení vlastnictví a řízení mohou sledovat.

Zpochybnění významu manažerské revoluce na cíle firmy:

1. Manažerské teorie: většina akcionářů hraje pasivní roli v moderních firmách.

To nemusí ale přímo znamenat přenášení neomezené kontroly nad firmou manažerům. Mohou existovat jedinci (i s menším podílem), kteří mají zájem na řízení a budou aktivně prosazovat skrze představenstvo své představy ohledně dividend, investic, atd.

V moderních firmách se manažerňi stávají akcionáři a to podstatně méně jejich chování než předpokládali manažerské teorie. Podstatná část jejich příjmů ziskávají z akcii řízením, pro kterou pracují. Manažer a vlastník v jedné osobě bude srovnávat zvýšení mzdy s poklesem dividend a zisku, které jeho chování vylučuje. Například v Baumolově modelu manažerňi mají tendenci zvyšovat obrat (při dodržení podmínek minimálního požadovaného zisku). Motivem je nározný jejich mez. Jak se změní jejich chování, pokud předpokládáme, že vlastní akcie firmy? V této situaci nebude maximalizovat tržby, ale budou porovnávat zvýšení mzdy s poklesem dividend a zisku, které je spojeno s jejich vlastnickými právy.

Bude i velký rozdíl mezi chováním manažera, který se stal následně akcionářem a vlastníkem, který začal řídit společnost. V prvním případě se bude stylové práce bližší manažerskému stylu. V druhém případě nebudou pravidelně příliš velký rozpor mezi jeho cíli a ostatních vlastníků.

Vlastnická práva manažerů částečně zpochybňuje předpoklad maximalizačního chování manažerů tak, jak je předpokládají manažerské koncepty.

Manažerské přístupy předpokládají, že institucionální investoři díky diverzifikaci jejich portfolia, z velké části nevykonávají aktivně vlastnická práva. Což postupuje kontrolo manažerů nad firmou.

Na druhé straně pokud se rozhodne část institucionálních akcionářů spolupracovat, mohou prosadit zásadní změny ve firmě. Tato skutečnost zpochybňuje argument manažerských konceptů.

Argumenty proti a evidence o významu manažerské revoluce nedávají jednoznačnou odpověď o maximalizačním chování firmy.

Může být firma donucena maximalizovat zisk? Hypotéza nulového ekonomického zisku v dokonalé a monopolistické konkurenci.

Neoklasická teorie pracuje s hypotézou, že firma v dokonalé a monopolistické konkurenci je donucena maximalizovat zisk, pokud chce na trhu přežít.

Alternativní koncepty zpochybnují hypotézu těmito argumenty:

1. Zpětná integrale

V reálně se firma více orientuje ohledně setrvalé v sektoru v dlouhém období podle účetního zisku než ekonomického. Pokud firma vlastní některé nebo všechny dodavatelské firmy, bude v dlouhém období ochotna setrvat v sektoru i pokud její ekonomický zisk je pod úrovní „normálního“ zisku, ale účetní zisk zůstává kladný.

Při zpětné integraci firmy nejsou donuceny maximizovat zisk, protože nejsou vytlačeny ze sektoru v případě zisku nižšího než „normální“ úroveň. Neoklásická teorie, předpokládá, že firma nemá zájem zůstávat v odvětví, jestliže realizuje záporný ekonomický zisk.

Pouze při „normální“ úrovni zisku je firma nucena, jestliže chce zůstat v sektoru, maximizovat zisk.

2. Vstup do odvětví je dán vnímáním ekonomického zisku potenciálními konkurenty

Neoklásická hypotéza nulového ekonomického zisku explicitně vede k závěru, že při „normální“ úrovni zisku potenciální konkurenti neprojevují zájem o vstup do odvětví.
Na podobném předpokladu jsou založeny institucionální modely firmy, které předpokládají, že firma stanoví ziskovou přírůstku v případě ohrozit potenciálními konkurenty tak, aby je od eventuálního vstupu odradila. Tedy na úroveň „normálního“ zisku.

Problém je ale v tom, že úroveň „normálního“ zisku může odpovídat představě potenciálního konkurenta o zisku a přesto do sektoru vstoupí.

Může být firma donucena maximizovat zisk? Nebezpečí převzetí firmy a tlač ze strany kapitálového trhu.

A. Nebezpečí převzetí firmy

Neoklásická teorie předpokládá, že firma z obavy nepřáteleckého převzetí, je přinucena maximizovat zisk.

Nepřátelecké převzetí hrozí, jestliže cena akcii klesne pod potenciální hodnotu firmy, která je rovna hodnotě firmy, jež maximizuje svou hodnotu.

Hodnota firmy se vyjadřuje jako současná hodnota diskontovaných budoucích dividend:

\[V = \sum_{t=0}^{\infty} \frac{d}{(1+r)^t} \]

kde \((d, r)\) jsou dividendy v časovém období \(t\) a \((r)\) je diskontová míra.

Hodnota firmy může být pod svou potenciální úrovní z těchto důvodů (rovnice 8.1):
- míra dividend \((d)\) není na své optimální úrovni
- tók zisku \((r)\) je pod maximální dosažitelnou úrovní (i.e. firma nemaximalizuje zisk)
- třetím faktorem, který snižuje hodnotu firmy je diskontní míra \((r)\). Tento faktor hráje signifikantní roli v manažerských teoriích, konkrétně v Marmově modelu, kde manažeri nadměrnou expanzi firmy, ohrozili stabilitu firmy, což se odrazi ve vyšší diskontní míře, protože existuje větší riziko.

Nepřátelecké převzetí nehrozí pokud hodnota firmy na kapitálovém trhu (tříni ohodnocení) \((V_s)\) je blízko diskontované hodnotě dividend \((V_d)\) a zároveň maximální hodnota firmy \((V_m)\) je blízko diskontované hodnotě dividend \((V_d)\), tedy

\[V_s \approx V_d \text{ a zároveň } V_d \approx V_m \]
Prakticky to znamená, že akcie firmy nejsou podhodnoceny na kapitálovém trhu a zároveň firma dosahuje své maximální hodnoty (i.e. maximizuje svůj zisk).

Pokud by neplatily vztahy (5.2), investoři by usilovali o nepřátelské převzetí, jednak proto, že skutečná hodnota je vyšší než cena firmy na kapitálovém trhu nebo že potenciál firmy je dáleko větší než současná hodnota firmy, protože manažer nemaximalizuje hodnotu firmy (i.e. zisk).

Z těchto důvodů neoklasická teorie postuluje, že manažer budou pracovat v zájmu vlastníků a maximalizovat hodnotu firmy, tedy zisk. Tento závěr platí pro firmy, jejíž akcie se prodávají na kapitálovém trhu a je dostatečně velká.

S obavou manažerů před nepřátelským převzetím pracuje i Marrisův model v manažerských teorích.

Problém je ale v tom, že akcionáři jsou svrhováni vlastníci a disponují svobodným rozhodnutím o prodeji svých podílů. Budou zvažovat, zda přijem z akcií v případě, kdy hodnota firmy má pro několik jiného větší hodnotu než pro ně, je dostatečným motivem k prodeji. Proto vlastníci mohou svým rozhodnutím „ochránit“ firmu, která se nesnaží maximalizovat zisk, před nepřátelským převzetím.

B. Tlak ze strany kapitálového trhu

Kapitálový trh vyloučil podle neoklasické teorie na firmu dostatečný tlak na maximalizaci zisku. Je tomu tak proto, že ne všechny firmy při maximalizaci zisků stojí stejný objem zisku. Ty, které ziskávají větší část zisku, jsou při financování na kapitálovém trhu schopny zaplatit větší cenu za poskytnuté finance než firmy, které dosahují nižší zisky. Pokud je na kapitálovém trhu větší množství firem maximalizujících zisk, které jsou schopny platit vyšší částky za obnovené finance, nezbývá firmám s menším ziskem než ziskávají zdroje z interních zdrojů, což je nutí maximalizovat zisk.

Tento mechanismus však bude fungovat pouze, pokud je mezi poplatujícími finance na kapitálovém trhu velké množství firem maximalizujících zisk. Pokud většina firem maximalizuje zisk, je to dostatečný tlak na zbývající firmu chovat se podobně nebo ji čeká bankrot, protože nebude schopna vytvořit dostatečné finance pro expanzi a vlastních zdrojů. Jestliže vůbec větší část firme nemaximalizuje zisk, je pak tlak na individuální firmu nepatrný.

Shrnutí:

1. Firma potřebuje pro svůj růst finance, které ziskává ze zisku. Na tom se shoduje jako neoklasická teorie tak alternativní přístupy. Tento zisk firmy vytváří jednak maximalizaci zisku (předpoklad neoklasické teorie), tak jak abnormální zisk v oligopolistické struktuře (postoji alternativní přístup), pro kterou je abnormální zisk charakteristický.

2. Pokud maximalizace zisku není většinové chování firem, dá se předpokládat, že tlak kapitálového trhu na firmu, aby maximalizovala zisk, bude zanedbatelný.

Existuje konflikt v zájmech vlastníků a manažerů? Kladou firmy řízené manažery větší důraz na tržby a růst jak postuluji manažerské teorie a firmy řízené vlastníky na tržní hodnotu a zisk?

Alternativní přístupy (především manažerské koncepce) pracují s hypotézou, že korporace jsou vlastněny z velké části akcionářů, kteří půjčili firme peníze, nemají zájem na jejím řízení, ale chtějí jen zahradit své finance. Proto tyto koncepty strukturálně rozlišují mezi firmami řízenými manažery a firmami řízenými vlastníky, přičemž se manažer dle jejich názoru více zaměřuje na obrat a expanzi, kdežto firmy řízené vlastníky budou klást větší důraz na zisk a tržní hodnotu.

Jak postulovaly manažerské teorie, firmy kontrolované manažery kladou velký důraz na expanzi popř. růst tržeb, kdežto firmy řízené vlastníky na zisk (v podobě tržní hodnoty firmy).
Existují však případy, které nepotvrzují výše zmíněný předpoklad manažerských teorií:

1. Firmy investující do růstu se těší v budoucnu většímu zisku

Při srovnávání míry růstu popř. tržeb s mírou zisku se nesrovnává tok zisku v čase, ale statický zisk v daném období. Tok zisku by byl pravděpodobně stejný v případě firmy kontrolované vlastníky i manažery, pokud by se náklady růstu braly jako investice a ne jako náklady v daném období. V ekonomické literatuře jsou publikovány údaje, které potvrzují, že u firem orientovaných na maximalizaci růstu, rostou tržby i zisk rychleji v následujících obdobích než u firem zaměřených na maximalizaci zisku (Sawyer 1979: 153). V délém časovém horizontu dokonce tok zisku, tok dividend i tržní hodnota firem maximalizujících růst daleko převyšuje tok zisku, tok dividend i tržní hodnotu firem maximalizujících zisk. Tyto argumenty vedou k impulzaci, že není až tak velký rozdíl v chování mezi firmami kontrolovanými manažery nebo vlastníky jak předpokládají manažerské teorie.

2. Akcionáři mohou mít i jiné priority než maximalizaci zisku

Existují případy, kdy firmy jsou vlastněny individuálními vlastníky nebo obecně vlastníky, kteří preferují maximalizaci tržní hodnoty firmy až k určitému časovému okamžiku v budoucnu, například z důvodu plánovaného odprodeje firmy.

Pokud mají akcionáři za cil růst firmy (tedy vytváření úspor a jejich následnou reinvestici) a její prodej v budoucnu, bude se firma kontrolovačná vlastníky paradoxně chovala více jako firma řízená manažery.

3. Konflikt cílů není pouze bilateralní (mezi manažery a akcionáři), ale je vícestranný

Behaviourální koncepty poukazují na nebezpečí zjednodušení problému na konflikt mezi cíli manažerů a vlastníků.

Behaviourální teorie postuluji, že ve firmě se vytváří různé skupiny, mezi nejméně významnější patří:

a) vlastníci „outsideri“
Tato skupina nemá příliš velkou kontrolu nad firmou, kterou vlastní. Jejich moc spočívá pouze v možnosti prodat nebo koupit akcie společnosti. Chybí jim důležité přímé a okamžité informace o situaci ve firmě.

b) vlastníci „insideři“
Tito vlastníci řídí společnost (jsou členy představenstva). Jedná se o velké investory, vlivné vlastníky (např. v původní rodinných firem), ale i manažery, kteří získali podíly ve firmě.

c) zaměstnanci
Třetí skupinou jsou zaměstnanci, kteří mají cíle jako jsou růst platů, jistota, profesní růst, atd.

Behaviourální teorie ukazuje, že konfliktu cílů je ještě komplikovanější (každá ze skupin bude sledovat vlastní cíle) a že ho nelze zjednodušit do problému firma řízená manažery versus firma kontrolovaná vlastníky.

Závěr

Zisk je signifikantní pro život firmy, jednak ji poskytuje finance pro obnovu kapitálu a díky zisku může firma expandovat. Otázku zůstává, zda firmy zisk maximalizují nebo zda zisk hraje jen roli omezující podmínky, jak postužuje alternativní teorie.
9. Závěr

Disertační práce měla za cíl nalezení odpovědi na následující otázky:
1. Jaké je prostředí současné firmy na rozdíl od „učebních firm“?
2. Je toto diskrepance významná a mohl by vést k chybným závěrům?
3. Trpí moderní mikroekonomická analýza absencí některých fenoménů změněného podnikového prostředí?
4. Nabízí alternativní teorie reálnější odpovědi pro teorii firmy a mohou nahradit neoklasickou teorii?

Otázky jsou postupně zodpovězeny v následujícím textu. V samotném závěru této kapitoly je o svěřena platnost hypotézy, že neoklasická teorie firmy tak, jak je reprezentována v moderních učebnicích mikroekonomie, i přes dramatickou změnu podnikového prostředí, dává správné odpovědi týkající se chování řízení.

1. Jaké je prostředí současné firmy na rozdíl od učebních firm?

Z analýzy v rámci disertační práce byly stanoveny následující charakteristiky současného podnikového prostředí:

a) současná firma se vyznačuje komplikovaným vlastnictvím

Vlastnická struktura v současné ekonomice je pestrá (firmy mohou být vlastněny jedním majitelem, několika malými vlastníky, tisíci akcionářů, firmami, investičními a pojišťovacími fondy) a většina akcionářů hraje pasivní roli v moderních firmách. Především institucionální investor, díky diverzifikaci jejich portfolia, z velké části nevykonávají aktivní vlastnická práva, což postuluje kontrolu manažerů nad firmou a tím i nebezpečí sledování jiných cílů než je maximizace zisku. V neoklasické teorii se implicitně předpokládá, že firma vždy funguje ve prospěch svého majitele (maximalizující zisk).

b) dochází k rozdělení role majitele a manažera

Moderní vlastníci jsou z velké části akcionáři, kteří půjčili firmě peníze, nemají zájem na jejím řízení, ale chtějí jen zhotovit své finanční výhody. V mikroekonomické teorii se začíná rozlišovat mezi firmami řízenými manažery a firmami řízenými vlastníky, přičemž se manažer dle názoru alternativních koncepcí více zaměřuje na obrat a expanzi, kdežto firmy řízené vlastníky budou klást větší důraz na zisk a tržní hodnotu.

c) organizování současných firm je poměrně komplikované

Výběr se stává náročnější jak co do množství tak i různorodosti produkce. Velké nároky jsou kladey na prodej. To se odrazí v náročnosti na organizační strukturu firmy. Celý každou strukturu je transformace vizí a cílů do konkrétních plánů na nižší úrovni, koordinace aktivit na nižších řídících úrovních, garance konzistentnosti aktivit, kontroly aktivit nižších řídících úrovních, zajištění toku informací, umožnění implementace rozhodnutí.

Mikroekonomické teorie označuje neoklasický model firmy jako „black box“ model, protože teorii nezajímá, co se děje uvnitř firmy, ale zaměřuje se pouze na problém optimalizace nezávislých proměnných. V neoklasickém světě firmy neexistuje problém v převzetí vizí a cílů do konkrétních plánů na nižších stupní řízení.

d) neoklasická firma žije ve světě jistoty, současná firma ve světě nejistoty

V neoklasické teorii má firma dostatečné informace ohledně své poptávky, nákladů a pokud jsou náklady na změnu výstupu nulové, pak firma může zvolit výstup odpovídající maximizaci zisku. Problematik je v tom, že firma v dnešní ekonomice nepotřebuje znát jen poptávku a náklady, ale potřebuje i umět předpovídat chování konkurentů. V dynamicky měnícím se prostředí, má firma minimální šance úspěšně zareagovat a v momentě reakce může být situace už zase jiná. Nejistota moderní ekonomiky částečně vylučuje maximizaci zisku.
e) rozhodování v moderní firmě není snadné

Existence různých zájmových skupin v moderních firmách s odlišnými preferencemi, které se pokouší prosadit do rozhodování firmy, činí rozhodování ve firmách komplikovaný. Neoklasicistická teorie předpokládá racionalitu a z tohoto důvodu nevěnuje rozhodovacímu procesu pozornost. V neoklasicistické teorii firmy není rozpor mezi cíli firmy (maximizaci zisku) a rozhodnutím manažerů.

Neoklasicistická teorie firmy může být naproti tomu charakterizována:

a) vysokým stupněm abstrakce, který souvisí s problémem matematické optimalizace.
b) základní formulace se odehrává v prostředí jistoty.
c) předpokládá racionalní a maximalizační chování, úplné informace o poptávce, nákladech a nutné náklady na změnu výstupu.
d) předmětem zkoumání je formalizace (matematizace) optimalizačního problému.
e) snahou o transformování výsledků do vysvětlení a predikcí chování firmy.

2. Je toto diskrepance významná a mohla by vést k chybným závěrům?

Odpověď na tento problém vychází především z analýzy, zda změna podnikového prostředí je na tolik významná, že došlo ke změně fundamentálního závěru o chování firmy, jakým je maximizace zisku.

K jednotlivým rozdílům mezi teorií a podnikovým prostředím:

a) současná firma se vyznačuje komplikovaným vlastnictvím

Skutečnost, že většina akcionářů hraje pasivní roli v dnešních firmách, nemusí přinášet neomezené kontroly nad firmou manažerům. Mohou existovat jedinci i s minoritním podílem, kteří mají zájem na řízení firmy a budou skrze představenstvo prosazovat své konkrétní představy. Dalším protiargumentem je skutečnost, že řada manažerů ve velkých firmách je motivována k vyšším výkonům, získáním vlastního podílu ve firmách. Dá se očekávat, že nebudou velký rozdíl mezi chováním manažera a vlastníka v jedné osobě. Významný je i protiargument, který ukazuje, že právě institucionální investoři (typičtí moderní vlastníci) disponují mocí prosadit zásadní změny ve firmě.

Z této argumentace vyplynul, že komplikované vlastnictví v moderních firmách nemusí nutně vést ke změně chování firmy (maximizace zisku, jak ji předpokládá neoklasicistické firmy).

b) dochází k rozdělení role majitele a manažera

V práci nebylo možno stanovit jednoznačný závěr, zda existuje konflikt v zájmech vlastníků a manažerů. Spoře často prezentuje jako snaha manažerů maximizovat tržby a růst, vlastníci naopak usilují o maximální tržní hodnotu (ekvivalent zisku). Nebezpečí výměny managementu v případě nespokojenosti je silným motivem pro chování manažerů odpovídajícímu práti vlastníků.

Existuje i empirická evidence, která potvrzuje, že firmy investující do současného růstu, dosahují větší zisky v budoucnosti (manažéři se chovají v konečném důsledku ve prospěch svých vlastníků v budoucnosti).

c) organizování současných firem je poměrně komplikované

Neoklasicistický model firem implicitně předpokládá bezproblémové převedení cíle maximizace zisku do konkrétních plánů na nižší úrovni (častečně i od tohoto problému abstrahuje). Kritika nepozornosti neoklasicistické teorie přesvědčení vizi a plánů do nižších řídících úrovní ve firmě je směřována od behavourialních přístupů. Samy tyto přístupy předpokládají adaptivní chování, které postuluje, že firmy se neadaptují nové situaci ihned, ale naopak se nové situaci přizpůsobují postupně. Jinými slovy firma neskončí přímo do maximizace jakékoliv veličinu, ale posouvá se do pozice maximizace v postupných krocích. Například při maximizaci zisku firma mění cenu a reklamu, analyzuje efekty na zisk. Pokud se zisk posouvá žádoucí směrem, firma bude pokračovat ve změnách. Adaptivní chování ukazuje, že firma se může, i přes komplikovanou organizační struktury moderních firem,
d) neoklasická firma žije ve světě jistoty, současná firma ve světě nejistoty

Neoklasická teorie explicitně předpokládá, že firma zná svou ziskovou funkci, má úplné informace ohledně své poptávky, nákladů a že náklady na změnu výstupu jsou nulové, a proto si firma může zvolit výstup odpovídající maximalizaci zisku. Právě předpoklad dokonalých informací, které jsou spojeny s jistotou, se zdá být opomíjeným rizikem pro neoklasickou teorii firmy. Problém je v tom, že firma nepotřebuje znát jen svou poptávku a své náklady, ale potřebuje i určit předpovídat chování konkurentů, což je nejproblematickější proměnná v ziskové funkci firmy. V dynamicky měnících se prostředích má firma minimální šanci uchovat zisk a v momentě reakce může být situace už zase jiná. Tato skutečnost může vést k tomu, že firma zisk maximalizovat nemůže (nemůže). Změna tohoto předpokladu může vést k odloučenému závěru o chování firmy, než jakým je maximalizace zisku. Je paradoxem, že řešení tak významného problému se nevěnuje žádný z alternativních konceptů firmy.

e) rozhodování v moderní firmě není snadné

Shmuri:

Z práce vyplynul závěr, že až na změnu předpokladu „neoklasická firma žije ve světě jistoty, současná firma ve světě nejistoty“ změna ostatních předpokladů jednoznačně nezapočívá ve zvětšení neoklasické teorie o maximalizaci zisku firmy.

3. Trpí moderní mikroekonomická analýza absenci některých fenoménů změněného podnikového prostředí?

Shmuri:

Současná mikroekonomická analýza by se měla zaměřit na formulování modelu chování firmy v prostředí nejistoty. Neoklasická teorie firmy problém implicitně řeší, ale řešení je nekonzistentní s praxi (majoritním výskytem rizikoavérzních jedinců v populaci). Alternativní přístupy dosáhly pouze stáda konstatování rozporu předpokladů a podnikového prostředí a pracují s nejistotou jako předpokladem, fundovaný model, který by se explicitně problémem nejistoty v chování firmy zabýval, bohužel mezi alternativními koncepty chybi.
4. Nabízí alternativní teorie reálnější odpovědi pro teorii firmy a mohou nahradit neoklasickou teorii?

V této části jsou shrnuty závěry alternativních teorií s ohledem na jejich schopnost nahradit neoklasickou teorii firmy.

A. Behaviourální teorie

Předpokládáme, že existují různé typy alternativních teorií, které se stávají velmi vlivné v kontextu rozhodovacích procesů v firme. Tyto teorie se vyznačují několika základními tvrzeními:

- firma nerealizuje pouze jeden cíl, protože není vystavena rizikům při rozhodovacích procesech.
- firma nemůže maximizovat pouze jeden cíl na úkor jiných cílů, z jejichž vyostření konfliktu mezi zájmovými skupinami.

Předpokládají:
- omezenou racionality

Omezená racionality neguje neoklasický předpoklad optimalizačního chování. V behaviourální teorii je předpokládána, že „princip optimizační“ nahrází „principem satisfakce“
- nevyřešený konflikt
- a nedokonalou adaptaci firmy na externí prostředí.

Z hodnocení

Simonův článek představuje výchozí analýzu pro behaviourální koncepty a na jeho myšlenky behaviourální modely navazují.

Přínosem behaviourálního konceptu Herberta je pozorování, kterou nově věnuje chování sociálních skupin, popisu rozhodování a procesu hledání alternativ cílů. V 21. století se ekonomický svět stává komplexním (provázaným) a nestabilním, proto mikroekonomická teorie potřebuje vědět o mechanismech a procesech, kterými se subjekty adaptují na tyto nové podmínky a kterými jsou dosahovány cíle. V tomto směru behaviourální teorie rozšířují zúžený pohled neoklasického mikroekonomie, která činí závěry bez pozorování chování subjektů na základě silných předpokladů racionality. Modely firmy založené na teorii uspořádání (behaviourální modely) jsou prostředí lehčí než maximizační, protože nepopisují pouze rovnováhu ale i mechanismy jejího dosahování.

2. Cyertův a Marchův model: Pokus o aplikaci behaviourálních přístupů do teorie firmy.

V roce 1963 Američané Cyert a March formulovali nejvýznamnější behaviourální model firmy. V modelu využili myšlenek, pojmového aparátu behaviourálních teorií. Model se zaměřuje na studium rozhodovacích procesů uvnitř velkých korporací, která existuje na nedokonalých trzích a v prostředí nejistoty. Firma je pro ně charakterizována rozsáhlým spektrum cílů, různými zájmovými skupinami a komplikovaným procesem dosahování rozhodnutí v podobě kompromisů, které jsou výsledkem sociálních her, které hrají různé sociální skupiny uvnitř i vně organizace. Firma je spis při „uspořádání“ než maximizačním systémem. Neboť každé řešení, které uspořádá je zájmové
skupiny je řešením rovnovážným: firma se nesnaží najít jiné řešení (třeba i „uspokojivší“ cíle zájmové skupiny na vyšší úrovni); dokud se nezmění podmínky tak, aby stávající řešení přestalo být uspokojivé.

Posíťovem Czyezova a Marchova konceptu firmy je zabudování behavourálních důrazů, jako jsou chování sociálních skupin, deskripcie rozhodování a procesu hledání alternativ a cílů, do teorie firmy. Negativem je metoda verbální dedukce, se kterou autoři pracují. Nabídce se otázka, jak lze přesvědčivě dokázat, že sociální skupiny ve firmě se skutečně chovají v procesu formulování, stanovení cílů a rozhodování tak, jak autoři předpokládají.

B. Manažerské teorie

- Manažerské teorie vysvětluji, proč firmy sledují jiné cíle než jakými je maximizace zisku a jaké důsledky má to na výkonnost firmy.
- Manažerské teorie byly z hlediska používané metody optimalizace pině integrovatelné do neoklasické teorie a mohly by tak rozšířit pohled na některé aspekty životy firmy. Na druhé straně metoda optimalizace abstrahuje z důvodu aplikace matematiky od mnoha procesů, ke kterým ve firmě dochází.

Zhodnocení

Teorie zón tolerance lze považovat za současného reprezentanty behavourálních modelů (model navazuje na behavourální teorie a doplňuje je o deskripční současné firmy).
snižuje současné příjmy, příliš nízký zisk na druhé straně snižuje disponibilní finanční zdroje pro růst firmy. Maximalizace příjmů ze strany manažerů je spojena se stimulaci prodeje skrze reklamu. Baumol pracuje s hypotézou, že rozhodování manažerů o výdajích na reklamu je z pohledu neoklásické teorie firmy suboptimální (výdaje na reklamu jsou příliš vysoké). Dalším důležitým závěrem Baumolova modelu je skutečnost, že firma, která sleduje maximalizaci dlouhodobých příjmů, vykazuje vyšší dynamiku růstu.

Přinosem je analýza chování manažerů, kteří se zaměřili na maximalizaci příjmů (čemuž odpovídá v praxi zaměřenost manažerů na používání marketingových nástrojů). Baumol používá pro potvrzení závěrů exaktní matematicko-grafický aparát. Model dává doplňující (zůštený) pohled na chování manažerů, kteří sledují cíl maximalizace tržeb místo maximalizace zisku, ale není schopen nahradit neoklásickou teorii firmy z důvodu absence úplnosti pohledu na firmu.

3. Williamsonův model: manažer sleduje maximalizaci svých zájmů, konkrétně diskrétního zisku, výdajů na zaměstnance a vedlejších výhod. U posledních dvou ukazatelů se manažer chovají odlišně od vlastníků.

Williamson dochází k závěru, že při výdajích na zaměstnance a vedlejších výhodách manažer sledují své zájmy a chovají se jinak než vlastníci. Manažer se chovají optimálně (výběr výstup, který by vyráběla firma řízena vlastníky), co se týká výstupu. Naopak při výdajích na zaměstnance a vedlejších výhodách sledují své zájmy a chovají se suboptimalně (utrácají více než by utrácela firma maximalizující zisk).

V Marrisové modelu se manažeri zaměřují na dvě proměnné: růst firmy a jistotu setrvání ve firme. Manažer spolu s svými úspěch s růstem firmy, na druhé straně je věří dobu, že dramatický růst může ohrozit finanční stabilitu firmy, což by mohlo být nepřijatelné pro akcionáře. Manažer se v modelu sniží náležitý maximální mír růstu při rozumné míře jistoty. Pokles minimální požadované relativní hodnoty firmy ze strany vlastníků, snižuje strach managementu z ukončení karéry a zvyšuje tak mír udržitelného růstu. Funkce úzitku není v modelu přímo vyjádřena. Marris aproximuje užitek růstem firmy. Požadovaný zisk je vyjádřen nepřímá pomocí minimální míry hodnoty firmy.

Marris dochází k závěru, že chování manažerů je vedeno ziskem. Manažer se teď chovají efektivně (neexistuje rozpor v zajméch akcionářů a manažerů) a jejich chování přísně hodnotu pro vlastníky. Přesto míra růstu je vyšší než by byla v případě, kdyby firma sledovala maximalizaci zisku (tržní hodnota firmy není maximální, firma platí cenu za vyšší riziko růstu).

Přinosem modelu je implikace poznatků finančního managementu do teorie firmy a popis chování manažerů, kteří sledují cíl maximalizace růstu firmy. Model opět používá přesnou statisticko-grafickou metodu na odvození růstového závěru. Ale ve srovnání s Williamsonovým modelem Marris abstrahuje od řady dalších cílů, které může management sledovat. Model opět abstrahuje od dalších aspektů teorie firmy,
proto je jen vhodným doplněním neoklasiční teorie ve specifickém případě, kdy manažer ji znajděl svou pozornost na maximizaci růstu firmy místo zisku.

C. Model zmocnité-zmocněnců

Model zmocnité-zmocněnců je reakcí moderní mikroekonomie na oddělení vlastnictví od řízení. Tato změna podnikového prostředí způsobuje informační asymetrii, která by mohla vést k morálnímu selhání. V disertační práci je analyzována a řešen problém „hidden action“ a „hidden knowledge“.

1. „Hidden knowledge“

V případě „hidden knowledge“ zmocnité (vlastník) není schopen díky informační asymetrii ex ante rozpoznat angažovanost jednotlivých zmocněnců (manažerů). V modelu jsou uvažovány pouze dva typy zmocněnců: méně angažovaný a více angažovaný zmocněník. Angažovanost zmocněnců vyjadřuje jejich produktivitu. Zmocnité hledá smlouvy (odměnu a pracovní vytížení) pro více efektivního zmocnění a pro méně efektivního zmocnění. Smlouvy musí být formulovány tak, aby se každý typ zmocnění rozhodl pro svou smlouvu (a ne druhého zmocnění) a současně každý z zmocněnců dosáhl séra svou smlouvu minimálně požadované úrovně užitku.

Z analýzy vyplnuly následující závěry:

a) Požadované množství práce od více efektivního zmocnění

Požadované množství práce více efektivního zmocnění závisí pouze na jeho osobní angažovanosti. Čím vyšší bude jeho angažovanost, tím více práce bude od něj zmocnité požadovat.

b) Požadované množství práce od méně efektivního zmocnění

U méně efektivního zmocnění je požadované množství práce determinováno osobní angažovaností obou zmocněnců a pravděpodobností, se kterou zmocnité v populaci nalezne více efektivního zmocnění. Požadované množství práce bude vyšší, čím vyšší je osobní angažovanost méně efektivního zmocnění a čím nižší je osobní angažovanost více efektivního zmocnění a nižší pravděpodobnost naleznetí více efektivního zmocnění v populaci.

c) Srovnání požadovaného množství práce od méně a více efektivního zmocnění

Od méně efektivního zmocnění je požadováno menší množství práce než od jeho více efektivního kolegy.

d) Požadované množství práce a vliv informační asymetrie

V případě smlouvy s více efektivním zmocněncem není množství odvedené práce determinováno informační asymetrií. Naopak u méně efektivního zmocnění je množství požadované práce ovlivněna informační asymetrií. V situaci informační asymetrie je požadované množství práce od méně efektivního zmocnění menší, než bylo v případě, kdyby informační asymetrie neexistovala.

e) Mzda a vliv informační asymetrie

Více efektivní zmocněnec dostane větší příjem než méně efektivní zmocněnec. Díky informační asymetrii dostane více efektivní zmocněnec vyšší příjem než by dostal v případě, kdyby informační asymetrie neexistovala.

f) Požadované množství práce a vliv pravděpodobnosti výskytu více efektivního zmocnění

Požadované množství práce více efektivního zmocnění nezávisí na pravděpodobnosti výskytu více efektivního zmocnění v populaci. Naopak požadovaná práce je ovlivněna výskytem více efektivního zmocnění v populaci. Čím vyšší je pravděpodobnost, tím méně práce od méně efektivního zmocnění bude požadováno.

g) Mzda a vliv pravděpodobnosti výskytu více efektivního zmocnění

Odůmka obou zmocněnců klesá s pravděpodobností zaměstnání více efektivního zmocnění. A zároveň s větší pravděpodobností výskytu více efektivního zmocnění se snižuje informační výhoda (ve formě vyšší odměny, kterou realizuje díky informační asymetrii) více efektivního zmocnění.

2. „Hidden action“

V situaci „hidden action“ je výsledek snažení zmocněnců ovlivnit náhodnými okolnostmi. Zmocnité neumí (informační asymetrie) odlišit vív okolnosti a pracovního nasazení zmocněnců na konečný
výsledek. Proto nemůže zakomponovat pracovní nasazení do smlouvy a odměna závisí pouze na konečném výstupu. Cílem modelu je nalezení takové funkce odměny, která by donutila zmocněnce ve vlastním zájmu odvěst zmocnitelem požadované množství práce.

Průběh hry mezi zmocněncem a zmocnitelem probíhá v následujících krocích:
1. zmocnění stanoví pevné funkci odměny
2. zmocnění se rozhoduje, zda smlouvou přijme nebo odmíte
3. odmítne-li zmocnění smlouvu, je vyjednávání ukončeno. Přijme-li zmocnění smlouvu, dohodne požadované pracovní nasazení
4. okolnosti ovlivňují stochasticky výsledek
5. zmocnění i zmocnění identifikují realizovaný výstup. Zmocnění dá zmocněnci odměnu podle dohodnuté funkce odměny.

Z analýzy vyplynuly následující závěry:

a) Očekávaný užitek zmocnitele a pracovní nasazení
Očekávaný užitek zmocnění roste s větším pracovním nasazením, pokud sklon funkce odměny zmocněnce je menší než jedna (odměna roste pomaleji než výstup). Pokud je sklon funkce odměny zmocněnce roven jedné (odměna roste ekviproportionalně s výstupem), je očekávaný užitek zmocnění konstantní.

b) Očekávaný užitek zmocněnce a pracovní nasazení
Očekávaný užitek zmocněnce klesá s větším pracovním nasazením, když funkce odměny je konstantní nebo klesá s rostoucím výstupem.

c) Funkce odměny – informační asymetrie a nedodržení podmínek smluvní přítažlivosti
Není-li nutné dodržet podmínky smluvní přítažlivosti v případě asymetrických informací, pak se jedná o situaci, která se neodlišuje od symetrických informací, a funkce odměny budou identické pro symetrické i asymetrické informace. Podmínka smluvní přítažlivosti selektuje více efektivního a méně efektivního zmocněnce.

d) Funkce odměny – informační asymetrie, dodržení podmínek smluvní přítažlivosti a neutralita k riziku
Jsou-li oba aktéry rizikoneutrální, potom má zmocnění v případě symetrických informací větší výběr funkci odměna než v případě asymetrických informací, které může zaručit implementace většího pracovního nasazení. Může místo nejlepší funkci odměny, která nezávisí na výsledku x.

e) Funkce odměny – informační asymetrie, dodržení podmínek smluvní přítažlivosti a oba aktéři nejsou neutrální k riziku
Nejsou-li oba aktéry rizikoneutrální, pak je pro strovnání optimálních funkcí odměn v případě symetrických a asymetrických informací významný výběr funkce odměny v závislosti na riziku. Tato situace vede v případě heterogenního postoju zmocnění k riziku k dodržení podmínek smluvní přítažlivosti, v případě výběr funkce odměny v závislosti na riziku je možné počítat s dodržením podmínek smluvní přítažlivosti. Bez ohledu na charakter informací bude zmocnění vyžadovat vždy vyšší pracovní nasazení. Funkce odměn se budou odlišovat.

f) Strovnání velikosti odměn v případě symetrických a asymetrických informací
Pokud se funkce odměny v obou případech protínají tak právě jednou. A platí, že v intervalu, kde výstup dosahuje větších hodnot, je optimální odměna při symetrických informacích menší než v případě asymetrických informací. Při menších hodnotách výstupu je vztah opačný.

Model zmocnění zmocněnce představuje významné doplnění mezery v mikroekonomické analýze firmy. Metodologii a předpoklady je plně kompatibilní s neoklasickou teorií.

D. Postkeynesiánské modely firmy

- Striktně odmíťají metodologii maximalizace zisku. Firma žije ve světě permanentní nejistoty, což se odráží i v tvorbě cen, proto nelze ani předpokládat, že by se firma o maximalizaci zisku pokoušela.
- Pozornost věnuje i rozhodování firem během výroby. Kritizují neoklasickou teorií, že se zaměřuje pouze na chování firem na trhu výrobků.
- Tyto modely mají jak mikroekonomické tak makroekonomické aspekty, které nelze striktně oddělit.
- Společně s institucionálními teoriemi zdůrazňují úlohu institucí v ekonomice.

Z hodnocení

1. Kaleckého model: ceny jsou tvořeny přirážkou k variabilním nákladům a jsou značně neprůzrčné.

Kalecki postuluje, že firmy stanovují ceny přirážkou k variabilním nákladům. Přirážka v sobě zahrnuje úhradu fixních nákladů i zisk. Při stanovení přirážky firma přihlíží k cenám konkurentů a monopolizaci odvětví. Kaleckého model předpokládá následující závěry o chování firmy:
 a) při neměněných variabilních nákladech firma bude vyrábět jakékoliv popílvané množství aniž by se měnila cena produkce.
 b) změna nákladů se odrazí v růstu cen (firmy nerady měně ziskovou přirážku).
 c) při pozitivní technologické změně jsou ceny značně neprůzrčné (firma neupravuje ceny při poklesu nákladů díky pozitivní technologické změně).

Kaleckého model odmítá metodologii maximalizace zisku. Model se zaměřuje na deskripce firmy, která žije ve světě permanentní nejistoty, což se odrazilo v metodě tvorby cen. Kaleckého model používá metodu deskriptivního a metodou verbální dedukce, kterou dochází k závěrům na základě předpokladů. Je otázkou, zda existuje signifikantní důkaz, že firmy v praxi tvoří ceny metodou mark-up pricing. Ve srovnání s manažerskými teoriemi Kalecki řeší komplexnější problémy teorie firmy (problematika cen, vystupu, etc.). V tomto směru by Kaleckého model mohl substituovat neoklasicistické teorie firmy. Problémem ale zůstává statická průzkaznost tvorby cen přirážkou v praxi.

2. Eichnerův model: tvorba cen s ohledem na cílovou míru výnosu.

Model navazuje na metodu přirážky k variabilním nákladům a rozpracovává motivy firem při stanovení přirážky. V Eichnerově modelu firma určí cenovou přirážku tak, aby kryla fixní náklady a tvorbu rezervního fondu. V Eichnerově modelu jsou ceny tvořeny tak, aby firmy dosahovaly při normálním objemu produkce (standardním využíváním instalovaných kapacit) požadovanou míru výnosnosti fixního kapitálu. Zvýšení přirážky je jedinou cestou, jak si firma může obsadit interní zdroje financování investic za předpokladu, že vlastníci nejsou ochotni akceptovat nižší úrovně dividend. Tento zdroj financování je však spojen s nebezpečím, která se logicky odrazí v růstu požadované výnosnosti vnitřních zdrojů. Cena kapitálu se pak zohlední v přirážce a v konečném důsledky v ceně produkce.

Přínosem modelu je zapracování závěrů finančního managementu do teorie firmy. Eichnerův model používá metodu deskriptivního a metodou verbální dedukce, kterou dochází k závěrům na základě předpokladů. Zpochybnitelná je statistická průzkaznost cílové míry výnosu jako motivu při stanovení přirážky. Eichner se zaměřuje na specifický případ, kdy manažer stanovil cenovou přirážku s ohledem na požadovanou míru výnosu. Proto jeho model je přínosným doplněním pohledu neoklasicistické teorie, ale není ji schopen nahradit.

3. Labiniho model: tvorba cen jako strategie konkurenčního boje.

V Labiniho modelu se firma snaží stanovit cenu, která má za cíl odradit potenciální konkurenty od vstupu do odvětví popílpadě zlikvidovat současné konkurenty. Těto cenové politice odpovídá stanovení míry výnosu. Jako taktiku pro odchod konkurentů firma použije v krátkém období cenu, která nehnání ani variabilní náklady. V situaci, kdy cena nehnání ani variabilní náklady, se firma udrží „na vodou“ jen krátké, protože ukončení činnosti ji přinechá menší ztrátu než pokračování v činnosti. Cena v dlouhém období má za cíl odradit potenciální konkurenty od vstupu na trh nebo zlikvidovat „silnější“ konkurenty. Cena v dlouhém období firma stanovuje tak, aby ostatní firmy nebyly schopny uhradit variabilní náklady a přirážku, která kryje fixní náklady a minimální požadovanou míru výnosu. Labiniho model dochází k následujícím závěrům o chování firmy:
 a) identická struktura odvětví může existovat při několika rovnovážných cenách (při cenách, které nevyvolávají změnu struktury odvětví). Tento závěr modelu zpochybnuje existenci jediné rovnovážné ceny v neoklasicistické teorii.
 b) firma je při výrobě omezena svou technologií. Není schopna vyrábět spojitý objem produkce, jak předpokládá neoklasicistické teorie, naopak vyrábí v produkčních skociích.

D. Institucionální pojmy firmy

- Zkoumaju korporace v širším ekonomickém, politickém a sociálním kontextu. Odmitají zúžený neoklasický pohled na firmu jako na problematiku výstupu a ceny.
- Institucionální koncepty firmy jsou značně nekonformní, spojuje je pouze společné téma zkoumání velkých korporací a jejich vliv na ekonomická, politická a sociální prostředí.
- Firmy v jednotlivých institucionálních přístupech mají heterogenní cíle. Všechny koncepty konstatují odklon současných korporací od cíle maximizace zisku.
- V některých konceptech je zisk omezením, v jiných hráze zisk velkou roli pro růst firmy, v žádném případě se ale nejedná o jeho maximalizaci.
- Typický je méně optimistický pohled na efektivnost sektoru megakorporací, spočívající možnosti spotřebitelů a vlády ovlivňující rozhodování korporací.
- Metodologické postupy a různorodost analyzovaných faktorů nedovolují formulaci jednoznačných modelů a matematizaci institucionálních teorií. Ze stejných důvodů vychází i kvantitativní teorie a testované hypotézy.
- Institucionální teorie firmy nelze aplikovat na každou firmu. Tyto teorie jsou desigovány pro velké, kapitálově silné, technicky progresivní korporace.
- Ve srovnání s manažerskými a behaviorálními teoriemi nezkoumaji firmu izolovaně, ale v širším ekonomickém prostředí.
- Negují předpoklad neoklasické teorie, že firma se pasivně adaptuje prostředí.

Zhodnocení

1. Meansova teorie firmy: rigidita administrovaných cen.

V modelu korporace v období s neměnnými cenami vstupů určí cenu a tuto cenu sděluje (administruje) zákazníkům a konkurenci, pro něž je informace o ceně stejně důležitá jako pro zákazníky. Jakmile korporace stanoví ceny, udržuje je neměnné. Ceny méní korporace pouze, pokud růst nákladů překročí určitý přijatelný limit. Means postuluje na základě empirických údajů tyto závěry o chování korporace:

a) průměrné variabilní náklady se nemění s množstvím produkce a tvoří podstatnou část průměrných nákladů (průměrné fixní náklady jsou v moderní korporaci nevýznamné).

b) velká korporace reaguje na změny nákladů zvýšením ceny. Zatímco ziskovou přírůstku mění pouze tehdý, pokud očekává, že změna poptávky je signifikantní a dlouhodobá.

Přínosem je deskriptice chování velkých korporací při stanovení cen a výstupu v oligopolní struktuře. Analýza oligopolní sektoru je poměrně komplikovaná i v neoklasické teorii firmy, a proto mikroekonomická teorie používá pro deskriptiční řady modelů. Ve srovnání s behaviourálními a institucionálními modely Means odvozuje závěry na základě empirických údajů. Meansova teorie by mohla doplnit modely, které analyzují oligopolní struktury.

2. Galbraithova teorie: deskriptice moderní korporace.

Galbraith popisuje chování velké korporace, která je řízena rozhraní elitou (technostrukturou). Předpokládá, že technosystém má významný vliv v dnešní ekonomice, příjímá strategická rozhodnutí ve korporaci, disponuje tržní mocí, kontroluje vnější prostředí (jak ekonomické tak politické). Aby technokrati minimalizovali životnou trhu, plánují své aktivity. Dochází k tomu, že celý sektor korporací se může chovat jako planovaný sektor. V Galbraithově teorii korporace uplatňuje politiku relativně nízkých a neměnných cen. To jí čini menším ohroženou před konkurenční nebo politickými tlaky. Na trzích, kde převažují moderní korporace, platí dohodnuté, relativně stálé ceny. Galbraithova korporace se zaměřuje na maximalizaci tržeb. Aby si technostruktura zachovala svou autonomii, musí dosahovat i určité míry zisku, a to jednak z důvodu výplat přijatelné míry dividend pro vlastníky tak i z důvodu vytváření dostatečného kapitálu pro obnovu investic. Sami usilují o růst korporace, protože s růstem se stavá složitější struktura a hierarchie korporace, manažeři získávají výšší platy a větší je i jejich prestiž.

3. Rotchilda teorie: analýza oligopolní struktury

Rotchilda teorie firmy analyzuje oligopol se specifickými vlastnostmi, jakými je permanentní nebezpečí útoků ostatních konkurentů a jeho oligopol disponuje monopolní silou, která mu umožňuje ovlivňovat poptávku. Přesto Rotchild předpokládá, že sektor oligopolních řízení je stabilní. Rotchil dohází k těmto závěrům o chování oligopolu:

a) jediným z hlavních cílů manažerů v Rotchildeově oligopolu je bezpečný zisk. Jedná se o důsledek permanentního ohrožení ze strany konkurentů. Realizaci jisté úrovně bezpečného zisku mu umožňuje monopolní postavení.

b) oligopol se bude snaha udržet cenu neměnnou co nejdéle to bude možné. Přišli částmi změnami cen se oligopol vystavuje nebezpečí odeažky ze strany konkurentů (máloobchodní válce) nebo může motovat nové firmy k vstupu do odvětví.

c) Rotchilův oligopol bude upevňovat svou pozici nástroji jako je finanční moc, říz firmy, vzestupná a sestupná integrace. Rotchilův oligopol používá i neekonomické nástroje, konkrétně politické aktivity (lobbying u vlády a zákonnorádcí odbirné tarify, daní, získání vládních zakázek etc.).

Rotchilda teorie popisuje oligopol se specifickými vlastnostmi a model by tak mohl rozšířit neoklásické modely oligopolu. Rotchil však neodvozuje závěry na základě empirických údajů, ale na základě metody verbalní dedukce z předpokladů. Společně pro Galbraithovu a Rotchilovu teorii je snaha manažerů udržet si své pozice skrze kontrolu vnějšího prostředí (jak ekonomického tak politického).

4. Baranova a Sweezyho teorie firmy: megakorporace jsou efektivnější při vytváření zisku než firmy ve neoklásickém pojetí

Baran a Sweezy postulují, že současně velké korporace mají díky manažerské revoluci (oddělení vlastnictví a řízení) mnohem lepší podmínky pro vytváření zisku než měla neoklásická firma. Na druhé straně tato revoluce vycházela rovnou z mezi dividendami a zadřeným ziskem. Manažer řeší v tomto modelu dvě problémy: usiluje o maximální nebo alespoň o co největší tok zisku, pak řeší problém jak tento zisk rozdělit mezi zadřený zisk a dividendy. Baran a Sweezy interpretují maximalizaci zisku po manažerské revoluci jako maximizaci současné hodnoty firmy. Současná hodnota firmy je zjednodušeně pojata jako současné hodnota současných a budoucích dividend. Autoři docházejí k následujícím závěrům o chování firmy:

a) neoklásická teorie vzniká firmu příliš izolovaně. Firma je nutno analyzovat v širším společenském i ekonomickém kontextu.

b) větší akcioniáři a manažer mají zájem na nižších dividendách a větším zadřeném zisku, tím snižují současnou hodnotu firmy.

Přínosem je analýza vlastností moderní velké korporace a deskripté slabých míst v neoklásické teorie firmy. Model zabudovává závěry finančního managementu do chování manažerů. Slabým místem je absence jednoznačného, matematizovaného modelu a testování hypotéz.

E. Wardův model

Model popisuje specifickou situaci, kdy vlastníci jsou jedinými zaměstnanci společnosti. Majitelé vykazují v tomto modelu odlišné chování od vlastníků neoklásické firmy. Majitelé budou maximizovat příjem na vlastníka místo zisku. Tato změna proměnné maximalizaceimplikuje následující závěry o chování firmy:

a) zaměstnanci nejsou motivování mzdou, protože výše mzdy neovlivňuje příjem na vlastníka, kterou vlastníci maximalizují.
b) zaměstnanecká firma je účinný vůči změně mzdové sazby. Ve srovnání s neoklasicí firmou bude ve Wardově firmě při ztrátě pracovat více zaměstnanců, při pozitivním zisku méně partnerů. Toto chování vysvětluje výskyt většího počtu firmen řízených zaměstnanců v upadajících sektorách i jejich „přezaměstnánost“.

c) Wardova firma usiluje o co nejmenší počet zaměstnanců (pokud by to bylo možné jen jednoho). Příjmy na vlastníku rostou s menším počtem spolupracovníků, ale fixní náklady nutí firmu rozšiřovat řady partnerů, protože fixní náklady na vlastníka klesají s větším počtem partnerů.

d) krátkodobá nabídka křivka: s rostoucí cenou v krátkém období zaměstnanecká firma vyrábí paradoxně méně. Rostoucí cena zvyšuje příjem na vlastníka, což ji umožňuje uvolnit se z omezení fixních nákladů a firma snižuje počet partnerů, a tedy i produkci.

e) dlouhodobá nabídka křivka: v dlouhém období firma vyrábí výstup v minimu průměrných nákladů, cena jejího chování nijak neovlivňuje.

f) nabídka křivka odvětvi: chování Wardových firem je v případě volných vstupů do odvětví a nulových nákladů na vstupy identických s chováním neoklasicích firem. Zvýšení produkce ale ve Wardově sektoru závisí více na vstupu nových zaměstnaneckých firem do odvětví než na zvýšení produkce samotnými firmami v odvětví, jak tomu bylo v neoklasicí teorii.

Posílením Wardova modelu je doplňující popis chování firmy, kde vlastníci jsou jedinými zaměstnanci. Neoklasicí teorie nevěnuje tomuto případu pozornost. Model dochází k závěrům přesnou matematicko-grafickou metodou a je z hlediska použitých nástrojů a stejného předmětu zkoumání (determinace výstupu, ceny, nabídka firmy a odvětví) do neoklasicí teorie firmy plně aplikovatelný.

Hypotéza: neoklasicí teorie firmy tak, jak je reprezentována v moderních účebnicích mikroekonomiky, i přes dramatickou změnu podnikového prostředí, dává správné odpovědi týkající se chování firem.

Disertační práce verifikovala hypotézu, že neoklasicí teorie firmy tak, jak je reprezentována v moderních účebnicích mikroekonomiky, i přes dramatickou změnu podnikového prostředí, dává správné odpovědi týkající se chování firem, z následujících důvodů:

1. rozdíly mezi podnikovým prostředím a předpoklady formulovanými v neoklasicí teorii firmy, až na problém nejistoty v životě moderních firem, nejsou schopny zpochybnit maximalizační chování firmy v případě zisku.

2. konkurenční teorie firmy nenabízí fundované řešení problému nejistoty v chování firmy, omezují se pouze na deskripci problému a ve svých teoriích o problému nejistoty pracují jako s předpokladem.

3. naopak neoklasicí mikroekonomiky alespoň implicitně řeší problém nejistoty v životě firmy maximalizací očekávaných většin. Je nutno zmínit, že toto řešení problému je značně nekonzistentní s praxí, neboť předpokládá vlastníci s neutrálním postojem k riziku, přičemž je statisticky verifikována majorita rizikoverkých jedinců v populaci.

4. alternativní teorie nejsou schopny nahradit neoklasicí teorii firmy z těchto důvodů:

- behavouriální, postkeynesiánské a institucionální modely se zaměřují na deskripci změny podnikového prostředí, jsou založeny na metodě verbální dedukce. Právě tyto metodologické postupy neumožňují formulaci jednoznačných modelů a matematizaci. V těchto modelech chybí i kvalifikovatelné a testované hypotézy.

- manažerské teorie a zaměstnanecký model řeší specifické situace, kdy ve firmě bude pracovat pouze vlastníci (zaměstnanecký model) nebo manažer začal sledovat maximizaci vlastních cílů jako obrat, růst (manažerské teorie). Neoklasicí teorie nejsou schopny substituovat z důvodu specifickosti předmětu zkoumání. Na druhé straně díky přesné matematicko-grafické metodě mají možnost formulovat jednoznačně matematizované modely a jsou z tohoto hlediska do neoklasicí teorie plně aplikovatelné, přičemž neoklasicí teorie firmy zůstává teorií obecnou a manažerské teorie a zaměstnanecký model řeší specifické případy.

Na obhajobu neoklasické teorie firmy je nutno uvést, že každá teorie, pokud chce formulovat exaktní matematizované modely, musí pracovat se zjednodušenými a abstrahovat od nevýznamných faktorů. Cílem neoklasické teorie firmy je vybudování modelu firmy, který by analyzoval závislost mezi nabídkou firmy (závislou proměnnou) a cenou výrobních faktorů, cenou produkce, daněmi a dalšími nezávislými proměnnými. Testem úspěchu každé teorie je, jak úspěšně předikuje chování subjektů. A model neoklasické teorie firmy předpovídá rozhodování firmy úspěšně v rámci cílů, které si vytýčil, tedy optimalizace nezávislých proměnných. Přičemž neexistuje fundovaný empirický důkaz, který by prokazoval, že neoklasická teorie vedla k chybným závěrům.
Technická univerzita v Liberci
Hospodářská fakulta

Studijní program:
P 6208 Ekonomika a management

Studijní obor:
Organizace a řízení podniků

PROBLÉMY SOUČASNÉ
TEORIE FIRMY

DIFFICULTIES OF CONTEMPORARY
FIRM THEORY

Autoreferát doktorské disertační práce

Ing. Mgr. Marek Skála

Liberec, březen 2007
Doktorská disertační práce byla vypracována v rámci doktorského studia na katedře ekonomie Hospodářské fakulty Technické univerzity v Liberci.

Uchazeč:
Ing. Mgr. Marek Skála
Technická univerzita
Hospodářská fakulta
katedra ekonomie
Hálkova 6
416 17 Liberec 1

Školitel:
prof. Ing. Jiří Kraft, CSc.
Technická univerzita
Hospodářská fakulta
katedra ekonomie
Hálkova 6
416 17 Liberec 1

Oponenti:
prof. Ing. Miloš Mach, CSc.
Západočeská univerzita
Fakulta ekonomická
katedra ekonomie a financí
Univerzitní 8
306 14 Plzeň

prof. RNDr. Bohuslav Sekerka, CSc.
Univerzita Pardubice
Fakulta ekonomicko-správní
Ústav ekonomie
Studentská 83
532 10 Pardubice
prof. Ing. Gustav Tomek, DrSc.
České vysoké učení technické
Fakulta elektrotechnická
katedra ekonomiky, manažerství a
humanitních věd
Technická 2
166 27 Praha 6

Obhajoba doktorské disertační práce se koná dne 24. května 2007 před komisí na Hospodářské fakultě Technické univerzity v Liberci, Voroněžská 13, Liberec 1 v zasedací místnosti děkanátu Hospodářské fakulty.

S doktorskou disertační prací je možno se seznámit na katedře ekonomie Hospodářské fakulty Technické univerzity v Liberci.

prof. Ing. Jan Ehleman, CSc.
předseda oborové rady
Obsah

Úvod...1
Předmět a cíle disertační práce.................................2
Přehled současného stavu problematiky3
Metodologie disertační práce................................4
Přehled dosažených závěrů disertační práce8
Seznam použité literatury28
Resumé..31
Summary...32
Zusammenfassung..33
Publikační činnost v průběhu doktorského studia35
Úvod

Moderní neoklasická mikroekonomie vytváří stabilní a konzistentní celok. Konzistentnost se projevuje vzájemnou provázaností a solidním propracováním jednotlivých problematik mikroekonomické analýzy – jako jsou chování spotřebitele, teorie firmy, analýza trhů výrobních faktorů a problematika všeobecné rovnováhy včetně tržních selhání. Analýza řeší všechny reálné mikroekonomické problémy.

Nebezpečím v budoucnosti je rozpor reality a učebnicové teorie. Matematická metoda je sice přesná, ale jí popisovaná realita začíná být jiná. Fundamentálně je ohrožena především teorie firmy. A právě závěry teorie firmy jsou pro podnikovou ekonomiku signifikantní.
Předmět a cíle disertační práce

Předmětem práce je analýza současné teorie firmy a její aktuálnosti při řešení problémů moderní firmy.

Disertační práce má za cíl nalezení odpovědi na následující problémy:

- Jaké je prostředí současné firmy na rozdíl od „učebnicové firmy“?
- Je tato diskrepance významná a mohla by vést k chybným závěrům?
- Trpí moderní mikroekonomická analýza absencí některých fenoménů změněného podnikového prostředí?
- Nabízí alternativní teorie reálnější odpovědi pro teorii firmy a mohou nahradit neoklasickou teorii?

Kromě snahy odpovědět na tyto otázky je formulována i následující hypotéza:

Neoklasická teorie firmy tak, jak je reprezentována v moderních učebnicích mikroekonomie, i přes dramatickou změnu podnikového prostředí, dává správné odpovědi týkající se chování firem.

Přínosem práce má být i ucelený a detailnější popis všech alternativních modelů firmy, který chybí jak v domácí tak zahraniční literatuře.
Přehled současného stavu problematiky

Současná mikroekonomická literatura částečně věnuje pozornost diskrépanci teorie firmy a podnikového prostředí.

Mezi významnější patří tyto publikace:

Většinou se jedná pouze o popis změněného podnikového prostředí a prezentaci vybraných alternativních modelů, bez hlubší analyzy možností alternativních modelů nahradit neoklasickou teorii firmy.
Problémy současné teorie firmy

Metodologie disertační práce

Pro prezentaci modelů je zvolena matematicko-grafická a verbálně dedukční metoda. Všechny modely pracují s abstrakcí. Pro zodpovězení otázek, verifikaci hypotézy a hodnocení modelů je použita metoda komparace alternativních modelů s neoklasickou teorií.

S ohledem na zodpovězení otázek a verifikování hypotézy byla stanovena následující struktura práce:

Schéma 1: Struktura disertační práce

Část I.
Problémy aplikace teorie firmy do současného podnikového prostředí

1. kapitola: Problémy současné teorie firmy

Část II.
Reakce současné mikroekonomie na diskrepanci teorie firmy a praxe

2. kapitola: Behaviourální modely
 Herbert Simon: Model aspirační úrovně
 Cyertův a Marchův model
 Peter Doyle: Teorie zón tolerance

3. kapitola: Manažerské teorie
 Scitovského model
 Baumolův model
 Williamsonův model
 Marrisův model

4. kapitola: Model zmocnitel-zmocněné
 („Principal-Agent model / Agency teorie)
 Hidden knowledge
 Hidden action
Problémy současné teorie firmy

5. kapitola: Postkeynesiánské modely firmy
Kaleckého model přirážkové tvorby cen
Eichnerův model tvorby cen s požadovanou mírou výnosu
Labiňáho model limitní tvorby cen

6. kapitola: Institucionální pojetí firmy
Meansova teorie firmy
Galbraithova teorie firmy
Rotchaidova teorie firmy
Baranova a Sweezyho teorie firmy

7. kapitola: Wardův model (Zaměstnanecký model firmy)

Část III.
Přínosy alternativních teorií firmy pro současnou mikroekonomii

8. kapitola: Vylučují změny předpokladů maximalizaci zisku?
9. kapitola: Závěr

První kapitola představuje výchozí analýzu disertační práce, snaží se identifikovat podnikové prostředí firmy v 21. století a nalézt rozpoznané mezí předpoklady učebnicové teorie firmy a tímto prostředím. Změna podnikového prostředí implikuje jednak změnu předpokladů, se kterými teorie firmy pracuje a jednak výskyt nových jevů, kterým mikroekonomická analýza doposud nevěnovávala pozornost.

Na danou diskrepanci teorie a prostředí reagovaly alternativní teorie, které částečně nebo úplně zpochybňují předpoklady a tím i závěry neoklasické teorie firmy. Odpověď alternativních konceptů firmy na danou diskrepanci je rozebrána v druhé části.
Alternativní koncepty nejsou jednotnou teorií, často stojí i proti sobě. Společně je pro ně jen jejich vymezení proti neoklasicke teorii. Školy se liší metodologií, některé z nich uznavají maximální a chování, ale zaměřují se na hledání maximalizace jiných parametrů cílové funkce než je zisk, jiné školy metodologii maximalizace plně odmitají.

Behaviourální teorie (2. kapitola) kritizují „univerzitní“ mikroekonomii z absence analýzy chování sociálních skupin ve firmě a postulují důsledky, které z této absence vyplývají. Dokazují, že procesy, ve kterých se formuluje cíle, jsou odlišné od chování, které předpokládá maximalizace zisku.

Manažerské teorie (3. kapitola) věnují pozornost firmám řízeným manažery. Manažer v těchto modelech mají jiné priority než vlastníci, což povede k odlišným závěrům ve srovnání s neoklasicke teorií. Právě oddělení vlastnictví od řízení je charakteristické pro současné ekonomiky.

Pro moderní otevřenou ekonomiku jsou charakteristické silné oligopolní tržní struktury. Charakteristice a popis chování velkých firem (korporací) věnují pozornost institucionální (v 5. kapitole) a postkeynesiánské (v 6. kapitole) modely firmy. Postulují diametrálně odlišné
Problémy současné teorie firmy

závěry o chování velkých firem než učebnicová mikroekonomie.

Mimo předmět zkoumání neoklasické teorie zůstal jev zaměstnanecké firmy (7. kapitola), kde vlastníci jsou jedinými zaměstnanci. V praxi se jedná například o situaci, kdy společníci společnosti s ručením omezeným jsou i jedinými zaměstnanci firmy. I tento fenomén neguje řadu závěrů „univerzální“ mikroekonomie.

Významnou pro verifikaci hypotézy je třetí část, kde v kapitole Vylučují změny předpokladů maximalizaci zisku? (8. kapitola) jsou souhrnně konfrontovány alternativní modely s neoklasickou teorií firmy (tato metoda je částečně zvolena již při dlouhém rozboru modelů). Odpovězení otázek, verifikace hypotézy a hodnocení alternativních modelů jsou obsahem závěrečné kapitoly.
Přehled dosažených závěrů disertační práce

Disertační práce měla za cíl nalezení odpovědí na následující otázky:

- Jaké je prostředí současné firmy na rozdíl od „učebnicové firmy“?
- Je tato diskrepance významná a mohla by vést k chybným závěrům?
- Trpí moderní mikroekonomická analýza absencí některých fenoménů změněného podnikového prostředí?
- Nabízí alternativní teorie reálnější odpovědi pro teorii firmy a mohou nahradit neoklasisickou teorii?

Otázky jsou postupně zodpovězeny v následujícím textu. V samotném závěru této kapitoly je i ověřena platnost hypotézy, že neoklasisická teorie firmy tak, jak je reprezentována v moderních učebnicích mikroekonomie, i přes dramatickou změnu podnikového prostředí, dává správné odpovědi týkající se chování firem.

Otázka 1: Jaké je prostředí současné firmy na rozdíl od učebnicové firmy?

- Současná firma se vyznačuje komplikovaným vlastnictvím.
- Dochází k rozdělení role majitele a manažera.
- Organizování současných firem je poměrně komplikované.
- Neoklasisická firma žije ve světě jistoty, současná firma ve světě nejistoty.
- Rozhodování v moderní firmě není snadné.
Problémy současné teorie firmy

Neoklasická teorie firmy může být naprotil tomu charakterizována:

- Vysokým stupněm abstrakce, který souvisí s problémem matematické optimalizace.
- Základní formulace se odehrávají v prostředí jistoty.
- Předpokládá racionální a maximalizační chování, úplné informace o poptávce, nákladech a nulové náklady na změnu výstupu.
- Předmětem zkoumání je formalizace (matematizace) optimalizačního problému.
- Snahou o transformování výsledků do vysvětlení a predikci chování firmy.

Otázka 2: Je tato diskrepance významná a mohla by vést k chybným závěrům?

Problém: Současná firma se vyznačuje komplikovaným vlastnictvím.

Argument
- Většina akcionářů hraje pasivní roli v dnešních firmách.

Protiargument
- Aktivní minoritní akcionáři.
- Získání vlastnického podílu manažery.
- Právě institucionální vlastníci disponují mocí prosadit zásadní změny.
Komplikované vlastnictví v moderních firmách nemusí nutně vést ke změně chování firmy (maximalizace zisku, jak ji předpokládá neoklasická teorie firmy).

Problém: Dochází k rozdělení role majitele a manažera.

Argument
- Existuje konflikt v zájmech vlastníků a manažerů: manažerí maximalizují tržby a růst, vlastníci naopak usilují o maximální tržní hodnotu firmy (ektivarent zisku).

Protiargument
- Nebezpečí výměny managementu v případě nesporokoností je silným motivem pro chování manažerů odpovídajícímu přání vlastníků.
- Existuje empirická evidence, která potvrzuje, že firmy investující do současného růstu, dosahují větší zisky v budoucnosti (manažerí se chovají v konečném důsledku ve prospěch svých vlastníků v budoucnosti).

V práci nebylo možno stanovit jednoznačný závěr, zda existuje konflikt v zájmech vlastníků a manažerů.

Problém: Organizování současných firem je poměrně komplikované.

Argument
- Kritika nepozornosti neoklasické teorie převodu vizi a plánů do nižších řídících úrovni ve firmě. Neoklasický model firmy implicitně předpokládá bezproblémové převodní cíle maximalizace zisku do nižších úrovni řídící pyramidy.
Problémy současné teorie firmy

Protiargument
- Adaptivní chování (behaviourální teorie) ukazuje, že firma se může, i přes komplikovanou organizační strukturu moderních firem, postupně dopracovat k maximalizaci zisku.

Tato změna předpokladu proto nutně nevede k odmítnutí maximalizačního chování firmy.

Problém: Neoklasická firma žije ve světě jistoty, současná firma ve světě nejistoty.

Argument
- Firma zisk maximalizovat neumí (nemůže). V dynamicky měnícím se prostředí má firma minimální šanci urychlit zareagovat a v momentě reakce může být situace už jiná.
- Neoklasická teorie explicitně předpokládá, že firma zná svou ziskovou funkci, má úplné informace ohledně své poptávky, nákladech a že náklady na změnu výstupu jsou nulové, a proto si firma může volit výstup odpovídající maximalizaci zisku (předpoklad dokonalých informací).

Tato skutečnost může vést k tomu, že firma zisk maximalizovat neumí (nemůže). Změna tohoto předpokladu může vést k odlišnému závěru o chování firmy než jakým je maximalizace zisku. Je paradoxem, že řešením tak významného problému se nevěnuje žádný z alternativních konceptů firmy.
Problémy současné teorie firmy

Problém: Rozhodování v moderní firmě není snadné.

Argument
- Behaviourální teorie ukazuje, že konflikt cílů může být značně komplikovaný, protože každá ze skupin uvnitř firmy může sledovat vlastní cíle.

Protiargument
- Na druhé straně samy behaviourální teorie připouští, že maximalizační chování by mohlo být jedno z možných chování firem.
- Navíc řada dalších alternativních konceptů si uvědomuje signifikantnost zisku pro život firmy: zisk poskytuje firmě finance pro obnovu kapitálu, díky zisku může firma expandovat.

Dá se proto očekávat, že i jednotlivé skupiny ve firmě si budou význam zisku ve svém chování uvědomovat. Komplikovanost rozhodování ve firmě jednoznačně nezpochybňuje maximalizaci zisku firmou.

 Shrnutí otázky 2

Až na změnu předpokladu „neoklasická firma žije ve světě jistoty, současná firma ve světě nejistoty“ změna ostatních předpokladů jednoznačně nezpochybňuje závěr neoklasické teorie o maximalizaci zisku firmou.
Otázka 3: Trpí moderní mikroekonomická analýza absencí některých fenoménů změněného podnikového prostředí?

V moderní mikroekonomické teorii (neoklasické i alternativních přístupech) chybí model rozhodování firmy ve světě nejistoty.

- Alternativní přístupy se omezují pouze na konstatování předpokladu nejistoty, ale nehledají řešení, jak by se měla firma ve světě nejistoty chovat.
- Neoklasická mikroekonomie má propracovanou teorii nejistoty pro chování spotřebitele a implicitně předpokládá, že maximální zisk je motivem činnosti vlastníka, protože vyšší zisk představuje i vyšší spotřebu. Podle neoklasické mikroekonomie za nejistoty subjekty sledují očekávané veličiny, které odráží pravděpodobnosti nastání odpovídajícího výsledku. Neoklasická teorie implicitně očekává, že firma by za nejistoty sledovala očekávaný zisk.

Rozpor
Pokud se subjekty „spokojí“ pouze s očekávanými výsledky jako žádoucími, mikroekonomická teorie postuluje neutrální postoj majitelů firmy k riziku. Přičemž většina jedinců v populaci má spíše rizikoavерzní postoj. Proto pokud nejsou majitelé firmy rizikoneutrální, je neoklasický model firmy za nejistoty nekonzistentní.
Shrnutí otázky 3

Současná mikroekonomická analýza by se měla zaměřit na formulování modelu chování firmy v prostředí nejistoty. Neoklasická teorie firmy problém implicitně řeší, ale řešení je nekonzistentní s praxí (majoritním výskytem rizikoaverzních jedinců v populaci). Alternativní přístupy dosáhly pouze stádia konstatavání rozporu předpokladů a podnikového prostředí a pracují s nejistotou jako předpokladem. Fundovaný model, který by se explicitně problémem nejistoty v chování firmy zabýval, bohužel mezi alternativními koncepty chybí.

Otázka 4: Nabízí alternativní teorie reálnější odpovědi pro teorii firmy a mohou nahradit neoklasickou teorii?

Behaviourální modely

Herbert Simon: Model aspirační úrovně
- Výchozí analýza
- Přínosem je analýza chování sociálních skupin.
- Zpochybnění maximalizace zisku není ale příliš přesvědčivé (metoda verbální dedukce).

Cyertův a Marchův model
- Pokus o aplikaci behaviourálních přístupů, jako jsou chování sociálních skupin, deskripce rozhodování a procesu hledání alternativ a cílů do teorie firmy.
- Zpochybnění maximalizace zisku není ale příliš přesvědčivé (metoda verbální dedukce).
Problémy současné teorie firmy

Peter Doyle: Teorie zón tolerance
- Teorie zón tolerance popisuje moderní firmu v behaviourální optice.
- Pozitivněm je i implikace závěrů finančního řízení podniku do teorie firmy.
- Negativněm je pouhý popis reality podnikového prostředí, která se může lišit v každé firme.
- Model neodpovídá ani na tradiční otázky: Jak probíhá rozhodování o výstupu? Jak jsou stanoveny ceny?, etc.

Behaviourální modely nejsou schopny nahradit neoklasickou teorii firmy, lze je považovat za důležité doplnění neoklasické teorie firmy o pozorování chování subjektů, kterému tato teorie nevěnuje pozornost.

Manažerské teorie

Scitouského model
- Výchozí analýza: Je chování manažerů identické s chováním vlastníků?
- Používá více přesvědčivý graficko-analytický aparát (indiferenční analýzu).
- „Univerzitní“ ekonomie by si měla být vědoma, že chování manažerů pravděpodobně nebude odpovídat maximalizaci zisku.
Problémy současné teorie firmy

Baumolův model
- Chování manažerů je motivováno snahou o maximalizaci příjmů.
- Baumol používá pro potvrzení závěrů exaktní matematicko-grafický aparát.
- Model dává doplňující pohled na chování manažerů, kteří sledují cíl maximalizace tržeb místo maximalizace zisku.

Williamsonův model
- Williamsonův model: manažerí sledují maximalizaci svých zájmů, konkrétně diskuze o zisku, výdají na zaměstnance a vedlejších výhod. U posledních dvou ukazatelů se manažerí chovají odlišně od vlastníků.
- Ve srovnání s Baumolovým modelem je pohled Williamsona na manažerské chování širší a proto objektivnější.
- Abstrahuje však od dalších aspektů problematiky firmy, a proto není schopen neoklasickou teorii substituovat.

Marrisův model
- Marrisův model: růst firmy je přímým cílem manažerů.
- Míra růstu je vyšší než by byla v případě, kdyby firma sledovala maximalizaci zisku (tržní hodnota firmy není maximální, firma plati cenu za vyšší riziko růstu).
- Model abstrahuje od dalších aspektů teorie firmy, proto je jen vhodným doplňkem neoklasické teorie ve specifickém případě, kdy manažerí zaměří
svou pozornost na maximalizaci růstu firmy namísto zisku.

Model zmocnitel-zmocněnec („Principal-Agent model“/ Agency teorie)

Hidden knowledge
- V případě „hidden knowledge“ zmocnitel (vlastník) není schopen díky informační asymetrii ex ante rozpoznat angažovanost jednotlivých zmocněnců (manažerů).
- V modelu jsou uvažovány pouze dva typy zmocněnců: méně angažovaný a více angažovaný zmocněnec. Angažovanost zmocněnců vyjadřuje jejich produktivitu.
- Zmocnitel hledá smlouvy (odměnu a pracovní vytížení) pro více efektivního zmocněnec a pro méně efektivního zmocněnce.
- Smlouvy musí být formulovány tak, aby se každý typ zmocněnce rozhodl pro svou smlouvu (a ne druhého zmocněnce) a současně každý ze zmocněnců dosáhne skrze svou smlouvu minimální požadované úrovně užitku.

Hidden action
- V situaci „hidden action“ je výsledek snažení zmocněnců ovlivněn náhodnými okolnostmi.
- Zmocnitel neumí (informační asymetrie) odlišit vliv okolnosti a pracovního nasazení zmocněnce na konečný výsledek.
- Nemůže proto zakomponovat pracovní nasazení do smlouvy a odměna závisí pouze na konečním výstupu.
- Cílem modelu je nalezení takové funkce odměny, která by donutila zmocněnce ve vlastním zájmu odvést zmocnitem požadované množství práce.

Postkeynesiánské modely firmy

Kaleckého model přirážkové tvorby cen
- Kaleckého model: ceny jsou tvořeny přirážkou k variabilním nákladům a jsou značně nepružné.
- Přirážka v sobě zahrnuje úhradu fixních nákladů i zisk. Při stanovení přirážky firma přihlíží k cenám konkurentů a monopolizaci odvětví.
- Závěry o chování firem:
 a) při neměnných variabilních nákladech firma bude vyrábět jakékoliv požadované množství aniž by se měnila cena produkce.
 b) změna nákladů se odrazí v růstu cen (firmy nerady mění ziskovou přirážku).
 c) při pozitivní technologické změně jsou ceny značně nepružné (firmy neupravuje ceny při poklesu nákladů díky pozitivní technologické změně).
- Kaleckého model používá metodu deskripcy a metodu verbální dedukce.
Eichnerův model tvorby cen s požadovanou mírou výnosu
- Firma určí cenovou přirážku tak, aby kryla fixní náklady a tvorbu rezervního fondu.
- Zvýšení přirážky je jedinou cestou, jak si firma může obstarat interní zdroje financování investic za předpokladu, že vlastníci nejsou ochotni akceptovat nižší úroveň dividend.
- Tento zdroj financování je však spojen s nebezpečími, která se logicky odrazí v růstu požadované výnosnosti vnitřních zdrojů. Cena kapitálu se pak zohlední v přirážce a v konečném důsledku v ceně produkce.
- Model používá metodu deskripce a metodu verbální dedukce.

Labinho model limitní tvorby cen
- Labinho model: tvorba cen jako strategie konkurenčního boje.
- Závery o chování firem:
 a) identická struktura odvětví může existovat při několika rovnovážných cenách (při cenách, které nevyvolávají změnu struktury odvětví). Tento závěr modelu zpochybnuje existenci jediné rovnovážné ceny v neoklasické teorii.
 b) firma je při výrobě omezena svou technologií. Není schopna vyrábět spojitý objem produkce, jak předpokládá neoklasická teorie, naopak vyrábí v produkčních skokách.
- Model používá metodu verbální dedukce.
Institucionální pojetí firmy

Meansova teorie firmy
- Meansova teorie firmy: rigidita administrovaných cen.
- Firma určí cenu a tuto cenu sděluje (administruje) zákazníkům a konkurenci.
- Jakmile korporace stanoví ceny, udržuje je neměnné. Ceny mění korporace pouze, pokud růst nákladů překročí určitý přijatelný limit.
- Means postuluje na základě empirických údajů následující závěry o chování korporace:
 a) průměrné variabilní náklady se nemění s množstvím produkce a tvoří podstatnou část průměrných nákladů (průměrné fixní náklady jsou v moderní korporaci nevýznamné).
 b) velká korporace reaguje na změny nákladů zvýšením ceny, zatímco ziskovou přírůstek mění pouze tehdy, pokud očekává, že změna poptávky je signifikantní a dlouhodobá.
- Vě rovnání s behaviourálními a institucionálními modely Means odvozuje závěry na základě empirických údajů.

Galbraithova teorie firmy
- Galbraithova teorie: deskriptce moderní korporace.
- Popisuje chování velké korporace, která je řízena rozhodovací elitou (technostrukturou). Technostruktura má významný vliv, přijímá strategická
rozhodnutí v korporaci, disponuje tržní mocí, kontroluje vnější prostředí (jak ekonomické tak politické).
- Aby technokrati minimalizovali živelnost trhu, plánují své aktivity. Dochází k tomu, že celý sektor korporací se může chovat jako plánovaný sektor.
- Korporace uplatňuje politiku relativně nízkých a neměnných cen. To ji činí méně ohroženou před konkurencí nebo politickými tlaky.
- Aby si technosruktura zachovala svou autonomii, musí dosahovat i určité míry zisku, a to jednak z důvodu výplaty přijatelné míry dividend pro vlastníky a tak i z důvodu vytváření dostatečného kapitálu pro obnovu investic.
- Negativem Galbraithovy teorie firmy je popis americké (specifické) velké firmy.

Rotchildova teorie firmy
- Rotchildova teorie firmy analyzuje oligopol se specifickými vlastnostmi, jakými jsou nebezpečí permanentních útoků ze strany ostatních konkurentů a jeho oligopol disponuje oligopolní silou, která mu umožňuje ovlivňovat poptávku.
- Závěry o chování oligopolu:
 a) jedním z hlavních cílů manažerů v Rotchildově oligopolu je bezpečný zisk. Jedná se o důsledek permanentního ohrožení ze strany konkurentů. Realizaci jisté úrovně bezpečného zisku mu umožňuje oligopolní postavení.
b) oligopol se bude snažit udržet cenu neměnnou co nejdéle to bude možné. Příliš častými změnami cen se oligopol vystavuje nebezpečí odsouhlas by se strany konkurentů (maloobchodní váleč) nebo může motivovat nové firmy ke vstupu do odvětví.

c) Rotchildův oligopol bude upevňovat svou pozici nástroji jako jsou finanční moc, růst firmy, vzestupná a sestupná integrace. Rotchildův oligopol používá i neekonomické nástroje, konkrétně politické aktivity (lobbing u vlády a zákonodárců ohledně tarifů, daní, získání vládních zakázek etc.).
- Model používá metodu verbální dedukce na základě předpokladů.

Baranova a Sweezyho teorie firmy
- Manažeři řeší v tomto modelu dva problémy: usilují o maximální nebo alespoň o co největší tok zisku, a dále pak řeší problém, jak tento zisk rozdělit mezi zadržený zisk a dividendy.
- Závěry o chování firmy:
 a) neoklasické teorie vnímá firmu příliš izolovaně. Firmu je nutno analyzovat v širším společenském i ekonomickém kontextu.
 b) většině akcionářů a manažeřů mají zájem na nižších dividendách a větším zadrženém zisku, tím snižují současnou hodnotu firmy.
Problémy současné teorie firmy

- Slabým místem je absence jednoznačného, matematizovaného modelu a testování hypotéz.

Wardův model (Zaměstnanecký model firmy)
- Tato změna proměnné maximalizace implikuje následující závěry o chování firmy:
 a) zaměstnanci nejsou motivováni mzdou, protože výše mzdy neovlivňuje příjem na vlastníka, kterou vlastníci maximizují.
 b) ve srovnání s neoklasickou firmou bude ve Wardově firmě při ztrátě pracovat více zaměstnanců, při pozitivním zisku méně partnerů. Toto chování vysvětluje výskyt většího počtu řízených zaměstnanců v upadajících sektorech i jejich „přezaměstnanost“.
 c) Wardova firma usiluje o co nejmenší počet zaměstnanců (pokud by to bylo možné jen jednoho). Příjmy na vlastníka rostou s menším počtem spolupracovníků, ale fixní náklady nutí firmu rozšířovat řady partnerů, protože fixní náklady na vlastníka klesají s větším počtem s partnerů.
 d) krátkodobá nabídková křivka: s rostoucí cenou v krátkém období zaměstnanecká firma vyrábí paradoxně méně. Rostoucí
cena zvyšuje příjem na vlastníka, což ji umožňuje uvolnit se z omezení fixních nákladů a firma tak snižuje počet partnerů, a tedy i produkce.
e) dlouhodobá nabídková křivka: v dlouhém období firma vyrábí výstup v minimu průměrných nákladů, cena její chování nijak neovlivňuje.
f) nabídková křivka odvětví: chování Wardových řízení je v případě volných vstupů do odvětví a nulových nákladů na vstupy identické s chováním neoklasických firm. Zvýšení produkce ale ve Wardově sektoru závisí více na vstupu nových zaměstnanců firm do odvětví, než na zvýšení produkce samotnými firmami v odvětví, jak tomu bylo v neoklasické teorii.
- Model je z hlediska použitých nástrojů a stejného předmětu zkoumání (determinace výstupu, ceny, nabídky firmy a odvětví) do neoklasické teorie firmy plně aplikovatelný.

Shmutí otázky 4

Alternativní teorie nejsou schopny nahradit neoklasickou teorii firmy z těchto důvodů:
- **behaviourální, postkeynesiánské a institucionální modely** se zaměřují na deskripci změny podnikového prostředí, jsou založeny na metodě verbální dedukce. Právě tyto metodologické postupy neumožňují formulaci jednoznačných modelů a matematizaci.
V těchto modelech chybí i kvantitativně a testované hypotézy.

- manažerské teorie a zaměstnanecký model řeší specifické situace, kdy ve firmě budí pracují pouze vlastníci (zaměstnanecký model) nebo manažéři začali sledovat maximalizaci vlastních cílů jako obrat, růst (manažerské teorie). Neoklasickou teorii nejsou schopeny substituovat z důvodu specifickosti předmětu zkoumání. Na druhé straně díky přesné matematicko-grafické metodě mají možnost formulovat jednoznačné matematizované modely a jsou z tohoto hlediska do neoklasické teorie plně aplikovatelné, přičemž neoklasická teorie firmy zůstává teorii obecnou a manažerské teorie a zaměstnanecký model řeší pouze specifické případy.

Hypotéza: Neoklasická teorie firmy tak, jak je reprezentována v moderních učebnicích mikroekonomie, i přes dramatickou změnu podnikového prostředí, dává správné odpovědi týkající se chování firem.

Disertační práce verifikovala hypotézu, že neoklasická teorie firmy tak, jak je reprezentována v moderních učebnicích mikroekonomie, i přes dramatickou změnu podnikového prostředí, dává správné odpovědi týkající se chování firem, z následujících důvodů:
- rozdíly mezi podnikovým prostředím a předpoklady formulovanými v neoklasické teorii firmy, až na problém nejistoty v životě moderních firem, nejsou schopny zpochybnit maximalizační chování firmy v případě zisku.
- konkurenční teorie firmy nenabízí fundované řešení problému nejistoty v chování firmy, omezují se pouze na deskripci problému a ve svých teoriích s problémem nejistoty pracují jako s předpokladem.
- alternativní teorie nejsou schopny nahradit neoklasickou teorii firmy (viz shrnutí u otázky 4).
- naopak neoklasická mikroekonomie alespoň explicitně řeší problém nejistoty v životě firmy maximalizaci očekávaných veličin. Je nutno zminit, že toto řešení problému je značně nekonzistentní s praxi, neboť by předpokládalo vlastníky s neutrálním postojem k riziku, přičemž je statisticky verifikována majorita rizikoaversních jedinců v populaci.
Problémy současné teorie firmy

Na obhajobu neoklasické teorie firmy je nutno uvést, že každá teorie, pokud chce formulovat exaktní matematizované modely, musí pracovat se zjednodušenými a abstrahovat od nevýznamných faktorů. Cílem neoklasické teorie firmy je vybudování modelu firmy, který by analyzoval závislost mezi nabídkou firmy (závislou proměnnou) a cenou výrobních faktorů, cenou produkce, daněmi a dalšími nezávislými proměnnými. Testem úspěchu každé teorie je, jak úspěšně predikuje chování subjektů. A právě model neoklasické teorie firmy předpovídá rozhodování firmy úspěšně v rámci cílů, které si vytýčil, tedy optimalizace nezávislých proměnných. Neexistuje přítom ani fundovaný empirický důkaz, který by prokazoval, že neoklasická teorie vedla k chybným závěrům.
Seznam použité literatury

Pošta, V.: Manažerské modely firmy. Politická ekonomie, č.1, 2006
Problémy současné teorie firmy

Williamson, O. E.: The Economics of Discretionary Behaviour. Markham, Chicago 1967

Resumé

Disertační práce má za cíl nalezení odpovědi na následující problémy:

- Jaké je prostředí současné firmy na rozdíl od „učebnicové firmy“?
- Je tato diskrepance významná a mohla by vést k chybným závěrům?
- Trpí moderní mikroekonomická analýza absenci některých fenoménů změněného podnikového prostředí?
- Nabízí alternativní teorie reálnější odpovědi pro teorii firmy a mohou nahradit neoklasickou teorii?
Pro disertační práci je formulována hypotéza, že neoklásická teorie firmy tak, jak je reprezentována v moderních učebnicích mikroekonomie, i přes dramatickou změnu podnikového prostředí, dává správné odpovědi týkající se chování firem.

Summary

Current mainstream microeconomics is a stable and integrated science. Its integrity is achieved by its coverage of all microeconomic topics, such as Consumer Theory, Firm Theory, Production Factors Markets, and General Equilibrium including Market Failure. Microeconomic science provides an answer to all current microeconomic problems. Contemporary microeconomics builds on the Swiss and Cambridge Schools (Neoclassical Microeconomics). Paradigms of those schools have not been questioned for the whole century. Mathematics in modern microeconomics stands behind its "miraculous" stability, compared to contemporary macroeconomics. A disharmony between reality and university textbooks represents a danger for microeconomics in the future. Mathematical methods are precise; however, the described reality starts to be different. Fundamentally, this could mean Firm Theory would be threatened. And it is the results of Firm Theory that are crucial for business administration.

The doctoral thesis focuses on answering the following questions:

- How does the business environment of modern firms differ from Neoclassical firm provided in textbooks?
Problémy současné teorie firmy

- Is this disharmony between reality and theory significant and could it therefore result in incorrect conclusions?
- Does contemporary microeconomics analysis suffer from the absence of new business environment phenomena?
- Do alternative theories offer more realistic answers and could they be a substitution for the Neoclassical Firm Theory?

The thesis works with the hypothesis that the Neoclassical Firm Theory, as presented in modern microeconomics books, no matter how dramatically the business environment has changed, gives the correct answers relevant for a firm's behaviour.

Zusammenfassung

mathematische Methode ist exakt; aber die beschriebene
Realität ändert sich. Vor allem die Firmentheorie könnte
in Frage gestellt werden. Gerade die Schlussfolgerungen
der Firmentheorie sind für die Betriebswirtschaftslehre
am wichtigsten.

Das Ziel dieser Dissertation besteht darin, Antworten auf
die folgenden Fragen herzuleiten:

- Wie unterscheidet sich das heutige Betriebsumfeld
 vom Betriebsumfeld der „universitären“ Firma?
- Ist diese Diskrepanz von Bedeutung und könnte sie
to falschen Schlussfolgerungen führen?
- Erleidet die moderne mikroökonomische Analyse
die Absenz einiger wichtiger Phänomene des
veränderten Betriebsumfeldes?
- Bieten die alternativen Theorien für die
 Firmentheorie realere Antworten an und können sie
die neoklassische Theorie ersetzen?

Die Dissertation baut auf die Hypothese, dass die
neoklassische Firmentheorie, wie sie in den modernen
mikroökonomischen Lehrbüchern präsentiert wird,
ungeachtet der dramatischen Veränderungen im
Betriebsumfeld korrekte Schlussfolgerungen in Bezug
auf das Verhalten der Firmen bietet.
Publikační činnost v průběhu doktorského studia

Matematický dodatek 4.1 (rovnice 4.49) – Změna a\textsubscript{L} v souvislosti se změnou pravděpodobnosti λ

\[d\lambda \cdot \frac{\partial}{\partial a} \left(a\textsubscript{L} \cdot, \theta\textsubscript{L} \right) \]

\[d\lambda \cdot \left(1 - \lambda \right) \frac{\partial^2 \chi}{\partial a^2} \left(a\textsubscript{L} \cdot, \theta\textsubscript{L} \right) - \lambda \frac{\partial^2 \chi}{\partial a^2} \left(a\textsubscript{L} \cdot, \theta\textsubscript{L} \right) + \lambda \frac{\partial^2 \chi}{\partial a^2} \left(a\textsubscript{L} \cdot, \theta\textsubscript{L} \right) \]

Diferencováním rovnice (4.35a) dostaneme

(a) \[\frac{da\textsubscript{L} \cdot}{d\lambda} = \frac{\partial \chi}{\partial a} \left(a\textsubscript{L} \cdot, \theta\textsubscript{L} \right) - \frac{\partial \chi}{\partial a} \left(a\textsubscript{L} \cdot, \theta\textsubscript{L} \right) \]

\[\left(1 - \lambda \right) \frac{\partial^2 \chi}{\partial a^2} \left(a\textsubscript{L} \cdot, \theta\textsubscript{L} \right) - \lambda \frac{\partial^2 \chi}{\partial a^2} \left(a\textsubscript{L} \cdot, \theta\textsubscript{L} \right) + \lambda \frac{\partial^2 \chi}{\partial a^2} \left(a\textsubscript{L} \cdot, \theta\textsubscript{L} \right) \]

Úpravou relace (35a) dostaneme

(b) \[\frac{\partial \chi}{\partial a} \left(a\textsubscript{L} \cdot, \theta\textsubscript{L} \right) - \frac{\partial \chi}{\partial a} \left(a\textsubscript{L} \cdot, \theta\textsubscript{L} \right) = \frac{1}{1 - \lambda} \left[\frac{\partial \chi}{\partial a} \left(a\textsubscript{L} \cdot, \theta\textsubscript{L} \right) - \frac{\partial \chi}{\partial a} \left(a\textsubscript{L} \cdot, \theta\textsubscript{L} \right) \right]. \]

Dosazením (b) do (a) dostaneme (4.49).

Matematický dodatek 4.2 (rovnice 4.70) – Úpravy rovnice očekávaných hodnot

\[(4.70) \]

E[\{f\{a\}] = \mu \varphi (\xi | a) . d\xi

Použitím pravidel pro parciální integrování

(a) \[\int_{X_0}^{X} g \cdot d\xi = \left[g \cdot h \right]_{X_0}^{X} + \int_{X_0}^{X} h \cdot dg \]

pro g(\xi) = \mu(\xi) a dh(\xi) = \varphi (\xi | a) . d\xi na definici očekávaných hodnot E[\{f\{a\}] (69) dostaneme

(b) \[E[\{f\{a\}] = \int \mu(\xi) \cdot \varphi (\xi | a) \cdot \frac{d\xi}{\varphi (\xi | a)} \cdot \frac{d\xi}{\varphi (\xi | a)} \cdot \varphi (\xi | a) . d\xi = \]

\[= \int \mu(\xi) \cdot \varphi (\xi | a) - \mu(\xi) \cdot \varphi (\xi | a) - \int \varphi (\xi | a) . d\xi \]

Při dodržení (4.62) dostaneme z (b) rovnici (4.70).
Matematický dodatek 4.3 (rovnice 4.100) – Ekonomická interpretace multiplikátorů

\[
\begin{align*}
\frac{\partial \mathbb{E}[u^* | a]}{\partial \alpha(x)} &= -\mu^A(x) = \mu^A \text{při dodržení } A(x) \geq Z(a) - Z(\overline{a}) \\
\frac{\partial \mathbb{E}[u^* | a]}{\partial B(x)} &= -\mu^B(\overline{x}) = \mu^B \text{při dodržení } B(\overline{x}) \geq Z(a) + \overline{\nu}
\end{align*}
\]

Relace \(\mathbb{E}[u^* | a] = \int_{\mathbb{X}} U(x - Y_i^* (x)) \phi(x | a) \, dx \) se nechá pomocí (91) a (92) přepsat do tvaru

(a) \[
\mathbb{E}[u^* | a] = \int_{\mathbb{X}} \left(U(x - Y_i^* (x)) \phi(x | a) + \mu^A R(Y_i^* (x)) \left[\phi(x | a) - \phi(x | \overline{a}) \right] \right) \\
- \mu^A \frac{dA}{dx} - \mu^A R(Y_i^* (x)) \phi(x | a) - \mu^B \frac{dB}{dx} \, dx.
\]

Úpravou rovnice (a) získáme

(b) \[
\mathbb{E}[u^* | a] = \Gamma - \mu^A \int_{\mathbb{X}} \frac{dA}{dx} \, dx - \mu^B \int_{\mathbb{X}} \frac{dB}{dx} \, dx = \Gamma - \mu^A \left[A(\overline{x}) - A(x) \right] - \mu^B \left[B(\overline{x}) - B(x) \right]
\]

kde \(\Gamma = \int_{\mathbb{X}} \left(U(x - Y_i^* (x)) \phi(x | a) + \mu^A R(Y_i^* (x)) \left[\phi(x | a) - \phi(x | \overline{a}) \right] + \mu^B R(Y_i^* (x)) \phi(x | a) \right) \, dx. \)

Z rovnice (b) za dosazení předpokladů \(A(\overline{x}) = 0 \) a \(B(\overline{x}) = 0 \) dostaneme

(c) \[
\mathbb{E}[u^* | a] = \Gamma - \mu^A A(\overline{x}) - \mu^B B(\overline{x}).
\]

Parciálními derivacemi rovnice (c) podle proměnných \(A(\overline{x}) \) a \(B(\overline{x}) \) dostaneme vztahy v rovnici (100).

Matematický dodatek 4.4 (rovnice 4.111) – Růst optimální funkce odměny

\[
\begin{align*}
\frac{dY_i^* (x)}{dx} &= \frac{1}{\sigma_p + \sigma_A} \left[\sigma_p + \mu^A \frac{dR}{dU} \right] \cdot f_i(x) \\
&= \frac{dR}{dx} < 0 \text{ pro } i = L \\
&= \frac{dR}{dx} > 0 \text{ pro } i = H
\end{align*}
\]

Derivováním rovnice (4.109) podle \(x \) získáme

124
(a) \[
R'U''(1 - Y_l') - U'R''Y_l'' \over R^2 = U^A \cdot \begin{cases}
(-LR') & \text{pro } i = L \\
\frac{dLR}{dx} & \text{pro } i = H
\end{cases}
\]

Vyjádříme-li z rovnice (a) \(Y'_i\) dostaneme

(b) \[
Y'_i = R^2 \over R'U'' + U'R'' \cdot U^A \cdot \begin{cases}
(-LR') & \text{pro } i = L \\
\frac{dLR}{dx} & \text{pro } i = H
\end{cases}
\]

= \frac{1}{(-U'' \over R'' + U'' \over R')} \begin{cases}
U'' \over R'' & \text{pro } i = L \\
U'' \over R' & \text{pro } i = H
\end{cases}

Substitučí za \(-U'' \over R\) a \(U'' \over R\) v rovnici (b) a užitím rovnice (110) dostáváme rovnici (111).

Matematický dodatek 4.5 (rovnice 4.114 a 4.116) – Optimální funkce odměny v případě
rizikoavarezního z mocnění a rizikoneutralního z močen če

(4.114) \(Y^*_t(x) \equiv x - k\)

(4.116) \[
k = \mathbb{E} \left[x \mid a_{it} \right] - \frac{1}{\mathbb{E} \left[Z(a_{it}) + v \right]}
\]

Dosazením rovnice (4.114) do podmínky účasti, kterou je nutno dodržet dostaneme

(a) \[
\int \mathbb{E} \left[x \mid a_{it} \right] \varphi(x \mid a_{it}) \, dx = Z(a_{it}) + \bar{v}
\]

úpravou získáme

(b) \[
\int \mathbb{E} \left[x \mid a_{it} \right] \varphi(x \mid a_{it}) \, dx = \mathbb{E} \left[Z(a_{it}) + \bar{v} \right] \over \mathbb{E} \left[Z(a_{it}) + v \right]
\]

Pokud platí \(
\mathbb{E} \left[x \mid a_{it} \right] = \int \varphi(x \mid a_{it}) \, dx = \int \varphi(x \mid a_{it}) \, dx = 1
\)

dostaneme z (b) rovnici (116).

Matematický dodatek 4.6 (rovnice 4.128 a 4.129) – Optimální funkce odměny v případě
rizikoavarezního z močen í a i zmocně

(4.128) \(Y^* (x) \equiv Y^*_t (x) = bx + \bar{e}\)

Parametry \(b\) a \(e\) jsou zvoleny tak, aby byla splněna podmínka přijetí smlouvy \(
\mathbb{E} \left[v \mid a_{it} \right] = \bar{v}
\)

dodmínka smluvní příživosti \(
\mathbb{E} \left[v \mid a_{it} \right] = \mathbb{E} \left[v \mid a_{it} \right]
\):

(4.129) \[
b = \frac{1}{\mathbb{E} \left[Z(a_{it}) + Z(a_{it}) \over \mathbb{E} \left[Z(a_{it}) + v \right]
\]

125
\[
\theta = \frac{1}{\gamma} \left\{ \gamma + \frac{Z(a_1)E[x | a_1] - Z(a_1)E[x | a_1]}{E[x | a_1] - E[x | a_1]} \right\}
\]

Podmínku přijetí smlouvy \(E [v | a_i] = \bar{v} \) lze pomocí rovnic (4.115) a (4.128) přepsat do tvaru

(a) \[
E [v | a_i] = \int x \phi(x | a_i) \cdot dx = \bar{v}
\]

\[
C_A b \int x \phi(x | a_i) \cdot dx + C_A \theta = \int x \phi(x | a_i) \cdot dx = \bar{v} + Z(a_i)
\]

(b) \[
E [v | a_i] = \bar{v} + Z(a_i)
\]

Zohledníme-li podmínku účasti \(E [v | a_i] = \bar{v} \) v podmínce smluvní přitažlivosti \(E [v | a_i] = E [v | a_i] \), potom má podmínka smluvní přitažlivosti tvar \(E [v | a_i] = \bar{v} \). Pak dostaneme analogicky k rovnici (b)

(c) \[
E [x | a_i] = \bar{v} + Z(a_i)
\]

Ze vztahů (b) a (c) získáme koeficienty \(b \) a \(e \) v rovnici (4.129).

Matematický dodatek 4.7 (rovnice 4.132) - Rostoucí funkce odměny v Paretově optimu (First-Best)

\[
0 \leq \frac{d\bar{Y}_t(x)}{dx} = \frac{\sigma_p}{\sigma_p + 1} \leq 1
\]

Diferencováním rovnice (4.130) při konstantních multiplikátorách \(\mu^R \) dostaneme

(a) \[
\frac{d\bar{Y}_t(x)}{dx} = \frac{dR}{dY} \frac{d^2U}{d(x-y)} + \frac{dU}{dY} \frac{R^2}{dx} \frac{d^2R}{d(x-y)} \frac{dy^2}{dY}
\]

\[
= \frac{1}{d^2R} \frac{dy^2}{dY} \frac{dR}{dy} \frac{d^2U}{d(x-y)^2} + \frac{dU}{dY} \frac{R^2}{d(x-y)} \frac{dy^2}{dY}
\]

Při dodržení rovnice (4.110) dostaneme z (a)
(b) \[
\frac{\partial \tilde{Y}^* (x)}{\partial x} = \frac{1}{1 + \frac{\sigma_A}{\sigma_B}}
\]

Z této rovnice získáme rovnici (4.132).

Matematický dodatek 7.1 - Krátkodobá nabídková křivka v zaměstnanecké firmě

Pro odvození nabídkové křivky ve Wardově modelu použijeme nutnou podmínku (7.5) maximalizace příjmu na vlastníka

(7.5) \[
\frac{\partial y}{\partial L} = \frac{1}{L^2} \left(P \frac{\partial Q}{\partial L} - P \cdot Q + r \cdot K_i \right) = 0
\]

da derivace inverzní funkce k funkci příjmu na vlastníka (7.3).

(7.3) \[
y = \frac{P \cdot Q}{L} - \frac{r \cdot K_i}{L}
\]

Inverzní funkce k funkci příjmu na vlastníka (7.3) má tvar

(7.3a) \[
L = \frac{P \cdot Q}{y} - \frac{r \cdot K_i}{y}
\]

Dérivováním inverzní funkce (7.3a) podle ceny získáme

(a) \[
\frac{\partial L}{\partial P} = -\frac{\partial^2 y}{\partial L \partial P} \frac{\partial^2 y}{\partial L^2}
\]

kde

(b) \[
\frac{\partial^2 y}{\partial L \partial P} = \frac{1}{L} \left(\frac{\partial Q}{\partial L} - \frac{Q}{L} \right)
\]

je parciální derivace rovnice (7.5) podle ceny (P)

a

(c) \[
\frac{\partial^2 y}{\partial L^2} = \frac{P}{L} \cdot \frac{\partial^2 Q}{\partial L^2}
\]

druhá parciální derivace rovnice (7.5) podle počtu partnerů (L).

Dosazením vztahů (b) a (c) do rovnice maximalizace příjmu (a), získáváme upravený tvar

(a *) \[
\frac{\partial L}{\partial P} = \frac{Q}{L} \cdot \frac{\partial Q}{\partial L} \frac{\partial^2 Q}{\partial L^2}
\]

Vztah (a *) bude vzhledem k předpokladu klesajícího mezní i průměrného produktu práce vždy záporný.
(a) \[\frac{\partial L}{\partial P} = \frac{Q}{L} \cdot \frac{\partial Q}{\partial L} < 0. \]

Předpoklad lze matematicky zapsat

(d) \[\frac{Q}{L} > \frac{\partial Q}{\partial L}. \]

(v případě klesajícího mezního i průměrného produktu práce, je křivka mezního produktu práce pod křížkou průměrného produktu práce)

a

(e) \[\frac{\partial^2 Q}{\partial L^2} < 0 \]

(tato rovnice vyjadřuje klesající výnosy ze vstupu práce).

Derivaci nabídkové křivky podle ceny získáváme

(f) \[\frac{\partial Q}{\partial P} = \frac{\partial Q}{\partial L} \cdot \frac{\partial L}{\partial P}. \]

Sklon křivky nabídky je determinován krátkodobou produkční funkcí \(\frac{\partial Q}{\partial L} \) za předpokladu záporného \(\frac{\partial L}{\partial P} \) (viz argumentace k rovnici a*).

Z krátkodobé produkční funkce je

(g) \[\frac{\partial Q}{\partial L} > 0 \]

(s větší práci, roste výstup).

Použítem vztahů (a) a (g) je derivace (f) záporná

(f) \[\frac{\partial Q}{\partial P} = \frac{\partial Q}{\partial L} \cdot \frac{\partial L}{\partial P} < 0 \]

(s rostoucí cenou klesá výstup Wardovy firmy)

Rovnice (f) ukazuje, jak klesající výnosy z práce ovlivňují atypický klesající tvar nabídkové křivky zaměstnanecké firmy.