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An Automated System for Fabric Faults Inspection to Enhance Textile Handicrafts

Summarv:

The conventional inspection process in the weaving mills usually depends on
human visual inspection. The human visual inspection process only detects 60 to
70% out of the total fabric defects [1] while the residual defects pass without
detection. This causes several problems in the following processes of
manufacturing. In addition, fixing defects is a complicated process and mostly the
defective parts are discarded as waste that might be recycled or sold at low price
(usually 45 to 65% from the free defect price) [2]. This project introduces an
automated system to detect and classify woven fabric defects replacing the

conventional inspection process.

Our proposed system utilizes a digital camera to acquire and transmit fabric images
to a computer which enhances and extracts the features for each image. Then, the
features are processed using Artificial Intelligence technique to detect and classify
the fabric defects. Also, this automated system will be able to predict the sources
of the defects to be fixed. These defects will be recorded in a database providing a
report including the frequent defects to fix their sources and consequently
increasing the quality of the manufactured fabrics. Applying such automatic

system in weaving mills will increase the profit and the product quality.

This automated fabric inspection system is independent of the human’s experience.

This will increase the efficiency of the inspection process through detecting very
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small defects that are difficult to be detected by the labor. Moreover, the automated
fabric inspection system will not get bored or tired like the labor through the long
time of inspection process. Researchers tried to apply automatic inspection
procedures in many ways [2-6] but these ways introduced mainly methods to

analyze the images without a complete system that connected to the computer.
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Chapter 1

Introduction

The main problem in Textile Industry is to increase the ratio between Quality
and Productivity with high flexibility and minimization of the cost. So it is so
important to test the products to ensure quality. Most of textile testing
requires a subjective evaluation by trained personnel. But this person cannot
work 24 Hours with zero faults, so the mill must have a lot of trained persons
for these evaluations. Also subjective evaluation yield erratic results and costs
a lot of money. So it is important to have on-line and high speed quality
controls to enable automation to improve quality value, in addition to increase

of production speeds.

Image processing technique was rapidly developed for inspection of various
materials and ensures quality, and a lot of cameras manufactures offered
computerized cameras with high options like: speed, accuracy, and optical
zooming to make achieved success process. Image-processing techniques
included operations performed by computer in order to carry out pre-
programmed tasks and many people called this (machine-vision system).
These techniques analyze 2-D or 3-D Dimensional scenes to extract important
information (features) and take decisions as to pre-define inputs. Like human-

vision system self-programming that acquired knowledge by trial and error,
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computer vision needs programming for each task. Image processing
enhances the quality of images by mathematical functions to make easy
analysis and make calculation for getting numerical results to take decision.
Other approach is to divide continuous video to individual digital scenes and
track objects which are different from the surroundings by separating the
object from their back ground and compute its blob measurements and

location.

For making a success computer vision system it is important to understand
optics theory, image principles, image environment, image formation, image
types, texture features and deal with image accessories like cameras. Digital
image-processing means self computer-processing of the picture or images in
numerical form. Image processing needs large numbers of steps depend on
the nature of the image. Some of processing steps involve: feature
enhancement, image segmentation, image-smoothing, image-sharpening,
image restoration, image addition, subtraction, and multiplication, image-
filtering, image compression, image transformation, image classification, and
finally image analysis. Enhance the quality of the image is important to make

better analysis.
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Simple form:
(1) Acquisition, (2) Storage,
(3) Processing, (4) Results,
(5) Decision.

1.1. Digital Images Fundamentals

1.1.1. Image

The digital form of an image is a 2-D Matrix where each element of the

matrix contains a value represents the intensity of light of this pixel.

1.1.2.Image Locations

1.1.2.1. Pixel Indices

For expressing locations in an image you may use pixel indices which are

integer values range from 1 to the size of the image (discrete indices).

1.1.2.2. Spatial Coordinates

Second method to express image location (continuously coordinates),
location in an image are positions on a plane, and represented by x and y (not

row and column as in the pixel indexing system).
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1.1.3.Image Types

APIARAL

1.1.3.1. Binary (Also known as a bi-level image)

Logical array containing only Os and 1s indicates black or white, respectively.
A binary image is stored as a logical array. Figure 1.1 shows a binary image

with a close-up view of some of the pixels’ values.
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Figure 1.1: binary image.
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1.1.3.2. Gray scale

Gray scale is also known as an intensity gray scale or gray level image. Each
pixel indicates the intensity of light with in some range in its region. There is
a color map to know the range of the pixel value. Its form is M-by-N array of
class uint8, intl6, uintl6, single, or double. For single or double arrays
storing, values range from [0, 1], For uint8 storing, values range from [0,255],
For uintl6 storing, values range from [0, 65535]. For intl6 storing, values

range from [-32768, 32767]. Figure 1.2 shows a gray scale image of class

units.
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Figure 1.2: Gray scale image.
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1.1.3.3. True color

Each pixel indicates the intensity of light with in some range in its region.
There is no color map. Its form is M-by-N-by-3 array of class uint8, uintl6,
single, or double. For single or double arrays storing, values range from [O,
1]. For uint8 storing values range from [0,255]. For uintl6 storing values
range from [0, 65535]. Each pixel had 3 values for red, green, blue and there
combination indicates its color. The three color components for each pixel are
stored along the third dimension of the data array. For example, the red,
green, and Dblue color components of the pixel (30,15) are stored in
RGB(30,15,1), RGB(30,15,2), and RGB(30,15,3), respectively. Some
graphics file formats store true color images as 24-bit images, where the red,
green, and blue components are 8 bits each, this yields a potential of 16

million colors. Figure 1.3 shows a True color image of class unit8.
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Figure 1.3: True color image.

1.1.3.4. Indexed Images
An indexed image consists of an array and a color map matrix. The pixel

values in the array are direct indices into a color map.

1.2. Project Approach

Figure 1.4 shows a general diagrammatic sketch for an automated system

using a computer for woven fabric defect detection, classification. The system

Graduation Project (2013) — Textile department — Faculty of Engineering — Mansoura University Page 7



An Automated System for Fabric Faults Inspection to Enhance Textile Handicrafts Ch.1

also determines the sources of detected defects. Fabric images will be

acquired by a digital camera.

lmage acquisition

Image enhancement

Statistical & Spectral features
extraction

Artificial Neural Networks
for classification

|s the
fabric
defected

Classify the defect and
determine its predicted No decision )

sources

defectsin a data base and
introduce a frequent

Figure 1.4: A diagrammatic sketch of the automatic system for woven fabric defects

detection and classification.

The image acquisition process will utilize filters for image enhancement and
standardization. Then, the image will be transmitted to a computer to extract
some features. After that, these features enter an Artificial Neural Networks
which is one of the most famous Artificial Intelligence Systems used as a
classifier. The Artificial Neural Networks mimic the human mind and his

ability to distinguish things by learning and correcting mistakes when happen.
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This needs a number of free defect images and some others defective for the
Acrtificial Neural Networks supervised training after building it then, some
other images were chosen for determining the efficiency of the system for
faults detection and classification. After classification the system determine
the predicted sources for this fault and takes a decision for correcting it and
for not being repeated. The system also record the detected defects in a data
base to introduce a periodic report about the most frequent defects and its

effect on the quality of the produced fabrics.

A design of an automatic inspection machine is introduced for building the
system of image acquisition, image enhancement, image analysis, features
extraction and defects classification. This machine can work for a number of
weaving machines at the same time. The design of this machine is adaptable

for its function and easy for moving in small places.

This project is an automatic inspection machine using the computer for
automatic fabric defects detecting. This system increases the quality of the
final product by detecting small defects and providing a periodic report to
repair their sources. By Appling this system we will avoid human tiring and

boring.
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Chapter 2

Review of literature

Several researches in textile field have utilized image processing techniques

in many applications:

1)  Fibers
2)  Yarns
3)  Fabrics

2.1 Fibers:

Tantaswadi et al. utilized an image analysis technique to inspect the quality of
cotton fibers using color discrimination. The cotton image was analyzed for
impurities using this iso-discrimination contour. This research referred to the
important factors for color image processing which are lighting system (under
controlled environment), video camera setting, and image processing
algorithms such as edge detection and reduced 3D-LUT (3-dimensional

lookup table) technique [7].

Ikiz et al. presented an application of image processing of fibers to measure
fiber length. The results showed that image processing can measure fiber

length more accurately and more precisely than hand measurement with high-
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resolution images. This technology was able to replace current fiber length

measurement methods [8].

Xu and Huang utilized an image analysis for cotton fiber cross-section to
measure fiber fineness and maturity. Their algorithms increased the
automation and accuracy of separating touching fibers, identifying lumens
and taking measurements pertaining to cotton fineness and maturity. All the

measurements had more variations when fewer fibers were analyzed [9].

Also, Rodgers et al. measured two of the most important cotton fiber quality
and processing parameters, fiber maturity and fineness. A new instrument
used polarized light microscopy and image analysis in a water-based system
to measure fiber maturity and fineness. The new method was rapid, precise
and accurate using the Cotton scope. The major operational impact on the
Cotton scope results was the environmental condition (location temperature

and relative humidity) under which the measurement was performed [10].

Xu et al. presented a new method of measuring the number-length
distribution of cotton fibers using a snippet-counting method and image
analysis techniques. An imaging system was used to scan, trace, and count
the snippets distributed on a glossy black paper. From the number-length
data, the distribution, maximum length, mean length, and other fiber statistics

was computed [11].
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Wan et al. developed a method of creating fiber clusters using image analysis.
Fiber clusters are often created by fiber cross-sectioning in microscopic
Images, in which fibers touch or overlap each other. The new algorithm based
on the image processing set theory had success to separate clustered fibers in
cross-section images. The experimental results demonstrated that the new
algorithm could optimally separate clustered fibers of various cross-sectional

shapes, including W-shaped and cross-shaped fibers [12].

Wang et al. proved that pseudo-foreign fibers in cotton could be detected by
Image analysis. A new foreign fiber detection platform was introduced by
investigating several methods for image enhancement. By comparing the
methods’ enhance effects and algorithm speeds, results indicated that the
Variational Retinex was suitable for on-line pseudo foreign fiber detection

[13].

2.2 Yarns:

Chiu et al. applied image processing techniques to analyze cross sections of a
PET/Rayon composite yarn and obtain single fiber positions in the image
with mask processing. They reasonably analyzed fiber distributions of
composite yam cross sections with three indexes: radial, lateral, and angular
distribution. The experimental results proved the good performance of the

ultra-microtome and the process of making the samples [14].
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Chiu et al. used an image processing technique and neural networks to
classify the quality grades of FTY (false twist yarn) packages. They extracted
the defect features of FTY packages, such as size, discoloration, formation
and cross-over. From the experimental results, they obtained 90% of

classifying rate [15].

Gang et al. proposed a computerized method for automatic measurement and
recognition of yarn wet snarls from an image of snarled yarn samples
captured in a water bath. The development of an automatic measurement and
recognition method of yarn snarl features was devoted by the applications of
(Fast Fourier Transform) FFT and (Adaptive Orientated Orthogonal) AOP
methods. The results showed that the proposed method was reasonably robust

to these variations in the recognition of yarn snarl features [16].

Pan et al. constructed an automatic recognition system based on image
analysis to identify the density, the color effect, the layout of color yarns and
the woven pattern of yarn-dyed fabric. Experiments on actual yarn-dyed
fabrics showed that the recognition system used was effectively detecting the

structure parameters of yarn-dyed fabric. [17].

Ta'pias et al. derived the mean yarn diameter from partial cover factor (CF)
estimates. The results were compared to the mean yarn diameter directly
measured from images. They developed a fully automatic method, based on

Image processing techniques that yielded CF, partial CFs, yarn linear
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densities and yarn diameters of a woven fabric sample, with no intervention

of a human operator, from a B/W digital image of the fabric [18].

Liu et al. used image processing to create a novel method for describing yarn
evenness in fabric (YEF) instead of the traditional approach. The traditional
approach usually described yarn unevenness characterization based on the
CV (i.e. coefficient of variation) of mass between defined portions of yarn
measured with the USTER evenness tester. Experimental results on virtual
and physical woven fabric expressed that the method mentioned could get the

fine information of the yarn from the fabric in detail [19].

2.3 Fabrics:

Huang et al. proposed a new image processing approach for identifying three
weave patterns of woven fabrics; plain, twill, and satin weave sand
automatically displaying harness drafts and chain drafts. Also fabric counts
were measured by this method and got a good agreement with manual
measurements based on the maximum and minimum gray-level sums of the

horizontal and vertical pixel lines [20].

Kang et al. illustrated the stereo vision technique and its image processing for
3D measurements of surface contours to measure the smoothness appearance
of fabric surfaces. The results showed that this method was more accurate for

measuring fabric smoothness than the visual assessment. This system could
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use other surface evaluations such as wrinkles, seam puckers, or plain strain

[21].

Sakaguchi et al. suggested image analysis for fabric quality evaluation as a
substitute for human inspection of fabric surfaces. A fabric image was
captured using a scanner. The peak width on the power spectrum of the
surface intensity had a consistent relationship to fabric quality. This method
based on the spectral peak width was useful for computerized evaluation of

woven fabrics [22].

Kenkare and Plumlee introduced a modified method of measuring drape
coefficient. The method was based on capturing image and processing the
image to evaluate the fabric drape coefficient. The results showed that the
modified method was similar to the conventional method for measuring
fabric drape coefficient. This method reduced manual error of the

conventional cut and weigh processes [23].

Ozdemir and Bas introduced a new method that simulated fabric surface
appearance from achieved yarn properties using image processing of yarn
images. Computer simulation of woven fabric was transformed from a circle

to an ellipse to imitate yarn flattening [24].

Naderpour et al. presented an application of image analysis to assess the

fabric wrinkle and abrasion resistance. Sample images were captured by
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scanner, and then processed using a MATLAB code. The results revealed that
data from image analysis was more precise and quicker than traditional
experimental procedure, in addition to the significant reduction of human

based errors [25].

Hadjianfar et al. measured fabric luster via image analysis. An index was
obtained for the luster of fabrics by analyzing the luminance of fabrics which
obtained by analyzing the photographs captured for fabric samples under the
same conditions. The image processing based method was approved by both

goniophotometric method and human vision [26].

2.4 Fabric Defects:

Mallik and Datta presented a theoretical based technique for real time fabric
defect detection using a joint transform correlator that is an extension of
Fourier transforms analysis. The joint power spectrum showed better
classification results compared to the Fourier and experimental results. The
joint transform correlation technique was implemented in an optical domain.
The technique introduced good results for identifying and classifying some

defects such as the existence of thick yarns, knots, and missing yarns [27].

Hu and Tsai used best wavelet packet transform and an artificial neural
network (ANN) to inspect four kinds of fabric defects. Their approach was a

reliable and effective for classifying fabric defects. The results showed that
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the total classification rate for a wavelet function with a maximum vanishing

moment of four and three resolution levels can reach 100% [28].

Goswami and Datta used morphological operations such as erosion and
opening to identify defects. A collimated laser beam was used for
illumination. A spatial filter was placed at the Fourier plane to remove the
periodic grating structure of the fabric from the image. This technique needed
the execution of two Fourier transform operations followed by necessary

morphological processing [29].

Huang and Honygu classified seven kinds of dyeing defects using image
processing and fuzzy neural network approaches. Ten samples for each defect
were obtained for training and testing. The results demonstrated that the
fuzzy neural network approach could precisely classify these samples by the

features selected [30].

Chihuuna and Hen presented a neural-fuzzy system to classify eight kinds of
fabric defects. The neural-fuzzy system and neural network were
implemented as classifiers and compared to each other. The results
demonstrated that the neural-fuzzy system was superior to the neural network

in classification ability [31].

Akagucghui et al. Applied image analysis to fabric quality evaluation as a

substitute for human inspection of fabric surfaces. The coefficient of variation
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and power spectra of yam interval were calculated as features for fabric
Images captured by a scanner. The power spectral peak width of the intensity
data was computed as another approach to the irregularity of fabric surfaces.
This method based on the spectral peak width was useful for computerized

evaluation of woven fabrics [32].

Wen et al. used wavelet transform and co-occurrence matrix to extract
features of texture images. They used those features to locate defects on
textile fabrics. The system was able to detect whether the fabric defective or
not at 92% rate of success. On the other hand, it was able to locate the defect

position at 84% rate of success [33].

Tilocca et al. presented a new direct approach for automatic fabric inspection
based on an optical acquisition system and an artificial neural network
(ANN). The ANN was trained to classify three different categories: normal
fabric, defect with a marked 3D component, and defect with no 3D
component. The response of this system was very fast, accurate and thus
suitable for on-line monitoring of fabric defects at a high inspection rate

without any transformation of data [34].

Kuo and Su applied the co-occurrence matrix and gray relational analysis of
the gray theory. They extracted features of a fabric defect image and classify
defects including broken warps, broken wefts, holes, and oil stains. They also

used gray relational analysis to investigate correlations of the analyzed
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factors among the selected features in a randomized factor sequence through
Image processing. The corresponding recognition accuracy of the systems

was 94% [35].

Shady et al. used image analysis and neural networks for six different knitted
fabric defects detection and classification. They used statistical approaches
and Fourier Transforms for feature extraction. Neural networks were used to
detect and classify the defects. The results of using the Fourier Transform
features extraction approach were slightly more successful than the statistical
approach in detecting the free defect and classifying most of the other defects

[36].

Liu et al. used and compared two different approaches for the extraction of
images of slub yarns that was very important part in the development of a
denim fabric recognition system. They used Gabor filters in both the time
domain and the frequency domain respectively as a two different methods.
The first method used the filter according to the designed cost function. The
second method used the parameters of the Gabor filter. The results showed
that both methods succeeded for slub recognition with better results of the

second approach [37].

Yuen et al. designed an inspection method for evaluating fabric stitches or
seams of knitted fabric. Nine characteristic variables were obtained from the

segmented images and input into a Back Propagation (BP) neural network as
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a classifier for object recognition. The results demonstrated that the

inspection method developed was effective with 100% recognition rate [38].

Bu et al. designed a new simple approach for fabric texture analysis based on
the modern spectral analysis of a time series rather than the classical spectral
analysis of an image. They made a one-dimensional power spectral density
(PSD) analysis of the fabric image via a Burg-algorithm-based Auto-
Regressive (AR) spectral estimation model. The detection results between the
AR model and the FFT method were compared. The comparison showed that

the new method gave a low false alarm rate and a low missing rate [39].

Lin used case-based reasoning (CBR) to detect fabric defects. A co-
occurrence-based method was used for feature extraction. Six feature
parameters were obtained. The results showed that fabric defects that
inspected by the CBR demonstrated excellent performance with a 90%

accuracy rate [40].

Malek represented an effective and accurate approach based on image
processing software for automatic defect detection. He proposed a vision-
based fabric inspection prototype that could be accomplished on-loom to
inspect the fabric under construction with 100% coverage. The results of this
study showed the success of using fast Fourier transform and cross-

correlation for online automated fabric inspection [6].
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Chapter 3

Problem Statement

In the weaving mills human visual inspection process only detects 60 to 70%
out of the total fabric defects [1] while the residual defects pass without
detection. This causes several problems in the following processes of
manufacturing. Several researchers try to solve this problem using image
processing techniques. All the previous trials classified little number of
defects while this is not enough for detection in weaving mills. This project
introduces an automated system to detect and classify a large number of

woven fabric defects replacing the conventional inspection process.

Our proposed system utilizes a digital camera to acquire and transmit fabric
images to a computer which enhance and extracts the features for each image.
Then, the features are processed using Artificial Intelligence technique to
detect and classify the fabric defects. Also, this automated system will be able
to predict the sources of the defect to be fixed. These defects will be recorded
in a data base to provide a periodic report including the frequent defects to fix
their sources and hence increase the quality of the manufactured fabrics.
Applying such automatic system in weaving mills will increase the product

quality.
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Chapter 4

Experimental Work

The woven fabric usually consists of two interlacing groups of yarns each of
which is perpendicular to the other. One group is in the weaving machine
direction which includes the warp yarns. Yarns in the other group are called
weft or fill yarns. The interlaced yarns construct a repeat of weave structure.
Any change in this repeat usually represents a fabric defect. The majority of
fabric defects are made during the weaving process where some others are

from the previous yarns manufacturing processes.

The defects are generally categorized into three main categories; defects in
warp yarns, defects in weft yarns and defects in area. Defects in warp yarns
are double end, coarse end, broken end, tight end, warp streak, end out, mixed
end, tight twist end, soiled end, missed end and float warp. Defects in weft
yarns are mispick, broken pick, coarse pick, hang pick, stop mark, double
pick, mixed filling, heavy peat, light peat and missing Picks. Area defects are

hole, color staining, fuzz ball, finger mark, gout, float, smash, knot and stain.
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4.1. Materials:

Weaving is the technology by which yarns are transformed into fabrics. The
idea of weaving based on interlacing two groups of yarns each of which is
perpendicular to the other. One group is in the weaving machine direction
which includes the warp yarns. Yarns in the other group are called weft or fill
yarns. The samples used in this project are manufactured in Samanoud Co.
for woven and pile fabrics. The samples are manufactured on Sulzer-Ruti
weaving machine. The machine speed is 220 R.P.M. and number of dents per
cm is 9.4. Cotton/Polyester (35/65) blended yarns are used to manufacture the
fabric. The manufactured fabric is plain weave 1/1, its width is 100 cm and
number of warp yarns per dent is 2. Yarn’s count is 20/1 Ne for warp and
14/1 Ne for weft. The densities of warp and weft yarns in cm are 20 and 18

respectively.

The chosen defects were intentionally introduced on the machine based on
the knowledge of defect sources. The defects are generally categorized into
three main categories; defects in warp yarns, defects in weft yarns and defects
in area. Defects in warp yarns are double end and a float warp. Defects in
weft yarns are double pick, heavy peat, light peat and missing Picks. Area
defects are hole, knot and stain. Descriptions and suggested causes for each

fabric defects are as follows:
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4.2. Fabric defects
4.2.1 Defects in warp direction

4.2.1.1 Double end

Description:

A departure from the continuity of the weave pattern caused by the one or

more ends weaving in the wrong order.

Cause:

Wrong drawing, taking more ends in healed eye or wrong denting, taking one

or more ends in a wrong dent.

Figure 4.1: Double end.
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4.2.1.2 A float warp

Description:

A defect in which warp yarn extends unbound over the ends with which it

should be interlaced.

Cause:

Defected heald.

Figure 4.2: Float Warp.
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4.2.2 Defects in weft direction

4.2.2.1 Double Pick

Description:

Two picks wrongly placed in the same shed.

Cause:

Incorrect picking.

Figure 4.3: Double Pick.
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4.2.2.2 Heavy beat

Description:

An increase in the density of the weft yarns.

Cause:

Faulty let-off and take-up motion.

Figure 4.4: Heavy Beat.
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4.2.2.3 Light beat

Description:

A decrease in the density of the weft yarns.

Cause:

Faulty let-off and take-up motion.

Figure 4.5: Light Beat.
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Description:

A narrow streak running parallel with weft threads caused due to absence of

weft.

Cause:

Faulty let-off and take-up motion or faulty weft-stop motion.

Figure 4.6: Missing Picks.
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4.2.3 Spatial Defects (Area)

4.2.3.1 Hole

Description:

An imperfection where one or more yarns are sufficiently damaged to create

an aperture.

Cause:

A broken projectile guide falling over the fabric roll.

Figure 4.7: Hole.
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4.2.3.2 Knot

Description:

A fastening made by tying together the ends of yarn.

Cause:

Thread breaks during process of winding, warping, sizing or weaving.

Figure 4.8: knot.
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Description:

Spot defects of oil, rust, grease or other stains found in the fabric.

Cause:

Improper oiling/greasing of looms or QOil stained take up roller.

Figure 4.9: Stain.
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4.2.3.2 Big Knot

Description:

A foreign matter accidently woven into the fabric.

Cause:

Improper loom cleaning or unclean environment.

Figure 4.10: Big Knot.
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4.3 Automatic vision system

4.3.1 Camera canon EOS 450D

4.3.1.1 Type

Recording media: SD memory card.
Image sensor size: 22.2 mm x 14.8 mm.
Compatible lenses: Canon EF lenses (including EF-S lenses) (35mm-

equivalent focal length is approx.1.6 times the lens focal length).

4.3.1.2 Image Sensor

Type: High-sensitivity, high-resolution, large single-plate CMOS sensor.

Pixels: Effective pixels: Approx. 12.20 megapixels.

4.3.1.3 Recording System

Image type: JPEG.

(1) Large / Fine: Approx. 4.3 MB (4272 x 2848 pixels).

(2) Large / Normal: Approx. 2.2 MB (4272 x 2848 pixels).
(3) Medium / Fine: Approx. 2.5 MB (3088 x 2056 pixels)
(4) Medium / Normal: Approx. 1.3 MB (3088 x 2056 pixels)

(5) Small / Fine: Approx. 1.6 MB (2256 x 1504 pixels)
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(6) Small / Normal: Approx. 0.8 MB (2256 x 1504 pixels)

(7) RAW: Approx. 15.3 MB (4272 x 2848 pixels)

File numbering: Consecutive numbering, auto reset, manual reset

4.3.14 Image Processing

Color space: Adobe RGB.

Picture Styles: Standard, Portrait, Landscape, Neutral, Faithful, Monochrome.

White balance: Auto, daylight, shade, cloudy, tungsten, white fluorescent

light, flash, custom.

4.3.1.5 Exposure Control

Metering modes: 35-zone TTL full-aperture metering

* Evaluative metering (linkable to any AF point)

» Partial metering (approx. 9% of viewfinder at center)

* Spot metering (approx. 4% of viewfinder at center)

» Center-weighted average metering

Exposure control: Program AE (Full Auto, Portrait, Landscape, Close-up,
Sports, Night Portrait, Flash Off, Program), shutter-priority AE, aperture-

priority AE, depth-of-field AE, manual exposure, E-TTL Il auto flash
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ISO speed (Recommended Exposure Index):

Basic Zone modes: 1SO 100 - 800 set automatically

Creative Zone modes: 1SO 100 - 1600

4.3.1.6 Shutter

Type: Electronically-controlled, focal-plane shutter.

Shutter speeds: 1/4000 sec. to 1/60 sec., X-sync at 1/200 sec.1/4000 sec. to 30
sec., bulb (Total shutter speed range. Available range varies by shooting

mode.)

4.3.1.7 Live View Functions

Shooting modes

(1) Live View shooting

(2) Remote Live View shooting (with a personal computer installed with EOS

Utility)

4.3.1.8 Interface

USB terminal: For personal computer communication and direct printing (Hi-
Speed USB)

Video OUT terminal: NTSC/PAL selectable
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4.3.1.9 Dimensions and Weight

Dimensions (W x H x D): 128.8 x 97.5x61.9 mm /5.1 x 3.8 x 2.4 in.

Weight: Approx. 475 g/ 16.8 oz. (body only)

4.3.1.10 Battery Pack LP-ES5

Type: Rechargeable lithium ion battery

Rated voltage: 7.4 V DC

Battery capacity: 1080 m Ah

Dimensions (W x Hx D): 36 x 14.7 x53.1 mm/1.4x 0.6 x 2.1 in.

Weight: Approx. 50 g / 1.8 oz. (excluding protective cover)

4.3.1.11 Battery Charger LC-ES5

Compatible battery: Battery Pack LP-E5

Recharging time: Approx. 2 hours

Rated input: 100 - 240 V AC (50/60 Hz)

Rated output: 8.4 VV DC/700 mA

Dimensions (W x H x D): 67 x 26 x 87.5mm /2.6 x 1.0 x 3.4 in.

Weight: Approx. 80 g /2.8 0z.[45]

Graduation Project (2013) — Textile department — Faculty of Engineering — Mansoura University Page 37



An Automated System for Fabric Faults Inspection to Enhance Textile Handicrafts Ch.4

4.3.2 Lens EF100mm f/2.81. MACRO IS USM
Focal length /Aperture: 100mm f/2.8.

Min. Focusing Distance: 0.3 m/1.0 ft.

Field of view: 24 x 36 mm /0.9 x1.4 in. (at 0.3m)

Max. Diameter and Length: 77.7 x 123 mm /3.1 x 4.8 in.
Weight: 625 g /22.0 oz [46].

4.3.3 Personal computer

Computer Lenovo G580

Processor Intel® core ™ i3 -3110M CPU @ 2.40GHz

Installed memory (RAM): 4.00 GB

Video graphics: 1 GB, NVidia GeForce GT 610M

Hard drive: 500 GB, 5400 rpm
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4.3.4 Model for Fabric Faults Inspection machine

Figure 4.11: Upper model structures.

Figure 4.12: Lower model structures.
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Figure 4.12: Real image for machine.
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4.3.4.1 Components of model

1- Lower model structures. 2- Hand of operating.

3- Fabric let-of roller. 4- Fabric take-up roller.

5- Fabric guide. 6- Fabric guide stream.

7- Examination guide. 8- Four arms.

9- Arm’s guides. 10- Upper model structures.

11- The right half of the camera holder.
12- The left half of the camera holder. 13- Camera holder moving hand.

14- Camera holder guide. 15- Light box.

Figure 4.13: Real image for lower model structures.
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Figure 4.14: Real image for Hand of operating.

Figure 4.15: Real image for Fabric let-of roller.

Figure 4.16: Real image for Fabric take-up roller.
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Figure 4.18: Real image for Examination guide.
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Figure 4.19: Real image for Arm’s guides.

Figure 4.20: Real image for Upper model structures and four arm’s.
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Figure 4.21: Real image for left, right, hand and guide move holder camera.

Figure 4.22: Real image for light box.
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4.3.4.2 Method of operation

The fabric Is loosen to be examined from Roller (4) to pass the examination
guide (7) where the camera acquires images for fabric and then passes on
fabric guide (5) to Fold Roll (3) that is operated manually (2). Both let off and
take up roller are rotating by friction depending on their weight and the
inclined angle of the roller setting. The amount of fabric tension is controlled
by moving guide (5) within the stream guide (6). The camera is fixed between
the two segments (1), (2) which are moving inside the camera holder. The
carrier is moved manually (13) to the left and to the right. Light guide (15) is
used to focus the light on the fabric sample and the camera is not affected by
the outside light. Lights used consist of 16 led tapes every tape consists of six
leds. The power of each two tapes two watts, 12 volts and six amp. Distance
between camera and fabric is adjusted by moving the four arms (8) within the

stream of the arms (9).
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4.4 Image acquisition

.
IE, EOS 450D
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Figure 4.23: The setting of image acquisition.
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Figure 4.24: The interface of live view mode.

Images have been acquired using the automatic vision system. The distance
between the lens of the camera and the fabric sample is adjusted to get the
most vivid image which has good details of the yarns and interlacing areas.
Also, the defective area should be distinguished easily. The distance between
camera’s lens and fabric is taken as 130 mm to get the best images. The
dimensions of acquired images are (3088 x 2056 pixels) this represents (30 x
20 mm) of the fabric as showed in figure (4.25). This means every (1 mm?) is

represented by (100 x 100) pixels.

Graduation Project (2013) — Textile department — Faculty of Engineering — Mansoura University Page 48



An Automated System for Fabric Faults Inspection to Enhance Textile Handicrafts Ch.4

Figure 4.25: An image of fabric sample.

The dimensions of the acquired images were big for defects to be detected
and classified correctly. Figure (4.26) each image has been divided into nine

images. The divided images were suitable for clearing the defects.
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Figure 4.26: An image divided into nine small images.
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Chapter 5

Features’ Extraction

Before applying any analysis on the image it is important to enhance the

quality of the image to get better results.
S5.1. Image Enhancement

Image enhancement is defined as the process of improving the quality of an
image to make an image lighter or darker, or to increase or decrease contrast.
Advanced image enhancement may be applied with many filters in various
ways. The enhancement of woven fabric images should clear the yarns in the

images to be suitable for features’ extraction process.

Several approaches of image enhancement can be applied to remove hairness
from the woven fabric images and to clear the yarns and defects as well. The
following figures show an image and the effect of several approaches of

enhancement on it.
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Figure 5.1: RGB image.

Figure (5.1) shown RGB image and For increasing the analysis speed it has
been transformed to gray image with one layer matrix as shown in figure

(5.2).
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Figure 5.2: gray image.

5.1.1. Adjustment of gray levels
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Figure 5.3: image in figure (5.2) after adjustment gray level.
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5.1.2. Noise removing

Figure 5.4: remove small noise in image figure (5.2).

Figure 5.5: noise image in figure (5.2).
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Figure 5.6: image in figure (5.2) - image in figure (5.5).
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Figure 5.7: image in figure (5.2) after noise removal and gray level adjustment.
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5.2. Features’ extraction

The digital form of an image is a 2-D Matrix where each element of the
matrix contains a value represents the intensity of light of this pixel. Each
image has a huge number of pixels values. It is needed to have a one value
which can represent the intensity of the image and this is called the extraction
of features represented the images. Features’ extraction could be using

statistical or spectral analysis.

Feature Extraction Process

Statistical
Analysis

Figure 5.8: Two approaches of features’ extraction.
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5.2.1. Statistical Analysis on the Image
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Gray (Intensity) Image [m*n] %
Pixel Location p(xy) & Xi-[0-255] é
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Figure 5.9: summation of Rows and Columns for 2-D image matrix.

Every Image contains pixels with values varies from 0 to 255. The lower half
[0: 125] represents black places and the upper half represents white places
[125; 255]. There is black board under the fabric so Yarn will be in the upper
half and tends to 255, the space between yarns will be in the lower half and
tens to 0, some defects will be in big area of high values and others will be in
small area of low values. The main assumption is that the statistics of defect
free images are similar. Statistical analysis shows the distribution of pixel
values. There are first order, second order and higher order statistics. The first

order statistics take place between individual pixel values and higher order
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statistics take place between two or more pixel values at locations with
relative to each other. Because the yarn is not plastic and there is a tension,
crimp, yarn hairiness and the fabric is not symmetrical. In addition, fabric
take up produces noise in the image. Statistical analysis may get bad results

because of all these parameters.
Three equations are used for statistical features’ extraction:

1) The mean

— 1

2) The summation of columns or rows
— n

3) The standard deviation

1 —
s= | L =02 @
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5.2.1.1. Mean of Image

Calculate the average of pixels’ values in the Image. This calculation uses

two steps:

1) Calculating the average value in each column using equation (1). The
result is a vector.

2) Calculating the average value of the resultant vector from step (1) using
equation (1) also. The result is one value represents the average value of

the image pixels’ values.
This may show if there is defect or not.
5.2.1.2. Standard Deviation of the Summation of Rows

This calculation uses two steps:

1) Calculating the summation of each row using equation (2). The result is a
vector.
2) Calculating the standard deviation of the resultant vector from step (1)

using equation (3). The result is one represents the image.
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5.2.1.3. Standard Deviation of the Summation of Columns
This calculation uses two steps:

1) Calculating the summation of each column using equation (2). The result
IS a vector.

2) Calculating the standard deviation of the resultant vector from step (1)
using equation (3). The result is one represents the image.

5.2.2. Fourier Transform

Images can be defined by its’ spatial location(x, y). The value of the function
f(x, y)represents the intensity of the image at that point and that called the
spatial domain. Fourier transform represents the function in the frequency
domain instead of time domain. Frequency domain represents the image as a
sum of complex exponentials of varying magnitudes, frequencies, and phases.
The representation of the image at the frequency domain can clear any repeat

at the image like repeats of woven fabric.

If f(m,n)is a function of two discrete spatial variables m and n, then the

two-dimensional Fourier transform of f(m,n) is defined by the relationship

F(wy,w,) = z Z f(m,n) gTJjw1m g—jwan

m=—00 nN=—00
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The variables w; and w,are frequency variables; their units are radians per
sample. F(w;,w,) is often called the frequency-domain representation
of f(m,n). F(wy,w,) is a complex-valued function that is periodic both in
w; and w,, with period 2n . Because of the periodicity, usually only the
range (—n<w;, w,< 1) is displayed. Where F(0,0)is the sum of all the values
off (m,n). For this reason, F(0,0) is often called the constant component or
DC component of the Fourier transform. (DC stands for direct current). The
inverse of a transform is an operation that when performed on a transformed
image produces the original image. The inverse two-dimensional Fourier

transform is given by
1 (" T , ,
f(m,n) :_2_/ j F(Wl,Wz) e"wlm e"wzn dWldWZ
4T[ Wi =—TmTYWyr=—T

This equation means that f(m,n) can be represented as a sum of an infinite
number of complex exponentials (sinusoids) with different frequencies. The
magnitude and phase of the contribution at the frequencies (w,, w,) are given

by F(w,, w,) [42].

By applying the frequency domain a spectrum can be obtained with defined
peaks that represent frequencies in the image. The following figures show the
2-D and the 3-D representation of the Fourier spectrum of a woven fabric

image.
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Figure 5.10: a woven fabric image.

Figure 5.11: the 2-D representation of the Fourier spectrum of image in figure (5.9).
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_’ Feature_1 (f1)

0851

Figure 5.12: the 3-D representation of the Fourier spectrum of image in figure (5.9).

Frequency

EIN Feature_4 (f4) Feature_2 (f2)
Feature_5 (f5)

Feature_3 (f3)

Feature_6 (f6)

Figure 5.13: the 3-D representation of the Fourier spectrum of image in figure (5.9)

after removing the central peak.
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Figure 5.14: the x-direction of the Fourier spectrum of image in figure (5.9) ranged

from the center to 375.
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Figure 5.15: the y-direction of the Fourier spectrum of image in figure (5.9) ranged

from the center to 545.

A program had been built to show the domain that the peaks locate in for
each defect. The program showed that the peaks located in 30 pixel ranges in
both directions; the x-Direction and y-Direction. The program had been run
on these ranges. In x-Direction there were two peaks could be extracted as
features. In y-Direction there were three peaks that could be extracted as
features as well. The following tables show the result of running the program
on 10 images for each defect and the location of each peak founded in the

Fourier spectrum in both directions.

Graduation Project (2013) — Textile department — Faculty of Engineering — Mansoura University Page 65



An Automated System for Fabric Faults Inspection to Enhance Textile Handicrafts

Table 5.1: The location of Fourier spectrum peaks for Defect free.

No

X-Direction

Y-Direction

peak_1

peak_2

peak_1

peak 2

peak 3

defect free

O ONOOOTAW|IN|F

[ERY
o

9

8

16

16

16

16

16

16

16

15

16

OOl |lv|v|v|©

[ecliNeclNechNechNeclNoclNooRNoo) ool

15

Table 5.2: The location of Fourier spectrum peaks for Float warp.

No X-Direction Y-Direction
peak 1 | peak 2 peak 1 | peak 2 | peak 3
1 9 8 16
2 9 16
5 ; %
4 1
5 ; 9 16
6 E 9 8 16
7 @) 9 8 16
8 LL 9 16
9 9 8 16
10 9 8 16

Table 5.3: The location of Fourier spectrum peaks for Light beat.

Z
o

X-Direction

Y-Direction

peak 1

peak 2

peak 1

peak 2

peak 3

Light beat

O OINOOIOAWIN|F

[EEY
o

6

8

16

16

16

16

16

16

N[O |0 |01 N|00| O™

16

0O (0CO(0O|(0O|O|0|W©O|00|0

16
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Table 5.4: The location of Fourier spectrum peaks for Heavy beat.

No X-Direction Y-Direction
peak 1 | peak 2 peak 1 | peak 2 | peak_ 3
1 9 8 16
2 9 11 16
G
3 8 8 10 16
S s T s
>
6 C>G 8 10 16
7 @ 9 14 16
8 T 10 8 16
9 11 9 16
10 11 16

Table 5.5: The location of Fourier spectrum peaks for Missing pick.

No X-Direction Y-Direction
peak 1 | peak 2 peak 1 | peak 2 | peak 3
1 2 6 8
2 g 3 8 10
3 (&) 2 16
4| ‘o 2 4 16
5 )] 3 8 16
6 c 2 16
71 ‘» 2 4 8 15
g | .2 2 8
9| = 2 15
10 2 5 10

Table 5.6: The location of Fourier spectrum peaks for Double end.

No X-Direction Y-Direction
peak 1 | peak 2 peak 1 | peak 2 | peak 3
1 3 9 15
2 9 10 16
3| 2 | 9 1 8 15
4 «b) 7 9 9 16
5| @ 9 10 14
6 O 9 16
7 g 9 16
8 e 9 9 16
9 9 16
10 9 8 15
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Table 5.7: The location of Fourier spectrum peaks for Hole.

Z
o

X-Direction

Y-Direction

peak_1

peak 2

peak_1

peak 2

peak 3

Hole
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16
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Table 5.8: The location of Fourier spectrum peaks for Stain

Z
o

X-Direction

Y-Direction

peak 1

peak 2

peak 1

peak 2

peak 3

Stain
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Table 5.9: The location of Fourier spectrum peaks for Double pick.

No

X-Direction

Y-Direction

peak 1

peak 2

peak 1

peak 2

peak 3

Double pick

O OINOOOT A WIN|F
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o

8

8

16
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16
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16

16
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16
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Table 5.10: The location of Fourier spectrum peaks for Knot.

No X-Direction Y-Direction
peak 1 | peak 2 peak 1 | peak 2 | peak_ 3
1 2 9 16
2 8 16
3 9 16
4 — 6 9 15
5 o 4 9 16
6 § 2 9 12
7 9 9 16
8 9 16
9 9 16
10 9 16

Table 5.11: The location of Fourier spectrum peaks for big knot.

No X-Direction Y-Direction
peak 1 | peak 2 peak 1 | peak 2 | peak 3
1 9 2 16
2 2 9 2 16
3 +— 2 16
1] 2 2 10 2 8 16
5 X 2 10 2
6 2 9 2
7 g 2 10 8 16
g | OO 2 9 2 16
9 2 2 4
10 2 10 2 16

Ch.5

The features extracted from Fourier spectrum are the magnitudes of the
cleared peaks at the center lines of the spectrum at both directions. Five

features are extracted as following:
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No. of feature

Peak spatial range

Feature figure

Feature 1 (f1)

The maximum peak shown at the center of the
spectrum that represents the average value of
the image.

Figure (5.12)

Feature_2(f2)

The maximum peak of the center line at x-
direction ranges from [344: 348].

Figure (5.14)

Feature_3(f3)

The maximum peak of the center line at x-

direction ranges from [349: 355].

Figure (5.14)

Feature_4 (f4)

The maximum peak of the center line at x-

direction ranges from [516: 520].

Figure (5.15)

Feature 5 (f5)

The maximum peak of the center line at y-

direction ranges from [521: 525].

Figure (5.15)

Feature_6 (f6)

The maximum peak of the center line at y-

direction ranges from [528: 532].

Figure (5.15)
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Chapter 6

Image Classification

6.1. Artificial neural network

An artificial neural network is a mathematical model which mimics a
biological neural network. A neural network consists of an interconnected
group of artificial neurons, and it processes information using an approach of
connection. Neural networks are used for modeling complex relationships
between inputs and outputs or to find patterns in data. Artificial neural
network can perform several tasks such as: Classification, Pattern
recognition; feature extraction, image matching and Prediction. Figure (6.1)
shows a simple network with neurons in the input, hidden and the output

layers.
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Hidden (H)
Iput (1)

Qutput (O)

Figure 6.1: a simple neural network

6.2. Network function (Transfer function)

Mathematically, a neuron's network function f(x)n is defined as a
composition of other functionsg; (x), which can further be defined as a
composition of other functions. This can be conveniently represented as
a network structure, with arrows depicting the dependencies between

variables. A widely used type of composition is the nonlinear weighted

sum, where f(x) = Zi w; g;(x) , where k (commonly referred to as

the activation function) is some predefined function, such as the
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hyperbolic tangent. It will be convenient for the following to refer to a

collection of functions g;as simply a vector g( g1, gs.......9n ) [43].

Figure (6.2) illustrates the linear transfer function.

a +1

Figure 6.2: linear Transfer Function

The sigmoid transfer function shown below takes the input, which can have

any value between plus and minus infinity, and squashes the output into the

range 0 to 1.
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Figure 6.3: Log-Sigmoid Transfer Function

The majority of Neural Networks use sigmoid functions in the hidden layers

of multilayer networks, in part because it is differentiable.

Acrtificial neural network composed of many neurons that co-operate to
perform the desired function. Neurons can be combined in a layer, and a

particular network could contain one or more such layers.

1. One Layer of Neurons

2. Multiple Layers of Neurons

In our work the sigmoid function was used as a transfer function in a multi-
layer network that contained two hidden layers. Each layer consists of 25

neurons.
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Ch.7

Chapter 7

Results and Discussions

7.1. Classification of all defects in one step

7.1.1. Using statistical features only

Input

3 features

Hidden 1

25 neurons

wl

25 neurons

Hidden 2

wh

Output

11 categories

@

Figure 7.1: NNT uses statistical features.

_,‘

Table 7.1: Classification’s result of NNT uses statistical features only.

N defect No. of Right Wrong %
0 . o e O A
category images | classification classification | classification
2_Hole,
1 Knot 10 7 1_Double pick 70
2_Double end,

2 Float warp 10 7 1 Hole 70

3 Light beat 10 10 _ 100

4 | Heavybeat | 10 8 1—K”°tf’r:gDefe“ 80

5 | Missing Picks 10 10 _ 100

6 | Double end 10 9 1 Defect free 90

7 Hole 10 9 1 Double end 90

8 Stain 10 9 1 Double end 90

_ 1 Knot,
9 | Double pick 10 6 3 Defect free 60
10 | Defect free 10 9 1 Double pick 90
11 Big knot 10 9 1 Light beat 90
Overall
performance 84.5
(%)
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7.1.2. Using spectral features only

Input Hidden 1 Hidden 2 Output

25 neurons 25 neurons 11 categories

W} w}

6 features

Figure 7.2: NNT uses spectral features.

Table 7.2: Classification’s result of NNT uses spectral features only.

N defect No. of Right Wrong %
0 : o e O N
category images | classification classification | classification
1 Knot 10 8 2_Double end 80
2 Float warp 10 9 1 Double end 90
3 Light beat 10 10 _ 100
4 | Heavy beat 10 9 1 Double pick 90
5 | Missing Picks 10 10 _ 100
6 | Double end 10 10 _ 100
7 Hole 10 10 _ 100
8 Stain 10 9 1 Hole 90
9 | Double pick 10 8 1_Heavy beat, 80
1 Defect free
10 | Defect free 10 9 1 Heavy beat 90
11 Big knot 10 10 _ 100
Overall
performance 92.7
(%)
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7.1.3. Using statistical features and spectral features
Input Hidden 1 Hidden 2 Output
9 features 25 neurons 25 neurons 11 categories
wl wl J
v,

Figure 7.3: NNT uses statistical and spectral features.

Table 7.3: Classification’s results of NNT uses statistical features and spectral features.

defect No.of Right Wrong %

No category images | classification classification | classification
1| Knot 10 10 _ 100
2 | Float warp 10 9 1 Hole 90
3 | Light beat 10 10 _ 100
4 | Heavy beat 10 9 1 Double pick 90
5 | Missing Picks 10 10 _ 100
6 | Double end 10 10 _ 100
7 | Hole 10 9 1 Defect free 90
8 | Stain 10 10 _ 100
9 | Double pick 10 10 _ 100
10 | Defect free 10 10 _ 100
11 | Big knot 10 10 _ 100

Overall
performance 97.3
(%)
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The results of the above three tables show that the classification using Fourier
features only get better results than using statistical features only for
classifications while using both types of features; statistical and spectral get

the best results.

7.2. Classification of defects in three step

7.2.1. Defect or defect free

7.2.1.1. Using statistical features only

Input Hidden 1 Hidden 2 Output

25 neurons 25 neurons 2 categories

W} W}

3 features

Figure 7.4: NNT uses statistical features.

Table 7.4: Classification’s results of NNT uses statistical features only.

No | defect category .NO'Of R_ight_ V\{rpng_ % :
images | classification | classification | classification
1 defect free 50 47 3 defect 94
2 defect 50 44 6 free 88
Overall
performance 91
(%)
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7.2.1.2. Using spectral features only

Input

6 features

Hidden 1

25 neurons

Hidden 2

25 neurons

Output

2 categories

Figure 7.5: NNT uses spectral features.

Table 7.5: Classification’s results of NNT uses spectral features only.

0
defect No.of Right Wrong A
No . o e o classificatio
category images | classification | classification 0
1 defect free 50 47 3 defect 94
2 defect 50 42 8 free 84
Overall
performance 89
(%)
Graduation Project (2013) — Textile department — Faculty of Engineering — Mansoura University Page 79




An Automated System for Fabric Faults Inspection to Enhance Textile Handicrafts Ch.7

7.2.1.3. Using statistical features and spectral features

Input Hidden 1 Hidden 2 Output
9 features 25 neurons 25 neurons 2 categories
\ \

Figure 7.6: NNT uses statistical and spectral features.

Table 7.6: Classification’s results of NNT uses statistical features and spectral features.

N defect No.of Right Wrong %
category images | classification | classification | classification
1 defect free 50 44 6 defect 88
2 defect 50 43 7 free 86
Overall
performance 87
(%)

The results listed in above three tables show that the classification using
Fourier features only get better results than using both types of features;
statistical and spectral for classifications while using statistical features only

get the best results.
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7.2.2. Area, Warp or Weft
7.2.2.1. Using statistical features only
Input Hidden 1 Hidden 2 Output
3 features 25 neurons 25 neurons 3 categories

w}

Figure 7.7: NNT uses statistical features.

Table 7.7: Classification’s results of NNT uses statistical features.

N defect No.of Right Wrong % .
0 . e e o classificatio
category Images | classification | classification 0

1 area 50 43 4 warp ,3 weft 86
2 warp 50 42 8 area 84
3 weft 50 49 1 area 98

Overall
performance 89.3
(%0)
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7.2.2.2. Using spectral features only

Input Hidden 1 Hidden 2 Output

6 features 25 neurons 25 neurons 3 categories

Figure 7.8: NNT uses spectral features.

Table 7.8: Classification’s results of NNT uses spectral features only.

defect No.of Right Wrong % :
No . e e o classificatio
category images | classification | classification 0
1 area 50 47 3 warp 94
2 warp 50 50 _ 100
3 weft 50 46 4 area 92
Overall
performance 95.3
(%)
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7.2.2.3. Using statistical features and spectral features

Input Hidden 1 Hidden 2 Output
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Figure 7.9: NNT uses statistical and spectral features.

Table 7.9: Classification’s results of NNT uses statistical features and spectral features.

defect No.of Right Wrong %
No : e e A
category images | classification | classification | classification
1 area 50 45 4 warp , 1 weft 90
2 warp 50 49 1 area 98
3 weft 50 48 2 area 96
Overall
performance 94.7
(%0)

The results listed in above three tables show that the classification using
Fourier features only get better results than using statistical features only for
classifications while using both types of features; statistical and spectral get

the best results.
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7.2.3. Area defects

7.2.3.1. Using statistical features only

Input Hidden 1 Hidden 2 Output
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Figure 7.10: NNT uses statistical features.

Table 7.10: Classification’s results of NNT uses statistical features only.

N defect No.of Right Wrong %
0 . i e S e .
category images | classification classification | classification
1 Knot 10 9 1 hole 90
2 hole 10 8 2 knot 80
3 stain 10 10 _ 100
Overall
performance 90
(%0)
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7.2.3.2. Using spectral features only

Input Hidden 1 Hidden 2 Output
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Figure 7.11: NNT uses spectral features.

Table 7.11: Classification’s results of NNT uses spectral features only.

N defect No.of Right Wrong %
0 : e e O e
category images | classification classification | classification
1 Knot 10 10 _ 100
2 hole 10 8 2 knot 80
3 stain 10 10 _ 100
Overall
performance 93.3
(%0)
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7.2.3.3. Using statistical features and spectral features
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Figure 7.12: NNT uses statistical and spectral features.

Table 7.12: Classification’s results of NNT uses statistical features and spectral features.

defect No.of Right Wrong %
No : e e . e
category images | classification classification | classification
1 Knot 10 10 _ 100
2 hole 10 10 _ 100
3 stain 10 10 _ 100
Overall
performance 100
(%0)

The results listed in above three tables show that the classification using
Fourier features only get better results than using statistical features only for
classifications while using both types of features; statistical and spectral get

the best results.

Graduation Project (2013) — Textile department — Faculty of Engineering — Mansoura University Page 86



An Automated System for Fabric Faults Inspection to Enhance Textile Handicrafts Ch.7
7.2.4. Warp defects
7.2.4.1. Using statistical features only
Input Hidden 1 Hidden 2 Output
3 features 25 neurons 25 neurons 2 categories

Figure 7.13: NNT uses statistical features.

Table 7.13: Classification’s results of NNT uses statistical features only.

N defect No.of Right Wrong %
category images | classification classification | classification
1 | Double end 10 10 _ 100
2 | float warp 10 10 _ 100
Overall
performance 100
(%0)
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7.2.4.2. Using spectral features only
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Figure 7.14: NNT uses spectral features.

Table 7.14: Classification’s results of NNT uses spectral features only.

defect No.of Right Wrong %
No : e e . e

category images | classification classification | classification
1 | Double end 10 9 1 float warp 90
2 | Float warp 10 10 _ 100

Overall

performance 95
(%0)
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7.2.4.3. Using statistical features and spectral features
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Figure 7.15: NNT uses statistical and spectral features.

Table 7.15: Classification’s results of NNT uses statistical features and spectral features.

defect No.of Right Wrong %
No . e . e . e .-
category images | classification classification | classification
1 | Double end 10 10 _ 100
2 | Float warp 10 10 _ 100
Overall
performance 100
(%0)

The results listed in above three tables show that the classification using
Fourier features only get the worst results while using statistical features only
for classifications get similar results as using both types of features; statistical
and spectral get the best results. Using statistical features only is better
because it uses only three features while using both types of features uses

nine features that can decrease the speed of classification.

Graduation Project (2013) — Textile department — Faculty of Engineering — Mansoura University Page 89



An Automated System for Fabric Faults Inspection to Enhance Textile Handicrafts Ch.7

7.2.5. Weft defects

7.2.5.1. Using statistical features only
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Figure 7.16: NNT uses statistical features.

Table 7.16: Classification’s results of NNT uses statistical features only.

N defect No. of Right Wrong %
0 : . e . e .
category images | classification classification | classification
1 | Light beat 10 10 _ 100
2 | Heavy beat 10 10 _ 100
Missing
3 Picks 10 10 _ 100
4 | Double pick 10 10 _ 60
Overall
performance 100
(%)
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7.2.5.2. Using spectral features only
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Figure 7.17: NNT uses spectral features.

Table 7.17: Classification’s results of NNT uses spectral features only.

N defect No. of Right Wrong %
category images | classification classification | classification
1 | Light beat 10 10 _ 100
2 | Heavy beat 10 10 _ 100
Missing
3 Picks 10 10 _ 100
4 | Double pick 10 10 _ 100
Overall
performance 100
(%)
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7.2.5.3. Using statistical features and spectral features

Input Hidden 1 Hidden 2 Output
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Figure 7.18: NNT uses statistical and spectral features.

Table 7.18: Classification’s results of NNT uses statistical features and spectral features.

N defect No. of Right Wrong %
0 : e e O e .
category images | classification classification | classification
1 | Light beat 10 10 _ 100
2 | Heavy beat 10 10 _ 100
Missing
3 Picks 10 10 _ 100
4 | Double pick 10 10 _ 100
Overall
performance 100
(%)

The results listed in above three tables show that the classification using
Fourier features only, statistical features only or both types of features;
statistical and spectral get similar results. Using statistical features only is the
best way for weft defects’ classification as it uses only three features that

might use the least time.
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7.3. GUI program

To run program Press load button in figure (7.19), then visible figure (7.20),

choose image and press open will get the result in figure (7.21).

FAl Software
Fabirc Automated Inspection Software

Figure 7.19: first screen.
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Figure 7.21: third screen.
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Chapter 8

Conclusion and future work

8.1. Conclusion

This work utilizes a digital camera to acquire and transmit fabric images to a
computer which enhances and extracts the features for each image. Then, the
features are processed using Artificial Intelligence technique to detect and
classify if the fabric has a defect or not and classify 10 fabric defects. Two
approaches have been used for classification using statistical features only,
spectral features only or both statistical and spectral. The first approach
classifies all the defects in one step. The results show that using both
statistical and spectral features with each other give a 97.3% correct
classification. The second approach classifies the defect on three steps. The
first step classifies if the fabric sample has a defect or free defect. The results
show that statistical features get the best classification with the least time with
91% percentage. The second step classifies the direction of the defect; Area,
Warp or weft. The use of both features results a 97.3% classification rate. The
third step classifies the defect. For the area defects Fourier features get a
100% classification. While using statistical features results a 100% correct

classification for warp and weft defects with lower time.
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8.2. Future work
A video analysis will be applied for fabric faults inspection with the help of
mechanical system. An inspection machine will be built for fabric rollers,
camera and light system movement. The proposed system will be
automatically inspected manufactured fabric. The defects will be recorded in
a database and providing a report including the frequent defects to fix their
sources. Applying such automatic system in weaving mills will increase the

profit and the product quality.
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Appendixes

Image divided into nine small images

image=rgb2gray(imread(imgetfile));
[x,y]=size(image);

imagel=image(1 :x/3, 1 : y/3);
image2=image(1 :x/3, y/3: 2*yl3);
image3=image(1 :x/3, 2*y/3 : vy);
imaged4=image( x/3: 2*x/3 , 1 - yI3);
image5=image( x/3 : 2*x/3 , y/3 : 2*y/3);
image6=image( x/3 : 2*x/3 , 2*y/3 : y);
image7=image(2*x/3:x , 1  : y/3);
image8=image( 2*x/3: x , y/3 : 2*yl3);
image9=image( 2*x/3:x , 2*y/3 : vy);
imwrite(imagel,(‘imagel.jpg"));
imwrite(image2,('image2.jpg"));
imwrite(image3,(‘image3.jpg"));
imwrite(image4,('image4.jpg"));
imwrite(image5,('image5.jpg"));
imwrite(image6,('image6.jpg"));
imwrite(image7,('image7.jpg"));
imwrite(image8,('image8.jpg"));
imwrite(image9,(‘image9.jpg"));

Images enhancement:

function [Image]=enhancement(image)
background = imopen(im,strel(‘disk’,12));
imagel=image-background;

Image= imadjust(imagel);

Statistical features’® extraction:

function feature=feature statistical(image)
feature(1) =mean (mean (image));
feature(2) =std (sum (image));

feature(3) =std (sum (image"));

Fourier features’ extraction:

Function feature=feature fourier(image)

k=[344 348 349 355 516 520 521 525 528 532 ];
image=abs(fftshift(fft2(image)));
[x,y]=size(image);

feature (1)=max(max(image));
image-drl=image(:,(y/2));
image-dr2=image((x/2),:);

feature (2) =max(image-drl(k(1):k(2)));

feature (3) =max(image-dr1(k(3):k(4)));
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feature (4)=max(image-dr2(k(5):k(6)));
feature (5)=max(image-dr2(k(7):k(8)));
feature (6)=max(image-dr2(k(9):k(10)));

Matlab code for classification using statistical features only:
First approach

clear

clc

t=0;

target=[];

no_folders=11;

no_images=10;

for no_folder=1:no_folders

for no_image_loop =1:no_images
image=imread(strcat(image,int2str(no_folder),"\1 (',int2str(no_image_loop),").JPG"));
image=enhansment(image);
feature=feature_statistical(image);
t=t+1;

feature(t,:)=feature;
tt=zeros(no_folders,no_images);
tt(no_folder,:)=1;

end

target=[target tt];

end

input=feature’;

net = patternnet([25 25],'trainrp’);
net = train(net,input,target);
outputs = net(input);
plotconfusion(target,outputs)

Second approach

% --- Executes on button press in classification_S.

function calssification_S_Callback(hObject, eventdata, handles)
% hObject handle to defect_or_free_S (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close all

clear

clc

% number folders

End folder=input(‘'number folders =");

number folder=end folder;

tt=0;

targets=[];

for no folder=1:end_folder

% number of images
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No image = input(strcat('number image folder *,int2str(no folder) ,'="));
for no image loop = 1:no_image
% read image
im=imread(strcat(image,int2str(no folder),\1 (',int2str(no image loop),").JPG");
% enhansment image
[im]=enhansment(im);
% feature extraction
feature=feature statistical(im);
tt=tt+1,
inputs(:,tt)=feature;
t=zeros(number folder,no image);
t(no_folder,:)=1;
end
targets=[targets t];
end
save('targets_inputs.mat’,'targets’,'inputs’);

Matlab code for classification using Fourier features only:
First approach

Clear

clc

t=0;

target=[];

no folders=11;

no images=10;

for no folder=1:no folders

for no image loop =1:no_images
a=imread(strcat(image,int2str(no_folder),"\1 (',int2str(no image loop),").JPG"));
a2=enhansment(a);
feature=feature fourier (a2);
t=t+1;

feature(t,:)=feature;

tt=zeros(no folders,no images);
tt(no folder,:)=1;

end

target=[target tt];

end

input=feature’;

net = patternnet([25 25],'trainrp’);
net = train(net,input,target);
outputs = net(input);
plotconfusion(target,outputs)
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Second approach

% --- Executes on button press in classification_F.
function classification _F_Callback(hObject, eventdata, handles)
% hObject handle to defect_or_free_F (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close all
clear
clc
% number folders
end_folder=input(‘'number folders =");
number_folder=end_folder;
tt=0;
targets=[];
for no folder=1:end folder
% number of images
No image = input(strcat('number image folder *,int2str(no folder) ,'="));
for no image loop = 1:no_image
% read image
im=imread(strcat(image,int2str(no_folder),"\1(',int2str(no image loop),").JPG");
% enhansment image
[im]=enhansment(im);
% feature extraction
Feature=feature fourier(im);
tt=tt+1,
inputs(:,tt)=feature;
t=zeros(number folder,no image);
t(no folder,:)=1;
end
targets=[targets t];
end
save('targets_inputs.mat’,'targets’,'inputs’);

Matlab code for classification using Statistical analysis and Fourier features:
Frist approach

clear

clc

t=0;

target=[];

no folders=11;

no images=10;

for no folder=1:no_folders

for no image loop =1:no_images
a=imread(strcat(image,int2str(no folder),\1 (*,int2str(no image loop),").JPG"));
a2=enhansment(a);
feature2=feature fourier(a2);
featurel=feature statistical(a2);
t=t+1;
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feature(t,:)=[featurel feature2];
tt=zeros(no folders,no images);
tt(no folder,:)=1;

end

target=[target tt];

end

input=feature’;

net = patternnet([25 25],'trainrp’);
net = train(net,input,target);
view(net)

outputs = net(input);
plotconfusion(target,outputs)

Second approach

% --- Executes on button press in classification_S_F.
function classification _S_F_Callback(hObject, eventdata, handles)
% hObject handle to defect_or_free S F (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
close all
clear
clc
% number folders
end_folder=input(‘'number folders =");
number_folder=end_folder;
tt=0;
targets=[];
for no_folder=1:end_folder
% number of images
no_image = input(strcat('number image folder ,int2str(no_folder) ,'="));
for no_image_loop = 1:no_image
% read image
im=imread(strcat(image,int2str(no_folder),"\1 (',int2str(no_image_loop),").JPG");
% enhansment image
[im]=enhansment(im);
% feature extraction
Featurel=feature statistical(im);
Feature2=feature fourier(im);
tt=tt+1,
inputs(:,tt)=[ Featurel Feature2];
t=zeros(number_folder,no_image);
t(no_folder,:)=1;
end
targets=[targets t];
end
save('targets_inputs.mat’,'targets’,'inputs’);
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Matlab code for locations of Fourier spectrum pealks:

close all
clear
clc
im=imread(imgetfile);
% enhansment image
[im]=enhansment(im);
J=abs(fftshift(fft2(im)));
[x.y]=size(J);
J((x/2),(y/2))=0;
A=J(343:373, 515);
B=J(343, 515:545);
Al=A";
B1=B;
=L
for i=1:31
if 0.35*Al(i)>mean (Al)
AA(j,1)=AL(i);
AA(j,2)=i;
end
end
[x.y]=size(AA);
for i=2:x
if AA(i,2)==AA(i-1,2)+1
n=AA(i,1);
m=AA(i-1,1);
if n>m
AA(i-1,:)=0;
else
AA(i,:)=0;
end
end
end
=L
for i=1:31
if 0.35*B1(i)>mean(B1l)
BB(j,1)=B1(i);
BB(j,2)=i;
end
end
[x,y]=size(BB);
for i=2:x
if BB(i,2)==BB(i-1,2)+1
n=BB(i,1);
m=BB(i-1,1);
if n>m
BB(i-1,:)=0;
else
BB(i,:)=0;
end
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end
end
figure; plot(Al)
figure;plot(B1)
AA(:,2)
BB(:,2)

Create neural network

function [net]=Neural_Network_mohy(inputs,targets)

% Solve a Pattern Recognition Problem with a Neural Network

% Script generated by NPRTOOL

% Created Fri Jun 21 15:38:32 EEST 2013

% This script assumes these variables are defined:

% inputs - input data.

% targets - target data.

% Create a Pattern Recognition Network

load(‘targets_inputs.mat’)

hiddenLayerSize = 25;

net = patternnet([hiddenLayerSize hiddenLayerSize]);

% Choose Input and Output Pre/Post-Processing Functions

% For a list of all processing functions type: help nnprocess

net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};

net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'};
% Setup Division of Data for Training, Validation, Testing

% For a list of all data division functions type: help nndivide

net.divideFcn = 'dividerand’; % Divide data randomly

net.divideMode = 'sample’; % Divide up every sample

net.divideParam.trainRatio = 80/100;

net.divideParam.valRatio = 10/100;

net.divideParam.testRatio = 10/100;

% trainrp RPROP backpropagation.

% trainrp is a network training function that updates weight and bias

% values according to the resilient backpropagation algorithm (RPROP).

% For help on training function 'trainrp' type: help trainrp

% For a list of all training functions type: help nntrain

net.trainFcn = "trainrp’;

% Choose a Performance Function

% For a list of all performance functions type: help nnperformance

net.performFcn = 'mse’; % Mean squared error

% Choose Plot Functions

% For a list of all plot functions type: help nnplot

net.plotFcns = {"plotperform’,'plottrainstate’,'ploterrhist’, ...
'plotregression’, 'plotfit'};

% Train the Network

[net,tr] = train(net,inputs,targets);

% Test the Network

outputs = net(inputs);

errors = gsubtract(targets,outputs);

performance = perform(net,targets,outputs);
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% Recalculate Training, Validation and Test Performance
trainTargets = targets .* tr.trainMask{1};

valTargets = targets .* tr.valMask{1};

testTargets = targets .* tr.testMask{1};
trainPerformance = perform(net,trainTargets,outputs);
valPerformance = perform(net,valTargets,outputs);
testPerformance = perform(net,testTargets,outputs);
% View the Network

view(net)

% Plots

% Uncomment these lines to enable various plots.
figure, plotperform(tr)

saveas(gcf,'1.jpg’)

figure, plottrainstate(tr)

saveas(gcf,'2.jpg’)

figure, plotconfusion(targets,outputs)
saveas(gcf,'3.jpg’)

figure, ploterrhist(errors)

saveas(gcf,'4.jpg’)

Test image using Statistical analysis and Fourier features:

% --- Executes on button press in test_ S _F.

function test_ S _F_Callback(hObiject, eventdata, handles)

% hObject handle totest S _F (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close all

clear

clc

load(‘net.mat’)

im=imread(imgetfile);

imshow(im)

[im]=enhansment(im);

Featurel= feature statistical(im);

Feature2=feature fourier(im);

test=[featurel feature?];

s=sim(net,test’);

[p.a]=max(s);

q

Test image using Statistical analysis:

% --- Executes on button press in test_S.

function test_S_Callback(hObject, eventdata, handles)

% hObject handle to test_S (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close all

clear
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clc

load(‘net.mat’)
im=imread(imgetfile);
imshow(im)
[im]=enhansment(im);
Feature=feature statistical(im);
test=feature;

s=sim(net,test’);

[p.a]=max(s);

q

Test image using Fourier features:

% --- Executes on button press in test_F.

function test_F_Callback(hObject, eventdata, handles)

% hObject handle to test_F (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close all

clear

clc

load(‘net.mat")

im=imread(imgetfile);

imshow(im)

[im]=enhansment(im);

Feature=feature fourier(im);

test= Feature;

s=sim(net,test’);

[p.al=max(s);

q

Test any image
Frist approach

load('net.mat’);
im=imread(imgetfile);
imshow(im)
[im]=enhansment(im);
featurel=feature statistical(im);
feature2=feature fourier(im);
test=[featurel feature2];
s=sim(net,test");

[p.al=max(s);
if g==
display (‘kont")
elseif g==
display(‘float warp")
elseif g==

display(‘light beat")
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elseif q==
display('heavy beat")
elseif g==
display(‘missing picks")
elseif g==
display(‘double end")
elseif g==
display('hole’)
elseif g==
display('stain’)
elseif g==
display('double pick")
elseif g==10
display(‘free")
else
display('big kont")
end

Second approach

clear

clc

al=load(‘'net 11.mat’);
a2=load('net 22.mat");
a3=load('net 33.mat’);
ad=load('net 41.mat");
a5=load('net 51.mat’);
im=imread(imgetfile);
imshow(im)
[im]=enhansment(im);
Feature=feature statistical(im);
test=feature;
s=sim(al.net,test’);
[p.q]=max(s);

ifqg==

display(‘free’)

else

display('defect")

feature = feature fourier(im);
test= feature;
s=sim(a2.net,test’);
[p.g]=max(s);

if g==

display(‘area’)
featurel=feature statistical(im);
feature2=feature fourier(im);
test=[featurel feature?];
s=sim(a3.net,test’),
[p.al=max(s);

if g==
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display('kont")
elseif q==
display(‘hole’)
else
display('stain’)
end
elseif g==
display(‘'warp")
feature=feature statistical(im);
test=feature;
s=sim(a4.net,test’);
[p.g]=max(s);
ifqg==
display('Double end")
else
display('Float warp")
end
else
display(‘weft’)
feature=feature statistical(im);
test=feature;
s=sim(al.net,test’),
[p.al=max(s);
if g==
display(‘ligth beat")
elseif q==
display('heavy beat")
elseif q==
display('missing picks")
else
display('Double pick")
end
end
end
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