ÚPRAVA MOTOCYKLU JAWA 50 NA ZÁVODNÍ SPECIÁL PRO ZÁVODY STADIION-CUP

ADJUSTMENT MOTORCYCLE JAWA 50 ON RACING SPECIAL FOR RACE STADIUM- CUP

DIPLOMOVÁ PRÁCE

Liberec 2010 Radek Kaderka
ÚPRAVA MOTOCYKLU JAWA 50 NA ZÁVODNÍ
SPECIÁL PRO ZÁVODY STADION-CUP

ADJUSTMENT MOTORCYCLE JAWA 50 ON
RACING SPECIAL FOR RACE STADIUM- CUP

Diplomová práce

KVM – DP – 564

Vedoucí diplomové práce: doc. Ing. Celestýn Scholz, Ph.D.
Konzultant: Ing. Pavel brabc, KVM

Počet stran: 61
Počet příloh: 7
Počet obrázků: 22
Počet tabulek: 4
Počet výkresů: 1

V Liberci 6. 1. 2010
Radek Kaderka
Místo pro vložení originálního zadání DP (BP)
ÚPRAVA MOTOCYKLU JAWA 50 NA ZÁVODNÍ SPECIÁL PRO ZÁVODY STADIION-CUP

Anotace
Cílem této diplomové práce je úprava motocyklu Jawa 50 na závodní speciál, která navýší výkon motoru, stabilitu a tuhost podvozku. K tomuto účelu je použit jiný druh paliva a metoda konečných prvků.

Klíčová slova: závodní speciál, palivo, metoda konečných prvků

ADJUSTMENT MOTORCYCLE JAWA 50 ON RACING SPECIAL FOR RACE STADIUM- CUP

Annotation
The content of the thesis is the adjustment motorcycle Jawa 50 on racing speciál. This adjustment will gross up engine power, stability and stiffness chassis. For this purpose other fuel type and the finite element method is used.

Key words: racing special, fuel, finite element method

Počet stran: 61
Počet příloh: 8
Počet obrázků: 22
Počet tabulek: 4
Počet výkresů: 1
PROHLÁŠENÍ

Byl(a) jsem seznámen(a) s tím, že na mou diplomovou práci se plně vztahuje zákon č. 121/2000 Sb. o právu autorském, zejména § 60 – školní dílo.

Beru na vědomí, že Technická univerzita v Liberci (TUL) nezasahuje do mých autorských práv užitím mé diplomové práce pro vnitřní potřebu TUL.

Užijí-li diplomovou práci nebo poskytnu-li licencí k jejímu využití, jsem si vědom(a) povinnosti informovat o této skutečnosti TUL; v tomto případě má TUL právo ode mne požadovat úhradu nákladů, které vynaložila na vytvoření díla, až do jejich skutečné výše.

Diplomovou práci jsem vypracoval(a) samostatně s použitím uvedené literatury a na základě konzultací s vedoucím diplomové práce a konzultantem.

V dne

podpis
PODĚKOVÁNÍ

SEZNAM POUŽITÝCH ZKRATEK A SYMBOLŮ

l rozvor motocyklu [mm]
l₁, l₂ vzdálenost těžiště od předního (zadního) kola [mm]
h výška těžiště nad rovinou vozovky [mm]
m celková hmotnost motocyklu s jezdcem [kg]
Rval valivý poloměr zadního kola [mm]
Ic₁ celkový převodový poměr na první rychlostní stupeň [-]
Nm maximální moment motoru [Nm]
g gravitační zrychlení [m.s⁻²]
T těžiště motocyklu s jezdcem [N]
G gravitační síla [N]
R₀, R₀ okamžitá reakce na předním (zadním) kole [N]
D dynamická (setrvačná) síla [N]
a zrychlení, zpomalení vozidla [m.s⁻²]
B₁, B₂ brzdná síla na předním (zadním) kole [N]
f₀ součinitel adheze [-]
aₚ, aₑ zpomalení vyvozené přední (zadní) brzdy [m.s⁻²]
F₁ hnací síla na zadním kole [N]
F₁₀ adhezní síla na zadním kole [N]
δ součinitel vlivu rotačních součástí [-]
G₁ svislá reakce na zadním kole [N]
G₁₀ svislá reakce na předním kole, síla na krk řízení [N]
M₁ moment namáhající krk řízení při dynamickém režimu [Nm]
M₂ moment namáhající krk řízení při brzdění oběmi brzdami [Nm]
M₃ moment namáhající zadní tuhou vidlici [Nm]
Fcp výslednice sil B₁ a G₁ [N]
Fgz síla na hranu otvoru zadní tuhé vidlice při průchodu osy kola [N]
F₀d síla na výstupku záhytu držáku zadní brzdy [N]
F₀j sílal od tišť jezdec [N]
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Význam</th>
<th>Jednotka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re_H</td>
<td>mez kluzu</td>
<td>[MPa]</td>
</tr>
<tr>
<td>Re_0.2</td>
<td>mez kluzu</td>
<td>[MPa]</td>
</tr>
<tr>
<td>A_5</td>
<td>tažnost</td>
<td>[%]</td>
</tr>
<tr>
<td>E</td>
<td>Youngův modul pružnosti v tahu</td>
<td>[MPa]</td>
</tr>
<tr>
<td>Rm</td>
<td>mez pevnosti</td>
<td>[MPa]</td>
</tr>
<tr>
<td>HB</td>
<td>tvrdost podle Brinella</td>
<td>[-]</td>
</tr>
</tbody>
</table>
OBSAH DIPLOMOVÉ PRÁCE

SEZNAM POUŽITÝCH ŽKRATEK A SYMBOLŮ 7
OBSAH 9
1. UVOD 10
2. PROBLEMATIKA ÚPRAV PRO ZÁVODY STADION-CUP 11
3. ZÁKLADNÍ ÚDAJE A TECHNICKÉ PARAMETRY 13
4. ZVÝŠENÍ VÝKONOVÝCH PARAMETRŮ MOTORU 15
 4.1. VÁLEC A VLOŽKA 15
 4.2. HLAVA VÁŁCE 15
 4.3. KARBURÁTOR, TRYSKA 16
 4.4. PALIVO 17
 4.5. PÍST A KLIKOVÉ ÚSTROJÍ 18
 4.6. PODKOVA MEZI SETRVAČNÍKY 19
5. JÍZDNÍ REŽIMY A VZNIKAJÍCÍ ZATÍŽENÍ 20
 5.1. OBECNÝ POPIS ZÁKLADNÍCH PROVOZNÍCH REŽIMŮ 20
 5.2. STATICKÝ REŽIM 21
 5.3. BRZDĚNÍ MOTO CYKLU 22
 5.3.1. BRZDĚNÍ POUZE PŘEDNÍ BRZDOU 23
 5.3.2. BRZDĚNÍ POUZE ZADNÍ BRZDOU 25
 5.3.3. BRZDĚNÍ PŘEDNÍ I ZADNÍ BRZDOU ZÁROVEŇ 27
 5.4. ZRychlování MOTO CYKLU 30
 5.4.1. PROKLUZEM ZADNÍHO KOLA 30
 5.4.2. ZTRÁTA DOTYKU PŘEDNÍHO KOLA S VOZOVKOU 32
 5.4.3. OMEZENÍ PARAMETRY MOTORU 32
 5.5. DYNAMICKÉ ZATÍŽENÍ 34
 5.6. VÝBĚR JÍZDNÍHO REŽIMU 35
6. VLASTNÍ ANALÝZA 36
 6.1. TVORBA MODELU 36
 6.2. ZAVEDENÁ TVAROVÁ ZJEDNODUŠENÍ 37
 6.3. OKRAJOVÉ PODMÍNKY 38
 6.4. MATERIÁLOVÉ VLASTNOSTI RÁMU 42
7. VYHODNOCENÍ ANALÝZ 43
 7.1. VÝSLEDKY PEVNOSTNÍ ANALÝZY PŮVODNÍHO RÁMU 43
 7.2. PROVEDENÍ OPTIMALIZACE 46
 7.3. VÝSLEDKY PEVNOSTNÍ ANALÝZY OPTIMALIZOVANÉHO RÁMU 47
8. ZÁVĚR 51
SEZNAM POUŽITÉ LITERATURE 52
POUŽITÝ SOFTWARE 52
SEZNAM PŘÍLOH 53
1. ÚVOD

V dnešní době je klade no mnoho nároků na motocykl. Především na dobré jízdní vlastnosti a bezpečnost jezdec. Z tohoto důvodu se musí výrobci více věnovat vývoji jednotlivých dílů. Nároky jezdců na jedné straně a na druhé konkurenceschopnost, materiály, technologie a v neposlední řadě cena.

Uložení předního, zadního kola a jejich řiditelnost je ovlivňována několika faktory např. silovému působení jezdec, nerovnosti vozovky a setrvačnými silami. Proto je kláden velký důraz na jejich pevnost a tuhost, která ovlivňují jízdní stabilitu a bezpečnost. Na bezpečnosti se podílí i brzdy na které je vlivem rostoucích výkonů motorů motocyklů kláden důraz na vysokou účinnost, která se nesmí méně v žádném jízdním režimu ani při dlouhodobém použití. Nesmíme zapomenout na odpružení a tlumení, které zajišťuje dokonalý styk kola s vozovkou. Ovlivňuje tělesnou únavu a pohodlí jízdy.

V řadě případů se sériově vyráběné motocykly upravují pro různé soutěže, např. Stadion-Cup, 100 zátaček, Fichtl cup. Každá soutěž má přísné podmínky, které podmínky musí splňovat. Cílem mé práce je v rámci předpisů úprav pro závody Stadion-Cup zvýšit výkonové vlastnosti a tuhost rámu motocyklu Jawa 50.
2. PROBLEMATIKA ÚPRAV PRO ZÁVODY

STADIION-CUP

Úpravy motocyklů jsou ovlivněny předpisy pro povolené úpravy a podmínk pro závodníky Stadion-Cupu, které jsou následující:

Zapalování: Originální magneto PAL - hliníkové s původní vačkou, replika vyrobená podle originálu je povolena. Vnější civka, vnitřní civka a kontakty jsou povoleny jakékoliv. Bezkontaktní a tyristorové zapalování není povoleno.

Vnitřní úprava motoru: 50 cm³ - vrtání válce maximálně do průměru 40 mm v rámci výbrusů. Vložka válce musí být z slitiny. Kanály ve válci: dva přepouštěcí, jeden výfukový a jeden sací. Kliková hřídel musí být originální se zdvihem 44 mm a průměrem klikových čepů 15 mm. Tvar klikové hřídele musí být původní. Ložiska na klikové hřídele 6202. Ojnice je povolena jakékoliv s pistním čepem o průměru maximálně 12 mm. Pist musí být ze slitiny hliníku.

Celkově se dá říci, že přes velké omezení úprav a zákazu používání nestandardních prvků, jsou možnosti zlepšit výkonové parametry hnací jednotky a zvýšit odolnost rámu motocyklu proti destrukci. Vždy se jedná o úpravy originálních dílů, nebo skupin sériově vyráběného motocyklu.
3. ZÁKLADNÍ ÚDAJE A TECHNICKÉ PARAMETRY
MOTOCYKLU JAWA 50

Moped Stadion S 11 s motorem Jawa 50 – typ 552 je jednostopé vozidlo sloužící k dopravě jedné osoby (obr. č. 1). Hlavní charakteristikou mopedů tedy je, že pedály tvoří organickou skupinu s motorem, takže po vymontování motoru z rámu není možno na mopedů jet jako na jízdním kole. Tím se moped liší od motorového kola (kola s pomocným motorem), z něhož se moped konstrukčně vyvinul. Motorové kolo mělo pomocný pohon motorem, zcela nezávislý na pedálové pohonu.

Obr. č. 1: Moped Stadion S11 (vlastní foto)
Základní technické údaje jsou uvedeny v tab. č. 1.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Moped Stadion – S 11 s motorem Jawa 50 ccm, typ 552</th>
</tr>
</thead>
<tbody>
<tr>
<td>Druh motoru</td>
<td>Benzinový, dvoudobý, jednoválcový, vzduchem chlazený</td>
</tr>
<tr>
<td>Výrobce motoru</td>
<td>Motor n.p. české Budějovice</td>
</tr>
<tr>
<td>Obsah</td>
<td>49,8 ccm</td>
</tr>
<tr>
<td>Vrtání</td>
<td>38 mm</td>
</tr>
<tr>
<td>Zdvih</td>
<td>44 mm</td>
</tr>
<tr>
<td>Kompresní poměr</td>
<td>1 : 7,5</td>
</tr>
<tr>
<td>Výkon</td>
<td>1,1 kW při 4250 ot/min.</td>
</tr>
<tr>
<td>Mazání</td>
<td>Směsí oleje a benzínu poměru 1 : 20-25</td>
</tr>
<tr>
<td>Zapalování</td>
<td>Setrvač. Magnetkou, předstih 2,8 – 3,1 mm, výkon 18W při 6V</td>
</tr>
<tr>
<td>Osvětlení</td>
<td>Hlavní žárovka 6V/ 15W, zadní 12V/3W</td>
</tr>
<tr>
<td>Váha stroje</td>
<td>36 Kg (bez paliva)</td>
</tr>
<tr>
<td>Karburátor</td>
<td>Jíkov 2912.M monoblokové konstrukce s čističem vzduchu 35 mm, rozprašovač 122mm, hlavní tryska 50</td>
</tr>
<tr>
<td>Spotřeba</td>
<td>1,4L -1,6L/100Km při 20 – 50 Km/h</td>
</tr>
<tr>
<td>Spojka</td>
<td>Dvoulamelová s lamelou ocelovou a lamelami s asbestopryskryičným obložením. Běží v olejové lázní</td>
</tr>
<tr>
<td>Převody</td>
<td>Primární náhon od motoru na převodovku proveden ozubenými koly. Převodovka dvoustupňová v bloku</td>
</tr>
<tr>
<td>Délka klik</td>
<td>132 mm</td>
</tr>
<tr>
<td>Rozměr ráfku</td>
<td>19 * 2,00 ''</td>
</tr>
<tr>
<td>Pneumatiky</td>
<td>19 * 2,00 ''</td>
</tr>
<tr>
<td>Pérování</td>
<td>Přední vidlice s kyvnými váhady odpružena dvěma gumovými bloky. Sedlo odpruženo kyvným čepem a spirálovou pružinou</td>
</tr>
</tbody>
</table>

Tab. č. 1: Základní technické údaje.
4. ZVÝŠENÍ VÝKONOVÝCH PARAMETRŮ MOTORU

4.1. VÁLEC A VLOŽKA

Při návrhu vylepšení motoru je důležité si uvědomit nevýhody dvoudobého motoru, tzn. nedostatečné propláchnutí válce.

Vypláchnutí válce ovlivňuje mnoho faktorů. Nejdůležitějšími jsou výfukový, sací a vyplachovací kanály, mezi ně se zahrnuje i kliková skříň, která plní i účel tlakového zdroje pro čerstvou náplň, tvar spalovacího prostoru, poměr zdvihu k vrtání, sací trakt a konstrukce výfukového potrubí s tlumičem hluku.

Pro vyšší výkon motoru musíme odstranit nedostatky, tzn. nový návrh průřezů kanálů a časování rozvodů. Protože návrh a optimalizace úprav časování a velikost kanálů převyšují obsah této práce, tak jsem pro tento návrh dojel za odborníky do JAWA Moto spol. s r.o. pro radu a podklady. JAWA Moto spol. s r.o. mě zahrnula dobovými návrhy na zvýšení výkonu. Takto upravená vložka navýší výkon z původních 1,1 kW na 1,77 kW. Jako první se doporučuje upravit vložka válce, hlavní úpravou je zvětšení průřezů všech kanálů (příloha č. 1). Druhým krokem je úprava dle vložky válce samotný válec (příloha č. 2).

Po provedení těchto úprav lze nasát, přepustit i vyřouknout větší objem směsi vzduchu s palivem, který projde jedním cyklem motoru.

4.2. HLAVA VÁLCE

Jako třetí se upravuje hlava válce (příloha č. 3).

Stupeň kompresse má přímý vliv na účinnost a dosažený výkon Kompresní poměr patří k důležitým konstrukčním veličinám motoru a udává se vždy, protože se dá usuzovat na oktanový nárok paliva i bez doporučení výrobce. Takto upravená hlava válce nám z původního kompresního poměru 1 : 7,5 vytvoří poměr 1 : 14.

Vyšší stupeň kompresse zmenšuje objem spalovacího prostoru, čímž se zmenšuje i jeho ochlazovací plocha, a tím také tepelné ztráty. V malém kompresním prostoru jsou částice paliva se vzduchem silně stlačeny a dobře promíchány. Kromě toho se kapičky paliva zplyňují, takže hoření je dokonalejší
a rychlejší. Zvýšením stupně komprese se značně zvýší výkon motoru, sníží se měrná spotřeba paliva. Velké zvýšení kompresního poměru už přináší podstatně menší zlepšení. Zvyšování kompresního poměru je omezeno detonačním spalováním, popřípadě samovznicením zápalné směsi, které nastává při teplotě asi 550 °C. Při větších kompresních poměrech se namáhá nadměrně klikové ústroji a jeho životnost velmi rychle klesá a také je možnost deformace ojnice.

4.3. KARBURÁTOR, TRYSKA

Obr. č. 2: Karburátor Jikov 2917 PSb (vlastní foto)
Hlavní tryska 0,68mm (obr. č. 3), tryska volnoběhu 0,38 mm. Z dlouholetých zkušeností při ladění těchto motorů a po úpravě uvedené v kapitole 4.1. Válec a vložka doporučuji zvětšit průměr hlavní trysky na 0,70 mm.

![Image](image.jpg)

Obr. č. 3: Hlavní tryska karburátoru Jikov 2917 PSb (vlastní foto)

4.4. PALIVO

Při takto velkém nárůstu kompresního poměru hrozí nebezpečí samovznícení paliva kompresním teplem v jiný okamžik, než je určeno zapalováním. Každopádně na vznik předzápalů nebo detonací má vliv ještě několik jiných činitelů – otáčky motoru, vlhkost vzduchu, obsah kyslíku ve vzduchu, teplota vzduchu, tvar spalovacího prostoru atd. Proto různé motory při stejnéch kompresních poměrech mají odlišný oktanový nárok. Pro nás takto upravený motor je vhodné přejít na benzin Natural s oktanovým číslem 95 a výše. Někteří jezdci a jejich technici se pokouší ještě přidávat do benzinu Methyl alkohol, pro jeho obsah kyslíku.
4.5. PÍST A KLIKOVÉ ÚSTROJÍ

Píst je namáhán nejen mechanicky, ale spolu s pístními kroužky i tepelně. Odborníky JAWA Moto spol. s r.o. mě nedoporučují zasahovat do konstrukce pístu, ani vytvářet vlastní odlitky, přesto mě doporučily ke snížení hmotnosti, ne však pevnosti jednu úpravu (příloha č. 4).

U jednoválcového motoru není prakticky možné dosáhnout dokonalého vyvážení. Síly vznikající v motoru rozdělujeme na posuvné a rotační. Vyvážení rotačních hmot musí být úplné, posouvajících je jen částečně kolem 50%.

Velkou nevýhodou pro akceleraci mopeda jsou přímo na klikové ústrojí přidělené spojka a magneto a jejich velká hmotnost (obr. č. 4).

Obr. č. 4: Řez motorem stadion S11
Proto někteří jezdci a jejich technici se pokouší ještě snížit hmotnost magneta tím že si nechávají odlit nové magneto jen se třemi magnety, místo původních čtyř (obr. č. 5). Dosáhne se z původní váhy 900g ± 20g nové váhy 760g ± 20g.

Obr. č. 5: Originální magneto PAL se čtyřmi magnety (vlastní foto)

4.6. PODKOVA MEZI SERTVAČNÍKY

Při ladění motoru se často používá takzvaná podkova (příloha č. 5), která se vkládá mezi setrvačníky klikového hřídele. Podkova vyplní „škodlivý“ prostor mezi setrvačníky klikového hřídele a to má dobrý vliv na spodní kompresi, spotřebu a celkově to má kladný vliv na plnění motoru a jeho charakter.
5. JÍZDNÍ REŽIMY A VZNIKAJÍCÍ ZATÍŽENÍ

5.1. OBECNÝ POPIS ZÁKLADNÍCH PROVOZNÍCH REŽIMŮ

Na motocykl při závodu působí celá řada zatížení, která jsou způsobena různými vlivy. Motocykl je zatěžován vlastní hmotností, hmotností řidiče, silami vznikajícími setrvačnými účinky zminěných hmot při brzdění či akceleraci, nevyváženými silami a momenty, dynamickými silami způsobenými od nerovnosti vozovky, jízdními odpory a dalšími. Všechny tyto zatížení se při závodu vyskytují společně a záleží na konkrétní trati a stylu jízdy, které zatížení má největší podíl a namáhání rámů. Všechny tyto účinky se vyskytují společně v různých kombinacích, a zjišťování jejich současných účinků je velmi komplikované. Proto se namáhání nosných částí rámů rozděluje do jednodušších jízdních režimů na několik základních.

Tyto režimy jsou:

- Statický režim
- Brzdění motocyklu
- Zrychlování motocyklu
- Dynamický režim

<table>
<thead>
<tr>
<th>Parametr</th>
<th>l [mm]</th>
<th>lp [mm]</th>
<th>lz [mm]</th>
<th>h [mm]</th>
<th>m [kg]</th>
<th>Rval [mm]</th>
<th>Ic1 [-]</th>
<th>Nm [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hodnota</td>
<td>1160</td>
<td>740</td>
<td>420</td>
<td>520</td>
<td>117</td>
<td>292</td>
<td>27,9</td>
<td>3,5</td>
</tr>
</tbody>
</table>

Tabulka č. 2: Parametry upraveného motocyklu.
5.2. STATICKÝ REŽIM

Nejjednodušší případ nastává v provozu pouze při nulové jízdní rychlosti na vodorovném povrchu. Podvozek je v tomto případě zatěžován pouze vlastní hmotností, hmotností jezdec. Motocykl s jezdcem bereme jako jeden celek.

![Staticke rechim](image)

obr. č. 7: Silové schéma pro statický režim

Parametr \(R_{val} \) je valivý poměr zadního kola. Ve styčných bodech kol s vozovkou působí svislá reakce, obr. č. 7, jejichž velikost se určí ze složkové rovnice (2) a momentové rovnice (3) k bodu \(P \). G je celková tihová síla motocyklu.
\[
G = m \cdot g \ [N] \\
G = R_p + R_z \ [N] \\
R_z \cdot l - G \cdot l_p = 0 [-] \\
\]

\[z \ (1), (2), (3) :\]
\[
R_p = m \cdot g \cdot \frac{l}{l} \ [N] \\
R_z = m \cdot g \cdot \frac{l_p}{l} \ [N] \\
\]

5.3. **BRZDĚNÍ MOTOCYKLU**

Brzdění je stav, který se podstatně podílí na zatěžování podvozku motocyklu. K největšímu namáhání dochází zejména v oblasti za hlavou rámu, přední vidlice, uložení sloupku řízení a hlava rámů. Zatížení je vyváženo ohybovým momentem v podélné rovině. Moment vzniká působením okamžité reakce na kole společně s brzdou silou na rameně, které je tvořeno kluzáky a nosnými trubkami. Náš motocykl má oddělené, na sobě zcela nezávisle ovládané brzdy pro brzdění předního a zadního kola, dělíme brzdění na:

- brzdění přední brzdou
- brzdění zadní brzdou
- brzdění oběma brzdami

Ve výpočtech v případě brzdění předpokládám brzdění na mezi adheze jako extrémní případ, při němž dochází k největšímu zatížení. Neuvádím zde celá odvození jen základní vztahy a konečná vyjádření. Odvození lze dohledat v literatuře (6) a (7).
5.3.1. **BRZDĚNÍ POUZE PŘEDNÍ BRZDOU**

![Image: A person riding a motorcycle, with a force diagram showing forces and moments.](image)

obr. č. 8: Silové schéma pro brzdění pouze přední brzdou

Při brzdění pouze přední brzdou obr. č. 8, se brzdící reakce vyskytuje pouze na předním kole, podle d’Alembertova principu se připoji do těžiště dynamická (setrvačná) síla s opačným smyslem než má zpomalení. Je dána vztahem:

\[D = m \cdot a \quad [N] \tag{6} \]

\[B_p = R_p \cdot f_o \quad [N] \tag{7} \]
Rovnováha brzdné a dynamické síly je popsaná složkovou rovnici (8). Dynamická síla (6) je v rovnováze s brzdnou silou (7), kde Rp je okamžitá svislá reakce na předním kole a fo součinitel adheze mezi pneumatikou a povrchem vozovky. Jeho hodnota se pohybuje na suché vozovce v rozmezí 0,5 až 1.

$$B_p - D = 0 \quad [-]$$ \hspace{1cm} (8)

momentová rovnice k bodu Z:

$$R_p \cdot I - G \cdot I_z - D \cdot h = 0 \quad [-]$$ \hspace{1cm} (9)

Po dosazení (6), (7) a (9) do rovnice (8), lze odvodit vztah pro poměrné zpomalení:

$$\frac{\alpha}{g} = \frac{f_0 \cdot I_z}{I - f_0 \cdot h} \quad [-]$$ \hspace{1cm} (10)

Ze vztahu je patrné, že poměrné zpomalení závisí jak na poloze těžiště, tak rozvorce i součiniteli adheze.

Graf č. 1: Závislost poměrného zpomalení při brzdění pouze přední brzdou
Z (grafu č.1.) závislosti poměrného zpomalení na součiniteli adheze lze určit, že největší účinnost zpomalení při brzdění pouze přední brzdou je dosaženo při maximálních hodnotách součinitele adheze.

5.3.2. BRZDĚNÍ POUZE ZADNÍ BRZDOU

Obr. č. 9: Silové schéma pro brzdění pouze zadní brzdou

\[B_z = R_z \cdot f_0 [N] \] \hspace{1cm} (11)
\[B_z - D = 0 [-] \] \hspace{1cm} (12)
momentová rovnice k bodu P:
\[R_z \cdot l - G \cdot l_p + D \cdot h = 0 [-] \] \hspace{1cm} (13)

Opět působí v těžišti setrvačná dynamická síla:
\[D = m \cdot a [N] \] \hspace{1cm} (14)

Po dosazení (11), (13), (14) do rovnice (12), lze opět odvodit vztah pro poměrně zpomalení:
\[\frac{a}{g} = \frac{f_0 \cdot l_p}{l + f_0 \cdot h} [-] \] \hspace{1cm} (15)

Ze vztahu je patrné, že poměrné zpomalení opět závisí jak na poloze těžiště, tak rozvoru i součiniteli adheze.

\[\text{Graf č. 2: Závislost poměrného zpomalení při brzdění pouze zadní brzdou} \]
Z (grafu č.2.) závislosti poměrného zpomalení na součiniteli valivého odporu lze určit, největší účinnost zpomalení při brzdění pouze zadní brzdou je dosaženo při maximálních hodnotách součinitele adheze.

5.3.3. BRZDĚNÍ PŘEDNÍ I ZADNÍ BRZDOU ZÁROVEŇ

obr. č. 10: Silové schéma pro brzdění přední i zadní brzdou

Při brzdění přední i zadní brzdou, obr. č. 10, brzdná síla působí na přední i zadní kolo a musí být, jako v předešlém případě, v rovnováze s dynamickou silou. Složková rovnice (16) určuje tuto rovnováhu.

\[
B_z + B_p - D = 0 \quad [\text{-}]
\] (16)
Po dosazení ze (7), (11) a (14) vyjde:
\[R_z \cdot f_0 + R_p \cdot f_0 - m \cdot a = 0 \] [17]

z (9) a (13) se vyjádří Rp, Rz. Po úpravě vyjde vztah pro zpomalení při použití obou brzd:

\[a = f_o \cdot g \] [18]

Z (9), (13), (17) a (18):
\[R_p = \frac{G \cdot l_z + D \cdot h}{l} \] [N] [19]
\[R_z = \frac{G \cdot l_p - D \cdot h}{l} \] [N] [20]

Po vyjádření složkových i momentových rovnic a vzájemnému dosazení vyjde vztah pro poměrné zpomalení:
\[\frac{a}{g} = \frac{f_0 \cdot l_z + f_0^2 \cdot h}{l} + \frac{f_0 \cdot l_p - f_0^2 \cdot h}{l} \] [-] [21]

Ze vztahu je patrné, že poměrné zpomalení opět závisí jak na poloze těžiště, tak rozvoru i součiniteli adheze.
Závislost poměrného zpomalení od účinku předního i zadního kola na součiniteli adheze jsou znázorněny v grafu č. 3.
Graf č. 3: Závislost poměrného zpomalení při brzdění předního i zadního kola

Z grafu č. 3. závislosti poměrného zpomalení při brzdění předního i zadního kola na součiniteli adheze lze určit, že poměrné zpomalení od zadní brzdy má své maximum v rozmezí hodnot $f_0 = 0.6$ až 0.9, přesná hodnota bodu maxima se určí parciální derivací rovnice poměrného zpomalení $a_z = \frac{f_0 \cdot l_p - f_0^2 \cdot h}{l}$ podle f_0 a položí se rovno nule, oproti tomu poměrné zpomalení od přední brzdy se zvyšuje se zvyšujícím se součinitelem adheze. Největší účinnost zpomalení při brzdění pouze přední brzdou je dosaženo při maximálních hodnotách součinitele adheze. Maximální bod poměrného zpomalení pro zadní brzdu z derivace vyjde:

$$f_0 = \frac{l_p}{2 \cdot h} \quad [-]$$

(22)
Jelikož se maximální brzdné účinky zadní a přední brzdy odehrávají za různých hodnot součinitele adheze, budu pro výpočet brzdých sil uvažovat součinitel adheze \(f_a = 1 \), tzn. maximální brzdný účinek přední brzdy, ale účinek zadní brzdy bude o něco nižší. Tento rozdíl není podstatný. Pak lze psát pro velikost brzdých sil:

\[
B_p = a_p \cdot m \quad [N] \tag{23}
\]

\[
B_z = a_z \cdot m \quad [N] \tag{24}
\]

5.4. ZRYCHLOVÁNÍ MOTOCYKLU

Při akceleraci motocyklu vznikají podobně jako při brzdění setrvačné síly. V tomto případě ovšem působí směrem opačným, tedy proti směru jízdy motocyklu. Jejich velikost je úměrná okamžitému zrychlení stroje. Toto zrychlení je omezeno několika vlivy:

- prokluzem zadního kola
- ztrátou styku předního kola s vozovkou
- možnostmi motoru

5.4.1. PROKLUZEM ZADNÍHO KOLA

V provozu k tomuto jevu může dojít v případě snížené přilnavosti vozovky např. na prašných cestách. Tento stav nebyvá tak nebezpečný jako ztráta kontaktu kola předního, jelikož motocykl zůstává částečně ovladatelný. Ovšem řidiče to může překvapit a havarovat. Na obr. č. 11. je zobrazeno schéma sil při zrychlování Určitou roli zde hraje vliv urychlovaných rotujících hmot, vyjádřených koeficientem \(\delta \). Pro vyšší převodové stupně hodnota bližší k 1, pro nižší převodové stupně nabývá vyšších hodnot. Pro první převodový stupeň u motocyklu má velikost přibližně 1,4 z literatury (4). Odpor prostředí není uvažován.
Při odvození omezení akcelerace adhezní vyjdeme z předpokladu, že setrvačná síla vozidla je v rovnováze s tečnou reakcí na hnacím kole, neboli

\[F_k = m \cdot a \cdot \delta \quad [N] \]
\hspace{1cm} (25)

a zároveň:

\[F_k = G_z \cdot f_0 \quad [N] \]
\hspace{1cm} (26)

Porovnáním těchto dvou rovnic (25) a (26) vyjde:

\[m \cdot a \cdot \delta = G_z \cdot f_0 \]
\hspace{1cm} (27)

obr č. 11: Schéma sil při zrychlování
Výraz pro svislou reakci na zadním kole Gz získáme z momentové rovnice k bodu P.

\[G_z = \frac{m \cdot g \cdot l_p + m \cdot a \cdot h \cdot \delta}{l} [N] \quad (28) \]

Dosazením do těchto dvou rovnic (28) do (27) a úpravou výrazů vyplne vztah pro rychlení motocyklu v závislosti na součiniteli adheze. Průběh této funkce je na konci této podkapitoly zakreslen v grafu č. 4 společně s dalšími omezujícími vlivy.

\[\frac{a}{g} = \frac{f_o \cdot l_p}{l \cdot \delta - h \cdot f_o \cdot \delta} [-] \quad (29) \]

5.4.2. ZTRÁTA STYKU PŘEDÍHO KOLA S VOZOVKOU

Silové schéma pro řešení tohoto stavu je rovněž na obr. č. 11. Položíme-li Gp=0, a napíšeme momentovou rovnici k bodu Z.

\[m \cdot a \cdot \delta \cdot h - m \cdot g \cdot l_z = 0 \quad (30) \]

Z této rovnice po úpravě vyplyne jednoduchý vztah pro zrychlení omezené ztrátou styku předního kola s vozovkou:

\[\frac{a}{g} = \frac{l_z}{h \cdot \delta} [-] \quad (31) \]

5.4.3. OMEZENÍ PARAMETRY MOTORU

V tomto případě je akcelerace motocyklu omezena maximálním hnam
momentem, který je motor schopen přes převody dodat na zadní kolo (účinnost převodů uvažujeme 1). Známe-li celkový převodový poměr při daném převodovém stupni, valivý poloměr kola a točivý moment motoru, můžeme snadno vyjádřit hnací sílu na obvodu kola:

\[F_k = \frac{M_m \cdot i_{cl}}{R_{val}} \quad [N] \quad (32) \]

Po dosazení rovnic (31) do (25) a úpravě dostaneme vztah pro největší zrychlení, jaké je motocyklu motor schopen udělit:

\[a_{max} = \frac{M_m \cdot i_{cl}}{\delta \cdot m \cdot R_{val}} \quad [m/s^2] \quad (33) \]

Velikosti parametrů motocyklu Jawa Stadion S11 potřebné pro výpočet jsou uvedeny v tabulce č. 2, v kapitole 4.1.

Graf č. 4: Omezení akcelerace prokluzem, ztrátou stability a omezením parametry motoru
V grafu č. 4 je znázorněna závislost \(\frac{a(f_0)}{g} \) vyjadřující omezení poměrného zrychlení z hlediska prokluzy zadního kola. Konstanta \(\frac{a_1}{g} \) vyjadřuje omezení z hlediska ztráty stability motocyklu a konstanta \(\frac{a_2}{g} \) omezení z hlediska hnacího momentu. Průnik konstanty z hlediska hnacího momentu \(\frac{a_2}{g} \) a závislosti omezení poměrného zrychlení \(\frac{a(f_0)}{g} \) nám udává hodnotu součinitele adheze \(f_0 = 0,4 \) při které je možné dosáhnout prokluzy zadního kola \(F_k \geq F_{ad} \). Při výši hodnotě \(f_0 > 0,4 \) již výkon motoru neumožní prokluzy zadního kola, \(F_k < F_{ad} \).

Průnik konstanty z hlediska ztráty styku \(\frac{a_1}{g} \) a závislosti omezení poměrného zrychlení \(\frac{a(f_0)}{g} \) nám udává hodnotu součinitele adheze \(f_0 \geq 0,8 \) při které je možno dosáhnout ztráty styku předního kola s vozovkou.

Zkoušky a měření prováděné firmou Jawa Moto spol. s r.o. na dřive vyráběných typech motocyklů ukázaly, že zatižení podvozku při akceleraci není zdáleka tak významné jako zatižení při brzdění z literatury (6).

5.5. DYNAMICKÉ ZATIŽENÍ

Dynamické zatižení má podstatný význam při řešení namáhání podvozkových částí vozidel. Zahrnuje vliv náhlých rázů při přejíždění překážek vyšší rychlosti, či kontrolovaných skoků z nízkých výšek i cyklické namáhaní buzené nerovností vozovky, které ovlivňuje životnost podvozku možným vznikem trhlin v odlitech nebo svarech.

Určení namáhání je v této práci založeno na vypočtech rovnovážných ustálených stavech. Obecně se používá náhrada složitých a náročných výpočtů.
dynamického zatižení zavedením dynamického koeficientu. Náhrada spočívá v násobení statického zatižení tímto koeficientem, jehož velikost se pohybuje v rozmezí 2–3.

Množství zkoušek prováděné firmou Jawa Moto spol. s r.o. na dřívějších i dnešních motocyklech ukázala, že použitím dynamického koeficientu o velikosti 3 podvozek zcela vyhoví tomuto zatižení po celou dobu životnosti.

5.6. VÝBĚR JÍZDNÍHO REŽIMU

Z uvedených jízdních režimů vybíram ty nejnepříznivější a v těchto stavech pak počítám při určování namáhání modelu rámů kyvné vídlice. K největšímu zatižení dochází v dynamickém režimu a dále při brzdění oběma brzdomi, kdy uvažuji součinitel adheze \(f_a = 1 \). Pro tyto dva stavy probíhl výpočet namáhání.
6. VLASTNÍ ANALÝZA

6.1. TVŮRBA MÓDELU

Geometrický model rámů je vytvořen na základě výkresové dokumentace z JAWA Moto spol. s r.o. a za použití vlastního rámů. Při tvorbě modelu jsem se snažil vyvarovat tzv. geometrických singularit, převážně vyskytujících se na ostrých hranách a přechodech, použitím zaoblení. Při výpočtu by na těchto hranách a přechodech vznikalo nereálně vysoké napětí. Použitá zaoblení zvyšují
složitost a počet prvků sitě, ale toto zvýšení složitosti není podstatné a potřebný čas k výpočtu se o moc neprodloužil.

6.2. ZAVEDENÁ TVAROVÁ ZJEDNODUŠENÍ

Zjednodušení geometrického tvaru rámů spočívá především v zanedbání prvků díra, zkosení atd. Zavedená zjednodušení jsou uvedena dále:
-2 díry Ø 1 pro štít výrobce na krku řízení
-návarek pro umístění polohy nádrže
-navařený držák se závitem M5 pro uchycení krytu řetězu
-2 díry Ø 5,5 pro uchycení zadního blatníku
-2 díry se závitem M4 pro uchycení zadního blatníku
-držák s dírou Ø 6,5 pro uchycení výfuku
-prořez sedlové trubky
-2x na sedlové trubce uchycení pro stažení sedlové trubky s dírou Ø 8,5
-2x uchycení pro připevnění pumpičky na sedlové trubce

obr č. 12: Zjednodušený výpočtový model původního rámů
6.3. OKRAJOVÉ PODMÍNKY

Model originálního rámu je otevřená konstrukce, jeho vyztužujícím prvkem je motor. Analýza má za úkol zkoumat rám, proto jsem zde přistoupil ke značnému zjednodušení a motor uvažuji jako absolutně tuhé těleso a toho jsem využil při tvorbě okrajových podmínek.

Geometrické okrajové podmínky ve všech místech kde je uložen motor v rámě je přidána rotační vazba, rám se může kolem těchto míst pod zatížením deformovat, ale tyto „čepy“ zůstávají fixovány.

Silové okrajové podmínky jsou znázorněny na obr. č. 13 a č. 14.

Zatížení od zadního kola v dynamickém režimu silou Gz viz obr. č. 13 je rozděleno na dva a uloženo na půlválcové vrchní části zadní vidlicí. Podobně je zachyceno zatížení v režimu brzdění oběmi brzdami, celková síla Fcz viz obr. č 14 vzniká složením brzděné a tihové, vzniklý moment M3 je zachycen zadní vidlicí.

Zatížení od tihy jezdce je zachyceno v obou režimech na plochu sedlové trubky svisle dolů.
obr č. 13: Zatížení rámu při dynamickém režimu

obr č. 14: Zatížení rámu při brzdění oběmi brzdami
Přehled velikosti zatížení rámu v obou jízdních režimech je uveden v tabulce č. 3. Směry složek zatížení jsou patrné z obr. č. 14 a15.

<table>
<thead>
<tr>
<th>Zatížení/režim</th>
<th>Dynamický Složky</th>
<th>Brzdění oběma brzdami Složky</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Síla na krk řízení Gp;Fcp [N]</td>
<td>0</td>
<td>1248</td>
</tr>
<tr>
<td>Moment na krk řízení M1,M2 [Nm]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Síla na hranu otvoru průchodu osy kola Fgz [N]</td>
<td>0</td>
<td>2196</td>
</tr>
<tr>
<td>Síla na záchytu držáku brzdy Fd [N]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Síla od tihy jezdce Fj [N]</td>
<td>0</td>
<td>1800</td>
</tr>
</tbody>
</table>

Tab. č. 3. Zatížení působící na rám
obr č. 15: Model rámu motocyklu s definovanými okrajovými podmínkami pro dynamický režim

obr č. 15: Model rámu motocyklu s definovanými okrajovými podmínkami pro režim brzdění oběmi brzdami
6.4. MATERIÁLOVÉ VLASTNOSTI RÁMU

Původní rám vyráběný od roku 1958 se vyráběl z ocelových bezešvých trubek a tvarově lisovanými plechy, které k sobě pájeli mosaznou pájkou. Mechanické a fyzikální vlastnosti oceli 11 343.1 podle ČSN 41 1353 jsou uvedeny v tabulce č. 4.

<table>
<thead>
<tr>
<th>Veličina</th>
<th>Jednotky</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mez kluzu Re₉₁</td>
<td>MPa</td>
<td>235</td>
</tr>
<tr>
<td>Mez pevnosti Rm</td>
<td>MPa</td>
<td>343 - 441</td>
</tr>
<tr>
<td>Tažnost A₃</td>
<td>%</td>
<td>25</td>
</tr>
<tr>
<td>Mez kluzu Rp₀.₂</td>
<td>MPa</td>
<td>186</td>
</tr>
<tr>
<td>Tvrdost podle Brinella HB</td>
<td>-</td>
<td><=135</td>
</tr>
<tr>
<td>Modul pružnosti v tahu E</td>
<td>GPa</td>
<td>>=206</td>
</tr>
</tbody>
</table>

Tabulka č. 4: Mechanické a fyzikální vlastnosti oceli 11 343.1 podle ČSN 41 1353
7. VYHODNOCENÍ ANALÝZ

7.1. VÝSLEDKY PEVNOSTNÍ ANALÝZY PŮVODNÍHO RÁMU

Tvoření sítě probíhá zcela automaticky. Program je nastaven tak, že počet uzlů a hustotu sítě vytvoří optimálně pro většinu modelů.

![Diagram sítě původního rámku](image)

obr. č 16: Vytvoření sítě u původního rámku

Po vytvoření sítě model původního rámku obsahoval 23 311 elementů. Tento vysoký počet elementů je zapříčiněn velikostí sestavy a její složitostí. Software ProMechanica 3.0 používá již zminěnou P metodou a při aproximaci zvyšuje stupeň interpolačního polynomu až do stupně devět. Výpočet jsem prováděl a výkonném počítači, který bez problému zvládl výpočet i s takto komplikovaným modelem, a proto jsem nepodnikl kroky k jakémukoliv dalšímu zjednodušení. Doba výpočtu na hardwaru AMD Athlon XP2600+ 1,92GHz s 1,00 GB RAM trvala 6 hod. a 30 min. Z dosažených výsledků jsem do této práce vložil zobrazené výsledky.
obr č. 17: Výsledek analýzy modelu původního rámu při dynamickém režimu.
obr č. 18: Výsledek analýzy modelu původního rámu při režimu brzdění oběmi brzdami.
Na obr. č. 17 je zobrazen výsledek analýzy modelu původního rámu při dynamickém režimu. Hodnoty v legendách ve všech obrázcích jsou napěti v MPa dle hypotézy HMH. Největší napětí vzniká na horním oku uchycení motoru v přechodu na hlavní rámovou trubku a na konci sedlové trubky v místě kde se protíná s plechem uchycení motoru. Tato vysoká napětí dosahující hodnot až 500 MPa jsou způsobena nepravděpodobným vymodelováním místa spojení. V místě dotyku je ostrá hrana, která přispívá ke vzniku nerealního napětí, ve skutečnosti mají tyto hrany zaoblení a napětí na nich nedosahuje takových hodnot. Další vysoké napětí vzniká na sedlové trubce v místě přechodu na plechový držák motoru, plechy jsou v tomto místě přivařeny na sedlovou trubku, na modelu rámu kónusové zkosení trubky. Toto napětí je již reálné a dosahuje hodnot kolem 230 MPa. Pro nás je toto napětí nežádoucí, protože vzniká v uzlu svařence, kde mohou vznikat ve sváru únavové trhliny.

Na obr. č. 18 je zobrazen výsledek analýzy modelu původního rámu při režimu brzdění oběmi brzdami současně. Tento režim není tak extrémní a vysoká napětí zde dosahují hodnot kolem 150 MPa. Maximální napětí se v tomto případě vyskytuje na výstupku záhybu zadní brzdy a jeho hodnota činí až 500 MPa. Další napětí vzniká na horním oku uchycení motoru v přechodu na hlavní rámovou trubku a na spodních okáčích uchycení motoru. V těchto místech je opět singularita díky ostré hraně, ve skutečnosti mají tyto hrany zaoblení a napětí na nich nedosahuje takových hodnot.

7.2. PROVEDENÍ OPTIMALIZACE

Optimalizace uzlů rámu z pohledu této práce je ve snížení napětí v materiálu vznikajícím při namáhání.

7.3. VÝSLEDKY PEVNOSTNÍ ANALÝZY OPTIMALIZOVANÉHO RÁMU

Na optimalizovaný model byly použity stejné geometrické i silové okrajové podmínky jako na model původní konstrukce. Cílem je porovnat obě konstrukce při stejných režimech brzdění oběmi brzdami a dynamickém režimu.

Po vytvoření sítě model optimalizovaný rámu obsahoval 29 481 elementů.
obr č. 21: Výsledek analýzy modelu upraveného rámu při dynamickém režimu
obr č. 22: Výsledek analýzy modelu upraveného rámu při režimu brzdění oběmi brzdy

Porovnání tuhosti původní a optimalizované konstrukce rámu v obou jízdních režimech je znázorněno v přílohách č. 6 a č. 7. Z přílohy č. 5 vyplývá snížení maximální deformace konstrukce zadní tuhé vidlice v místě uchycení osy zadního kola z 3,389 mm u původní konstrukce na 2,480 mm u optimalizované konstrukce, v procentech činí rozdíl o 26,8%. V příloze č. 6 vyplývá snížení maximální deformace konstrukce zadní tuhé vidlice v místě zachycení brzdné reakce od zadního kola z 3,188 mm u původní konstrukce na 2,725 mm u optimalizované konstrukce, v procentech činí rozdíl o 14,5%.
8. ZÁVĚR

Tato práce se zabývá ve své první části obecným popisem motocyklu mopedu Stadion S11. V následující kapitole byl popsán návrh některých výkonových parametrů motoru, pro závodní podmínky podniku Stadion-Cup. V následující kapitole byly popsány základní jízdní stavy s výběrem dvou nejneprůznivějších, které byly použity v navazující kapitole při pevnostní analýze současné konstrukce rámů. Při konstrukci modelu pro pevnostní analýzu došlo k několika zjednodušením modelu oproti skutečnosti. Na základě vyhodnocení této analýzy byla v následující kapitole byla navržena optimalizace uzelů s vyhodnocením optimalizovaného rámů.

Metoda konečných prvků neuvažuje při výpočtech různé další faktory ovlivňující napětí vznikající v součástech jako jsou například zbytková napětí po tváření či svařování. Přesto, že velikosti napětí nejsou se skutečnými totožné, dává tato metoda postačující náhled o výsledku maximálních napětí a jejich velikosti pro optimalizaci součásti.

Provedenými tvarovými změnami došlo k navýšení hmotnosti konstrukce rámů. Nutno přihlédnout také k tomu, že při navýšení výkonových parametrů dojde k nárůstu maximální rychlosti motocyklu a tím i zatížení rámů.

Z hlediska pevnostního výpočtu se zdá nově navržený rám příznivější, avšak nutno doporučit ověření výsledků pevnostní analýzy vhodnou zkouškou a měření, které by ověřily, že rám bude po celou dobu závodu dostatečně tuhý.

V seriálu Stadion-Cup jsou již používány různé optimalizované rámů, z niž právě mnou použitá varianta se nejvíce vyskytuje. Prakticky je optimalizovaný rám vyzkoušen, ale teoreticky nebyl nikdy ověřen, proto vznikla tato práce.

Výrobní výkres výztuhy rámů KVM-DP-564-1 je přiložen.

Geometrické modely, výsledky analýz a PDF dokument diplomové práce jsou přidány k této práci na DVD.
SEZNAM POUŽITÉ LITERATURY

1. Vlk František: Teorie a konstrukce motocyklů 1. a 2. díl, Brno, Nakladatelství a vydavatelství 2004
2. Petr Koštálek: Československé mopedy 1. Stadion S11, Krnin, Nakladatelství Růže, s.r.o. 2008
3. Pavel Husák: Upravujeme motocykl pro závod, Praha, SNTL 1974
5. Ing. Jaroslav Koubeck: Dvoutaktní motory, Praha, Nakladatel Josef Hokr 1946
7. Havránek Lukáš: Diplomová práce, Pevnostní analýza a optimalizace rámu s kyvnou vidlicí motocyklu s viceválcový motorem o objemu 1200ccm, TUL 2007

POUŽITÝ SOFTWARE

1. ProEngineer Wildfire 3.0, Parametric Technology Corporation
2. ProEngineer Wildfire 3.0, ProMechanica, Parametric Technology Corporation
3. AutoCAD 2007, Autodesk Inc.
5. Lexikon technických materiálů 2.0
SEZNAM PŘÍLOH

1. Konstrukční návrh úpravy vložky válce.
2. Konstrukční návrh úpravy válce dle přílohy č. 1.
5. Konstrukční návrh podkovy mezi setrvačníky.
6. Deformace současné a optimalizované konstrukce rámu při dynamickém režimu.
7. Deformace současné a optimalizované konstrukce rámu při brzdění oběmi brzdami současně.
9. DVD s textem a obrázky DP
Příloha č. 1: Konstrukční návrh úpravy vložky válce strana 1 ze 2.
Příloha č. 1: Konstrukční návrh úpravy vložky válce strana 2 ze 2.
Příloha č. 2. Konstrukční návrh úpravy válce dle přílohy č. 1.
Příloha č. 3: Konstrukční návrh úpravy hlavy válce.
Příloha č. 4: Konstrukční návrh úpravy pístu válce dle přílohy č. 1.
Příloha č. 5: Konstrukční návrh podkovy mezi setrvačníky.
Příloha č. 6: Deformace současné a optimalizované konstrukce rámu při dynamickém režimu.
Příloha č. 7: Deformace současné a optimalizované konstrukce rámu při brzdění oběma brzdami současně.
Příloha č. 1: Konstrukční návrh úpravy vložky válce strana 1 ze 2.
Příloha č. 1: Konstrukční návrh úpravy vložky válce strana 2 ze 2.
Příloha č. 2: Konstrukční návrh úpravy válce dle přílohy č. 1.
Dosedací plocha seriové hlavy

Příloha č. 3: Konstrukční návrh úpravy hlavy válce.
Příloha č. 3: Konstrukční návrh úpravy pístu válce dle přílohy č. 1.
Displacement Mag (WCS) (mm)
Max Disp: +2.72E+00
Loadset: LoadSet1
Displacement Mag (WCS)
(mm)
Max Disp +2.4801E+00
Loadset:LoadSet
Stress von Mises (WCS)
(N / mm^2)
Loadset: LoadSet1
Stress von Mises (WCS)
(N/ mm²)
Loadset: LoadSet
Stress von Mises (WCS)
(N / mm²)
Loadset: LoadSet1
Displacement Mag (WCS)
(mm)
Max Disp: +3.6314E+00
Loadset: LoadSet1
Stress von Mises (WCS) (N / mm²)
Loadset: LoadSet1
Stress von Mises (WCS)
(N/mm²)
Loadset: LoadSet1
Stress von Mises (WCS)
(N / mm^2)
Loadset: LoadSet1
Stress von Mises (WCS)
(N / mm²)
Loadset: LoadSet
TU v Liberci

VÝTUHA RÁMU

KVM-DP-564-1 list

SKLON FRÉZY Ø34

5°

K PŘEDÍ ČÁSTI RÁMU

K ZADNÍ ČÁSTI RÁMU

547

Ø23

560