

Commercially confidential You are authorised to open and view any

electronic copy we send you of this document within your organisation and

to print a single copy. Otherwise the material may not in whole or in part be

copied, stored electronically or communicated to third parties without the

prior written agreement of Sevcon Limited.

Sevcon Ltd

TVTE

Gateshead

Tyne & Wear

England NE11 0QA

Tel +44 (0)191 4979000

Fax +44 (0)191 4824223

www.sevcon.com

Application Note

Title Controlling AC Via CANOpen

Filename Controlling AC via CAN.docx

Date of Creation 12/03/2008 by Dave Conboy

Last Updated 26/10/2012 by Matthew Karas

1. INITIAL SETUP... 2

1.1. CONFIGURING BAUD RATE, NODE ID AND NMT ROLE. ... 2

2. CAN ISOLATION .. 3

3. CREATING A SAFETY CRITICAL SYSTEM ... 4

3.1. CONFIGURING THE HEARTBEAT PROTOCOL ... 4
3.2. REGISTER ALL PROTECTED NODES WITH THE NMT MASTER ... 4

4. CONTROLLING THE GEN 4 AS A MASTER VIA CAN .. 5

5. CONTROLLING SLAVES DIRECTLY FROM 3
RD

 PARTY CAN NODES ... 6

5.1. CONTROLLING VIA PDO’S ... 6
5.2. SAFETY CRITICAL PARAMETERS ... 7

6. SDO PROTOCOL .. 9

7. TPDOS .. 12

7.1. DEFINING THE CONTENTS OF THE TPDOS ... 12
7.2. TPDO TRANSMISSION PARAMETERS ... 13
7.3. ADDITIONAL NOTES ... 13

8. RPDOS .. 15

8.1. DEFINING THE CONTENTS OF AN RPDO ... 15
8.2. RPDO RECEPTION PARAMETERS .. 16

9. PRECHARGE .. 17

10. COB ID CONFIGURATION .. 18

11. PDO CONTENTS EXAMPLE IN DVT .. 19

12. SUMMARY OF TORQUE CONTROL OBJECTS IN OBD ... 20

13. STATUSWORD .. 21

14. CONTROL WORD AND STATUS WORD ON POWER UP .. 22

15. EMERGENCY MESSAGE ... 23

16. CONTROLWORD & STATUSWORD .. 24

1. Initial Setup

1.1. Configuring Baud Rate, Node Id and NMT role.

This configuration can be done via sdo write through DVT, Drivewizard or another CANOpen software tool.

 Configure the Node Id for each node under OD object 0x5900, 1. This can be any number from 1 to 127.

 Configure the baud rate for each Sevcon Node via the OD object 0x5900, 2.

 Configure if the node is a NMT master or a slave node via the OD object 0x5800 1. There should be only one NMT

master on the network. 0x5800 sub 1 set 0 for Slave 1 for Master.

 Most third party devices have the default configuration of NMT slave.

2. CAN Isolation

For any application over 60V the EU vehicle safety standards require isolation of the traction higher voltage battery from the chassis and other

12V electrical systems. This is no problem for Gen4 Size 8 or GpAC as these controllers have isolated CAN circuits. On Gen 4, however no

isolation is offered and therefore it may be necessary to use a CAN isolator such as an ICP DAS 7531

http://www.icpdas.com/products/Remote_IO/can_bus/i-7531.htm Product manual is embedded below. When connecting this isolator it advised

to connect both CAN network grounds and ensure that each network has a total bus resistance of 60Ω.

CAN isolator
i-7531-manual.pdf

http://www.icpdas.com/products/Remote_IO/can_bus/i-7531.htm

3. Creating a Safety Critical System

The recommended CANopen system for monitoring the health of attached node is to use the Heartbeat system. CANopen

heart beats have the COB ID 0x700 + node id so that 0x701 is the heartbeat from node id 1.

Each node produces1 its own unique heartbeat and consumes2 a variety of other heartbeats on the bus as required. A

CANbus analyser tool (such as the DVT) will reveal what messages are on the CAN bus.

If it not desired to have a node to render the vehicle inoperable should it fail, such as a display, it should not be registered

as a slave with the master.

3.1. Configuring the Heartbeat Protocol
 For each node which is protected by the heartbeat protocol the following steps are required, these can be found

under the CANopen/NMT error control/Heartbeat tree node of Drive Wizard.

 Set the heartbeat producer time to something agreed appropriate for that system, a typical value is 500ms.

This is set via OD index 0x1017, 0.

 Set the heartbeat consumer time for each of the received heartbeats that this node is to raise a fault should one

cease to be broadcast. These objects are a 32 bit values and have a the following format 0x00NNTTTT. These are

set via OD index 0x1016, Where NN is the node id of the producer and TTTT is the timeout value in ms. NB

Drive wizard separates these out automatically (if the DW version (0001.00013+) and EDS (shiroko

0007.0011+) support and use bit-splitting) such that all that is required is to enter the node id and

heartbeat timeout in separately. It is recommended to double the producer time for the timeout, ie if the

producer has 500ms heartbeat period then the consumer time should be set to 1000ms. Eg. On another node

heartbeats produced by node id 1 should be checked and a fault raised if one is not seen for 1s would be

0x000103E8. Set all other unused entries to 0x00000000.

 To ensure that each slave responds to the boot up message, cobid 0x0000 it is important to make sure that all

unused RPDO COB ids (in the range 0x1400 to 0x1408), unused sdo server cob ids (0x1201,1 & 2) and slave SYNC

cob ids (0x1005) are all non zero and disabled in the following way :

 Unused RPDO COB ids should have bit 15 set ie 0x80000XXX this disables the RPDOs.

 Unused SDO server COB ids should have bit 15 set ie 0x80000XXX this disables the SDO.

 Slave SYNC message cob IDs should be set to 0x00000080 and the master set to 0x40000080, in OD object 0x1005

 NB To store CANopen parameters the controller must be logged in, in pre operational.

3.2. Register all Protected Nodes with the NMT master
The NMT master needs to know what nodes are present on the bus in order to tell each of them to go to operational.

This is done in the CANopen/General/Set up section of Drive Wizard or via the OD entry 0x2810 where sub index 0

represents the number of slaves. The following sub indices must be set to the node ids of the protected nodes in the

system. Eg

 0x2810, 00 = 0x02 (nodes on system)

 0x2810, 01 = 0x02 (node 2)

 0x2810, 02 = 0x03 (and node 3)

The system should now power up without any CANbus faults, should any of the attached nodes be unplugged (which

were registered for heart-beating) from the CANbus the effected nodes will now report a CANbus Heartbeat error.

1 CANopen terminology referring to a heartbeat producer, this reference can be found in the object dictionary and the DS301 CANopen

communication profile.

2 CANopen terminology referring to a heartbeat consumer, ie the node is “listening” in for other nodes presence

4. Controlling the Gen 4 as a Master via CAN

It is possible to configure multiple Sevcon Master Controllers on one CANbus and utilise the higher level traction control to

provide speed\torque ramping, controller\motor fault detection and the additional features associated with a Sevcon

master within the object ranges 0x2000-0x2FFF. This setup method allows the user to send via CAN direction switches for

drive and a throttle and\or brake demand via CAN. This also removes the need for the user ECU to carry out ramp rates

and the controlword\statusword motor control start up sequence needed if the controller was configured as a pure motor

slave controller compliant with CANOpen DSP402. If this control is a requirement then section 5 covers this in more detail.

When setting up the system it is advised that the following items are configured and designed into the system.

 Each controller should control its own line contactor to allow it react to faults and open the line contactor if need

be.

 Only one master on the entire CANbus transmits Synchronisation ID’s 0x80. This can be disabled in object 0x1005

by setting it to 0x80000080. If more than one master transmits this ID then the CANbus may become overloaded

as each controller will send TPDO’s on each SYNC message.

 Each controller emergency message should be set accordingly in 0x1014.

 Each controller should have unique TPDO COB ID’s set in 0x1800- 0x1804 sub 1.

Once these are setup then it should be possible to configure RPDO’s in each drive for direction inputs and throttle demand

accordingly. Transmission rates of TPDO’s should be as fast as possible, ideally 20ms.

5. Controlling Slaves Directly from 3rd Party CAN Nodes
It must be advised that if configuring the controller as a pure motor slave then the user ECU is expected to carry out the

majority of the core vehicle control, this will include:

 Ramping of torque demands transmitted via CAN to the controller. The controller has one speed ramp rate

when configured as a slave 0x6083, but this is used for both acceleration and deceleration. A torque slope rate

is also possible in 0x6087, again used in both acceleration and deceleration.

 Fault monitoring and taking appropriate safe action such as opening the main isolating contactor. The

controller will set a fault and turn off its motor control but has no immediate control over contactors etc.

To control a Sevcon slave node directly from a 3rd party CAN node the following steps must be carried out:

 Login to the required node by writing the password and user ID to 0x5000 subs 2 & 3 respectively. Contact

Sevcon for this information.

 Set the slave or all slaves to operational by sending “0x00 0x01 0x00” where these bytes refer to :

0x00 = NMT ID Command monitored by all nodes.

0x01 = set operational, 0x80 = set pre-operational.

0x00 = node id to be set, if set to 0 all nodes will be set.

e.g. In DVT this would be can send “0x00 0x01 0x02” to set node 2 to operational and can send “0x00 0x80 0x02” to set

node 2 to pre-operational.

The following steps assume that SDO’s will be used to write to objects with a client->server cob id of 0x0601. These are set

in object 0x1200. If PDO’s are to be used a different format will be required.

If a line contactor or brake is fitted enable this by writing to the correct analogue output drive. In the case of a line

contactor on ICont 1 on Nano this would be object 0x6c11 sub 1. Writing a value of 0x7fff will apply full battery voltage

across the coil. In DVT this can be done by

can send "0x0601 0x2B 0x11 0x6c 0x01 0xFF 0x7F 0x00 0x00" where

0x0601 SDO Client cob ID

0x2B 16 bit message This data is built up from the SDO protocol bits 7-0. It specifies 16 bit in this packet as the

data is expedited and the n bytes containing no data.

0x11 & 0x6c, object to write to 0x6c11

0x01 sub index of 0x6c11

0xff & 0x7f, value to write 0x7ff

0x00 & 0x00 are not used but must be contained in packet.

To open the line contactor it would be done by setting 0v output voltage

can send "0x0601 0x2B 0x11 0x6c 0x01 0x00 0x00 0x00 0x00"

Enable the motor control model; this can be done by first writing 0x06 (disable) to the control word object 0x6040 followed

by writing 0x07 & then 0x0f(enable) The model should now be enabled.

can send "0x0601 0x2B 0x40 0x60 0x00 0x06 0x00 0x00 0x00" (Disables model)

can send "0x0601 0x2B 0x40 0x60 0x00 0x07 0x00 0x00 0x00"

can send "0x0601 0x2B 0x40 0x60 0x00 0x0f 0x00 0x00 0x00" (Enables model)

 The motor can now be controlled by writing a target speed to object 0x60ff (target speed). This value is a signed integer

with a positive value denoting a forwards direction movement in rpm and a negative value denoting reverse direction in

rpm. Or alternatively if running in torque mode a target torque can be sent to object 0x6071.

can send "0x0601 0x23 0xFF 0x60 0x00 0x00 0x01 0x00 0x00" sets a target speed of +256rpm to 0x60ff

can send "0x0601 0x23 0xFF 0x60 0x00 0x00 0x00 0x00 0x00" sets a target speed of 0rpm to 0x60ff

can send "0x0601 0x23 0xFF 0x60 0x00 0xff 0xfe 0xff 0xff" sets a target speed of -256rpm to 0x60ff

can send "0x0601 0x2B 0x71 0x60 0x00 0x00 0x0f 0x00 0x00" sets a target torque of 15 to 0x6071

5.1. Controlling via PDO’s
The commands and sequence above primarily describe using an SDO command on the default client\server channels 601

& 581. to write to the command word and torque\speed demand. This is ok for quick testing of CAN control, however for a

safety critical system PDO’s should be used. The bare minimum for PDO’s would involve setting up RPDO’s in the

controller for the following objects:

Control Word – 0x6040

Target Speed 0x60ff or Target Torque 0x6071

Any contactor drivers driven directly by writing to 0x6c11

Setup an RPDO in the controller which will handle these objects sent via TPDO from a third party ECU. RPDO setup is

carried out in 0bject 0x1400-1x1404 for setup and in 0x1600-0x1604 for associated data. See Appendix for more details

For example to setup an RPDO in a slave to receive controlword and torque on a cob id of 191 in DVT is as follows:

sdo_wnx 1 0x1400 1 0x00000191

sdo_wnx 1 0x1400 2 0x01

sdo_wnx 1 0x1600 0 0x00

sdo_wnx 1 0x1600 1 0x60400010

sdo_wnx 1 0x1600 2 0x60710010

sdo_wnx 1 0x1600 0 0x02

.A TPDO must now be received via CAN with a cob ID of 0x0191 containing 32bits of data of which the first 16 are the

control word and the second 16 are target torque.

It is also advisable that TPDO’s are setup and monitored by the master ECU, as a minimum the statusword 0x6041 should

be monitored. To complete the power up process successful it is advisable to use the statusword and controlword

sequence as below:

1. At power up, the controlword and statusword are both zero.

2. Motor slave will perform power up tests automatically and, if successful, will proceed to the "switch on disabled"

state, reporting a statusword of 0x0040.

3. Master sends control word of 0x0006 to request shutdown.

4. Slave responds with statusword of 0x0021, ready to switch on.

5. Master sends control word of 0x0007 to request switch on.

6. Slave responds with statusword of 0x0023, switched on. The bridge will now also be enabled.

7. Master sends control word of 0x000f to request enable operation.

8. Slave responds with statusword of 0x0027, operation enabled. Slave will now respond to demands for speed or

torque.

Controlword and Statusword may have other bits set when running in a live system. This is normal as extra
manufacturer specific bits will be in use, However, these can normally be ignored for experimental purposes.

5.2. Safety Critical Parameters
Once PDO communication is established and working a number of safety objects can be set to ensure the system will

respond safely should communication fail. These are listed below:

RPDO timeout. The controller software incorporates an RPDO timeout scheme which will carry out a defined action should

an RPDO not be received by the ECU for 500ms. This is set in object 0x5902 as below:

The current available setups are:

0x5902,0 = 0 - None

0x5902,0 = 1 - Warn and limit drive only - This indicates a warning level fault and

 applies a driveability profile (Drv Sel 2) to slow vehicle speed. This

 must only be used on vehicles where no safety critical inputs are

 received over CANbus

 0x5902,0 = 2 - Inhibit drive - Sets a drive inhibit fault causing the vehicle to stop.

 Line remains closed.

 0x5902,0 = 3 - Immediate stop - Sets a severe fault causing the line to open and the

 EBrake to be applied immediately.

Note: Some of these schemes will only work correctly if a Sevcon master is configured in the system. If an ECU is used to

drive Sevcon devices configured as pure slaves then it is advised that a severe fault scheme is used in conjunction with the

setting to control the contactor drives in error mode, object 0x6c43, see below.

 Contactor Drivers Error mode. Each of the contactor drivers have a voltage setting in 0x6c43 which the drive will

revert to in the case of a communication fault, including RPDO timeout, being set. Setting this object to an

appropriate voltage will ensure that when such a fault is set the line contactor will open and any auxiliary drives

such as ebrakes will be reverted to a safe state.

 Additional monitoring of CANopen emergency faults and statusword should also be carried out by the master

ECU.

6. SDO Protocol

7. TPDOs
TPDOs are used to copy information from the Object Dictionary to the CANbus. The data being sent by the TPDO will

appear on the CANbus as a series of CAN messages.

Each message on the CANbus consists of an 11-bit COB-ID3 and up to 8 bytes of data. When using the DVT, CAN messages

can be seen to be scrolling up the CAN window.

TPDOs will repeatedly send CAN messages using a specific COB-ID. The system designer should assign a unique COB-ID

for the TPDO to use. The message body used by the TPDO is able to store up to 8 bytes of data.

 For example, I may wish to create a TPDO that sends out the following information:

 The voltage read by the first analogue input, available from 0x6C01, 1

 The speed of the local motor, available from 0x606C, 0

 The statusword of the local motor, available from 0x6041, 0

From the Object Dictionary, we see that the analogue input voltage and statusword are 2 bytes each, and the local motor

speed is 4 bytes, giving us 8 bytes in total. This should completely fill one TPDO.

In this example a COB-ID of 0x201 has been chosen as this will not interfere with anything else on the CANbus.

 The data could be arranged in the CAN message as follows:

Figure 1 - Illustration showing formation of TDPO messages

The inverter can then be configured to send this CAN message repeatedly to the CANbus. The contents of the message

will be updated, but it will always have a COB-ID of 0x201. Therefore it is possible for other nodes on the system to receive

this data.

It is possible to configure up to 9 TPDOs on the inverter.

7.1. Defining the Contents of the TPDOs
The contents of each TPDO is defined in the Object Dictionary at locations 0x1A00. Objects 0x1A00 – 0x1A08 are supported

by the inverter, a total of 9 possible TDPO. Each object has 8 sub-indices, meaning that each TDPO can have up to 8 items

mapped into it.

Each of the mapping parameters is a 32-bit number. In the number, we encode the index, sub-index and length of each

item that it to be mapped into the TDPO. The first 16-bits represent the index, the next 8 bits represent the sub-index and

the last 8 bits represent the length of the object being mapped. These values are best expressed in hex.

In the above example of statusword, speed and analogue input value, we would set up the first TPDO mapping as follows:

Index Sub Index Value

0x1A00 0 0x03

3 COB-ID = Communication Object Identifier. This is the CANopen term for the CAN message identifier.

0x6041, 0 = 0x0027

Statusword

0x606C, 0 = 0x00000231

Local motor speed

0x6C01, 1 = 0x0104

Analogue input 1 value

Object Dictionary

0x201 0x04 0x01 0x31 0x02 0x00 0x00 0x27 0x00

Resulting CAN message

1 0x6C010110

2 0x606C0020

3 0x60410010

The above objects define what information is to be sent in the TPDO. However it does not define what COB-ID the TPDO

will use, or how often the data is to be sent. This is discussed in the next step.

7.2. TPDO Transmission Parameters
TPDO transmission parameters are defined in objects 0x1800-0x1808. The transmission parameters correspond to the

TPDO contents that are defined at locations 0x1A00-0x1A08.

Each transmission type object has 5 sub-indices.

Sub index 1 defines the COB-ID of the TPDO. This is 32 bits long as it was designed to support the 29 bit COB-IDs available

with CAN v2.0B. However, 29 bit COB-IDs are not used at present. This entry may also be set to 0x80000000, which will

disable the TPDO.

Sub index 2 defines the transmission type. Set this to zero to have asynchronous TPDO transmission. In most

circumstances you would set it to a value between 1 and 240, to specify how many SYNC messages4 must be received

before the TPDO is sent, so it is possible to specify the TPDO is sent, say, every 5 th SYNC message. Setting this sub-index to

255 indicates the TPDO will be sent when there is a change to any of the values mapped to the TPDO.

Sub index 3 specified an inhibit time. For example, if the inhibit time is set to 10ms, the TPDO will never be sent more than

once every 10ms. This is useful when the transmission type is set to 255, as it will prevent the CANbus being clogged with

data from a sensor whose value may change many times in a short period

Sub index 4 does not exist on the inverter, or on many other CANopen devices. This sub-index is reserved for future use.

Sub index 5 is an event timer. A time in ms may be specified here. If a time is specified, then the TPDO will be sent on

every time interval in addition to any other triggers that may exist. Set this sub index to zero to disable the event timer.

In the above example of sending the first TPDO using COB-ID 0x201 on every SYNC message, we would set the

communication parameters as follows:

Index Sub-index Value

0x1800 0 0x05

1 0x00000201

2 0x01

3 0x00

5 0x00

7.3. Additional Notes
Some miscellaneous notes to bear in mind when setting up TPDOs:

 TPDOs do not need to be acknowledged. There is no problem if a device is configured to send TPDOs and there

are no other devices on the bus to do anything with these messages. In fact, this is a useful situation as it is

common to find nodes with a set of TPDOs configured for use with monitoring tools such as the DVT which are

not always connected.

 The system must be in the pre-operational state in order to change any PDO mappings. In addition, sub index 0 of

any of the mapping parameter objects must be set to zero before the mappings can be changed.

 Changes to TPDO and RPDO mappings are not stored to EEPROM automatically. They will only be written to

EEPROM when the store command is sent. To send the store command from the DVT, simply type ‘store’ and

press return. If you key off before entering the store command you will lose your PDO setup.

 A DVT script, pdo_config.tcl, is available as part of the DVT package. It sets up a default set of TPDOs that can be

used when logging data with the DVT. Studying this script will provide more information on how TPDOs are

configured.

4 SYNC messages are produced by the master node. They usually have a COB-ID of 0x80, but not always. The frequency at which SYNC

messages are sent out can be adjusted in the Object Dictionary of the master node at index 0x1006.

 Strictly speaking, you should only map objects which are read only to TPDOs. It is possible to map some which

are read/write, but this may cause problems. For instance, when transmitting the state of digital inputs, it is better

to transmit object 0x6800 than objects 0x21**.

 CANopen data objects are written in the CAN packets in a little-endian form ie back to front.

8. RPDOs
RPDOs perform the opposite action to TPDOs in that they take information from the CANbus and copy it back into the

Object Dictionary. Each time a CAN message is received, the RPDOs are checked to see if they contain any information that

needs to be copied back to the Object Dictionary.

The example below follows on from the example used in the TPDO section. The statusword and motor speed items are

being copied into the left motor drive information object at 0x2020, sub-indices 2 and 4. The first 2 bytes are ignored

however. This may be because they are intended for a different node.

Figure 2 - Illustration showing operation of RPDOs

Using RPDOs we can configure the inverter to look out for CAN messages with COB-ID 0x201, and, when one is received,

copy the contents of the message into the Object Dictionary where they can be accessed by the local application.

Limitations regarding the number of RPDOs that can be configured and the maximum number of items that can be

mapped into an RPDO are identical to TPDO. There are a maximum of 9 RPDOs available, each RPDO can have a

maximum of 8 objects mapped into it.

8.1. Defining the Contents of an RPDO
The mapping parameters for RPDOs are identical to those for TPDOs, except they are located in the Object Dictionary at

index 0x1600 – 0x1608. The format is the same as for a TPDO, where the 32 bit number has the index, sub-index and

length encoded into it, but dummy maps are also available.

In the above example where we are ignoring the first two bytes, we would have to insert a dummy mapping to fill the gap.

Dummy maps are special cases that map to Object Dictionary indices 0x0001 to 0x0004. The following mappings can be

used depending on how much padding space you want to insert:

Data Type Value to use in mapping parameter

IXXAT stack (e.g.

espAC, GpAC)

Sevcon stack (e.g.

Nano, Gen4, EVo5)

Boolean, 1 bit 0x00010001 0x00010001

Byte, 8 bits 0x00020008 0x00050008

Integer, 16 bits 0x00030010 0x00060010

Integer, 32 bits 0x00040020 0x00070020

So, to handle the above RPDO mapping, including the 16 bit padding at the start of the message, our mapping parameters

would be as follows:

Index Sub Index Value

0x1600 0 0x03

1 0x00030010

2 0x20200420

3 0x20200210

0x2020, 2 = 0x0027

Statusword

0x2020, 4 = 0x00000231

Left motor velocity

Object Dictionary

0x201 0x04 0x01 0x31 0x02 0x00 0x00 0x27 0x00

Resulting CAN message

It should be noted however that these dummy mappings are only valid for RPDOs. They cannot be used on TPDOs as the

TPDO must have some data to send.

8.2. RPDO Reception Parameters
The reception parameters of an RPDO are very easy to specify. The only information that is required is the COB-ID of the

message that will be used by the RPDO. Each time a message is received with the specified RPDO, the data is

automatically copied into the object dictionary and acted upon.

The reception parameters are specified in objects 0x1400-0x1408. The format is similar to the transmission parameters of

TPDOs. Sub index 1 of these objects specifies the COB-ID, which is expressed as a 32 bit number. Setting this to

0x80000000 disables the RPDO. Sub-index 2 is not used by RPDOs, but on the inverter is usually left set to 255.

In our example, we are expecting the RPDO to arrive with COB-ID 0x201. Therefore, we would have the following setup:

Index Sub Index Value

0x1400 0 0x02

1 0x00000201

2 0xFF

9. Precharge

Gen 4 controllers size 2, 4 & 6 have inbuilt precharge capability. If the application needs the Gen4’s to precharge their caps

the following procedure must be done.

Master node has to write an sdo to 0x5180 on each controller.

1. Write the value 1 to 0x5180 to each controller

2. Monitor Capacitor Voltage and see that it gets to the desired percentage of battery voltage (e.g. 90%).

3. Close the line contactor

4. Proceed with remainder of control/word statusword to enable drive.

5180h

Capacitor

Precharge

activate

Write a non-zero value to this object to start the capacitor

precharge cycle.

NOTE: Activate precharge only once per key cycle for each controller. (ie – only precharge once – do not precharge again

until power is shut down). Multiple precharges while the controller is on may damage the drive.

NOTE: Gen 4 size 8 & 10 do not have precharge functionality and as such precharge must be carried out by external

means.

10. Cob ID Configuration

This is a guideline for configuring COB ids on a canopen bus. It is not required – but may help in setting up a system to

easily understand which messages are which.

Each controller has five channels of communication.

X in the 2nd column should be the node id of the controller (allowing up to 16 nodes). The fifth channel is kept close to the

forth channel due to limited standard COB IDs.

NOTE: Cob Ids that are lower have priority on the can bus – torque control messages should have lower cob-ids than

status or debug messages.

PDO COB ID

TPDO1 18Xh

RPDO1 20Xh

TPDO2 28Xh

RPDO2 30Xh

TPDO3 38Xh

RPDO3 40Xh

TPDO4 48Xh

RPDO4 50Xh

TPDO5 49Xh

RPDO5 51Xh

11. PDO Contents Example in DVT

Figure 3 The controller gets the controlword, speed limit, and target torque from the VCU

Figure 4 Here the drive transmits basic information on drive status, torque produced, and actual velocity.

12. Summary of Torque Control Objects in OBD

Index Name
Sub-
Index

Scaling Units Data Type
Low
Limit

High
Limit

Description Unit

6040h controlword 0 N/A N/A Unsigned16 0 FFFFh
Controls the drive state
and operational mode.

Receives

6041h statusword 0 N/A N/A Unsigned16 0 FFFFh
Indicates the current

state of the drive.
Transmits

606Ch Velocity 0 1 RPM Integer32 -20000 20000 Actual velocity in RPM. Transmits

6071h
Target
torque

0 0.1
% of
peak

Integer16 -1000 1000

Target Torque in
1/1000th's of Motor

Rated Torque (6076h).
Calculated by the

Application Master.

Receives

6077h Torque 0 0.1
% of
peak

Integer16 -1000 1000
Actual Motor Torque in

1/1000th's of Motor
Rated Torque (6076h).

Transmits

6080h
Maximum

motor
speed

0 1 RPM Unsigned32 0 20000

Maximum motor speed
(ωnom) in RPM. It is

unsigned and applies in
both directions.

Receives

13. Statusword
The status word is provided by DSP402 and provides useful information about the state of the drive. It can be read from

object dictionary index 0x6041 sub index 0.

Drive State:

Bits 0-3, 5 and 6 represent the drive state:

Bits Function State

0x0000 Not ready to switch on Off

0x0040 Switch on disabled Self test

0x0021 Ready to switch on Waiting for params

0x0023 Switched on Power off

0x0027 Operation enabled Under control

0x0007 Quick stop active Reset

0x000F Fault reaction active Fault

0x0008 Fault Flash programming

Other status bits:

The purpose of the other status bits is largely application specific. Not all of these are assigned a function by the DSP402
standard. However, they have the following function on our controllers:

Bits Function

0x0010 High voltage on power frame

0x0200 Remote active (only set when in "not ready to switch on")

0x0100 Motor is generating

0x0400 Target is reached

0x0800 Internal limit active

0x4000 State change is delayed (e.g. waiting for start up checks to complete)

Note: On size 8 & 10 controllers “High Voltage On” bit will be set permanently as these controllers have no battery voltage

measurement circuits and hence cannot know when to set the bit.

14. Control Word and Status Word on Power Up
A sample start up procedure with regard to controlword and statusword values would be as follows:

1. At power up, the controlword and statusword are both zero.

2. Motor slave will perform power up tests automatically and, if successful, will proceed to the "switch on disabled"

state, reporting statusword of 0x0040.

3. Master sends control word of 0x0006 to request shutdown.

4. Slave responds with statusword of 0x0021, ready to switch on.

5. Master sends control word of 0x0007 to request switch on.

6. Slave responds with statusword of 0x0023, switched on. The bridge will now also be enabled.

7. Master sends control word of 0x000f to request enable operation.

8. Slave responds with statusword of 0x0027, operation enabled. Slave will now respond to demands for speed or

torque.

'''Notes:'''

Controlword and statusword may have other bits set when running in a live system. This is normal as extra manufacturer

specific bits will be in use. However, these can normally be ignored for experimental purposes.

It is possible to omit steps 5 and 6 of the above steps, and proceed directly from the shutdown to operation enabled state.

15. Emergency Message

EMCY is short for Emergency Telegram. This is a CANopen message which nodes use to indicate a fault has been set or

cleared. It has 8-bytes of data which are used as follows:

Byte 0 1 2 3 4 5 6 7

Assignment CANopen bytes Manufacturer specific bytes

Function Error code Error reg Fault ID Data bytes

where:

 Bytes 0-1 are the CANopen Error Code. These are defined in the [DS301], [DS401] and [DSP402] specifications.

This is different to the 16-bit fault ID which is specific to SEVCON. If the Error Code is set to 0x0000, this indicates

that ''%3cfault ID>'' has been cleared.

 Byte 2 is the CANopen Error Register. This is a bit array, each of which indicates the presence of one or more type

of fault. There are bits for Generic Errors (0), Current (1), Voltage (2), Temperature (3), Communication Error (4),

Device Profile Specific (5), Manufacturer Specific (7). Bit 6 is reserved.

 Bytes 3-4 are the fault ID. These are SEVCON specific and are defined further in Host Software Fault Messages.

 Bytes 5-7 are the 3 fault data bytes that are logged when the fault is set. Note, these will be 0 if the EMCY message

is being retransmitted at power up. If the fault is being cleared (i.e. error code = 0x0000) then bytes 5 and 6 contain

the ID of the next most severe fault on that node.

http://intranet/Functions/engineering/Engineering%20Wiki/CANopen.aspx
http://intranet/Functions/engineering/Engineering%20Wiki/CANopen.aspx
http://intranet/Functions/engineering/Engineering%20Wiki/Host%20Software%20Fault%20Messages.aspx
http://intranet/Functions/engineering/Engineering%20Wiki/Fault%20Data%20Bytes.aspx

16. ControlWord & StatusWord

