Altman Model Verification Using a Multi-Criteria Approach for Slovakian Agricultural Enterprises

DSpace Repository

Show simple item record Vavrek, Roman Gundová, Petra Kravčáková Vozárová, Ivana Kotulič, Rastislav
dc.contributor.other Ekonomická fakulta cs 2021-03-16T10:51:27Z 2021-03-16T10:51:27Z
dc.identifier.issn 1212-3609
dc.description.abstract The Altman model is still one of the most widely used predictive models in the 21st century, and it aims to highlight the differences between bankrupt and healthy enterprises. This model has been modified several times; its most well-known forms are from 1968, 1983 and 1995. However, the use of the Altman Z-score for Slovak enterprises is more than questionable. The unsuitability of the model for the conditions of Slovak companies has been confirmed by several empirical surveys. The objective of this study was to verify the validation of these three variants of the Altman model, depending on how an unprosperous company is identified, using a sample of 996 agricultural enterprises operating in the Slovak Republic. Four indicators were selected for the identification of an unprosperous enterprise – economic results, total liquidity, equity, and economic value added – and they were monitored over the last year or, as the case may be, over the last three years from 2014 to 2016. Using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Coefficient of variation (CV) methods as an objective method for weight determination, a combination of the Altman model from 1968 and the negative total liquidity in the last reference year was determined to be the best. One of our main findings is that the way in which an unprosperous enterprise is identified is a significant factor affecting the overall reliability of the Altman model. The Altman model from 1968 and 1983 confirmed the differences resulting from the natural conditions in which the enterprises operate. The economic results and economic value added (EVA) proved to be inappropriate as indicators for defining an unprosperous enterprise in the conditions of the Slovak Republic. en
dc.format text
dc.language.iso en
dc.publisher Technická Univerzita v Liberci cs
dc.publisher Technical university of Liberec, Czech Republic en
dc.relation.ispartof Ekonomie a Management cs
dc.relation.ispartof Economics and Management en
dc.relation.isbasedon Alaka, H. A., Oyedele, L. M., Owolabi, H. A., Kumar, V., Ajayi, S. O., Akinade, O. O., & Bilal, M. (2018). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Application, 94, 164–184.
dc.relation.isbasedon Almamy, J., Aston, J., & Ngwa, L. N. (2016). An evaluation of Altman’s Z-score using cash flow ratio to predict corporate failure amid the recent financial crisis: Evidence from the UK. Journal of Corporate Finance, 36, 278–285.
dc.relation.isbasedon Altman, E. I. (2002). Bankruptcy, credit risk, and high yield junk bonds. Malden: Blackwell.
dc.relation.isbasedon Altman, E. I., & Hotchkiss, E. (2006). Corporate Financial Distress and Bankruptcy: Predict and Avoid Bankruptcy, Analyze and Invest in Distressed Debt. New York, NY: Wiley.
dc.relation.isbasedon Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589–609.
dc.relation.isbasedon Altman, E. I., Iwanicz-Drozdowska, M., Laitinen, E. K., & Suvas, A. (2017). Financial Distress Prediction in an International Context: A Review and Empirical Analysis of Altman’s Z-score Model. Journal of International Financial Management & Accounting, 28(2), 131–171.
dc.relation.isbasedon Antunes, F., Ribeiro, B., & Pereira, F. (2017). Probabilistic modelling and visualization for bankruptcy prediction. Applied Soft Computing, 60, 831–843,
dc.relation.isbasedon Bakeš, V., & Valášková, K. (2018). Application and verification of Slovak prediction models in conditions of national economy. Podniková ekonomika a manažment. Elektronický časopis o ekonomike, manažmente, marketingu a logistike podniku, 2, 3–15.
dc.relation.isbasedon Balcaen, S., & Ooghe, H. (2006). 35 years of studies on business failure: An overview of the classic statistical methodologies and their related problems. The British Accounting Review, 38(1), 63–93.
dc.relation.isbasedon Bank, V., Tarasquina, A., & Bank, S. (2006). Financial analysis. Moscow: Prospect.
dc.relation.isbasedon Belas, J., Cipovova, E., Novak, P., & Polach, J. (2012). Impacts of the Foundation Internal Ratings Based Approach Usage on Financial Performance of Commercial Bank. E&M Economics and Management, 15(3), 142–154.
dc.relation.isbasedon Bieliková, T. (2016). Inovatívne možnosti diagnostikovania finančného zdravia výrobného podniku vo väzbe na jeho finančno-ekonomickú výkonnosť. Banská Bystrica: EF UMB.
dc.relation.isbasedon Bieliková, T., Cút, S., & Úradníček, V. (2014). The influence of the definition of risky company on financial situation diagnostic models in Slovak dynamic economic environment. In M. Čulík (Ed.), Managing and modelling of financial risks: Proceedings from 7th international scientific conference (pp. 38–45). Ostrava: VSB – Technical University of Ostrava.
dc.relation.isbasedon Bocharov, V. (2007). Financial analysis. Saint Petersburg: Peter Press.
dc.relation.isbasedon Boďa, M., & Úradníček, V. (2016). The portability of Altman’s Z-score model to predicting corporate financial distress of Slovak companies. Technological and Economic Development of Economy, 22(4), 532–553.
dc.relation.isbasedon Boďa, M., & Úradníček, V. (2019). Predicting Financial Distress of Slovak Agricultural Enterprises. Ekonomický časopis, 67(4), 426–452.
dc.relation.isbasedon Brealey, R. A., Myers, S. C., & Allen, F. (2011). Principles of Corporate Finance. New York, NY: McGraw-Hill/Irwin.
dc.relation.isbasedon Čámská, D. (2016). Accuracy of Models Predicting Corporate Bankruptcy in a Selected Industry Branch. Ekonomický časopis, 64(4), 353–366.
dc.relation.isbasedon Čámská, D., & Klecka, J. (2020). Comparison of Prediction Models Applied in Economic Recession and Expansion. Journal of Risk and Financial Management, 13(3), 1–16,
dc.relation.isbasedon Damodaran, A. (2004). Valuation the Big Picture. Retrieved October 10, 2019, from
dc.relation.isbasedon Damodaran, A. (2014). Equity Risk Premiums: Looking Backwards and Forwards. Retrieved October 15, 2019, from
dc.relation.isbasedon Delina, R., & Packová, M. (2013). Prediction bankruptcy models validation in Slovak business environment. E&M Economics and Management, 16(3), 101–110.
dc.relation.isbasedon Ďurica, M. (2018). Decision Tree Financial Distress Prediction Model for Slovak Companies. Podniková ekonomika a manažment, 2, 16–26.
dc.relation.isbasedon Gavúrová, B., Packová, M., Mišanková, M., & Smrčka, Ľ. (2017). Predictive potential and risks of selected bankruptcy prediction models in the Slovak business environment. Journal of Business Economics and Management, 18(6), 1156–1173.
dc.relation.isbasedon Hosaka, T. (2019). Bankruptcy prediction using imaged financial ratios and convolutional neural networks. Expert Systems with Application, 117, 287–299.
dc.relation.isbasedon Hwang, C.-L., & Yoon, K. (1981). Multiple Attribute Decision Making Methods and Applications: A State-of-the-Art Survey. Berlin, Heidelberg: Springer-Verlag.
dc.relation.isbasedon Kabát, L. (2011a). Ako ďalej v aplikácii Altmanovho modelu? Finančný manažér, 11(1), 7–9.
dc.relation.isbasedon Kabát, L. (2011b). Problémy aplikácie bonitných a predikčných modelov v podnikateľskom prostredí SR. Finančný manažér, 11(3), 89–90.
dc.relation.isbasedon Karas, M., & Řežnáková, M. (2012). Financial Ratios as Bankruptcy Predictors: The Czech Republic Case. In D. Pavelková, J. Strouhal, & M. Pasekova (Eds.), Proceeding of the 1st WSEAS International Conference on Finance, Accounting and Auditing (pp. 56–67). Athen: WSEAS.
dc.relation.isbasedon Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 1611–1699.
dc.relation.isbasedon Klepáč, V., & Hampel, D. (2017). Predicting financial distress of agriculture companies in EU. Agricultural Economics, 63(8), 347–355.
dc.relation.isbasedon Klieštik, T., Kočišová, K., & Mišanková, M. (2015). Logit and Probit Model used for Prediction of Financial Health of Company. Procedia Economics and Finance, 23, 850–855.
dc.relation.isbasedon Klieštik, T., Mišanková, M., Valašková, K., & Svabová, L. (2018). Bankruptcy Prevention: New Effort to Reflect on Legal and Social Changes. Science and Engineering Ethics, 24(2), 791–803.
dc.relation.isbasedon Kliestik, T., Valaskova, K., Lazaroiu, G., Kovacova, M., & Vrbka, J. (2020). Remaining Financially Healthy and Competitive: The Role of Financial Predictor. Journal of Competitiveness, 12(1), 74–92,
dc.relation.isbasedon Ko, Y. C., Fujita, H., & Li, T. (2017). An evidential analysis of Altman Z-score for financial predictions: case study on solar energy companies. Applied Soft Computing, 52, 748–759.
dc.relation.isbasedon Kočišová, K., & Mišanková, M. (2014). Discriminant Analysis as a Tool for Forecasting Company’s Financial Health. Procesia – Social and Behavioral Sciences, 110, 1148–1157.
dc.relation.isbasedon Kotulič, R., Adamišin, P., Kravčáková Vozárová, I., & Vavrek, R. (2017). The impact of management skills of agricultural entities in relation to economic efficiency and Natural-Climatic conditions in Slovakia. Journal of Environmental Management and Tourism, 8(1), 92–99.
dc.relation.isbasedon Kotulič, R., Király, P., & Rajčániová, M. (2018). Finančná analýza podniku. Bratislava: Wolters Kluwer SR.
dc.relation.isbasedon Kováčová, M., & Kubala, P. (2018). Verification of Prediction Models Based on Discriminant Analysis in Conditions of Slovak Republic. Podniková ekonomika a manažment, 2, 52–64.
dc.relation.isbasedon Kráľ, P., Fleischer, M., Stachová, M., & Nedelová, G. (2016). Corporate financial distress prediction of Slovak companies: Z-score models vs. alternatives. In M. Boďa, V. Mendelová (Eds.), AMSE 2016 – 19th Applications of Mathematics and Statistics in Economics Conference Proceedings (pp. 224–231). Banská Štiavnica: UMB.
dc.relation.isbasedon Le, T., Lee, M. Y., Park, J. R., & Baik, S. W. (2018). Oversampling techniques for bankruptcy prediction: Novel features from a transaction dataset. Symmetry-Basel, 10(4), 1–13.
dc.relation.isbasedon Lesáková, Ľ., Elexa, Ľ., & Gundová, P. (2015). Finančno-ekonomická analýza podniku 2. Banská Bystrica: UMB.
dc.relation.isbasedon Li, L., & Faff, R. (2019). Predicting corporate bankruptcy: What matters? International Review of Economics and Finance, 62, 1–19.
dc.relation.isbasedon Lifschutz, S., & Jacobi, A. (2010). Predicting bankruptcy: evidence from Israel. International Journal of Business and Management, 5(4), 133–141.
dc.relation.isbasedon Maňasová, Z. (2008). Úpadky podniků v České republice a možnosti jejich včasné predikce. Prague: Prague University of Economics and Business.
dc.relation.isbasedon Mardani, A., Zavadskas, E. K., Govindan, K., Senin, A. A., & Jusoh, A. (2016). VIKOR Technique: A Systematic Review of the State of the Art Literature on Methodologies and Applications. Sustainability, 8(1), 1–38.
dc.relation.isbasedon Mařík, M., Čada, K., Dušek, D., Maříková, P., Rýdlová, B., & Rajdl, J. (2011). Metody oceňování podniku: proces ocenění – základní metody a postupy. Prague: Ekopress.
dc.relation.isbasedon Megginson, W. L., Meles, A., Sampagnaro, G., & Verdoliva, V. (2019). Financial Distress Risk in Initial Public Offerings: How Much Do Venture Capitalists Matter? Journal of Corporate Finance, 59, 10–30.
dc.relation.isbasedon Mendelová, V., & Bieliková, T. (2017). Diagnostikovanie finančného zdravia podnikov pomocou metódy DEA: Aplikácia na podniky v Slovenskej Republike. Politická ekonomie, 65(1), 26–44.
dc.relation.isbasedon Mihalovič, M. (2018). Využitie skóringových modelov při predikcii úpadku ekonomických subjektov v Slovenskej republike. Politická ekonomie, 66(6), 689–708.
dc.relation.isbasedon Mrkvička, J., & Kolář, P. (2006). Financial analysis. Prague: ASPI.
dc.relation.isbasedon Neumaierová, I., & Neumaier, I. (2013). Vypovídací schopnost Indexu IN05. In Ekonomika v pohybu: Sborník příspěvků z mezinárodní konference pořádané u příležitosti šedesátého výročí VŠE a fakulty [Economy in motion: Proceedings from the international conference organized on the occasion of the 60th anniversary of University of Economics and the faculty] (pp. 169–176). Prague: Prague University of Economics and Business.
dc.relation.isbasedon Neumaierová, I., & Neumaier, I. (2016). The Performance Ranking of Chosen Manufacturing Division. In J. Krajíček, J. Nešleha, & K. Urbanovský (Eds.), 13th International Scientific Conference of the European Financial Systems (pp. 502–507). Brno: Masaryk University.
dc.relation.isbasedon Pereira, J., Basto, M., & da Silva, A. (2016). The Logistic Lasso and Ridge Regression in Predicting Corporate Failure. Procedia Economics and Finance, 39, 634–641.
dc.relation.isbasedon Pitrová, K. (2011). Possibilities of the Altman Zeta Model Application to Czech Firms. E&M Economics and Management, 14(3), 66–76.
dc.relation.isbasedon Rahman, A., Belas, J., Kliestik, T., & Tyll, L. (2017). Collateral requirements for SME loans: empirical evidence from the Visegrad countries. Journal of Business Economics and Management, 18(4), 650–675.
dc.relation.isbasedon Režnáková, M., & Karas, M. (2015). The prediction capabilities of bankruptcy models in a different environmnet: an example of the Altman Model under the conditions in the Visegrad group countries. Ekonomický časopis, 63(6), 617–633.
dc.relation.isbasedon Schönfeld, J., Kuděj, M., & Smrčka, L. (2018). Financial health of enterprises introducing safeguard procedure based on bankruptcy models. Journal of Business Economics and Management, 19(5), 692–705.
dc.relation.isbasedon Singla, A., Sing Ahuja, I., & Sing Sethi, A. (2017). Comparative Analysis of Technology Push Strategies Influencing Sustainable Development in Manufacturing Industries Using Topsis and Vikor Technique. International Journal for Quality Research, 12(1), 129–146.
dc.relation.isbasedon Šofránková, B., Kiseľáková, D., & Horváthová, J. (2017). Actual questions of risk management in models affecting enterprise performance. Ekonomický časopis, 65(7), 644–667.
dc.relation.isbasedon Streimikiene, D., Balezentis, T., Krisciukaitiene I., & Balezentis, A. (2012). Prioritizing sustainable electricity production technologies: MCDM approach. Renewable & Sustainable Energy Reviews, 16(5), 3302–3311.
dc.relation.isbasedon Suder, A., & Kahraman, C. (2018). Multiattribute evaluation of organic and inorganic agricultural food investments using fuzzy TOPSIS. Technological and Economic Development of Economy, 24(3), 844–858.
dc.relation.isbasedon Sulub, S. A. (2014). Testing the predictive power of Altman’s revised Z-model: The case of 10 multinational companies. Research Journal of Finance and Accounting, 5(21), 174–184.
dc.relation.isbasedon Sun, J., Li, H., Huang, Q. H., & He, K. Y. (2014). Predicting financial distress and corporate failure: a review from the state-of-the-art definitions, modeling, sampling, and featuring approaches. Knowledge-Based Systems, 57, 41–56.
dc.relation.isbasedon Sušický, J. (2011). Využitelnost bankrotních modelů a jejich aplikace v podmínkách České Republiky. Prague: Czech University of Life Sciences Prague.
dc.relation.isbasedon Sůvová, H., & Knaifl, O. (2008). Finanční analýza I. Prague: Ambis College.
dc.relation.isbasedon Valášková, K., Klieštik, T., & Kováčová, M. (2018). Management of financial risks in Slovak enterprises using regression analysis. Oeconomia Copernicana, 9(1), 105–121.
dc.relation.isbasedon Valáškova, K., Klieštik, T., Švabová, L., & Adamko, P. (2018). Financial Risk Measurement and Prediction Modelling for Sustainable Development of Business Entities Using Regression Analysis. Sustainability, 10(7), 1–15.
dc.relation.isbasedon Vavrek, R. (2019). Evaluation of the Impact of Selected Weighting Methods on the Results of the TOPSIS Technique. International Journal of Information Technology & Decision Making, 18(6), 1821–1843.
dc.relation.isbasedon Vavrek, R., & Chovancová, J. (2019). Assessment of economic and environmental energy performance of EU countries using CV-TOPSIS technique. Ecological Indicators, 106, 105519.
dc.relation.isbasedon Vavrek, R., & Bečica, J. (2017). Capital City as a Factor of Multi-Criteria Decision Analysis – Application on Transport Companies in the Czech Republic. Mathematics, 8(10), 1765.
dc.relation.isbasedon Yalcin, N., & Ünlü, U. (2018). A Multi-Criteria Performance Analysis of Initial Public Offering (IPO) Firms Using Critic and Vikor Methods. Technological and Economic Development of Economy, 24(2), 534–560.
dc.relation.isbasedon Yi, W. (2012). Z-score Model on Financial Crisis Early Warning of Listed Real Estate Companies in China: A Financial Engineering Perspective. Systems Engineering Procedia, 3, 153–157.
dc.relation.isbasedon Yoon, K. (1980). Systems selection by multiple attribute decision making. Manhattan, KS: Kansas State University.
dc.relation.isbasedon Zalai, K. et al. (2013). Finančno-ekonomická analýza podniku. Bratislava: Sprint 2.
dc.relation.isbasedon Zavadskas, E. K., Mardani, A., Turskis, Z., Jusoh A., & Nor, K. (2016). Development of TOPSIS Method to Solve Complicated Decision-Making Problems: An Overview on Developments. From 2000 to 2015. International Journal of Information Technology & Decision Making, 15(03), 1–38.
dc.relation.isbasedon Zavadskas, E. K., Turskis, Z., & Kildienė, S. (2014). State of art surveys of overviews on MCDM/MADM methods. Technological and Economic Development of Economy, 20(1), 165–179.
dc.relation.isbasedon Zelenkov, Y., Fedorova, E., & Chekrizov, D. (2017). Two-step classification method based on genetic algorithm for bankruptcy forecasting. Expert Systems with Applications, 88, 393–401.
dc.relation.isbasedon Zwingli, J., & White, T. (2010). Can you trust your credit model? Credit and Financial Management Review, 16(2), 33–42.
dc.rights CC BY-NC
dc.subject unprosperous enterprise en
dc.subject Altman model en
dc.subject TOPSIS technique en
dc.subject coefficient of variation method en
dc.subject.classification B23
dc.subject.classification Q14
dc.title Altman Model Verification Using a Multi-Criteria Approach for Slovakian Agricultural Enterprises en
dc.type Article en
dc.publisher.abbreviation TUL
dc.relation.isrefereed true
dc.identifier.doi 10.15240/tul/001/2021-1-010
dc.identifier.eissn 2336-5604
local.relation.volume 24
local.relation.issue 1
local.relation.abbreviation E+M cs
local.relation.abbreviation E&M en
local.faculty Faculty of Economics
local.citation.spage 146
local.citation.epage 164
local.access open
local.fulltext yes
local.filename EM_1_2021_10

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search


My Account