Comparative statistical analysis of selected control charts for highly capable processes

DSpace Repository

Show simple item record

dc.contributor.author Jarošová, Eva
dc.contributor.author Noskievičová, Darja
dc.contributor.other Ekonomická fakulta cs
dc.date.accessioned 2019-06-15T15:50:59Z
dc.date.available 2019-06-15T15:50:59Z
dc.identifier.issn 1212-3609
dc.identifier.uri https://dspace.tul.cz/handle/15240/152596
dc.description.abstract When a high-quality process is to be controlled by 100% inspection and yes-no decision is employed, several types of charts come into account, e.g. CCC, CCC-r or geometric CUSUM (CCC-CUSUM). The aim of the paper is to examine performance of these charts so that a suitable one can be chosen for a given process. The charts are compared according to the quickness with which the upward shift in the fraction of nonconforming items is detected. The average number of observations to signal (ANOS) instead of the usual average run length (ARL) is determined. While ANOS for CCC or CCC-r charts can be easily calculated based on a geometric or a negative binomial distribution, its computation is quite difficult in the case of CCC-CUSUM chart. The corrected diffusion (CD) approximation was used to determine ANOS and the results were verified by Monte Carlo simulation. Zero-state and steady-state (both fixed-shift and random-shift model) analyses were performed to take different scenarios of the process shift occurrence into account. CCC-3 or CCC-2 and CCC-CUSUM charts were compared. The order r for CCC-r chart was chosen as an optimal value for the given process based on the semi-economic model suggested in Brodecká (2013). Our study revealed that for in-control p0 equal to 0.0002 the CCC-CUSUM chart performs best especially for shifts around the pre-specified out-of-control fraction nonconforming. The CCC-r chart may be comparable or even better in detecting larger shifts. The results of the comparative study were utilized for the choice of the most suitable and best performing control chart to control the high-yield process producing ERG (Exhaust Gas Recirculation) sensors. Comparisons of CCC-r and CCC-CUSUM charts can be found elsewhere in literature, but conclusions seem to be rather inconsistent. To our best knowledge no study dealing with such small in-control fraction nonconforming together with the low risk of false alarm has been published yet. The choice of CUSUM's parameters and consequent values of ANOS can help practitioners who need to control high-quality processes. en
dc.format text
dc.language.iso en
dc.publisher Technická Univerzita v Liberci cs
dc.publisher Technical university of Liberec, Czech Republic en
dc.relation.ispartof Ekonomie a Management cs
dc.relation.ispartof Economics and Management en
dc.relation.isbasedon Bourke, P. D. (1991). Detecting a Shift in Fraction Nonconforming using Run-Length Control Charts with 100% Inspection. Journal of Quality Technology, 23(13), 225-238. https://doi.org/10.1080/00224065.1991.11979328.
dc.relation.isbasedon Bourke, P. D. (2001). The Geometric CUSUM chart with Sampling Inspection for Monitoring Fraction Defective. Journal of Applied Statistics, 28(8), 951-972. https://doi.org/10.1080/02664760120076643.
dc.relation.isbasedon Bourke, P. D. (2006). The RL2 Chart versus the np Chart for Detecting Upward Shifts in Fraction Defective. Journal of Applied Statistics, 33(1), 1-15. https://doi.org/10.1080/02664760500389400.
dc.relation.isbasedon Bourke, P. D. (2008). Performance Comparisons for the Synthetic Control Chart for Detecting Increases in Fraction Nonconforming. Journal of Quality Technology, 40(4), 461-475. https://doi.org/10.1080/00224065.2008.11917749.
dc.relation.isbasedon Brodecká, K. (2013). Application of Selected Statistical Methods at Conditions of High Yield Processes (in Czech). Doctoral Thesis, VŠB-TU Ostrava, Ostrava.
dc.relation.isbasedon Brook, D., & Evans, D. A. (1972). An Approach to the Probability Distribution of Cusum Run Length. Biometrika, 59(3), 539-549. https://doi.org/10.1093/biomet/59.3.539.
dc.relation.isbasedon Calvin, T. (1983). Quality Control Techniques for Zero Defects. IEEE Transactions on Components Hybrids and Manufacturing Technology, 6(3), 323-328. https://doi.org/10.1109/TCHMT.1983.1136174.
dc.relation.isbasedon Chan, L. Y., Xie, M., & Goh, T. N. (2000). Cumulative Quantity Control Charts for Monitoring Production Processes. International Journal of Production Research, 38(2), 399-408. https://doi.org/10.1080/002075400189482.
dc.relation.isbasedon Chang, T. C., & Gan, F. F. (2001). Cumulative Sum Charts for High Yield Processes. Statistica Sinica, 11(3), 791-805.
dc.relation.isbasedon Chang, T. C., & Gan, F. F. (2007). Modified Shewhart Charts for High Yield Processes. Journal of Applied Statistics, 34(7), 857-877. https://doi.org/10.1080/02664760701546279.
dc.relation.isbasedon Chen, P. W., & Cheng, C. S. (2010). An ARL-Unbiased Approach to Setting Control Limits of CCC-r Chart for High Yield Processes. Journal of Quality, 17(6), 435-451. https://doi.org/10.6220/joq.
dc.relation.isbasedon Di Bucchianico, A., Mooiweer, G. D., & Moonen, E. J. G. (2005). Monitoring Infrequent Failures of High-volume Production Processes. Quality and Reliability Engineering International, 21(5), 521-528. https://doi.org/10.1002/qre.738.
dc.relation.isbasedon Goh, T. N. (1987). A Control Chart for Very High Yield Processes. Quality Assurance, 13(1), 18-22.
dc.relation.isbasedon Hawkins, D. M., & Olwell, D. H. (1998). Cumulative Sum Charts and Charting for Quality Improvement. New York: Springer.
dc.relation.isbasedon Kaminsky, F. C., Benneyan, J. C., Davis, R. D., & Burke, R. J. (1992). Statistical Control Charts Based on a Geometric Distribution. Journal of Quality Technology, 24(2), 63-69. https://doi.org/10.1080/00224065.1992.12015229.
dc.relation.isbasedon Montgomery, D. C. (2009). Statistical Quality Control: A Modern Introduction. Hoboken: J. Wiley  Sons.
dc.relation.isbasedon Ohta, H., Kusukawa, E., & Rahim, A. (2001). A CCC-r Chart for High-Yield Processes. Quality and Reliability Engineering International, 17(6), 439-446. https://doi.org/10.1002/qre.428.
dc.relation.isbasedon Page, E. S. (1954). Continuous Inspection Schemes. Biometrika, 41(1), 100-114. https://doi.org/10.1093/biomet/41.1-2.100.
dc.relation.isbasedon Reynolds, M. R., & Stoumbos, Z. G. (1999). A CUSUM Chart for Monitoring a Proportion When Inspecting Continuously. Journal of Quality Technology, 31(1), 87-108. https://doi.org/10.1080/00224065.1999.11979900.
dc.relation.isbasedon Schwertman, N. C. (2005). Designing Accurate Control Charts Based on the Geometric and Negative Binomial Distribution. Quality and Reliability Engineering International, 21(8), 743-756. https://doi.org/10.1002/qre.683.
dc.relation.isbasedon Szarka, J. L. III, & Woodall, W. H. (2011). A Review and Perspective on Surveillance of Bernoulli Processes. Quality and Reliability Engineering International, 27(6), 735-752. https://doi.org/10.1002/qre.1256.
dc.relation.isbasedon Szarka, J. L. III, & Woodall, W. H. (2012). On the Equivalence of the Bernoulli and Geometric CUSUM Charts. Journal of Quality Technology, 44(1), 54-62. https://doi.org/10.1080/00224065.2012.11917881.
dc.relation.isbasedon Wu, Z., & Spedding, T. A. (1999). Evaluation of ATS for CRL Control Chart. Process Control and Quality, 11(3), 183-191. https://doi.org/10.1163/156856699750248540.
dc.relation.isbasedon Wu, Z., Yeo, S. H., & Fan, H. (2000). A Comparative Study of the CRL–Type Control Charts. Quality and Reliability Engineering International, 16(4), 269-279. https://doi.org/10.1002/1099-1638(200007/08)16:4<269
dc.relation.isbasedon Wu, Z., Zhang, X., & Yeo, S. H. (2001). Design of the Sum–of–Conforming–Run–Length Control Charts. European Journal of Operational Research, 132(1), 187-196. https://doi.org/10.1016/S0377-2217(00)00131-4.
dc.relation.isbasedon Wu, Z., Luo, H., & Zhang, X. L. (2006). Optimal np Control Chart with Curtailment. European Journal of Operational Research, 174(3), 1723-1741. https://doi.org/10.1016/j.ejor.2005.03.038.
dc.relation.isbasedon Xie, W., Xie, M., & Goh, T. N. (1995). A Shewhart-like Charting Technique for High Yield Processes. Quality and Reliability Engineering International, 11(3), 189-196. https://doi.org/10.1002/qre.4680110309.
dc.relation.isbasedon Xie, M., & Goh, T. N. (1997). The Use of Probability Limits for Process Control Based on Geometric Distribution. International Journal of Quality and Reliability Management, 14(1), 64-73. https://doi.org/10.1108/02656719710156789.
dc.relation.isbasedon Xie, M., Lu, X. S., Goh, T. N., & Chan, L. Y. (1999). A Quality Monitoring and Decision-making Scheme for Automated Production Processes. International Journal of Quality and Reliability Management, 16(2), 148-157. https://doi.org/10.1108/02656719910218238.
dc.relation.isbasedon Xie, M., Goh, T. N., & Kuralmani, C. (2002). Statistical Models and Control Charts for High Quality Processes. Norwel, Massachusetts: Kluwer Academic Publishers.
dc.relation.isbasedon Yeh, A. B., McGrath, R. N., Sembower, M. A., & Shen, Q. (2008). EWMA Control Charts for Monitoring High-yield Processes Based on Non-transformed Observations. International Journal of Production Research, 46(20), 5679-5699. https://doi.org/10.1080/00207540601182252.
dc.relation.isbasedon Zhang, L., Govindaraju, K., Bebbington, M., & Lai, C. D. (2004). On the Statistical Design of Geometric Control Charts. Quality Technology and Quantitative Management, 1(2), 233-243. https://doi.org/10.1080/16843703.2004.11673075
dc.rights CC BY-NC
dc.subject CCC chart en
dc.subject CCC-r chart en
dc.subject CCC-CUSUM chart en
dc.subject ANOS en
dc.subject zero-state scenario en
dc.subject fixed shift steady-state scenario en
dc.subject random shift steady-state scenario en
dc.subject simulation en
dc.subject.classification C46
dc.subject.classification L62
dc.title Comparative statistical analysis of selected control charts for highly capable processes en
dc.type Article en
dc.publisher.abbreviation TUL
dc.relation.isrefereed true
dc.identifier.doi 10.15240/tul/001/2019-2-005
dc.identifier.eissn 2336-5604
local.relation.volume 22
local.relation.issue 2
local.relation.abbreviation E+M cs
local.relation.abbreviation E&M en
local.faculty Faculty of Economics
local.citation.spage 68
local.citation.epage 82
local.access open
local.fulltext yes
local.filename EM_2_2019_05


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

My Account