Decision tree modelling of e-consumers’ preferences for internet marketing communication tools during browsing

DSpace Repository

Show simple item record Sabaitytė, Jolanta Davidavičienė, Vida Straková, Jarmila Raudeliūnienė, Jurgita
dc.contributor.other Ekonomická fakulta cs 2019-03-15 2019-03-15 2019-03-15
dc.identifier.issn 1212-3609
dc.description.abstract The successful development of internet marketing is based on scientifically proven decisions designed for the comprehensive analysis and evaluation of internet marketing communication tool selection. Different layers of internet marketing phenomena, such as communication tool profiles and characteristics of customers and strategies for different stages of purchase models, are widely analysed. However, it has been noted that modern management theories lack scientific research on the comprehensive analysis and evaluation of internet marketing communication tools, including the relevant characteristics of electronic consumers profiles based on their generational aspects and their life cycle stages. It is therefore necessary to analyse the stages of an electronic consumer’s journey and define the most relevant communication tools and application uses during every stage by aiming to improve customer satisfaction and marketing performance. The goal of this research is to determine the most significant internet marketing communication elements in the purchase phase of the electronic consumer journey cycle using the mathematical decision tree approach for different types of customers, using the generation theory as a segmentation tool. The literature analysis on electronic consumer’s behaviour, generation theory application possibilities in marketing and internet marketing communication tools was carried out. The research methodology includes eye-tracking and descriptive and comparative statistical analysis methods (decision tree models), which create the preconditions for the evaluation of electronic consumers’ explicit and tacit reactions to the use of internet marketing communication tools during the purchase phase of an electronic consumer´s journey. It was established that comparable statistically significant different preferences for internet marketing communication tools, at the purchase phase during a browsing task, exist for baby boomers, X, Y and Z generations. en
dc.format text
dc.format.extent 16 stran cs
dc.language.iso en
dc.publisher Technická Univerzita v Liberci cs
dc.publisher Technical university of Liberec, Czech Republic en
dc.relation.ispartof Ekonomie a Management cs
dc.relation.ispartof Economics and Management en
dc.relation.isbasedon Ahmad, M. A., & Tarmudi, S. M. (2012). Generational differences in satisfaction with e-learning among higher learning institution staff. Procedia - Social Behaviour Science, 67, 304-311.
dc.relation.isbasedon Ahmed, R. R., Vveinhardt, J., & Streimikiene, D. (2017). Interactive digital media and impact of customer attitude and technology on brand awareness: evidence from the South Asian countries. Journal of Business Economics and Management, 18(6), 1115-1134.
dc.relation.isbasedon Brasel, S. A., & Gips, J. (2008). Breaking through fast-forwarding: Brand information and visual attention. Journal of Marketing, 72(6), 31-48.
dc.relation.isbasedon Brown, M., Pope, N., & Voges, K. (2003). Buying or browsing? An exploration of shopping orientations and online purchase intention. European Journal Marketing, 37, 1666-1684.
dc.relation.isbasedon Cabrera Torres, I. (2013). Online News-Seeking Behavior among Three Generational Cohorts: Baby Boomers, Generation X, and Generation Y (Thesis). Rochester Institute of Technology. Retrieved October 12, 2018, from
dc.relation.isbasedon Carmel, E., Crawford, S., & Chen, H. (1992). Browsing in hypertext: A cognitive study. IEEE Transactions on Systems, Man, and Cybernetics, 22(5), 865-884.
dc.relation.isbasedon Chandon, P., Hutchinson, J. W., Bradlow, E. T., & Young, S. H. (2009). Does in-store marketing work? Effects of the number and position of shelf facings on brand attention and evaluation at the point of purchase. Journal of Marketing, 73(6), 1-17.
dc.relation.isbasedon Chen, C.-W., & Cheng, C.-Y. (2013). How online and offline behavior processes affect each other: customer behavior in a cyber-enhanced bookstore. Quality & Quantity, 47, 2539-2555.
dc.relation.isbasedon Chi, C. G., Maier, T. A., & Gursoy, D. (2013). Employees’ perceptions of younger and older managers by generation and job category. International Journal of Hospitality Management, 34, 42-50.
dc.relation.isbasedon Choi, Y.-T., & Kwon, G.-H. (2018). New forms of citizen participation using SNS: an empirical approach. Quality & Quantity, 53(1), 1-17.
dc.relation.isbasedon Chung, C. J., & Park, H. W. (2018). Beyond data, innovation, social network, and convergence. Quality & Quantity, 52(2), 515-518.
dc.relation.isbasedon Cristobal, E., Flavián, C., & Guinalíu, M. (2007). Perceived e-service quality (PeSQ): Measurement validation and effects on consumer satisfaction and web site loyalty. Managing Service Quality, 17(3), 317-340.
dc.relation.isbasedon Dabija, D.-C., Bejan, B. M., & Tipi, N. (2018). Generation X versus millennials communication behaviour on social media when purchasing food versus tourist services. E&M Economics and Management, 21(1), 191-205.
dc.relation.isbasedon Davidavičienė, V., & Sabaitytė, J. (2014). The analysis of research on internet marketing. Business: Theory and Practice, 15(3), 220-233.
dc.relation.isbasedon Davidaviciene, V., Pabedinskaite, A., & Davidavicius, S. (2017). Social networks in B2B and B2C communication. Transformations in Business & Economics, 16(1), 69-84.
dc.relation.isbasedon Dębkowska, K. (2017). E-services in business models of enterprises in the logistics sector. Business: Theory and Practice, 18(1), 79-87.
dc.relation.isbasedon Dennis, C., Merrilees, B., Jayawardhena, C., & Wright, L. T. (2009). E-consumer behaviour. European Journal of Marketing, 43, 1121-1139.
dc.relation.isbasedon Diaz, J., Rusu, C., & Collazos, C. A. (2017). Experimental validation of a set of cultural-oriented usability heuristics: e-Commerce websites evaluation. Computer Standards & Interfaces, 50, 160-178.
dc.relation.isbasedon Dragos, C. M., & Dragos, S. L. (2017). Estimating consumers’ behaviour in motor insurance using discrete choice models. E&M Economics and Management, 20(4), 88-102.
dc.relation.isbasedon Fernández-Durán, J. J. (2015). Defining generational cohorts for marketing in Mexico. Journal of Business Research, 69(2), 435-444.
dc.relation.isbasedon Fuchs, C., Prandelli, E., & Schreier, M. (2010). The psychological effects of empowerment strategies on consumers’ product demand. Journal of Marketing, 74(1), 65-79.
dc.relation.isbasedon Furtner, K. C., Mandl, T., Womser-Hacker, C. (2015). Effects of Auto-Suggest on the Usability of Search in eCommerce. In 14th International Symposium on Information Science (ISI 2015), Zadar, Croatia, 19th--21st May 2015 (pp. 178-190).
dc.relation.isbasedon Gupta, S., Agarwal, A. K., & Chauhan, A. K. (2018). Social media and its impact on consumers buying behavior with special reference to apparel industry in Bareilly region. SMART Journal of Business Management Studies, 14(2), 17-23.
dc.relation.isbasedon Gursoy, D., Chi, C. G.-Q., & Karadag, E. (2013). Generational differences in work values and attitudes among frontline and service contact employees. International Journal of Hospitality Management, 32, 40-48.
dc.relation.isbasedon Hiram, T., & de Run, C. E. (2013). Generational cohorts and their attitudes toward advertising. Tržište/Market, 25(2), 143-160.
dc.relation.isbasedon Hong, W., Thong, J. Y. L., & Tam, K. Y. (2004). The effects of information format and shopping task on consumers’ online shopping behavior: A cognitive fit perspective. Journal of management information systems, 21(3), 149-184.
dc.relation.isbasedon Howe, N., & Strauss, W. (2007). Big Picture. The Next 20 Years. How Customer and Workforce Attitudes Will Evolve. Harward Business Review, 85(8-7), 1-14.
dc.relation.isbasedon Huang, W., Schrank, H., & Dubinsky, A. J. (2004). Effect of brand name on consumers’ risk perceptions of online shopping. Journal of Consumer Behaviour, 4(1), 40-50.
dc.relation.isbasedon Huang, Z., & Benyoucef, M. (2013). From e-commerce to social commerce: A close look at design features. Electronic Commerce Research and Applications, 12(4), 246-259.
dc.relation.isbasedon Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Applied Statistics, 29(2), 119-127.
dc.relation.isbasedon Kertzer, D. (1983). Generation as a sociological problem. Annual Reviews, 8, 125-149.
dc.relation.isbasedon Khorakian, A., & Jahangir, M. (2018). The impact of social network on the innovative behavior of it professionals: what is the role of sharing mistakes? E&M Ekonomie a Management, 21(3), 188-204.
dc.relation.isbasedon Kostelić, K., & Križman Pavlović, D. (2018). Econometric assessment of customers’ personality biases and communication preferences correlation. E&M Ekonomie a Management, 21(3), 141-154.
dc.relation.isbasedon Levickaite, R. (2010). Generations X, Y, Z: How social networks form the concept of the world without borders (the case of Lithuania). LIMES: Cultural Regionalistics, 3(2), 170-183.
dc.relation.isbasedon Li, X., Li, X. R., & Hudson, S. (2013). The application of generational theory to tourism consumer behavior: An American perspective. Tourism Management, 37, 147-164.
dc.relation.isbasedon Ming-Yen Teoh, W., Choy Chong, S., Lin, B., & Wei Chua, J. (2013). Factors affecting consumers’ perception of electronic payment: an empirical analysis. Internet Research, 23(4), 465-485.
dc.relation.isbasedon Murin, E. (2015). Skubantiems: geriausi išmanieji telefonai 2015 m. rudeniui. Retrieved August 12, 2016, from
dc.relation.isbasedon Nielsen, J., & Pernice, K. (2013). Eyetracking Web Usability. New Riders.
dc.relation.isbasedon Nobar, H., & Rostamzadeh, R. (2018). The impact of customer satisfaction, customer experience and customer loyalty on brand power: empirical evidence from hotel industry. Journal of Business Economics and Management, 19(2), 417-430.
dc.relation.isbasedon Palamidovska-Sterjadovska, N., & Ciunova-Shuleska, A. (2017). An integrated model of customer loyalty in the Macedonian mobile service market. E&M Ekonomie a Management, 20(2), 199-215.
dc.relation.isbasedon Park, Y. J., & Yang, G. S. (2017). Personal network on the Internet: How the socially marginalized stay marginalized in personal network diversity and multiplicity. Telematics and Informatics, 34(1), 1-10.
dc.relation.isbasedon Pernice, K., & Nielsen, J. (2009). How to Conduct Eyetracking Studies. Nielsen Norman Group.
dc.relation.isbasedon Plateaux, A., Lacharme, P., Jøsang, A., & Rosenberger, C. (2014). One-time biometrics for online banking and electronic payment authentication. In International Conference on Availability, Reliability, and Security (pp. 179-193).
dc.relation.isbasedon Pukėnas, K. (2009). Kokybinių duomenų analizė SPSS programa. Kaunas: Lietuvos kūno kultūros akademija.
dc.relation.isbasedon Purucker, C., Landwehr, J. R., Sprott, D. E., & Herrmann, A. (2013). Clustered insights: Improving eye tracking data analysis using scan statistics. International Journal of Market Research, 55(1), 105-130.
dc.relation.isbasedon Raudeliūnienė, J., Davidavičienė, V., Tvaronavičienė, M., & Jonuška, L. (2018). Evaluation of advertising campaigns on social media networks. Sustainability, 10(4), 1-14.
dc.relation.isbasedon Reisenwitz, T., & Iyer, R. (2007). A comparison of younger and older baby boomers: investigating the viability of cohort segmentation. Journal of Consumer Marketing, 24(4), 202-213.
dc.relation.isbasedon Roberts, J. A., & Manolis, C. (2000). Baby boomers and busters: an exploratory investigation of attitudes toward marketing, advertising and consumerism. Journal of Consumer Marketing, 17(6), 481-497.
dc.relation.isbasedon Sabaitytė, J., & Davidavičienė, V. (2018). The analysis of internet marketing research directions. Marketing and digital technologies = Маркетинг і цифрові технології, 2(1), 7-20.
dc.relation.isbasedon Sabaitytė, J., & Davidavičius, S. (2017). Challenges and solutions of adopting public electronic services for the needs of Z generation. International journal of learning and change, 9(1), 17-28.
dc.relation.isbasedon Šafránková, J. M., & Šikýř, M. (2017). Sustainable development of the professional competencies of university students: Comparison of two selected cases from the Czech Republic. Journal of Security & Sustainability Issues, 7(2), 321-333.
dc.relation.isbasedon Stepaniuk, K. (2017). BLOG content management in shaping pro recreational attitudes. Journal of Business Economics and Management, 18(1), 146-162.
dc.relation.isbasedon Strandvall, T. (2009). Guidelines for Using the Retrospective Think Aloud Protocol with Eye Tracking. Tobii Technology. Retrieved May 12, 2012, from
dc.relation.isbasedon Teo, T., & Liu, J. (2007). Consumer trust in e-commerce in the United States, Singapore and China. Omega, 35(1), 22-38.
dc.relation.isbasedon Vila, N., & Kuster, I. (2012). The role of usability on stimulating SME’s online buying intention: an experiment based on a ficticius web site design. Quality & Quantity, 46(1), 117-136.
dc.relation.isbasedon Vo, L. Van, Le, H. T., Le, D. V., Phung, M. T., Wang, Y.-H., & Yang, F.-J. (2017). Customer Satisfaction and Corporate Investment Policies. Journal of Business Economics and Management, 18(2), 202-223.
dc.relation.isbasedon Vojvodic, K. D., Sosic, M. D. M., & Zugic, J. D. (2018). Rethinking impulse buying behaviour: Evidence from generation Y consumers. Casopis za ekonomiju i trzisne komunikacije, 8(1), 55-71.
dc.relation.isbasedon Wang, W.-T., Wang, Y.-S., & Liu, E.-R. (2016). The stickiness intention of group-buying websites: The integration of the commitment-trust theory and e-commerce success model. Information & Management, 53, 625-642.
dc.relation.isbasedon Wong, W., Bartels, M., & Chrobot, N. (2014). Practical eye tracking of the ecommerce website user experience. In International Conference on Universal Access in Human-Computer Interaction (pp. 109-118).
dc.relation.isbasedon Xue, K., Yang, C., & Yu, M. (2017). Impact of new media use on user’s personality traits. Quality & Quantity, 52, 739-758.
dc.relation.isbasedon Yadav, M. S., de Valck, K., Hennig-Thurau, T., Hoffman, D. L., & Spann, M. (2013). Social commerce: a contingency framework for assessing marketing potential. Journal of Interactive Marketing, 27(4), 311-323.
dc.relation.isbasedon Yang, K., & Jolly, L. D. (2008). Age cohort analysis in adoption of mobile data services: gen Xers versus baby boomers. Journal of Consumer Marketing, 25(5), 272-280.
dc.rights CC BY-NC
dc.subject internet marketing en
dc.subject communication en
dc.subject customer behaviour en
dc.subject internet marketing communication tool en
dc.subject e-commerce en
dc.subject.classification M15
dc.subject.classification M31
dc.title Decision tree modelling of e-consumers’ preferences for internet marketing communication tools during browsing en
dc.type Article en
dc.publisher.abbreviation TUL
dc.relation.isrefereed true
dc.identifier.doi 10.15240/tul/001/2019-1-014
dc.identifier.eissn 2336-5604
local.relation.volume 22
local.relation.issue 1
local.relation.abbreviation E+M cs
local.relation.abbreviation E&M en
local.faculty Faculty of Economics
local.citation.spage 206
local.citation.epage 221
local.access open
local.fulltext yes
local.filename EM_1_2019_14
dc.identifier.orcid 0000-0003-1009-4111 Sabaitytė, Jolanta
dc.identifier.orcid 0000-0002-0931-0967 Davidavičienė, Vida
dc.identifier.orcid 0000-0002-3048-3467 Straková, Jarmila
dc.identifier.orcid 0000-0003-4003-0856 Raudeliūnienė, Jurgita

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search


My Account