An expanded conceptualization of “smart” cities: adding value with fuzzy cognitive maps

DSpace Repository

Show simple item record

dc.contributor.author Miguel, Bárbara P.
dc.contributor.author Ferreira, Fernando A. F.
dc.contributor.author Banaitis, Audrius
dc.contributor.author Banaitienė, Nerija
dc.contributor.author Meidutė-Kavaliauskienė, Ieva
dc.contributor.author Falcão, Pedro F.
dc.contributor.other Ekonomická fakulta cs
dc.date.accessioned 2019-03-15
dc.date.available 2019-03-15
dc.date.issued 2019-03-15
dc.identifier.issn 1212-3609
dc.identifier.uri https://dspace.tul.cz/handle/15240/151418
dc.description.abstract The world’s rapidly growing population is an issue to be taken seriously. Its consequences could be dramatic if the required steps are not taken. Concerns about this problem have led to the creation of “smart” cities, which promote improvements in citizens’ quality of life through a combination of new technologies and environmentally sustainable practices. For these cities to be truly “smart”, they need to be evaluated in order to understand the areas in which interventions are necessary to make these cities economically stable and environmentally sustainable. In this regard, various studies have sought to understand which indicators should be considered in assessments of smart cities and how this process should be conducted. Thus far, however, researchers have found that using “loose” indicators, which measure only some areas of these cities, is insufficient. That said, this study proposes the use of fuzzy cognitive maps to analyze the dynamics behind smart cities’ components. Grounded in intensive group meetings with a panel of experts in different dimensions of these cities, the method applied produced a well-informed, process-oriented framework that contains the characteristics and components that should be assessed in this type of city. Specifically, after a fuzzy cognitive map was constructed based on the direct involvement of the expert participants, six main clusters were extracted as key components in the development of smart cities. These clusters were: people; planning and environments; technology; infrastructure and materials; services; and transportation and mobility. The results also facilitate an improved understanding of smart cities’ cause-and-effect relationships and better strategic planning by urban planners and city administrators. The implications, advantages, and limitations of the proposed framework are also presented. en
dc.format text
dc.format.extent 18 stran cs
dc.language.iso en
dc.publisher Technická Univerzita v Liberci cs
dc.publisher Technical university of Liberec, Czech Republic en
dc.relation.ispartof Ekonomie a Management cs
dc.relation.ispartof Economics and Management en
dc.relation.isbasedon Ackermann, F., & Eden, C. (2001). SODA – Journey making and mapping in practice. In J. Rosenhead, & J. Mingers (Eds.), Rational analysis for a problematic world revisited: problem structuring methods for complexity, uncertainty and conflict (pp. 43-60). Chichester: John Wiley & Sons.
dc.relation.isbasedon Ahvenniemi, H., Huovila, A., Pinto-Seppä, I., & Airaksinen, M. (2017). What are the differences between sustainable and smart cities? Cities, 60, 234-245. https://doi.org/10.1016/j.cities.2016.09.009.
dc.relation.isbasedon Albayrak, A., & Albayrak, M. (2016). Performance evaluation of practice courses using fuzzy cognitive maps. In 2016 15th International Conference on Information Technology Based Higher Education and Training (ITHET) (pp. 1-7). https://doi.org/10.1109/ITHET.2016.7760730.
dc.relation.isbasedon Albino, V., Berardi, U., & Dangelico, R. M. (2015). Smart Cities: Definitions, Dimensions, Performance, and Initiatives. Journal of Urban Technology, 22(1), 3-21. https://doi.org/10.1080/10630732.2014.942092.
dc.relation.isbasedon Azevedo, A., & Ferreira, F. (2017). Analyzing the dynamics behind ethical banking practices using fuzzy cognitive mapping. Operational Research. https://doi.org/10.1007/s12351-017-0333-6.
dc.relation.isbasedon Bakici, T., Almirall, E., & Wareham, J. (2013). A Smart City Initiative: the Case of Barcelona. Journal of the Knowledge Economy, 4(2), 135-148. https://doi.org/10.1007/s13132-012-0084-9.
dc.relation.isbasedon Bell, S., & Morse, S. (2013). Groups and facilitators within problem structuring processes. Journal of the Operational Research Society, 64(7), 959-972. https://doi.org/10.1057/jors.2012.110.
dc.relation.isbasedon Carlucci, D., Schiuma, G., Gavrilova, T., & Linzalone, R. (2013, June). A fuzzy cognitive map based approach to disclose value creation dynamics of ABIs. Proceedings of the 8th International Forum on Knowledge Asset Dynamics (IFKAD-2013) (pp. 207-219). Zagreb, Croatia.
dc.relation.isbasedon Carvalho, J. (2013). On the semantics and the use of fuzzy cognitive maps and dynamic cognitive maps in social sciences. Fuzzy Sets and Systems, 214, 6-19. https://doi.org/10.1016/j.fss.2011.12.009.
dc.relation.isbasedon Cauchon, D. (2017). The promise of smart cities. Electric Perspectives, 42(1), 34-41.
dc.relation.isbasedon Chen, C., & Chiu, Y. (2016). A study of fuzzy cognitive map model with dynamic adjustment method for the interaction weights. In 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE) (pp. 699-702). https://doi.org/10.1109/ICAMSE.2016.7840193.
dc.relation.isbasedon Dall’O’, G., Bruni, E., Panza, A., Sarto, L., & Khayatian, F. (2017). Evaluation of cities’ smartness by means of indicators for small and medium cities and communities: A methodology for Northern Italy. Sustainable Cities and Society, 34, 193-202. https://doi.org/10.1016/j.scs.2017.06.021.
dc.relation.isbasedon Estrada, E., Maciel, R., Ortíz Zezzatti, C., Bernabe-Loranca, B., Oliva, D., & Larios, V. (2018). Smart City Visualization Tool for the Open Data Georeferenced Analysis Utilizing Machine Learning. International Journal of Combinatorial Optimization Problems and Informatics, 9(2), 25-40.
dc.relation.isbasedon Faria, P., Ferreira, F., Jalali, M., Bento, P., & António, N. (2018). Combining cognitive mapping and MCDA for improving quality of life in urban areas. Cities, 78, 116-127. https://doi.org/10.1016/j.cities.2018.02.006.
dc.relation.isbasedon Fernandes, I., Ferreira, F., Bento, P., Jalali, M., & António, N. (2018). Assessing sustainable development in urban areas using cognitive mapping and MCDA. International Journal of Sustainable Development & World Ecology, 25(3), 216-226. https://doi.org/10.1080/13504509.2017.1358221.
dc.relation.isbasedon Ferreira, F., & Jalali, M. (2015). Identifying key determinants of housing sales and time-on-the-market (TOM) using fuzzy cognitive mapping. International Journal of Strategic Property Management, 19(3), 235-244. https://doi.org/10.3846/1648715X.2015.1052587.
dc.relation.isbasedon Ferreira, F., Jalali, M., & Ferreira, J. (2016a). Experience-focused thinking and cognitive mapping in ethical banking practices: From practical intuition to theory. Journal of Business Research, 69(11), 4953-4958. https://doi.org/10.1016/j.jbusres.2016.04.058.
dc.relation.isbasedon Ferreira, F., Jalali, M., & Ferreira, J. (2016b). Integrating qualitative comparative analysis (QCA) and fuzzy cognitive maps (FCM) to enhance the selection of independent variables. Journal of Business Research, 69(4), 1471-1478. https://doi.org/10.1016/j.jbusres.2015.10.127.
dc.relation.isbasedon Ferreira, F., Jalali, M., Ferreira, J., Stankevičienė, J., & Marques, C. (2016c). Understanding the dynamics behind bank branch service quality in Portugal: pursuing a holistic view using fuzzy cognitive mapping. Service Business, 10(3), 469-487. https://doi.org/10.1007/s11628-015-0278-x.
dc.relation.isbasedon Ferreira, F., Jalali, M., Meidutė-Kavaliauskienė, I., & Viana, B. (2015). A metacognitive decision making based-framework for bank customer loyalty measurement and management. Technological and Economic Development of Economy, 21(2), 280-300. https://doi.org/10.3846/20294913.2014.981764.
dc.relation.isbasedon Ferreira, F., Spahr, R., Sunderman, M., Banaitis, A., & Ferreira, J. (2017). A learning-oriented decision-making process for real estate brokerage service evaluation. Service Business, 11(3), 453-474. https://doi.org/10.1007/s11628-016-0315-4.
dc.relation.isbasedon Fonseca, M., Ferreira, F., Fang, W., & Jalali, M. (2018). Classification and selection of tenants in residential real estate: a constructivist approach. International Journal of Strategic Property Management, 22(1), 1-11. https://doi.org/10.3846/ijspm.2018.317.
dc.relation.isbasedon Gavrilova, T., Carlucci, D., & Schiuma, G. (2013). Art of visual thinking for smart business education. In Proceedings of the 8th international forum on knowledge asset dynamics (IFKAD-2013). 12-14 June 2013, Zagreb, Croatia (pp. 1754-1761).
dc.relation.isbasedon Glykas, M. (2013). Fuzzy cognitive strategic maps in business process performance measurement. Expert Systems with Applications, 40(1), 1-14. https://doi.org/10.1016/j.eswa.2012.01.078.
dc.relation.isbasedon Gray, S., Gray, S., Cox, L., & Henly-Shepard, S. (2013). Mental Modeler: A Fuzzy-Logic Cognitive Mapping Modeling Tool for Adaptive Environmental Management. In 2013 46th Hawaii International Conference on System Sciences (pp. 965-973). https://doi.org/10.1109/HICSS.2013.399.
dc.relation.isbasedon Hajduk, S. (2016). The concept of a smart city in urban management. Business, Management and Education, 14(1), 34-49. https://doi.org/10.3846/bme.2016.319.
dc.relation.isbasedon Huovila, A., Airaksinen, M., Pinto-Seppä, I., Piira, K., Bosch, P., Penttinen, T., Neumann, H.-M., & Kontinakis, N. (2017). CITYkeys smart city performance measurement system. International Journal for Housing Science and Its Applications, 41(2), 113-125.
dc.relation.isbasedon Jorga, I., Mastrappas, S., & Damigos, D. (2018). Identifying contributing factors to progress in karate-do using the fuzzy cognitive mapping approach. Ido Movement for Culture, Journal of Martial Arts Anthropology, 18(1), 15-22. https://doi.org/10.14589/ido.18.1.3.
dc.relation.isbasedon Keršulienė, V., & Turskis, Z. (2011). Integrated fuzzy multiple criteria decision making model for architect selection. Technological and Economic Development of Economy, 17(4), 645-666. https://doi.org/10.3846/20294913.2011.635718.
dc.relation.isbasedon Khan, M., & Quaddus, M. (2004). Group Decision Support Using Fuzzy Cognitive Maps for Causal Reasoning. Group Decision and Negotiation, 13(5), 463-480. https://doi.org/10.1023/B:GRUP.0000045748.89201.f3.
dc.relation.isbasedon Khatoun, R., & Zeadally, S. (2016). Smart cities: Concepts, architectures, research, opportunities. Communications of the ACM, 59(8), 46-57. https://doi.org/10.1145/2858789.
dc.relation.isbasedon Kok, K. (2009). The potential of Fuzzy Cognitive Maps for semi-quantitative scenario development, with an example from Brazil. Global Environmental Change, 19(1), 122-133. https://doi.org/10.1016/j.gloenvcha.2008.08.003.
dc.relation.isbasedon Kosko, B. (1986). Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24(1), 65-75. https://doi.org/10.1016/S0020-7373(86)80040-2.
dc.relation.isbasedon Lee, D., & Lee, H. (2015). Construction of holistic Fuzzy Cognitive Maps using ontology matching method. Expert Systems with Applications, 42(14), 5954-5962. https://doi.org/10.1016/j.eswa.2015.03.020.
dc.relation.isbasedon Mallapuram, S., Ngwum, N., Yuan, F., Lu, C., & Yu, W. (2017). Smart city: The state of the art, datasets, and evaluation platforms. In 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS) (pp. 447-452). https://doi.org/10.1109/ICIS.2017.7960034.
dc.relation.isbasedon Marques, S., Ferreira, F., Meidutė-Kavaliauskienė, I., & Banaitis, A. (2018). Classifying urban residential areas based on their exposure to crime: A constructivist approach. Sustainable Cities and Society, 39, 418-429. https://doi.org/10.1016/j.scs.2018.03.005.
dc.relation.isbasedon Mazlack, L. (2009). Representing Causality Using Fuzzy Cognitive Maps. In NAFIPS 2009 – 2009 Annual Meeting of the North American Fuzzy Information Processing Society (pp. 1-6). https://doi.org/10.1109/NAFIPS.2009.5156434.
dc.relation.isbasedon Mls, K., Cimler, R., Vaščák, J., & Puheim, M. (2017). Interactive evolutionary optimization of fuzzy cognitive maps. Advances in Fuzzy Cognitive Maps Theory, 232, 58-68. https://doi.org/10.1016/j.neucom.2016.10.068.
dc.relation.isbasedon Oliveira, I., Carayannis, E., Ferreira, F., Jalali, M., Carlucci, D., & Ferreira, J. (2018). Constructing home safety indices for strategic planning in residential real estate: A socio-technical approach. Technological Forecasting and Social Change, 131, 67-77. https://doi.org/10.1016/j.techfore.2017.10.012.
dc.relation.isbasedon Papageorgiou, E., Hatwágner, M., Buruzs, A., & Kóczy, L. (2017). A concept reduction approach for fuzzy cognitive map models in decision making and management. Neurocomputing, 232, 16-33. https://doi.org/10.1016/j.neucom.2016.11.060.
dc.relation.isbasedon Papageorgiou, E., Roo, J., Huszka, C., & Colaert, D. (2012). Formalization of treatment guidelines using Fuzzy Cognitive Maps and semantic web tools. Journal of Biomedical Informatics, 45(1), 45-60. https://doi.org/10.1016/j.jbi.2011.08.018.
dc.relation.isbasedon Pires, A., Ferreira, F., Jalali, M., & Chang, H. (2018). Barriers to real estate investments for residential rental purposes: mapping out the problem. International Journal of Strategic Property Management, 22(3), 168-178. https://doi.org/10.3846/ijspm.2018.1541.
dc.relation.isbasedon Popescu, G. (2015). The economic value of smart city technology. Economics, Management, and Financial Markets, 10(4), 76-82.
dc.relation.isbasedon Ribeiro, M., Ferreira, F., Jalali, M., & Meidutė-Kavaliauskienė, I. (2017). A fuzzy knowledge-based framework for risk assessment of residential real estate investments. Technological and Economic Development of Economy, 23(1), 140-156. https://doi.org/10.3846/20294913.2016.1212742.
dc.relation.isbasedon Roman, K. (2018). Analysis and evaluation of the implementation level of the smart city concept in selected polish cities. BRAIN – Broad Research in Artificial Intelligence and Neuroscience, 9(1), 138-145.
dc.relation.isbasedon Salmeron, J. (2012). Fuzzy cognitive maps for artificial emotions forecasting. Applied Soft Computing, 12(12), 3704-3710. https://doi.org/10.1016/j.asoc.2012.01.015.
dc.relation.isbasedon Santos, F., Ferreira, F., & Meidutė-Kavaliauskienė, I. (2018). Perceived key determinants of payment instrument usage: A fuzzy cognitive mapping-based approach. Technological and Economic Development of Economy, 24(3), 950-968. https://doi.org/10.3846/20294913.2016.1261374.
dc.relation.isbasedon Šiurytė, A., & Davidavičienė, V. (2016). An analysis of key factors in developing a smart city. Science – Future of Lithuania, 8(2), 254-262. https://doi.org/10.3846/mla.2016.900.
dc.relation.isbasedon Sofronijević, A., Milićević, V., & Ilić, B. (2014). Smart city as framework for creating competitive advantages in international business management. Management, 19(71), 5-15. https://doi.org/10.7595/management.fon.2014.0015.
dc.relation.isbasedon Stach, W., Kurgan, L., Pedrycz, W., & Reformat, M. (2005). Genetic learning of fuzzy cognitive maps. Fuzzy Sets and Systems, 153(3), 371-401. https://doi.org/10.1016/j.fss.2005.01.009.
dc.relation.isbasedon Stylios, C., & Groumpos, P. (1998). The challenge of modelling supervisory systems using fuzzy cognitive maps. Journal of Intelligent Manufacturing, 9(4), 339-345. https://doi.org/10.1023/A:1008978809938.
dc.relation.isbasedon Swan, J. (1997). Using Cognitive Mapping in Management Research: Decisions about Technical Innovation. British Journal of Management, 8(2), 183-198. https://doi.org/10.1111/1467-8551.0050.
dc.relation.isbasedon Tegarden, D., & Sheetz, S. (2003). Group cognitive mapping: a methodology and system for capturing and evaluating managerial and organizational cognition. Omega, 31(2), 113-125. https://doi.org/10.1016/S0305-0483(03)00018-5.
dc.relation.isbasedon Tolman, E. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189-208. http://dx.doi.org/10.1037/h0061626.
dc.relation.isbasedon Toschi, G., Campos, L., & Cugnasca, C. (2017). Home automation networks: A survey. Computer Standards & Interfaces, 50, 42-54. https://doi.org/10.1016/j.csi.2016.08.008.
dc.relation.isbasedon Village, J., Greig, M., Salustri, F., & Neumann, W. (2012). Linking human factors to corporate strategy with cognitive mapping techniques. International Ergonomics Association Conference, 41(1), 2776-2780.
dc.relation.isbasedon Wong, C. (2010). Cognitive mapping on user interface design. In 2010 International Conference on Computer Applications and Industrial Electronics (pp. 288-293). https://doi.org/10.1109/ICCAIE.2010.5735091.
dc.relation.isbasedon Yaman, D., & Polat, S. (2009). A fuzzy cognitive map approach for effect-based operations: An illustrative case. Information Sciences, 179(4), 382-403. https://doi.org/10.1016/j.ins.2008.10.013.
dc.relation.isbasedon Zadeh, L. (2008). Is there a need for fuzzy logic? Information Sciences, 178(13), 2751-2779. https://doi.org/10.1016/j.ins.2008.02.012
dc.rights CC BY-NC
dc.subject smart en
dc.subject smart city en
dc.subject smart economy en
dc.subject smart environment en
dc.subject smart governance en
dc.subject smart mobility en
dc.subject cause and effect dynamics en
dc.subject fuzzy cognitive mapping en
dc.subject.classification C44
dc.subject.classification C45
dc.subject.classification M10
dc.subject.classification R11
dc.title An expanded conceptualization of “smart” cities: adding value with fuzzy cognitive maps en
dc.type Article en
dc.publisher.abbreviation TUL
dc.relation.isrefereed true
dc.identifier.doi 10.15240/tul/001/2019-1-001
dc.identifier.eissn 2336-5604
local.relation.volume 22
local.relation.issue 1
local.relation.abbreviation E+M cs
local.relation.abbreviation E&M en
local.faculty Faculty of Economics
local.citation.spage 4
local.citation.epage 21
local.access open
local.fulltext yes
local.filename EM_1_2019_01
dc.identifier.orcid 0000-0002-3302-1209 Banaitis, Audrius


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

My Account