A nonlinear dynamic model to international tourism demand in Spanish Mediterranean coasts

DSpace Repository

Show simple item record

dc.contributor.author Albaladejo, Isabel
dc.contributor.author González-Martínez, Maribel
dc.contributor.other Ekonomická fakulta cs
dc.date.accessioned 2018-12-06
dc.date.accessioned 2018-12-17T08:35:46Z
dc.date.available 2018-12-17T08:35:46Z
dc.identifier.issn 1212-3609
dc.identifier.uri https://dspace.tul.cz/handle/15240/124746
dc.description.abstract Spanish Mediterranean coasts are a consolidated tourist destination and enjoy growing demand. These coasts receive the highest number of international arrivals in Spain. This paper has been developed to gain a better knowledge of the determinants of this international tourism demand. A nonlinear dynamic model that analyses how previous tourists can affect tourism demand decisions is proposed. This nonlinear dynamic specification extends the standard dynamic equation for tourism demand to include interaction effects between previous tourists and two destination characteristics: the quality of the tourism services and tourist congestion. Both characteristics are important to define the reputation or attractiveness of the destination. We test the model using panel data from the 11 provinces which make up the Spanish Mediterranean coasts, and the 7 European countries which are the main origin markets for the period 2005-2015. The system GMM procedure is applied to estimate the econometric model. The econometric results show evidence of strong persistence in international tourism demand. Previous tourists have an important positive and non-constant effect, and this effect is positively influenced by the quality of the tourism services, and negatively by tourist congestion. Therefore, the effect of previous tourists is not constant but varies across provinces and over time. This effect is stronger in provinces with high quality tourism services and lower congestion. Additionally, the impact of previous tourists has not remained constant over time, but has increased in the Mediterranean provinces since 2005. The investments realized in quality and quantity of hotel services during this period have enhanced their reputation. en
dc.format text
dc.format.extent 14 stran cs
dc.language.iso en
dc.publisher Technická Univerzita v Liberci cs
dc.publisher Technical university of Liberec, Czech Republic en
dc.relation.ispartof Aguiló, E., Riera, A., & Roselló, J. (2005). The short-term price effect of a tourist tax through a dynamic demand model. Tourism Management, 26(3), 359-365. https://dx.doi.org/10.1016/j.tourman.2003.07.005. cs
dc.relation.ispartof Albaladejo, I. P., González-Martínez, M. I., & Martínez-García, M. P. (2014). Quality and endogenous tourism: An empirical approach. Tourism Management, 41, 141-147. https://dx.doi.org/10.1016/j.tourman.2013.09.006. cs
dc.relation.ispartof Albaladejo, I. P., González-Martínez, M. I., & Martínez-García, M. P. (2016). Nonconstant reputation effect in a dynamic tourism demand model for Spain. Tourism Management, 53, 132-139. https://dx.doi.org/10.1016/j.tourman.2015.09.018 cs
dc.relation.ispartof Albaladejo, I. P., & Martínez-García, M. P. (2015). An R&D-based endogenous growth model of international tourism. Tourism Economics, 21(4), 701-719. https://dx.doi.org/10.5367/te.2014.0379. cs
dc.relation.ispartof Albaladejo, I. P., & Martínez-García, M. P. (2016). The poststagnation stage for mature tourism areas: A mathematical modeling process. Tourism Economics, 23(2), 387-402. https://doi.org/10.5367/te.2015.0533. cs
dc.relation.ispartof Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies, 58(2), 277-297. https://dx.doi.org/10.2307/2297968. cs
dc.relation.ispartof Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of error-components models. Journal of Econometrics, 68(1), 29-51. https://dx.doi.org/10.1016/0304-4076(94)01642-D. cs
dc.relation.ispartof Baltagi, B. (2008). Econometric analysis of panel data (4th ed.). Chichester: Wiley. cs
dc.relation.ispartof Bass, F. M. (1969). A New Product Growth Model for Consumer Durables. Management Science, 15(5), 215-227. https://dx.doi.org/10.1287/mnsc.15.5.215. cs
dc.relation.ispartof Beerli, A., & Martín, J. D. (2004). Tourists' characteristics and the perceived image of tourist destinations: a quantitative analysis-a case study of Lanzarote, Spain. Tourism Management, 25(5), 623-636. https://dx.doi.org/10.1016/j.tourman.2003.06.004. cs
dc.relation.ispartof Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1), 115-143. https://dx.doi.org/10.1016/S0304-4076(98)00009-8. cs
dc.relation.ispartof Butler, R. W. (1980). The concept of a tourist area cycle of evolution: implications for management of resources. Canadian Geographer, 24(1), 5-12. https://dx.doi.org/10.1111/j.1541-0064.1980.tb00970.x. cs
dc.relation.ispartof Capacci, S., Scorcu, A. E., & Vici, L. (2015). Seaside tourism and eco-labels: The economic impact of Blue Flags. Tourism Management, 47, 88-96. https://dx.doi.org/10.1016/j.tourman.2014.09.003. cs
dc.relation.ispartof Eurostat. (2016). Eurostat Economy and Finance Statistic. Retrieved from http://ec.europa.eu/eurostat/data/database/#. cs
dc.relation.ispartof Garín-Muñoz, T. (2006). Inbound international tourism to Canary Islands: a dynamic panel data model. Tourism Management, 27(2), 281-291. https://dx.doi.org/10.1016/j.tourman.2004.10.002. cs
dc.relation.ispartof Garín-Muñoz, T. (2007). German demand for tourism in Spain. Tourism Management, 28(1), 12-22. https://dx.doi.org/10.1016/j.tourman.2005.07.020. cs
dc.relation.ispartof Garín-Muñoz, T. (2009). Tourism in Galicia: domestic and foreign demand. Tourism Economics, 15(4), 753-769. https://doi.org/10.5367/000000009789955107. cs
dc.relation.ispartof Garín-Muñoz, T., & Montero-Martín, L. F. (2007). Tourism in the Balearic Islands: A dynamic model for international demand using panel data. Tourism Management, 28(5), 1224-1235. https://dx.doi.org/10.1016/j.tourman.2006.09.024. cs
dc.relation.ispartof Gatt, W., & Falzon, J. (2014). British tourism demand elasticities in Mediterranean countries. Applied Economics, 46(29), 3548-3561. https://dx.doi.org/10.1080/00036846.2014.934432. cs
dc.relation.ispartof Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50(4), 1029-1054. https://dx.doi.org/10.2307/1912775. cs
dc.relation.ispartof Hsiao, C. (2003). Analysis of panel data (2nd ed.). Cambridge: Cambridge University Press. cs
dc.relation.ispartof Hsu, L. C., & Wang, C. H. (2008). The development and testing of a modified diffusion model for predicting tourism demand. International Journal of Management, 25(3), 439-445. cs
dc.relation.ispartof INE. (2016). Spanish Statistic Institute, Hotel Industry and Tourism Statistic. Retrieved from http://www.ine.es/#. cs
dc.relation.ispartof Mahajan, V., Muller, E., & Bass, F. M. (1990). New Product Diffusion Models in Marketing: A Review and Directions for Research. Journal of Marketing, 54(1), 1-26. https://dx.doi.org/10.2307/1252170. cs
dc.relation.ispartof Maloney, W. F., & Montes Rojas, G. V. (2005). How elastic are sea, sand and sun? Dynamic panel estimates of the demand for tourism. Applied Economics Letters, 12(5), 277-280. https://dx.doi.org/10.1080/1350485042000338626. cs
dc.relation.ispartof Massidda, C., & Etzo, I. (2012). The determinants of Italian domestic tourism: A panel data analysis. Tourism Management, 33(3), 603-610. https://dx.doi.org/10.1016/j.tourman.2011.06.017. cs
dc.relation.ispartof Morley, C. L. (1998). A dynamic international model. Annals of Tourism Research, 25(1), 70-84. https://dx.doi.org/10.1016/S0160-7383(97)00067-4. cs
dc.relation.ispartof Morley, C. L. (2009). Dynamics in the specification of tourism demand models. Tourism Economics, 15(1), 23-39. https://doi.org/10.5367/000000009787536654. cs
dc.relation.ispartof Naudé, W., & Saayman, A. (2005). Determinants of tourist arrivals in Africa: a panel data regression analysis. Tourism Economics, 11(3), 365-391. https://doi.org/10.5367/000000005774352962. cs
dc.relation.ispartof Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica, 49(6), 1417-1426. https://doi.org/10.2307/1911408. cs
dc.relation.ispartof Nicolau, J. L., & Sellers, R. (2010). The quality of quality awards: Diminishing information asymmetries in a hotel chain. Journal of Business Research, 63(8), 832-839. https://doi.org/10.1016/j.jbusres.2009.06.009. cs
dc.relation.ispartof OECD. (2016). OECD National Accounts Statistics. Retrieved from http://stats.oecd.org/#. cs
dc.relation.ispartof Papatheodorou, A. (1999). The demand for international tourism in the Mediterranean region. Applied Economics, 31(5), 619-630. https://dx.doi.org/10.1080/000368499324066. cs
dc.relation.ispartof Poprawe, M. (2015). A panel data analysis of the effect of corruption on tourism. Applied Economics, 47(23), 2399-2412. https://dx.doi.org/10.1080/00036846.2015.1005874. cs
dc.relation.ispartof Rodríguez, X. A., Martínez-Roget, F., & Pawlowska, E. (2012). Academic tourism demand in Galicia, Spain. Tourism Management, 33(6), 1583-1590. https://dx.doi.org/10.1016/j.tourman.2012.01.010. cs
dc.relation.ispartof Roodman, D. M. (2009). How to do xtabond2: An introduction to difference and system GMM in Stata. The Stata Journal, 9(1), 86-136. cs
dc.relation.ispartof Rosselló, J., Aguiló, E., & Riera, A. (2005). Modeling Tourism Demand Dynamics. Journal of Travel Research, 44(1), 111-116. https://doi.org/10.1177/0047287505276602. cs
dc.relation.ispartof Santana-Jiménez, Y., & Hernández, J. M. (2011). Estimating the effect of overcrowding on tourist attraction: The case of Canary Islands. Tourism Management, 32(2), 415-425. https://dx.doi.org/10.1016/j.tourman.2010.03.013. cs
dc.relation.ispartof Vajčnerová, I., Žiaran, P., Ryglová, K., & Andráško, I. (2014). Quality management of the tourist destination in the context of visitors’ satisfaction. Procedia Economics and Finance, 12, 718-724. https://dx.doi.org/10.1016/S2212-5671(14)00398-0. cs
dc.relation.ispartof Windmeijer, F. (2005). A finite sample correction for the variance of linear efficient two-step GMM estimators. Journal of Econometrics, 126(1), 25-51. https://dx.doi.org/10.1016/j.jeconom.2004.02.005 cs
dc.relation.ispartof Economics and Management en
dc.rights CC BY-NC
dc.subject international tourism demand en
dc.subject previous tourists effect en
dc.subject dynamic panel data en
dc.subject interaction effects en
dc.subject Spain en
dc.subject.classification C23
dc.subject.classification L83
dc.subject.classification Z32
dc.title A nonlinear dynamic model to international tourism demand in Spanish Mediterranean coasts en
dc.type Article en
dc.publisher.abbreviation TUL
dc.relation.isrefereed true
dc.identifier.doi 10.15240/tul/001/2018-4-005
dc.identifier.eissn 2336-5604
local.relation.volume 21
local.relation.issue 4
local.relation.abbreviation E+M cs
local.relation.abbreviation E&M en
local.faculty Faculty of Economics
local.citation.spage 65
local.citation.epage 78
local.access open
local.fulltext yes
local.filename EM_4_2018_05
dc.identifier.orcid 0000-0001-7441-7392 Albaladejo, Isabel
dc.identifier.orcid 0000-0001-6564-9298 González-Martínez, Maribel


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse

My Account